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Abstract 

 
Skewes' number was discovered in 1933 by South African mathematician Stanley Skewes as upper bound 

for the first sign change of the difference 𝜋(𝑥) − li(𝑥). Whether a Skewes' number is an integer is an open 

problem of Number Theory. Assuming Schanuel's conjecture, it can be shown that Skewes' number is 
transcendental. In our paper we have chosen a different approach to prove Skewes' number is an integer, 

using lattice points and tangent line. In the paper we acquaint the reader also with prime numbers and their 

use in RSA coding, we present the primary algorithms Lehmann test and Rabin-Miller test for determining 
the prime numbers, we introduce the Prime Number Theorem and define the prime-counting function and 

logarithmic integral function and show their relation. 
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1. INTRODUCTION 

The prime numbers play an essential role in mathematics, e.g. they are the 

cornerstone of modern cryptographic algorithms and protocols, such as digital 

signatures, public key encryption, etc. The basic attribute of prime numbers is that 

they are no longer decomposable into the product of other numbers, and this very 

attribute is important for modern cryptography. In number theory we know several 

algorithms, by means of which we can decompose composite numbers into the 

product of prime numbers while we will use the same algorithm to decompose multi-

digit numbers as for example to decompose small numbers. The results of the 

mathematical research to date show that there is no general rule according to which it 

is possible to quickly decompose large numbers into prime numbers universally and 

that the process of decomposition of large numbers takes a long time even for modern 

computer technology. 

Thus, we can easily algorithmically decompose only numbers of a certain 

"small" size into the product of prime numbers and this fact is the basis of virtual 

security. If we take two very large prime numbers, where both the first and the second 
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represent some information, it is easy to multiply them with each other, giving a very 

large composite number practically decomposable (unless we know the so-called 

private key, i.e. some necessary information how the large number came up). 

Algorithms that would look for the factors of a product by trying all possibilities, 

would have an NP complete time complexity [1]. 

This security, using prime number attributes, allows for public key encryption 

[2]. It is an encryption in which each of its principles is known and is public, but no 

one decrypts the encrypted information, because the public key only (i.e. knowledge 

of the encryption principle) is not enough. To decipher the cipher and read the 

message, it is necessary to obtain prime number elements of prime factorization that 

can only be obtained by the recipient of the message who also knows the private key 

(that is, some necessary information on how the product originated). 

There are currently several encryption algorithms that use prime factorization, 

but historically the most important is RSA [3]. One of the first standards was RSA-

768 [4], which represents a 232-digit number. The standard has been broken by 

scientists by bringing together hundreds of computers that have been working for a 

period representing 2000 years of one computer work. Later, the RSA-1024, RSA-

2048 or RSA-4096 standards have been developed which are used today. 

All virtual security builds on exceptional properties of prime numbers, and that 

is the reason we are still studying prime numbers with great importance. Prime 

numbers are the basic building blocks of all numbers, and much of the modern 

knowledge comes only from discovery of other prime number properties. 

 

2. GENERATING PRIME NUMBERS 

Many modern cryptographic algorithms and protocols require prime numbers, 

so it is important to be able to properly generate them and be able to effectively decide 

whether a given number 𝑛 is a prime. Probability of randomly selected number near 

the number 𝑛 being the prime number is approximately 
1

ln 𝑛
 [5]. Then the total number 

of primes less than 𝑛 is approximately 
𝑛

ln 𝑛
 (more in Section 3). 

When generating prime numbers, a number 𝑛 is randomly selected and one of 

the known prime number tests is used to determine if it is prime. If not, another 
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random number 𝑛 can be selected and repeat the test. Number 𝑛 must be selected 

appropriately (e.g. in the form of 2𝑝 − 1, where 𝑝 is a prime number [6]) to increase 

the probability of choosing a prime number. 

One of the known tests, e.g. Lehmann test [7] or Rabin-Miller test [8] can be 

used for prime number testing. Lehmann's prime number test of 𝑛 is an algorithm 

consisting of the following steps: 

1. we choose a random number 𝑚 less than 𝑛 

2. we calculate 𝑚
𝑛−1

2 mod 𝑛 

3. if 𝑚
𝑛−1

2 ≢ 1(mod 𝑛) or 𝑚
𝑛−1

2 ≢ 1(mod 𝑛), the number 𝑛 is not a prime 

number 

4. if 𝑚
𝑛−1

2 ≡ 1(mod 𝑛) or 𝑚
𝑛−1

2 ≡ −1(mod 𝑛), the probability of 𝑛 not being 

a prime is maximum 50% 

The algorithm is repeated 𝑘-times with another randomly selected number 𝑚, 

and if the test succeeds 𝑘-times, the probability of 𝑛 not being prime, will be 𝑚 
1

2𝑘
. 

Rabin-Miller's prime number test is a very fast probability algorithm which, if it 

finds that a given number is composite, then it is really composite. If the algorithm in 

response returns that number 𝑛 is a prime number, it's only true with a certain 

probability. Rabin-Miller's prime number test of 𝑛 is an algorithm consisting of the 

following steps: 

1. first for a random number 𝑛 we find such a number 𝑢, so that 2𝑢|𝑛 − 1, thus 

𝑛 − 1 = 2𝑢 ∙ 𝑙, where 𝑙 is an odd number 

2. then we select a random number 𝑚 , so that 1 < 𝑚 < 𝑛 applies 

3. for each 𝑖 = 0,⋯ , 𝑢 − 1 we count 𝑣𝑖 = 𝑚
2𝑖∙𝑙  mod 𝑛, and if 𝑖 exists for 

which does not apply that (𝑣𝑖 = −1 ∨ 𝑚
𝑙  mod 𝑛 = 1), then 𝑛 is composite 

4. if 𝑛 is not composite, we repeat steps 2-3 𝑘 times 

5. if after repeating the test 𝑘 times 𝑛 is not composite, it can be a prime 

number 

The probability of passing the test by a composite number as a prime decreases 

faster in this test and is equal to 
1

4𝑘
. Thus, by repeating the test multiple times, we can 
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reduce the probability of an error to arbitrarily small one, though never zero, and we 

cannot say with certainty that the algorithm has returned a prime number. 

Sometimes, e.g. in RSA cryptographic algorithms using the product of two 

prime numbers 𝑝, 𝑞, prime numbers are required to be strong prime numbers [9]. 

These prime numbers have certain properties that make it difficult to decompose a 

number into prime factors using standard procedures. Recommended properties 

include: 

1. the largest common divisor of numbers (𝑝 − 1) and  (𝑞 − 1) should be 

small 

2. both numbers (𝑝 − 1) and (𝑞 − 1) should have great prime factors 𝑟, 𝑠 

3. both numbers (𝑟 − 1) and (𝑠 − 1) should have great prime factors 

4. both numbers (𝑟 + 1) and (𝑠 + 1) should have great prime factors 

5. both numbers 
(𝑝−1)

2
 and  

(𝑞−1)

2
 should be prime numbers 

 
 

3. PRIME-COUNTING FUNCTION AND THE PRIME NUMBER 
THEOREM 

The prime-counting function, denoted as 𝜋(𝑥), is the function that counts the 

number of prime numbers less than or equal to a given real number 𝑥 [10]: 

𝜋(𝑥) =∑1

𝑝≤𝑥

 

In the history of mathematics, there have been many attempts to find the exact 

formula for prime-counting function [11-12]. In the end of the 18th century French 

mathematician Adrien-Marie Legendre conjectured that 

𝜋(𝑥)~
𝑥

𝐴∙log(𝑥)+𝐵
, 

for constants 𝐴 and 𝐵 (log(𝑥) denotes the natural logarithm) in his work [13] which 

was published in 1798 and summarized the number theory results of the 18th century. 

Legendre improved his conjecture in 1808 in his work [14] to 

𝜋(𝑥) =
𝑥

log(𝑥)−𝐴(𝑥)
, 
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where lim
𝑥→∞

𝐴(𝑥) = 1.08366 is Legendre's constant [15]. Carl Friedrich Gauss 

followed up on the research of Legendre from the 18th century and in 1849 he brought 

a better estimate for 𝜋(𝑥) based on empirical proofs obtained from the tables of prime 

numbers as: 

lim
𝑥→∞

𝜋(𝑥)
𝑥

log (𝑥)

= 1, resp. 𝜋(𝑥)~
𝑥

log (𝑥)
. 

 

In 1854, a professor at St. Petersburg University, Pafnuty Lvovich Chebyshev, 

found approximation 0.92129 <
𝜋(𝑥)
𝑥

log (𝑥)

< 1.10555 for function 𝜋(𝑥). When studying 

function 𝜋(𝑥), Chebyshev used a real function which in the complex domain in its 

form 𝜁(𝑧) = ∑
1

𝑛𝑧
∞
𝑛=1  is known under the name Riemann function (zeta function) 

defined in the whole complex plane except from point 1. This function had already 

been known to Euler in the 18th century but it was only Bernhard Riemann who fully 

discover its potential. Riemann tried to find nontrivial zero values of function 𝜁(𝑧) 

during his attempt to use function 𝜁 to prove formula lim
𝑥→∞

𝜋(𝑥)
𝑥

log (𝑥)

= 1. In 1859 he 

formulated a conjecture, the Riemann Hypothesis, [16] that in a plane of complex 

numbers 𝑧 = 𝑥 + i𝑦 in a planar strip defined by inequality 0 ≤ 𝑥 ≤ 1, all these zero 

points lie on line 𝑥 =
1

2
. A decision on the validity of Riemann hypothesis would solve 

a large number of problems from various areas of mathematics, especially from the 

number theory domain, such as the question of prime number distribution. Riemann 

zeta function contains an infinite number of zeros and, by using available numerical 

methods, by 1986 it was proven that 1,500,000,000 zeros of Riemann zeta function 

lies on line 𝑥 =
1

2
. Based on current calculations, this holds for up to 10 quintillions 

of zeros. 

The theorem lim
𝑥→∞

𝜋(𝑥)

𝑥/ln𝑥
= 1 in known as the Prime Number Theorem and it is 

one of the most remarkable results of modern mathematics. The theorem was proved 

simultaneously in 1896 by Hadamard [17] and de la Vallée-Poussin [18]. Hence the 

Prime Number Theorem shows that around any number 𝑥 the density of prime 
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numbers is about 
1

log (𝑥)
. Several values for 𝜋(𝑥) are shown in the Table 1 together 

with the actual number of prime numbers up to 𝑥 [19]. 

 

𝑥 
number of primes less 

than or equal to 𝑥 
𝜋(𝑥) 

1000 168 178 

10000 1229 1246 

100000 9592 9630 

1000000 78498 78628 

10000000 664579 664918 

100000000 5761455 5762209 

1000000000 50847534 50849235 

10000000000 455052511 455055614 

Table 1. Several values for 𝜋(𝑥) 

 

The Prime Number Theorem is equivalent to statement: 

𝜋(𝑥)~li(𝑥), 

where li(𝑥) li is the logarithmic integral function [20] defined for all positive real 

numbers 𝑥 > 1 as: 

li(𝑥) = ∫
𝑑𝑡

ln 𝑡

𝑥

0
. 

 

The function 
1

ln 𝑡
 has a singularity at 𝑡 = 1, and the function li(𝑥) is interpreted as a 

Cauchy principal value [21]: 

li(𝑥) = lim
𝜀→0+

(∫
𝑑𝑡

ln 𝑡

1−𝜀

0
+ ∫

𝑑𝑡

ln 𝑡

𝑥

1+𝜀
). 

 

It was thought for a long time that 𝜋(𝑥) is always an overestimate for all 𝑥: 

𝜋(𝑥) < li(𝑥), 

until John Edensor Littlewood, a British mathematician, showed in 1914 [22] that the 

logarithmic integral function underestimates the prime counting function for some 

large 𝑥 (𝜋(𝑥) > li(𝑥)). Moreover that the difference 𝜋(𝑥) − li(𝑥) changes sign 



JAMSI, 17 (2021), No. 2 11 

 

 

infinitely often. Littlewood's proof did not state a concrete such number 𝑥, it was just 

a proof of existence. 

The first crossover point (as upper bound for the first sign change) was 

discovered by South African mathematician Stanley Skewes (Skewes was supervised 

for his PhD. under the Littlewood) and this number was named after him. In 1933 [23] 

Skewes showed there exists a number 𝑥 below: 

𝑒𝑒
𝑒79

< 1010
1034

. 

This bound assumed that the Riemann Hypothesis is true. In 1955 [24] Skewes 

showed a bound 

𝑒𝑒
𝑒𝑒
7.705

< 1010
10964

 

without assuming the Riemann hypothesis known as Skewes Second Number. 

 

4. MAIN RESULTS 

Consider a space with a rectangular coordinate system [𝑂, 𝑥, 𝑦]. Coordinate axes 

𝑥, 𝑦 as numeric axes have integer values highlighted. If by these highlighted points 

we draw lines perpendicular to the considered axis we get a grid in which the node 

point is defined as 𝐴[𝑥0, 𝑦0], 𝑥0, 𝑦0 ∈ ℤ. In the work [25] we have shown a method to 

find solutions for a certain type of Diophantine equations using a tangent line (plane). 

We use the slope of a tangent line and its shift on the relevant axis to determine the 

properties of the tangent point and whether it is a grid point or not. 

We now apply this procedure to determine whether the considered number 𝑏 

belongs to the set of integers or not. Consider a function 𝑦 = 𝑓(𝑥) under the condition 

𝑦 = 𝑓(𝑥0) = 𝑏 and 𝑥0 ∈ ℤ. Then if the tangent line at the point 𝐸[𝑥0, 𝑏] has a rational 

slope and at the same time a shift on the relevant axis 𝑠𝑥 at the point 𝐵[𝑠𝑥 , 0] is 

rational, number 𝑏 ∈ ℤ. In the case of a more complex number where we cannot 

provide the condition 𝑥0 ∈ ℤ, we consider 𝑥0 = 𝛼 ∙ 𝛿 where 𝛼 ∈ ℝ and 𝛿 ∈ ℤ. Then 

the slope will be in the form 𝑘 =
1

𝛼
∙ 𝑞 and 𝑞 ∈ ℚ. By such compensation of the grid, 

we can abolish the irrationality of the slope, which arose on the basis of the number 

https://en.wikipedia.org/wiki/South_Africa
https://en.wikipedia.org/wiki/Stanley_Skewes
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we have chosen. Hence we get to the previous condition. In more computationally 

difficult tasks we also use the intersection with the 𝑦-axis. Then we use a line on which 

we have three points 𝐴[0, 𝑠𝑦], 𝐵[𝑠𝑥 , 0] and 𝐸[𝑥0, 𝑏]. 

We also use the gradient of field in our approach. The derivative of a scalar field  

𝑈 = 𝑈(𝑟) according to the vector 𝑐 at a given point 𝑟 is called the limit 

𝜕𝑈

𝜕𝑐
= lim
𝜀→0

𝑈(𝑟+𝜀𝑐)−𝑈(𝑟)

𝜀
. 

If we consider the unit vector 𝑐0, equality holds 

𝜕𝑈

𝜕𝑐
= |𝑐| ∙

𝜕𝑈

𝜕𝑐0⃗⃗⃗⃗⃗
, 

where 
𝜕𝑈

𝜕𝑐0⃗⃗⃗⃗⃗
 means the rate at which the function 𝑈 increases in the direction of the 

vector 𝑐0⃗⃗⃗⃗  at each point. The gradient of the field grad(𝑈) is the vector defined at each 

point of the field and that has the direction of the normal line to the equiscular plane. 

In a right-angled coordinate system 

grad(𝑈) =
𝜕𝑈

𝜕𝑥
𝑖 +

𝜕𝑈

𝜕𝑦
𝑗 +

𝜕𝑈

𝜕𝑧
𝑘⃗⃗. 

From the above properties we can determine based on the grad(𝑈) equations of the 

tangent plane to the area determined by the equation of the scalar field 𝑈, or in the 

case of a situation in space 𝐸2 we have a tangent line to the curve. More information 

on the theory can be found in [26-27]. 

 

Now, we’ll show through lattice points and tangent line that Skewes' number is 

not an integer. 

 PROBLEM. 𝑒𝑒
𝑒79

∈ ℕ 

 PROOF. To prove that the Skewes' number is an integer, we use the property of 

a tangent line, which we place in the grid system. In this case, the slope of the tangent 

line depends on the properties of the function, with which we can create a mapping of 

our considered number to the number 𝑒𝑒
𝑒79

. Consider a coordinate system 𝑥𝑦 where 

we have defined the grid by 𝑦 = 𝑘1, 𝑥 = 𝑘2 ∙ 𝑒; 𝑘1, 𝑘2 ∈ ℤ. It is important for us that 
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the grid is integer graduated on the 𝑦-axis, and due to the chosen function, we consider 

multiples of the number 𝑒 on the 𝑥-axis. We choose this form of the line for the 

calculation: 

(𝑂 − 𝑋) ∙ grad (𝐹[𝐴]) = 𝐷, 

 

where 𝑂 is the origin of the coordinate system, 𝑋 is any point of the line, 𝐸 is the 

tangent point with the coordinates 𝐸[𝑥0, 𝑦0] and 𝐷 is the result of an inner product 

which depends on the distance of the line from the origin of the coordinate system. 

For a line that does not pass through the origin of the coordinate system, we 

choose points that lie on the coordinate axes. Then the point of the line which lies on 

the coordinate axis 𝑦 has the coordinates 𝐴[0, 𝑠𝑦] and the point which lies on the 

coordinate axis 𝑥 has the coordinates 𝐵[𝑠𝑥 , 0]. Now we solve the vector equation 

 

(𝑂 − 𝐴) ∙ grad(𝐹[𝐴]) = 𝐷 

(0 − 0, 0 − 𝑠𝑦) ∙ grad(𝐹[𝐴]) = 𝐷 

Next we multiply the equation by the vector grad(𝐹[𝐴])−1 

 

(0, −𝑠𝑦) = 𝐷 

(𝑂 − 𝐵) ∙ grad(𝐸) = 𝐷 ∙ grad(𝐹[𝐴])−1 

 

We need to determine the intersection with the 𝑦-axis by multiplying the equation by 

the unit vector 1𝑦 = (0,1) and we get 

 

−𝑠𝑦 = 𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])
−1. 

Next consider the curve given by the equation 

𝑦 = 𝑥𝑥
𝑥79

. 

We simplify the equation to the form 𝐹(𝑥, 𝑦) = 0. With a suitably chosen number for 

𝑥, we are able to get to the required number. 
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Now consider a tangent line at a point 𝐴 [𝑒, 𝑒𝑒
𝑒79

], which leads us to the number 

𝑒𝑒
𝑒79

, whose properties we are determining. Hence 
𝑦−𝑦0

𝑥−𝑥0
=

𝑒𝑒
𝑒79

𝐷∙1𝑥∙grad(𝐹[𝐴])
−1+𝑒

 and 

 

𝑦 − 𝑦0
𝑥 − 𝑥0

=
𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])

−1 + 𝑒𝑒
𝑒79

𝑒
 

𝑦 − 𝑦0
𝑥 − 𝑥0

= 𝑒𝑒
𝑒79

(𝑒−1+𝑒
79
+ 𝑒𝑒

79
(𝑒78 + 79𝑒78)) 

𝐷 = 𝑒𝑒
𝑒79

(𝑒−1+𝑒
79
− 1 + 𝑒𝑒

79
(𝑒78 + 79𝑒78)) 

 

Let’s determine the tangent line based on the intersections with the coordinate system 

and the tangent point 

𝑠𝑦 − 𝑦0

0 − 𝑥0
=
0 − 𝑦0
𝑠𝑥 − 𝑥0

 

grad(𝐹[𝐴])−1 =
grad(𝐹[𝐴])

√grad(𝐹[𝐴]). grad(𝐹[𝐴])
 

grad(𝐹[𝐴]) = (𝑒𝑒
𝑒79

(𝑒−1+𝑒
79
+ 𝑒𝑒

79
(𝑒78 + 79𝑒78)) , 1) 

 

From that 

grad(𝐹[𝐴])−1 =
(𝑒𝑒

𝑒79

(𝑒−1+𝑒
79
+ 𝑒𝑒

79
(𝑒78 + 79𝑒78)) , 1)

√((𝑒𝑒
𝑒79
)
2

(𝑒−1+𝑒
79
+ 𝑒𝑒

79(𝑒78 + 79𝑒78))
2

+ 1)

 

𝑒𝑒
𝑒79

𝐷 ∙ 1𝑥 ∙ grad(𝐹[𝐴])
−1 + 𝑒

=
𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])

−1 + 𝑒𝑒
𝑒79

𝑒
 

 

After simplification it holds 

 

𝑒𝑒
𝑒79+1 = (𝐷 ∙ 1𝑥 ∙ grad(𝐹[𝐴])

−1 + 𝑒) ∙ (𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])
−1 + 𝑒𝑒

𝑒79

) 

𝑒𝑒
𝑒79

=
(𝐷 ∙ 1𝑥 ∙ grad(𝐹[𝐴])

−1 + 𝑒) ∙ (𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])
−1 + 𝑒𝑒

𝑒79

)

𝑒
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If 𝑒𝑒
𝑒79

∈ ℕ then suppose that 𝑒𝑒
𝑒79

= 𝑘3 ∈ ℕ. Then 

 

(𝐷 ∙ 1𝑥 ∙ grad(𝐹[𝐴])
−1 + 𝑒) ∙ (𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])

−1 + 𝑘3) = 𝑘3 ∙ 𝑒. 

 

Hence 

𝑘3 ∙ 𝑒 = 𝐷 ∙ 1𝑥 ∙ grad(𝐹[𝐴])
−1 ∙ 𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])

−1 + 𝐷 ∙ 1𝑥 ∙ grad(𝐹[𝐴])
−1𝑘3 + 

+𝑒 ∙ 𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])
−1 + 𝑒 ∙ 𝑘3 

 

From that 

𝐷 ∙ 1𝑥 ∙ grad(𝐹[𝐴])
−1 ∙ 𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])

−1 + 𝐷 ∙ 1𝑥 ∙ grad(𝐹[𝐴])
−1𝑘3 + 

+𝑒 ∙ 𝐷 ∙ 1𝑦 ∙ grad(𝐹[𝐴])
−1 = 0 

After substitution we get 

(k3 (𝑒
−1+𝑒79 − 1 + k3(𝑒

78 + 79𝑒78)))
3

((k3)
2 (𝑒−1+𝑒

79
+ 𝑒𝑒

79(𝑒78 + 79𝑒78))
2

+ 1)
+ 

+
(k3 (𝑒

−1+𝑒79 − 1 + k3(𝑒
78 + 79𝑒78)))

2

𝑘3 + 𝑒 (k3 (𝑒
−1+𝑒79 − 1 + k3(𝑒

78 + 79𝑒78)))

√((k3)
2 (𝑒−1+𝑒

79
+ 𝑒𝑒

79(𝑒78 + 79𝑒78))
2
+ 1)

= 0 

 

And finally we have a form 

(k3 (𝑒
−1+𝑒79 − 1 + k3(𝑒

78 + 79𝑒78))) ∙ 

∙

(

 
(k3(𝑒

−1+𝑒79 − 1 + k3(𝑒
78 + 79𝑒78)))

2

((k3)
2 (𝑒−1+𝑒

79
+ 𝑒𝑒

79(𝑒78 + 79𝑒78))
2

+ 1)

+
(k3(𝑒

−1+𝑒79 − 1 + k3(𝑒
78 + 79𝑒78)))𝑘3 + 𝑒

√((k3)
2 (𝑒−1+𝑒

79
+ 𝑒𝑒

79(𝑒78 + 79𝑒78))
2

+ 1)
)

 = 0 
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The trivial solution is 𝑘3 = 0 which we do not consider, because 𝑒𝑒
𝑒79

= 𝑘3. Further 

we solve the equation 

(k3 (𝑒
−1+𝑒79 − 1 + k3(𝑒

78 + 79𝑒78)))
2

((k3)
2 (𝑒−1+𝑒

79
+ 𝑒𝑒

79(𝑒78 + 79𝑒78))
2

+ 1)
+ 

+
(k3(𝑒

−1+𝑒79 − 1 + k3(𝑒
78 + 79𝑒78)))𝑘3 + 𝑒

√((k3)
2 (𝑒−1+𝑒

79
+ 𝑒𝑒

79(𝑒78 + 79𝑒78))
2

+ 1)

= 0 

By simplification we get a polynomial that has no integer or rational coefficients 

and therefore not even a root for k3 will not be a rational number, which means that 

𝑒𝑒
𝑒79

 is not a rational number, and it follows that it is not an integer.  

 

 

5. CONCLUSION 

The paper focused on the proof the Skewes' number is not an integer using lattice 

points and tangent line and on the problematics of prime numbers. In introduction 

section, we described the importance and special role of prime numbers between 

numbers and their importance in RSA coding. In the second section we presented 

algorithms Lehmann test and Rabin-Miller test which are used to determine whether 

a given number is a prime number and which are part of the algorithms for generating 

prime numbers. In this section we refer to the Prime Number Theorem, which is 

together with prime-counting function and logarithmic integral function described in 

section three. We also introduced the Skewes number in part three. The fourth section 

is a main contribution and showed a geometric way to prove the Skewes' number is 

not an integer. 
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Vector valued nonuniform nonstationary
wavelets and associated MRA on local fields

O. AHMAD, A. H. WANI, N. A. SHEIKH AND M. AHMAD

Abstract

In this paper we study nonstationary wavelets associated with vector valued nonuniform multiresolution
analysis on local fields. By virtue of dimension function a complete characterization of vector valued
nonuniform nonstationary wavelets is obtained.

Mathematics Subject Classification 2010: 42C40; 42C15; 43A70
Keywords: Nonuniform nonstationary wavelet, Scaling function, Nonuniform nonstationary MRA,
Dimension function Local field.

1. INTRODUCTION

In order to systematically construct orthonormal wavelet bases Mallat and Meyer
introduced in 1986 the multiresolution analysis (or multiscale approximation) as a
general tool in ap- proximation theory and signal analysis. Thus they provided a
natural framework for the understanding of wavelet bases and provided a well
structured scheme which describes the various refinement steps clearly, such that this
technique became accessible to engineers for practical implementation [36]. The
concept of MRA has been extended in various ways in recent years. These concepts
are generalized to L2

(
Rd
)
, to lattices different from Zd , allowing the subspaces of

MRA to be generated by Riesz basis instead of orthonormal basis, admitting a finite
number of scaling functions, replacing the dilation factor 2 by an integer M ≥ 2 or by
an expansive matrix A ∈ GLd(R) as long as A ⊂ AZd . All these concepts are
developed on regular lattices, that is the translation set is always a group. Recently,
Gabardo and Nashed [22] considered a generalization of Mallat’s [35] celebrated
theory of MRA based on spectral pairs, in which the translation set acting on the
scaling function associated with the MRA to generate the subspace V0 is no longer a
group, but is the union of Z and a translate of Z. Based on one-dimensional spectral
pairs, Gabardo and Yu [23] considered sets of nonuniform wavelets in L2(R). In real
life application all signals are not obtained from uniform shifts; so there is a natural
question regarding analysis and decompositions of these types of signals by a stable

10.2478/jamsi-2021-0007
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mathematical tool. Gabardo and Nashed [22] and Gabardo and Yu [23] filled this gap
by the concept of nonuniform multiresolution analysis. The notion of nonstationary
wavelet system is introduced independently by M. Z. Berkolayko, I. Y. Novikov [15]
and by C. de Boor, R. DeVore, A. Ron [16]. In [16], the nonstationary system (called
almost-wavelets) is used to construct an orthonormal shift invariant basis consisting
of infinitely differ- entiable compactly supported functions. It is well known that it is
impossible to construct stationary wavelet basis satisfying these properties. Further,
nonstationary wavelets are studied in [14; 19]

During the last two decades, there is a substantial body of work that has been
concerned with the construction of wavelets on local fields. Even though the
structures and metrics of local fields of zero and positive characteristics are similar,
their wavelet and MRA (multiresolution analysis) theories are quite different. For
example, R. L. Benedetto and J. J. Benedetto [13] developed a wavelet theory for
local fields and related groups. They did not develop the multiresolution analysis
(MRA) approach, their method is based on the theory of wavelet sets and only allows
the construction of wavelet functions whose Fourier transforms are characteristic
functions of some sets. Khrennikov, Shelkovich and Skopina [26] constructed a
number of scaling functions generating an MRA of L2(Qp). But later on in [10],
Albeverio, Evdokimov and Skopina proved that all these scaling functions lead to the
same Haar MRA and that there exist no other orthogonal test scaling functions
generating an MRA except those described in [26]. Some wavelet bases for L2(Qp)
different from the Haar system were constructed in [9; 18] . These wavelet bases
were obtained by relaxing the basic condition in the definition of an MRA and form
Riesz bases without any dual wavelet systems. For some related works on wavelets
and frames on Qp, we refer to [11; 25; 29; 30]. On the other hand, Lang [31; 32; 33]
constructed several examples of compactly supported wavelets for the Cantor dyadic
group. Farkov [20; 21] has constructed many examples of wavelets for the Vilenkin
p-groups. Jiang et al. [24] pointed out a method for constructing orthogonal wavelets
on local field K with a constant generating sequence and derived necessary and
sufficient conditions for a solution of the refinement equation to generate a
multiresolution analysis of L2(K).

Recently, Shah and Abdullah [39] have generalized the concept of
multiresolution analysis on Euclidean spaces Rn to nonuniform multiresolution
analysis on local fields of positive characteristic, in which the translation set acting
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on the scaling function associated with the multiresolution analysis to generate the
subspace V0 is no longer a group, but is the union of Z and a translate of Z , where
Z = {u(n) : n ∈ N0} is a complete list of (distinct) coset representation of the unit
disc D in the locally compact Abelian group K+. The notion of nonuniform wavelet
frames on non-Archimedean local fields was introduced by Ahmad and Sheikh [7]
and established a complete characterization of tight nonuniform wavelet frames on
non-Archimedean local fields. More results in this direction can also be found in [1;
2; 3; 4; 5; 6; 8; 34; 37; 38] and the references therein. Drawing the inspiration from
the above work, we introduce the notion of nonuniform nonstationary wavelets, their
characterization and the associated multiresolution analysis on local fields.

The remainder of the paper is as follows. In Section 2, we discuss preliminary
results on local fields and some basic definitions. In section 3, we obtain the
characterization of orthonormal vector valued nonuniform nonstationary wavelets
and the associated multiresolution analysis is established.

2. PRELIMINARIES ON NON-ARCHIMEDEAN LOCAL FIELDS

2.1. Non-Archimedean Local Fields

A non-Archimedean local field K is a locally compact, non-discrete and totally
disconnected field. If it is of characteristic zero, then it is a field of p-adic numbers
Qp or its finite extension. If K is of positive characteristic, then K is a field of formal
Laurent series over a finite field GF(pc). If c = 1, it is a p-series field, while for
c 6= 1, it is an algebraic extension of degree c of a p-series field. Let K be a fixed
non-Archimedean local field with the ring of integers D = {x ∈ K : |x| ≤ 1}. Since
K+ is a locally compact Abelian group, we choose a Haar measure dx for K+. The
field K is locally compact, non-trivial, totally disconnected and complete topological
field endowed with non–Archimedean norm | · | : K→ R+ satisfying

(a) |x|= 0 if and only if x = 0;

(b) |xy|= |x||y| for all x,y ∈K;

(c) |x+ y| ≤max{|x|, |y|} for all x,y ∈K.

Property (c) is called the ultrametric inequality. Let B = {x ∈K : |x|< 1} be the
prime ideal of the ring of integers D in K. Then, the residue space D/B is isomorphic
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to a finite field GF(q), where q = pc for some prime p and c ∈ N. Since K is totally
disconnected and B is both prime and principal ideal, so there exist a prime element
p of K such that B = 〈p〉 = pD. Let D∗ = D \B = {x ∈K : |x|= 1}. Clearly, D∗

is a group of units in K∗ and if x 6= 0, then can write x = pny,y ∈ D∗. Moreover, if
U = {am : m = 0,1, . . . ,q−1} denotes the fixed full set of coset representatives of
B in D, then every element x ∈ K can be expressed uniquely as x = ∑

∞
`=k c` p` with

c` ∈ U . Recall that B is compact and open, so each fractional ideal Bk = pkD ={
x ∈ K : |x|< q−k

}
is also compact and open and is a subgroup of K+. We use the

notation in Taibleson’s book [40]. In the rest of this paper, we use the symbols N,N0

and Z to denote the sets of natural, non-negative integers and integers, respectively.

Let χ be a fixed character on K+ that is trivial on D but non-trivial on B−1.
Therefore, χ is constant on cosets of D so if y ∈ Bk, then χy(x) = χ(y,x),x ∈ K.

Suppose that χu is any character on K+, then the restriction χu|D is a character on D.
Moreover, as characters on D,χu = χv if and only if u − v ∈ D. Hence, if
{u(n) : n ∈ N0} is a complete list of distinct coset representative of D in K+, then, as
it was proved in [40], the set

{
χu(n) : n ∈ N0

}
of distinct characters on D is a

complete orthonormal system on D.

We now impose a natural order on the sequence {u(n)}∞
n=0. We have D/B ∼=

GF(q) where GF(q) is a c-dimensional vector space over the field GF(p). We choose
a set {1 = ζ0,ζ1,ζ2, . . . ,ζc−1} ⊂ D∗ such that span

{
ζ j
}c−1

j=0
∼= GF(q). For n ∈ N0

satisfying

0≤ n < q, n = a0 +a1 p+ · · ·+ac−1 pc−1, 0≤ ak < p, and k = 0,1, . . . ,c−1,

we define

u(n) = (a0 +a1ζ1 + · · ·+ac−1ζc−1)p
−1. (2.1)

Also, for n = b0+b1q+b2q2+ · · ·+bsqs, n∈N0, 0≤ bk < q,k = 0,1,2, . . . ,s, we set

u(n) = u(b0)+u(b1)p
−1 + · · ·+u(bs)p

−s. (2.2)

This defines u(n) for all n ∈N0. In general, it is not true that u(m+n) = u(m)+u(n).
But, if r,k∈N0 and 0≤ s< qk, then u(rqk+s) = u(r)p−k+u(s). Further, it is also easy
to verify that u(n) = 0 if and only if n = 0 and {u(s)+u(k) : k ∈N0}= {u(k) : k ∈N0}
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for a fixed s ∈ N0. Hereafter we use the notation χn = χu(n), n≥ 0.

Let the local field K be of characteristic p > 0 and ζ0,ζ1,ζ2, . . . ,ζc−1 be as
above. We define a character χ on K as follows:

χ(ζµp
− j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . ,c−1 or j 6= 1.

(2.3)

2.2. Fourier Transforms on Non-Archimedean Local Fields

The Fourier transform of f ∈ L1(K) is denoted by f̂ (ξ ) and defined by

F
{

f (x)
}
= f̂ (ξ ) =

∫
K

f (x)χξ (x)dx. (2.4)

It is noted that

f̂ (ξ ) =
∫
K

f (x)χξ (x)dx =
∫
K

f (x)χ(−ξ x)dx.

The properties of Fourier transforms on non-Archimedean local field K are much
similar to those of on the classical field R. In fact, the Fourier transform on non-
Archimedean local fields of positive characteristic have the following properties:

—The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K), and∥∥ f̂
∥∥

∞
≤
∥∥ f
∥∥

1.

—If f ∈ L1(K), then f̂ is uniformly continuous.

—If f ∈ L1(K)∩L2(K), then
∥∥ f̂
∥∥

2 =
∥∥ f
∥∥

2.

The Fourier transform of a function f ∈ L2(K) is defined by

f̂ (ξ ) = lim
k→∞

f̂k(ξ ) = lim
k→∞

∫
|x|≤qk

f (x)χξ (x)dx, (2.5)

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore, if f ∈
L2(D), then we define the Fourier coefficients of f as

f̂
(
u(n)

)
=
∫
D

f (x)χu(n)(x)dx. (2.6)

The series ∑n∈N0
f̂
(
u(n)

)
χu(n)(x) is called the Fourier series of f . From the standard

L2-theory for compact Abelian groups, we conclude that the Fourier series of f
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converges to f in L2(D) and Parseval’s identity holds:∥∥ f
∥∥2

2 =
∫
D

∣∣ f (x)∣∣2dx = ∑
n∈N0

∣∣ f̂ (u(n))∣∣2 . (2.7)

We also denote the test function space on K by Ω, i.e., each function f in Ω is a finite
linear combination of functions of the form 1k(x− h),h ∈ K,k ∈ Z, where 1k is the
characteristic function of Bk. Then, it is clear that Ω is dense in Lp(K),1 ≤ p < ∞,
and each function in Ω is of compact support and so is its Fourier transform. Since Ω

is dense in L2(K) and closed under the Fourier transform, the set

Ω
0 =

{
f ∈Ω : supp f̂ ⊂ K\{0}

}
is also dense in L2(K).

2.3. Uniform Stationary MRA on Local Fields

In order to be able to define the concepts of uniform MRA and wavelets on non-
Archimedean local fields, we need analogous notions of translation and dilation. Since⋃

j∈Z p
− jD = K, we can regard p−1 as the dilation and since {u(n) : n ∈ N0} is a

complete list of distinct coset representatives of D in K, the set Z = {u(n) : n ∈ N0}
can be treated as the translation set. Note that Λ is a subgroup of K+ and unlike the
standard wavelet theory on the real line, the translation set is not a group. Let us
recall the definition of a uniform MRA on non-Archimedean local fields of positive
characteristic introduced by Jiang et al. in [24].

DEFINITION 2.1. Let K be a non-Archimedean local field of positive
characteristic p > 0 and p be a prime element of K. An MRA of L2(K) is a sequence
of closed subspaces {Vj : j ∈ Z} of L2(K) satisfying the following properties:

(a) Vj ⊂Vj+1 for all j ∈ Z;

(b)
⋃

j∈ZVj is dense in L2(K);

(c)
⋂

j∈ZVj = {0};

(d) f (x) ∈Vj if and only if f (p−1x) ∈Vj+1 for all j ∈ Z;

(e) There exists a function φ ∈ V0, such that
{

φ
(
x−u(k)

)
: k ∈ N0

}
forms an

orthonormal basis for V0.
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According to the standard scheme for construction of MRA-based wavelets, for
each j, we define a wavelet space Wj as the orthogonal complement of Vj in Vj+1, i.e.,
Vj+1 =Vj⊕Wj, j ∈ Z, where Wj ⊥Vj, j ∈ Z. It is not difficult to see that

f (x) ∈Wj if and only if f (p−1x) ∈Wj+1, j ∈ Z. (2.7)

Moreover, they are mutually orthogonal, and we have the following orthogonal
decompositions:

L2(K) =
⊕
j∈Z

Wj =V0⊕

(⊕
j≥0

Wj

)
. (2.8)

As in the case of Rn, we expect the existence of q − 1 number of functions
ψ1,ψ2, . . . ,ψq−1 to form a set of basic wavelets. In view of (2.7) and (2.8), it is clear
that if

{
ψ1,ψ2, . . . ,ψq−1

}
is a set of function such that the system{

ψ`

(
x−u(k)

)
: 1≤ `≤ q−1,k ∈ N0

}
forms an orthonormal basis for W0, then{

q j/2ψ`(p
− jx−u(k)

)
: 1≤ `≤ q−1, j ∈ Z,k ∈ N0

}
forms an orthonormal basis for

L2(K).

2.4. Nonuniform MRA on Non-Archimedean Local Fields

For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN−1 such that r and N are
relatively prime, we define

Λ =

{
0,

u(r)
N

}
+Z .

where Z = {u(n) : n ∈ N0}. It is easy to verify that Λ is not a group on
non-Archimedean local field K, but is the union of Z and a translate of Z .

Following is the definition of nonuniform stationary multiresolution analysis
(NUSMRA) on non-Archimedean local fields of positive characteristic given by
Shah and Abdullah [39].

DEFINITION 2.2. For an integer N ≥ 1 and an odd integer r with 1≤ r≤ qN−1
such that r and N are relatively prime, an associated NUMRA on non-Archimedean
local field K of positive characteristic is a sequence of closed subspaces

{
Vj : j ∈ Z

}
of L2(K) such that the following properties hold:

(a) Vj ⊂Vj+1 for all j ∈ Z;
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(b)
⋃

j∈ZVj is dense in L2(K);

(c)
⋂

j∈ZVj = {0};

(d) f (·) ∈Vj if and only if f (p−1N·) ∈Vj+1 for all j ∈ Z;

(e) There exists a function φ in V0 such that {φ(·−λ ) : λ ∈ Λ}, is a complete
orthonormal basis for V0.

It is worth noticing that, when N = 1, one recovers from the definition above
the definition of an MRA on non-Archimedean local fields of positive characteristic
p > 0. When, N > 1, the dilation is induced by p−1N and |p−1| = q ensures that
qNΛ⊂Z ⊂ Λ.

For every j ∈ Z, define Wj to be the orthogonal complement of Vj in Vj+1. Then
we have

Vj+1 =Vj⊕Wj and W` ⊥W`′ if ` 6= `′. (2.7)

It follows that for j > J,

Vj =VJ⊕
j−J−1⊕
`=0

Wj−` , (2.8)

where all these subspaces are orthogonal. By virtue of condition (b) in the Definition
2.2, this implies

L2(K) =
⊕
j∈Z

Wj, (2.9)

a decomposition of L2(K) into mutually orthogonal subspaces.

Now we state the concept of vector-valued nonuniform multiresolution analysis
(VNUMRA) on local field K of positive characteristic and establish a necessary and
sufficient condition for the existence of associated wavelets.

Let M be a constant and 2 ≤M ∈ Z. By L2
(
K,CM

)
, we denote the set of all vector-

valued functions f i.e.,

L2(K,CM)= {f(x) =
(

f1(x), f2(x), . . . , fM(x)
)T : x ∈ K, ft(x) ∈ L2(K)

}
,

where t = 1,2, . . . ,M and T means the transpose of a vector. The space L2
(
K,CM

)
is called vector-valued function space on local field K of positive characteristic. For
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f ∈ L2
(
K,CM

)
,
∥∥f
∥∥ denotes the norm of vector-valued function f and is defined as:

∥∥f
∥∥

2 =

 M

∑
t=1

∫
K

∣∣ ft(x)∣∣2dx

1/2

.

For a vector-valued function f ∈ L2
(
K,CM

)
, the integration of f is defined as:

∫
K

f(x)dx =

∫
K

f1(x)dx,
∫
K

f2(x)dx, . . . ,
∫
K

fM(x)dx

T

.

Moreover, the Fourier transform of f is defined by

f̂(ξ ) =
∫
K

f(x)χξ (x)dx.

For any two vector-valued functions f,g ∈ L2
(
K,CM

)
, their vector-valued inner

product 〈f,g〉 is defined as:

〈f,g〉=
∫
K

f(x)g(x)dx.

With Λ = {0,r/N}+Z as defined above, we define the vector-valued nonuniform

multiresolution analysis (VNUMRA) on local fields of positive characteristic as
follows:

DEFINITION 2.3. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤
qN−1 such that r and N are relatively prime, a VNUMRA on local field K of positive
characteristic is a sequence of closed subspaces

{
Vj : j ∈ Z

}
of L2

(
K,CM

)
such that

the following properties hold:

(1) Vj ⊂Vj+1 for all j ∈ Z;

(2)
⋃
j∈Z

Vj is dense in L2
(
K,CM

)
;

(3)
⋂
j∈Z

Vj = {0}, where 0 is the zero vector of L2
(
K,CM

)
;

(4) Φ(x) ∈Vj if and only if Φ(p−1Nx) ∈Vj+1 for all j ∈ Z;

(5) There exists a function Φ in V0 such that {Φ(x−λ ) : λ ∈ Λ}, is a complete
orthonormal basis for V0. The vector valued function Φ is called a vector-valued

scaling function of the VNUMRA.
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For every j ∈ Z, define Wj to be the orthogonal complement of Vj in Vj+1. Then we
have

Vj+1 =Vj⊕Wj and W` ⊥W`′ if ` 6= `′.

It follows that for j > J,

Vj =VJ
⊕(

j−J−1⊕
`=0

Wj−`

)
where all these subspaces are orthogonal. By virtue of condition (b) in the Definition
2.3, this implies

L2(K,CM)=⊕
j∈Z

Wj,

a decomposition of L2
(
K,CM

)
into mutually orthogonal subspaces.

As in the standard case, one expects the existence of qN−1 number of functions
so that their translation by elements of Λ and dilations by the integral powers of p−1N

form an orthonormal basis for L2
(
K,CM

)
.

DEFINITION 2.4. A set of functions
{

Ψ1,Ψ2, . . . ,ΨqN−1
}

in L2
(
K,CM

)
will

be called a set of basic wavelets associated with a given VNUMRA if the family of
functions {Ψ`(x−λ ) : 1≤ `≤ qN−1,λ ∈ Λ} forms an orthonormal basis for W0.

3. MAIN RESULTS

We start this section with the following definition

DEFINITION 3.1. Let Ψ( j) ∈ L2
(
K,CM

)
for all j ∈ Z, then the family of

functions

Ψ j,λ =
{
(qN)

j
2 Ψ

( j)(p−1N) jx−λ

}
j∈Z,λ∈Λ

is called a nonuniform nonstationary wavelet system for L2
(
K,CM

)
.

LEMMA 3.1. If f ∈ S and Ψ( j) ∈ L2
(
K,CM

)
, then

∑
λ∈Λ

∣∣∣〈 f ,Ψ j,λ
〉∣∣∣2 = ∫

K
f̂ (ξ )Ψ̂( j) ((p−1N)− j

ξ
){

∑
s∈N0

f̂
(
ξ +(p−1N)− ju(s)

)
Ψ̂( j)

(
(p−1N)− j

ξ +u(s)
)}

dξ .

(3.1)
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PROOF. For Ψ ∈ L2
(
K,CM

)
, let

Ψ j,λ (x) = (qN) j/2
Ψ

( j)((p−1N) jx−λ
)
, j ∈ Z,λ ∈ Λ.

Then, we have

Ψ̂ j,λ (ξ ) = (qN)− j/2
Ψ̂

( j)((p−1N)− j
ξ
)
χλ

(
(p−1N)− jξ

)
. (3.2)

By Parseval Identity and equation (3.2), we have

∑
λ∈Λ

∣∣∣〈 f ,Ψ j,λ
〉∣∣∣2 = ∑

λ∈Λ

(qN) j
∫
K

{
∑

s∈N0

∫
ND

f̂
(
(p−1N)− j(x+u(s)

))
χλ

(
x+u(s)

)
Ψ̂( j)

(
x+u(s)

)}

× f̂
(
(p−1N)− jx

)
χλ (x)Ψ̂

( j)(x)dx.

Since ∑
s∈N0

∫
ND

f̂
(
(p−1N)− j(x+u(s)

))
χλ

(
x+ u(s)

)
Ψ̂( j)

(
x+ u(s)

)
dx contains only

finite non-zero terms for f ∈ S and χλ

(
u(s)

)
= 1, for all λ ∈ Λ,s ∈ N0, we have

∑
λ∈Λ

∣∣∣〈 f ,Ψ j,λ
〉∣∣∣2 = ∑

λ∈Λ

(qN) j
∫
K

(∫
ND

{
∑

s∈N0

f̂
(
(p−1N)− j(x+u(s)

))
Ψ̂( j)

(
x+u(s)

)}
χλ (x)dx

)

×χλ (y) f̂
(
(p−1N)− jy

)
Ψ̂( j)(y)dy.

By invoking Convergence theorem of Fourier series on D, we obtain (3.1). This
completes the proof.

LEMMA 3.2. Let f ∈ Ω and Ψ( j) ∈ L2
(
K,CM

)
. If ess

sup
{

∑ j∈Z

∣∣∣Ψ( j)
(
(p−1N) jξ

)∣∣∣2}< ∞ for ξ ∈B−1 \ND, then

∑
j∈Z

∑
λ∈Λ

∣∣∣〈 f ,Ψ j,λ
〉∣∣∣2 = ∫

K
| f̂ (ξ )|2 ∑

j∈Z

∣∣∣Ψ( j)((p−1N) j
ξ
)∣∣∣2 +R0( f ), (3.3)
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where

R0( f ) = ∑
j∈Z

(qN) j
∫
K

f̂
(
(p−1N)− jξ

)
Ψ

( j)(ξ )

{
∑
s∈N

f̂
(
(p−1N)− j(

ξ +u(s)
))

Ψ̂( j)
(
ξ +u(s)

)}
dξ

= ∑
j∈Z

∑
s∈N

(qN) j
∫
K

f̂
(
(p−1N)− jξ

)
Ψ

( j)(ξ ) f̂
(
(p−1N)− j(

ξ +u(s)
))

Ψ̂( j)
(
ξ +u(s)

)
dξ .(3.4)

Moreover if
∥∥∥Ψ̂( j)

∥∥∥
L2(K)

= 1, then the series in (3.4) converges absolutely on K.

PROOF. For R0( f ), we use the fact that for f ∈ Ω,

∑
s∈N0

f̂
(
(p−1N)− j(x+u(s)

))
Ψ̂( j)

(
x+u(s)

)
contains only finite non-zero terms, so

we have

∑
j∈Z

(qN) j
∫
K

f̂
(
(p−1N)− jξ

)
Ψ

( j)(ξ )

{
∑
s∈N

f̂
(
(p−1N)− j(x+u(s)

))
Ψ̂( j)

(
x+u(s)

)}
dξ

= ∑
j∈Z

∑
s∈N

(qN) j
∫
K

f̂
(
(p−1N)− jξ

)
Ψ

( j)(ξ ) f̂
(
(p−1N)− j(x+u(s)

))
Ψ̂( j)

(
x+u(s)

)
dξ .

We claim that for all f ∈Ω0, (3.3) holds. Moreover, by using Lemma 3.1, we have

∑
j∈Z

∑
λ∈Λ

∣∣∣〈 f ,Ψ j,λ
〉∣∣∣2 = ∑

j∈Z

∫
K

{∣∣∣ f̂ (ξ )∣∣∣2 ∣∣∣Ψ̂( j)((p−1N)− j
ξ
)∣∣∣2

+(qN) j

(
f̂
(
(p−1N)− jξ

)
Ψ( j)(ξ ) ∑

s∈N
f̂
(
(p−1N)− j(x+u(s)

))
Ψ̂( j)

(
x+u(s)

))}
dξ

= ∑
j∈Z

∫
K

∣∣∣ f̂ (ξ )∣∣∣2 ∣∣∣Ψ̂( j)((p−1N)− j
ξ
)∣∣∣2 +R0( f ).

Hence, our claim is true for f ∈ Ω0. Further by applying Levi Lemma and the given
assumption, we obtain (3.3). We now show that the series (3.3) is absolutely
convergent. Since

∣∣∣Ψ̂( j)(x)Ψ̂( j)(x+u(s)
)∣∣∣≤ 1

2

(∣∣∣Ψ̂( j)(x)
∣∣∣2 + ∣∣∣Ψ̂( j)(x+u(s)

)∣∣∣2) ,

it suffices to verify that the series

∑
j∈Z

∑
s∈N

(qN)− j
∫
K

∣∣∣ f̂ ((p−1N)− jx
)

f̂
(
(p−1N)− j(x+u(s)

))∣∣∣ ∣∣∣Ψ̂( j)(x)
∣∣∣2 dx (3.5)
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is convergent. As u(s) 6= 0 for s ∈ N and f ∈ Ω0, there exists a constant J > 0 such
that

f̂
(
(p−1N)− jx

)
f̂
(
(p−1N)− j(x+u(s)

))
= 0 ∀| j|> J.

On the other hand, for each fixed | j| ≤ J, there is a constant L such that

f̂
(
(p−1N)− j(x+u(s)

))
= 0 ∀s > L.

Hence, it means that there are only finite non-zero terms in the series (3.5). Thus,
there exists a constant C such that

∑
j∈Z

∑
s∈N

(qN)− j
∫
K

∣∣∣ f̂ ((p−1N)− jx
)

f̂
(
(p−1N)− j(x+u(s)

))
Ψ̂

( j)(x)Ψ̂( j)(x+u(s)
)∣∣∣dx≤C

∥∥∥ f̂
∥∥∥2

∞

∥∥∥Ψ̂
( j)
∥∥∥2

2
.

Thus, it follows that the series ∑ j∈Z ∑s∈N
∣∣〈 f ,Ψ j,λ

〉∣∣2 is also convergent.

For given s ∈ N, there is a unique pair (λ ,m) with λ ∈ Λ and m ∈ qΛ+Q,
where qΛ = {qλ : λ ∈ Λ} and Q = {1,2, . . . ,qN − 1}, such that s = (qN)λ m.
Therefore, we have {u(s)}s∈N =

{
(p−1N)−λ u(m)

}
(λ ,m)∈Λ×(qΛ+Q)

. Since the series
(3.4) is absolutely convergent, we can estimate R0( f ) by rearranging the series,
changing the order of summation and integration by Levi Lemma as follows
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R0( f ) = ∑
j∈Z

(qN) j
∫
K

f̂
(
(p−1N)− jξ

)
Ψ

( j)(ξ )

{
∑
s∈N

f̂
(
(p−1N)− j(

ξ +u(s)
))

Ψ̂( j)
(
ξ +u(s)

)}
dξ

= ∑
j∈Z

(qN) j
∫
K

f̂
(
(p−1N)− jξ

){
∑

λ∈Λ

∑
m∈qΛ+Q

Ψ
( j)(ξ ) f̂

(
(p−1N)− j(

ξ +(p−1N)−ku(m)
))

× Ψ̂( j)
(
ξ +(p−1N)−ku(m)

)}
dξ

=
∫
K

∑
j∈Z

(qN) j f̂
(
(p−1N)− jξ

){
∑

λ∈Λ

∑
m∈qΛ+Q

Ψ
( j)((p−1N)−k

ξ
)

f̂
(
(p−1N)− j(

ξ +(p−1N)−ku(m)
))

×Ψ̂( j)(p−1N)−k
((

ξ +u(m)
))}

dξ

=
∫
K

∑
j∈Z

(qN) j f̂
(
(p−1N)− jξ

){
∑

m∈qN0+Q

f̂
(
(p−1N)− j(

ξ +(p−1N)−ku(m)
))

× ∑
λ∈Λ

Ψ
( j)((p−1N)−k

ξ
)
Ψ̂( j)(p−1N)−k

((
ξ +u(m)

))}
dξ

=
∫
K

∑
j∈Z

(qN) j f̂
(
(p−1N)− jξ

){
∑

m∈qN0+Q

f̂
(
(p−1N)− j(

ξ +(p−1N)−ku(m)
))

t
Ψ( j)

(
u(m),ξ

)}
dξ

= ∑
j∈Z

∑
m∈qN0+Q

(qN) j
∫
K

f̂
(
(p−1N)− jξ

)
f̂
(
(p−1N)− j(

ξ +(p−1N)−ku(m)
))

t
Ψ( j)

(
u(m),ξ

)
dξ ,

where

t
ψ( j)

(
u(m),ξ

)
= ∑

k∈N0

Ψ
( j)((p−1N)−k

ξ
)
Ψ̂( j)(p−1N)−k

((
ξ +u(m)

))
.

THEOREM 3.3. Assume that Ψ( j) ∈ L2
(
K,CM

)
and

∥∥∥Ψ̂( j)
∥∥∥

L2(K)
= 1 for j ∈ Z.

Then

∑
j∈Z

∣∣∣Ψ̂(− j)((p−1N)− j
ξ
)∣∣∣2 = 1 a.e ξ ∈ K (3.6)
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and
∞

∑
j=0

Ψ̂
(n− j)((p−1N)− j

ξ
)
Ψ̂(n− j)

(
(p−1N)− j

(
ξ +u(m)

))
= 0 a.e n∈N0 and m∈ qΛ+Q

(3.7)
if and only if {

(qN) j/2
Ψ

( j)((p−1N)− jx−λ
)
, j ∈ Z,λ ∈ Λ

}
is an orthonormal basis of L2(K).

PROOF. Sufficiency part: As
∥∥∥Ψ̂( j)

∥∥∥
L2(K)

= 1, it is clear that the system
{

Ψ j,λ :

j ∈ Z,λ ∈ Λ
}

is an orthonormal basis if and only if for any f ∈ L2
(
K,CM

)
, the

Parseval identity holds.

Assume that the conditions (3.6) and (3.7) hold. Then for n ∈ N0,m ∈ qΛ+Q,
we have by Lemma 3.1 and Lemma 3.2, we have

∑
j∈Z

∑
λ∈Λ

∣∣〈 f ,Ψ j,λ
〉∣∣2 =

∫
K

∣∣∣ f̂ (ξ )∣∣∣2 ∑
j∈Z

∣∣∣Ψ̂( j)((p−1N)− j
ξ
)∣∣∣2 dξ

= ‖ f‖2
L2
(

K,CM
) ∀ f ∈ S.

Necessary condition: We assume that
{
(qN) j/2Ψ( j)

(
(p−1N) jx− λ

)
, j ∈ Z,λ ∈ Λ

}
is an orthonormal basis of L2

(
K,CM

)
and will prove the conditions (3.6) and (3.7).

We assume ∆ j to be the set of regular points of
∣∣∣Ψ̂( j)

(
(p−1N)− jξ

)∣∣∣2, so that for each
x ∈ ∆ j,

(qN)n
∫

ξ−x∈Bn

∣∣∣Ψ̂( j)((p−1N)− j
ξ
)∣∣∣2 dξ →

∣∣∣Ψ̂( j)((p−1N)− jx
)∣∣∣2 , asn→ ∞

Then
∣∣∣∆c

j

∣∣∣ = 0, so that
∣∣∣⋃ j∈Z ∆c

j

∣∣∣ = 0. Let ξ0 ∈ K \
⋃

j∈Z ∆c
j. For each fixed positive

integer M, set

f̂ (ξ ) = (qN)m/2
Φm(ξ −ξ0), m≥M,
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where Φm(ξ − ξ0) is the characteristic function of ξ0 +Bm. Then it follows that for
s∈N and j≥−M, f̂ (ξ ) f̂

(
ξ +(p−1N)− ju(s)

)
= 0, and hence ‖ f‖2

2 = 1. Furthermore,
we have

∑
j∈Z

∑
λ∈Λ

∣∣〈 f ,Ψ j,λ
〉∣∣2 = ∑

j≥−M

∫
ξ0+Bm

(qN)m
∣∣∣ f̂ (ξ )∣∣∣2 ∣∣∣Ψ̂( j)((p−1N)− j

ξ
)∣∣∣2 dξ ≤ B.

Therefore, in the limiting case, we have

∑
j∈Z

∣∣∣Ψ̂(− j)((p−1N)− j
ξ0
)∣∣∣2 = 1 a.e

To prove (3.7), we let

∑
j∈Z

∑
λ∈Λ

∣∣〈 f ,Ψ j,λ
〉∣∣2 = I1 + I2,

where

I1 = ∑
j>−M

∑
λ∈Λ

∣∣〈 f ,Ψ j,λ
〉∣∣2 and I2 = ∑

j≤−M
∑

λ∈Λ

∣∣〈 f ,Ψ j,λ
〉∣∣2 .

Since, it has been already verified that I1 = ∑ j>−M

∣∣∣Ψ̂(− j)
(
(p−1N)− jξ0

)∣∣∣2, so to prove
the result, it is enough to show that limM→+∞ I2 = 0.

Using Lemma 3.1 and Schwartz Inequality, we have

0≤ I2 ≤ ∑
j≤−M

∑
r∈N0

{∫
K

∣∣∣ f̂ (ξ )Ψ̂(− j)((p−1N)− j
ξ
)∣∣∣2 dξ

} 1
2

×
{∫

K

∣∣∣ f̂ (ξ +(p−1N)− ju(r)
)
Ψ̂(− j)

(
(p−1N)− jξ +u(r)

)∣∣∣2 dξ

} 1
2

.

If ξ + (p−1N)− ju(r) ∈ ξ0 + Bm for a fixed j ≤ −M, then it follows that∣∣(p−1N)− ju(r)
∣∣≤ (qN)−m, so |u(r)| ≤ (qN)−m− j. Therefore

I2≤ ∑
j≤−M

∫
K

∣∣∣ f̂ (ξ )Ψ̂(− j)((p−1N)− j
ξ
)∣∣∣2 dξ ≤ ∑

j≤−M

∫
(p−1N)− jξ0+B− j+m

∣∣∣Ψ̂(− j)(ξ )
∣∣∣2 dξ .

If ξ0 6= 0, then for given ε > 0, we choose M so that

(qN)−M < |ξ0|= (qN)s and
∫
BM−s

∣∣∣Ψ̂(− j)(ξ )
∣∣∣2 dξ < ε.
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Therefore for all j ≤−M, we have

(p−1N)− j
ξ0 +B− j+m ⊂BM−s. (3.8)

Moreover for any j1 < j2 ≤−M, it can be easily verified that

{
(p−1N)− j1ξ0 +B− j1+m}∩{(p−1N)− j2ξ0 +B− j2+m}= Φ. (3.9)

Using (3.8) and (3.9), we have

I2 ≤
∫
BM−s

∣∣∣Ψ̂(− j)(x)
∣∣∣2 dx < ε,

from which the result follows.

DEFINITION 3.4. Let K be a local field of positive characteristic p ≥ 0 and p

be a prime element of K. A collection of closed subspaces {Vj : j ∈ Z} of L2
(
K,CM

)
is called a vector valued nonuniform nonstationary multiresolution analysis

(VVNUNMRA) if the following conditions hold:

(a) Vj ⊂Vj+1 for all j ∈ Z;

(b)
⋃

j∈ZVj is dense in L2
(
K,CM

)
;

(c)
⋂

j∈ZVj = {0};

(d) for any j ∈ Z there is a function Φ ( j) ∈ Vj such that the sequence{
Φ ( j)

(
·+(p−1N)− jλ

)
: λ ∈ Λ

}
forms a Riesz basis (or orthonormal basis) for Vj.

The sequence
{

Φ ( j)
}

j∈Z
is called a scaling sequence for the given

VVNUNMRA. If we denote by Pj, the orthogonal projector on Vj, then condition (b)
of the Definition 3.4 implies that lim j→∞ Pj f = f for any f ∈ L2

(
K,CM

)
. It then

follows from the condition (d) that for any f ∈Vj, the function f
(
x+(p−1N) jλ

)
also

belong to Vj for any λ ∈ Λ. Without loss of generality, we assume that{
Φ ( j)

(
x+(p−1N) jλ

)}
λ∈Λ

constitutes an orthonormal basis in Vj.
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PROPOSITION 3.5. If
{

Vj
}

j∈Z is a NUNMRA, then there exists a vector
valued nonstationary orthonormal wavelet bases

{
Ψ j,λ

}
j∈Z,λ∈Λ

, such that for any
f ∈ L2

(
K,CM

)
,

Pj+1 f = Pj f = ∑
λ∈Λ

〈
f ,Ψ j,λ

〉
Ψ j,λ (3.10)

PROOF. Let Wj be an orthogonal complement of Vj in Vj+1. Then

Wj ⊥Wj′ , for j 6= j′ (3.11)

and for j0 < j,

Vj =Vj0 ⊕

(
j−1⊕
`= j0

W`

)
. (3.12)

It then follows from the conditions (b) and (d) of the definition 3.4 that

L2(K,CM)=⊕
j∈Z

Wj. (3.13)

Equation (3.10) is equivalent to the fact that for fixed j, the sequence
{

Ψ j,λ
}

λ∈Λ

forms an orthonormal basis in Wj. From (3.13), it follows that
{

Ψ j,λ
}

j∈Z,λ∈Λ
is an

orthonormal basis in L2
(
K,CM

)
. Hence the problem of construction of nonstationary

wavelet bases satisfying (3.10) is to find Ψ( j) such that
{

Ψ( j)
(
x+(p−1N) jλ

)}
λ∈Λ

constitutes an orthonormal basis in Wj.

For the construction of the function Ψ( j), we use the following properties of ϕ( j)

and Wj.

Since Φ ( j) ⊂ Vj ⊂ Vj+1 and
{

Φ
( j+1)
λ

}
λ∈N0

is an orthonormal basis in Vj+1, it

follows that

Φ
( j)(x) = ∑

λ∈Λ

h j+1,λ Φ
( j+1)
λ

(x), (3.14)

where

h j+1,λ =
〈

Φ
( j),Φ ( j+1)

〉
, ∑

λ∈Λ

∣∣h j+1,λ
∣∣2 = 1. (3.15)

Equation (3.14) can be written in the frequency domain as

Φ̂
( j)(ξ ) = m j+1

(
(p−1N) j+1

ξ
)
ϕ̂
( j+1)(ξ ), (3.16)



JAMSI, 17 (2021), No. 2 37

where

m j+1(ξ ) = ∑
λ∈N0

h j+1,λ χλ (ξ ),

are called vector valued nonuniform nonstationary masks. It can be easily verified that

∑
λ∈Λ

∣∣∣Φ ( j)(
ξ +(p−1N)− j

λ
)∣∣∣2 = (qN)− j for a.e ξ ∈ K. (3.17)

From (3.16) and (3.17), we have

∑
λ∈Λ

∣∣∣m j+1
(
(p−1N) j+1

ξ +pλ
)
Φ

( j+1)(
ξ +(p−1N) j

λ
)∣∣∣2 = (qN)− j.

Partitioning the sum into two parts and taking into account the integral periodicity of
m j+1, we get ∣∣m j+1(ξ )

∣∣2 + ∣∣m j+1
(
ξ +pu(N)

)∣∣2 = qN. (3.18)

We now characterize the subspaces Wj. Let f ∈Wj. Then f is in Vj+1 and is orthogonal
to Vj. Then

f (x) = ∑
k∈N0

fkΦ
( j+1)
k (x), (3.19)

where fλ = 〈 f ,Φ ( j+1)
λ
〉. Applying Fourier transform to equation (3.19), we have

f̂ (ξ ) = m f
(
(p−1N) j+1

ξ
)
Φ̂

( j+1)(ξ ), (3.20)

where

m f (ξ ) = ∑
λ∈Λ

fλ χλ (ξ ),

are integral periodic from L2(D). Since f is orthogonal to Vj, we have for λ ∈ Λ,∫
K

f̂ (ξ )Φ̂ ( j)(ξ )χλ

(
(p−1N) j−1

ξ
)
dξ = 0.
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Moreover,∫
K

f̂ (ξ )Φ̂( j)(ξ )χλ

(
(p−1N) j−1

ξ
)
dξ

=
∫
(p−1N) jD

∑
r∈N0

f̂
(
ξ +(p−1N)− ju(r)

)
Φ̂( j)

(
ξ +(p−1N)− ju(r)

)
χλ

(
(p−1N) j−1

ξ
)
dξ

= 0. (3.21)

Since (3.21) holds for all λ ∈ Λ, we have

∑
r∈N0

f̂
(
ξ +(p−1N)− ju(r)

)
Φ̂ ( j)

(
ξ +(p−1N) ju(r)

)
= 0. (3.22)

The series in (3.22) converges in L2(D). Keeping in view (3.18) and using equations
(3.20) and (3.21) in (3.22), we get

(qN) j+1
∑

r∈N0

f̂
(
ξ +(p−1N)− ju(r)

)
Φ̂( j)

(
ξ +(p−1N)− ju(r)

)

= m f
(
(p−1N) j+1ξ

)
m j+1

(
(p−1N) j+1ξ

)
m f
(
(p−1N) j+1ξ +pu(N)

)
m j+1

(
(p−1N) j+1ξ +pu(N)

)
= 0.

It is evident from (3.18) that m j+1(ξ ) and m j+1
(
ξ +pu(N)

)
can not vanish

simultaneously. Hence, there exist integral periodic function λ (ξ ) such that

m f (ξ ) = λ (ξ )m j+1
(
ξ +pu(N)

)
a.e. (3.23)

and

λ (ξ )+λ
(
ξ +pu(N)

)
= 0. (3.24)

Equation (3.24) can be rewritten as

λ (ξ ) = ν
(
p−1Nξ

)
χ(ξ ),

where ν is an integral periodic function. Therefore the Fourier transform of any
function of Wj yields

f̂ (ξ ) = m j+1
(
ξ +pu(N)

)
ν
(
(p−1N) j

ξ
)
Φ̂

( j+1)(ξ )χ
(
p jξ
)
. (3.25)

Moreover, it can be seen that ν is square integrable. Having system (3.25) in hand, it
will not be difficult to find functions Ψ( j) in the Wj space such that
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{
Ψ( j)

(
x+(p−1N)− jλ

)}
λ∈Λ

constitutes an orthonormal basis in Wj. Therefore, we
have

Ψ̂
( j)(ξ ) = m j+1

(
ξ +pu(N)

)
ν

Ψ( j)

(
(p−1N) j

ξ
)
Φ̂

( j+1)(ξ )χ
(
(p−1N) jξ

)
.

Therefore, substituting above expression in (3.17) and using (3.18), we have∣∣ν
Ψ( j)

∣∣2 = 1 a.e.

From (3.25), it follows that the integer shifts of Ψ( j) defined by

Ψ̂
( j)(ξ ) = m j+1

(
ξ +pu(N)

)
Φ̂

( j+1)(ξ )χ
(
(p−1N) jξ

)
. (3.26)

forms a basis of Wj. Thus having a nonstationary multiresolution analysis {Vj} j∈Z

generated by a scaling function
{

Φ ( j)
}

, one can construct a nonstationary
orthonormal wavelet basis

{
Ψ j,λ

}
j∈Z,λ∈Λ

in L2
(
K,CM

)
satisfying (3.10).

DEFINITION 3.6. Suppose Ψ( j) ∈ L2
(
K,CM

)
for j ∈ Z. Then dimension

function is defined by

D
Ψ( j)(ξ ) =

∞

∑
n=1

∑
λ∈Λ

∣∣∣Ψ̂( j−n) ((p−1N)−n(
ξ +λ

))∣∣∣2 a.eξ ∈ K

Since∫
D

∞

∑
n=1

∑
λ∈Λ

∣∣∣Ψ̂( j−n) ((p−1N)−n(
ξ +λ

))∣∣∣2 dξ =
∞

∑
n=1

(qN)−n
∫
K

∣∣∣ψ̂( j)(ξ )
∣∣∣2 dξ .

Hence D
Ψ( j) is well defined for a.e. ξ ∈ K.

PROPOSITION 3.7. For all j ∈ Z and for a.e. ξ ∈ K, we have∣∣∣Φ̂ ( j)
∣∣∣2 = ∞

∑
n=1

∣∣∣Ψ̂( j−n) ((p−1N)−n
ξ
)∣∣∣2 . (3.27)
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PROOF. If Ψ( j) ∈ L2
(
K,CM

)
, then equation (3.26) holds. Therefore using (3.18),

we have from equations (3.16) and (3.26),∣∣∣Φ̂( j)(ξ )
∣∣∣2 + ∣∣∣Ψ̂( j)(ξ )

∣∣∣2 =
∣∣∣m j+1

(
(p−1N) j+1ξ

)
Φ̂( j+1)(ξ )

∣∣∣2
+
∣∣∣m j+1

(
ξ +pu(N)

)
Φ̂( j+1)(ξ )χ

(
(p−1N)− jξ

)∣∣∣2
= qN

∣∣∣Φ̂( j+1)(ξ )
∣∣∣2

=
∣∣∣Φ̂( j+1)(p−1Nξ )

∣∣∣2 .
Since the equality holds for a.e. ξ ∈ K, we have∣∣∣Φ̂ ( j)(ξ )

∣∣∣2 = ∣∣∣Φ̂ ( j−1) (p−1Nξ
)∣∣∣2 + ∣∣∣Ψ̂( j−1) (p−1Nξ

)∣∣∣2 .
Iterating for any integer L≥ 1, we get∣∣∣Φ̂ ( j)(ξ )

∣∣∣2 = ∣∣∣Φ̂ ( j−L) ((p−1N)−L
ξ
)∣∣∣2 + L

∑
n=1

∣∣∣Ψ̂( j−L) ((p−1N)−n
ξ
)∣∣∣2 .

Since
∣∣∣Φ̂ ( j−L)(ξ )

∣∣∣≤ 1, the sequence{
L

∑
n=1

∣∣∣Ψ̂( j−L) ((p−1N)−n
ξ
)∣∣∣2 : L≥ 1

}
of real numbers is bounded by 1, hence it converges. Therefore,

limL→∞

∣∣∣Φ̂ ( j−L)
(
(p−1N)−Lξ

)∣∣∣2 also exists. Moreover∫
K

∣∣∣Φ̂ ( j−L) ((p−1N)−L
ξ
)∣∣∣2 dξ = (qN)−L

∫
K

∣∣∣Φ̂ ( j−L) (ξ )
∣∣∣2 dξ → 0 as L→ ∞.

Therefore, the application of the Fatou’s Lemma yields∫
K

lim
L→∞

∣∣∣Φ̂ ( j−L) ((p−1N)−L
ξ
)∣∣∣2 dξ ≤ lim

L→∞

∫
K

∣∣∣Φ̂ ( j−L) ((p−1N)−L
ξ
)∣∣∣2 dξ = 0.

This means that limL→∞

∣∣∣Φ̂ ( j−L)
(
(p−1N)−Lξ

)∣∣∣2 dξ = 0. Hence, we have∣∣∣Φ̂ ( j)(ξ )
∣∣∣2 = ∞

∑
n=1

∣∣∣Ψ̂( j−n) ((p−1N)−n
ξ
)∣∣∣2

This completes the proof.
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Since
{
(qN) j/2Φ ( j)

(
(p−1N) jx−λ

)
: λ ∈ Λ

}
is an orthonormal basis of L2

(
K,CM

)
for all j ∈ Z, we have

1 = ∑
λ∈Λ

∣∣∣Φ̂ ( j)(
ξ +λ

)∣∣∣2 = ∑
λ∈Λ

∞

∑
n=1

∣∣∣Ψ̂( j−n) ((p−1N)−n(
ξ +λ

))∣∣∣2 = D
Ψ( j)(ξ ).

Since D
Ψ( j)(ξ ) = 1, we can choose the smallest n ∈ N such that for all j ∈ Z and for

almost all ξ ∈ K,

∑
λ∈Λ

∣∣∣Ψ̂( j−n) ((p−1N)−n(
ξ +λ

))∣∣∣2 6= 0

and then for almost all ξ ∈ K, we define Φ ( j)(ξ ) by

Φ̂
( j)(ξ ) =

Ψ̂( j−n)
(
(p−1N)−nξ

)√
∑

λ∈Λ

∣∣∣Ψ̂( j−n) ((p−1N)−n(
ξ +λ

))∣∣∣2 .
Moreover for a fixed j ∈ Z and n ∈ N, we define an infinite vector of l2(Λ) as

Ψ j,n(ξ ) =
{

Ψ̂
( j−n) ((p−1N)−n(

ξ +λ )
))}

λ∈λ

for a.e ξ ∈ K (3.28)

THEOREM 3.8. Assume that Ψ( j) ∈ L2
(
K,CM

)
for every j ∈ Z, such that the

system
{
(qN) j/2Ψ( j)

(
(p−1N) jx−λ

)
: λ ∈ Λ

}
is an orthonormal basis of L2

(
K,CM

)
.

Then the mother wavelets Ψ( j), j ∈ Z come from a VVNUNMRA, if and only if

D
Ψ( j)(ξ ) =

∞

∑
n=1

∑
k∈N0

∣∣∣Ψ̂( j−n) ((p−1N)−n(
ξ +λ

))∣∣∣2 = 1 a.eξ ∈ K

PROOF. Necessary part of the Theorem follows from the Proposition 3.7. For
the proof of the sufficient part, we need the following lemmas:

LEMMA 3.9. For all j ∈ Z, and for almost all ξ ∈ K, we have

Ψ j,n(ξ ) =
∞

∑
h=1

〈
Ψ j,n(ξ ),Ψ j,h(ξ )

〉
Ψ j,h(ξ ), (3.29)
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PROOF. The series in the Lemma converges absolutely for a.e. ξ ∈ K. Let us
first show that

Ψ̂
( j−n)((p−1N)−n

ξ ) =
∞

∑
h=1

∑
λ∈Λ

Ψ̂
( j−n) ((p−1N)−n(

ξ +λ
))

× Ψ̂( j−h)
(
(p−1N)−h

(
ξ +λ

))
Ψ̂

( j−h)((p−1N)−h
ξ
)
.

(3.30)

Let us denote by Γ j,n(ξ ), the second member of the series (3.30). Then using Equation
(3.7) and (3.30), we have

Γ j,n(ξ ) =
∞

∑
h=1

∑
λ∈Λ

Ψ̂
( j−n) ((p−1N)−n(

ξ +λ
))

Ψ̂( j−h)
(
(p−1N)−h

(
ξ +λ

))
Ψ̂

( j−h)((p−1N)−h
ξ
)

= ∑
λ∈Λ

Ψ̂
( j−n) ((p−1N)−n(

ξ +λ
)){ ∞

∑
h=0

Ψ̂( j−h)
(
(p−1N)−h

(
ξ +λ

))
Ψ̂

( j−h)((p−1N)−h
ξ
)

−Ψ̂( j)
(
ξ +λ

)
Ψ̂( j)(ξ )

}

=
∞

∑
h=0

∑
λq∈Λ

Ψ̂
( j−n) ((p−1N)−n(

ξ +u(qλ )
))

×Ψ̂( j−h)
(
(p−1N)−h

(
ξ +u(qk)

))
Ψ̂( j−h)((p−1N)−hξ

)
=

∞

∑
h=1

∑
λ∈Λ

Ψ̂

(
( j+1)−(n+1)

) (
(p−1N)n+1(pξ +λ

))
×Ψ̂( j−h)

(
(p−1N)−h

(
pξ +λ

))
Ψ̂( j−h)((p−1N)−hpξ

)
= Γ j+1,n+1(pξ )

The above system is equivalent to

Γ j,n(ξ ) = Γ j−1,n−1(p
−1Nξ ).

In consequence, for j ∈ Z, n ∈ N and almost all ξ ∈K, we have by recursion

Γ j,n(ξ ) = Γ j−(n−1),1((p
−1N)n+1

ξ ),

from which equation (3.30) follows as Γ j−n+1,1(ξ ) = Ψ̂( j−n)((p−1N)−nξ ).

Moreover, since
〈

Ψ j,n(ξ ),Ψ j,h(ξ )
〉

is integral periodic, equation (3.29) holds. This
completes the proof of the lemma.
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From the above lemma, it can be seen that
∞

∑
n=1

∥∥Ψ j,n(ξ )
∥∥2

l2(Λ)
=

∞

∑
n=1

∑
λ∈Λ

∣∣∣Ψ̂( j−n) ((p−1N)−n(
ξ +λ

))∣∣∣2 = D
Ψ( j)(ξ ) = 1. (3.31)

For all j ∈ Z, and for almost all ξ ∈ K, we define

F j(ξ ) = span{Ψ j,n(ξ ) : n≥ 1}. (3.32)

It is a subspace of l2(Λ) of dimension 1.

LEMMA 3.10. Let {αn : n≥ 1} be a family of vectors in a Hilbert space H such
that

∞

∑
n=1
‖αn‖2 =C < ∞ and vn =

∞

∑
m=1
〈αn,αm〉αm for all n≥ 1.

Then dimension of the subspace span{αn : n≥ 1} o f H is equal to C.

Sufficient part of the Theorem: Using Lemma 3.10, it follows that the family F j(ξ ),
defined by (3.32) is generated by only one unit vector X j(ξ ). To construct it, we first
make a partition of D as follows

P j,n =
{

ξ ∈D : Ψ j,n(ξ ) 6= 0 and Ψ j,m(ξ ) = 0 for m < n
}
,n≥ 1,

and the null set

P j,0 =
{

ξ ∈D : D
Ψ( j)(ξ ) = 0

}
.

Let us now define the unit vector X j(ξ ) on D by

X j(ξ ) =
Ψ j,n(ξ )∥∥Ψ j,n(ξ )

∥∥
l2(Λ)

if ξ ∈ E j,n.

We write X j(ξ ) =
{

u( j)
λ
(ξ )
}

λ∈Λ

and define Φ ( j) almost everywhere on K by

Φ̂
( j)(ξ ) = u( j)

λ

(
ξ −λ

)
if ξ ∈D+λ .

These Φ ( j), j ∈ Z are the required scaling functions.
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This paper develops a stochastic equivalence approach for an Ornstein-Uhlenbeck process-driven power 

system. The concept of stochastic equivalence coupled with stochastic differential rule plays the 

important role to develop the stochastic equivalence approach of this paper. This paper also develops the 
prediction theory of power system dynamics with the OU process as well.  

 
Mathematics Subject Classification 2000: 60H10, 93E03. 

 
Additional Key Words and Phrases: stochastic equivalence approach, stochastic differential equation, 

the OU process, Kuramoto oscillator, power system dynamics.  

____________________________________________________________________ 

 

 

1. INTRODUCTION 

The stochastic differential equation (SDE) is caused by random term. This 

random term can be represented in form of white noise process or coloured noise 

process. For deterministic representation of the swing equation of a single machine-

infinite bus (SMIB) system, see Kundur (1994). The white noise driven-Itô SDE 

model for a power system dynamics, see (Wang and Crow 2013; Hirpara and 

Sharma 2015). The white noise driven-Stratonovich SDE model for a power system 

dynamics and circuits and systems, see (Hirpara 2019; Patil and Sharma 2015) and 

the coloured noise driven-SDE model for a power system dynamics, see(Hänggi and 

Jung 1995; Patel and Sharma 2012; Patil and Sharma 2014; Hirpara and Sharma 

2015; Guo and Shi 2017) and recent publication Verdejo et al. (2019) as well. The 

well-known Kuramoto model (Dörfler and Bullo 2010; Tönjes 2010; Simpson-Porco 

2012; Schäfer et al. 2017; Supplemental material 2017), explaining essential 

mechanisms underlying synchronization, is very similar to the power system 

dynamics when neglecting inertia. 
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The problem becomes complex when the extended phase space approach 

increases the dimensionality of the augmented state vector with the Markovian 

property, see Patel and Sharma (2012). It becomes easier approaches that allow the 

Markovian property as well as reduce the dimensionality of the state vector and that 

is known as the stochastic equivalence approach, see Patil and Sharma (2014) for 

greater detail.   

This paper is aimed to analyse power system dynamics with the stochastic 

equivalence approach. In contrast to Hirpara and Sharma (2015), we developed 

stochastic power system dynamics in the presence of an Ornstein-Uhlenbeck (OU) 

process with the stochastic equivalence approach and examine the effectiveness of 

the prediction equations with no observations or valueless observations. The 

Numerical simulations help to check stochastic equivalent SDE in MATLAB for a 

smaller correlation time.  

The remainder of the paper is organized as follows. Section 2 describes 

mathematical preliminaries. Section 3 is about the stochastic equivalence approach 

for an OU driven power system dynamics and numerical simulations. Section 4 

discusses concluding remarks. 

 

2. MATHEMATICAL PRELIMINARIES 

Consider the stochastic differential system described by                

                                               ,)()( tttt BA  +=                                                (1) 

where the input process t  is a stationary process with zero mean, relatively smaller 

correlation time. The right-hand side ttB  )(  of equation (1) has a multiplicative 

noise character. Two different SDEs can be regarded as the stochastically 

equivalent, if they are associated with the same Fokker–Planck equation. 

Importantly, the concept of stochastic equivalence is useful for the coloured noise-

driven SDE, where the input noise process is a coloured noise process with a smaller 

correlation time. A simple calculation shows that the white noise-driven stochastic 

differential equation associated with the Fokker-Planck equation (Stratonovich 

1963, p. 97) assumes the structure  
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  +−=                        (2) 

where the input process )(0 tw  is zero mean, stationary, Gaussian white noise 

process. Thanks to equation (4.180) of  Stratonovich (1963), a special case of 

equation (4.180), i.e. the coefficients )(1 tS  and )(2 tS  for the stochastic 

differential system ,)()( tttt BA  +=  can be re-cast as  
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= are throughout the paper. 

Equations (3)-(4) are valid for the weakly coloured noise input process .t Equation 

(2) in conjunction with equations (3)-(4) assumes the structure  
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Note that equation (5) is stochastically equivalent to the SDE, i.e. 

,)()( tttt BA  +=  since both are associated with the same Fokker-Planck 

equation. Equation (5) can be‘re-formulated’ in the Itô sense, i.e 
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where  
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Equation (6), the Itô stochastic differential equation, describes a rigorous 

interpretation of the SDE in contrast to equation (5). 

The OU process is a Gauss-Markov process and satisfies the stochastic differential 

equation, 

                                                 ,
21

t
cor

t
cor

t dW
N

dtd





 +−=                                 (9) 

where the terms cor  and 
cor

N



2
 has an interpretation as correlation time and the 

process noise coefficient. Furthermore, the autocorrelation )(R  of the OU 

process, a stationary process, is .core
N

cor







−

 This expression suggests that the 

correlation time of the stationary coloured noise can be explained using the concept 

of the autocorrelation of the coloured noise process. For the OU process, a weakly 

coloured noise process, the terms 21,  of equations (3)-(4) become,  

                                                  ,21 N= corN =2 .                                            (10) 

From equation (10) and equations (7)-(8), we have the following system non-

linearity )( ta  and process noise coefficient )( tb   for the OU process-driven 

stochastic differential system:     
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  For a coloured noise-driven SDE, the ‘scalar’ exact mean and variance evolutions, 

td   and tdP  are,  
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Notably, the numerical coefficients of equations (13)-(14), approximate evolutions 

are attributed to the successive differentiation with respect to the term .t  Note 

that ,,
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throughout the paper. For proof of equations (13)-(14), see the paper Patil and 

Sharma (2014). 

Here, we state two special cases of evolution equations (13)-(14): (i) for the terms 

11 = and ,02 =  equations (13)-(14) reduce to the classical exact evolution 

equations, see Eq. (4.159) of Jazwinski (1970, p. 137) (ii) the terms N21 =  and 

corN =2  lead to the exact evolution equations of the OU process-driven SDE. 

 

3. POWER SYSTEM DYNAMICS AND NUMERICAL 

EXPERIMENTATIONS 

In deterministic setting, the swing equation of a single machine-infinite bus 

(SMIB) system is given by the following second-order non-linear differential 

equation Kundur (1994): 

                                            .sin m
a P

X

EV
DM =


++                                           (15) 

 Note that the terms ma PXEDMV ,,,,,,  denotes the voltage magnitude of the 

infinite bus, combined inertia constant and the damping coefficient of the generator 

and turbine, the transient emf, the rotor angle of the generator,  the total reactance, 

the input mechanical power respectively. After accounting random power 

fluctuations in the swing equation of the single machine-infinite bus system. we can 

get, 

                                            ,sin tm
a P

X

EV
DM  +=


++                                   (16) 

where t  is the OU process. After accomplishing the phase space formulation, we 

have  ,, 21 tt  ==  

                                                       21  =                                                             (17) 
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Consider the contribution to the evolution of the phase variable 1 =t  coming 

from the damping term is considerably greater than the inertial term (Hänggi and 

Jung, 1995, p. 241), then the term 
MM

P

XM

EV

M

D tma 
 ++


−− 12 sin  vanishes, i.e. If 

we model a system without physical or virtual inertia, power system is best 

described as a Kuramoto oscillator (Dörfler and Bullo 2010; Tönjes 2010; Simpson-

Porco 2012; Schäfer et al. 2017; Supplemental material 2017) with the equation of 

motion,  
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Thus, the above equation can be recast by utilizing a more convenient notation by 

choosing the state variable notation t  for the rotor angle .t  Thus,  
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Note that for a non-linear time varying system. The input argument of the right-hand 

side of equation (20) involves the time variable t  as well. From equation (20) and 

equation (6) of the paper, we get 
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    After combining equations (13)-(14) with equation (20). As a result of these, we 

have the following system of prediction equations for the power system driven by 

the OU process,  
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Note that equation (20) and equation (21) are stochastically equivalent and suggest 

qualitative characteristics of the rotor angle of the machine. For numerical 

experimentations of equations (20)-(21), the initial conditions and system 

parameters for power system dynamics are the following Hirpara and Sharma 

(2015):  

sec,//5,2.1,0.1 radpuDpuEpuV a ===

1.0,25.0,1.0,15.0 ==== corld puXpuXpuX   

,0.1 puPm = ,rad1)0( = 05.0,rad0)0( 2 == NP  

In first case, we consider that the correlation time cor  is smaller than second case. 

Note that the solid line trajectory (-) of figure 1 demonstrates the numerical 

simulation of equation (20) and the dotted line (...) of figure 1 denotes the numerical 

simulation of equation (21) of the paper. The terms N21 =  and 

corN =2 corresponding to correlation time 1.0=cor  become 1.01 =  and 

.005.02 =  Figure 1 suggested that qualitative characteristics of both SDEs 

conforms each other for a smaller correlation time. The trajectories of both SDEs are 

coinciding with each other. Thus, both SDEs are stochastically equivalent for the 

OU process with smaller correlation time. Figures 2 and 3 demonstrate numerical 

simulation of equation (22), mean trajectory and equation (23), variance trajectory 

with smaller correlation time.  

For second case, we simulated equations (20) and (21) by choosing larger 

correlation time 1=cor  other parameters are same as first case. The terms 

1.01 = and  05.02 =  for larger correlation time. 
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Figure 1: a comparison between trajectories 
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Figure 2:  a comparison between trajectories 
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Figure 3:  a variance trajectory 
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Figure 4:  a comparison between trajectories 
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Figure 5:  a comparison between trajectories 
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Figure 6:  a variance trajectory 
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The graphical notations are same as first case. Figure 4 reveals that the difference 

between the state trajectories resulting from the SDEs stated in equation (20) and 

equation (21) are larger. Figures 5 and 6 demonstrate numerical simulation of 

equation (22), mean trajectory and equation (23), variance trajectory with larger 

correlation time. Thus, the numerical simulation suggests that both SDEs, equation 

(20) and equation (21), are stochastically equivalent for the input coloured noise 

process with ‘smaller correlation time’.  

 

4. CONCLUSION 

The main achievement of this paper is to develope prediction algorithm for the 

OU process-driven SDE. It is shown that for a smaller correlation time, the 

trajectories of SDEs stated in equation (20) and equation (21) are coinciding to each 

other. Thus, both SDEs are stochastically equivalent to each other and for larger 

correlation time, difference between both trajectories are larger. In this paper we 

have also developed conditional mean and variance equation for power system 

dynamics with stochastic equivalence approach. For future direction, in this paper 

we have considered no observation or value less observation. For available 

observation, we were required to develop filtering algorithm for the OU process 

driven power system dynamics.  

 

REFERENCES  
 

Dörfler F, Bullo F (2010)  Synchronization and transient stability in power networks and non-uniform 

Kuramoto oscillators, Proceedings of the 2010 American Control Conference, 930-937 

doi:10.1109/acc.2010.5530690 

Guo SS, Shi Q (2017) Stationary solution of  Duffing oscillator driven by additive and multiplicative 

Colored noise excitations,  Journal of Vibration and Acoustics, 139(2): 024502-(1-4) 

doi:10.1115/1.4035308 

Hänggi P, Jung P (1995)  Colored noise in dynamical systems, Advances in Chemical Physics (I. 

Prigogine and S. A. Rice., eds.), John Wiley and Sons, New York, pp. 239-323 

Hirpara RH (2019)  On the stochasticity of power system dynamics using Stratonovich differential, IEEE 

INDICON-2019, 1-4  Doi: 10.1109/INDICON47234.2019.9030364 

Hirpara RH, Sharma SN (2015)  On the stochasticity of a machine swing equation using Itô differential,  

Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its 

Applications, 2015: 142-148 https://doi.org/10.5687/sss.2015.142 

http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=2588987
http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=2588987
https://doi.org/10.1109/INDICON47234.2019.9030364


58 R. H. Hirpara 

 

 
Hirpara RH, Sharma SN (2015) An Ornstein-Uhlenbeck process-driven power system dynamics, IFAC 

PapersOnLine, 48(30):409-414 doi: 10.1016/j.ifacol.2015.12.413 

Jazwinski AH (1970) Stochastic processes and filtering theory, Academic Press, New York and London 

Kundur P (1994) Power system stability and control, Mc-Graw-Hill, New York 

Patel HG, Sharma SN  (2012)  Some evolution equations for an Ornstein–Uhlenbeck process-driven 

dynamical system, Fluctuation and Noise Letters, 12(4): 1250020-(1-20) 

doi:10.1142/S0219477512500204 

Patil NS, Sharma SN  (2014)  A prediction theory for a coloured noise-driven stochastic differential 

system, Systems Science & Control Engineering,  2(1): 342–350 doi: 

10.1080/21642583.2014.906004 

Patil NS, Sharma SN (2015) On a non-linear stochastic dynamic circuit using Stratonovich differential, 

Journal of Franklin Institute, 352(8): 2999-3013 https://doi.org/10.1016/j.jfranklin.2014.12.018 

Schäfer B, Matthiae M,  Zhang X, Rohden M, Timme M, Witthaut D (2017) Escape Routes, Weak Links, 

and Desynchronization in Fluctuation-driven Networks, Physical Review E, 95: 060203-(1-5) doi: 

10.1103/PhysRevE.95.060203 

 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.95.060203 for 

discussion of robustness of the phenomena reported and a comparison of the escape time across 

different power grid models. 

Simpson-Porco JW, Dörfler F,  Bullo F (2012) Droop-controlled inverters are Kuramoto oscillators, IFAC 

Proceedings Volumes, 45(26): 264-269 doi:10.3182/20120914-2-US-4030.00055 

Stratonovich RL (1963) Topics in the theory of random noise, Vol. 1, Gordon and Breach, New York 

Tönjes R (2010) Synchronization transition in the Kuramoto model with colored noise,  Physical Review 

E, 81: 055201-(1-4)  doi: 10.1103/PhysRevE.81.055201 

Verdejo H, Awerkin A, Kliemann W,  Becker C (2019) Modelling uncertanities in electrical power 

systems with stochastic differential equations,  International Journal of Electrical Power & Energy 

Systems, 113:322-332 doi: 10.1016/j.ijepes.2019.05.054 

Wang  K, Crow ML  (2013) The Fokker-Planck equation for power system stability probability density 

function evolution, IEEE Transactions on Power Systems, 28(3): 2994-3001 

Doi: 10.1109/TPWRS.2012.2232317 

 

 

 

Ravish H. Hirpara, Ph.D., 
Associate Professor, 
Electrical Engineering Department, 
S.N. Patel Institute of Technology and Research 
Centre,Umrakh, Bardoli, Surat-394345, Gujarat, India  
E-Mail: ravishhirpara@gmail.com, 
ravish.hirpara@snpitrc.ac.in 
M: +919924259911 
 
Received April 2020 

 

https://pdfs.semanticscholar.org/50d0/86bdaf43e6ecc791bcb70d9e521adb3318aa.pdf


JAMSI, 17 (2021), No. 2 59 

 

 

10.2478/jamsi-2021-0009 
©University of SS. Cyril and Methodius in Trnava 

An extensive extension of exponentiated 

exponential distribution using alpha power 

transformation – statistical properties and 

applications in engineering science 

S. QURAT UL AIN, K. UL ISLAM RATHER 

 

____________________________________________________________________ 

 

Abstract 

 
In this article, an extension of exponentiated exponential distribution is familiarized by adding an extra 

parameter to the parent distribution using alpha power technique. The new distribution obtained is referred 
to as Alpha Power Exponentiated Exponential Distribution. Various statistical properties of the proposed 

distribution like mean, variance, central and non-central moments, reliability functions and entropies have 

been derived. Two real life data sets have been applied to check the flexibility of the proposed model. The 

new density model introduced provides the better fit when compared with other related statistical models. 
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1. INTRODUCTION 

The advancement of conventional distributions has become a usual exercise in 

statistical theory, since last few decades. Designing a new distribution from a classical 

one by adding an additional parameter using different methods has got wide scope in 

recent years. The main purpose of such developments is to make the classical 

distributions more flexible for complex data sets. Recently, Mahdavi A, Kundu D, 

introduced a new technique called Alpha Power Transformation (APT), where an 

additional parameter is introduced in continuous probability distributions. The Alpha 

Power Transformation is defined as: 

Let 𝑓(𝑥) be the probability density function (pdf) of any continuous random 

variable ‘X’, then the pdf of Alpha Power Transformation is given by 

𝑓𝐴𝑃𝑇(𝑥) = {

𝑙𝑜𝑔𝛼

𝛼−1
𝛼𝐹(𝑥)𝑓(𝑥),    𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1

𝑓(𝑥)         , 𝑖𝑓  𝛼 = 1
} (1.1) 
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And the corresponding CDF of APT is given as 

𝐹𝐴𝑃𝑇(𝑥) = {
𝛼𝐹(𝑥)−1

𝛼−1
    , 𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1

𝐹(𝑥)             , 𝑖𝑓 𝛼 = 1
}  (1.2) 

The APT of survival function 𝑆𝐴𝑃𝑇(𝑥) is given by 

𝑆𝐴𝑃𝑇(𝑥) = {

𝛼

𝛼−1
(1 − 𝛼𝐹(𝑥)−1)   , 𝑖𝑓 𝛼 ≠ 1

1 − 𝐹(𝑥)  , 𝑖𝑓𝛼 = 1
}               (1.3) 

The APT of Hazard rate function 𝐻𝐴𝑃𝑇(𝑥)  is given by 

𝐻𝐴𝑃𝑇(𝑥) = {

𝛼𝐹(𝑥)−1

1−𝛼𝐹(𝑥)−1 𝑙𝑜𝑔𝛼   ,     𝑖𝑓 𝛼 ≠ 1

𝑓(𝑥)

𝑠(𝑥)
,              𝑖𝑓 𝛼 = 1

}                 (1.4) 

The exponential distribution is the probability distribution of the time between events 

in a Poisson point process, which is described in probability theory and statistics as a 

process in which events occur continuously and independently at a constant average 

rate. It's a good example of how the gamma distribution works. It is the geometric 

distribution's continuous equivalent, and it has the essential virtue of being memory 

less. It is employed in a variety of additional applications in addition to the analysis 

of Poisson point processes. The exponential distribution is not the same as the 

exponential families of distributions, which is a vast class of probability distributions 

that contains the exponential distribution as one of its members, as well as the normal, 

binomial, gamma, Poisson, and many more. 

The exponentiated exponential distribution formulated by Debasis Kunduis the two 

parameter right skewed unimodal distribution. It is the particular case of Gompertz-

Verhulst distribution function. Therefore, a random variable ‘X’ is said to follow 

exponentiated exponential distribution if it follows the pdf   

𝑓(𝑥; 𝛽, 𝜆) = 𝛽𝜆(1 − 𝑒−𝜆𝑥)
𝛽−1

𝑒−𝜆𝑥                                                    (1.5) 

And the corresponding distribution function is given by 

𝐹(𝑥; 𝛽, 𝜆) = (1 − 𝑒−𝜆𝑥)
𝛽

; 𝑥 > 0                                                           (1.6) 
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2. ALPHA POWER EXPONENTIATED EXPONENTIAL DISTRIBUTION 

In this section, we introduce an extension of exponentiated exponential 

distribution by adding an extra parameter to the original distribution using the 

technique of alpha power transformation. Then the resultant distribution is known as 

Alpha Power Exponentiated Exponential Distribution (APEED). 

Suppose ‘X’ be a random variable following Alpha Power Exponentiated Exponential 

distribution, then the PDF of ‘X’ is given as 

𝑓𝐴𝑃𝐸𝐸𝐷(𝑥; 𝛼, 𝜆, 𝛽) =
𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

,   𝛼, 𝜆, 𝛽 > 𝑂      (2.1) 

And the corresponding CDF is given by 

𝐹𝐴𝑃𝐸𝐸𝐷(𝑥) =
𝛼(1−𝑒−𝜆𝑥)𝛽

−1

𝛼−1
,     𝛼, 𝜆, 𝛽 > 𝑂  (2.2) 

 

ALPHA POWER EXPONENTIATED EXPONENTIAL DISTRIBUTION  

 

 

Fig 1. Shows the graph of pdf of APEE distribution for various values of 𝛼 
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Fig.2 Shows the graph of cdf of APEE Distribution 

 

3. RELIABILITY ANALYSIS 

In this section, we will obtain the survival function, hazard rate, reverse hazard 

rate, cumulative hazard rate and mills ratio of APEE distribution. 

 

3.1. Survival function of APEE distribution 

The survival function of APEED is defined as under 

S𝐴𝑃𝐸𝐸𝐷(x) = 1 − F𝐴𝑃𝐸𝐸𝐷(𝑥)     

Substituting the value of FAPPED(x) from equation (1.6) we get   

  

S𝐴𝑃𝐸𝐸𝐷 (x) = 1 −
𝛼(1−𝑒−𝜆𝑥)𝛽

−1

𝛼−1
 

S𝐴𝑃𝐸𝐸𝐷 (x)=
𝛼−𝛼

(1−𝑒−𝜆𝑥)
𝛽

𝛼−1
 (3.1) 
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3.2. Hazard Rate Function of APEE distribution 

The hazard rate function of APEED is defined as under 

H𝐴𝑃𝐸𝐸𝐷  (x) =
𝑓(𝑥)

𝑆(𝑥)
=

𝜆𝛽𝑙𝑜𝑔𝛼(1−𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼
(1−𝑒−𝜆𝑥)

𝛽

𝛼−𝛼
(1−𝑒−𝜆𝑥)

𝛽     (3.2) 

3.3. Reverse Hazard Rate Function of APEE distribution 

The reverse hazard rate function of APEED is defined as under 

RHR𝐴𝑃𝐸𝐸𝐷(𝑥) =
𝑓(𝑥)

𝐹(𝑋)
  =

𝛽𝜆𝑙𝑜𝑔𝛼(1−𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼
(1−𝑒−𝜆𝑥)

𝛽

𝛼
(1−𝑒−𝜆𝑥)

𝛽

−1

               (3.3) 

3.4. Cumulative Hazard Rate of APEE distribution 

The cumulative hazard rate of APEED is defined as under 

CHR𝐴𝑃𝐸𝐸𝐷(𝑥) = −𝑙𝑜𝑔[𝑆(𝑥)]        

  = −𝑙𝑜𝑔 [
𝛼−𝛼

(1−𝑒−𝜆𝑥)
𝛽

𝛼−1
] 

 =(1 − 𝑒−𝜆𝑥)
𝛽

𝑙𝑜𝑔𝛼                                                   (3.4) 

3.5. Mills Ratio of APEE distribution 

The mills ratio of APEED is defined as under 

MR𝐴𝑃𝐸𝐸𝐷(𝑥) =
𝐹(𝑥)

𝑆(𝑥)
=

𝛼(1−𝑒−𝜆𝑥)𝛽
−1

𝛼−𝛼
(1−𝑒−𝜆𝑥)

𝛽       (3.5) 
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Plots below show the graphs of the survival function, hazard rate, reverse hazard rate, 

cumulative hazard rate of APEED 

 
Fig 3. Shows SF of APEED   Fig 4. Shows HR of APEED 

 

Fig 5. Shows CHR of APEED   Fig 6. Shows RHR of APEED 

 

4. STRUCTURAL PROPERTIES OF APEEED 

In this section, structural properties of APEE distribution are derived. These 

structural properties include moments about mean, moments about origin, variance, 

standard deviation, coefficient of variation and index of dispersion.   
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THEOREM: Let ‘x’ be a random variable following APEED, then 𝑟𝑡ℎ moment 

denoted by 𝜇𝑟
′ is given by 

𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

0
  

= ∫ 𝑥𝑟𝑓𝐴𝑃𝐸𝐸𝐷(𝑥)𝑑𝑥
∞

0
    

 = ∫ 𝑥𝑟∞

0

𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼 (1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

𝑑𝑥 

PROOF:  

Take(1 − 𝑒−𝜆𝑥)𝛽 = 𝑡, then solving the  above integral we get  

𝜇𝑟
′ = ∫ [−

1

𝜆
𝑙𝑜𝑔(1 − 𝑡

1

𝛽)]
𝑟

𝑙𝑜𝑔 𝛼

𝛼−1
𝛼𝑡𝑑𝑡

1

0
  

       = (
𝑙𝑜𝑔 𝛼

𝛼−1
)

(−1)𝑟

𝜆𝑟 ∫ 𝛼𝑡𝑙𝑜𝑔(1 − 𝑡
1

𝛽)𝑟1

0
𝑑𝑡𝜇𝑟

′ =
(−1)𝑟

𝜆𝑟 [𝑟 𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)𝛽 − 1]  (4.1) 

Putting  𝑟 = 1,2,3 𝑎𝑛𝑑 4, we get the first four moments about origin as under 

𝜇1
′ =

−𝟏

𝝀
[𝑙𝑜𝑔

1

(1−𝑒−𝜆𝑥)
𝛽 − 1]=

𝟏

𝝀
[1 − 𝑙𝑜𝑔

1

(1−𝑒−𝜆𝑥)
𝛽]           (4.2) 

𝜇2
′ =   

1

𝜆2 [2𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)𝛽 − 1]                                                                  (4.3) 

𝜇3
′ =

(−1)3

𝜆3 [3 𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)𝛽 − 1] =
1

𝜆3 [1 − 3𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽] (4.4) 

𝜇4
′ =

1

𝜆4 [4 𝑙𝑜𝑔 
1

(1−𝑒−𝜆𝑥)𝛽 − 1] (4.5) 

Therefore, Mean 𝜇1
′ =

𝟏

𝝀
[1 − 𝑙𝑜𝑔

1

(1−𝑒−𝜆𝑥)
𝛽] 

The moments about mean are derived by using the relationship between moments 

about origin and moments about mean  
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 𝜇2 = 𝜇2

′ − (𝜇1
′)2 

      =
1

𝜆2 [2𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)𝛽 − 1] {
𝟏

𝝀
[1 − 𝑙𝑜𝑔

1

(1−𝑒−𝜆𝑥)
𝛽]}

𝟐

 

=
1

𝜆2 [4 𝑙𝑜𝑔 
1

(1−𝑒−𝜆𝑥)𝛽 − [𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽]

2

− 2] (4.6) 

𝜇3 = 𝜇3
′ − 3𝜇2

′𝜇1
′ + 2𝜇1

′2
  

=
(−1)3

𝜆3 [3 𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽 − 1] − 3 {

1

𝜆2 [2𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)𝛽 − 1]} {
𝟏

𝝀
[1 −

𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽]} + 2 {

𝟏

𝝀
[1 − 𝑙𝑜𝑔

1

(1−𝑒−𝜆𝑥)
𝛽]}

2

  

=
(−1)

𝜆3 [(3 𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)𝛽 − 1) + 6 (𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽)

2

− 9𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽 − 3] +

2

𝜆2 [𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽]

2

          (4.7) 

𝜇4 = 𝜇4
′ − 4𝜇3

′𝜇1
′ + 6𝜇2

′𝜇1
′2

− 3𝜇1
′4

  

=
1

𝜆4
[4 𝑙𝑜𝑔 

1

(1 − 𝑒−𝜆𝑥)𝛽
− 1]

− 4 {
(−1)3

𝜆3
[3 𝑙𝑜𝑔

1

(1 − 𝑒−𝜆𝑥)𝛽
− 1]} {

𝟏

𝝀
[1

− 𝑙𝑜𝑔
1

(1 − 𝑒−𝜆𝑥)𝛽
]}

+ 6 {
1

𝜆2
[2𝑙𝑜𝑔

1

(1 − 𝑒−𝜆𝑥)𝛽
− 1]} {

  𝟏

𝝀
[1 − 𝑙𝑜𝑔

1

(1 − 𝑒−𝜆𝑥)𝛽
]} 

=
1

𝜆4 [4𝑙𝑜𝑔 
1

(1−𝑒−𝜆𝑥)𝛽 − 12 (𝑙𝑜𝑔 
1

(1−𝑒−𝜆𝑥)𝛽)
2

+ 16𝑙𝑜𝑔 
1

(1−𝑒−𝜆𝑥)𝛽 − 5] −

6

𝜆3 [2 (𝑙𝑜𝑔 
1

(1−𝑒−𝜆𝑥)𝛽)
2

− 3𝑙𝑜𝑔 
1

(1−𝑒−𝜆𝑥)𝛽 + 1] (4.8) 
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The standard deviation, coefficient of variation and index of dispersion are obtained 

as under 

Standard deviation 

𝜎 = √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
1

𝜆
√[4 𝑙𝑜𝑔 

1

(1−𝑒−𝜆𝑥)𝛽 − [𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽]

2

− 2]              (4.9) 

C.V=
𝜎

𝜇1
′ =

√[4 𝑙𝑜𝑔 
1

(1−𝑒−𝜆𝑥)𝛽−[𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽]

2

−2]

[1−𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽]

                                 (4.10) 

Index of dispersion 𝜸 =
𝝈𝟐

𝝁𝟏
′ =

1

𝜆
[4 𝑙𝑜𝑔 

1

(1−𝑒−𝜆𝑥)𝛽−[𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽]

2

−2]

[1−𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽]

            (4.11) 

 

5. MOMENT GENERATING FUNCTION AND CHARACTERISTIC 

FUNCTION OF ALPHA POWER EXPONENTIATED EXPONENTIAL 

DISTRIBUTION 

In this section, moment generating function and characteristic function of APEED 

are derived. Moment Generating Function is generally defined as 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥)  

            = ∫ 𝑒𝑡𝑥𝑓(𝑥)
∞

0
𝑑𝑥  

  = ∫ 𝑒𝑡𝑥∞

0

𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

𝑑𝑥 

Using Taylors Expansion, we get 

 𝑀𝑥(𝑡) = ∫ ∑
𝑡𝑟𝑥𝑟

𝑟!

∞
𝑟=0

∞

0

𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

𝑑𝑥  
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 𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟 𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

𝑑𝑥
∞

0
  

 𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!

∞
𝑟=0 [

(−1)𝑟

𝜆𝑟 [𝑟 𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)𝛽 − 1]] (5.1) 

The characteristics function of APEED is generally defined as 

∅x(t) = ∫ eitxf(x)
∞

0
dx    

Using Taylor expansion, we get 

∅𝑥(𝑡) = ∫ ∑
(𝑖𝑡)𝑟𝑥𝑟

𝑟!

∞
𝑟=0

∞

0
𝑓(𝑥)𝑑𝑥  

      = ∑
(𝑖𝑡)𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟𝑓(𝑥)

∞

0
𝑑𝑥  

             = ∑
(𝑖𝑡)𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟∞

0

𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)

𝛽−1
𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)

𝛽

𝑑𝑥 =

∑
(𝑖𝑡)𝑟

𝑟!

∞
𝑟=0 [[

(−1)𝑟

𝜆𝑟 [𝑟𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)𝛽 − 1]]]  (5.2) 

 

6. ENTROPIES 

Shanon Entropy: 

THEOREM: Let X be a random variable following APEED then Shanon entropy 

is defined as 

𝐻(𝑥; 𝛼, 𝜆, 𝛽) = 𝐸(−𝑙𝑜𝑔𝑓(𝑥; 𝛼, 𝜆, 𝛽))   

PROOF: 

𝐻(𝑥; 𝛼, 𝜆, 𝛽) = 𝐸 [−𝑙𝑜𝑔 (
𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

)]  

      = −𝐸 (𝑙𝑜𝑔 (
𝛽𝜆

𝛼−1
)) + (𝛽 − 1)𝐸 (𝑙𝑜𝑔(1 − 𝑒−𝜆𝑥)) + 𝑙𝑜𝑔𝛼𝐸(1 − 𝑒−𝜆𝑥)

𝛽
−

𝐸[𝑙𝑜𝑔(𝑙𝑜𝑔𝛼)] − 𝜆𝐸(𝑥)          (6.1) 



JAMSI, 17 (2021), No. 2 69 

 

 
Now  

𝐸(1 − 𝑒−𝜆𝑥)
𝛽

= ∫ (1 − 𝑒−𝜆𝑥)
𝛽

𝑓(𝑥)
∞

0
𝑑𝑥  

 

= ∫ (1 − 𝑒−𝜆𝑥)
𝛽∞

𝟎

𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

𝑑𝑥  

Taking(1 − 𝑒−𝜆𝑥)
𝛽

= 𝑡, then solving the above integral we get 

𝐸(1 − 𝑒−𝜆𝑥)
𝛽

= [
𝛼

𝛼−1
−

𝛼

(𝛼−1)𝑙𝑜𝑔𝛼
+

1

(𝛼−1)𝑙𝑜𝑔𝛼
]  (6.2) 

and 

𝐸(1 − 𝑒−𝜆𝑥) = ∫ (1 − 𝑒−𝜆𝑥)
∞

0
 𝑓(𝑥)𝑑𝑥  

= ∫ (1 − 𝑒−𝜆𝑥)
∞

𝟎

𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

𝑑𝑥  

Making the substitution of (1 − 𝑒−𝜆𝑥)
𝛽

= 𝑡, then solving the above integral we get 

𝐸(1 − 𝑒−𝜆𝑥) = −
1

𝛽
  (6.3) 

Substituting the values of equation (6.2) and (6.3) in equation (6.1) we have 

 𝐻(𝑥; 𝛼, 𝜆, 𝛽) = − (𝑙𝑜𝑔 (
𝛽𝜆

𝛼−1
)) + (𝛽 − 1) (−

1

𝛽
) + 𝑙𝑜𝑔𝛼 [

𝛼

𝛼−1
−

𝛼

(𝛼−1)𝑙𝑜𝑔𝛼
+

1

(𝛼−1)𝑙𝑜𝑔𝛼
] − 𝑙𝑜𝑔(𝑙𝑜𝑔𝛼) − 𝜆 {

−𝟏

𝝀
[𝑙𝑜𝑔

1

(1−𝑒−𝜆𝑥)
𝛽 − 1]} 

 =  𝑙𝑜𝑔
1

(1−𝑒−𝜆𝑥)
𝛽 +

1

𝛼−1
{𝛼(𝑙𝑜𝑔𝛼 − 1) + 1} − 𝑙𝑜𝑔 (

𝛽𝜆

𝛼−1
) − 𝑙𝑜𝑔(𝑙𝑜𝑔𝛼) +

1

𝛽
− 2    

        (6.4) 
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RENYI ENTROPY 

𝐼𝛿(𝑥) = (1 − 𝛿)−1𝑙𝑜𝑔 ∫ {𝑓𝐴𝑃𝐸𝐸𝐷(𝑥; 𝛼, 𝜆, 𝛽)}𝛿𝑑𝑥
∞

−∞
  (6.5) 

Substituting the value of 𝑓𝐴𝑃𝐸𝐸𝐷(𝑥; 𝛼, 𝜆, 𝛽) from equation (2.1) in equation (6.5) we 

have 

𝐼𝛿(𝑥) = (1 − 𝛿)−1𝑙𝑜𝑔 ∫ {
𝛽𝜆

𝛼−1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

}
𝛿

𝑑𝑥
∞

0
  

Putting (1 − 𝑒−𝜆𝑥)𝛽 = 𝑡 in the above equation, we get 

𝐼𝛿(𝑥) = (1 − 𝛿)−1𝑙𝑜𝑔 [
𝑙𝑜𝑔𝛼

𝛼−1
]

𝛿

∫ 𝛼𝛿𝑡𝑑𝑡
1

0
  

Solving the above integral we get 

𝐼𝛿(𝑥) = (1 − 𝛿)−1 {𝑙𝑜𝑔 [
𝑙𝑜𝑔𝛼

𝛼−1
]

𝛿

− 𝑙𝑜𝑔 [
𝛼𝛿−1

𝛿𝑙𝑜𝑔𝛼
]} (6.6) 

 

7. ORDER STATISTICS 

Suppose X1, X2, … … .. Xn be n random samples of size n from APEE distribution 

with pdf (2.1) and cdf (2.2), then pdf of kth order statistics is given by 

𝑓𝑥(𝑘)𝑥 =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
[𝐹(𝑥)]𝑘−1[1 − 𝐹(𝑥)]𝑛−𝑘𝑓(𝑥)  (7.1)  

Substituting the values from equation (2.1) and (2.2) we get the pdf of kth order 

statistics as 

𝑓𝑥(𝑘)𝑥 = [
n!

(k−1)!(n−k)!
[

α(1−e−λx)β
−1

α−1
]

k−1

[1 −
α(1−e−λx)β

−1

α−1
]

n−k
βλ

α−1
logα(1 −

e−λx)β−1e−λxα(1−e−λx)β
] (7.2) 

The pdf of Ist order statistics is derived by putting k=1in the above equation 



JAMSI, 17 (2021), No. 2 71 

 

 

𝑓𝑥(1)𝑥 =
𝑛!

(1 − 1)! (𝑛 − 1)!
[
𝛼(1−𝑒−𝜆𝑥)𝛽

− 1

𝛼 − 1
]

1−1

[1

−
𝛼(1−𝑒−𝜆𝑥)𝛽

− 1

𝛼 − 1
]

𝑛−1
𝛽𝜆

𝛼 − 1
𝑙𝑜𝑔𝛼(1 − 𝑒−𝜆𝑥)𝛽−1𝑒−𝜆𝑥𝛼(1−𝑒−𝜆𝑥)𝛽

 

Solving the above equation we get 

𝑓𝑥(1)𝑥 =
𝑛𝜆𝛽𝑙𝑜𝑔𝛼

(𝛼−1)𝑛 [𝛼 − 𝛼(1−𝑒−𝜆𝑥)𝛽
] [𝛼(1−𝑒−𝜆𝑥)𝛽

𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)𝛽−1]    (7.3) 

And the pdf of nth order statistics is derived by putting k = n in equation (7.2), we get 

𝑓𝑥(𝑛)𝑥 = [
n!

(n−1)!(n−n)!
[

α(1−e−λx)β
−1

α−1
]

n−1

[1 −
α(1−e−λx)β

−1

α−1
]

n−n
βλ

α−1
logα(1 −

e−λx)β−1e−λxα(1−e−λx)β
] Solving above equation we get 

𝑓𝑥(𝑛)𝑥 = 𝑛 [
α(1−e−λx)β

−1

α−1
]

n−1
βλ

α−1
logα(1 − e−λx)β−1e−λxα(1−e−λx)β

 (7.4) 

 

Application in Real Data Analysis: 

In this section, we'll look at how to apply the proposed distribution to a real-world 

situation. As a result, two genuine data sets are employed, and analyses are carried 

out using R software (1.4.1717). 

The first set of data concerns the breaking stress of carbon fibres with a length of 50 

mm (GPa). Nichols and Padgett (2006), Cordeiro and Lemonte (2011), and Al-

Aqtashet al. had already used the data (2014). The following is the information: 

0.39  0.85  1.08  1.25  1.47  1.57  1.61  1.61  1.69  1.80  1.84  1.87  1.89  2.03  2.03  

2.05  2.12  2.87  2.88  2.93  2.95  2.96  2.97  3.09  3.11  3.11  3.15  3.15  3.19  3.22  

3.22  3.27  3.28  3.31   2.35  2.41  2.43  2.48  2.50  2.53  2.55  2.55  2.56  2.59  2.67  

2.73  2.74  2.79  2.81  2.82  2.85   3.31  3.33  3.39  3.39  3.56  3.60  3.65  3.68  3.70  

3.75  4.20  4.38  4.42  4.70  4.90 
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Table 1 presents a summary of the data. 

DATA 

1 

Min Mean Median variance 1st  Qu. 3rd Qu. max 

0.390 2.760 2.835 0.7947 2.178 3.277 4.900 

 

Table 2. Performance of the distributions: 

Distribution AIC BIC CAIC HQIC 

IE 274.057 276.247 274.247 277.787 

GIE 203.240 207.619 203.431 204.971 

EE 194.745 199.124 194.935 196.475 

L 246.768 248.958 246.959 250.499 

APEEpro 194.320 198.699 194.510 196.050 

 

Table 3. The estimation of parameters for the first data set: 

Distribution Estimated Parameters 

IE 2.2992439 

GIE 13.2850451   7.6013295 

EE 9.199203     1.007550 

L 0.59025384 

APEEpro 11.3002074    1.3687862 

 

The strength of 1.5 cm glass fibres is the subject of the second data set. Smith and 

Naylor (1987) and Bourguignon et al. (1987) utilised data originally gathered by 

employees at the UK National Physical Laboratory (2014). The following is the 

information: 

1.42  1.48  1.48  1.49  1.49  1.50  1.50  1.51  1.52  1.53  1.54  1.55  1.55  1.58  1.59  

1.60  1.61    

0.55  0.74  0.77  0.81  0.84  0.93  1.04  1.11  1.13  1.24  1.25  1.27  1.28  1.29  1.30  

1.36  1.39   
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1.76  1.76  1.77  1.78  1.81  1.82  1.84  1.84  1.89  2.00  2.01  2.24  1.61  1.61  1.61  

1.62  1.62  1.63  1.64  1.66  1.66  1.66  1.67  1.68  1.68  1.69  1.70  1.70  1.73   

Table 4 presents a summary of the data. 

DATA 

2 

Min Mean Median variance 1st Qu. 3rd Qu. max 

0.550 1.507 1.590 0.1050 1.375 1.685 2.240 

 

Table 5. Performance of the distributions: 

Distribution AIC BIC CAIC HQIC 

IE 180.878 183.021 181.078 184.564 

GIE 64.243 68.529 64.443 65.929 

EE 66.767 71.053 66.967 68.453 

L 164.557 166.700 164.757 168.243 

APEEpro 55.323 59.609 55.523 57.009 

 

Table 6. The estimation of parameters for the second data set: 

05 Estimated Parameters 

IE 1.4083964 

GIE 163.206558   8.1508240 

EE 31.348914    2.611571 

L 0.99611636 

APEEpro 39.0846906    3.5083968 

 

CONCLUSION 

In this article, a modified distribution namely Alpha Power Exponentiated 

Exponential Distribution is derived. Various structural properties including mgf, cf, 

moments about mean, moments about origin, variance, standard deviation, and index 

of dispersion are obtained. Apart from the above properties some reliability measures 

of the said distribution are drawn. These reliability measures contain survival 
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function, hazard rate function, reverse hazard rate, cumulative hazard rate and mills 

ratio. Moreover Shanon’s entropy and Renyi entropy of the new distribution are 

derived. Finally the newly developed distribution was applied to the two real life data 

sets which show APEE distribution resulted better than the models compared to it. 
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Restructured class of estimators for population
mean using an auxiliary variable under simple

random sampling scheme
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Abstract

With this article in mind, we have found some results using eigenvalues of graph with sign.

It is intriguing to note that these results help us to find the determinant of Normalized
Laplacian matrix of signed graph and their coefficients of characteristic polynomial using

the number of vertices. Also we found bounds for the lowest value of eigenvalue.

Mathematics Subject Classification 2010: 05C50, 15A18, 05C22

Keywords: Marked graph; Signed graph; Switched signed graph Balanced signed graph.

1. INTRODUCTION

The readers should refer to [6] for expression and notations of graph theory

and only simple and finite graphs are considered.

A Signed graph Γ = (G(V,E),∇) is a graph with positive and negative signs

in every edge, where G is the underlined graph without signs and ∇ is the

function from the collection of edges E to the set having positive and negative

signs.

One of the main applications of signed graphs is to represent the relationship

among people where we assign a positive sign if the relationship between two

individuals is pleasant, otherwise we assign a negative sign. [10] & [5].

The balanced signed graph was introduced by F.Harary[7] and he defines

that every cycle of a balanced signed graph has negative edges in even number

if not Γ is said to be unbalanced. In [8], Harary and Kebel showed a simple

algorithm for balancing of a signed graph.

A graph that has been marked Γν is a signed graph with positive or negative

signs assigned to its vertices. The process of assigning signs to the vertices is

called marking ν. For v ∈ V (Γ), marked graph Γν is defined as

10.2478/jamsi-2021-0010
©c University of SS. Cyril and Methodius in Trnava
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ν(v) =
∏

uv∈E(Γ)

∇(uv).

Switched signed graph Γν(Γ) was defined by R.P Abelson and Rosenburg

[14] which paved the way for the study of social behavior and mathematical

analysis in graph theory.

A signed graph Γ2 is obtain from a signed graph Γ1 by reversing the sign of

edges of Γ1 whose end vertices are having opposite sign, and their underlined

graphs G1 and G2 are isomorphic. The signed graph Γ1 switching equivalent

to Γ2, is represented as Γ1 ∼ Γ2.

Following is the characterization of switched signed graphs.

Proposition 1. [15] Any two signed graphs whose underlying graphs are

same are cycle isomorphic if, and only if they are switching equivalent.

In a signed graph, degree of each vertex can be calculated by d = d+ + d−

so that degree of vertices in a signed graph Γ and their underlined graph is

the same.

In adjacent matrix A(Γ), if two vertices are adjacent then the entry aij is 1

along with the sign of the edge, otherwise the entry is zero.

In a Laplacian matrix L(Γ), if vertices vi and vj are adjacent then the

entry aij is 1 with the opposite sign of corresponding adjacent edge vivj ,

otherwise aij is zero and the diagonal entries aii being the degree of the

vertex . Also L(Γ)=S(Γ)−A(Γ), where S is the diagonal matrix.

Here (Γ,−) is a signed graph in which each edge is assigned by minus sign

and L(Γ,−) is the Laplacian matrix of (Γ,−). Eigenvalues of Laplacian

matrix of a signed graph are λ1 ≥ λ2 ≥ λ3 .... ≥ λn.
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2. NORMALIZED LAPLACIAN MATRIX OF SIGNED GRAPH

F.R.K. Chung [17] introduced the Normalized Laplacian matrix. Lower

bounds of Normalized Laplacian were investigated by Grossman [13] and its

properties were stated by Chen et. al. in [11]. Also in [4] Cvetkovic et.al.

mentioned deeply about normalized Laplacian and their bounds of eigen

values.

The Normalized Laplacian matrix L(Γ) of a signed graph Γ with vertices u

and v is given by

Luv =


1, if u = v and du 6= 0

−∇(uv) 1√
dudv

, if u and v are adjacent

0 otherwise.

Let 0 ≤ µ1 ≤ µ2 ≤ µ3 .... ≤ µn be the eigenvalues of Normalized

Laplacian matrix of Γ, with n vertices. Also L(Γ) = S−1/2L(Γ)S−1/2.

In 2003 Yaoping Hou. et. al. [16] established new bounds in the following

theorem.

Theorem 2. [16] Let Γ be a signed graph with n vertices. Then

λ1 ≤ 2(n− 1),

equality applies if and only if Γ is switching equivalent to a complete graph

with all edges being negative.

Some of the novel results prompted by the above theorem are presented in

this article.

Theorem 3. Let Γ = (G,∇) be a signed graph. The greatest eigenvalue

of Normalized Laplacian matrix L(Γ) is 2 if and only if Γ is switching

equivalent to a complete graph with all edges being negative.

Proof. If Γ ∼ (Kn,−) then µn(L(Γ)) = µn(S−1/2 L(Γ) S−1/2)

=µn(S−1/2 (S(Γ)−A(Γ)) S−1/2)

=µn(S−1/2 (S(Γ))S−1/2 − S−1/2(A(Γ)) S−1/2)
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=µn(S−1/2 (S(Γ))S−1/2)− µn(S−1/2(A(Γ)) S−1/2)

=µn(S−1/2 (S(Γ))S−1/2) + µn(S−1/2(−A(Γ)) S−1/2)

= 1 + 1

= 2.

If µn = 2 then µn(S−1/2(S(Γ)S−1/2) = µn(S−1/2(−A(Γ))S−1/2) .

Thus, µn(A(Γ)) = µn(−(J − I)), where J is the all one matrix.

Hence Γ ∼ (Kn,−).

Theorem 4. Let Γ be a signed graph and Kn be the complete graph

with n vertices, Γ ∼ (Kn,−) if and only if µk=n−2
n−1 , for k < n.

Proof. If Γ ∼ (Kn,−) then µk(L(Γ)) = µk(S−1/2(L(Γ)) S−1/2)

=µk(S−1/2 (S(Γ)−A(Γ)) S−1/2)

=µk(S−1/2 (S(Γ))S−1/2 − S−1/2(A(Γ)) S−1/2)

=µk(S−1/2 (S(Γ))S−1/2)− µk(S−1/2(A(Γ)) S−1/2)

=µk(S−1/2 (S(Γ))S−1/2) + µk(S−1/2(−A(Γ)) S−1/2)

= 1 + −1
n−1

= n−2
n−1 .

If µk = n−2
n−1 then µk(S−1/2 (S(Γ))S−1/2)= µk(S−1/2(−A(Γ))S−1/2).

Thus, µk(S−1/2 A(Γ) S−1/2) = µk (S−1/2(−(J − I)) S−1/2), where J is the
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all one matrix. Hence Γ ∼ (Kn,−).

Corollary 5. Let Γ be a signed graph. The greatest eigenvalue of

Normalized Laplacian matrix L(Γ) is 2 if and only if Γ is switching equivalent

to a complete bipartite graph with all edges being negative.

Proposition 6. Let Γ be a graph with sign. If Γ ∼ (Kn,−) then∑n
i=1 µi = n.

Proof.
∑n
i=1 µi = µ1 + µ2 + µ3 + ...+ µn

= 2 + (n− 1) n−2
n−1

= 2 + n - 2

= n.

3. DETERMINANT OF NORMALIZED LAPLACIAN MATRIX OF SIGNED
GRAPH

3.1. Matrix Tree Theorem for a Laplacian matrix

If bc be the number of essential spanning subgraphs which contain c negative

cycles, then

Det(L(Γ)) =
∑n

c=0 4c bc.

From the above matrix tree theorem, we determine the determinant of

Normalized Laplacian matrix of a graph with sign and n number of vertices.

Proposition 7. Let Γ be a signed graph. If Γ ∼ (Kn,−) then

Det(L(Γ)) = 2{ (n−2)
(n−1)}

(n−1) .

Proof.

Det(L(Γ)) =
∏n
i=1 µi
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= 2 · {1− 1
n−1} · {1−

1
n−1} · · · {1−

1
n−1}

= 2 · n−2
n−1 ·

n−2
n−1 ·

n−2
n−1 · · ·

n−2
n−1

= 2 · {n−2
n−1}

(n−1) .

4. CHARACTERISTIC POLYNOMIAL COEFFICIENTS OF A
NORMALIZED LAPLACIAN MATRIX

In the study of chemical properties of molecules and their bond structures,

coefficients of a characteristic polynomial play a vital role. Ivailo M.

Mladenov et. al. [12] introduced an algorithm to find the coefficients of

characteristic polynomial of adjacent matrix of a graph. Kel’man expanded

the latter formula and it is known as Kel’man formula.

Kel’man formula is the method to find the coefficients of a characteristic

polynomial of a matrix which is given as follows.

Theorem 8. [1]

Let G be a simple graph. Then the characteristic polynomial coefficients of

a Normalized Laplacian matrix of the graph are provided by using

bn−k = (−1)n−k
∑
F∈Fk

γ(F ) where k ≥ 1 (for k = 0, bn = 0.)

Fk denotes the set of forests in G having k components and

γ(G) =

k∏
i=1

|Fi|

is the product of the orders of the components of the forest F .

Also in [3] Carla Silva Oliveria et. al. have found second and third

Laplacian coefficients of a characteristic polynomial in 2002. Francesco

Belardo and Slobodan K. Simic [9] have found Laplacian coefficients of signed

graph by the following theorem:

Theorem 9. [9] The Laplacian characteristic polynomial of Γ is given

by ψ(Γ, x) = xn + b1x
n−1 + ...+ bn−1x+ bn for any signed graph Γ, then
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bi = (−1)i
∑
H∈Hi

w(H)

where Hi denotes the set of signed TU - subgraphs of Γ containing i edges.

We now present a simplified way of finding the coefficient of Normalized

Laplacian matrix using the number of vertices.

Proposition 10. Let Γ = (G,∇) be a signed graph. If Γ ∼ (Kn,−),

then for a positive integer t,

tr(Lt) = 2t + { (n− 2)t

(n− 1)(t−1)
}

.

Proof.

tr(L) =
∑n
i=1 µi

= 2 + (n− 1) (n−2)
(n−1)

tr(L2) = 22 + (n− 1){n−2
n−1}

2.

tr(L3) = 23 + (n− 1){n−2
n−1}

3.

Similarly for an integer k,

tr(Lk) = 2k + (n− 1){n−2
n−1}

k

tr(Lk+1) =
∑n
i=1 µ

k+1
i

= 2k+1 + {n−2
n−1}

k+1 + ...+ {n−2
n−1}

k+1

= 2k+1 + (n− 1){n−2
n−1}

k+1.

Hence by induction,
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tr(Lt) = 2t + (n− 1){n−2
n−1}

t

tr(Lt) = 2t + { (n−2)t

(n−1)(t−1) }.
Examples:

tr(L) = 2 + (n− 1){n−2
n−1} = n.

tr(L2) = 22 + (n− 1){n−2
n−1}

2 = n2

n−1 .

tr(L3) = 23 + (n− 1){ (n−2)3

(n−1)3 } = n3+2n2−4n
(n−1)2 .

tr(L4) = 24 + (n− 1){ (n−2)4

(n−1)4 } = n4+8n3−24n2+16n
(n−1)3 .

Coefficients of characteristic polynomial of a Normalized Laplacian matrix

of signed graph Γ, a1, a2, a3, a4 are calculated as follows.

a1 = −tr(L)= −n.

a2 = −1
2 tr(B1L) where B1 = L + a1I

= −1
2 (tr(L2)− ntr(L))

= 1
2{

n2(n−2)
(n−1) }.

a3 = −1
3 tr(B2L) where B2 = B1L + a2I

= −1
3 tr(B1L

2 + a2L)

= −1
3 (tr(L3) + a1tr(L

2) + a2tr(L))

= −1
3 {8 + (n−2)3

(n−1)2 − n(4 + (n−2)2

(n−1) ) + n
2 (n

2(n−2)
(n−1) )}

= −1
6 (n

5−5n4+6n3+4n2−8n
(n−1)2 ).

a4 = −1
4 tr(B3L) where B3 = B2L + a3I



JAMSI, 17 (2021), No. 2 83

= −1
4 tr(B2L

2 + a3L)

= −1
4 tr((B1L + a2)L2 + a3L)

= −1
4 tr((L + a1)L3 + a2L

2 + a3L)

= −1
4 (tr(L4) + a1tr(L

3) + a2tr(L
2) + a3tr(L))

= −1
4 (n

4+8n3−24n2+16n
(n−1)3 − n4+2n3−4n2

(n−1)2 + n5−2n4

2(n−1)2 −
n6−5n5+6n4+4n3−8n2

6(n−1)2 )

= 1
24 (n

7−9n6+26n5−8n4−96n3+176n2−96n
(n−1)3 ).

Theorem 11. Let Γ be any signed graph which is switching equivalent

to a complete graph in which each edge is negative and

ψ(Γ, x) = xn + a1x
n−1 + ... + an−1x + an be the Normalized Laplacian

characteristic polynomial of Γ with a0 = 1. Then,

aς =
−1

ς

ς−1∑
m=0

amtr(L
ς−m)

where, aς is the coefficient of characteristic polynomial and ς 6= 0.

Proof.

Since a1 = −tr(L) = −n,

a2 = −1
2 tr(B1L) where B1 = L + a1I

= −1
2 (a0tr(L

2) + a1tr(L)).

Similarly for an integer k,



84 B. Prashanth, K. Nagendra Naik and R. Salestina M

ak = −1
k (a0tr(L

k) + a1tr(L
k−1) + a2tr(L

k−2) + ...+ ak−1tr(L))

i.e., ak = −1
k

∑k−1
m=0 amtr(L

k−m).

ak+1 = −1
k+1 tr(BkL) where Bk = Bk−1L + akI

= −1
k+1 tr(Bk−1L

2 + akL)

= −1
k+1 tr((LBk−2 + ak−1)L2 + akL)

= −1
k+1 tr(L

3Bk−2 + ak−1L
2 + akL)

= −1
k+1 (tr(L3Bk−2) + ak−1tr(L

2) + aktr(L))

ak+1 = −1
k+1 (tr(L4Bk−3) + tr(L3)ak−1 + tr(L2)ak + tr(L))

. . .

ak+1 = −1
k+1 (a0tr(L

k+1) + a1tr(L
k) + a2tr(L

k−1) + ...+ aktr(L))

i.e., ak+1 = −1
k+1

∑k
m=0 amtr(L

k+1−m).

Hence by induction,

aς =
−1

ς

ς−1∑
m=0

amtr(L
ς−m) where ς 6= 0.

Corollary 12. For any signed graph Γ and Γ ∼ (Kn,−) , the Normalized

Laplacian characteristic polynomial of Γ is ψ(Γ, x) = a0x
n + a1x

n−1 + ... +

an−1x+ an with a0 = 1 then,

aς =
−1

ς

ς−1∑
m=0

am{2ς−m +
(n− 2)ς−m

(n− 1)(ς−(m+1))
} where, ς 6= 0.
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Proof. By Proposition 10,

tr(Lt) = 2t + { (n− 2)t

(n− 1)(t−1)
}.

By Theorem 11,

aς =
−1

ς

ς−1∑
m=0

amtr(L
ς−m) where, ς 6= 0.

i.e.,

aς =
−1

ς

ς−1∑
m=0

am{2ς−m +
(n− 2)ς−m

(n− 1)(ς−(m+1))
}.

Corollary 13. any signed graph Γ and Γ ∼ (Kn,−) , the Normalized

Laplacian characteristic polynomial of Γ is ψ(Γ, x) = a0x
n + a1x

n−1 + ... +

an−1x + an with a0 = 1 and µk be the Normalized Laplacian eigenvalue of Γ

then,

aς =
−1

ς

ς−1∑
m=0

am(2ς−m + (n− 1)µς−mk )

where, ς 6= 0 and k < n.

Proof. From theorem 4, µk = (n−2)
(n−1) hence by corollary 12,

aς =
−1

ς

ς−1∑
m=0

am(2ς−m + (n− 1)µς−mk )

where, ς 6= 0 and k < n.
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5. BOUNDS OF EIGENVALUES OF NORMALIZED LAPLACIAN MATRIX
OF SIGNED GRAPH.

As we know, L = S−1/2LS−1/2 , where S−1/2 is invertible.

The vectors g and gj are defined as:

If f is the eigen function of L corresponding to eigenvalue µk, then g = U1/2f ,

gj = U1/2 fj

µk = inf

∑
(f(u)−∇(u, v)f(v))2∑

u f
2(u)du

where degree of the vertex u is du.

If Γ ∼ (Kn,−) and for a vertex v

(1− µk)f(v) =
1

dv

∑
u∼v
∇(u, v)f(u)

where, u ∼ v means u and v vertices are adjacent. Let v1, v2, ..., vm+1 be

adjacent vertices sequence, f(v1) be maximal and f(vm+1) ≤ 0. Let yi = f(vi)

and β = 1− µk. We get

βy1 =
1

dv1

∑
u∼v1

∇(u, v1)f(u) ≤ y2

dv1
+

(deg(v1)− 1)y1

dv1
≤ y2

d
+

(d− 1)y1

d

.

Assume y1 = 1, so that y2 ≥ 1− µkd.

In view of the fact, vi is adjacent to vi+1 and vi−1 for 2 ≤ i ≤ m, we get

βyi ≤
yi−1 + yi+1

d
+

(d− 2)y1

d
.

This implies

yi+1 ≥ βdyi − yi−1 − (d− 2).
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If Γ ∼ (Kn,−) we observe the following:

(1) (1− µk) = 1
(n−1)

(2) f(v1) =
∑
u∼v1 ∇(u, v1)f(u)

(3) y2 ≥ 3− n
(4) ym+1 ≥ 3− 2n.

Proposition 14. For 3 ≤ r ≤ m+1, yr ≥ 1−µkβr−3dr−2−µkβr−2dr−1.

Proof. We have,

y2 ≥ 1− µkd (1)

yi+1 ≥ βdyi − yi−1 − (d− 2). (2)

Proof is by induction on r.

From (2),

y3 ≥ 1− µkd− µkβd2

.

Suppose result holds for r ≤ i, where i ≥ 3.

From (2)

y3 ≥ βdy2 − 1− (d− 2)

y4 ≥ βdy3 − y2 − (d− 2)

y5 ≥ βdy4 − y3 − (d− 2)

. . .

yi ≥ βdyi−1 − yi−2 − (d− 2)

yi+1 ≥ βdyi − yi−1 − (d− 2).
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∴ (y2 + y3 + y4 + ...+ yi + yi+1) ≥ βd(y2 + y3 + y4 + ...+ yi−1 + yi)− (y1 + y2 + y3 +

y4 + ...+ yi−2 + yi−1) − (i− 1)(d− 2) + 1 − µkd.

yi+1 ≥ βd(y2+y3+y4+...+yi−1+yi)−(2y2+2y3+2y4+...+2yi−1+2yi)−(i−1)(d−2)+yi−µkd.

i.e., yi+1 ≥ (βd−2)(y2 +y3 +y4 + ...+yi−1 +yi)+yi−(i−1)(d−2)−µkd (3)

From (2) we have,

y3 ≥ 1− µkd− µkβd2

y4 ≥ 1− µkβd2 − µkβ2d3.

In general

yi ≥ 1− µkβi−3di−2 − µkβi−2di−1

so,

(y2+y3+y4+...+yi−1+yi) ≥ (i−1)−2µkd−2µkβd
2−2µkβ

2d3...2µkβ
i−3di−2−µkβi−2di−1.

Also we have

yi ≥ 1− µkβi−3di−2 − µkβi−2di−1.

From (3) we get yi+1 ≥ (βd−2)((i−1)−2µkd−2µkβd
2−2µkβ

2d3− ...−
2µkβ

i−3di−2−µkβi−2di−1)+(1−µkβi−3di−2−µkβi−2di−1)−µkd−(i−1)(d−2)

yi+1 ≥ 1−(i−4)µkd+2µkβd
2+2µ2kd

3...2µkβ
i−4di−3+µkβ

i−3di−2−µkβi−1di−µkβi−2di−1

.

yi+1 ≥ 1 + (i− 3)µkd+ 2µkd+ 2µkd+ ...+ 2µkd+ µkd− µkβ
i−2di−1 − µkβ

i−1di

yi+1 ≥ 1 + (i− 3)µkd− µkβi−2di − µkβi−2di−1

yi+1 ≥ 1− µkβi−1di − µkβi−2di−1.

As a result, yr ≥ 1− µkβr−3dr−2 − µkβr−2dr−1.

Theorem 15. Let Γ be a graph with sign having n vertices and if Γ ∼
(Kn,−). Then µk ≥ 1

n .

Proof. From Proposition 14,

0 ≥ ym+1 ≥ 1− µkβm−2dm−1 − µkβm−1dm
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0 ≥ 1− µkdm−1 − µkdm

µk ≥
1

(d+ 1)dm−1
.

The distance between a vertex that maximises f and one that minimises f

is at most the graph’s diameter ’D’., therefore m ≤ dD/2e. Since the diameter

is 1,

µk ≥
1

(d+ 1)
.

Hence the result follows.

6. CONCLUSION

Usually the coefficients of the characteristic polynomial of a graph or a signed

graph are found using the concept of trees and TU subgraphs. But in this

paper, we have given a simple and an elegant proof of finding the Laplacian

coefficients of the characteristic polynomial of a signed graph using the

number of vertices of the graph. We believe that this new approach will pave

way for further research in this area.
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Abstract 

 
The article contains a new technique to estimate the mean of the variate of the interest of the finite 

population with the help of two auxiliary variates. The technique complies well with the stratified 

population in which each strata proportion is predicted by taking an initial sample called the first phase 
sample. When the first phase sample is taken, a second sample is taken from the first sample which is called 

the second phase sample which is used to estimate the mean of the variate of the interest. In our study, we 

have considered the population which has two correlated auxiliary variates that pass almost through the 
origin. In such a situation ratio estimation technique and product estimation technique that provides 

improved estimates of the mean of the variate of the interest. Our technique considers a ratio-product type 

exponential estimator of which we have established efficiency theoretically as well as empirically. 
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1. INTRODUCTION 

In sample survey, surveyors use the auxiliary variates in order to increase the 

accuracy in the estimation of population parameters when the associated variates are 

readily and inexpensively available to the entire population. Many times the 

associated variates are not readily available, in which case, a larger sample is taken 

provided the collection of information on auxiliary variate is cheap, easy and 

economical. In many surveys, gathering information on variate of the interest is quite 

costly and gaining information on auxiliary variates are cheap, easy and economical 

or auxiliary variate are easily available. If the variate of the interest and auxiliary 

variates are highly correlated then the efficiency of the estimators may be increased 

by using auxiliary variate. But this will benefit only if the attainment in precision that 

is achieved by using the sample auxiliary variate weigh up the loss in precision that 

has been incurred because of the reduction in the size of the sample for computing 

mean of the variate of the interest. Surveyors also use auxiliary variates to estimate 

the population heterogeneity when there is absence of information about 
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heterogeneity. Thus, in order to estimate the population mean of different levels of 

study, our population study is divided into different levels and sample observations 

have been prepared from each level using the double sampling method. 

This article has drawn inspiration from many of the articles like Chand, 1975 and its 

chain type estimator for the double sampling, Bahl and Tuteja, 1991 product and ratio 

type exponential estimators, Upadhyay and Singh, 1999 noteworthily contributed in 

this area and motivated Kadilar and Cingi, 2003, Kadilar and Cingi, 2005, Shabbir 

and Gupta, 2005. Singh and Vishwakarma, 2007 evolved the method further.  

Samiuddin and Hanif, 2007, Singh et. al., 2011, Sanaulla et. al., 2014 and 

Vishwakarma and Singh, 2015 have used two auxiliary variates for double stratified 

sampling method. All in all, inspired by their work, a need was felt to propose a new 

methodology in this area, and the results are discussed in a subsequent section. 

 

2. DOUBLE STRATIFIED RANDOM SAMPLING 

Let there be a finite population, Uj ( j = 1, 2, 3, …, N), of size N that can be divided 

into strata. Let the variates that can be measured with each unit be a target variate y 

and x and z be the associated variates that information is either fully available or if not 

then it can be measured easily and economically. Let L be the number of strata that 

can be formed from the population. Let Nh (h = 1, 2, 3, …, L) be size of ℎ𝑡ℎ- stratum 

such that ∑ 𝑁ℎ = 𝑁𝑏
𝑎  and 𝑊ℎ =  𝑁ℎ/ 𝑁. Let 

( )=1 =1 =1
= / , = / , = /

n n n
h h h

h hi h h hi h h hi hi i i
y y n x x n z z n  

 be the unbiased estimators of the 

variate of the interest and the associated auxiliary variates of the population mean 

( )=1 =1 =1
= / , = / , = /

N N N
h h h

h hi h h hi h h hi hi i i
Y y N X x N Z z N  

, based on nh observations. When 

information on 𝑋̅ℎ is unknown Double Stratified Sampling method comes to rescue 

by using first phase sample to note down value on auxiliary variates. The procedures 

for double stratified sampling method is to select a sample of size 𝑛ℎ
′  from the ℎ𝑡ℎ -

stratum using simple random sampling without replacement (SRSWOR) where 

=1
=

L

hh
n n   and note down the value on the observed auxiliary variate(s) for these 

units. This will be called a stratified first phase sample. Now, for noting down the 
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information on variate of the interest, another sample of size 𝑛ℎ
′ (𝑛ℎ < 𝑛ℎ

′ ) is drawn 

from the each stratum using SRSWOR such that 
nnh

L

h
=

1= . This will be called 

second phase sample.  

Now, for the given conditions below: 

                       

0 0 0

=1 =1

' ' '
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=1 =1

1 1 1
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' ' '

2 2 2
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L L

h h h h h h h h
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h

L L
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L
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h

Y W Y y Y e e W Y e Y

X W X x X e e W X e X

x X e e W X e X

Z W Z z Z e e W Z e Z

z Z e e W Z e Z


+ 

+

+ 

+

+

 

 



 

















                             (1) 

The expectations are defined as, 
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2 2 0022
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h h xh
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E e W f S V
X

E e W f S V
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E e W f S V
Z

E e W f S V
Z





























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                                       (2) 
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' 2 ' 2
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=1 =1

' 2 ' 2

0 2 2 101 0 2 1 101
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' 2 2 ' ' ' 2 '

1 1 2 020 1 2 2 0112
=1 =1

1 1
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( ) = = , ( ) = = ,

1 1
( ) = = , ( ) = =
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h h yxh h h yxh

h h

L L

h h yzh h h yzh

h h
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h h xh h h zxh

h h

E e e W f S V E e e W f S V
YX YX

E e e W f S V E e e W f S V
XZ YZ

E e e W f S V E e e W f S V
X XZ

 

 

 
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1 2 2 011 1 2 2 011
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1 2 1 011 2 2 2 0022
=1 =1

,

1 1
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( ) = = , ( ) = =

L L

h h zxh h h zxh

h h

L L

h h zxh h h zh

h h

E e e W f S V E e e W f S V
XZ XZ

E e e W f S V E e e W f S V
XZ Z

















 

 

          (3) 

where   
1 2 3 1 2' '

1 1 1 1
=  , =  = ( )h h h h h

h h h h

f f f f f
n n n N

   
− − −   

   

 

            2 2 2 2

=1 =1

1 1
= ( )  , = ( )  ,

1 1

N Nh

hy hi h hx hi h

i ih h

S y Y S x X
N N

− −
− −
   

            2 2

=1

1
= ( )

1

N
h

hz hi h

ih

S z Z
N

−
−
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=1

1
= ( )( )

1

N
h

hyx hi h hi h

ih

S y Y x X
N

− −
−
 , 

             

=1

1
= ( )( )

1

N
h

hyz hi h hi h

ih

S y Y z Z
N

− −
−
 , 

=1

1
= ( )( )

1

N
h

hxz hi h hi h

ih

S x X z Z
N

− −
−
 . 

 

3. SOME AVAILABLE ESTIMATOR 

Some of the popular estimators that are available in the literature are reproduced 

here. Usual unbiased estimator for population mean Y  in case of double stratified 

random sampling, is given by 

          
( )

=1

= ,      
L

st h h

h

y W y                                                                                                               (4) 

where 

             = h
h

N
W

N
 

The variance of the unbiased estimator is,  

             
2 2

1
2 2=1

( ) 2002
( ) = =

L

h h yh

h
st

W f S

Var y Y Y V
Y

 
 
 
 
 
 

                                                            (5) 
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The ratio and product estimators for double stratified random sampling is, 

               
'

'

=1

=1

=1

ˆ = =

L

h hL
st h

Rd st h h L
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h h
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                                                                  (6) 

and  

                
=1

'
'=1

=1

ˆ = =

L

h hL
st h

Pd st h h L
hst

h h

h

W x
x

Y y W y
x

W x

 
 
 
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
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

                                                                (7) 

 

The mean square error of above estimators, for the first order approximation are, 

            ( )2 ' '

200 020 020 110 110

ˆ( ) = 2( )RdMSE Y Y V V V V V+ − − −  (8) 

and 

            ( )2 ' '

200 020 020 110 110

ˆ( ) = 2( )PdMSE Y Y V V V V V+ − + −  (9) 

Mohanty (1967) regression-cum-ratio and regression-cum-product type estimator for 

Y in two-phase stratified sampling, is given by 

             ( )'

1 '

R

reg st st st

st

Z
y y x x

z
 = + −

 
                                                                                      (10) 

and 

               ( )
'

'

2

P st
reg st st st

z
y y x x

Z
 = + −

 
                                                                                (11) 

  where 
1  and 

2  are constants. 

The MSE of R

regy  and P

regy with 
1  and 

2 i.e. ( )
( )

'

110 110

1 2 '

020 020

 =
Y V V

X V V
 

−
=

−

 is given by 

          
' 2

2 ' ' 110 110
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020 020
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( ) = 2R
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V V
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 −
+ − − 

− 

 (12) 

and 
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V V
MSE y Y V V V

V V
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 (13) 

 



96 S. M. Zeeshan and G. K. Vishwakarma 

 

 

Sanauallah et. al. (2014) generalized exponential chain ratio type estimators for the 

stratified two-phase sampling method is, 

 

      
( )' '

' '=1 =1 =1

=1 =1

ˆ
= 1
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 (14) 

where ,   and a are contants and minimum MSE of the above estimator is 

        ( )
1

' ' 2
2 110 110 101

200 ' '

020 020 002
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 (15) 

4. PROPOSED ESTIMATOR 

Motivated by Sanaulla et. al. (2014), the following class of exponential estimator 

for estimation of population mean under double stratified random sampling has been 

proposed, 
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Further simplifying using (1), (2) and (3) , we have 
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Taking expectation, we have 
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Finding optimum value of k  and   from (11) we get  
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By substituting the optimum value of 
optk  and 

opt  the minimum MSE is,  
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Putting 0=k and finding optimum value of  , we get 
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and using (19) in (11), we have 
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5. EFFICIENCY COMPARISONS 

For carrying out efficiency comparison, the proposed estimator is compared with 

the above discussed estimators and modified form of Hansen-Hurwitz unbiased 

estimator. 

 

             ˆ( ) < ( )s

RP stMSE Y Var y  if  
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6. EMPIRICAL STUDY 

To carry out the numerical illustrations some industrial datasets are used to check 

the usefulness of the proposed estimators of Y , 

Dataset-I: “Source: (Murthy, 1967) Y: Production (Output), X: No. of workers, Z: 

Fixed Capital” 

Dataset-II: “Source: (Sardanal et al., 1992) Y: 1983 Workers (in millions), X: 1980 

Workers (in millions), Z: 1982 Gross National Product (in tens of millions of U.S. 

dollars)” 

Dataset-III: “Source: (Gujarati, 2003) Y: Average miles per gallon, X: Engine 

horsepower, Z: Top speed, miles per hour” 
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Table 1: Dataset-I 

Strata 
hN  

hn  
hn  yhS  

xhS  
zhS  

hY  
hX  

hZ  
xyh  

xzh  
yzh  

1 19 5 11 757.08 11.18 109.45 65.16 2669.25 349.68 0.81 0.90 0.93 

2 32 8 17 669.11 44.35 109.22 140.00 4657.62 706.60 0.88 0.84 0.92 

3 14 3 8 417.00 81.11 277.18 403.21 6537.21 1539.60 0.92 0.93 0.98 

4 15 4 9 645.69 171.44 370.96 763.20 7843.67 2620.53 0.97 0.94 0.96 

 

Table 2: Dataset-II 

Strata 
hN  

hn  
hn  yhS  

xhS  
zhS  

hY  
hX  

hZ  
xyh  

xzh  
yzh  

1 38 16 27 16.46 14.91 1915.17 11.88 13.03 1029.16 0.99 0.74 0.74 

2 14 6 10 60.23 58.48 78097.92 26.18 27.35 25671.57 0.99 0.97 0.96 

3 11 4 8 34.89 32.66 7588.80 21.88 23.13 5028.82 0.99 0.97 0.97 

4 33 14 23 209.08 200.07 20672.75 75.24 79.65 7533.94 0.99 0.30 0.29 

5 24 10 17 18.80 18.69 19782.83 20.09 20.28 16314.42 0.99 0.90 0.90 

 

Table 3: Dataset-III 

Strata 
hN  

hn  
hn  yhS  

xhS  
zhS  

hY  
hX  

hZ  
xyh  

xzh  
yzh  

1 21 06 15 12.14 76.71 19.48 37.55 116.57 114.14 -0.7914 0.9894 -0.7781 

2 34 04 17 8.34 31.94 07.10 37.25 93.00 106.50 -0.8339 0.8820 -0.6651 

3 26 02 08 5.47 49.55 13.21 26.39 26.39 118.88 -0.7696 0.9669 -0.5935 

 

In Table 5 the Percentage Relative Efficiencies (PREs) of different suggested 

estimators of Y with respect to usual estimator
sty  using the formula given below are 

tabulated.  

 

      ( )
( )

( )
,

st

st

V y
PRE y

V
 =


                                                                                      (30) 

where   stands for ( )RdMSE y , ( )PdMSE y , ( )R

regMSE y , ( )P

regMSE y , ( )ˆSMSE Y  and  

( )ˆ s

RPMSE Y . 
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Table 5: PREs of the estimators of Y  

 

Estimators 

PREs 

Dataset-I Dataset-II Dataset-III 

sty  100.00 100.00 100.00 

Rdy  13.00 101.00 * 

Pdy  * * 29.00 

R

regy  18.73 151.97 * 

P

regy  * * 52.60 

ˆ
SY  136.05 152.32 193.58 

ˆ s

RPY  143.00 203.90 208.30 

   * Data not applicable for this estimator  

 

 

7. CONCLUSION 

In Table-4, it can be noticed with the help of percent relative efficiencies (PREs) 

that the proposed class of estimators – clearly - outdo the usual unbiased estimator in 

double stratified sampling 
sty , ratio and product estimators 

Rdy  and 
Pdy  respectively. 

Also it outperform Mohanty (1967) regression-cum-ratio and regression-cum-product 

estimators R

regy  and P

regy  respectively. It is also superior to Sanaullah et al. (2014) 

estimators ˆ
SY  for the population mean Y . So, in practice the use of the suggested class 

of estimators could be preferred instead of existing methods to computing statistical 

inference for industrial data and others for higher accuracy in the estimates. 
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