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The article presents the possibilities of using the function of conditional average value of a delayed signal (CAV) and the function of 
conditional average value of a delayed signal absolute value (CAAV) to determine the time delay estimation (TDE) of random signals. For 
discrete CAV and CAAV estimators, the standard uncertainties of the estimation of function values at extreme points and the standard 
uncertainties of the TDE were given and compared with the corresponding uncertainties for the direct discrete cross-correlation function 
(CCF) estimator. It was found that the standard uncertainty of TDE for CAV is lower than for CCF independent of signal-to-noise ratio 
(SNR) for parameter values of α ≥ 2 and M/N ≥ 0.25 (where: α - relative threshold value, M/N – quotient of number of averaging and 
number of samples). The standard uncertainty of TDE for CAAV will be lower than for CCF for SNR values greater than 0.35  
(for N/M = 1).  
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1.  INTRODUCTION 

Time delay estimation (TDE) is a common problem in 
signal processing. This problem is important, inter alia, in 
radar technology, radioastronomy, medicine, localization of 
disturbance pathways, and non-contact measurements of 
two-phase flows. For the determination of time delay of 
stochastic signals obtained from two or more sensors, 
statistical methods are commonly used. This issue is widely 
presented in the literature, among others [1]-[10], where a 
number of methods based on analysis of time and frequency 
signals are described. The range of applications of particular 
methods depends on the characteristics of the measurement 
signals (stationarity, probability distribution, correlation), 
signal-to-noise ratio (SNR), and analysis parameters. 
Among the classical methods used for Gaussian stationary 
signals, the most common are the cross-correlation function 
(CCF) in the time domain and phase of cross-spectral 
density in the frequency domain [1], [8], [10]-[15]. For the 
above types of signals under certain conditions, differential 
and combined methods [4]-[6], the Hilbert Transform-based 
correlation method [16]-[17], and the relatively little-known 
methods based on conditional averaging [18]-[20] can be 
used.  

This paper presents the applicability of the conditional 
average value of the delayed signal (CAV) and the 
conditional average value of the delayed signal absolute 
value (CAAV) to the TDE in relation to the CCF. For the 

selected signal models, the range is determined for the SNR 
values for which the methods under consideration have 
lower standard uncertainties than the CCF method with the 
specified analysis parameters.  

The paper is organized as follows. Section 2 gives the 
mathematical models of measurement random signals. The 
basics of the TDE using the classical cross-correlation 
method are reviewed in section 3. Section 4 presents the 
application of conditional averaging methods CAV and 
CAAV to TDE and the analysis of measurement 
uncertainties for these methods in comparison with the CCF. 
The last section contains the summary of the presented study 
and final conclusions. This article is an extended and 
improved version of a previous conference publication [20]. 
 
2.  MODELS OF SIGNALS 

Measurement of the time delay of random signals during 
their propagation in physical systems involves active and 
passive experiments. In the active experiment, external 
random extortion is used. In the passive experiment, natural 
conditions in the object of measurement are used to generate 
measurement signals. The full measurement model should 
take into account inaccuracies in terms of input and output 
signals, resulting from difficult experimental conditions, and 
the impact of disturbance. Simplification of the random 
signal time delay measurement model may lead to a 
reduction in accuracy of the TDE. 
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In time delay estimation, the models of stochastic signals 
x(t) and z(t) obtained under stationary conditions with two 
sensors in a passive experiment can be presented as [1]: 

 
 )()()( 1 tntstx +=                              (1) 

 
 [ ] )()()()()( 220 tntytntsctz +=+−= τ  (2) 
 

where: s(t) and z(t) – observed input and output stationary 
random signals; c - constant factor (usually c = 1); τ0  – 
transmission time delay; n1(t), n2(t) – stationary signals, 
uncorrelated with the signal s(t) and with each other, which 
may in general contain constant, periodic and random 
components. This paper assumes that the signals n1(t) and 
n2(t) are stationary Gaussian white noises N(0,σn1), N(0,σn2), 
uncorrelated with the signal s(t) and mutually with each 
other.  

With the above assumptions for signal models (1) and (2), 
the following relationships are true: 

 
 2

1
22 )0( nsxxx R σσσ +==  (3) 

 
 2

2
222 )0( nszzz cR σσσ +==  (4) 

 
 )()()( 0210 τττττ −+−= nnsssz RcRR  (5) 
 
Where: σs, σx, σz, σn1, and σn2 - standard deviations of 

signals s(t), x(t), z(t), n1(t), and n2(t), respectively; Rxx(τ), 
Rzz(τ), and Rss(τ) - autocorrelation functions of signals x(t), 
z(t), and s(t), respectively; τ - time delay;  Rsz(τ) - CCF of 
signals s(t) and z(t); Rn1n2(τ) - CCF of signals n1(t) and n2(t).  

In the active experiment for determining the transmission 
time delay, the conditions of action of the test input signal 
are specified and controlled (no disturbances). Conversely, 
output noise can lead to the action of only a random 
component n(t) with the distribution N(0,σn). With these 
assumptions, the models of stochastic signals received from 
the sensors are represented by the following formulae: 

 
 )()( tstx =  (6) 
 
 )()()()()( 0 tntytntxctz +=+−⋅= τ  (7) 
 

which constitute a simplification of models (1) and (2) with 
the assumptions n1(t) = 0 and n2(t) = n(t). 

Since the signals x(t) and n(t) are not correlated, for the 
delayed signal (7) we have the following equations: 

 

  (c nxz
22) σσσ +=  (8) 

 
 )()( 0τττ −= ssxz cRR  (9) 
 

where Rxz(τ) - the cross-correlation function of signals x(t) 
and z(t). 

This paper assumes that the signal s(t) is low-pass white 
noise with bandwidth B. The autocorrelation function of this 
signal in equations (5) and (9) can be represented by: 

 

 





=

τπ
τπτ

B
BKBRss 2

2sin)(                           (10) 

 
or another modified exponential model [21]. 

Experimental research usually uses normal or quasi-
normal probability distributions of the processed signals.  

 
3.  CORRELATION PRINCIPLE OF TDE 

Most of the descriptions in the literature on the cross-
correlation method of determining the transmission time 
delay use dependencies (1) and (2) or (6) and (7). The CCF 
achieves the maximum value for τ = τ0, so the transmission 
time delay can be defined as the main argument of this 
function (Fig.1.): 

 

 )}({arg)}(arg{max 00 τττ xzxz RR ==             (11) 
 
a) 

 
b) 

 
 

Fig.1.  The concept of determining the transmission time delay τ0 
from the cross-correlation function: a) the waveforms x(t) and z(t); 
b) the CCF Rxz(τ). 

 
The normalized CCF (9) is equal to: 
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and after substitution τ = τ0: 
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Assuming the same disruption at the input and output 

(σn1 = σn2 = σn) for signal models (1) and (2), after 
substituting (3) and (4) to the equation (13), we obtain [22]: 
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where 
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Similarly, for signal models (6) and (7) we have: 
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20
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SNRcxz τρ  (16) 

 
In the absence of disruption in both cases ρxz(τ0) = 1. 
The plots of the relations (15) and (16), referred to 

hereafter as model I and model II, respectively, are shown in 
Fig.2. Particularly equations (15) and (16) and their graphs 
can be very useful in practice. Based on them, for obtained 
experimental values of normalized CCF ρxz(τ) and assumed 
signal models, the SNR value can be estimated at an 
unknown value of n(t). 

 

 
 

Fig.2.  Plot of the relation (14) (Model I) and  
(16) (Model II) for c = 1. 

 
For further analysis, the equation (16) will be used as the 

most commonly used signal model in practice. If the 
waveforms x(t) and z(t) are of length Ttotal, the variance of 
the CCF estimator for τ = τ0 is given by [1]: 

 

 [ ] [ ])()0()0(
2

1)(ˆ
0

2
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2 ττσ xzzzxx
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xz RRR
BT

R +≈        (17) 

 
Dependency (17) is appropriate for large values of Ttotal 

( τ10≥totalT  and 5≥totalBT ).  
For digital analysis methods, we can take totaltotal NBT =2  

[15] where )/int( tTN totaltotal ∆= , int - integer, and Δt is a 
properly chosen sampling period. Transforming (17) we 
obtain: 

 [ ] [ ])(1)(ˆ
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22
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When estimating CCF using pairs of uncorrelated samples 

divided into N-cycles, on the basis of (18) taking into 
account (16) we obtain the relative standard uncertainty of 
the function value:  
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A discrete CCF estimator can be expressed as: 
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where: l = τ/Δt, n = t/Δt. 

For a large number of samples, N is used in the 
denominator of dependency (20) instead of N - l. 

The standard uncertainty of transmission time delay τ0, 
determined from CCF, is given by [20]: 
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For signal models (6) and (7), using the equation (19) in 

(21) we obtain: 
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4.  APPLICATION OF CONDITIONAL AVERAGING TO TDE OF 
THE RANDOM SIGNALS  

The transmission time delay can be determined with the 
use of conditional expected values: delayed signal z(t) and 
delayed signal absolute value |z(t)|. Sections 4.1 and 4.2 
illustrate the concept of particular methods and their 
standard uncertainties with respect to the cross-correlation 
method for signal models (6) and (7). 

 
4.1.  Conditional average value of the delayed signal  

The conditional expected value of the delayed signal z(t) 
(7) for the condition x(t) = xp is defined as [20]: 
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where 




 +

= pxtxtzp )()( τ  represents the conditional 

probability density of the signal z(t) for the condition x = xp; 
E(∙) is the expected value; xp is the set threshold value. 



 
 
 

MEASUREMENT SCIENCE REVIEW, 18, (2018), No. 4, 130-137 
 

133 

In the case of independence of signal x(t) and disturbance 
n(t), the expected value of the delayed signal z(t) is also 
independent of n(t): 
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If the signals x(t) and y(t) are normal together, with 

average values of zero, then the conditional probability 
density of the signal y(t + τ) at the condition x(t) = xp, is 
expressed as follows [19]: 
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with the conditional expected value: 
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and conditional variance:  
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The relationship between Az(τ) and the normalized CCF 

ρxz(τ) is given by the formula: 
 

 ( ) pxz
x

z
z xA ⋅= τρ

σ
στ )(                       (28) 

 
A good estimate of the conditional expected value is the 

arithmetical conditional average value of the signal. Its 
designation in practice consists in detecting mutually 
uncorrelated moments of transition of the signal x(t) through 
the level xp, run at these moments registering fragments of 
the delayed signal z(t) and averaging those fragments in the 
set: 

 

 ∑
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where M is the number of averaged uncorrelated segments 
of the delayed signal z(t). 

The position of the main maximum of CAV function 
defines the transmission time delay as in the case of CCF 
(Fig.3.). 

a) 

 
b) 

 
 

Fig.3.  The concept of TDE using CAV function: a) the signals 
x(t) and z(t), b) the CAV function Az(τ). 

 
The CAV variance for M averaging is determined by the 

formula: 
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4.1.1.  Comparison of standard uncertainties of estimation 
of CAV and CCF function values in the neighborhood of 
extreme points 

The relative standard uncertainty of the CAV function 
estimation for τ = τ0 taking into account (28), (30), (16), and 
(8) can be presented by [20]: 
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where α =( xp/σx) - relative threshold value. 

After dividing equation (31) by (19), the quotient of 
relative uncertainties of CAV and CCF is obtained as: 
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Since CAV and CCF are determined on the basis of 

uncorrelated signal samples, the M/N quotient may be 1 or 
less than unity. The plot of the relation 

( ) ( ) ( )SNRfRuAu xzrelzrel =]ˆ[/]ˆ[ 00 ττ  for M/N = 1, c = 1 
and several selected values of α is shown in Fig.4. In this 

case, the relative standard uncertainty ( )]ˆ[ 0τzrel Au  will be 

less than ( )]ˆ[ 0τxzrel Ru for the value α ≥ 1. 
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Fig.4.  Plot of the relation ( )[ ] ( )[ ] ( )SNRfRuAu xzrelzrel =00
ˆ/ˆ ττ  

for M/N = 1, c = 1 and selected values of α. 
 
In the work [19] it has been shown that the optimum value 

of α is about 2. Fig.5. shows a plot of the dependency 

( )[ ] ( )[ ] ( )SNRfRuAu xzrelzrel =00
ˆ/ˆ ττ  for α = 2, c = 1 and 

several selected M/N quotient values. 
 

 
 

Fig.5.  Plot of the relation ( )[ ] ( )[ ] ( )SNRfRuAu xzrelzrel =00
ˆ/ˆ ττ  

for α = 2, c = 1 and selected values of M/N ratio. 
 

4.1.2.  Comparison of the standard uncertainties of TDE for 
CAV and CCF 

For the CAV function, the standard uncertainty of the TDE 
can be represented by the equation [20]: 
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B
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After taking into account (30) we get: 
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By comparing (34) and (22) we finally obtain: 
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The plot of the relation [ ] [ ] ( )SNRfuu CCFCAV =00 / ττ  for 
M/N = 1, c = 1 and a few selected values of α is shown in 
Fig.6.  

 

 
 

Fig.6.  Plot of the relation [ ] [ ] ( )SNRfuu CCFCAV =00 / ττ  for 

M/N = 1, c = 1 and a few selected values of α. 
 
Fig.7. shows the plot of the relation (35) for α = 2, c = 1 

and a few selected M/N quotient values.  
 

 
 

Fig.7.  Plot of the relation [ ] [ ] ( )SNRfuu CCFCAV =00 / ττ  for α = 2, 
c = 1 and selected values of M/N. 

 
Based on Fig.7., it can be stated that the standard 

uncertainty of TDE using CAV is lower than for CCF 
independent of SNR values for α ≥ 2 and M/N ≥ 0.25. 

 
4.2.  Conditional average value of the absolute value of 
delayed signal 

The conditional expected value of the delayed signal 
absolute value |z(t)| for the condition x(t) = 0 is defined by 
the equation [21]: 
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where 




 +

=0)(
)(

tx
tzp τ  represents the conditional 

probability density of the z(t) signal absolute value for the 
condition x(t) = 0.  

For a normal probability density function 






 +

=0)(
)(

tx
tzp τ  on the basis of (36), the CAAV A|z|(τ) 

is obtained in the form [23]:  
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Transmission time delay is determined by the position of 

the main minimum of the CAAV function: 
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After normalization, the equation (37) takes the form: 
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Fig.8. shows a comparison of the normalized CAAV 

)(τza and CCF ρxz(τ) functions for SNR = ∞ (n(t) = 0), and 

SNR = 5. 
 

 
 

Fig.8.  Examples of normalized CAAV )(τza  and  

CCF ρxz(τ) functions. 
 
The function )(τza  is characterized by a sharper 

extremum than the function ρxz(τ). A decrease of the SNR 
value results in a decrease of the main CCF maximum by 
formula (16) and, respectively, growth of the main CAAV 
minimum according to: 
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A good estimate of the expected conditional value (36) is 

the arithmetical conditional average value of the delayed 
signal absolute value. Determining the CAAV estimator 

involves detecting mutually uncorrelated transition times of 
the original signal x(t) across zero, triggering at these 
moments registration of fragments of the delayed signal 
absolute value |z(t)| and averaging those fragments in the set 
according to the formula: 
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The variance of the CAAV estimator for M averages is 

determined by the equation [18]: 
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4.2.1.  Comparison of the standard uncertainties of 
estimation of CAAV and CCF values in the neighborhood of 
extreme points 

Based on equation (42) after taking into account (16), the 
relative standard uncertainty of the CAAV value estimation 
is obtained as: 
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By comparing (43) and (19) we find [23]: 
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Fig.9.  Plots of the relation [ ] [ ] )()(ˆ/)(ˆ

00 SNRfRuAu xzrelzrel =ττ  

for a few values of N/M ratio [23]. 
 
The plot of the relation (44) for c = 1 and several N/M 

quotient values is shown in Fig.9. As can be seen in the 
SNR range under consideration, the relative standard 
uncertainty of CAAV is always less than the corresponding 
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CCF uncertainty for N/M values less than or equal to 10. In 
practice, the value of the N/M quotient depends on the 
interval of the correlation of the measurement signals, which 
determines the choice of uncorrelated samples. 

 
4.2.2.  Comparison of the standard uncertainties of TDE for 
CAAV and CCF 

The standard uncertainty of the τ0 transmission time delay 
estimation from the CAAV function is given by [22]: 
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After taking into account equations (45), (16), and (19), 

we obtain the relation [ ] [ ] )(ˆ/ˆ
00 SNRfuu CCFCAAV =ττ : 
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a) 

 
b) 

 
 

Fig.10.  Plots of the relation [ ] [ ] )(ˆ/ˆ
00 SNRfuu CCFCAAV =ττ  for 

c = 1 and a few N/M quotient values; a) SNR range from 
0.01 to 100, b) SNR range from 0.1 to 10. 

The plot of the relation (46) for c = 1 and several N/M 
quotient values is shown in Fig.10. Fig.10.b) shows an 
enlarged area for which the quotient 
[ ] [ ]CCFCAAV uu 00 ˆ/ˆ ττ assumes values close to 1. Based on the 

graphs shown in Fig.10., it can be concluded that the 
standard uncertainty of TDE using CAAV will be less than 
for CCF for SNR values greater than 0.35 (for N/M = 1). An 
increase in the N/M quotient results in an increase in the 
SNR limit value, for which the standard uncertainty of the 
CAAV time delay estimation is less than for CCF. For SNR 
= 1 equalization of the values CAAVu ]ˆ[ 0τ  and CCFu ]ˆ[ 0τ  
occurs for N/M = 5.25. 

 
5.  SUMMARY 

The article presents the application of two methods of 
conditional signal averaging to determine the transmission 
time delay of stochastic signals. These methods are based on 
analysis of the CAV and CAAV functions. In the first part 
of the paper we give the models of measurement signals 
used in the TDE of random signals and, for comparative 
purposes, the principle and main metrological characteristics 
of the cross-correlation method.  

The main part of the paper presents the concept of 
application of the conditional averaging to TDE. For 
discrete CAV and CAAV estimators, the standard 
uncertainties of the estimation of function values in the 
neighborhood of the extremes and the standard uncertainties 
of the TDE were analyzed and compared with the 
corresponding uncertainties for the direct discrete CCF 
estimator. For the most commonly used TDE models of 
measurement signals, the range of SNR values is defined, 
for which the methods under consideration have lower 
standard uncertainties of estimation at specified analysis 
parameters. It was found that the standard uncertainty of 
TDE using CAV is lower than for CCF independent of SNR 
values for parameter values of α ≥ 2 and M/N ≥ 0.25. The 
standard uncertainty of TDE applying CAAV will be lower 
than for CCF for SNR values greater than 0.35 (N/M = 1). 
An increase in N/M results in an increase in the SNR, for 
which the standard uncertainty of the CAAV time delay 
estimation is lower than for CCF. 

This paper presents the basics and the results of theoretical 
analysis of CAV and CAAV methods. The authors carried 
out a simulation and experimental study of the properties of 
conditional averaging methods in TDE of stochastic signals 
[23]-[25]. Successful attempts have also been made to use 
the conditional signal averaging methods in radioisotope 
measurements of two-phase flows [26], [27]. 
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The fast response multipoint high-precision temperature measurement is often necessary in many dynamical measurement fields and 
industrial applications. However, limited by the existing electric circuit architecture, either the AC or DC bridges have the shortcoming that 
the rates or precisions degenerate markedly in the multi-channel scanning mode. To overcome this disadvantage, a round-robin structural 
low-cost ratiometric resistance thermometer readout based on several commercial 32-bit sigma-delta analogue-to-digital converters (Σ-Δ 
ADCs) was presented in this article. The experimental results show that the precision of this readout corresponds to 0.1 mK at 1 Hz when 
sampling four channel resistors simultaneously, while the precision and rate are not degenerating with the channel number increasing. In 
addition, the uncertainty of the readout is investigated in this article. It shows that the presented readout can achieve an uncertainty as low 
as 2.1 mK at 1 Hz (K = 2). 
 
Keywords: Temperature metrology, resistance thermometry, round-robin structure, multi-channel scanning. 
 
 
 
 
1.  INTRODUCTION 

The fast response synchronous multipoint high-precision 
temperature monitoring is often necessary in many metrology 
fields and industrial applications. For example, in the mass 
comparator system, the influences from the variety of the 
environmental temperature should be dynamically 
compensated in order to satisfy the low uncertainty mass 
dissemination requirement [1]. In thin film platinum 
resistance sensor fabrication, the fast-multi-channel 
resistance thermometer readout is required for online 
calibration. For the investigation of the super-cooling 
phenomena of electrolyte solutions, the multi-point 
temperatures  should  be  recorded  precisely  and  rapidly  [2]. 
Moreover, in many temperature field reconstruction 
applications based on several thin-film resistance sensors, the 
high precision and fast measurement speed multi-channel 
thermometer readout is always needed [3]. According to the 
exciting current, the thermometer bridges are divided into two 
categories, the AC and DC bridges. The typical AC bridges 
are F18 and F900 from WIKA. The typical DC bridges are 
MI 6015T, FLUKE 1595, and MicroK 70 [4]. The AC bridges 
and MI 6015T are based on the transformers. They are 
considered as the most accurate resistance thermometer 
readouts. Unfortunately, their high cost, large size and low 
speed discourage their use in fast multi-channel high 
precision temperature monitoring. The DC bridges, except 
the MI 6015T, are mainly based on the analogue-to-digital 

converter (ADC), named ratiometric resistance thermometer 
readout. The ratiometric resistance thermometer readout 
seems a possible solution for these requirements due to its low 
cost and high integration. However, whether the AC bridge 
or DC bridge, the ADC based bridge or the transformer-based 
bridge, its precision degenerates observably or its 
measurement speed reduces obviously when several channels 
are available. According to the above situation, developing a 
low-cost multi-channel resistance thermometer, which can 
overcome the precision degeneration or speed reduction when 
working in the multi-channel scanning mode, is significant in 
fast multipoint high-precision temperature monitoring. 

With the great technology progress in noise reduction of 
electronic components, an increasing number of ADC based 
ratiometric thermometer readouts have been developed in 
recent years. These writings have pointed out the difficulty of 
obtaining precision at the sub-mK level, especially when it 
works in the multi-channel scanning mode. Schweiger 
designed a fast multi-channel precision thermometer readout 
with system noise less than 3 mK at 1 Hz [2]. He just copied 
the single channel structure eight times to extend the channel 
number. Smorgon designed a single channel low-cost 
ratiometric front end for industrial platinum resistance 
thermometer (PRT) applications. The equivalent temperature 
precision   of   this   readout   system   was   about   2 mK   [5]. 
Ambrosetti developed a versatile and high-resolution readout 
system for resistance temperature detector (RTD). The 
system resolution (RMS) corresponds to 0.38 mK at 1 Hz [6]. 
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With the ingenious design and high-quality fabrication, some 
well-known benchtop primary ratiometric resistance 
thermometer readouts, such as the Model 1595A from Fluke-
Hart Scientific incorporated or MicroK 70 from ISOTECH 
incorporated, have the uncertainties of 0.02 mK after 1-
minute moving average, approximately. They also can be 
easily extended to a multi-channel system with the 
automatically controlled switchbox. However, the extended 
channels always share the same ADC. When they work in the 
multi-channel scanning mode, more time is required to finish 
one cyclic measurement or the sample time for each channel 
should be decreased to overcome the time cost increase. This 
leads to the precision degenerating markedly. Actually, to 
accomplish several channels, measurement in one second is 
not available in almost all of the primary resistance 
thermometer readouts, because in the primary standard 
temperature laboratory, the fast measurement is usually not 
needed. In order to guarantee the accuracy, the shortest 
sample period for each channel is one second.  

To obtain the equivalent temperature precision better than 
0.1 mK at 1 Hz in multi-channel scanning mode, a 
commercial 32-bit Σ-Δ ADC based round-robin structural 
ratiometric resistance thermometer readout is presented in 
this study. Through selecting a series of low temperature 
coefficient resistors corresponding to a PRT at different 
temperature values, the performance of the precision, the 
linearity and the uncertainty of the presented readout were 
investigated by long time testing.  

 
2.  DESCRIPTION OF THE MULTI-CHANNEL RESISTANCE 
THERMOMETER READOUT 
A.  The architecture of the classic ratiometric resistance 
thermometer readout 

For the highest accuracy measurement, the four-wire PRT 
and four-wire standard reference resistor are essential in the 
ADC based ratiometric resistance thermometry. 
Traditionally, the current source reversing technique is 
employed for parasitic thermal electromotive forces (EMFs) 
and other systematic drift elimination [7]. The simplified 
schematic diagram of the single channel resistance 
thermometer readout is shown in Fig.1.a). A well-controlled 
constant direct current passes through the reference (REF) 
resistor and the PRT in series and develops two different 
voltage signals. Then, taking two pairs of readings with 
currents in opposite senses, the following are obtained: 

 
1 1[ ]PRT F PRTForwardV I R EMF Driftα= × + +          (1) 

 
2 2[ ]REF F REFForwardV I R EMF Driftα= × + +          (2) 

 
1 1[ ]PRT B PRTBackwardV I R EMF Driftα= − × + +         (3) 

 
2 2[ ]REF B REFBackwardV I R EMF Driftα= − × + +        (4) 

 
where α is the gain of the amplifier. IF and IB are the values 
of forward and backward current.  RPRT and RREF are the value 
of the unknown PRT and REF resistor, respectively. EMF1 is 

the parasitic thermal electromotive force between PRT and 
the connector. EMF2 is the parasitic thermal electromotive 
force between reference resistor and the connector. Drift1 is 
the systematic drift of the electronic circuit (including the 
amplifier and the ADC) when measuring the voltage of the 
PRT. Drift2 is the systematic drift of the electronic circuit 
when measuring the voltage of the REF. The average of the 
PRT and REF voltage values is given as: 
 

[ ]PRT PRT PRT F B PRTV ForwardV BackwardV I I Rα= − = + ×      (5) 
 

[ ]REF REF REF F B REFV ForwardV BackwardV I I Rα= − = + ×      (6) 
 

Through computing the ratio of the measurement values of 
these average voltages by the microcontroller, the ratio of the 
REF resistor and PRT is obtained as the following equation: 
 

PRT PRT

REF REF

R VM
R V

= =                               (7) 

 
The above method eliminates the sources of systematic 

errors like EMF, gain of amplifier, and circuit drift in 
resistance ratio computation. The accuracy of the temperature 
measurement mainly depends on the accuracy of the 
reference resistor [8]. However, when it extends to the multi-
channel scanning mode, as shown in Fig.1.b), each channel 
shares the ADC through the mechanical relays. This noise of 
measurement system becomes larger, because the data 
conversion time of the ADC for each channel is reduced. 
Meanwhile, the common mode error generated from the 
CMRR (common-mode rejection ratio) of the amplifier has 
not been considered in the above equations. This is also a 
significant error in the ADC based ratiometric resistance 
thermometry [8]. 

 

 
Fig.1.  Topologies of ADC based ratiometric resistance thermometer 
readout [9]. The microcontroller controls the switchers, manages the 
ADC, computes the resistor’s ratio, displays and sends the results.  
a) Classic single channel topology; b) Classic multi-channel 
extension topology. The combination of amplifier and ADC samples 
of the resistors in time-sharing mode. 
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B.  The architecture and measurement procedure of the 
presented multi-channel readout 

ADC is the core component in the ratiometric resistance 
thermometer readout. However, the high performance and 
well calibrated reference resistor is the most expensive one. 
If we copy the single channel architecture several times to 
avoid the precision degeneration in multi-channel scanning 
mode, the price will be very high. To overcome the precision 
degeneration in an economical method, an architecture based 
on the round-robin structure, as shown in Fig.2., is studied in 
this article. In this architecture, a constant direct current 
passes through one reference (REF) resistor and n PRTs in 
series and develops n+1 different voltage signals. Each 
voltage signal is amplified and sampled by the different 
amplifier and ADC. For ease of understanding, a two-channel 
round-robin architecture is selected as an example to describe 
the measurement procedure.  
 

 
 

Fig.2.  The architecture of the multi-channel readout based on the 
round-robin structure. There is one reference resistor and n PRTs, 
(n+1) amplifiers and ADCs. The black lines mean the signal from 
PRT1. The green lines mean the signal from PRTi. The blue lines 
mean the signal from PRTn. The red lines mean the signal from REF. 
Each amplifier and ADC combination samples every PRT and REF 
signal orderly according to the round-robin mechanism described in 
the followed paragraphs. 
 
Step A1: the direction of the sense current is configured as 

forward, from the PRTs to the REF resistor. The ADC1 
samples the voltage from PRT1. The ADC2 samples the 
voltage from PRT2. The ADC3 samples the voltage from the 
REF resistor. The expressions of the input voltages of the 
ADCs are as follows: 
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       (8) 

where FADC11 is the voltage from PRT1 sampled by ADC1. 
FADC22 is the voltage from PRT2 sampled by ADC2. FADC3r 
is the voltage from REF sampled by ADC3. α1, α2, and α3 are 
the differential gains of the AMP1, AMP2, and AMP3, 
respectively. β1, β2, and β3 are the common gains of the 
AMP1, AMP2, and AMP3, respectively. IF is the value of 
forward current. EMF1 and EMF2 are the parasitic thermal 
electromotive forces between PRT1, PRT2 and their 
connectors, respectively. EMFr is the parasitic thermal 
electromotive force between REF resistor and connector. 
Drift1 is the systematic voltage drift of AMP1 and ADC1. 
Drift2 is the systematic voltage drift of AMP2 and ADC2. 
Drift3 is the systematic voltage drift of AMP3 and ADC3. 

Step A2: the direction of the sense current remaining 
unchanged and modifying the switchers’ connections 
between resistors and ADCs, the ADC1 samples the voltage 
from PRT2. The ADC2 samples the voltage from the REF. 
The ADC3 samples the voltage from the PRT1. The 
expressions of the input voltages of the ADCs are as follows: 
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where FADC12 is the voltage from PRT2 sampled by ADC1. 
FADC2r is the voltage from REF sampled by ADC2. FADC31 
is the voltage from PRT1 sampled by ADC3. 

Step A3: through changing the switchers’ connections, the 
ADC1 samples the voltage from REF. The ADC2 samples the 
voltage from PRT1. The ADC3 samples the voltage from 
PRT2. The expressions of the input voltages of the ADCs are 
as follows: 
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            (10) 

 
where FADC1r is the voltage from REF sampled by ADC1. 
FADC21 is the voltage from PRT1 sampled by ADC2. FADC32 
is the voltage from PRT2 sampled by ADC3. 

Step B1: changing the direction of the sense current to the 
backward direction, from the REF resistor to the PRTs and 
modifying the switchers’ connections between PRTs or REF 
and ADCs. The ADC1 samples the voltage from PRT1. The 
ADC2 samples the voltage from PRT2. The ADC3 samples the 
voltage from REF resistor. The expressions of the input 
voltages of the ADCs are as follows: 
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where IB is the value of backward current. BADC11 is the 
voltage from PRT1 sampled by ADC1. BADC22 is the voltage 
from PRT2 sampled by ADC2. BADC3r is the voltage from 
REF sampled by ADC3.  

Step B2: Through changing the switchers’ connections, the 
ADC1 samples the voltage from PRT2. The ADC2 samples the 
voltage from REF. ADC3 samples the voltage from REF. The 
expressions of the input voltages of the ADCs are as follows: 
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where BADC12 is the voltage from PRT2 sampled by ADC1. 
BADC2r is the voltage from REF sampled by ADC2. BADC31 
is the voltage from PRT1 sampled by ADC3.  

Step B3: the direction of the sense current remaining the 
same and modifying the switchers’ connections, the ADC1 
samples the voltage from REF. The ADC2 samples the 
voltage from PRT1. The ADC3 samples the voltage from 
PRT2. The expressions of the input voltages of the ADCs are 
as follows: 

 
1 1 1 1

21 1 2 2 2 1

32 2 3 3 3 2

1 1 2

1
2

2
3 1

( )
( )
( )

( )
2

( )
2

( )
2

r r REF B

PRT B

PRT B

REF
PRT PRT B

PRT
B

PRT
PRT B

BADC EMF Drift R I
BADC EMF Drift R I
BADC EMF Drift R I

RR R I

R I

RR I

α α
α α
α α

β

β

β

+ × × ×     
     = + × − × ×
     + × × ×     
 × + + × 
 
 + × ×
 
 

× + × 
 

    (13) 

 
where BADC1r is the voltage from REF sampled by ADC1. 
BADC21 is the voltage from PRT1 sampled by ADC2. BADC32 
is the voltage from PRT2 sampled by ADC3.  

After the switchers’ connections reconfigure three times 
with currents in opposite senses, each ADC obtains 2×3 
different voltages from every PRT and REF. The sum of the 
PRTs and REF voltage values in opposite senses from ADC1 
is: 
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With this procedure, the EMFs and systematic drifts are 

eliminated. The ratio of α to β is the CMRR of the amplifier. 
It can be calibrated prior to the measuring procedure. Due to 
the currents in opposite directions generated from the same 
constant current source, the forward current IF and backward 
current IB are approximately equal. Through computing the 
ratio of the measurement values of these average voltages, the 
ratio of the PRTs and REF resistor is obtained from ADC1 as 
the following equations: 
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           (18) 

 
In the above equations, the RREF and CMRR are the known 

quantities. Through the measurements, the values of M11 and 
M12 are obtained. The values of PRT1 and PRT2 can be 
obtained by solving these equations. 
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The ADC2 and ADC3 also sampled the voltages of PRT1, 

PRT2, and REF, respectively. According to the equations (8)-
(13), the values of PRT1 and PRT2 can also be solved through 
the voltages from ADC2 and ADC3. Then averaging the 
values of PRT1 and PRT2 from the three ADCs, the averaged 
result is obtained: 
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where the PRTij is the value of PRTi computed from ADCj. 
When the n PRTs want to be measured based on the round-
robin structure, we need (n+1) ADCs. And the resistance 
value calculation method can be easily obtained through 
extending the above equations.  
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Compared with the single channel architecture, the major 
characteristic of the round-robin structure is that there are 
(n+1) ADCs or Σ-Δ engines that intersect sampling 
concurrently. The noise of the final result of PRTi is lower 
than the level from single ADC due to the parallel averaging, 
while the measurement speed has not declined compared with 
the single channel architecture. The other improvement of 
this measurement procedure is the common mode error 
correction. After CMRR correction and combining with the 
ADC linear calibration, the high linear performance of the 
resistance thermometer readout will be obtained. 

 
C.  The CMRR calibration based on the RBC 

The principle of using the resistance bridge calibrator (RBC) 
to estimate the linearity of the thermometer readout is the 
least-squares fit [10]. According to the principle, the RBC can 
also be used for CMRR estimation. In this study, the RBC is 
a set of four resistors that can be connected in different 
configurations to generate a total of 35 distinct resistances 
[11]. Putting the RBC as the PRT1, a 100 Ω high precision 
resistor as the PRT2 in the above two-channel system, the 
values of the RBC can be obtained by the equation (19). 
According to the maximum likelihood estimation equation is 
as follows: 
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− ∑                 (22) 

 
the variance of the differences between the measured and 
calculated values can be calculated. Where the N = 35 is the 
number of measured ratios. Pi,meas are the measured ratios  
calculated by equation (19). Pi,cals are the ratios calculated 
from the fitted values of RBCs. ρ is the negative number of 
fitted parameters. Here, it is 6 (four RBC resistances, CMRR, 
PRT2). With the least-squares fit by the function fminsearch 
in Matlab, the CMRR of the AMP1 can be calibrated. 
Meanwhile, with the same procedure, the CMRR of the 
AMP2 and AMP3 can also be calibrated.  
 
D.  The details of key components in the multi-channel 
readout 

The ADC, reference resistor, amplifier, and switcher are the 
key components of the readout system for noise and drift 
reduction. ADC is the kernel in ratiometric resistance 
thermometer readouts. With the development of digital 
integrated circuit design and chip manufacturing processes, 
the resolution of the Σ-Δ ADC achieved a significant progress 
in the recent years. In 2015, several commercial 32-bit Σ-Δ 
ADCs were available in the market. In this article, one of the 
available 32-bit Σ-Δ ADCs named AD7177-2 from Analog 
Device Incorporated is employed [12]. The output data rates 
of the AD7177-2 range from 5 samples per second (SPS) to 
10,000 SPS. Its root mean square noise is lower than 0.1 µV 
at 16.67 SPS. This means the effective resolution of the 
AD7177-2 can achieve 0.01 ppm, approximately. 
Meanwhile, the AD7177-2 integrates several digital filters for 
both the 50 Hz and the 60 Hz power line interference 
rejection. For each AD7177-2, like for the most of 

commercial ADCs, there are several input channels, but only 
one Σ-Δ engine. In order to realize the round-robin structure, 
it needs (n+1) chip ADCs. 

The stability and reputability of readout depends largely on 
the performance of the reference resistor. The reference 
resistor should have low temperature coefficient and time 
drift. In this design, a 100 Ω ultra-high precision resistor 
named VHP203 from Vishay Precision Group is employed as 
the reference resistor [13]. With the bulk metal foil 
technology, hermetic sealing and oil filling, the temperature 
coefficient of the resistor is better than ±0.2 ppm/K. Its shelf 
life stability is better than 2 ppm for at least 6 years. Its 
tolerance is up to ±10 ppm. To obtain the higher temperature 
measurement accuracy, the reference resistor is calibrated by 
a direct current comparator bridge (MI 6015T) before 
soldering. The outcome of this calibration is 100.0002154 Ω. 
The uncertainty is 8.7 μΩ (k = 1). Also, the designed multi-
channel readout can use a high-performance external standard 
resistor as the reference for more accuracy requirement, such 
as Tinley 5685A. 

Instrumentation amplifier is also the key component in the 
ratiometric resistance readout. Due to the tolerance of the gain 
resistor, the gain of each channel is different to each other. 
However, the gain difference and drift can be eliminated 
through the above mathematical analysis. The most important 
parameters for selecting an amplifier in the ratiometric 
resistance readout are the noise, distortion, and common-
mode rejection ratio (CMRR). The AD8422 is a high 
precision, low noise, rail-to-rail instrumentation amplifier 
from Analog Device Incorporated [14]. Its peak-to-peak 
output noise is 0.15 µV. The nonlinearity is better than 
0.5 ppm. The minimum CMRR is 110 dB at Gain = 10.  

Another important component in the readout is the switcher. 
There are two main kinds of switchers, one is mechanical 
relay, and the other one is CMOS multiplexer. In this design, 
the CMOS multiplexer ADG888 from Analog Device 
Incorporated is selected as the switcher between amplifier 
and resistor, because of its ultralow resistance distortion [15]. 
The reason of using the CMOS multiplexer is that it has faster 
response then the relay. It is suitable for rapid channel switch. 
The other advantage of using the CMOS multiplexer is 
reducing the size and power consumption of the readout. This 
significantly decreases the parasitic thermal EMFs on the 
switch. 
 
3.  RESULTS 
A.  Noise performance estimation 

To assess the noise performance of the round-robin 
structural resistance thermometer readout, a series of 
different value four-wire resistors kept in the oil bath (Fluke 
7341 at 295.15 K) with a peak-to-peak stability better than 
0.05 K are used in this investigation. The multi-channel 
readout is configured as single channel mode, double channel 
mode, triple channel mode, and quadruple channel mode. The 
whole experimental setup is shown in Fig.3. The values of the 
tested resistors are 50 Ω, 100 Ω, 150 Ω, and 350 Ω, 
respectively. In the single channel mode, each value resistor 
was measured independently for noise performance 
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estimation. In the double channel mode, the combination of 
50 Ω and 100 Ω, the combination of 100 Ω and 150 Ω, the 
combination of 150 Ω and 350 Ω, and the combination of 
50 Ω and 350 Ω were measured for noise performance 
estimation. In the triple channel mode, the combination of 
50 Ω, 100 Ω, 150 Ω, the combination of 50 Ω, 100 Ω and 
350 Ω, the combination of 50 Ω 150 Ω and 350 Ω, and the 
combination of 100 Ω, 150 Ω and 350 Ω were measured. In 
the quadruple channel mode, the combination of 50 Ω, 100 Ω, 
150 Ω and 350 Ω was measured. Setting the exciting current 
as 1 mA (the uncertainty of the current is 15.1 nA (k = 1)) and 
the data out rate as 1 Hz without moving average, the standard 
deviation is calculated in Fig.4. for different value resistors 
and channel modes. 

 

 
a)                                                   b) 

 
Fig.3.  The photos of experimental systems. a) The tested system, 
including resistors, circuit, computer, power supply and oil bath. 
b) The photo of the designed readout. 

 

 
 

Fig.4.  The noise performance of the round-robin structural readout 
in different channel configuration modes. There are four kinds of 
different value resistors in this test. It corresponds to the temperature 
range from 144 K to 900 K.  
 
Almost all the primary resistance thermometers are not 

available in the fast scanning mode. In the article, a like-for-
like comparison of the noise performance between the round-
robin structural readout and a commercial portable readout, 
named Fluke 1529, is carried out. The Fluke 1529 is a four-
channel integrating ADC based thermometry readout. Its 
schematic is similar to the topology shown in Fig.1.a). It can 
work in single channel mode, double channel mode and 
quadruple channel mode. Actually, Fluke 1529 cannot 
measure four channels in a second, because when it works in 
the multi-channel scan mode, the shortest sample period the 
user can set is 0.5 seconds. Using the Fluke 1529 to measure 
the above resistors, setting the exciting current as 1 mA, the 

standard deviation is calculated in Fig.5. In order to keep the 
time for one cycle measurement equal in each mode, the 
sample period in the single channel mode is set as 2 second; 
it is set as 1 second in the double channel mode; it is set as 
0.5 seconds in the quadruple channel mode.  

 

 
 
Fig.5.  The noise performance of the Fluke 1529 in different channel 
configuration modes. The value of the internal reference resistor is 
100 Ω, approximately. In the single channel mode, the integrating 
time of the ADC is longer than in the multi-channel scan mode 
through modifying the instrument configuration.  

 
The above results show that standard deviation of the 

measured data is increasing with the resistor’s value. In the 
presented readout, the precision was not degenerating with 
the channel number increasing. The precision and the number 
of channels is independent of one another. Considering the 
test resistor as the 100 Ω SPRT, the equivalent temperature 
precision of the readout achieves 0.1 mK at 1 Hz in either 
number of channel modes, while in the Fluke 1529, the 
precision degenerates with the channel number increasing. 
Because the Fluke 1529 uses the classic multi-channel 
extension topology as shown in Fig.1.b), these channels share 
the ADC conversion time in the multi-channel scanning 
mode.  
 

Table 1.  The precision comparison between designed multi-
channel readout and the other classic resistance thermometers. 

 

Bridge Value 
[Ω] 

Current 
[mA] 

Average  
time 

[second] 

Standard  
deviation 

[mK] 
Our 

readout 100  1.0 32 0.020 

ASL F900  100  1.0 / 0.005 
FLUKE 
1595A  100  1.0 30 0.010 

Isotech 
MicroK 70 25 1.0 / 0.009 

MI 6020T  100 1.0 / 0.005 
 

In resistance thermometry, the output ratio between 
standard platinum resistance thermometer (SPRT) and 
reference resistor is always moving average for ten or sixty 
seconds, because the dynamic response time of the large 
diameter SPRT is very slow. To compare the precision with 
some well-known resistance bridges and ratiometric 
resistance thermometers, the relationship between the 
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precision and moving average number is estimated in the 
quadruple channel mode. As shown previously, the noise 
depends largely on the window size of moving average n. 
When n is set as 32, the noise performance of the designed 
readout is approaching several primary resistance 
thermometer readouts, as shown in Table 1. The data of noise 
performance of the well-known resistance thermometers 
come from their official specifications. 
 

 
 

Fig.6.  The standard deviation of the round-robin structural readout 
under different moving average window sizes. 

 
B.  Self-heating correction and linearity evaluation 

In this design, the self-heating effects are corrected by the 
zero-power extrapolation method. It is a mature method in the 
resistance thermometry field [16]. In this study, the values of 
the self-heating current are 1 mA and √2/2 mA. From the 
self-heating correction point of view, the round-robin 
structure has the advantage compared to the classic multi-
channel extension topology in the multi-channel mode, 
because in the round-robin structure, all the resistors are in 
series. No matter which resistor is sampled, the current heats 
the resistor stably. While in the classic multi-channel 
extension topology as shown in Fig.1.b), when one resistor is 
sampled, the current will not pass through the other resistors. 
This makes the temperature of the resistor or PRT unstable. 
The measurement noise becomes large.  

After the self-heating and CMRR correction, the linearity 
of the designed multi-channel readout is evaluated using a 
resistance bridge calibrator (RBC). The manual RBC 
includes a set of four ultra-high precision resistors from 
Vishay Precision Group that can be configured in series or 
parallel combinations to produce resistances ranging from 
43 Ω to 346 Ω (The nominal values of the four resistors are 
77.1862 Ω, 100.0000 Ω, 129.8168 Ω, and 216.8144 Ω). The 
linearity evaluation principle proposed by Dr. Rod White 
from Measurement Standards Laboratory of New Zealand is 
adopted in this investigation [16]. The RBC is connected to 
channel PRT1 of the designed readout. The channels of PRT2, 
PRT3, and PRT4 are connected to three precision resistors. 
The ratio of resistance between the calibrator and the 
reference resistor was measured in the quadruple channel 
mode. The linearity evaluation results are shown in Fig.7. The 
nonlinear error is smaller than 0.5 ppm in the whole range. In 
the ADC based resistance thermometry readout, this error 
mainly comes from the ADC and amplifier. However, the 

total nonlinear error measured in this investigation is smaller 
than the nonlinear error value of the AD7177-2 and the gain 
nonlinearity of AD8422 in their datasheets. This is because 
for getting one ratio between reference resistor and PRT, the 
voltages sampled from the five ADCs are averaged.  

 

 
Fig.7.  Residuals of nonlinearity evaluation of the designed multi-

channel resistance thermometer readout. 
 
C.  Uncertainty investigation 

The uncertainty contributions of the thermometer readout 
are the linearity, measurement noise, and reference resistor 
stability [5], [17]. The uncertainty of the linearity is 
calculated as the largest deviation with respect to the fit line. 
As shown in Fig.7., the largest deviation is 0.49 ppm. The 
uncertainty of the measurement noise comes from the 
standard deviation calculated in Fig.4. The uncertainty of the 
reference resistor stability is calculated from the datasheet of 
VHP203. We assume the environment temperature range of 
the designed thermometer readout working is from 
295.15 K to 300.15 K. The uncertainty of the reference 
resistor stability is 1 ppm according to the following 
uncertainty combination equation. The results are shown in 
Table 2. 

 

2 2 2( ) ( ) ( )O Ratio REF linearity
PRT PRTu u u u
Ratio REF
∂ ∂

= × + × +
∂ ∂

  

(23) 
 

Table 2.  The uncertainty investigation of  
the multi-channel readout. 

 

Value 
[Ω] 

uRatio 
[ppm]  
(k=1) 

uREF  
[ppm] 
(k=1) 

ulinearity 
[ppm] 
(k=1) 

uO 
[µΩ] 
(k=1) 

Equivalent 
uncertainty 
[mK] (k=2) 

50 0.15 1.00 0.49 56.84 0.30 
100 0.19 1.00 0.49 112.97 0.59 
150 0.23 1.00 0.49 153.52 0.80 
350 0.39 1.00 0.49 391.71 2.03 

 
The results show that the equivalent uncertainty (K = 2, at 

1 Hz) of the multi-channel readout is better than 2.1 mK. 
Compared with some well-known primary resistance bridges, 
the measurement uncertainty of the multi-channel readout 
keeps a certain distance [18], [19]. The reason is that the 
temperature of the reference resistor has not been controlled 
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and the nonlinear of the ADCs in the designed multi-channel 
readout has not been well calibrated yet. 
D.  Temperature coefficient evaluation 

Putting the designed readout in the drying oven at different 
temperatures, the temperature coefficient and noise 
performance of the readout working in the quadruple channel 
mode is evaluated. Setting the data out rate as 1 Hz, the noise 
performance at different temperatures is shown in Fig.8. The 
results show that the noise performance is increasing with the 
environmental temperature imperceptibly, due to the Johnson 
noise becoming larger with the temperature. 

 

 
 

Fig.8.  Standard deviation under different environmental 
temperatures. 

 
Through comparison of the measured averaged ratios in 5 

minutes under different environmental temperatures, the 
temperature coefficient of the readout is evaluated. Fig.9. 
shows the measuring drift under different environmental 
temperatures. The linear fitting result shows that the 
temperature coefficient of the readout is lower than 0.2 mK/K 
(at ratio range from 0.5 to 3.5), when the environmental 
temperature changes from 20 °C to 45 °C. According to the 
ratio measurement principle, the main contribution of the 
temperature coefficient of the readout comes from the 
reference resistor. The temperature coefficient of the VHP 
203 precision resistor is lower than 0.2 ppm/K. This means 
the readout can adapt to some hostile industrial application 
environments. 

 

 
 

Fig.9.  The temperature coefficient of the readout when 
measuring different value resistors. 

4.  DISCUSSION / CONCLUSIONS 
In this article, a fast-multi-channel sub-millikelvin 

precision resistance thermometer readout is presented based 
on the round-robin structure. When it works in four channel 
scanning mode, the precision corresponds to 0.1 mK at 1 Hz. 
The overall uncertainty of the designed readout is better than 
2.1 mK at 1 Hz. The main advantage of the round-robin 
structure is that it can avoid the precision or rate degeneration 
in the multi-channel scanning mode. In the round-robin 
architecture, for any step, each ADC samples the different 
PRT or reference resistor, respectively. After a whole 
measurement procedure, each ADC obtains the ratio between 
every PRT and reference resistor. Through averaging the ratio 
from all the ADCs, the precision of temperature measurement 
improves greatly. 

The other advantage is the low cost of the designed multi-
channel readout. Firstly, there is only one expensive reference 
resistor. Compared with the channel number extension 
through sample coping, the round-robin architecture saves the 
cost of multiple reference resistors. Secondly, in the designed 
readout, a kind of the newest commercial 32-bit Σ-Δ ADC is 
employed as the engine of the system. Typically, the 
integrating ADC is employed in digital multimeter and 
ratiometric resistance thermometer readout for a long time. 
However, its precision is largely limited by the clock 
frequency and jitter. The precision of the commercial 
integrating ADC is usually not higher than 24 bits. Walker 
uses several integrating ADCs parallelly for single channel to 
noise reduction in FLUKE 1595A [20]. This is contrary to the 
cost reduction. Bramley and Pickering developed the MicroK 
70 established on a new type Σ-Δ ADC licensed by the 
National Physical Laboratory (NPL) [8]. This ADC is an 
application specific integrated circuit (ASIC). The 
manufacturing cost is not low. However, in the designed 
readout, we use the universal commercial ADCs. The price is 
just several dollars. By using this 32-bit Σ-Δ ADC, the 
precision of this readout is 0.1 mK at 1 Hz. It is close to the 
precision of some well-known resistance bridges.  

Meanwhile, the errors generated by the CMRR of the 
amplifiers have been considered in this article. This error 
exists in all the ADC based resistance thermometer readouts. 
In order to reduce this error, Bramely presented a substitution 
topology in MicroK 70. In this topology, the PRT and the 
reference resistor are connected in parallel [8]. However, this 
topology cannot eliminate this error completely. When the 
difference between the PRT and reference resistor is 
considerable, this error cannot be ignored. In the round-robin 
structure, the error generated by the CMRR is larger, because 
all the resistors are in series. It should be considered 
cautiously. In this article, the CMRR of the amplifiers are 
calibrated first. Then, through solving the equations (19) and 
(20), this error is eliminated. Furthermore, distinguishing and 
calibrating the error from the CMRR and nonlinearity of 
ADC, respectively, should be adopted in ADC based 
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resistance thermometer readouts calibration. After CMRR 
and ADC calibration, the better linearity should be obtained.  
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1. INTRODUCTION

The foundations of quantity calculus have been the subject
of research for more than a century, and recent papers as
those by Kitano [1], Krystek [2], Atkey et al. [3] or Domo-
tor [4] show that its formalization is not completely settled
yet. Moreover, in the last years many authors are calling for
a discussion of fundamental concepts regarding quantity cal-
culus [5, 6, 7, 8, 9]. In fact, the first two papers mentioned
represent two different visions on the subject. The paper by
Kitano assumes a structure of quantity calculus centered in
the definition of units, upon which the rest of the structure is
built. In contrast, the paper by Krystek recovers the call of
some authors in past decades to locate the concept of dimen-
sion in the center of the scene. The latter view is what the
widespread use of dimensional analysis (see, e.g., [10, 11])
suggests that the structure of quantity calculus should be, but
the fact is that there is not a well defined algebraic structure
supporting it. The goal of this paper is to provide such a struc-
ture. On another basis, the paper by Domotor deserves a sep-
arate comment, for it dives into ontological discussion of the
relationship between quantities and their values and provides
an algebraic tool to describe it by means of torsors, which is
further commented below.

By quantity calculus it is understood the algebra of the op-
erations performed between physical quantities, which are
three: product of quantities, product of a number times a
quantity and addition of quantities of the same kind. It is
customary to write a quantity q as the product of a number
times a unit which, in the present notation of the International
Vocabulary of Metrology (VIM) [12], is denoted as

q = {q} [q], (1)

where [q] stands for the unit and {q} is the number of times q
comprises that unit. Notice that, as the VIM explicitly warns
in its Note 5 under the definition of quantity, this concept is
that of a scalar quantity, and the way to consider vector or
tensor quantities is through their components which accom-
modate to this definition. The operations are then performed
as

q1q2 = ({q1}{q2})([q1][q2]), (2a)
αq = (α{q}) [q], (2b)

q1 +q2 = ({q1}+{q2}) [q1], (2c)

where α is a number, q, q1, and q2 are quantities and, in the
last equation, [q1] = [q2] is assumed. Although this way of
performing the operations is standard, the algebraic structure
to which these three operations give rise is still under study,
and it is the particular form of equation (2c) what makes it
quite different from other usual structures such as rings, vec-
tor spaces or algebras.

The history of quantity calculus, in the words of Do-
motor [4], is the story of the search for the intrinsic alge-
braic structures underlying dimensional analysis, measure-
ment units and measurement uncertainty of quantity values.
This history is unsually long, and the reader is referred to
the excellent review by de Boer [13] for a detailed account.
However, a few landmarks are worth mentioning in order to
situate the contribution of the present paper. Its origin goes
back to Fourier in 1822 [14], when he introduced the idea
of dimension of a quantity and the concept of homogene-
ity of dimensions in a valid physical equation, thus initiat-
ing the view centered on dimensions. Contemporarily, Gauss,
in 1832 [15], proposed the first so called absolute system of
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units, relying on the units for length, mass and time, which
eventually became the cgs system. Another step is due to
Maxwell in 1873 [16], when he stated that the expression of
a quantity has two factors or components, as in equation (1);
in fact, the present notation in that equation comes from that
of Maxwell. In 1914 Buckingham published his celebrated
Pi Theorem [17], although there was not a solid framework
on which to base its proof. For the remaining duration of
the 20th century there is a quest for the formalism under-
lying the quantity calculus. According to de Boer, Wallot
was the first to claim the concept of quantity as central, and
not just as the product of a number and a unit. Then Lan-
dolt [18], in 1945, made the first attemp to give an axiomatic
foundation, with the important step of recognizing the group
properties of the operations between quantities. In the 1950s
Fleischmann [19], also according to de Boer, took another
step forward by distinguishing the quantities from the kinds
of quantities, the latter exhibiting the structure of a group.
In the following years several authors contributed to set up a
description of the algebraic structure but, curiously enough,
two divergent paths were followed. On the one hand authors
such as Fleischmann, Quade [20] or de Boer himself called
for a description centered on the quantities and the concept of
dimension. On the other hand, authors such as Drobot [21],
Whitney [22], and Carlson [23] developed an algebraic struc-
ture which resembled that of quantity calculus, but was cen-
tered on the concept of unit over which the rest of the set
of quantities was built. The recent paper by Kitano [1] can
be seen as the zenith of this viewpoint, for he introduces a
theory of comparison of the different systems of units which
provides new insight into the subject. In a rough summary,
this structure starts with a system of units {u1, . . . ,un} and
writes any quantity q in a unique way as

q = α ur1
1 · · ·u

rn
n , (3)

where α is a real number and r1, . . . , rn are rational numbers.
Therefore, the algebraic structure depicted by this theory is
R×Qn, where the factor R hosts the numerical value of q
relative to this system of units, while Qn hosts the rational
exponents of the units and exhibits a linear space structure.
However, the rules (not the algebraic properties) to perform
the three operations need to be set in the axioms, which is not
quite acceptable in an axiomatic description of an algebraic
structure. As a consequence of the central role of the unit
systems, we can find quantities which, dependending on the
unit system of choice, can be compared or cannot, can be
added or cannot.

Notwithstanding its merits, the accepted description of the
algebraic structure of quantity calculus has two drawbacks
that need to be addressed. Firstly, as said before, it relies on
the concept of unit as central. This is not satisfactory since
units are the result of an arbitrary agreement and, thus, can
be easily changed, while the concept of dimension is more
resilient. (The arbitrariness, of course, is only from the al-
gebraic viewpoint; in fact, the choice of base units in a sys-

tem of units, say the SI, is far from arbitrary, for they need
to be as constant and accurate as possible and reproducible).
The history of the units in electromagnetism at the end of the
19th century and beginning of the 20th shows it clearly: the
mess of different systems of units, all of them trying to de-
scribe electromagnetic quantities in a purely mechanical con-
text, was definitely clarified with the proposal of Giorgi [24]
to introduce a separate unit for one of the electromagnetic
quantities, that is, introducing a new and independent dimen-
sion.

Secondly, the use of fractional exponents in the units. It
is a remarkable fact that, albeit the possibilities allowed by
Bridgman’s theorem on dimensional analysis [25], dimen-
sionful physical quantities enter into physically valid equa-
tions only through the three operations mentioned at the be-
ginning. Therefore, only integer exponents of quantities, and
thus of units, should be expected. Although the use of frac-
tional exponents is widespread, we claim that it is not neces-
sary. Several examples come to mind, as the case of square
roots of quantities (the use of Pythagoras’ theorem, the pe-
riod of a pendulum, the standard deviation of a random quan-
tity. . . ) but in all cases the square root acts on a quantity
which is already a square. An algebraic structure for quan-
tity calculus, which allows fractional exponents, is oversized.

It is noticeable that Quade [20], following Fleischmann,
developed a description of the algebraic structure entirely
with integer exponents of the units instead of fractional ones,
and also tried to center it on the concept of dimension. Un-
fortunately, this approach, which pointed in the correct direc-
tion, was superseded by the one described above. The cause
of moving the focus from dimensions to units is, probably,
the absence of a known algebraic structure which fits exactly
the operations between quantities. But, fortunately, the recent
paper by Krystek [2] resumes the quest for this structure.

Drawing from the ideas of Quade and Krystek, the goal
of this paper is to introduce a new algebraic structure, based
on a simple set of axioms, which accounts exactly for the
properties of quantity calculus and overcomes the two afore-
mentioned problems. The structure is centered in the group
of dimensions and the quantities are placed upon it gathered
in fibers over the dimensions. Hence, the structure can be
described as an algebraic fiber bundle. The axioms allow to
define systems of units and, as a consequence, but not as a
definition, to write quantities as in equation (1). Then the
properties of the maps {·} and [·] are studied and the valid-
ity of equations (2) is established (not postulated, as usual).
These are the contents of section 2. Section 3 shows how to
construct new spaces of quantities from old ones as subspaces
or by means of tensor products or quotients. The quotient of
a space of quantities is seen to be the tool to reduce dimen-
sions as it is usually done, for instance, to get natural units. In
section 4 the tool for the comparison is defined and studied:
the homomorphism of spaces of quantities, which allows us
to characterize and classify the spaces. This classification is
compared with that of Kitano in a final section of conclusions
and also a comment on Domotor’s torsor theory is considered.
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2. GROUP OF DIMENSIONS AND SPACE OF QUANTITIES

Our object of study is a set Q of quantities and the operations
defined within it, which is referred to as a space of quantities.
The elements of Q will be denoted by lowercase latin letters,
particularly q, r, s. These quantities, as it is detailed below,
can be multiplied and added among them and also multiplied
by scalar numbers from a field F , whose elements will be
denoted by lowercase Greek letters, particularly α , β .

Example 2.1. For further reference, we assign symbols to
the following spaces of quantities: Qgeom, the space of quan-
tities of geometry, that is, all the quantities needed to deal
with lengths, areas, volumes, angles, etc. Qtime, the space
of quantities to measure time. Qkin, the space of quantities
of kinematics. Qmech, the space of quantities of mechanics.
Qphys, the space of quantities of physics.

2.1. Group of dimensions
As noticed in the introduction, main role in the structure is
played by the dimension of a quantity. Under this viewpoint,
the dimension is an intrinsic property of a quantity, in contrast
to its numerical value, which depends on the unit chosen, or
the unit itself, which can be changed arbitrarily. Therefore,
each quantity must have a firm link with its dimension in the
present scheme better than a link with a unit or its numerical
value with respect to that unit, despite the latter being what
equation (1) suggests. To that end, let us first define prop-
erly the set of dimensions. The properties which characterize
this set have been well described in the paper by Krystek [2],
and they are just summarized here: dimensions can be mul-
tiplied and show the structure of an Abelian group with two
further properties which characterize this group. First, no el-
ement is torsion, for there is no dimensionful quantity which
multiplied by itself finitely many times becomes a quantity of
dimension one. Second, it is finitely generated. Therefore,
we adopt the following definition.

Definition 2.2. A group of dimensions is a finitely generated
free Abelian group.

In this paper such a group is generally denoted by D and its
elements by uppercase letters in roman sans-serif type such
as A,B . . . (as stated in the VIM). The identity element of
the group, denoted 1D , is the dimension of the so called di-
mensionless quantities (quantities of dimension one are pre-
ferred).

Two properties of finitely generated free Abelian groups
(or, equivalenty, free Z-modules) are of interest to us [26].
In the first place, there exists the concept of basis: an inde-
pendent (finite) set of generators. If {A1, . . . ,Ak} is such a
basis for a group D then any element B has a unique expres-
sion in terms of the form B=An1

1 · · ·A
nk
k , where the exponents

n1, . . . , nk are integer numbers. The number k of generators
of any basis is called the rank of the group, and is a charac-
teristic property of it. In the second place, such a group is
isomorphic with the direct product of k infinite cyclic groups:
D ∼= 〈A1〉× · · ·×〈Ak〉, where 〈Ai〉= {An

i : n ∈ Z}.

Example 2.3. The groups of dimensions of the systems of
quantities given in example 2.1 are, respectively, the follow-
ing: Dgeom = 〈L〉, the free Abelian group generated by L,
which denotes length. Dtime = 〈T〉, generated by T (time).
Dkin = 〈L,T〉, generated by L and T. Dmech = 〈L,T,M〉, gen-
erated by L, T and M (mass). Dphys = 〈L,T,M, I,Θ〉, gener-
ated by L, T, M, I (electric current) and Θ (temperature).

2.2. Space of quantities
The link between a quantity and its dimension is made by
means of a projection map dim: Q→ D . This map is a sur-
jection.

Example 2.4. If h is Planck’s constant then dim(h) =
L2T−1M; and θ , the angle at a vertex of a triangle, yields
dim(θ) = 1D ; each one in the appropriate setting.

In order to reflect that the dimension of a product of quan-
tities is the product of the dimensions of the quantities the
projection map must be a homomorphism with respect to the
product of quantities.

In this way we follow the general concept studied by Atkey
et al. [3] of a fiber bundle approach to quantities and dimen-
sions. All the quantities with the same dimension, say A, form
a set called a fiber, for it can be written as the inverse image
of that dimension: dim−1(A). As the VIM explicitly states,
quantities of the same kind belong to the same fiber, while the
opposite is not necessarily true. However, the algebraic struc-
ture cannot distinguish this detail. In each fiber quantities can
be added and multiplied by scalars in a field F , resulting in
quantities of the same dimension. These operations give the
fiber the structure of a vector space over the field F . More-
over, since the comparison of each quantity in the fiber with
a reference in the fiber, the unit, yields a single number, as in
equation (1), that vector space is one dimensional (the latter
in the sense of vector space dimension over F). There are
some quantities which are intrinsically positive (mass, abso-
lute temperature) and, thus, a full linear space seems to be
oversized for them. However, differences of these quantities
must also be considered in the framework. Since the algebraic
structure cannot distinguish if a quantity is an absolute tem-
perature or a difference of temperatures, the full linear space
structure has to be allowed.

The field F is usually assumed to be that of the real num-
bers but so far there is no algebraic reason to restrict the defi-
nition to it. We are now ready to give an axiomatic definition
of a space of quantities which takes into account all the afore-
mentioned elements.

Definition 2.5. A space of quantities with group of dimen-
sions D over the field F is a set Q, together with a surjective
map dim: Q→D such that:

(i) for each A ∈ D , the fiber dim−1(A) has the structure of
a one dimensional vector space over F,
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(ii) there is a product defined in Q which makes it into an
Abelian monoid and the map dim is a monoid homomor-
phism, that is, for q,r ∈ Q,

dim(qr) = dim(q)dim(r),

and

(iii) the product distributes over the addition in each fiber,
that is, for q,r1,r2 ∈ Q with dim(r1) = dim(r2),

q(r1 + r2) = qr1 +qr2,

and the product associates with the product by scalars
in the sense of

α(qr) = (αq)r,

where q,r ∈ Q and α ∈ F.

The rank of Q is the rank of its group of dimensions.

This structure can be thought of as an algebraic fiber bun-
dle, where the base structure is the group D and where over
each element of it we place a fiber which is a one dimen-
sional vector space. If A is a dimension and we denote
QA = dim−1(A) the fiber over it, then the space is made of
the disjoint union of its fibers Q = ∪A∈DQA. Therefore, this
structure is a particular instance of the structure presented in
[3] as a pair dimension group – fibers: 〈D ,{QA}〉.

The fibers are not independent, for they have algebraic
bounds given by the condition of the projection map being
a monoid homomorphism. All fibers are isomorphic as vec-
tor spaces, and isomorphic to the field F , but there is one
fiber of particular interest: the fiber dim−1(1D ), the set of
quantities of dimension one. The identity element in Q is
denoted 1Q and, since dim is a homomorphism, necessar-
ily dim(1Q) = 1D , so 1Q is a quantity of dimension one, as
expected. Therefore, the fiber dim−1(1D ) is not only an F-
vector space, but an F-algebra of dimension 1, that is, nat-
urally isomorphic with the field F by means of the isomor-
phism assigning the number 1 in F with 1Q. For this reason,
this fiber can be identified with F when needed.

2.3. System of units
We now turn to the task of defining system of units. It has
been noticed that a system of units is nothing but a choice of
a nonzero quantity of each dimension, that is, a basis in each
fiber. Remember that a system of units is called coherent if
the product of the units of any two quantities q and r gives
the unit in the system for the quantity qr. The tool for a pre-
cise definition is the concept of section, which is a map that
chooses one, and only one, element in Q from each fiber.

Definition 2.6. A section of the space of quantities Q is a
map σ : D → Q such that dim◦σ = idD . A section is called
coherent if the map is a group homomorphism. The zero sec-
tion, denoted σ0, is the section which selects the zero element
of each fiber. A nonzero section is a section none of which
images is a zero element.

Then we have the following definition.

Definition 2.7. A system of units in a space of quantities is
a nonzero section of it. The system is called coherent if the
section is coherent.

Before proceeding further, a word on the zeros of Q is nec-
essary. Since each fiber has a zero element there are many
zeros in the space Q, all of which constitute σ0(D), the im-
age of the zero section. In this construction each zero has a
dimension, so 0ms−1 is a different quantity than 0kg.

Therefore, rather than speaking of the zero element, in this
structure we have to speak of a zero element to refer ourselves
to any of these elements in the image of the zero section. De-
spite of that, when no confusion is possible we write q = 0
to symbolize that the quantity q is a zero, without stating ex-
plicitly its dimension. Nevertheless, these zeros behave as
is expected from an ordinary zero: the product of a quantity
with a zero is a zero, as can be easily verified. However, it
must be noticed that there is nothing in the definition of a
space of quantities to prevent the existence of zero divisors,
i.e. nonzero quantities q and r such that their product qr is a
zero. As an extreme example consider a space of quantities
with a product defined as qr = 0 for any dimensionful quan-
tities q and r; it satisfies all the axioms of definition 2.5. Zero
divisors, if any, are by no means isolated for, if q is a zero
divisor, then αq, with α ∈ F is also a zero divisor, so the en-
tire fiber of q is made of zero divisors. Also if s is another
quantity such that sq is not zero, then sq is another zero di-
visor. Of course zero divisors do not show up in spaces of
quantities of actual measurements, therefore in what follows
we only consider spaces of quantities free of zero divisors.
Some advantages we gain from that are collected in the next
proposition.

Proposition 2.8. In a space of quantities the following prop-
erties are equivalent:

i. There are no zero divisors.

ii. The set of nonzero quantities is a group with respect to
the product.

iii. There exists a coherent system of units.

PROOF. We show the first property to be equivalent to each of
the other two. In order to show that the set of nonzero quanti-
ties is a group we need to show it is closed under the product
and every element has an inverse. The absence of zero divi-
sors is just the former condition, so let us show the inverse
of a nonzero quantity q. Let q̃ be a nonzero quantity in the
inverse fiber of q, meaning dim(q̃) = dim(q)−1. Therefore,
qq̃ is nonzero and dimensionless and, thus, there is a nonzero
scalar α such that qq̃ = α1Q. The quantity s = α−1q̃ satisfies
qs = 1Q. On the contrary, if there are zero divisors, the set of
nonzero quantities is not closed under the product, so it is not
a group.

Now assume again Q is free of zero divisors and define a
section σ : D→Q by assigning a nonzero element in the cor-
responding fiber to each element in a basis of D and the rest
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of elements by asking σ to be a homomorphism. The absence
of zero divisors ensures that σ is a nonzero, in addition to co-
herent, section. On the contrary, assume now that q and r are
nonzero elements of Q such that qr is a zero, and let σ be
a coherent section of Q. Assume σ(dim(q)) and σ(dim(r))
are nonzero. Then they are of the form σ(dim(q)) = αq and
σ(dim(r)) = β r for some nonzero α and β in F . We have
σ(dim(qr)) = (αq)(β r) = αβ qr which is a zero. Hence, a
coherent section is not nonzero, so there exits no coherent
system of units.

The following is an explicit construction of a space of
quantities given a group of dimensions D . Moreover, in sec-
tion 4 we justify that, to some extent, this is the only example
of a space of quantities free of zero divisors.

Example 2.9. For a field F and a finitely generated free
Abelian group D , the set F ×D together with the map dim:
F ×D → D which projects onto the second component, and
the operations

(α,A)+(β ,A) = (α +β ,A),

β (α,A) = (βα,A),

(α,A)(β ,B) = (αβ ,AB),

for α,β ∈ F and A,B ∈ D , becomes a space of quantities
free of zero divisors. A coherent system of units is given from
a group homomorphism χ : D → F∗, where F∗ denotes the
multiplicative group of the field, by σ : D → F ×D : A 7→
(χ(A),A).

The first goal of a formalization of quantity calculus is to
justify within the formalism the actual way in which opera-
tions between quantities are performed, that is, with the aid
of a system of units and operating with the numerical values
and with the units separately. The following paragraphs do
this. Let us start by writing down the expression of any quan-
tity in Maxwell’s form. Let q be a quantity in a space Q free
of zero divisors, and let σ be a system of units in Q. The di-
mension of q is dim(q) and the unit in its fiber is σ(dim(q)).
Now, since the latter is not a zero, by proposition 2.8 it has
an inverse so we can define the map ν : Q→ F , in which
we make use of the identification of the field F with the fiber
dim−1(1D ) of quantities of dimension one, by

ν(q) = qσ(dim(q))−1. (4)

The quantities q and σ(dim(q)) have the same dimension,
so the product in equation (4) gives a quantity of dimension
one which, after identification with an element of F , can be
regarded as a number: the numerical value of q with respect
to the unit σ(dim(q)). Then we have

q = ν(q)σ(dim(q)), (5)

where we identify ν(q) with {q} and σ(dim(q)) with [q] as
given in equation (1). In other words, the symbols {·} and [·]
are nothing but the maps {·} = ν and [·] = σ ◦ dim. Let us
study their algebraic properties.

Proposition 2.10. In a space of quantities free of zero divi-
sors, the map [·] : Q→ Q verifies

(i) for q1, q2 quantities in the same fiber, and α , β in F

[αq1 +βq2] = [q1] = [q2],

(ii) it is a homomorphism with respect to the product of
quantities if and only if σ is a coherent section.

PROOF. Both items stem directly from the splitting of [·] as
the composition σ ◦ dim. For the first one, since q1 and q2
are in the same fiber, then so is αq1 + βq2, so it is clear
that dim(αq1 + βq2) = dim(q1) = dim(q2) and, therefore,
the same applies to the map [·]. For the second item, if σ

is a group homomorphism, then [·] is the composition of two
homomorphisms with respect to the product, so it is also a
homomorphism. For the other way around, if [·] is a homo-
morphism, so is σ because the map dim is surjective.

Proposition 2.11. In a space of quantities free of zero divi-
sors, the map {·}= ν defined by equation (4) is

(i) an F-linear homomorphism and

(ii) a homomorphism with respect to the product of quanti-
ties if and only if σ is a coherent section.

PROOF. For the first item consider two quantities q1 and
q2 in the same fiber and two scalars α and β in the field
F and compute {αq1 + βq2} = (αq1 + βq2)σ(dim(αq1 +
βq2))

−1. Since dim(αq1 + βq2) = dim(q1) = dim(q2) as
in the previous proposition, the former expression can be
written as αq1σ(dim(q1))

−1 + βq2σ(dim(q2))
−1, that is,

α{q1}+β{q2}.
In the second item the if part is trivial. For the only if part

consider A and B in D and choose two nonzero quantities q
and r such that A = dim(q) and B = dim(r). Then σ(AB) =
qr{qr}−1, since qr is not a zero, then {qr} 6= 0. Now, be-
cause {·} is a homomorphism with respect to the product, the
previous expresion gives q{q}−1 r{r}−1 = σ(A)σ(B).

These propositions set the condition to operate with quan-
tities in the usual way: for quantities q1 and q2 in the same
fiber and scalars α and β

{αq1+βq2}= α{q1}+β{q2}; [αq1+βq2] = [q1] = [q2],

and for any quantities q and r, only in case of a coherent sys-
tem of units,

{qr}= {q}{r}; [qr] = [q][r].

In other words, the equations (2) have been justified from the
axioms.
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3. NEW SPACES FROM OLD ONES

3.1. Subspace
Definition 3.1. A subset S of a space of quantities Q is a
subspace if, with the operations of Q and the restriction of
the projection map, it is a space of quantities.

Since the projection map dim restricted to S is the projec-
tion map of S, its image, dim(S), must be a subgroup of D .
Fortunately, it is a well known result of group theory that a
subgroup of a free Abelian group is itself free Abelian [26,
Theorem 10.17]. This is equivalent to the condition of S be-
ing closed under the product of quantities. In particular, 1D

is in this subgroup. The subset S is also closed under addi-
tion of quantities of the same fiber and product by scalars so,
if s is a nonzero quantity in S, then αs, for any scalar α , is
also in S. In other words, the complete fiber containing s is
in S, as should be, and for the fibers in S must be one di-
mensional vector spaces. This observation rules out a fiber
in S containing only the zero element. As a consequence, the
fiber of dimensionless quantities is contained in S. Thus, we
have characterized the subspaces of a space of quantities as
follows.

Proposition 3.2. Let Q be a space of quantities with projec-
tion map dim: Q→ D . A subset S ⊂ Q is a subspace if and
only if it is of the form S = dim−1(E ), where E is a subgroup
of the group of dimensions D .

Trivially Q= dim−1(D) is a subspace, arising from the im-
proper subgroup of D , and so is the fiber dim−1(1D ), the sub-
space arising from the trivial subgroup of D . Some nontrivial
examples follow.

Example 3.3. The space Qgeom can be seen is a subspace of
Qkin, for Qgeom = dim−1(〈L〉), and 〈L〉 is a subgroup of Dkin.
Analogously, Qkin as a subspace of Qmech, which in turn is a
subspace of Qphys.

But also dim−1(〈L2〉) is a subspace of Qgeom with group of
dimensions 〈L2〉.

3.2. Tensor product
From the examples one intuitively expects to be able to build
the space Qkin of kinematics quantities from Qgeom and Qtime,
the spaces of quantities of geometry and time, respectively.
But a simple cartesian product is not enough, for running 10
meters in 1 second gives the same speed as running 100 me-
ters in 10 seconds. The technique is somewhat similar to the
tensor product of linear spaces so we adopt the notation. Let
Q and R be spaces of quantities free of zero divisors, over the
field F and with groups of dimensions DQ and DR, respec-
tively, and projection maps dimQ and dimR.

In the set Q×R define the element (q1,r1) to be related to
(q2,r2) if there is α ∈ F such that q1 = αq2 and r2 = αr1
or such that q2 = αq1 and r1 = αr2. It is straightforward to
check it is an equivalence relation. The quotient set is de-
noted Q⊗R and the equivalence class of the element (q,r)
is denoted q⊗ r. Notice αq⊗ r = q⊗ αr, in particular
q⊗0 = 0⊗0 = 0⊗ r.

We now define a structure of space of quantities in Q⊗
R. Its group of dimensions is the direct product of DQ and
DR, which is a free Abelian group with rank the sum of the
ranks of each one. The projection map is defined by dim(q⊗
r) = (dimQ(q),dimR(r)), which is well defined because all
the elements in the class q⊗r have the same image under dim.
Define a product in Q⊗R by (q1⊗ r1)(q2⊗ r2) = (q1q2)⊗
(r1r2), which is independent of the representatives chosen, is
commutative and associative and has an identity element: the
class 1Q⊗1R.

Define the product of the scalar γ ∈ F times q⊗ r by
γ(q⊗ r) = (γq)⊗ r = q⊗ (γr). Finally, define the addi-
tion of two elements in the same fiber q1 ⊗ r1 and q2 ⊗ r2
in the following manner. From the absence of zero divisors
and proposition 2.8 there are nonzero q ∈ Q and r ∈ R such
that qi = αiq and ri = βir for some αi, βi ∈ F , i ∈ {1,2};
define q1⊗ r1 + q2⊗ r2 = (α1β1 +α2β2)(q⊗ r). The addi-
tion and product by scalars in the set of elements of a fiber
satisfy the properties of a vector space over F and, more-
over, this vector space is of dimension one, for, if q and r
are nonzero elements and α and β are arbitrary scalars, then
(αq)⊗ (β r) = (αβ )(q⊗ r). The zero element in each fiber is
0⊗0.

Finally, it is also straightforward to see the projection map
behaves well under the product: dim((q1⊗ r1)(q2⊗ r2)) =
dim(q1⊗r1)dim(q2⊗r2). Then we have the following result.

Proposition 3.4. The set Q⊗R, together with the operations
defined above, is a space of quantities over the field F with
group of dimensions DQ×DR and rank rank(Q)+ rank(R).

The spaces Q and R can be identified, respectively, with
Q⊗ dim−1

R (1DR) and dim−1
Q (1DQ)⊗R, which are subspaces

of Q⊗R.

Example 3.5. As announced before, we have Qkin ∼= Qgeom⊗
Qtime. Also Qmech ∼= Qkin⊗Qmass.

3.3. Quotient space
The quotient space is a construction intended to reduce the
rank of a space of quantities by identifying certain quantities
of different dimensions. The quotient cannot be taken with
respect to a subspace, but another kind of subset of Q, namely,
that given by a subsection.

Definition 3.6. Let Q be a space of quantities free of zero
divisors. A subsection of Q is the restriction of a nonzero
coherent section σ : D → Q to a subgroup E of D .

Its image Σ = σ(E ), which is also called subsection for
brevity, is the intersection of the subspace dim−1(E ) and
σ(D), the image of the section. Notice that 1Q ∈ Σ because
the section σ is coherent. With the aid of Σ we can define an
equivalence relation in Q. The quantity q2 is equivalent mod-
ulo Σ to the quantity q1 if q2 = q1s for some quantity s in Σ.
It is reflexive for, as noticed before, 1Q ∈ Σ. It is symmetric,
because s is not a zero and, by the absence of zero divisors, it
is invertible in Q and q1 = q2s−1, where s−1 is in Σ because
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the section is coherent. Finally, if q2 = q1s and q3 = q2s′ for
s and s′ in Σ then q3 = q1ss′, so q3 is equivalent modulo Σ to
q1 since ss′ is in Σ by the coherence of σ .

The quotient set of this equivalence relation is denoted Q/Σ

and its elements, the equivalence classes, are of the form qΣ,
which denotes the set of the elements qs with s running in
Σ. We now provide the quotient set with suitable operations
to convert it into a space of quantities. First we describe its
group of dimensions. Since equivalent elements q1 and q2 =
q1s are identified in the quotient set, their dimensions must
be identified as well. The obvious candidate for the group of
dimensions is, thus, the quotient group D/E . In such a case it
is only natural to define the projection map, d̂im: Q/Σ→D/E
by making the following diagram commutative.

Q
ρ−−−−→ Q/Σ

dim

y yd̂im

D
ρ̂−−−−→ D/E

where the maps ρ and ρ̂ are the natural projections of each
set into its respective quotient set. In other words, ρ̂ ◦dim =

d̂im◦ρ . Unfortunately, the quotient of a free Abelian group is
not necessarily free Abelian and, hence, D/E does not nec-
essarily qualify as a group of dimensions. Therefore, though
the algebraic structure is well defined, the subsection must
be carefully chosen so as the subgroup E makes the quo-
tient D/E a free Abelian group. For instance, in the group
of dimensions of kinematics quantities, Dkin ∼= 〈L〉× 〈T〉 the
quotient D/〈L〉 ∼= 〈T〉 is free Abelian, while the quotient
D/〈L2〉 ∼= 〈L〉/〈L2〉× 〈T〉 is not. From now on we assume
that E is chosen so as to make D/E free Abelian.

The product in Q/Σ is defined by the rule
(
q1Σ
)(

q2Σ
)
=

(q1q2)Σ which is easily checked to be independent of rep-
resentatives. We have to check the condition which links
the product and the projection map, but d̂im

(
q1Σq2Σ

)
=

d̂im
(
(q1q2)Σ

)
= d̂im◦ρ(q1q2) by the definition of the prod-

uct in Q/Σ and the definition of ρ . Now, by the commuta-
tivity of the diagram and because both, dim and ρ̂ , are ho-
momorphisms, the latter expression equals ρ̂ ◦ dim(q1q2) =

ρ̂ ◦dim(q1)ρ̂ ◦dim(q2)= d̂im(q1Σ)d̂im(q2Σ), so we conclude
that d̂im is a monoid homomorphism.

The product with a scalar α from the field F is defined
by α

(
qΣ
)
= (αq)Σ, which is also independent of the choice

of representative q in the class qΣ. For the addition notice
that if q1Σ and q2Σ are elements in the same fiber in Q/Σ,
i.e. d̂im(q1Σ) = d̂im(q2Σ), its sum cannot be defined simply
as (q1 + q2)Σ, because q1 and q2 need not be in the same
fiber in Q. We only know dim(q2) = dim(q1)A for some A ∈
E . Denote s = σ(A), an element in Σ, and define q′1 = q1s,
so q1Σ = q′1Σ, hence dim(q′1) = dim(q1)dim(s) = dim(q2),
so they are in the same fiber in Q. Now we can define the
addition as

(
q1Σ
)
+
(
q2Σ
)
= (q′1+q2)Σ. We could have taken

instead an equivalent element of q2 in the fiber of q1 getting
the same result. In the fiber of qΣ, the zero element is the
class q0Σ, where q0 is the zero in the fiber of q, and is formed

by the zeros of the fibers of Q represented in the class qΣ.
It is straightforward to check that the conditions of defini-

tion 2.5 hold for Q/Σ, so we state the result as follows.

Proposition 3.7. If E is a subgroup of D such that D/E is
free Abelian then the set Q/Σ, together with the operations
defined above, is a space of quantities with group of dimen-
sions D/E and rank given by rank(D)− rank(E ).

The mechanism of taking quotients is the algebraic tool
underlying what is common practice in physics of choosing
“systems of units" such that some specified universal con-
stants become dimensionless and take on the numerical value
1. The extreme examples of this procedure are the systems
of natural units, which do not cease to be a current subject
of research as seen in [27]. But it has to be remarked that
the mechanism goes beyond a change of system of units; it is
indeed a change of space of quantities.

Example 3.8. A usual agreement in particle physics is to
“choose units such that c = h̄ = 1”, where c is the speed of
light and h̄ is the reduced Planck’s constant, and all the quan-
tities are measured in powers of units of energy. In fact, it is
a reduction of the space of quantities of mechanics, of rank 3,
to a space of rank 1, by the way of a suitable quotient.

Consider the dimensions of the quantities c, h̄ and a unit of
energy, say the electronvolt, eV: dim(c) = LT−1, dim(h̄) =
L2T−1M and dim(eV) = L2T−2M. They are independent
in the group Dmech, as can be seen by solving the equation
dim(c)m1dim(h̄)m2dim(eV)m3 = 1D , whose unique solution
is m1 = m2 = m3 = 0. Moreover, they can generate the group
since the equation dim(c)m1dim(h̄)m2dim(eV)m3 = LaTbMc

in the group is translated as the following system of linear
equations in Z: 

m1 +2m2 +2m3 = a
−m1−m2−2m3 = b
m2 +m3 = c

(6)

The matrix of coefficients is unimodular, so it is invertible and
the system has a unique solution for any values a, b, c in Z.
Therefore, we can write Dmech = 〈dim(c),dim(h̄),dim(eV)〉
and consider the subgroup E = 〈dim(c),dim(h̄)〉. Define a
coherent section σ : Dmech→ Qmech by its action on this ba-
sis:

σ(LT−1) = c,
σ(L2T−1M) = h̄,
σ(L2T−2M) = eV.

Now this section, when restricted to the subgroup E , de-
fines a subsection Σ. The quotient Qmech/Σ has group of
dimensions Dmech/E ∼= 〈dim(eV)〉 and rank 1. The dimen-
sionless quantities include h̄ and c, which are identified with
1Qmech , as desired, and the rest of quantities have dimen-
sions of a power of energy. For instance, the dimension
L = dim(c)dim(h̄)dim(eV)−1, when carried to the quotient
group, is ρ̂(L) = dim(eV)−1, so lengths are measured as in-
verse energies.
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4. HOMOMORPHISM OF SPACES OF QUANTITIES. ISO-
MORPHIC SPACES

In this section the tool for comparison of spaces of quantities
is defined and its properties studied. The goal is the classifi-
cation of spaces of quantities, which is achieved in theorem 2.

Definition 4.1. Let Q and R be spaces of quantities over the
field F. A map ψ : Q→ R is a homomorphism of spaces of
quantities if

(i) for any two quantities q1, q2 in Q

ψ(q1q2) = ψ(q1)ψ(q2),

that is, it is a monoid homomorphism with respect to the
product, and

(ii) if q1 and q2 are quantities in the same fiber of Q, then
ψ(q1) and ψ(q2) are in the same fiber in R and

ψ(αq1 +βq2) = αψ(q1)+βψ(q2),

for α and β in F, so ψ is a linear map in each fiber.

The homomorphism ψ induces a group homomorphism
between the base groups, DQ and DR. If dimQ and dimR are
the respective projection maps, define the map φ : DQ→ DR
so that the following diagram commutes,

Q
ψ−−−−→ R

dimQ

y ydimR

DQ
φ−−−−→ DR

that is, dimR ◦ ψ = φ ◦ dimQ. It is well defined because
dimQ and dimR are surjective and ψ preserves fibers and it
is straightforward to check that φ is a group homomorphism.

The map φ says which fibers of Q are mapped into each
fiber of R. As an example, if q is a quantity of dimension
one in Q then dimR(ψ(q)) = φ(dimQ(q)) = φ(1DQ) = 1DR ,
so the fiber of quantities of dimension one in Q is mapped to
the fiber of quantities of dimension one in R.

An isomorphism Q→ R is a bijective homomorphism and
defines Q and R as isomorphic spaces, denoted Q ∼= R. The
natural maps such as the identity map idQ : Q→Q, the inclu-
sion map i : Q ↪→ R, where Q is a subspace of R, and the nat-
ural projection map ρ : Q→ Q/Σ, where Σ is a subsection of
Q, are all homomorphisms of spaces of quantities. The trivial
homomorphism is the map which sends every element in Q
to the dimensionless zero of R. By a zero homomorphism we
understand a homomorphism in which all the elements in Q
are mapped to zero elements in R, such as the trivial map, but
there are other zero homomorphisms, as many as group ho-
momorphisms between DQ and DR. For given such a group
homomorphism φ , which in turn defines which fibers in Q are
mapped to which fibers in R, it is enough to define ψ : Q→ R
by sending each q ∈ Q to the zero element of the fiber as-
signed by φ .

In fact it is necessary to understand the behaviour of fibers
and zeros under a homomorphism. It is clear that the image

of a zero is a zero. If q is a nonzero element of Q but ψ(q) is a
zero in R, then all the fibers of q are mapped to the same zero,
for ψ(αq) = αψ(q) which is the same zero for any α ∈ F .
On the other hand, if ψ(q) is not a zero, then the fiber of q
is mapped isomporphically (as vector spaces) to the fiber of
ψ(q). In particular, if ψ(1Q) is zero, then the homomorphism
is a zero homomorphism, for ψ(q) = ψ(q1Q) = ψ(q)ψ(1Q)
which is a zero for any q. This expresion also proves that if
ψ(1Q) is not a zero then it is 1R, the identity in R.

So far a homomorphism can be defined by setting which
fiber of R is the image of each fiber of Q and by setting which
fibers of Q are mapped to zero and which of them are mapped
isomorphically to their corresponding fibers. In the case of
interest of spaces free of zero divisors the result can be im-
proved.

Proposition 4.2. Let Q be a space of quantities free of zero
divisors and ψ : Q→ R a homomorphism of spaces of quan-
tities. Then ψ(1Q) = 0 implies ψ is a zero homomorphism,
while ψ(1Q) 6= 0 implies that each fiber is mapped isomor-
phically onto a fiber in R.

PROOF. The first part has already been proved. Assume now
that ψ(1Q) is not a zero and let q be a nonzero element of Q
which, thus, has an inverse q−1. Since ψ(1Q) = ψ(qq−1) =
ψ(q)ψ(q−1) is not a zero, we conclude that ψ(q) is not a
zero. Since its fiber is a one dimensional vector space, the
latter says that the fiber of q is mapped isomorphically to the
fiber ψ(q).

Of course, only the nonzero homomorphisms are of interest
for us to be able to compare spaces of quantities, so from
now on we only consider this kind of homomorphisms. The
following are basic properties of homomorphisms of spaces
of quantities.

Proposition 4.3. Let ψ : Q→ R be a nonzero homomorphism
of spaces of quantities. Then:

(i) the image of a subspace of Q is a subspace of R,

(ii) the preimage of a subspace of R is a subspace of Q,

(iii) the preimage of a section of R is a section of Q and

(iv) the preimage of a subsection of R is a subsection of Q.

PROOF. Let S be a subspace of Q, which is characterized, by
proposition 3.2, as S = dim−1

Q (E ) for a subgroup E of DQ.
The projection of its image is dimR(ψ(S)) = φ(dimQ(S)) =
φ(E ), which is a subgroup of DR. Since ψ is a nonzero ho-
momorphism, every fiber in S is mapped onto a fiber in ψ(S),
so we conclude that ψ(S) coincides with dim−1

R (φ(E )), so it
is a subspace of R.

Consider now S to be a subspace of R. Its inverse im-
age ψ−1(S) is made of the fibers which are mapped into S.
But these fibers are given by dim−1

Q (φ−1(dimR(S))). Since
dimR(S) is a subgroup of DR, so is φ−1(dimR(S)) with re-
spect to DQ and, thus, ψ−1(S) is a subspace of Q.
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Let σ be a section of R. Since all fibers of R are represented
in the section, it is clear that its inverse image, ψ−1(σ(DR)),
contains at least an element from each fiber in Q. We now
show that there is no more than one from each fiber. Assume
q1 and q2 are elements in the same fiber in Q with ψ(q1) and
ψ(q2) in the section of R. Then ψ(q1) and ψ(q2) belong
to the same fiber in R, which means ψ(q1) = ψ(q2) because
they are in a section. Therefore, since fibers in Q are mapped
isomorphically to fibers in R, this leads to q1 = q2.

Finally, considering a subsection as the intersection of a
subspace and a section in R it is clear that the inverse image of
such intersection is a intersection of a subspace and a section
in Q, thus, a subsection.

The kernel of a nonzero homomorphism ψ : Q→ R is de-
fined as kerψ = ψ−1(1R). Since {1R} is a subsection of R,
its inverse image defines, by proposition 4.3, a subsection in
Q. The image of a homomorphism, imψ = ψ(Q) is, by the
same proposition, a subspace of R. The kernel and the image
so defined satisfy an isomorphism theorem.

Theorem 1. Let ψ : Q→ R be a nonzero homomorphism of
spaces of quantities. Then

Q/kerψ ∼= imψ

as spaces of quantities.

PROOF. The first step is to check that the quotient of the the-
orem is indeed a space of quantities. Let us denote by K
the kernel of ψ , which is a subsection of Q. Thus, we only
have to show that the group of dimensions of Q/K is free
Abelian and, to that end, we have to identify the projection
of K on DQ. We claim this projection to be precisely the ker-
nel of the induced group homomorphism: dimQ(K) = kerφ .
Let q be in K. Then φ ◦ dimQ(q) = dimR ◦ ψ(q) = 1DR ,
so dimQ(q) ∈ kerφ which shows one inclusion. Now let
A be in kerφ , and let q be a nonzero element in the fiber
dim−1

Q (A). Then 1DR = φ(A) = dimR ◦ψ(q), so ψ(q) has di-
mension one and can be written as ψ(q) = α1R for a nonzero
α in F (since ψ is a nonzero homomorphism). Consider
the element q1 = α−1q. Then ψ(q1) = 1R, so q1 ∈ K and
dimQ(q1) = dimQ(q) = A, so A ∈ dimQ(K), which shows the
other inclusion and the claim is proved. The group of dimen-
sions of Q/K is, thus, DR/kerφ , which is isomorphic with
imφ by the isomorphism theorem for groups. Since imφ is a
subgroup of DR it is free Abelian, and so is DR/kerφ . There-
fore, Q/K is a space of quantities.

The rest of the proof is standard. Define the map ψ̂ :
Q/K → imψ by ψ̂(qK) = ψ(q). It is straightforward to
check, first, it is well defined; second, it is a homomorphism
of spaces of quantities; third, it is a bijection.

Example 4.4. Let us revisit example 3.8 from the viewpoint
of homomorphisms. Consider the map ψ : Qmech → Qenergy
given in the following form: the image of the quantity eV be
itself, while the image of the speed of light, c, be 1Qenergy as

well as the image of the reduced Planck’s constant, h̄. Then
kerψ = {cn : n∈Z}∪{h̄n : n∈Z} and imψ = Qenergy. The-
orem 1 says that Qmech/kerψ is isomorphic with Qenergy.

The next result is the classification theorem for spaces of
quantities free of zero divisors.

Theorem 2. Two spaces of quantities over the same field,
free of zero divisors, are isomorphic if and only if they have
the same rank.

PROOF. First consider two spaces of quantities Q∼= R. Then
there is an isomorphism ψ : Q→ R which induces a group
homomorphism φ : DQ→DR. We only need to show the lat-
ter to be an isomorphism for it is a well known result of the
theory of free Abelian groups that two such groups are iso-
morphic if and only if they have the same rank [26, Theorem
10.14]. But that is obvious since the map φ is nothing but the
rule which says which fiber in Q is mapped to what fiber in
R and, since ψ is an isomorphism, this mapping of fibers is a
bijection.

Second, assume Q and R are two spaces of quantites of the
same rank, that is, their groups of dimensions DQ and DR
have the same rank. Therefore, there is a group isomorphism
φ : DQ→DR and it defines a bijection of the fibers in Q with
the fibers in R. If we can assign a linear isomorphism between
each pair of fibers, we are done. To that end it is enough to
map a nonzero element of each fiber in Q with a nonzero ele-
ment of its corresponding fiber in R. Now, since both Q and R
are free of zero divisors, by proposition 2.8 each of them has
a coherent system of units, say σQ and σR, respectively. De-
fine a map ψ : Q→ R by giving its action on the set σQ(DQ)
so that the following diagram commutes,

Q
ψ−−−−→ R

σQ

x xσR

DQ
φ−−−−→ DR

and extend it linearly in each fiber. This map is easily seen to
be an isomorphism of spaces of quantities, so Q∼= R.

As a last example, we show that, up to isomorphism, the
example 2.9 is the only space of quantities over a group of
dimensions and a field free of zero divisors.

Example 4.5. Let Q be a space of quantities over the field
F with group of dimensions D and free of zero divisors. Let
σ be a coherent system of units and ν the map defined in
equation (4). Then the map ψ : Q→ F×D given by ψ(q) =
(ν(q),dim(q)) is an isomorphism of spaces of quantities. Its
inverse is ψ−1(α,A) = α σ(A).

This is to say that every space of quantities Q, free of zero
divisors, is isomorphic with F ×D . But the isomorphism is
not canonical, for it depends on the system of units chosen.
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5. CONCLUSIONS

A brand-new algebraic structure has been defined and studied
which fits exactly the algebra of quantity calculus. This struc-
ture is centered in the concept of dimension of a quantity as
its main property, and considers only integer exponents in the
combination of dimensions (and, thus, of units).

The axioms of definition 2.5 permit to deduce the usual
expresion of a quantity as the product of a number times a
unit, and to deduce the way the operations are usually per-
formed. In addition, it has been shown how to construct new
spaces from old ones by means of subspaces, tensor products
or quotients. The latter construction is seen to be the correct
interpretation of the usual procedure in physics, misleadingly
referred to as a change of units, which sets some universal
constant to 1. Finally, a characterization and classification has
been obtained in terms of the rank of the space of quantities,
that is, the rank of its group of dimensions. This classifica-
tion must be compared with that of Kitano [1], for they share
some elements in common, but are not equivalent.

Kitano studies a set of physical quantities under different
‘systems of units’, even though these systems of units may
have different number of basic units. In our approach, this
should be considered as different spaces of quantities. Ki-
tano then defines the relation V - U between the systems of
units V and U if every pair of quantities q and p which are
equal in U are also equal in V (equivalently, if every pair of
distinguishable quantities in V are also distinguishable in U).
This relation is a preorder in the set of systems of units. In
case V - U and U - V then U and V are said to be equiva-
lent. If the system U is supported by the algebraic structure
R×Qn and V by R×Qm, then V - U implies m ≤ n, and
U and V can be equivalent only if m = n. But the contrary
is not necessarily true, for there are systems of units with
m = n which are not comparable. An example of the latter
is given by the electrostatic and the electromagnetic systems
of units (esu and emu respectively). In the esu system the
quantities µ0/4π and 1/c2, where µ0 is the permeability of
empty space and c is the speed of light, are not distinguisable,
while 4πε0 is distinguishable from any of the former, being ε0
the permittivity of empty space. In the emu system, however,
4πε0 is not distinguishable from 1/c2, but µ0/4π is; there-
fore, these systems are not comparable. It must be stressed
that Kitano’s classification is based on physical grounds, not
algebraic ones, and thus is different from the one introduced
in the present paper as we see in the next paragraph.

Within the context of the algebraic fiber bundle introduced
in this paper, a similar preorder can be defined. We can write
Q - R for two spaces of quantities Q and R, over the same
field F and free of zero divisors, if there is a homomorphism
Q→ R which is an injection (i.e. a monomorphism). The in-
jection property ensures that different quantities in Q have dif-
ferent images in R. This is possible only if rankQ≤ rankR, as
can be easily seen, and moreover, this condition is sufficient.
Under this relation all spaces of quantities are comparable,
and their comparison depends only on their ranks, in contrast
with Kitano’s classification. Resuming the previous example,

the esu and emu systems can be understood as suitable quo-
tients of the MKSA system. The MKSA system of units is
defined in the space of quantities with group of dimensions
D = 〈L,T,M, I〉, of rank 4. In this space, the quantity 1/4πε0
has dimension L3T−4MI−2, while the dimension of the quan-
tity µ0/4π is LT−2MI−2. The esu system is obtained by mak-
ing the quantity 1/4πε0 equal to 1, that is, since the group
D can be written as D = 〈L,T, I,L3T−4MI−2〉, by taking the
quotient of the space of quantities which gives the group of
dimensions D/E , where E = 〈L3T−4MI−2〉, we thus, get a
new space of quantities of rank 3. The emu system, on the
other hand, is obtained by making µ0/4π equals 1, that is,
by the quotient in the group of dimensions D/F , where now
F = 〈LT−2MI−2〉, so it is also a new space of quantities of
rank 3. According to theorem 2, these two spaces of quanti-
ties are isomorphic, regarded as algebraic structures, although
Kitano’s classification states them, righteously from a physi-
cal point of view, as incomparable. Nevertheless, it must be
stressed that, under the algebraic theory depicted in this pa-
per, the MKSA system and the esu (or emu) system are not
different unit systems, but different spaces of quantities.

Finally, a comment on Domotor’s torsor theory, which ex-
plains, in a series of three papers [28, 29, 4], in a convenient
way, the passage from the state space of a physical measure-
ment device to the space of quantities. His description of tor-
sors is well suited to the algebraic structure of quantities given
by Drobot and subsequent authors up to Kitano, but the same
ideas may be adapted to the structure presented in this paper
so as to provide the same foundation of the aforementioned
passage. Indeed, the tool of torsors explains exactly, as he
shows in his paper, the structure of the fibers, each of which
is a vector space of dimension one.
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This communication reports technical notes on the development and application of an automated line-shape fitting procedure for wavelength
modulation spectroscopy (WMS). Near-infrared transitions of carbon dioxide (CO2) around 1573 nm were measured in vertical cold (non-
reacting) flow of CO2 at atmospheric pressure using WMS with demodulation at second harmonic frequency. Semi-empirical model based
on the set of so-called Gabor functions was developed and parameters of Lorentzian line-shape profile and its asymmetry resulting from
simultaneous frequency and amplitude response of the current-modulated semiconductor laser were determined. Nonlinear least-square
fitting procedure employing differential evolution algorithm was successfully utilized for performing this task. Line-shape fitting procedure
enabling efficient signal de-noising and background subtraction of wavelength modulation spectra was implemented into an open-source
code.

Keywords: gas sensing, spectroscopy, modulation, model, line-shape asymmetry.

1. INTRODUCTION

Tunable Diode Laser Absorption Spectroscopy (TDLAS)
has long been recognized as a well-established optical diag-
nostic tool for gas sensing in various environments (see e.g.,
[1] and references therein). In order to reduce low-frequency
noise inherent to direct TDLAS method, wavelength modu-
lation spectroscopy (WMS) [2] is usually preferred for mea-
surement of low absorption signals.

For analytical purposes it is always desirable to evalu-
ate line-shape profile [3, 4, 5, 6], rather then simply esti-
mate peak-to-peak parameters of WMS signal, which con-
tains less-robust information on molecular absorption and
spectral broadening. Therefore, line-shape fitting procedure
needs to be addressed in WMS post-processing scheme as
the level of uncertainties is a critical attribute of measurement
outputs.

Efficient signal de-noising and background subtraction is
a serious problem when detecting low-level absorption sig-
nals. Spectral coincidence of different absorption features
with molecular fingerprints of interest is another issue to be
solved for successful interpretation of WMS experiments.

Here we report an automated procedure which was devel-
oped in order to address these problems without the need for

prior spectral calibration of a particular WMS setup. The so-
lution is based on a novel analytical model of spectral line-
shapes relevant to WMS signals from absorbing molecules,
which may be present on an optical path of the respective
laser beam.

2. SUBJECT & METHODS

In a typical WMS setup, signal from the optical detector
is demodulated via analog or digital lock-in amplifier at the
n-th (which is often the second, i.e. 2 f ) harmonic frequency
of a current-modulated semiconductor laser radiation. The
simplest experimental configuration for 2 f –WMS consists of
a single optical path, which can include both probed volume
(with an analyte of interest) and a reference cell or gaseous
flow suitable for spectral calibration purposes.

The procedure, which is schematically described in Fig. 1.
was developed as a first step of our aim to perform quantita-
tive spectroscopy and species concentration measurements in
the given experimental setup. Gaseous flow of carbon dioxide
(CO2) at room temperature was utilized as a feasible refer-
ence for spectral calibration. Lorentzian spectral line profile
is therefore assumed to be appropriate for the given study.
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Fig.1. Procedural steps involved in fitting of new line-shape asym-
metry model.

Due to this assumption, applicability of the method reported
here is rather limited to experimental conditions when col-
lisional broadening dominates over the Doppler broadening
and other physical effects on spectral line shape.

Spectral line shapes were investigated primarily because
they contain crucial information for development of proper
data processing methodology as well as for optimizing the
overall performance of our experimental setup. Theoretical
model which we used for the given purpose enabled to effi-
ciently describe the characteristic profile of 2 f –WMS absorp-
tion signal.

Compared with more sophisticated line-shape fittings
methods, no further data on experimental setup (modulation
intensity, optical power change, etc.) or parameters of spec-
tral line position and width were required as model inputs.
Thus, we anticipate that the individual harmonic components
of 2 f –WMS signal can be estimated prior to spectral cali-
bration and determination of wavelength modulation response
function for the given semiconductor laser.

Finally, an automated line-shape fitting procedure has been
implemented in the Python programming language and its
open-source release in the form of interactive script is in
preparation.

2.1. Experimental setup
Measurements reported here were performed under atmo-

spheric pressure using the body of the burner designed ac-
cording to [7]. Two separate mass-flow controllers (Manufac-
turer: Bronkhorst High-Tech B.V.) were employed for feed-
ing the dryed air from a compressor (Manufacturer: JUN–
AIR/Gast Group Ltd.) into the central body of the burner
and carbon dioxide (Manufacturer: Air Liquide Deutschland
GmbH, purity 99.995%) to annular co-flow at volumetric flow
rates of Qv,air = 10 l/min and Qv,CO2 = 11 l/min, respectively.

Tuning range of distributed feedback (DFB) laser operat-
ing around 1.573 µm (Manufacturer: Eblana Photonics Ltd.)

was periodically (each 10 s) scanned by ramping up elec-
tric current at constant diode temperature maintained by laser
driver/controller (Manufacturer: Thorlabs Inc.).

Sine wave ( f = 11 kHz) was superimposed electronically
on repeating saw-tooth wave to modulate the lasing wave-
length. Signal from the amplified InGaAs photodetector
(Manufacturer: Thorlabs Inc.) was demodulated at second
harmonic (2f ) frequency by analog lock-in amplifier (Man-
ufacturer: Stanford Research Systems Inc.) and acquired on
digital oscilloscope (Manufacturer: Teledyne LeCroy GmbH)
at the sampling rate of 1 kS/s.

Finally, accumulation and averaging procedure (each 5
samples) was performed to increase the signal-to-noise ra-
tio (SNR), thus single measurement (averaged scan) was ob-
tained during a 50 s interval. Optical path length of the laser
beam through absorbing medium (CO2 coflow stream) was
increased by one reflection on the planar mirror, thus yielding
lp = 10 cm.

2.2. Theoretical model
Spectrally-broadened absorption line shape in an

atmospheric-pressure gaseous flow can be approximated
by area-normalized Lorentzian profile given by the function:

L =
a0

πa2

(
1+
(

τ−a1
a2

)2) , (1)

where a0, a1, and a2 are height (absolute maximum), cen-
ter and the half-width at half maximum (HWHM) of the
Lorentzian function L, respectively. Spectral profile is char-
acterized here in temporal domain (by τ ranging from τ = 0
s to τS = 10 s in our specific case) which is proportional to
ramping laser current.

Second derivative of L provides zeroth-order approxima-
tion of the 2f –WMS signal S2 f in case of pure frequency
modulation (FM) leading to fully symmetric spectral line
shape. Analytical form obtained after symbolic derivation
and simplification is given by:

d2L
dτ

=−
2a0a2

(
a2

2−3(a1− τ)2
)

π

(
a2

2 +(a1− τ)2
)3 . (2)

Fourier series expansion has been previously employed [2]
to derive 2f –WMS analytical expression of line-shape func-
tion and its asymmetry in a frequency domain.

However, unlike previous investigators [3, 4, 6], we report
here an alternative use of trigonometric series postulated by
Gabor [8] for representation of an arbitrary elementary signal.

Following notation given in (1), Gabor functions were re-
formulated into general form (for k = 0,1,2, . . . ,∞):

Γk,cos = αk cos
(

2πk
(τ−a1)

2a2
+φk

)
Gw, (3)

Γk,sin = βk sin
(

2π(k+ 1
2 )

(τ−a1)

2a2
+ψk

)
Gw, (4)
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Fig. 2. Spectral profile of R(16) absorption line of carbon dioxide
(2ν1+2ν2+1ν3 band) in temporal domain and results of line-shape
fitting procedure. Experimental data recorded at lock-in phase shift
Φ = −45◦ (with 30 ms integration time, 200 mV sensitivity and
100× signal expansion).

∞

∑
k=0

Γk =
∞

∑
k=0

(
Γk,cos +Γk,sin

)
. (5)

Here αk, βk, φk and ψk are amplitudes and phase shifts,
respectively, of the corresponding term (Gabor function) and
Gw is a width-adjusted (reduced) Gaussian distribution func-
tion described below in more details, see (6).

Only few terms of this expansion (for k = 0 and k = 1)
were considered as essential for our application. To further
limit the number of free parameters for least-square fitting
procedure, Γ0,cos term was constrained to zero (by assuming
φ0 = π

2 ). In spite of the fact, that 2f –WMS is in principle
zero background technique, significant offset value was ob-
served and thus had to be included into our model following
experimental trials. The offset value M was determined as an
arithmetic mean of the signal in an appropriate section of the
spectrum.

Gw =
a0

wσi
√

2π
exp
[
−
(

τ−a1

2wσi

)2
]
, (6)

where parameters a0 and a1 are height (absolute maximum)
and center of the respective Lorentzian function specified ac-

cording to (1). Initial value of standard deviation σi was deter-
mined from a2 which is proportional to σi

√
2ln(2). Width-

reduction parameter w of the Gw envelope was adjusted in
order to obtain best-fit representation of the residual signal
(Rn f = Sexp

2 f −
d2L
dτ

) by minimal set of Gabor functions. Ef-
fective parameters of three Gabor functions (Γ0,sin and both
terms of Γ1) were evaluated numerically by nonlinear least-
square regression (minimization) method yielding:

ρn f = Rn f −M−Γ0−Γ1 ≈ 0. (7)

First-order approximation of the 2f –WMS signal was thus
obtained as:

Sexp
2 f ≈ Scalc

2 f =
d2L
dτ

+Γ0 +Γ1 +M. (8)

3. RESULTS

Measurements were mainly focused on the region around
6360± 2 cm−1 where we observed three spectral lines as-
signed as R(14), R(16) and R(18) of the 2ν1+2ν2+1ν3 com-
bination band of CO2 [9]. Experimental data and final results
of the theoretical model are depicted in Fig. 2, trace (A).

Apparently, sum of correction terms (M + Γ0 + Γ1) pro-
vides suitable regression function for fitting the Rn f residual
with an excellent performance in the given case, see trace (B)
in Fig. 2. It is worth noting that the width of Gaussian enve-
lope relative to initially estimated HWHM (a2) of Lorentzian
function had to be reduced (to w ≈ 0.5) in order to achieve
appropriate best-fit representation.

Physical interpretation of Gabor function can then be an-
ticipated from the trace (C) in Fig. 2. As n is odd for line-
center asymmetric components of WMS signal, Γ0,sin and
Γ1,cos terms are attributable to effect of 1f and 3f modulation,
respectively. In analogy, Γ1,sin term resembles contributions
from even n (e.g., 4f ) harmonics.

4. CONCLUSIONS/DISCUSSION

Based on results summarized in the previous section we
presume that the model reproduces some intrinsic features of
WMS signal and provides an interesting alternative to non-
physical methods for signal de-noising, e.g., discrete wavelet
transformation (DWT) [10]. This new model can also pro-
vide initial inputs for physically sound theoretical models,
enabling to estimate spectral response and phase-shift param-
eters (e.g., [3, 6]) from experimental line-shape profiles.

We can conclude that the entire procedure reported in
this communication enables to automatically derive analyt-
ical description of line-shape asymmetry (i.e., instrumental
function) corresponding to the specific experimental setup.
Therefore, it has a capability to provide important inputs for
simulation of complex absorption spectra when dealing with
quantification of concentration or temperature fields in non-
homogeneous gaseous flows (e.g., in laminar flames) based
on the 2f –WMS technique.
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An open-source software implementation of an automated
line-shape fitting procedure is convenient for further develop-
ment or modifications in frame of various researches as well
as educational activities. Extension of the model appropriate
for fitting the spectral lines with Voigt profile is in progress
[11].
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The authors describe experimental and theoretical analyses of faults of power transformer winding. Faults were caused by mechanical 
effect of short-circuit currents. Measurements of transformer were carried out in high-voltage laboratory. Frequency and time diagnostic 
methods (method SFRA - Sweep Frequency Response Analysis, impact test) were used for the analyses. Coils of transformer windings 
were diagnosed by means of the SFRA method and the time impact test. The analyzed methods had a significant sensitivity to a relatively 
small deformation of coil. In the analysis a new technique for analyzing the effects of short-circuit currents is introduced. This technique is 
developed for high-voltage transformers (different types of power). The proposed analyses show that it is necessary to analyze the value of 
short-circuit current. Short-circuit current represents a danger for the operation of the power transformer. The proposed approach can be 
used for other types of transformers. Moreover, the presented techniques have a potential application for fault diagnosis of electrical 
equipment such as: transformers and electrical machines. 
 
Keywords: Fault, short-circuit, transformer, diagnostics, frequency. 
 
 
 
 
1.  INTRODUCTION 

Maintenance diagnostics of short-circuit currents of 
transformers should be carried out to increase the reliability 
in real trouble-free process. The short-circuits in operation 
are commonly caused by different faults such as: 
mechanical damage of insulation, electric insulation 
breakdown (caused by voltage), over heating fault, or open 
circuit fault [1]. 

The short-circuit is a serious fault for the transformer. 
High electric currents can damage the device easily. Electric 
currents cause high temperature of windings therefore their 
isolation is damaged. However, high electro-magnetic forces 
are much more dangerous. Electro-magnetic forces can 
damage the transformer permanently. 

It is necessary to pay attention to higher reliability of 
power transformers, due to possible failures of an electric 
system and because of their cost. 

Windings of the power transformer should be designed to 
avoid mechanical and thermal faults caused by short-circuit 
currents. Permanent deformations and gradual aging process 
of the electrical device are often caused by short-circuit 
current. Gradual aging process can worsen its mechanical 
properties. Heat shocks often cause decrease of mechanical 
properties of the transformer. Next it can cause unexpected 
damage of transformer during its operation.  

Vibration based fault diagnosis of transformer winding 
was presented in the literature [2]. Fault diagnosis of power 
transformers using dissolved gas analysis was presented in 
the literature [3]-[7]. Electrical parameters of transformers 
were analyzed [8]-[10]. Signal processing and classification 
methods were also used for proper fault diagnosis of 
transformers [11]-[14] and other types of machines [15]-
[18]. 
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To prevent the faulty state of transformers, the authors 
performed different types of diagnostic measurements. The 
measurements should illustrate a current state of the 
measured power transformer. It is essential to select a proper 
diagnostic method for the recognition of faulty state.  

In the analysis a new technique for analyzing the effects of 
short-circuit currents is introduced. This technique is 
developed for high-voltage transformers (different types of 
power). 

The authors focused on short-circuit of the transformer 
windings. The effect of magnetic field on conductor current 
causes the creation of forces. Mentioned forces have effect 
on coils of windings.  

The electric currents of the transformer do not exceed 
rated values for normal operation. The electromagnetic 
forces effecting on transformer winding are low. The 
currents of short-circuits can reach the multiple of rated 
values of the transformer. 

Then the forces can become dangerous for transformer 
coils of windings, electric and magnetic circuits, taps and 
the whole construction. 

The short-circuit forces affecting on windings can be 
divided into two groups [19]: 

• radial (cross), 
• axial (longitude). 

Radial forces are caused by electromagnetic lengthwise 
fields. They act in the radial direction. Radial forces are 
generated by leakage flux density and the current. They are 
paralleled with the axis of transformer winding. Radial 
forces extend external high-voltage windings. They also 
compress internal low-voltage windings. For this reason, the 
air interspaces are bigger. 

Axial forces act in the axial direction. Similar to radial 
forces, axial forces are generated by leakage flux density 
and the current. They are dangerous from the center to 
border of coil. In this area of transformer the magnetic field 
has the high value in up and down edge of winding. Axial 
forces can reach dangerous values of short-circuits forces. 
They can also deform the outer high-voltage coil [19]. 

 

 
 

Fig.1.  Simulation deformation of coil of the high-voltage 
winding (22 kV). 

 
According to the literature [19] it is required to pay more 

attention to catching the outer high-voltage coil of winding. 
In case of a loose coil, the short-circuit axial forces Fd result 
in a vertical shift of outer coils of winding. The excessive 

pressure on spacers can press on the coil insulation and shift 
the winding. It can also cause serious damage to the 
transformer windings.  

Fig.1. shows the simulation deformation of coil of the 
high-voltage winding (22 kV). It is influenced by radial 
forces (permanent shift of winding). 

Fig.2. shows the simulation of pressure stress and 
permanent deformation of outer coil of winding. It was 
caused by short-circuit of the transformer. Axial forces are 
also proportional to the maximum current of the short-
circuit. Even with a little imbalance between the windings, 
this force can be increased. 

 

 
 

Fig.2.  Permanent deformation of outer coil of winding. It was 
influenced by pressure stress from axial force (5 % per unit 
imbalance of the windings).  

 
Based on theoretical and simulating analysis it can be 

noticed that the analysis of dangerous short-circuit forces is 
essential. It is necessary to determine the possible effects of 
short-circuit. It can also change the insulating state and the 
mechanical state of transformer. 

 
2.  EXPERIMENTAL DIAGNOSTIC METHODS OF TRANSFORMERS 

The main problem of current energy transmission and 
distribution is that the measured data from the diagnostic 
measurements are not analyzed so much. There are 
problems to find scientific databases of such signals. 
Therefore, it is problem to assess the technical state of 
power transformers depending on their residual lifetime. A 
fault can occur in an unpredictable time of operation. The 
result of this can be the power failure for a short or a long 
time. It is needed to analyze the measured and computed 
values of parameters. It is based on knowledge of exposure 
to adverse effects of specific electrical equipment.  

Achieving objectives by using the measurements can help 
to explain the adverse effects of short-circuit and propose 
new diagnostic techniques. Moreover, it is possible to detect 
an approaching fault of the electric device. Some steps may 
be also proposed in advance (e.g. repair of transformer) 
[20], [21]. 

The authors consider the influence of overvoltage, 
switching currents, short-circuit forces. Following 
measurements can be carried out for analyzed power 
transformers: 
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• measurements of transformer impedance depending on 
the frequency characteristics. It can be carried out using 
the SFRA method, 

• time measurements of transformer coils. It can be 
carried out using impact test - high-voltage pulse 
source, 

• measurements of impedance, resistivity of power 
transformer windings, 

• analysis of the transformer oil, 
• measurements of electric currents, voltages, insulation 

resistances using methods: RVM - Relevance Vector 
Machine, PDC - Polarization and Depolarization 
Current, 

• measurements of loss factor and capacity, 
• measurements of isolation parameters of the power 

transformer with application of dielectric spectroscopy, 
• measurements of temperature of the transformer 

winding using FBG - Fiber Bragg Grating [22], 
• selected variant of measuring methods. 

Different measuring methods and diagnostic techniques 
can be used for fault diagnosis of transformers such as: 
analysis of acoustic emission, thermal images, 
electromagnetic radiation, analysis of temperature and 
moisture of transformers. The mentioned techniques can be 
used for detection of the effects of overvoltages and short-
circuits. Effects of overvoltages and short-circuits can 
damage coils of the transformer. Repair of power 
transformer costs time and money. Mentioned techniques 
can be applied for disconnected power transformer [23]. 

 

 

 
 

Fig.3.  Analysed power transformer with defect  
of the coil of phase A. 

 
3.  EXPERIMENTAL ANALYSIS OF THE POWER TRANSFORMER 
22 / 0.4 KV 

On the basis of theoretical analyses of effects of short 
circuit, there were selected individual diagnostic and 
measurement methods for measurements on a power 
transformer 22 kV / 0.4 kV with defect on the high-voltage 
phase – coil A (Fig.3.).  

Important task was to compare measured curves of single 
transformer winding and the sensitivity of the two 
diagnostic methods – high-frequency method SFRA (Sweep 

Frequency Response Analysis) and the method of the time 
analysis of high voltage impulse by impact test. Frequency 
and time method (SFRA and impact test) can determine the 
frequency or time response of characteristic quantities of 
affected by impedance and phase of transformer.  

There is no need of changing of construction of the 
measured machine for both diagnostic techniques. They are 
also analyzed for disconnected transformer [24]. 
 
4.  MEASUREMENT OF THE TRANSFORMER USING FREQUENCY 
METHOD 

The power transformer diagnostics set up uses the 
frequency  scale from 20 Hz to 10 MHz at source voltage 
0.2 – 20 Vpp, and output impedance 50 Ω using the Megger 
FRAX 150, (Fig.4.). 

 
 

Fig.4.  SFRA measurement connection using the Megger FRAX. 
 
Mentioned analyzer can be used for magnetic core defects 

and detecting winding shifts of power transformers. The 
parameters of device are following: sampling rate 100 MS/s, 
absolute accuracy ± 0.5 dB for dynamic range -130 to 
+20 dB. The analyses were carried out for no-load and 
short-circuit states. 

 

 
 

Fig.5.  Block diagram of measurements of power transformer. 
 

For low frequencies (up to 1 kHz) measured curves were 
good visible. For frequencies (1 kHz to 100 kHz) problems 
related to shift of windings turn-to-turn fault occurred [25]. 
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For higher frequencies (>100 kHz) the faults related to 
short-circuit forces may appear. 

The process of fault analysis on the transformer by 
measurement of the SFRA method with impact test is shown 
in Fig.5. Differences between measured frequency curves 
are analyzed by value of relative factor Rxy. This analysis is 
based on calculation of normalization factor covariance 
using equations (1), (2) and (3). 

The short-circuit test detected winding state of the 
transformer. It showed deformation of internal winding. It 
also showed its shift as an activity of short-circuit. The 
impedance depending on frequency for short-circuit and no-
load states was presented in Fig.6. 

 

 
 

Fig.6.  Impedance depending on frequency for short-circuit  
and no-load states. 

 
Impedance depending on frequency of three windings of 

the power transformer of no-load test is depicted in Fig.7. In 
the Fig.7. we can see deformation of the coil A. This 
deformation occurred in the range of 1-10 kHz. Different 
values of B-C impedance mean damage of coil A for star 
connected transformer. 

 

 
 

Fig.7.  Impedance depending on frequency of the power 
transformer of no-load state. 

 
Relative factor Rxy was used for analyses of differences 

between analyzed states. 
For the analysis the authors used the equations (1), (2) and 

(3): Computation of the two compared standard variances is 
following: 
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where X(k) and Y(k) are values of curves of analysed phase 
connection A-C and B-C, N is the number points. 

Computation of the two compared covariances: 
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For computation of two analyzed states the authors used 
Normalization factor of covariance. 
 

YX

XY
XY DD

CR =                             (3) 

 
In the frequency range from 1 kHz to 100 kHz, the value 

of Rxy was equal to 0.35 for no-load state. Magnitude 
depending on frequency for winding-phase A-C and B-C 
was depicted (Fig.8.). 

 

 
 

Fig.8.  Magnitude depending on frequency  
for winding-phase A-C and B-C. 

 
Analysis (Fig.8.) showed deformation anomaly due to 

short-circuit of the transformer. Damage to the power 
transformer is the result of damage of the phase coil A 
(visual damage in the Fig.3.). 
 
5.  TIME ANALYSIS OF THE TRANSFORMER 

Time method using the impact test is often used for 
analysis of the insulation between coils. It is also used for 
detection of the attenuated winding sections of electrical 
machines (also transformers). This method allows us to 
verify early states of the coil faults. Short-time voltage 
pulses are used for the winding in order to form a voltage 
gradient across the coil of the winding. The coil dampens 
oscillations through transient sinus form at the time intervals 
among pulses. Each transformer winding has unique 
character of response. It can be analyzed by oscilloscope. 
Wave form is influenced by transient circuit depending on 
the winding inductance and inside capacity of the pulse 
generator. A diagram for the impact test method of three-
winding power transformer is presented in Fig.9.  
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Fig.9.  A diagram for the impact test method of three-winding 
power transformer. 

 
Voltage of coils A and B depending on time was shown in 

Fig.10. It compares time curves of pulse test measurement 
of the transformer. 
 

 
 

Fig.10.  Analysis and comparison of transformer coils  
A and B using impact test. 

 
The differences between voltage of two coils can be 

noticed in the range of 0-350 ms. Measurement was carried 
out using test of two coils. Phase of coil A is influenced by 
short-circuit. Phase of coil B is well visibly. The decrease of 
amplitude at the interval 2 (151-350 ms) is caused by 
change of the resistance and capacitance. It was caused by 
damaged insulation of coil A. State of the transformer 
windings can be detected if we know single curves overlap 
(with similar fault-free curve). Mutually shifted dependents 
indicate the permanent damage of one coil. Next it analyses 
time and amplitude differences between states. Two 
impulses were analyzed for two intervals. The values of 
amplitude coefficient related to respective ratio at time 
intervals were showed in Fig.11. For pairs of coils A-B and 
A-C at interval 0-150 ms, the maximum value of ratio is 
equal to 5.47. At time interval 150-350 ms, the maximum of 
ratio is equal to 8.11. The lower value of amplitude was for 
pair of fault-free coils B-C. The short-circuit as well as 
permanent deformation of coils A-C had higher value of 
amplitude. 
 

 
 

Fig.11.  Ratio of amplitude of analyzed coils A-C, 
B-C of the transformer. 

 
6.  CONCLUSIONS 

In the paper the authors showed the importance of 
knowledge about theoretical and experimental analysis of 
the effect of short-circuit forces. Measurements of 
transformer were carried out in high-voltage laboratory. The 
analyzed short-circuit forces caused non-reversible 
deformation of the winding of the power transformer. The 
proposed analyses showed that the effects of short-circuit 
current need proper diagnostic and measuring methods. 
Analyzed state of the transformer was dangerous for 
operation. Coils of transformer windings were diagnosed by 
means of the SFRA method and time impact test. The 
analyzed methods had a significant sensitivity for small 
deformation of coil. The proposed methods allowed us to 
analyze short-circuit of the coil of the transformer winding. 
The advantage of analyzed methods is that they can also 
detect the fault area in the transformer or its winding. 

Fault diagnosis measuring methods should be developed to 
increase the reliability of electrical equipment. The proposed 
approach can be used for other types of transformers. 
Moreover, the presented techniques have potential 
application for fault diagnosis of electrical equipment such 
as: transformers and electrical machines. 

In the future, the authors will analyze the effects of other 
short-circuit currents. The authors will also measure 
dielectric parameters of transformers. It would be also a 
good idea to analyze moisture of the insulating paper and 
the conductivity of the oil transformer. 
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The present paper focuses on the analysis of the possibilities of using integral transforms for measuring and evaluating the differences of 
compared images (car silhouettes) with the purpose of a correct car body categorization. Approaches such as the light intensities frequency 
change, the application of discrete integral transforms without the use of further supplementary information enabling automated data 
processing using the Fourier-Mellin transforms are used within this work. The calculation of the several metrics was verified through 
different combinations that implied using and not using the Hamming window and a low-pass filter. The paper introduced a method for 
measuring and evaluating the differences in the compared images (car silhouettes). The proposed method relies on the fact that the integral 
transforms have their own transformants in the case of translation, scaling and rotation, in the frequency area. Besides, the Fourier-Mellin 
transform was to offer image transformation that is resistant to the translation, rotation and scale. 
 
Keywords: Automatic measurement system, Fourier-Mellin transform, image analysis, Body in White (BIW), car silhouettes. 
 
 
 
 
1.  INTRODUCTION 

Even when it has been long known that perceived quality is 
one of the most important factors underlying the success of 
car manufacturers today [1], sometimes some of the more 
conventional methods used for quality control in the 
automotive industry are regarded as outdated and ineffective 
to a certain extent. Thus, given this importance of product 
control in the manufacturing process and the challenging 
nature of ensuring that the quality of each product meets the 
standards required by the clients in an efficient and effective 
manner, the combined use of such conventional (manual) and 
new automated methods of control have been gaining more 
and more popularity in recent years and significant research 
has been focused on the topic. 

In the middle of all these needs for quality control and 
measurements, automatic computer vision has particularly 
and increasingly become an important tool in the 
measurement for the evaluation of quality and in the 
recognition of several types of effects in the automotive 
industry, see the relevant works appearing in [2] for a better 

understanding of this. The main goal of a vision measurement 
system lies in trying to emulate, to a given extent, some of the 
human vision, sense, image and scene evaluation capabilities, 
and this by electronic and informatics means involving tasks 
as recognition, digitalization and evaluation, among others. 
If, for example, a measured input is sufficiently accurate and 
does not require specific difficult processing of input data 
(images), the system can autonomously react to it and good 
results are reachable relatively easily. On the contrary, if the 
same system were to be implemented into a real environment, 
and its inputs were not images with clearly and distinctly 
defined objects of a constant size, rate and observation angle, 
the whole process would not be so easy and those images 
would require significant pre-processing to get the proper 
reaction from the system. Similarly, the accuracy of 
measurements also depends on a delicate process of offline 
calibration, and in some practical applications, the system is 
even supposed to be reconfigured on an almost continuous 
basis so as to track the target that an online calibration 
requires [3]. In the end, the main goal of all this reflects and 
enhances the need of building an automatic measurement 
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system for quality control in the automotive industry without 
the requirements of constant or frequent human interference. 
This proposal should be also general and wide enough so that 
it can be used in other branches of manufacturing.  

Automated visual measuring is known to be an image-
processing method that has been widely applied over the 
years in the production line for quality control purposes [4], 
[5]. This focuses on mechanical parts, vehicles, casting 
production and even the garment industry [6], [7]. Inspection 
tasks, however, are time consuming and have been usually 
and mostly carried out through human intervention, i.e.: 
human inspectors. On the other hand, the inspectors' 
performance has been often a subject of debate in the 
scientific community and practice, making some authors state 
and prove to an extent that this is often inadequate and its 
accuracy is influenced by the fatigue of the intense and 
repetitive tasks. In addition, human inspectors need training 
which together with the needed skills implies investments and 
time to develop. Also, if compared to machines, the hours of 
human inspectors are relatively limited, and labor costs are a 
major factor posing a challenge for most manufacturers trying 
to compete in a densely populated and competitive 
marketplace [8]. On the other hand, an automatic 
measurement system needs almost no human presence and 
thus, eventually, this translates into more time available to the 
experts to better and more effectively work in the 
measurement and to analyze the composite image data 
increasing the speed and effectiveness of their work [9]. 

Some of the key advantages of computer machine vision 
measurement systems lie in the use of contactless non-
destructive measuring [10], the use of ultraviolet and infra-
red radiation for the exploring and inspection tasks, as well as 
in the augmented flexibility allowing for immediate changes 
of system configuration and the possibility of parallel 
measuring of more parameters at the same time. These types 
of systems are applied in many areas of society, for example: 
in traffic, medicine, manipulators and robotics [11], [12], 
assembly cells, production of synchronous DC motors [13], 
welding [14] and of course, in quality inspection. 

In this study, as it is in principle similarly stated in [15], an 
automatic measurement system is understood and seen as an 
optical system with image detection and verification which is 
to be used for the detection and proper categorization 
(classification and sorting) of car silhouettes. One of the most 
problematic issues for the automatic measuring system relates 
to the comparison of the recorded images with a reference 
template, i.e.: car silhouette template comparison [16]. 
Besides, the system also needs to possess the ability to detect 
whether the given casting is faultless or defective.  This last 
task is relatively easy for the human eye and mind, because 
humans have experience which has been in many cases 
cumulated since birth. However, this same problem is 
difficult to process for a computer, getting computers to fully 
understand things and the effects of the surrounding world 
has been a myth for long and still is a present challenge for 
science. 

During the car production/assembly phase, it is highly 
necessary to monitor and control the production process to 
detect potential errors of different types and nature and, 

among other things, to also sort the car bodies by specific 
models and distribute them according to their type and the 
place where such parts are required, see Fig.1. One of the key 
parts of the process is the one related to the creation of the 
Body in White (BIW) assemblies. In the process of their 
obtaining, all models of cars are welded on a single line. This 
welding line almost always contains samples of welded car 
bodies of all models which are to be compared with the ones 
being produced every single time. Here an automatic visual 
measuring system plays a decisive role in the quality of the 
car bodies, and robots are mainly the ones responsible for 
"seeing, comparing, and controlling that these match what the 
ideal car of a given model should look like, in other words: 
they are to compare the model of a given product with its 
equivalent product being manufactured at a given time. 

 

 
 

Fig.1.  3D inline measuring technology from ZEISS [17]. 
 

Another possible application for this type of automated 
system is found in the distribution of the BIW to the 
respective assembly halls/lines, in other words, in the sorting 
of these according to individual car body types. 

Taking into consideration all the above-mentioned 
elements, in this paper we propose a method that compares 
the reference image with the tested image using the amplitude 
and phase spectra of the Fourier-Mellin transform, also their 
invariability to translation, rotation and scale. Given that the 
Fourier-Mellin transform reduces the mutual rotation of the 
images along the horizontal axis and the shift in scaling along 
the vertical axis, then any two images, one of which may 
offset, rotated and/or with a change in scale, have identical 
Fourier-Mellin transform amplitudes. For comparison 
purposes and/or the determination of the level of similarity, 
we used in the paper several metrics, for example the phase 
correlation and percentage comparison analysis. 
 
2.  SUBJECT & METHODS 

A phase-only correlation technique/method that is based on 
Fourier-Mellin transform was used in the automatic 
measurement system for the purposes of image analysis and 
comparison.  
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A.  The basics of the Fourier-Mellin transform 
The Fourier-Mellin transform allows comparing images 

which are offset, rotated and have changed scale. This method 
takes advantage of the fact that the shift differences are 
annulated because the amplitude spectrum of the image and 
its displaced copy are identical, only their phase spectrum is 
different. Subsequently the log-polar transform causes the 
rotation and scale to appear outwardly as a shift. On the other 
hand, phase correlation is based on the fact that two similar 
images in a cross-spectrum create a continuous sharp extreme 
in the place of registration and the noise is distributed 
randomly in discontinuous extremes. 

This is the reference image a(x, y) and tested image b(x, y), 
that happens to be the copy of the image a(x, y) and is rotated, 
translated and has changed scale. 

In the case of the Fourier transform of images (1), it applies:  
 

A(u,v)=F{a(x,y)}=|A(u,v)|e-jθ(u,v)  
B(u,v)=F{b(x,y)}=|B(u,v)|e-jθ(u,v)                (1) 

 
where |A(u,v)|, |B(u,v)| are the spectral amplitude, θ(u,v) is the 
phase, F{. }𝑖𝑖s the Fourier transform [16]. 

On the other hand, the Fourier transform of log-polar 
amplitudes is equivalent to the Fourier-Mellin transform [18]. 
Next, we detail the following cases: 

 
a) The log-polar transform of amplitudes |A(u,v)|, |B(u,v)| 

from the Cartesian coordinate system to the log-polar 
coordinate system. 

 
The Fourier transform is displayed next in a log-polar plane 

as indicated by the transformation of coordinates, Fig.2.  
 

 
 

Fig.2.  Transform of rectangular to polar coordinates. 
 

In order to convert from Cartesian to log-polar coordinates 
we do as stated in (2): 

 
r = �x2 + y2                                (2) 

 
The beginning of the log-polar coordinate system (m0, n0) 

should be in the middle of the video matrix, and this in order 
to ensure the maximum number of pixels possible. 

The maximum sampling radius for the conversion will be 
defined as in (3): 

 
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = min(𝑚𝑚0, 𝑛𝑛0) … 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = min(𝑚𝑚0, 𝑛𝑛0) … 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐           (3) 

 
The relationship between the polar coordinates (ρ, θ), used 

for the samples of the test image, and the log-polar image 
(er,θ) is explained by (4): 

 
(ρ, θ)=(𝑒𝑒r, 𝜃𝜃)                              (4) 

 
For mapping the pixels of the test image (xi, yi) to the 

pixels of the output image (rm, θn) (5) was used, see [19], 
where (𝜌𝜌𝑚𝑚 , 𝜃𝜃𝑛𝑛) = (𝑒𝑒𝑟𝑟𝑚𝑚 , 𝜃𝜃𝑛𝑛) 

 
𝑥𝑥i = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜌𝜌m. cos 𝜃𝜃n + 𝑚𝑚0) 
𝑦𝑦j = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜌𝜌𝑚𝑚 . sin 𝜃𝜃n + 𝑛𝑛0)                    (5) 

 
b) Fourier transform of log-polar amplitudes (6). 
 

𝑨𝑨ip(𝝊𝝊, 𝝎𝝎) = 𝐹𝐹��𝐴𝐴ip(𝑒𝑒r, 𝜃𝜃�� 
𝑩𝑩ip(𝝊𝝊, 𝝎𝝎) = 𝐹𝐹��𝐵𝐵𝑖𝑖p(𝑒𝑒r, 𝜃𝜃��                      (6) 

 
In this case the log-polar transform of the amplitude 

spectrum causes the rotation and scale to be shown as a 
translation, these can be better understood from the 
compound figure that appears below, where the amplitude 
and the phase spectrum of the Fourier transform of the real 
image of the car part appears in a), and its Fourier spectrum 
in log-polar coordinates is shown in d). 

 

 
 

a)  b) 

  
c) d) 

 
Fig.3.  The amplitude and the phase spectrum of the Fourier 
transform: a) Original image, b) Fourier spectrum amplitude in the 
Cartesian coordinates, c) Fourier spectrum phase in the Cartesian 
coordinates, d) Fourier spectrum in log-polar coordinates. 
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B.  Comparison of the observed images of measured objects 
and their mutual interaction 

In general terms the use of the Fourier-Mellin transform 
reduces the mutual rotation of images to translation along the 
horizontal axis, and also the change of scale to vertical axis 
translation [20]. Both of these cases/spectra were compared. 
These authors analyzed two images, one of which was moved 
and/or rotated and/or had the scale changed, and they proved 
that both ended up having identical amplitude of Fourier-
Mellin transform. Based on this study, reference designs were 
compared in our case with test images in order to determine 
the degree of similarity and correlation between them for the 
purposes of our automatic measurement system.  

Besides, several well-known and other more specific 
metrics were also used for the calculation of a comparative 
score helping to evaluate the results of the comparison of the 
obtained images. This score/metrics quantifies the similarities 
between the test image and the reference image. The 
calculation of the metrics has been verified in different 
combinations, and this with or without the application of the 
Hamming window, and similarly with or without the 
application of the low-pass filter. The representative metrics 
are used to determine the similarity between reference and 
test images. These metrics are detailed next. 

 
POC, Phase-Only Correlation 
This comparative metric is calculated as the maximum 

phase correlation according to (7), where F stands for Fourier 
transform of images a, b, F–1 is the inverse Fourier transform, 
and F* is the complex conjugate image [20]. 

 
C = 𝐹𝐹−1 � 𝐹𝐹𝑎𝑎𝐹𝐹𝑏𝑏

∗

|𝐹𝐹a||𝐹𝐹b|�                               (7) 

 
The phase correlation gives a distinct maximum if two 

images are similar. On the contrary, a more insignificant 
maximum will be created if two images are not similar. The 
size of the maxima is used as a measure of similarity between 
two images. 

 
MPOC, Modified Phase-Only Correlation 
Since the energy of the signal is lower in the high-frequency 

domain, phase components are not reliable in high-frequency 
ones [16]. The effect of unreliable phase components in high 
frequencies can be limited by using filters or modifying the 
POC function by using the spectral weighting function. 

The function of spectral weighting W(u,v) has been used to 
improve the detection by removing minor ingredients with 
high frequency, which have a low reliability, where u, v are 
2D coordinates, β is a parameter, which checks the width of 
the function, and α is used only for normalizing purposes (8) 
[21].  

 

W(u,v)= �𝑢𝑢2+𝑣𝑣2

𝛼𝛼
� 𝑒𝑒−𝑢𝑢2+𝑣𝑣2

2𝛽𝛽2                        (8) 
 
 
Such a modified image phase correlation function of a and 

b appearing in (9) is given by [27].   

𝑞𝑞�𝑎𝑎,𝑏𝑏(𝑥𝑥, 𝑦𝑦) = 𝐹𝐹−1 �𝑊𝑊(𝑢𝑢, 𝑣𝑣) 𝐹𝐹𝑎𝑎(𝑢𝑢,𝑣𝑣)𝐹𝐹𝑏𝑏
∗(𝑢𝑢,𝑣𝑣)

|𝐹𝐹𝑎𝑎(𝑢𝑢,𝑣𝑣)||𝐹𝐹𝑏𝑏(𝑢𝑢,𝑣𝑣)|�        (9) 
 
The extreme value of a function 𝑞𝑞�𝑎𝑎,𝑏𝑏(𝑥𝑥, 𝑦𝑦) is invariable at 

the change of shift and brightness. In our case, this value was 
used to measure the similarity of images: if two images are 
similar, their function MPOC gives a crisp extreme, if they 
are different, then the extreme decreases considerably. 

 
PD, Percent Discrimination 
This metric has relative amount of similarity between 

reference and test image as seen in (10) [22]. 
 

PD = 2[𝐶𝐶𝑎𝑎𝑎𝑎]𝑚𝑚𝑚𝑚𝑚𝑚
[𝐶𝐶𝑎𝑎𝑎𝑎]𝑚𝑚𝑚𝑚𝑚𝑚+[𝐶𝐶𝑏𝑏𝑏𝑏]𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥100%             (10) 
 

where: [𝐶𝐶𝑎𝑎𝑎𝑎]𝑚𝑚𝑚𝑚𝑚𝑚¸[𝐶𝐶𝑎𝑎𝑎𝑎]𝑚𝑚𝑚𝑚𝑚𝑚, and [𝐶𝐶𝑏𝑏𝑏𝑏]𝑚𝑚𝑚𝑚𝑚𝑚 are maximal 
phase correlations if they are compared to a reference image 
a(x, y) with itself, tested image b(x, y) with itself, and the 
reference image a(x, y) with the image b(x, y). 

These metrics were used to compare the log-polar 
amplitudes of Fourier-Mellin transform of images. 

 
C.  A functional testing of the proposed method  

Designs of car body silhouettes available over the internet 
have been used as an example for the functional testing of the 
proposed method, see Fig.4. For the image comparison 
purposes, 3 basic car silhouette samples were considered, and 
10 images were used for each case what yielded a total of 30. 
Besides, in order to obtain better and more reliable results, a 
series of extra comparison tests were conducted where each 
image was compared with the others and itself, what in the 
end generated a total of 90 tested images. It is important to 
underline that 30 of these were comparison of correct (right) 
pairs and the remaining 60 of incorrect ones.  

 

 
 

Fig.4.  The design of car bodies, Stock Vector Illustration. 
Silhouette cars on a white background. 

 
The before-mentioned metrics Maximum phase correlation 

(POC, Phase Only Correlation), Modified phase correlation 
(MPOC, Modified Phase Only Correlation), Percentage 
comparison (PD, Percent Discrimination)) were used to 
determine the similarity of the reference and test images – 
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mismatch match 

calculation of the comparison score. The calculated score was 
compared with the threshold value, which determines the 
degree of correlation necessary for the comparison to be taken 
as a match.  

The different threshold values t regulating the decision-
making process were set based on several performed tests: 
• images generating a result higher than t are evaluated as 

identical or highly similar, i.e.: it can be stated it is the 
same car body, 

• images generating results lower than or equal to t are 
regarded to be inconsistent, i.e.: it cannot be stated it is the 
same car body. 

The possible decisions resulting from the system are of the 
type: match, mismatch, and no consistent result at all. It is 
however possible to find varying degrees of strong matches 
and mismatches.  

The number of correctly rejected and correctly accepted 
images depends on the threshold value defined, see Fig.5. The 
value is adjustable depending on the requirements of the 
process, what may make the system more or less accurate in 
some cases. As the test results showed, the thresholds values 
t of the relevant criteria was set as follows: 

 
• threshold values I. 
• threshold values II. 
• selected threshold value t 
• it's not the same car body 

• minimum of the correct pairs 
• maximum of the wrong pairs 
• maximum of the threshold 

values I. and II. 
• score ≤ threshold value 
 

 
 
 
 
 
 
 
 

 
 

 
Fig.5.  Comparative score issuing a match  

and/or mismatch of images. 
 
3.  RESULTS 

In our particular case, the images were adjusted to 256 
shades of grey and to the dimensions of 256 × 256 pixels for 
obtaining faster results with the Fourier transform. The test 
images with the parameters for the transformation were 
created from the basic/primary images. The images were 
translated in the horizontal and/or vertical direction, rotated 
around the different angles in both directions and also had the 
scales changed. The resulting images were compared with 
other car bodies. 

Using the proposed method, the system identified 
93 percent of correct products. On the other hand, only the 
remaining 7 percent of the products that were identified by 
the system to be correct (red color in graph), happened to be 
incorrect instead, and this was based on the analysis of the 
images as described in our method, see Fig.6. for a better 

understanding of the results. The results proved the detection 
method used was valid, and thus it could be used and become 
a significant asset in the classification, sorting and inclusion 
of car bodies into the relevant categories (categorization). 

 

 
 

Fig.6.  Results of the tested images. 
 

The high success rate was achieved due to the use of a 
comparative set with rather small angle of rotation and 
scaling. The maximum correct recognition limit of this 
method has not been tested yet. Similarly, images have not 
been properly recognized in the case of the scale being too 
changed (0.7 and 1.3), and/or in combination with translation 
and rotation.  
 
4.  CONCLUSION 

As mentioned before, the measurement process is a key part 
of any kind of production, what is especially important in the 
case of the automotive industry. One of the main outputs of 
any measurement process is the achievement of high levels of 
quality of the products. This represents the main premise for 
the company success and its positioning among the 
competitors. Besides, this all fully depends on the use of new 
technologies, automation and implementation of methods 
into the related manufacturing processes, modified based on 
[23], [24].  

The verification of quality by automatic measurement 
systems provides an even higher chance to compete in the 
related field as well as the level of quality checks allows its 
further improvement. In the course of the manufacturing 
process or in the product completion various defects can 
occur, as it is stated in the ISO/TS16949, which is technical 
specification aimed at the development of a quality 
management system that provides for continual 
improvement, emphasizing defect prevention and the 
reduction of variation and waste in the supply chain.  

The calculated metrics were compared to the verification 
threshold that determined the degree of correlation necessary 
for the comparison, issuing what was to be taken as match. 
Based on tests carried out, the threshold values of t were set, 
according to which the system decision is always regulated: 
images generating the result greater than or equal to t are 
evaluated as identical, in other words: It is the same car body 

score > t 

Comparative score 

score ≤  t 
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part; on the other hand, images generating results lower than 
t are evaluated as non-compliant, i.e.: these are not the same 
car body parts. 

The decisions of system can be: match, mismatch, and 
without result, even though there are possible changing 
degrees of strong matches and mismatches. 

The number of properly rejected and properly accepted 
images depends on the present threshold value of t. The value 
is adjustable depending on the requirements, thus the system 
could be more or less accurate depending on this. In other 
words, it all depends on each particular case study and the 
levels of confidence and requirements needed for the 
verifications. In the case of the automotive industry and our 
case in particular, these values tend to be of 100 %, i.e.: the 
threshold should be established so as to have no errors in the 
process of detection. 

 
5.  CONCLUSIONS 

The evolution of computing technology is progressing hand 
in hand with the evolution of other natural, technical or 
economic sciences. Adequate powerful computing 
technology enables high precision analysis of process models 
that more precisely describe the physical or social nature of 
things [25]. 

The paper describes the design of a method for the correct 
car body classification (car silhouettes) based on the 
principles of Fourier-Mellin transform and subsequent 
comparison and analysis of images using Fourier transform 
and phase correlation. The Fourier-Mellin transform proved 
to offer image transformation resistant to translation, rotation 
and scale. The proposed method uses the fact that integral 
transforms have their transformants in the case of translation, 
scaling and rotation in the frequency domain. 

With the use of the automatic measurement system it was 
possible to compare silhouettes of car bodies and find out if 
these belonged to the same type or not. This was supported 
by the use of several key criteria for the matches, such as the 
phase correlation, the difference correlation, the correlation 
coefficient, the percentage comparison and the comparison of 
calculated values with the chosen threshold for the relevant 
criterion. In the frame of the experiments, threshold values 
have been set in a way that all the wrong couples of body 
works can be revealed.  
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