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Abstract: Basalt fiber is a heat-insulating non-combustible material that has excellent heat conductivity, hygroscopicity 
and chemical stability characteristics, and is widely used in many branches of engineering and other human activities. 
However, basalt fiber canvases have a significant disadvantage in the form of non-fibrous inclusions contained in them, 
which reduce the productquality and can cause minor injuries due to their prickliness.  
 
1 Introduction 

Basalt fiber is a heat-insulating non-combustible 
material that has excellent heat conductivity, 
hygroscopicity and chemical stability characteristics, and 
is widely used in many branches of engineering and other 
human activities. However, basalt fiber canvases have a 
significant disadvantage in the form of non-fibrous 
inclusions contained in them, which reduce the product 
quality and can cause minor injuries due to their 
prickliness. It was found in research [1] that when an 
acoustic field is applied to the formed primary canvases 
from basalt fiber, separation of non-fibrous inclusions from 
them is observed. The task of modelling this phenomenon 
and process is worthwhile. 

Basalt fiber can be represented as an oscillatory system, 
the scheme of which is shown in Figure 1. Some of the 

elementary fibers can be represented as elastic beams 
resting on adjacent curved fibers. We assume that non-fiber 
inclusions of different mass and geometric shape are held 
by the forces of natural adherence to each of such 
elementary fibers. Such elastic beams with inclusions 
attached to them are under the influence of the acoustic 
field. 

 
2 Calculation scheme 

General theoretical principles of the vibrational 
systems investigation are considered in works [1], [2], [3], 
on the basis of which this research is made. 

Let's make a mathematical model of the system. We 
consider a system of interacting bodies connected by  
elastic coupling (Fig. 1). 

 

 
Figure 1 The calculation scheme  

 
In Fig. 1: m is the mass of the element, kg; c - rigidity 

of elements connection, N / m; a – a damping coefficient , 
which determines energy losses for viscous friction, kg/s; 
y -  elements motion from the static equilibrium position, 

m; x – forced motion of the elastic base as a result of the 
sound impact, m. 

Based on Newton's second law, we consider the forces 
balance, impacting  on each of the four masses. In this 
model, two forces are considered: 

Sound 
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- the elastic resistance force, proportional to the motion, 
- the viscous resistance force, proportional to the 

motion speed. 

Four forces equilibrium equations form a system of 
four differential equations according to the calculation 
scheme in Fig. 1: 
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The free motion of each mass separately can be 
described by the following second-order differential 
equation: 

 ������ � ���� � с�� 	 0                                            (2) 
 

Or in the form of a typical oscillatory link [4] of the 
dynamic system: 

 ������� � 2��ξ���� � �� 	 0                                    (3) 
 
Where Ti - the time constant or period of free oscillations, 
s; 
ξi i- the damping coefficient (0 <ξi <1). 
 

These parameters in the joint consideration of (2) and 
(3) are the following: 

 �� 	 ���с                                                        (4) � 	 2��ξ�с                                                    (5) 
 

Then the fundamental frequency of each of the four 
elements is determined from the known formula [4]: 

 

�� 	 ���ξ� !� 	 "���#�$ ���                                            (6) 

 
The analytical solution of  the system (1) leads to the 

single linear differential equation with constant 
coefficients of the eighth order. A further solution involves 
finding the roots of the characteristic equation of the eighth 
degree and considering various solutions for real or 
complex roots, which causes certain difficulties. 

To study the object in the frequency domain and also to 
consider alternative ways of system solution (1), it is 
suggested to use the methods of [4] Automatic Control 
Theory (TAU). Applying the Laplace transforms, and 
going over to the images (7), the system (1) can be 
represented in the form (8): 

 %���� → '�(���� → '(�                     (7) 
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Or as a system of operator equations with transfer 

functions: 
 

+ (� 	 ,��* � (��(� 	 ,��(� � (��(� 	 ,��(� � (��(� 	 ,��(� � *�                                                (9) 

 
Where the operator transfer functions are defined as 

follows (10) and are mathematical models of the structural 
elements of the dynamic system. 
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Then, solving the system (9) about Yi for a given X, we 

obtain a system solution (1) for all masses in the following 
operator form (11).  

 (� 	 ,.��'�*                                              (11) 
 

Performing the inverse Laplace transform, we can also 
obtain an analytic solution of the problem. 

Passing to the complex transfer function (12), 
according to the known formulas [4], we have the 
amplitude-frequency A (ω) and the phase-frequency φ (ω) 
characteristics 

 

2  ,3��4� 	 56��� � 7���� ∙ 49��� 	 |,3��4�| 	 "56���� � 7�����;��� 	 arg �,3 ��4�� 	 �?
@A�7���� 56���⁄ �   (12) 

 
The critical frequencies themselves can be calculated 

without amplitude response, as the square roots of the 
eigenvalues of the matrix (13) coefficients of the original 
(1) undamped (ξi = 0, ai = 0) differential equations system. 
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3 Results and Conclusions 

The analytical calculation of the eigenvalues of a 
fourth-order matrix again requires the solution of high-
order algebraic equations. However, there are a lot of 
applied software solutions for such problems.  

In accordance with the proposed model, we solve the 
problem of obtaining the dynamic characteristics of the 
system with such physical parameters: 

- elementary fiber diameter d = 0.003 mm; 
- elementary fiber length L = 35 mm; 
- size (the ball diameter) of inclusions v1 = 0.3, v2 = 0.1, 

v3 = 0.5, v4 = 0.2 mm; 
- Basalt density p = 2300 kg / m3 = 2.3 mg / mm3; 
- basalt elasticity modulus E = 100 GPa. 
 

Then the fiber rigidity coefficient is the following:  
 
 	 I ∙ JK 	 20.20 Нм 	 2020 мг/мм 

 
Where S - the elementary fiber cross-sectional area for 

the known d. 
 The inclusion masses for known v and p are 

respectively equal to m1 = 0.01035, m2 = 0.00038, m3 = 
0.04792, m4 = 0.00307 mg. 

The damping coefficient does not affect the critical 
frequency, but affects the amplitude of the mass oscillation 
and is assumed to be a = 1 mg / s. 

The critical frequencies of the system with respect to 
the matrix (13) were thus ωK1 = 517, ωK2 = 86, ωK3 = 
29, ωK4 = 183 Hz. 

The natural frequencies of the individual masses 
according to the formula (6) are respectively equal to ω1 = 
70, ω2 = 301, ω3 = 33, ω4 = 127 Hz. 

 
The system solution (1) with frequency impact at the 

lower critical frequency x = sin (29t) is shown in Fig. 2.

  

 
Figure 2. Dynamic characteristic for x = sin(29t)

The system solution (1) with frequency impact at the 
second critical frequency x = sin (86t) is shown in Fig. 3.
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Figure 3. Dynamic characteristic for x = sin (86t)

The system solution (1) with frequency impact at the 
next critical frequency x = sin (183t) is shown in Fig.4.

  

 
Figure 4. Dynamic characteristic for x = sin(183t)

Figure 5 shows the amplitude-frequency characteristics 
for all masses, calculated from formulas (12). 
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Figure 5. Amplitude-frequency characteristics

 
It is obvious that the largest resonance amplitude is 

observed at the very first (lowest) critical frequency of the 
system (Figures 2 and 5). 

However, the inertia force that detaches the inclusion 
from the fiber, depends not only on the amplitude, but also 
on the oscillation frequency: 

 Q� 	 ��9���                                                (14) 
 
Figure 6 shows the dependence of the detachment force 

of all masses on the frequency, calculated by formula (14). 

 

 
Figure 6. Detachment force of masses

So for the first mass (the red line in the graphs), the 
amplitudes at the first (ascending) three critical frequencies 
will be 5, 2.3 and 0.2 mm (Figures 2, 3, 4 and 5). The 
corresponding detachment forces (Fig. 6) will be 2.5, 7 and 
3 μN. That is, the greatest detachment force is not at the 
largest amplitude and not at the highest frequency. 
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