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Coefficient inequalities for a subclass of analytic
functions associated with exponential function

G. SINGH AND G. SINGH

Abstract

This paper is concerned with the upper bound of various coefficient functionals for a certain subclass of
analytic functions associated with exponential function in the open unit disc E = {z ∈ C : |z| < 1}. This
investigation will motivate other researchers to work in this direction.
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1. INTRODUCTION

Geometric function theory is an active topic of current research. The most
remarkable result in the theory of univalent functions was Bieberbach’s conjecture,
established by Bieberbach [4]. It states that, for f ∈ S , |an| ≤ n, n = 2,3, ... and it
remained as a challenge for the mathematicians for a long time. Finally, L.
De-Branges [6], proved this conjecture in 1985. During the course of proving this
conjecture, various results related to the coefficients came into existence which gave
rise to some new subclasses of analytic functions.

Let us denote by A , the class of analytic functions of the form f (z) = z+∑
∞

k=2 akzk,
defined in the open unit disc E = {z ∈ C : |z| < 1} and normalized by the conditions
f (0) = f ′(0)− 1 = 0. S denotes the subclass of A , which consists of univalent
functions in E.

Firstly, we discuss some fundamental classes of analytic functions, which play an
important role in defining our main class:
S ∗ =

{
f : f ∈ A ,Re

(
z f ′(z)

f (z)

)
> 0,z ∈ E

}
, the class of starlike functions.

Reade [25] introduced the concept of close-to-star functions. The class of close-
to-star functions generally denoted by C S ∗, consists of functions f ∈ A such that
Re

(
f (z)
g(z)

)
> 0, g ∈ S ∗. For g(z) = z, MacGregor [18] studied the following subclass of
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close-to-star functions:

R
′
= { f : f ∈ A ,Re

(
f (z)

z

)
> 0,z ∈ E}.

The class R of bounded turning functions was introduced and studied by
MacGregor [17] and is defined as

R = { f : f ∈ A ,Re( f ′(z))> 0,z ∈ E}.

Later on, Murugusundramurthi and Magesh [21] studied the following class:

R(α) =
{

f : f ∈ A ,Re
(
(1−α) f (z)

z +α f ′(z)
)
> 0,z ∈ E

}
.

Particularly, R(1)≡ R and R(0)≡ R
′ .

An exponential function is a mathematical function, which is used in many real
world situations. Mainly, it is used to find the exponential decay or exponential
growth. The exponential function φ(z) = ez has positive real part in E and
φ(E) = {z ∈ C : |logz| < 1} is symmetric with respect to the real axis and starlike with
respect to 1.

Let f and g be two analytic functions in E. We say that f is subordinate to g

(denoted as f ≺ g) if there exists a function w with w(0) = 0 and |w(z)| < 1 for z ∈ E

such that f (z) = g(w(z)). Further, if g is univalent in E, then this subordination leads
to f (0) = g(0) and f (E)⊂ g(E).

The concept of subordination played an important role in establishing many new
classes of analytic functions. Mendiratta et al. [20] investigated the class S ∗(ez), the
class of starlike functions associated with exponential function. Further Hai-Yan
Zhang et al. [29] established the third Hankel determinant for the class S ∗(ez).
Recently Ganesh et al. [9] studied the classes S ∗

s (e
z) and Cs(ez), the classes of starlike

functions with respect to symmetric points and convex functions with respect to
symmetric points associated with exponential function. Also Kumar and Sharma [12]
studied the class R(ez), the class of bounded turning functions associated with
exponential function.

Getting motivated by these works, now we define the following class of analytic
functions by subordinating to ez.
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DEFINITION 1. A function f ∈ A is said to be in the class Rα(ez) if it satisfies
the condition

(1−α) f (z)
z +α f ′(z)≺ ez

or equivalently ∣∣∣∣log
[
(1−α)

f (z)
z

+α f ′(z)
]∣∣∣∣< 1.

We have the following observations:
(i) R0(ez)≡ R

′
(ez).

(ii) R1(ez)≡ R(ez).

For q ≥ 1 and n≥ 1, Noonan and Thomas [22] introduced the qth Hankel determinant
as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣

an an+1 ... an+q−1

an+1 ... ... ...

... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣∣∣∣
.

For q = 2,n = 1 and a1 = 1, the Hankel determinant reduces to H2(1) = a3 − a2
2,

which is the well known Fekete-Szegö functional. Further, Fekete and Szegö [8]
generalised the estimate of |a3 −µa2

2| where µ is real and f ∈ S . Also for q = 2,n = 2,
the Hankel determinant takes the form of H2(2) = a2a4 − a2

3, which is Hankel
determinant of order 2.

The functional Jn,m( f ) = anam − am+n−1, n,m ∈ N− {1}, is known as generalized
Zalcman functional. It was first investigated by Ma [16]. The functional
J2,3( f ) = a2a3 −a4 is a specific case of the generalized Zalcman functional. The upper
bound for the functional J2,3( f ) over different subclasses of analytic functions was
computed by various authors. It is very useful in establishing the bounds for the third
Hankel determinant.

Furthermore, for q = 3,n = 1, the Hankel determinant Hq(n) reduces to

H3(1) = ||,

which is the third order Hankel determinant.
For a1 = 1, H3(1) can be expanded as

H3(1) = a3(a2a4 −a2
3)−a4(a4 −a2a3)+a5(a3 −a2

2),
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and after applying the triangle inequality, it yields

|H3(1)| ≤ |a3||a2a4 −a2
3|+ |a4||a2a3 −a4|+ |a5||a3 −a2

2|. (1)

Extensive work has been done on the estimation of second Hankel determinant by
various authors including Noor [23], Ehrenborg [7], Layman [13], Singh [27],
Mehrok and Singh [19] and Janteng et al. [10]. The estimation of third Hankel
determinant is little bit complicated. Babalola [3] was the first researcher who
successfully obtained the upper bound of third Hankel determinant for the classes of
starlike functions, convex functions and the class of functions with bounded
boundary rotation. Further a few researchers including Shanmugam et al. [26], Bucur
et al. [5], Altinkaya and Yalcin [1], Singh and Singh [28] have been actively engaged
in the study of third Hankel determinant for various subclasses of analytic functions.

In the present paper, we establish the upper bounds for the initial coefficients,
Fekete-Szegö inequality, Zalcman functional, second Hankel determinant and third
Hankel determinant, for the class Rα(ez). Also various known results follow as
particular cases.

Let P denote the class of analytic functions p of the form

p(z) = 1+∑
∞

k=1 pkzk,

whose real parts are positive in E.

In order to prove our main results, the following lemmas have been used:

LEMMA 1. [24; 11] If p ∈ P, then

|pk| ≤ 2,k ∈ N,∣∣∣p2 −
p2

1
2

∣∣∣≤ 2− |p1 |2
2 ,

|pi+ j −µ pi p j| ≤ 2,0 ≤ µ ≤ 1,

|pn+2k −λ pn p2
k | ≤ 2(1+2λ ),(λ ∈ R),

|pm pn − pk pl | ≤ 4,(m+n = k+ l;m,n ∈ N),

and for complex number ρ, we have

|p2 −ρ p2
1| ≤ 2max{1, |2ρ −1|}.
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LEMMA 2. Let p ∈ P, then

|Jp3
1 −K p1 p2 +Lp3| ≤ 2|J|+2|K −2J|+2|J−K +L|.

In particular, it is proved in [24] that

|p3
1 −2p1 p2 + p3| ≤ 2.

LEMMA 3. [14; 15] If p ∈ P, then

2p2 = p2
1 +(4− p2

1)x,

4p3 = p3
1 +2p1(4− p2

1)x− p1(4− p2
1)x

2 +2(4− p2
1)(1−|x|2)z,

for |x| ≤ 1 and |z| ≤ 1.

2. COEFFICIENT INEQUALITIES

THEOREM 1. If f ∈ Rα(ez), then

|a2| ≤
1

1+α
, (2)

|a3| ≤
1

1+2α
, (3)

|a4| ≤
1

1+3α
, (4)

and

|a5| ≤
37

24(1+4α)
. (5)

The estimates are sharp.

PROOF. Since f ∈ Rα(ez), by the principle of subordination, we have

(1−α)
f (z)

z
+α f ′(z) = ew(z). (6)

Define p(z) = 1+w(z)
1−w(z) = 1+ p1z+ p2z2 + p3z3 + ..., which implies w(z) = p(z)−1

p(z)+1 .
On expanding, we have

(1−α)
f (z)

z
+α f ′(z)= 1+(1+α)a2z+(1+2α)a3z2+(1+3α)a4z3+(1+4α)a5z4+ ... (7)
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Also
ew(z) = 1+ 1

2 p1z+
(

p2
2 − p2

1
8

)
z2

+

(
p3

1

48
− p1 p2

4
+

p3

2

)
z3 +

(
p4

1

384
+

p2
1 p2

16
− p3 p1

4
− p2

2

8
+

p4

2

)
z4 + ... (8)

Using (7) and (8), (6) yields
1+(1+α)a2z+(1+2α)a3z2 +(1+3α)a4z3 +(1+4α)a5z4 + ...

= 1+
1
2

p1z+
(

p2

2
− p2

1

8

)
z2 +

(
p3

1

48
− p1 p2

4
+

p3

2

)
z3

+

(
p4

1

384
+

p2
1 p2

16
− p3 p1

4
− p2

2

8
+

p4

2

)
z4 + ... (9)

Equating the coefficients of z, z2, z3 and z4 in (9) and on simplification, we obtain

a2 =
1

2(1+α)
p1, (10)

a3 =
1

1+2α

[
p2

2
− p2

1

8

]
, (11)

a4 =
1

48(1+3α)

[
p3

1 −12p1 p2 +24p3
]
, (12)

and

a5 =
1

(1+4α)

[
p4

1

384
− p2

2

8
− p3 p1

4
+

p2
1 p2

16
+

p4

2

]
. (13)

Using first inequality of Lemma 1 in (10), the result (2) is obvious.
From (11), we have

|a3|=
1

2(1+2α)

∣∣∣∣p2 −
1
4

p2
1

∣∣∣∣ . (14)

Using sixth inequality of Lemma 1 in (14), the result (3) can be easily obtained.
(12) can be expressed as

|a4|=
1

48(1+3α)

∣∣p3
1 −12p1 p2 +24p3

∣∣ . (15)

On applying Lemma 2 in (15), the result (4) is obvious.
Further, (13) can be re-written as

|a5|=
1

2(1+4α)

∣∣∣∣1
2

(
p4 −

1
2

p2
2

)
+

1
2
(p4 − p1 p3)+

1
8

p2
1 p2 +

1
192

p4
1

∣∣∣∣ . (16)

On applying triangle inequality and using third inequality of Lemma 1, the result (5)
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is obvious from (16).
The results (2), (3), (4) and (5) are sharp for the function f given by

(1−α) f (z)
z +α f ′(z) = ez.

On putting α = 0, Theorem 1 yields the following result:

COROLLARY 1. If f ∈ R
′
(ez), then

|a2| ≤ 1, |a3| ≤ 1, |a4| ≤ 1, |a5| ≤ 37
24 .

For α = 1, Theorem 1 gives the following result due to Kumar and Sharma [12]:

COROLLARY 2. If f ∈ R(ez), then

|a2| ≤ 1
2 , |a3| ≤ 1

3 , |a4| ≤ 1
4 , |a5| ≤ 37

120 .

THEOREM 2. If f ∈ Rα(ez), then

|a3 −a2
2| ≤

1
1+2α

. (17)

PROOF. From (10) and (11), we have

|a3 −a2
2|=

1
2(1+2α)

∣∣∣∣p2 −
α2 +6α +3
4(1+α)2 p2

1

∣∣∣∣ . (18)

Using sixth inequality of Lemma 1, (18) takes the form

|a3 −a2
2| ≤

1
1+2α

max
{

1,
−1+2α −α2

2(1+α)2

}
. (19)

But −1+2α−α2

2(1+α)2 ≤ 1 for 0 ≤ α ≤ 1.
Hence, the result (17) is obvious from (19).

Substituting for α = 0, Theorem 2 yields the following result:

COROLLARY 3. If f ∈ R
′
(ez), then

|a3 −a2
2| ≤ 1.

Putting α = 1, Theorem 2 yields the following result due to Kumar and
Sharma [12]:

COROLLARY 4. If f ∈ R(ez), then
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|a3 −a2
2| ≤ 1

3 .

THEOREM 3. If f ∈ Rα(ez), then

|a2a3 −a4| ≤
1

1+3α
. (20)

PROOF. Using (10), (11), (12) and after simplification, we have

|a2a3 −a4|=
1

48(1+α)(1+2α)(1+3α)

∣∣(4+12α +2α
2)p3

1−

(24+72α +24α
2)p1 p2 +24(1+α)(1+2α)p3

∣∣. (21)

On applying Lemma 2 in (21), it yields (20).

For α = 0, the following result is a consequence of Theorem 3:

COROLLARY 5. If f ∈ R
′
(ez), then

|a2a3 −a4| ≤ 1.

On putting α = 1 in Theorem 3, we can obtain the following result due to Kumar
and Sharma [12]:

COROLLARY 6. If f ∈ R(ez), then

|a2a3 −a4| ≤ 1
4 .

THEOREM 4. If f ∈ Rα(ez), then

|a2a4 −a2
3| ≤

1
(1+2α)2 . (22)

The bound is sharp.

PROOF. Using (10), (11) and (12), we have

|a2a4 −a2
3|=

1
192(1+α)(1+2α)2(1+3α)

∣∣48(1+2α)2 p1 p3 −24α
2 p2

1 p2+

(−1−4α −α
2)p4

1 −48(1+α)(1+3α)p2
2

∣∣.
Substituting for p2 and p3 from Lemma 3 and letting p1 = p, we get
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|a2a4 −a2
3|=

1
192(1+α)(1+2α)2(1+3α)

∣∣∣∣− (α2 +4α +1)p4 +12α
2 p2(4− p2)x−

12(1+2α)2 p2(4− p2)x2 −12(1+α)(1+3α)(4− p2)2x2 +24(1+

2α)2 p(4− p2)(1−|x|2)z
∣∣∣∣.

Since |p| = |p1| ≤ 2, we may assume that p ∈ [0,2]. By using triangle inequality and
|z| ≤ 1 with |x|= t ∈ [0,1], we obtain

|a2a4 −a2
3| ≤ 1

192(1+α)(1+2α)2(1+3α)

[
(α2 +4α +1)p4 +12α2 p2(4− p2)t

+12(1+2α)2 p2(4− p2)t2 +12(1+α)(1+3α)(4− p2)2t2 +24(1+2α)2 p(4− p2)−24(1+

2α)2 p(4− p2)t2

]
= F(p, t).

∂F
∂ t = 1

192(1+α)(1+2α)2(1+3α)

[
12α2 p2(4− p2)+24(4− p2)(2− p)t[α2(6− p)+8α +2]

]
≥ 0,

and so F(p, t) is an increasing function of t.

Therefore, max{F(p, t)}= F(p,1) = 1
192(1+α)(1+2α)2(1+3α)

[
(α2 +4α +1)p4

+12α2 p2(4− p2)+12(1+2α)2 p2(4− p2)+12(1+α)(1+3α)(4− p2)2

]
= H(p).

H ′(p) = 0 gives p = 0. Also H ′′(p)< 0 for p = 0.
This implies max{H(p)}= H(0) = 1

(1+2α)2 , which proves (22).
The result is sharp for p1 = 0, p2 =±2 and p3 = 0.

Putting α = 0, Theorem 4 gives the following result:

COROLLARY 7. If f ∈ R
′
(ez), then

|a2a4 −a2
3| ≤ 1.

Substituting for α = 1 in Theorem 4, the following result due to Kumar and
Sharma [12], is obvious:

COROLLARY 8. If f ∈ R(ez), then

|a2a4 −a2
3| ≤ 1

9 .

THEOREM 5. If f ∈ Rα(ez), then

|H3(1)| ≤
85+850α +3025α2 +4428α3 +2100α4)

24(1+2α)3(1+3α)2(1+4α)
. (23)
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PROOF. By using (3), (4), (5), (17), (20) and (22) in (1), the result (23) can be
easily obtained.

For α = 0, Theorem 5 yields the following result:

COROLLARY 9. If f ∈ R
′
(ez), then

|H3(1)| ≤ 85
24 .

For α = 1, Theorem 5 yields the following result:

COROLLARY 10. If f ∈ R(ez), then

|H3(1)| ≤ 437
2160 .

3. BOUNDS OF |H3(1)| FOR TWO-FOLD AND THREE-FOLD SYMMETRIC
FUNCTIONS

A function f is said to be n-fold symmetric if is satisfy the following condition:

f (ξ z) = ξ f (z)

where ξ = e
2πi
n and z ∈ E.

By S(n), we denote the set of all n-fold symmetric functions which belong to the class
S.
The n-fold univalent function have the following Taylor-Maclaurin series:

f (z) = z+
∞

∑
k=1

ank+1znk+1. (24)

An analytic function f of the form (24) belongs to the family Rα(n)
car if and only if

(1−α) f (z)
z +α f ′(z) = e

(
p(z)−1
p(z)+1

)
, p ∈ P (n),

where

Pn =

{
p ∈ P : p(z) = 1+

∞

∑
k=1

pnkznk,z ∈ E

}
. (25)

THEOREM 6. If f ∈ Rα(2)(ez), then

|H3(1)| ≤
1

(1+2α)(1+4α)
. (26)
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PROOF. If f ∈ Rα(2)(ez), so there exists a function p ∈ P (2) such that

(1−α)
f (z)

z
+α f ′(z) = e

(
p(z)−1
p(z)+1

)
. (27)

Using (24) and (25) for n = 2, (27) yields

a3 =
1

2(1+2α)
p2, (28)

a5 =
1

2(1+4α)

(
p4 −

1
4

p2
2

)
. (29)

Also

H3(1) = a3a5 −a3
3. (30)

Using (28) and (29) in (30), it yields

H3(1) =
1

8(1+2α)(1+4α)
p2

[
p4 −

3(1+2α)2 +8(1+4α)

12(1+2α)2 p2
2

]
. (31)

On applying triangle inequality and using fourth inequality of Lemma 1, we can
easily get the result (26).

Putting α = 0, the following result can be easily obtained from Theorem 6:

COROLLARY 11. If f ∈ R
′(2)(ez), then

|H3(1)| ≤ 1.

For α = 1, Theorem 6 agrees with the following result:

COROLLARY 12. If f ∈ R(2)(ez), then

|H3(1)| ≤ 1
15 .

THEOREM 7. If f ∈ Rα(3)(ez), then

|H3(1)| ≤
1

(1+3α)2 . (32)

PROOF. If f ∈ Rα(3)(ez), so there exists a function p ∈ P (3) such that

(1−α)
f (z)

z
+α f ′(z) = e

(
p(z)−1
p(z)+1

)
. (33)
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Using (24) and (25) for n = 3, (33) gives

a4 =
1

2(1+3α)
p3. (34)

Also

H3(1) =−a2
4. (35)

Using (34) in (35), it yields

H3(1) =− 1
4(1+3α)2 p2

3. (36)

On applying triangle inequality and using first inequality of Lemma 1, (32) can be
easily obtained.

For α = 0, Theorem 7 yields the following result:

COROLLARY 13. If f ∈ R
′(3)(ez), then

|H3(1)| ≤ 1.

For α = 1, Theorem 7 yields the following result:

COROLLARY 14. If f ∈ R(3)(ez), then

|H3(1)| ≤ 1
16 .

CONCLUSION

This paper is concerned with the upper bound of third Hankel determinant for a
subclass of analytic functions, associated with exponential function. The results
established here are very interesting and will motivate other researchers in this field
to work on the similar classes by associating to other standard functions.
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Trichotomization with two cutoff values using
Kruskal-Wallis test by minimum P-value

approach
T. OGURA AND C. SHIRAISHI

Abstract

In clinical trials, age is often converted to binary data by the cutoff value. However, when looking at a
scatter plot for a group of patients whose age is larger than or equal to the cutoff value, age and outcome
may not be related. If the group whose age is greater than or equal to the cutoff value is further divided
into two groups, the older of the two groups may appear to be at lower risk. In this case, it may be
necessary to further divide the group of patients whose age is greater than or equal to the cutoff value into
two groups. This study provides a method for determining which of the two or three groups is the optimal
division. The following two methods are used to divide the data. The existing method, the
Wilcoxon-Mann-Whitney test by minimum P-value approach, divides data into two groups by one cutoff
value. A new method, the Kruskal-Wallis test by minimum P-value approach, divides data into three
groups by two cutoff values. Of the two tests, the one with the smaller P-value is used. Because this was a
new decision procedure, it was tested using Monte Carlo simulations (MCSs) before application to the
available COVID-19 data. The MCS results showed that this method performs well. In the COVID-19
data, it was optimal to divide into three groups by two cutoff values of 60 and 70 years old. By looking at
COVID-19 data divided into three groups according to the two cutoff values, it was confirmed that each
group had different features. We provided the R code that can be used to replicate the results of this
manuscript. Another practical example can be performed by replacing x and y with appropriate ones.

Mathematics Subject Classification 2010: 62P10
General Terms: Algorithms
Keywords: COVID-19 data, cutoff value, Kruskal-Wallis test, minimum P-value approach,
Wilcoxon-Mann-Whitney test.

1. INTRODUCTION

In the medical field, age is frequently converted to binary data for analysis,
depending on whether it is less than the cutoff value or greater than or equal to the
cutoff value [Mirkes et al. 2016]. The risk generally rises with age. As a result, the
group of patients whose age is less than the cutoff value being interpreted as low risk
and the group of patients whose age is greater than or equal to the cutoff value being
interpreted as high risk. However, in clinical trials, if the group whose age is greater
than or equal to the cutoff value is further divided into two groups, the older of the
two groups may appear to be at lower risk. This could be due to several factors. One
probable cause is that due to inclusion and exclusion criteria, patients at increased
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risk as they grow older may be excluded from clinical trials, and participants may be
limited to low risk patients. Age and outcome may not be correlated in clinical trials,
even though age and outcome are correlated in the clinical setting. As a result, in
clinical trials, it may be better to analyze three groups rather than two groups.

When dependent and independent variables are binary data and quantitative data,
respectively, the receiver operating characteristic curve is used to find the optimal
cutoff value for predicting outcome [Greiner et al. 2000; Zou et al. 2007]. When both
dependent and independent variables are quantitative data, the piecewise linear
regression analysis improves the accuracy of outcome prediction by changing the
linear regression line at the cutoff value [Nakamura 1986; Vieth 1989]. However, the
piecewise linear regression analysis may not yield the optimal cutoff value when the
data follow a non-normal distribution. As the method for determining the optimal
cutoff value for such data, Ogura and Shiraishi [2022] showed the method of
performing the Wilcoxon-Mann-Whitney (WMW) test on all potential cutoff values
and adopting the cutoff value that minimizes the P-value (called minimum P-value
approach). The minimum P-value approach strategy performed well in log-rank and
chi-square tests [Altman et al. 1994; Mazumdar and Glassman 2000; Liu et al. 2020],
and it was thought to apply to other tests. Another known method is to test all
potential cutoff values and adopt the cutoff value that maximizes the test statistic [?;
?; ?]. This method is called the maximum test statistic approach in this manuscript.
The minimum P-value approach and maximum test statistic approach are based on
similar ideas and therefore often give the same cutoff values. However, in tests where
the P-value is calculated from the test statistic and degrees of freedom, the different
degrees of freedom give different P-value for the same value of the test statistic. In
this case, the minimum P-value approach and maximum test statistic approach may
give different cutoff values. Because the minimum P-value approach is tested at all
potential cutoff values, it raises the issue of multiple tests. To address this issue,
various methods of adjusted P-value for multiple tests were proposed [?; ?; ?; ?]. In
maximum test statistic approach, the adjusted P-value is considered appropriate
instead of the standard P-value [?; ?].

In this manuscript, the trichotomization is illustrated on an analysis of data related
to COVID-19. The first COVID-19 patients were reported in Wuhan, China, in 2019,
and the virus has since spread worldwide [World Health Organization 2020; 2022].
The data obtained under the circumstances of COVID-19 are often different from the
conventional ones. Researchers have been researching suitable analysis methods for
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the data [Ünözkan et al. 2020]. Reznikov et al. [2022] divided the COVID-19 data into
categories based on patient age (30 years or younger, 31–60 years, 61 years or older).
They obtained useful results by dividing the COVID-19 data into three groups. Ogura
and Shiraishi [2022] searched for the one optimal cutoff value using the supplementary
data of Hogan II et al. [2020] when dependent and independent variables were age and
days to discharge in COVID-19 data. At the one cutoff value of 59.5 years old, they
were able to divide the data into two groups with differing characteristics. However,
the older group tends to have shorter days to discharge as they get older. Therefore,
we investigate whether the COVID-19 data should be divided into two groups or three
groups. We use the Kruskal-Wallis (KW) test by the minimum P-value approach
to divide into three groups. The KW test is a nonparametric alternative of one-way
analysis of variance and its properties were investigated by ?]. As the method to divide
into two groups, we adopt the one cutoff value for the WMW test by the minimum P-
value approach. As the method to divide into three groups, we adopt the two cutoff
values for the KW test by the minimum P-value approach. We adopt the cutoff value(s)
corresponding to the smaller P-value of these two tests. Ogura and Shiraishi [2022]
validated the WMW test by the minimum P-value approach. Because the KW test
by the minimum P-value approach is a new method, using Monte Carlo simulations
(MCSs) at diverse situations, we tested the performance of the two cutoff values for
the KW test by the minimum P-value approach. Using the COVID-19 data, we then
demonstrated that it is preferable to divide data into three groups rather than two, with
the two cutoff values being the ages of 60 and 70 years old.

Although it is also considered to use the maximum test statistic approach, the test
statistics for the WMW and KW tests cannot be directly compared. In contrast, the
P-values for the WMW and KW tests can be directly compared. Because the WMW
and KW tests are performed on one dataset, the issue of multiple tests is usually
larger in this study. The methods of the adjusted P-value in the minimum P-value
approach were often validated in one type of test but not in two. Therefore, this study
uses the widely available Bonferroni method [?]. The Bonferroni method is defined
as the significance level divided by the number of tests performed. The adjusted
P-value, obtained by multiplying the P-value by the number of tests performed, is
sometimes used, which is essentially the same. We use the Bonferroni method as
defined. Because this study uses two types of tests, the tests are performed many
times. In addition, the potential combinations of two cutoff values are much more
than one cutoff value. Therefore, it may be very difficult for the P-value to be below
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the significance level adjusted by the Bonferroni method.
In Section 2, we describe the existing method of the one cutoff value for the WMW

test and a new method of the two cutoff values for the KW test by the minimum P-
value approach. In Section 3, we test the performance of the cutoff value(s) using
MCSs. In Section 4, using COVID-19 data, we present a judgment of the number of
cutoff values and an attempt to determine to the cutoff value(s). Finally, we conclude
the research in Section 5.

2. OPTIMAL CUTOFF VALUE(S)

Let (x,y) = {(x1,y1), . . . ,(xn,yn)} be two dimensional random vectors of sample size n ≥
3, where x and y are independent and dependent variables, respectively. Furthermore,
it is assumed that x is age and the value of each xi (i = 1, . . . ,n) is an integer in this
manuscript. Let x(i) denote the i-th order statistics, x(1) ≤ ·· · ≤ x(n). Section 2.1 presents
the existing method to divide into two groups by the value of x(i). Section 2.2 presents
a new method to divide into three groups by the value of x(i). Section 2.3 explains
whether dividing the dataset into two or three groups is optimal.

2.1. One cutoff value for the WMW test

Ogura and Shiraishi [2022] demonstrated the methodology of one cutoff value using
the WMW test by the minimum P-value approach. Because x is age and the value
of each x(i) is an integer, it is illustrated below in a slightly different way from their
paper. Let the cutoff value be cW. The potential cutoff value is written as cW

( j) = x( j),
j = 2, . . . ,n. The data are divided into two groups, {(x(1),y(1)), . . . ,(x( j−1),y( j−1))} and
{(x( j),y( j)), . . . ,(x(n),y(n))}, depending on whether x(i) < cW

( j) or cW
( j) ≤ x(i), where y(i) is

the data paired with x(i) (y(i) is not the order statistic of yi). We perform the WMW
test between {y(1), . . . ,y( j−1)} and {y( j), . . . ,y(n)} in sequence from j = 2 to n, and the
P-value is written as PW

( j). The optimal cutoff value is cW = cW·min
( j) corresponding to

PW·min
( j) = min(PW

(2), . . . ,P
W
(n)). We utilize the one cutoff value where each group has ten or

more patients in this manuscript since dividing by the one cutoff value has no benefit
when the sample size of one group is small.

2.2. Two cutoff values for the KW test

Let the two cutoff values be cK1 and cK2 (cK1 < cK2). The two potential cutoff values
are written as cK1

(k) = x(k) and cK2
(l) = x(l), k = 2, . . . ,n− 1, l = k + 1, . . . ,n. The data are

divided into three groups, {(x(1),y(1)), . . . ,(x(k−1),y(k−1))}, {(x(k),y(k)), . . ., (x(l−1),y(l−1))},
and {(x(l),y(l)), . . ., (x(n),y(n))}, depending on whether x(i) < cK1

(k), cK1
(k) ≤ x(i) < cK2

(l) , or cK2
(l) ≤
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x(i), where y(i) is the data paired with x(i) (y(i) is not the order statistic of yi). We perform
the KW test between {y(1), . . . ,y(k−1)}, {y(k), . . . ,y(l−1)} and {y(l), . . . ,y(n)} in sequence from
k = 2 to n−1 and l = k+1 to n, and the P-value is written as PK

(k,l). The two optimal cutoff
values are cK1 = cK1 ·min

(k) and cK2 = cK2·min
(l) corresponding to PK·min

(k,l) = min(PK
(2,3), . . . ,P

K
(n−1,n)).

We utilize the two cutoff values where each group has ten or more patients in this
manuscript since dividing by the two cutoff values has no benefit when the sample
size of one group is small.

2.3. Choice of one cutoff value or two cutoff values

We compare PW·min
( j) of the minimum P-value using the WMW test with the PK·min

(k,l) of the
minimum P-value using the KW test. When PW·min

( j) ≤ PK·min
(k,l) , the data are divided into

two groups by the one cutoff value cW of the WMW test. When PW·min
( j) > PK·min

(k,l) , the
data is divided into three groups by the two cutoff values cK1 and cK2 of the KW test.

3. MONTE CARLO SIMULATIONS

We test the effectiveness of the cutoff value(s) using MCSs. We set the number of
population cutoff values as one and two in Sections 3.1 and 3.2, respectively. In
Section 3.1, when the one population cutoff value is set to 50, we verify that the
proportion of PW·min

( j) ≤ PK·min
(k,l) and the performance of the one cutoff value calculated by

the WMW test are high. In Section 3.2, when the two population cutoff values are set
to 50 and 70, we verify that the proportion of PW·min

( j) > PK·min
(k,l) and the performance of

the two cutoff values calculated by the KW test are high. When x(i) < 70, the risks in
Sections 3.1 and 3.2 have the same settings. In detail, when xi < 50, the risk is set low,
and when 50 ≤ xi < 70, the risk is set high. In Section 3.1, the risks are the same for
50 ≤ xi < 70 and 70 ≤ xi. In Section 3.2, the risk of 70 ≤ x is set to be less than the risk
of 50 ≤ xi < 70. These settings confirm that after dividing the age into two groups by
one cutoff value, it is possible to correctly identify whether the elderly group should
be further divided into two groups or not. Because age and days to discharge in the
COVID-19 data are both integers, xi and yi are rounded to the nearest whole number
in MCSs. The sample size is set to n = 80,100,120. The replication size used in this
study is 100,000. We use the software R version 4.1.1 [R Core Team 2021] for the
MCSs. The MCSs are carried out according to the steps below.

(1) Generate random samples {x1, . . . ,xn} from distribution in Table I or Table IV, and
round them to integers.

(2) In Section 3.1, generate random samples {y1, . . . ,yn} from distribution
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corresponding to xi < 50 or 50 ≤ xi in Table I, and round them to integers.

(3) In Section 3.2, generate random samples {y1, . . . ,yn} from distribution
corresponding to xi < 50, 50 ≤ xi < 70, or 70 ≤ xi in Table IV, and round them to
integers.

(4) Combine {x1, . . . ,xn} and {y1, . . . ,yn} into two-dimensional random vectors
{(x1,y1), . . . ,(xn,yn)}.

(5) Sort {x1, . . . ,xn} in ascending order, x(1) ≤ ·· · ≤ x(n).

(6) Set one potential cutoff value cW
( j) = x( j), j = 11, . . . ,n−9.

(7) Divide into two groups, {(x(1),y(1)),. . ., (x( j−1),y( j−1))} and {(x( j),y( j)),. . .,(x(n),y(n))},
depending on whether x(i) < cW

( j) or cW
( j) ≤ x(i).

(8) Perform the WMW test between two groups for each cW
( j) and express the P-value

as PW
( j).

(9) Repeat steps 6–8 from j = 11, . . . ,n−9.

(10) Decide optimal cutoff value cW = cW·min
( j) that satisfies PW·min

( j) = min(PW
(11), . . . ,P

W
(n−9)).

(11) Set two potential cutoff values cK1
(k) = x(k) and cK2

(l) = x(l), k = 11, . . . ,n− 19, l = k+

10, . . . ,n−9.

(12) Divide into three groups, {(x(1),y(1)),. . ., (x(k−1),y(k−1))},
{(x(k),y(k)),. . .,(x(l−1),y(l−1))} and {(x(l),y(l)),. . .,(x(n),y(n))}, depending on whether
x(i) < cK1

(k), cK1
(k) ≤ x(i) < cK2

(l) or cK2
(l) ≤ x(i).

(13) Perform the KW test between three groups for each cK1
(k) and cK2

(l) and express the
P-value as PK

(k,l).

(14) Repeat steps 11–13 from k = 11, . . . ,n−19 and l = k+10, . . . ,n−9.

(15) Decide optimal two cutoff values cK1 = cK1·min
(k) and cK2 = cK2 ·min

(l) that satisfies
PK·min
(k,l) = min(PK

(11,21), . . ., PK
(n−19,n−9)).

(16) Compare PW·min
( j) and PK·min

(k,l) and use the smaller one.

(17) Independently, repeat steps 1–16 100,000 times.

(18) Calculate the proportion of the number of the chosen cutoff values and the
proportion of the cutoff value(s) in range.

3.1. One cutoff value

Table I presents the simulation settings for Patterns 1–9. Random samples of xi and
yi are both generated from the three-parameter gamma distribution Ga(α,β ,γ), where
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Table I. Parameters of
gamma distribution in Patterns
1–9.

Pattern γx αy βy γy

1 25 3.5 10 10
2 30 3.5 10 10
3 35 3.5 10 10
4 25 1.5 20 20
5 30 1.5 20 20
6 35 1.5 20 20
7 25 1.5 10 30
8 30 1.5 10 30
9 35 1.5 10 30

Table II. Proportion of the chosen one
cutoff value in Section 3.1

Pattern n = 80 n = 100 n = 120
1 88.1% 82.8% 83.0%
2 80.0% 78.1% 77.8%
3 69.3% 69.3% 69.5%
4 91.2% 86.8% 86.9%
5 83.1% 82.0% 82.0%
6 72.5% 72.7% 73.1%
7 94.7% 91.8% 91.8%
8 88.6% 87.2% 87.1%
9 77.9% 78.2% 78.8%

α, β , and γ are the shape, scale, and location parameters, respectively. First, xi is
generated from Ga(2,20,γx). Then, yi is generated from Ga(1.5,10,10) (if xi < 50) or
Ga(αy,βy,γy) (if 50 ≤ xi).

Table II indicates the proportion of the chosen one cutoff value. When the number
of population cutoff values is set to one, there is a high proportion that the number of
cutoff values is appropriately determined to be one. Table III presents the proportion
of the cutoff value that falls into five ranges (49 ≤ cW ≤ 51, 48 ≤ cW ≤ 52, 47 ≤ cW ≤ 53,
46 ≤ cW ≤ 54, 45 ≤ cW ≤ 55). When n = 80, the proportion of the cutoff value was
greater than 90% in the range of 45 ≤ cW ≤ 55. When n = 100, the proportion of the
cutoff value was greater than 90% in the range of 47 ≤ cW ≤ 53. As a result, it was
determined that the number of cutoff values was correctly judged and that the cutoff
value was calculated close to the population cutoff value.

3.2. Two cutoff values

Table IV presents the simulation settings for Patterns 10–18. First, xi is generated
from the three-parameter gamma distribution Ga(2,20,γx). Then, yi is generated from
Ga(1.5,10,10) (if xi < 50), Ga(αy1 ,βy1 ,γy1) (if 50 ≤ xi < 70), or Ga(αy2 ,βy2 ,γy2) (if 70 ≤ xi).
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Table III. Proportion of one cutoff value in range in
Section 3.1

n Pattern 49-51 48-52 47-53 46-54 45-55
80 1 65.9% 78.9% 86.4% 91.0% 93.9%

2 67.8% 80.2% 86.9% 90.9% 93.5%
3 64.7% 77.6% 84.4% 88.1% 90.4%
4 68.9% 82.1% 89.1% 93.2% 95.6%
5 71.7% 83.7% 89.8% 93.2% 95.3%
6 67.9% 80.5% 86.9% 90.3% 92.3%
7 71.7% 84.5% 91.3% 95.0% 97.1%
8 74.9% 86.4% 92.0% 95.0% 96.8%
9 71.5% 83.9% 89.9% 93.0% 94.7%

100 1 76.5% 87.6% 92.9% 95.7% 97.3%
2 76.3% 87.2% 92.7% 95.5% 97.1%
3 73.8% 85.2% 90.8% 93.7% 95.4%
4 80.9% 90.9% 95.3% 97.3% 98.4%
5 80.4% 90.4% 94.9% 97.1% 98.2%
6 77.9% 88.5% 93.3% 95.6% 96.8%
7 84.7% 93.5% 97.1% 98.6% 99.2%
8 83.6% 92.6% 96.3% 98.2% 99.0%
9 80.6% 90.9% 95.1% 97.1% 98.1%

120 1 81.6% 91.1% 95.3% 97.3% 98.4%
2 81.4% 90.8% 94.9% 97.0% 98.2%
3 78.9% 89.0% 93.6% 95.9% 97.2%
4 85.5% 93.8% 97.1% 98.5% 99.2%
5 85.0% 93.3% 96.8% 98.3% 99.0%
6 82.6% 91.7% 95.5% 97.4% 98.3%
7 88.9% 95.8% 98.2% 99.2% 99.6%
8 88.0% 95.2% 97.9% 99.0% 99.5%
9 85.2% 93.6% 97.0% 98.4% 99.1%

Table IV. Parameters of gamma distribution in
Patterns 10–18.

Pattern γx αy1 βy1 γy1 αy2 βy2 γy2

10 25 3.5 10 10 2.5 10 10
11 30 3.5 10 10 2.5 10 10
12 35 3.5 10 10 2.5 10 10
13 25 1.5 20 20 1.5 15 15
14 30 1.5 20 20 1.5 15 15
15 35 1.5 20 20 1.5 15 15
16 25 1.5 10 30 1.5 10 20
17 30 1.5 10 30 1.5 10 20
18 35 1.5 10 30 1.5 10 20

Table V indicates the proportion of the chosen two cutoff values. When the number
of population cutoff values is set to two, there is a high proportion that the number of
cutoff values is appropriately determined to be two. As n increases, the proportion of
correct judgments increases. Table VI presents the proportion of two cutoff values that
falls into each of five ranges (49 ≤ cK1 ≤ 51, 48 ≤ cK1 ≤ 52, 47 ≤ cK1 ≤ 53, 46 ≤ cK1 ≤ 54,
45 ≤ cK1 ≤ 55, 69 ≤ cK2 ≤ 71, 68 ≤ cK2 ≤ 72, 67 ≤ cK2 ≤ 73, 66 ≤ cK2 ≤ 74, 65 ≤ cK2 ≤ 75).
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Table V. Proportion of the chosen two
cutoff values in Section 3.2

Pattern n = 80 n = 100 n = 120
10 70.6% 81.2% 85.7%
11 82.9% 87.7% 91.1%
12 89.3% 93.1% 95.3%
13 66.8% 80.1% 85.0%
14 81.9% 87.4% 91.0%
15 89.5% 93.2% 95.3%
16 82.4% 95.6% 97.9%
17 96.1% 98.5% 99.4%
18 98.2% 99.5% 99.9%

When n = 80, the cutoff value of cK1 was greater than 90% in the range of |cK1 −50| ≤ 5,
except for Pattern 10. The cutoff value of cK1 was greater than 90% in the range of
|cK1 −50| ≤ 4 when n = 100 and |cK1 −50| ≤ 3 when n = 120. There is a large difference
in the distribution where yi is generated at xi < 50 or 50 ≤ xi < 70, but there is a small
difference in the distribution where yi is generated at 50 ≤ xi < 70 or 70 ≤ xi. Therefore,
it is difficult to calculate the cutoff value of cK2 close to the population cutoff value.
When n = 80, the proportion of the cutoff value of cK2 was greater than 50% in the
range of |cK2 − 70| ≤ 5. When n = 120, the proportion of the cutoff value of cK2 was
greater than 60% in the range of |cK2 − 70| ≤ 5. It is considered that the cutoff value
of cK2 also has sufficiently usable performance. As a result, it was confirmed that
the number of cutoff values was correctly judged and that the two cutoff values were
calculated close to the population cutoff values.

4. COVID-19 DATA

We judged the number of cutoff values and calculated the corresponding cutoff
value(s). We used the clinical outcomes data from 110 hospitalized COVID-19
patients treated with famotidine and cetirizine for at least 48 h [Hogan II et al. 2020],
as presented in Table VII. This data are presented by Supplementary data of their
paper. This study included patients who got dual medical treatment for the therapy of
COVID-19 from April 3, 2020, to June 13, 2020. Famotidine and cetirizine were
given 20 mg intravenously and 10 mg intravenously (or oral), respectively, at 12 h
intervals. In this manuscript, the cutoff values were calculated using data from 93
patients, excluding 17 deaths. There were 13 patients with do-not-resuscitate (DNR),
but the analysis set of this manuscript included DNR. Histamine-1 blocker (H1)
antihistamines are for the management of allergies, and histamine-2 blockers (H2)
receptor antagonists are for the treatment of gastrointestinal disorders. Recently, it
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Table VI. Proportion of two cutoff values in range in Section 3.2
cK1 cK2

n Pattern 49-51 48-52 47-53 46-54 45-55 69-71 68-72 67-73 64-76 65-75
80 10 65.7% 77.5% 83.8% 87.4% 89.8% 24.2% 34.2% 42.2% 48.8% 54.2%

11 69.4% 81.8% 88.3% 92.3% 94.7% 26.8% 37.3% 45.6% 52.3% 58.0%
12 66.8% 79.9% 86.9% 90.6% 92.9% 28.7% 39.6% 48.0% 54.6% 60.2%
13 70.1% 81.4% 86.8% 89.8% 91.5% 25.4% 35.8% 43.9% 50.5% 55.9%
14 73.8% 85.7% 91.3% 94.5% 96.3% 28.1% 39.1% 47.5% 54.3% 59.9%
15 71.1% 83.9% 90.1% 93.3% 95.0% 29.9% 41.1% 49.6% 56.4% 62.0%
16 79.9% 89.4% 93.6% 95.6% 96.7% 43.5% 56.9% 65.9% 72.2% 76.8%
17 81.8% 91.5% 95.6% 97.7% 98.7% 47.1% 60.9% 69.6% 75.6% 80.1%
18 79.4% 90.6% 95.4% 97.5% 98.3% 50.1% 63.5% 72.0% 77.7% 81.8%

100 10 72.4% 82.8% 87.7% 90.4% 92.2% 27.3% 37.8% 45.7% 52.1% 57.3%
11 75.3% 86.0% 91.2% 94.0% 95.8% 30.1% 41.1% 49.4% 56.0% 61.3%
12 75.3% 86.7% 92.2% 95.1% 96.6% 32.6% 44.1% 52.6% 59.2% 64.5%
13 76.6% 86.1% 90.2% 92.3% 93.5% 28.8% 39.6% 47.7% 54.2% 59.4%
14 79.9% 89.5% 93.6% 95.8% 97.0% 31.9% 43.3% 51.7% 58.3% 63.4%
15 79.4% 90.0% 94.7% 96.8% 98.0% 34.3% 46.0% 54.5% 60.9% 66.2%
16 85.9% 93.3% 96.1% 97.4% 98.1% 49.7% 63.0% 71.4% 77.1% 81.2%
17 87.3% 94.5% 97.3% 98.6% 99.2% 53.7% 67.1% 75.2% 80.6% 84.4%
18 86.9% 95.1% 98.0% 99.2% 99.6% 57.2% 70.4% 78.1% 83.1% 86.5%

120 10 77.7% 86.7% 90.7% 92.7% 94.0% 30.6% 41.2% 49.3% 55.7% 60.9%
11 80.3% 89.4% 93.5% 95.6% 96.9% 33.8% 45.1% 53.4% 59.9% 65.1%
12 80.0% 89.8% 94.4% 96.7% 97.9% 36.5% 48.3% 56.8% 63.3% 68.4%
13 82.2% 89.9% 93.0% 94.5% 95.3% 32.8% 44.2% 52.5% 58.7% 63.8%
14 84.7% 92.6% 95.7% 97.1% 97.9% 35.6% 47.5% 56.1% 62.5% 67.6%
15 84.2% 92.9% 96.5% 98.1% 98.9% 38.7% 50.9% 59.5% 65.8% 70.7%
16 90.2% 95.8% 97.8% 98.6% 99.0% 55.4% 68.6% 76.4% 81.6% 85.1%
17 91.2% 96.7% 98.5% 99.3% 99.6% 59.4% 72.4% 79.9% 84.7% 88.0%
18 90.7% 96.7% 98.7% 99.5% 99.8% 62.9% 75.4% 82.6% 86.9% 89.9%

Table VII. Clinical outcomes in 110 hospitalized COVID-19 patients (x: age (years old), y: days to discharge
(day), a: days to death, b: patient with DNR).

x 79 53 34 64 78 50 83 71 85 91 73 65 81 57 93 79 71 59 50
y 5 6 2 32 18 5 11 4 5 33 35 14 18 8 12 8 9 4 5
x 43 80 58 39 46 41 60 68 89 83 39 72 45 63 87 43 92 22 92
y 7 20 29 7 8 6 7 11 16a,b 14a,b 18 16 15 11 6a,b 7 12 10 11
x 64 72 92 72 51 81 56 74 64 58 57 70 17 38 81 69 51 51 80
y 10 21 6b 5 11 20 5 6 8 6 13 7 7 10a,b 6 42 9 11 4
x 61 80 25 63 89 76 24 71 69 97 27 71 76 66 60 79 84 63 49
y 25 11 10 11a,b 5a,b 5a,b 7 10 19 6a,b 6 9 5 9 4a,b 7 7b 6a 6
x 94 79 68 63 69 91 79 61 48 33 76 50 37 21 53 73 56 67 45
y 17b 5 30 13 20a 14a 10a 12a 7 15 19 4 3 4 12a 13 8 5 11
x 73 75 73 43 55 68 63 48 38 70 60 73 57 75 72
y 8 8 5 12 9a 16 8 5a 6 5 13 14b 7 4 8

has become clear that cetirizine, which contains the H1 component, and famotidine,
which contains the H2 component, have been discovered to have a considerable
anti-SARS-CoV-2 impact [Freedberg et al. 2020; Janowitz et al. 2020; Blanco et al.
2021].
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Table VIII. Characteristics of three groups. Data are summarized
as frequency (proportion).

Age : -59 Age : 60-69 Age : 70-
(n = 40) (n = 22) (n = 48)

Discharge 36(90.0%) 17(77.3%) 40(83.3%)

Death 4(10.0%) 5(22.7%) 8(16.7%)
Days to discharge ≤ 10 27(67.5%) 6(27.3%) 23(47.9%)

We use the software R to calculate the cutoff values by the WMW and KW tests,
and a sample code is provided in Appendix. The independent variable x is the age
(years), and the dependent variable y is the days to discharge (day). According to the
minimum P-value approach, the one cutoff value by the WMW test is 60 years old,
and the P-value using that one cutoff value is 0.011. The two cutoff values by the KW
test are 60 and 70 years old, and the P-value using those two cutoff values is 0.004.
As a result, the two cutoff values of 60 and 70 years old are adopted. Fig. 1 shows a
scatter plot of the age and days to discharge, and the dashed line presents two cutoff
values of 60 and 70 years old. Table VIII summarizes the characteristics of the three
groups. In the group of less than 60 years old, 27 patients were discharged within 10
days, and a few patients were long days to discharge. Approximately 67.5% of all
patients were discharged within 10 days. In the group of 60-69 years old, 6 patients
were discharged within 10 days, and several patients were long days to discharge.
Approximately 27.3% of all patients were discharged within 10 days. In the group of
greater than or equal to 70 years old, 23 patients were discharged within 10 day, and
some patients were long days to discharge. Approximately 47.9% of all patients were
discharged within 10 days. In the proportion of death, the group of 60-69 years old
was the highest proportion at 22.7%, the group of greater than or equal to 70 years old
was the second highest proportion at 16.7%, and the group of less than 60 years old
was the lowest proportion at 10.0%. As a result, it is reasonable to set the two cutoff
values to 60 and 70 years old.

The numbers of the WMW and KW tests were performed 43 and 675 times,
respectively. In the Bonferroni method, the significance level was divided by a total
of 718 times for the two tests performed. For the commonly used significance level
of 0.05 (two-sided), the P-value is compared to the adjusted significance level of
0.05/718 = 0.0000696. Therefore, it was not significant.

5. CONCLUSIONS

The risk usually rises with age, but in clinical trials, the risk may appear to fall after a
certain age. In this case, dividing the age into three groups by two cutoff values was
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Fig. 1. Scatter plot of the age and days to discharge in COVID-19 data of 93 recovered patients. The dashed
lines show two cutoff values.

thought to be more appropriate than dividing the age into two groups by one cutoff
value. The one cutoff value was determined using the WMW test by the minimum
P-value approach, and the two cutoff values were determined using the KW test by
the minimum P-value approach. The smaller minimum P-value for the WMW and
KW tests was adopted, and the cutoff value corresponding to that test was used. We
validated the performance of this method using MCSs at various settings before
applying it to COVID-19 data because it was a new method for determining the
cutoff values. Using COVID-19 data, the minimum P-value by the WMW and KW
tests were 0.011 and 0.004, respectively. The two cutoff values of 60 and 70 years
old by the KW test were used. It was confirmed that each group had different
characteristics by observing the data divided into three groups based on the two
cutoff values. However, in the Bonferroni method, it was not significant. It was
considered effective to determine the cutoff value(s) using the minimum P-value
approach in the two types of tests, but the issue of reducing the number of tests
remained. In this study, because we first calculated all the P-values at the potential
cutoff value(s) and then searched for the smallest P-value, the number of tests
performed was very large. It is conceivable that the number of tests performed can be
reduced by improving the procedure. If the number of tests performed can be
reduced, it may be significant even if the significance level is adjusted by the
Bonferroni method. This is a future work.
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APPENDIX

We provided a sample code of software R that can be used to replicate the results.
Another practical example can be performed by replacing two vectors of x and y with
appropriate ones.

library(exactRankTests)

x<-c(79,53,34,64,78,50,83,71,85,91,73,65,81,57,93,79,71,59,50,43,80,

58,39,46,41,60,68,39,72,45,63,43,92,22,92,64,72,92,72,51,81,56,74,

64,58,57,70,17,81,69,51,51,80,61,80,25,24,71,69,27,71,76,66,79,84,

49,94,79,68,63,48,33,76,50,37,21,73,56,67,45,73,75,73,43,68,63,38,

70,60,73,57,75,72)

y<-c(5,6,2,32,18,5,11,4,5,33,35,14,18,8,12,8,9,4,5,7,20,29,7,8,6,7,

11,18,16,15,11,7,12,10,11,10,21,6,5,11,20,5,6,8,6,13,7,7,6,42,9,11,

4,25,11,10,7,10,19,6,9,5,9,7,7,6,17,5,30,13,7,15,19,4,3,4,13,8,5,

11,8,8,5,12,16,8,6,5,13,14,7,4,8)

n<-length(x); dat0<-data.frame(x,y); res1<-NULL; res2<-NULL

dat1<-dat0[order(dat0[,1]),]

for(c in (min(x)+1):max(x)){y1<-y[x<c]

y2<-y[x>=c]; if(length(y1)>=10&length(y2)>=10){res1<-rbind(res1,

c(c,wilcox.exact(y1,y2)$p.value))}}

res_1<-res1[order(res1[,2]),][1,]

for(c1 in (min(x)+1):(max(x)-1)){for(c2 in (c1+1):max(x)){y1<-y[x<c1

]; y2<-y[c1<=x&x<c2]; y3<-y[c2<=x]; if(length(y1)>=10&length(y2)>=

10&length(y3)>=10){g<-rep(NA,n); g[x<c1]<-1; g[c1<=x&x<c2]<-2; g[c2

<=x]<-3; res2<-rbind(res2,c(c1,c2,kruskal.test(y,g)$p.value))}}}

res_2<-res2[order(res2[,3]),][1,]

res_all<-c(res_1,res_2,nrow(res1)+nrow(res2)); names(res_all)<-c("

Cutoff of WMW","Pvalue of WMW","Cutoff1 of KW","Cutoff2 of KW",

"Pvalue of KW","Number of tests performed")

res_all
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The application of PSO-BP combined model
and GA-BP combined model in Chinese and

V4’s economic growth model

X. GUI, M. FEC̆KAN AND J. R. WANG

Abstract

This paper adopts different optimization algorithms such as Genetic Algorithm (GA) and Particle Swarm
Optimization Algorithm (PSO-Algorithm) to train Back-Propagation (BP) neural networks, fits the
Chinese, the Czech, Slovak, Hungarian, and Polish gross domestic product (GDP) growth model (from
1995 to 2020) and makes short-term simulation predictions. We use the PSO-Algorithm and GA with
strong global search ability to optimize the weights and thresholds of the network, combine them with the
BP neural network, and apply the resulting Particle Swarm Optimization Back-Propagation (PSO-BP)
combined model or Genetic-Algorithm Back-Propagation (GA-BP) combined model to allow the network
to achieve fast convergence. Besides, we also compare the above two hybrid models with standard
multivariate regression model and BP neural network with different initialization methods like normal
uniform and Xavier for fitting and short-term simulation predictions. Finally, we obtain the excellent
results that all the above models have achieved a good fitting effect and PSO-BP combined model on the
whole has a smaller error than others in predicting GDP values. Through the technology of PSO-BP and
GA-BP, we have a clearer understanding of the five countries gross domestic product growth trends, which
is conducive to the government to make reasonable decisions on the economic development.

Mathematics Subject Classification 2010: 26A33, 26A51, 26D15
General Terms: Algorithms
Keywords: Prediction, Gross domestic product, Genetic algorithm back-propagation combined model,
Particle swarm optimization back-propagation combined model.

1. INTRODUCTION

The ”16 + 1” model of cooperation between Central and Eastern European
countries and China and the Belt and Road Initiative are in harmony in many aspects.
Among central and eastern European countries, the Visegrad Four (V4), consisting of
the Czech Republic, Hungary, Poland and Slovakia, has achieved great results in
coordinating and strengthening national economies.

V4 countries are located in the heart of Europe, and trade and investment exchanges
are increasing with the strengthening of cooperation and links between China and
Central and Eastern Europe. At the same time, more and more V4 enterprises also
look around the world, actively looking for new markets.

With the rapid development of global economy, import and export trade is

10.2478/jamsi-2022-0011
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occupying an increasingly important position in the economy of various countries.
The growth of national economy will promote the growth of import and export trade,
and the growth of import and export trade will also play a role in promoting the
development of national economy [1]. However, sometimes due to problems such as
industrial structure and investment demand, the growth of import and export trade
has little impetus for the development of the national economy. Therefore, we need
to correctly select some nonlinear variables to study the GDP growth model to
prevent policy makers from making inappropriate decisions.

In order to study V4’s and China’s economic growth model, this paper downloaded
data sets related to above five countries GDP from 1995 to 2020 from the open
database on the World Bank’s official website. Due to the large dimensions of the
initial data set, direct target research will consume too much time and resources, so
this paper will select 7 explanatory variables according to [1; 2], and unify the
measurement unit of the explanatory variables. Although GDP is a very complex
nonlinear economic system, there are many good ways to study it, such as fractional
calculus in [3; 4] which show that the fractional order model is superior to integer
order model, and artificial neural network technology, especially the
Back-Propagation (BP) neural network in [5; 6; 7; 8], which is widely used and
mature. Recently, techniques such as artificial neural networks with flexible
nonlinear modeling capabilities have gained popularity for dealing with
nonlinearities in forecasting economic and financial time series [9; 10; 11]. In
addition, there are many interesting models used to fit economic growth trends, such
as grey multivariable forecasting models [12].

Although the BP neural network fits the model well, its limitations cannot be
ignored. In order to solve the problem that it is easy to fall into the local extreme
value and the network learning process is not stable, we have to propose two
optimization algorithms with strong global optimization ability: Particle Swarm
Optimization Algorithm (PSO Algorithm) [13; 14] and Genetic Algorithm (GA) [15;
16], which come from the research and observation of the life activities of bird
predation and the law of biological evolution in nature, respectively. The global
search feature of the PSO Algorithm and GA will make the BP neural network have a
great prediction effect as [17; 18; 19; 20; 21; 22] have demonstrated. To the best of
our knowledge, there are yet few results on forecasting the GDP by PSO-BP
combined model and GA-BP combined model, which will be considered in this
paper.
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Then, we also compare the above two hybrid models with standard multivariate
regression model and BP neural network with different initialization methods like
normal uniform and Xavier. Though standard multivariate regression model and BP
neural network with normal uniform initialization method (Uniform-ini-BP model)
and BP neural network with Xavier initialization method (Xavier-ini-BP model) can
get some good fitting and prediction results for GDP growth model, PSO-BP
combined model and GA-BP combined model are better than three methods
mentioned earlier. To be honest, owe to the lack of sufficient data which means it is
difficult to come by older data of GDP and related variables, the prediction results of
standard multivariate regression model, Uniform-ini-BP model and Xavier-ini-BP
model are not good. Besides, PSO and GA are excellent search algorithms which can
seek the best weights and thresholds in advance, though the small amount of data, the
appropriate training structure of BP neural network still can be obtained.

Based on the comparison of mean square error (MSE), mean absolute deviation
(MAD), the coefficient of determination (R2), Bayesian information criterion (BIC)
and images, it is concluded that the five methods are both suitable for this data set to
fit the GDP growth model. Subsequently, the absolute relative error (AREi) will be
used to evaluate the prediction results of the five models. In addition, the construction
and training of all models, the calculation and operation process of GDP fitting and
prediction in this paper will be implemented in MATLAB software.

The case study shows that the PSO-BP combined model on the whole has a smaller
error than others in predicting GDP values.

Summarizing, this paper is arranged as follows. Section 2 briefly introduces some
explanatory variables used for fitting GDP growth model, V4, PSO Algorithm, and
GA. In Section 3, the results of fitting and prediction of GA-BP combined model and
PSO-BP combined model for Chinese and V4’s GDP values are shown. Finally, the
conclusion is given in Section 4.

2. MODEL DESCRIPTION

We selected 7 explanatory variables according to [1; 2], which are different from
the research of Ming et al. [4] that six variables were considered for their China’s
GDP Model. These explanatory variables are Land area (LA) (km2), Cultivated land
(CL) (hectare), Total population (TP) (per), Export of goods and services (EGS)
(2010 constant US dollars), Import of goods and services (IGS) (2010 constant US
dollars), Final consumption expenditure of general government (FCEGG) (2010
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constant US dollars), Gross capital formation (GCF) (2010 constant US dollars). The
26 data downloaded directly from the World Bank were from 1995 to 2020.

In order to simplify the expression, we define the following symbols:

Table I. Symbols.

x1 x2 x3 x4 x5 x6 x7 y t
LA CL TP EGS IGS FCEGG GCF GDP year

2.1. PSO Algorithm And PSO-BP Combined Model

The basic idea of PSO is to design bird swarms as particles with only velocity and
position properties. Velocity limits the speed of particle movement and position limits
the direction of particle movement that Kennedy and Eberhart [13] first presented.

Each particle moves and searches within the specified search space, finds the
optimal value, and then shares it with other individuals, and finally obtains the
overall global optimal solution. Then we update the position and velocity of each
particle according to the individual optimal solution of each particle and the global
optimal solution obtained by all particles, and iterate until the upper limit of iteration
is reached or the global optimal solution does not change for several iterations.

The basic step is that each particle first sets a random initial velocity and position as
the initial optimal solution, then calculates the fitness value of each particle according
to the set fitness, and selects the group optimal solution among all particles. If it does
not reach the upper limit of the iteration or other constraints, then update the velocity
and position of each particle, recalculate the fitness value of each particle, get the
individual optimal solution, then update the global optimal solution, and iterate until
the end condition is met.

As explicitly presented by Ethaib et al. [17], the velocity and position are updated
by following formula:

Vk+1 = ω ×Vk + c1 × rand × (pbestk − xk)+ c2 × rand × (gbestk − xk)

xk+1 = xk +Vk+1,

Where k = 1,2,3, . . . ,N, N refers to the total number of particle swarms, ω is a non-
negative inertia factor, Vk refers to the velocity of the k particle, and xk is the position
of the k particle. c1 and c2 are learning factors of individual information and group
information respectively, generally take 2, rand refers to a random number between 0



JAMSI, 18 (2022), No. 2 37

and 1, pbestk refers to the individual optimal solution searched by the k particle, and
gbestk is the global optimal solution after all particles are searched.

Because the change of ω will have better results in the search for the optimal
solution, the so-called linear weight will be used in this paper. The weight of each
iteration is updated as follows:

ω = (ωini −ωend)×
k

maxgen
+ωend ,

Where ωini is the initial inertia factor, ωend is the maximum inertia factor, maxgen is the
maximum number of iterations, and k is the number of iterations.

The fitness function applied by this algorithm is shown below:

F =
N

∑
i=1

|yi − ŷi| ,

Where N refers to the number of samples, yi is the true value of the sample, and ŷi is
the simulated prediction value of the network.

First, we give each particle a random position and velocity, and then use the fitness
function given above to calculate the fitness value of the particle based on the particle
position and the neural network layer structure which previously set. Then we select
the individual optimal and the group optimal according to the fitness value of all
particles. Then update the position and velocity of each particle with the position and
velocity of the individual optimal and the group optimal, and calculate the position
and velocity of each particle again and calculate their fitness value until the end of
the iteration. It can be seen from the fitness function that the individual optimal and
group optimal fitness values we are looking for should always decrease, and finally
we get the final individual optimal and group optimal particles, and correspond their
positions to thresholds and weights in the neural network, and then train the network.

The PSO-BP combined model in this paper firstly regards the weights and
thresholds between nodes in each layer of the BP network as particles, and iterates
the PSO algorithm to find the optimal solution, secondly converts to obtain the
optimal weights and thresholds. Finally it constructs the BP network to learn from
the data set and train a good network to make predictions.

2.2. Genetic Algorithm And GA-BP Combined Model

Genetic algorithm (GA) is an adaptive global optimization probabilistic search
algorithm which simulates the genetic and evolutionary process of living organisms
in the natural environment. There are many kinds of objective functions and
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constraints in optimization problems, some are linear, some are nonlinear; Some are
continuous, some are discrete; Some have single peaks, some have multiple peaks.
With the deepening of the research, people gradually realize that it is impossible and
unrealistic to find the optimal solution completely and precisely in many complicated
cases, so it is one of the main focus of people to find the approximate optimal
solution or satisfactory solution. Genetic algorithm provides an effective way and
general framework to solve this kind of problem and creates a new global
optimization search algorithm.

In genetic algorithm, n-dimensional decision vector X = [x1x2 . . .xn]
T is represented

by the symbol string X composed of n symbols Xi: X = X1X2 . . .Xn. Considers each Xi

as a genetic gene, and all of its possible values are called alleles. So X can be viewed
as a chromosome made up of n genes. In general, the length of the chromosome n

is fixed, but it can vary for some problems. Depending on the different cases, the
allele can be a set of integers, a range of real values, or a pure marker. The simplest
allele consists of two integers, 0 and 1, and the corresponding chromosome can be
represented as a string of binary symbols. The arrangement X formed by this code
is the genotype of the individual, and its corresponding X value is the phenotype of
the individual. Usually an individual’s phenotype and genotype correspond one to
one, but sometimes a many-to-one relationship between genotype and phenotype is
allowed. Chromosome X is also called individual X . For each individual X , its fitness
should be determined according to certain rules. The individual fitness is correlated
with the objective function value of the corresponding individual phenotype X . The
closer X is to the optimum point of the objective function, the greater the fitness is;
On the contrary, its fitness is smaller. The decision variable X in genetic algorithm
constitutes the solution space of the problem. The search for the optimal solution
of the problem is carried out through the search process of chromosome X , thus all
chromosomes X constitute the search space of the problem.

The evolution of organisms is based on groups. The corresponding operation object
of genetic algorithm is a set composed of M individuals, called population. Similar to
the natural evolution of biology from generation to generation, the operation process
of genetic algorithm is also an iterative process. The t generation population is denoted
as P(t), and the t +1 generation population is obtained after one generation of heredity
and evolution, which is also a set composed of multiple individuals and denoted as
P(t +1). This population is continuously operated by heredity and evolution, and each
time more individuals with higher fitness are inherited to the next generation according
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to the rule of survival of the fittest. In this way, an excellent individual X will be finally
obtained in the population, and its corresponding phenotype X will reach or close to
the optimal solution X∗.

The evolutionary process of organisms is mainly accomplished by the crossover
and mutation of chromosomes. Correspondingly, the search process for the optimal
solution in the genetic algorithm also imitates the evolutionary process of organisms.
The so-called genetic operator is applied to population P(t) and the following genetic
operations are performed to obtain the new generation population P(t +1).

1. Selection According to the fitness of each individual, some excellent individuals
are selected from the t generation population P(t) and inherited to the next generation
population P(t+1) according to certain rules or methods. 2. Crossover Each individual
in a population P(t) is paired randomly, and some chromosomes are exchanged parts
of them between each pair at a probability (known as crossover rate). 3. Mutation For
each individual in population P(t), the gene value of one or some loci is changed to
other alleles at a certain probability (called mutation rate).

Fig. 1. The operation process of genetic algorithm.
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The operation process of genetic algorithm is as follows (see Figure 1).

Step 1: Initialize. Set the evolution algebra counter t = 0, and the maximum
evolution algebra T ; M individuals are randomly generated as the initial population
P(0).

Step 2: Individual evaluation. The fitness of each individual in population P(t) is
calculated.

Step 3: Select operation. The selection operator is applied to the population.

Step 4: Crossover operation. The crossover operator is applied to the population.

Step 5: Mutation operation. The mutation operator is applied to the population. The
next generation population P(t +1) is obtained after selection, crossover and mutation
operation.

Step 6: Terminate condition judgment. If t ≤ T , then t = t +1, go to Step 2; If t > T ,
the individual with the maximum fitness obtained in the evolution process is taken as
the optimal solution output and the calculation is terminated.

Similar to PSO-BP combined model, finally we can get the optimal solution output
and an excellent individual X through operation process of genetic algorithm, which
corresponds to thresholds and weights in the neural network. Subsequently, we can
use them to train the network.

The GA-BP combined model encodes the weights and thresholds between nodes
in each layer of the BP network as chromosomes, and iterates the GA algorithm to
find the optimal solution X∗, and then decodes the chromosomes to obtain the optimal
weights and thresholds. Finally it constructs the BP network to learn from the data set
and train a good network to make predictions.

In order to compare the performance and predictive capabilities of the five models,
in MATLAB software there is a toolbox for neural network modeling and related
functions for training neural networks, which takes 70% of the data as the training set,
15% as the validation set, and 15% as the test set by default, i.e., 18 of the dataset as
the training set, 4 of the dataset as the validation set, 4 of the dataset as the test set,
respectively.

What needs to be added is that we have to normalize the data before putting the data
into the research. We choose the minimum and maximum normalization to handle it,
besides, generally we are fond of using the mean square error (MSE) to evaluate the
fitting effect of the model, and the absolute relative error (AREi) to demonstrate the
prediction effect between models.

Furthermore, we need the mean absolute deviation (MAD) , the coefficient of
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determination (R2) and Bayesian information criterion (BIC) to explain further and
evaluate the models that have good fitting effect. The formulas for minimum and
maximum normalization, mean square error, absolute relative error, mean absolute
deviation, the coefficient of determination and Bayesian information criterion are as
follows:

xscaled =
x− xmin

xmax − xmin
,

and

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2,

and

AREi =

∣∣∣∣yi − ŷi

yi

∣∣∣∣ , i = 1,2,3, . . .n,

and

MAD =
∑

n
i=1 |yi − ŷi|

n
,

and

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳi)2 ,

and

BIC = log
(

1
n

n

∑
i=1

(yi − ŷi)
2
)
+

p logn
n

.

According to [23] and [24], The parameter settings of GA-BP combined model and
PSO-BP combined model are as follows: (see Table II).

3. MAIN RESULTS

3.1. Model Evaluation

In this paper, by the reference parameter given in the [23] and [24] the network
under GA and PSO algorithms is trained multiple times by continuously changing
the parameters within reasonable range, and after many test experiments, we have
obtained that the training network using the parameters of Table II is stable, which
means that we can get the similar result within the reference parameter range. If the
parameter setting exceeds range or is unreasonable, it will make the training network
sensitive and make the fitting and prediction results have a large deviation. Following
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Table II. Parameter setting.
Models Parameters Value

the individual number 40
the binary number of bits of a variable 10

the generation gap 0.95
the maximum number of iterations 66

GA-BP the crossover rate 0.7
the mutation rate 0.01

three-layer structure 7-15-1
hidden layer function tansig
output layer function purelin

learning rate 0.01
learning factors c1 and c2 2.05

the initial inertia factor ωini 0.9
the maximum inertia factor ωend 0.4

the maximum number of iterations 200
total number of particles 100

maximum speed 1
PSO-BP Minimum speed -1

maximum position 1
minimum position -1

three-layer structure 7-3-1
hidden layer function tansig
output layer function purelin

learning rate 0.11

the comparison of two algorithms convergence is shown in Fig. 2.

Through following figures, we can find that the convergence rate of GA is
generally faster than that of PSO Algorithm because GA tends to converge
prematurely. This leads to the possibility that convergence may not be optimal. In
GA, chromosomes share information with each other, so the movement of the whole
population is relatively uniform to the optimal region. Particles in PSO only share
information through the current search to the optimum point, so to a large extent this
is a single information sharing mechanism, and the whole search and update process
is the process which follows the current optimal solution. In most cases, all particles
may converge to the optimal solution more easily than evolutionary individuals in
genetic algorithm.

3.2. Fitting Result

The PSO-BP combined model and GA-BP combined model above have the great
effect on fitting the Chinese and V4’s GDP model. Now we compare them with the
standard multivariate regression model, Uniform-ini-BP model and Xavier-ini-BP
model for the fitting effect. Through the training data set (original data), we
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(a) PSO-BP(China) (b) GA-BP(China)

(c) PSO-BP(Czech) (d) GA-BP(Czech)

(e) PSO-BP(Hungary) (f) GA-BP(Hungary)

(g) PSO-BP(Poland) (h) GA-BP(Poland)

(i) PSO-BP(Slovakia) (j) GA-BP(Slovakia)

Fig. 2. GA and PSO-Algorithm convergence.
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calculated the values of MSE, MAD, R2, and the BIC index to evaluate fitting effects
of five models (see Table III).

Table III. Fitting performance of different models.
R2 MSE MAD BIC

GA-BP(China) 0.9986 7.4417×1021 6.7997×1010 51.3762
PSO-BP(China) 0.9989 1.2098×1022 6.2015×1010 51.7245

Xavier-BP(China) 0.9991 4.9506×1021 5.3216×1010 50.9686
Uniform-BP(China) 0.9955 2.4462×1022 1.1378×1011 52.5662
Regress-BP(China) 0.9998 8.6166×1020 2.3910×1010 49.2202

GA-BP(Czech) 0.9993 6.2455×1017 6.0779×108 41.9907
PSO-BP(Czech) 0.9992 1.0431×1018 6.1678×108 42.3659

Xavier-BP(Czech) 0.9945 4.7933×1018 1.5297×109 44.0286
Uniform-BP(Czech) 0.9978 1.9381×1018 1.0766×109 43.1231
Regress-BP(Czech) 0.9982 1.5339×1018 9.7646×108 42.8892
GA-BP(Hungary) 0.9968 9.5391×1017 8.2091×108 42.4142
PSO-BP(Hungary) 0.9991 4.5041×1017 4.6647×108 41.5261

Xavier-BP(Hungary) 0.9921 2.3240×1018 1.0905×109 43.3047
Uniform-BP(Hungary) 0.9943 1.7001×1018 1.0027×109 42.9920
Regress-BP(Hungary) 0.9940 1.7622×1018 9.2264×108 43.0280

GA-BP(Poland) 0.9991 7.4409×1018 1.8016×109 44.4684
PSO-BP(Poland) 0.9998 3.6821×1018 1.5408×109 43.6272

Xavier-BP(Poland) 0.9971 2.4656×1019 2.5454×109 45.6664
Uniform-BP(Poland) 0.9947 4.4838×1019 4.8814×109 46.2644
Regress-BP(Poland) 0.9962 3.2495×1019 4.9007×109 45.9424

GA-BP(Slovakia) 0.9930 2.3125×1018 1.2514×109 43.2997
PSO-BP(Slovakia) 0.9983 8.1206×1017 4.9813×108 42.1155

Xavier-BP(Slovakia) 0.9951 1.6016×1018 8.5852×108 42.9324
Uniform-BP(Slovakia) 0.9916 2.7586×1018 1.0249×109 43.4761
Regress-BP(Slovakia) 0.9927 2.4015×1018 1.3094×109 43.3375

As can be seen from the above table, the fitting results of five models for GDP
models of five countries are so excellent. But the fitting effect of PSO-BP combined
model in general is steadily better than other models. Now, we give the fitting and
prediction results of the five models for the Chinese and V4’s GDP growth model on
MATLAB software (see Fig. 3, 4, 5, 6 and 7).
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(a) PSO-BP(China) (b) GA-BP(China)

(c) Xavier-BP(China) (d) Uniform-BP(China)

(e) Regress-BP(China)

Fig. 3. Fitting and prediction results of the five models for the Chinese GDP growth model.
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(a) PSO-BP(Czech) (b) GA-BP(Czech)

(c) Xavier-BP(Czech) (d) Uniform-BP(Czech)

(e) Regress-BP(Czech)

Fig. 4. Fitting and prediction results of the five models for the Czech GDP growth model.
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(a) PSO-BP(Hungary) (b) GA-BP(Hungary)

(c) Xavier-BP(Hungary) (d) Uniform-BP(Hungary)

(e) Regress-BP(Hungary)

Fig. 5. Fitting and prediction results of the five models for the Hungarian GDP growth model.
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(a) PSO-BP(Poland) (b) GA-BP(Poland)

(c) Xavier-BP(Poland) (d) Uniform-BP(Poland)

(e) Regress-BP(Poland)

Fig. 6. Fitting and prediction results of the five models for the Polish GDP growth model.
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(a) PSO-BP(Slovakia) (b) GA-BP(Slovakia)

(c) Xavier-BP(Slovakia) (d) Uniform-BP(Slovakia)

(e) Regress-BP(Slovakia)

Fig. 7. Fitting and prediction results of the five models for the Slovakia’s GDP growth model.

It can be seen that the fitting results of the above graphs are great. And we can see
from the graphs that there was a sharp drop between 2008 and 2009, which is resulting
from the onset of the global financial tsunami in 2008. Subsequently, the Czech,
Slovakian and Hungarian economies weakened and fell into recession. However, the
GDP of Poland and China has not been affected. This is because their government has
strengthened macro-control and introduced a lot of policies and measures to maintain
the stable development of the financial market and the national economy, such as stock
market policies, real estate policies and policies to expand domestic demand.

3.3. Predicted Result

In addition, from Fig. 3, 4, 5, 6 and 7, it is easier to understand that the prediction
results of PSO-BP combined model and GA-BP combined model are better than the
other three models. Actually, in the standard multivariate regression model occur steep
rises and drops and loss the ability of excellent prediction due to the lack of sufficient
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data and miscalculated regression coefficients for Chinese and Hungarian GDP growth
models. Similarly, Uniform-ini-BP model and Xavier-ini-BP model produce poor
prediction for Czech GDP growth model because of the lack of sufficient data. In fact,
the data are nearly 30 years of data obtained from the World Bank, and it is difficult to
come by older data of GDP and related variables. In addition, for these three models,
at least hundreds of data are needed to make the model fit and predict effectively.

Finally, we present the forecast results of the PSO-BP combined model, GA-BP
combined model, the standard multivariate regression model, Uniform-ini-BP model
and Xavier-ini-BP model for Chinese and V4’s GDP data from 2016-2020, and we
calculate the AREi index values, as shown in Table IV, V and VI.

Table IV. Predicted Results

Country Year Real Value
GA-BP PSO-BP

Predicted value AREi Predicted value AREi

2016 9520000000000 9559829702636.29 0.4184% 9525836035575.34 0.0613%
2017 10200000000000 10095351712021.5 1.0260% 10194955074611.1 0.0495%

China 2018 10900000000000 10898918408788.7 0.0099% 10837494585059.9 0.5734%
2019 11500000000000 11304121203798.9 1.7033% 11436472069898 0.5524%
2020 11800000000000 11667830275208 1.1201% 11323460534175.4 4.0385%
2016 233000000000 232671067729.118 0.1412% 232799057812.847 0.0862%
2017 245000000000 242166639211.853 1.1565% 245237693138.668 0.0970%

Czech 2018 253000000000 251630590796.729 0.5413% 253372605707.976 0.1473%
2019 259000000000 256356783233.144 1.0205% 258673182906.291 0.1262%
2020 244000000000 254528108385.872 4.3148% 244037849551.354 0.0155%
2016 149000000000 147222609308.264 1.1929% 149225865393.829 0.1516%
2017 156000000000 156379939797.03 0.2436% 155691936900.501 0.1975%

Hungary 2018 164000000000 164879828261.702 0.5365% 161931174141.02 1.2615%
2019 172000000000 172327716942.825 0.1905% 171715393538.019 0.1655%
2020 163000000000 168780508818.201 3.5463% 163377263177.46 0.2314%
2016 572452000000 580840498210.459 1.4654% 571508221331.321 0.1649%
2017 600105000000 607134900727.096 1.1714% 603610194683.615 0.5841%

Poland 2018 632233000000 633877597925.932 0.2601% 635918197790.091 0.5829%
2019 660942000000 659467406246.733 0.2231% 659634332214.273 0.1978%
2020 643085000000 663959185040.113 3.2459% 641970713012.838 0.1733%
2016 105000000000 105627733758.945 0.5978% 105106171819.703 0.1011%
2017 108000000000 107875777395.503 0.1150% 107737968422.945 0.2426%

Slovakia 2018 112000000000 110935156198.492 0.9508% 111926769158.625 0.0654%
2019 115000000000 113922528919.196 0.9369% 114220595181.397 0.6777%
2020 109000000000 110549200606.95 1.4213% 108833063528.208 0.1532%
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Table V. Predicted Results

Country Year Real Value
Xavier-BP Uniform-BP

Predicted value AREi Predicted value AREi

2016 9520000000000 9228764653862.61 2.5080% 9281239832597.31 3.0592%
2017 10200000000000 10108892724016.8 0.8932% 9897834397247.79 2.9624%

China 2018 10900000000000 10881335424721.6 0.1712% 10617829278390.6 2.5887%
2019 11500000000000 11062097074100.7 3.8079% 10840373967059.3 5.7359%
2020 11800000000000 11385613714636.8 3.5117% 11325788465426.8 4.0187%
2016 233000000000 221393149620.95 4.9815% 223053956790.816 4.2687%
2017 245000000000 227780141457.145 7.0285% 229081112144.987 6.4975%

Czech 2018 253000000000 233367425365.563 7.7599% 232292290367.562 8.1849%
2019 259000000000 234049553706.394 9.6334% 232453855081.095 10.2495%
2020 244000000000 221537241566.541 9.2060% 228016540899.785 6.5506%
2016 149000000000 145016273023.257 2.6736% 147576671026.596 0.9553%
2017 156000000000 153836901950.414 1.3866% 153348823467.122 1.6995%

Hungary 2018 164000000000 163173867448.17 1.3866% 157826955376.149 1.6995%
2019 172000000000 170265939644.458 1.0082% 161375535719.657 6.1770%
2020 163000000000 166067725708.437 1.8820% 158728372248.949 2.6206%
2016 572452000000 574894936428.818 0.4267% 587185088957.002 2.5737%
2017 600105000000 599594243608.192 0.0851% 610468620631.883 1.7270%

Poland 2018 632233000000 612419294480.916 3.1339% 623234533416.615 1.4233%
2019 660942000000 609387992750.376 7.8001% 631723348369.546 4.4208%
2020 643085000000 602528603708.154 6.3065% 634416295008.516 1.3480%
2016 105000000000 105095878231.988 0.0913% 104027851181.114 0.9259%
2017 108000000000 107063587087.942 0.8670% 107178057715.004 0.7611%

Slovakia 2018 112000000000 108855433260.537 2.8076% 110656797265.638 1.1993%
2019 115000000000 109996218558.591 4.3511% 112915358213.28 1.8127%
2020 109000000000 108951741296.439 0.0443% 111480581571.937 2.2758%
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Table VI. Predicted Results

Country Year Real Value
Regress-BP

Predicted value AREi

2016 9520000000000 9362829800941.65 1.6509%
2017 10200000000000 9953806835333.37 2.4137%

China 2018 10900000000000 10695427646463.8 1.8768%
2019 11500000000000 11370943300657 1.1222%
2020 11800000000000 35740405395443.5 202.8848%
2016 233000000000 232489823588.05 0.2190%
2017 245000000000 244393091121.295 0.2477%

Czech 2018 253000000000 251606001155.988 0.5510%
2019 259000000000 256889253975.867 0.8150%
2020 244000000000 246883607497.955 1.1818%
2016 149000000000 188297943815.426 26.3745%
2017 156000000000 198809035052.238 27.4417%

Hungary 2018 164000000000 209706427695.974 27.4417%
2019 172000000000 222799336865.215 29.5345%
2020 163000000000 215577057933.806 32.2559%
2016 572452000000 568561487876.142 0.6796%
2017 600105000000 594215632169.578 0.9814%

Poland 2018 632233000000 627040232007.714 0.8213%
2019 660942000000 658623753950.821 0.3507%
2020 643085000000 653485270607.433 1.6172%
2016 105000000000 107918413360.082 2.7794%
2017 108000000000 108827715124.62 0.7664%

Slovakia 2018 112000000000 111351392129.538 0.5791%
2019 115000000000 114813824661.321 0.1619%
2020 109000000000 108107379513.637 0.8189%

After a large number of repeated experiments on the same parameters in Table II,
although sometimes the prediction effects of the PSO-BP combined model and GA-
BP combined model are close (as shown in the prediction results for 2016-2020 in the
Table IV, V and VI), the PSO-BP combined model requires a lot of repeated training
times than the GA-BP combined model to obtain good results as shown in Fig. 2.

Further, the results in Table IV, V and VI demonstrate the prediction effect of
Uniform-ini-BP model and Xavier-ini-BP model is poor again. However, the
standard multivariate regression model has a good prediction for Slovakian, Polish
and Czech GDP growth model.

In addition, the PSO-BP combined model and GA-BP combined model both have
good forecasting effects, but there is a phenomenon that both of them are only suitable
for short-term forecasting and will have large deviations in the long-term forecasting,
such as in 2020 the PSO-BP combined model forecasts China’s GDP, and GA-BP
combined model forecasts the GDP of the Czech Republic, Hungary and Poland. In
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general, we conclude that the prediction effect of PSO-BP combined model is better
than that of GA-BP combined model.

Besides, we can see from Table IV that the PSO-BP mixed model has a large error
in the forecast value of China’s GDP in 2020, because the COVID-19 outbreak in
Wuhan, China at the end of 2019 led to a very low economic development of the
whole China in 2020. In addition, the standard multivariate regression model in Table
VI has the same reason for the large prediction error of China’s GDP in 2020. The
COVID-19 pandemic leads to the small benefit of some GDP related variables with
large regression coefficients in 2020, which makes the predicted value much higher
than the actual value.

The GDP values of the V4 countries in Tables IV, V and VI for 2020 also fluctuated,
as economic recession and mass bankruptcies became more real, and inflation and the
energy crisis strained the economic situation. We can also see that in recent years,
due to the initiative of the Belt and Road, V4 countries actively change their industrial
structure, vigorously develop industry and service industry, and get a lot of foreign
investment at the same time, the opportunity for economic exchanges with countries
around the world also increased a lot.

4. CONCLUSION

We trained the BP neural network based on PSO and GA algorithm respectively
with the data set composed of 7 explanatory variables, and then fitted Chinese and
V4’s GDP growth from 1995 to 2020. The graph of algorithm convergence shows
that GA will converge ahead of PSO-Algorithm to find the global optimal solution,
and bring the optimal threshold and weight value into the network to obtain the best
BP neural network. Although the GA-BP model has the phenomenon of premature
convergence, the optimal solution can be found and the prediction effect is excellent
for the problems that are not too complicated. Compared with GA, PSO-Algorithm
does not require coding, crossover and mutation operations, and particles are just
updated by internal speed. Therefore, the PSO-Algorithm is simpler, parameters are
fewer, and easier to implement.

Then we consider making a comparison about the above two algorithms and the
standard multivariate regression model, normal uniform initialization method and
Xavier initialization method for the fitting effect. It can manifest from the fitting
graph that the five models are very effective. However, according to the prediction
results of Chinese and V4’s GDP from 2016 to 2020, and compared with their actual
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values, it reveals that the absolute relative error of the PSO-BP combined model is
smaller, and its prediction effect is better, while the prediction results of
Uniform-ini-BP model, Xavier-ini-BP model and multivariate regression model are
poor.

Then the best model we get can be used to predict future economic development, so
that government decision-makers can make appropriate decisions, which will benefit
the economic development of our country. However, for a global public emergency
such as the COVID-19 pandemic in 2020, which has a great impact on the economy,
the variables we selected are likely to be insufficient, which will lead to large errors
in the trained models [25]. Therefore, in the following studies, we should take into
account the influence factors of the novel coronavirus epidemic and further update
the models to make the economic forecast of the next few years more accurate. This
will help the government to introduce corresponding policies to optimize the country’s
industrial structure and solve the problems of inflation and resource shortage, which
lead to rapid economic recovery.
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A heteroscedastic Bayesian model for method 
comparison data

S. M. M. LAKMALI, L. S. NAWARATHNA AND P. WIJEKOON

____________________________________________________________________ 

Abstract 

When implementing newly proposed methods on measurements taken from a human body in clinical trials, 

the researchers carefully consider whether the measurements have the maximum accuracy. Further, they 

verified the validity of the new method before being implemented in society. Method comparison evaluates 

the agreement between two continuous variables to determine whether those measurements agree on 

enough to interchange the methods. Special consideration of our work is a variation of the measurements 
with the magnitude of the measurement. We propose a method to evaluate the agreement of two methods 

when those are heteroscedastic using Bayesian inference since this method offers a more accurate, flexible, 

clear, and direct inference model using all available information. A simulation study was carried out to 
verify the characteristics and accuracy of the proposed model using different settings with different sample 

sizes. A gold particle dataset was analyzed to examine the practical viewpoint of the proposed model. This 

study shows that the coverage probabilities of all parameters are greater than 0.95. Moreover, all parameters 
have relatively low error values, and the simulation study implies the proposed model deals with the higher 

heteroscedasticity data with higher accuracy than others. In each setting, the model performs best when the 
sample size is 500. 

General Terms: Method Comparison, Simulation, Bayesian Inference. 

Mathematics Subject Classification 2010: 62Exx, 62Hxx 

Keywords: Agreement, Bayesian modelling, Concordance Correlation, Heteroscedastic Measurements, 

Total deviation index. 

____________________________________________________________________ 

1. INTRODUCTION

The method comparison studies are performed to validate each newly introduced

method before it is used in a clinical trial (Altman and Bland 1983; Andrew et al 2004; 

Aravind and Nawarathana 2017). Therefore, method comparison studies are vital for 

health-related fields like medicine, medical imaging, and biomedical engineering 

(Bland and Altman 1999; Boscardin and Gelman 1994). Also, critical consideration 

should be taken of clinical measurements related to the human body like blood 

pressure, heart rate, cholesterol level, etc. Obtaining correct measurements related to 

the human body is important, since humans' lives directly affect these measurements 

(Bilić-Zulle 2011). Although with the rapid development of technology, new methods 
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can be introduced under several conditions and assumptions. Therefore, the agreement 

of existing and newly introduced methods should be checked, and the users prefer to 

use cheaper, less invasive, and user-friendly methods in general (Altman and Bland 

1986, 1999). These methods may be based on a medical device, a clinical observer, 

or an instrument used to measure the measurements (Altman and Bland 1999; 

Boscardin and Gelman 1996). Before making decisions to use the methods 

interchangeably, it is necessary to conduct an accurate analysis to check the agreement 

of measurements. Method comparison evaluates the agreement between two 

continuous variables taken from two different methods, whether those measurements 

agree well enough to interchange the methods (Boscardin and Gelman 1994, 1996; 

Carstensen 2010).  

Method comparison has developed under different conditions with different 

theories to answer the rising problems in agreement evaluation (Bilić-Zulle 2011; 

Altman and Bland 1986; Boscardin and Gelman 1996; Chinchilli et al 1996; 

Choudhary and Nagaraja 2007). It is started by calculating the difference of 

measurements from two methods in the standard subject using the bias. Limit of 

Agreement (LOA) is one of the most commonly used measures in method comparison 

studies. The perfect agreement can measure by the measurement pair with 450 lines 

through the origin when the difference of measurements is zero (Boscardin and 

Gelman 1996; Carstensen 2010; Chinchilli et al 1996). Although graphical illustration 

gives visualization results for method comparison, measures like Total Deviation 

Index (TDI), Concordance Correlation Coefficient (CCC) (Lin 1989; Lawrence et al 

2007), Intra-class Correlation Coefficient (ICC) (Chinchilli et al 1996; Choudhary and 

Nagaraja 2007; Choudhary 2009; Choudhary and Yin 2010) intuitively appealing 

ideas about the agreement of measurements (Carstensen 2010). Moreover, various 

regression models like Deming regression (Altman and bland 1983; Bilić-Zulle 2011) 

and Passing Bablok regression (Altman and Bland 1983; Bland and Altman 1986) 

also involve method comparison.  

The homoscedastic measurements have many models for measuring the 

agreement, which has constant error variance. But this paper considered the 

heteroscedastic measurements, which have error variability changes with the 
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magnitude of the measurement. Heteroscedasticity is the Greek word used to mean 

the violation of homoscedasticity (Studenmund 1991). It is always discussed in the 

context of the residuals or error term. Specifically, heteroscedasticity is a systematic 

change in the spread of the residuals over the range of measured values. Scatter plots 

are the easiest way of identifying heteroscedasticity using the visual method because 

heteroscedastic data tend to follow a cone shape on a scatter plot of the residuals. 

Further, there are some statistical tests to confirm heteroscedasticity. Non-constant 

error variance test (NCV) and Breush-Pagan test are the most common tests for 

detecting heteroscedasticity of the variable. In most practical situations, 

heteroscedasticity becomes the big issue of modelling data. Although transformation 

helps to solve this case, it causes to create more complicated problems, especially in 

interpretation (Boscardin and Gelman 1994; Galea-Rojas et al. 2003).  

Several models in method comparison deal with heteroscedastic measurements 

when going through the past literature. A model is proposed in (Galea-Rojas et al. 

2003), using a heteroscedasticity measurement error model for method comparison 

only for replicate data. Although the heteroscedasticity measurement error model 

normally compares two methods, this can be used for more than two models. The 

model proposed in (Galea-Rojas et al. 2003) also can deal with the skewed and heavy-

tailed ness by replacing the normality assumption with the generalization of normal. 

As the assumption of this model, an equal variance of both two methods is considered. 

This assumption can be considered as the limitation of this work. Copula-based 

methodology (Bland and Altman 1999) was also introduced for method comparison 

when dealing with heteroscedastic measurements. In (Bland and Altman 1999) the 

multivariate probability distribution is used, and the marginal probability distribution 

of each variable is the uniform distribution. This method is not assuming normality 

and constant error variance, and it is limited to non-replicated measurements. The 

major drawback of existing models is that these models can't deal with the non-

replicated data. And also, the paper (Galea-Rojas et al. 2003) also assumes that two 

methods should have an equal variance to use that method.  

The proposed model in this study is on the Bayesian inference, and it is also 

applicable to non-replicated measurements. The Bayesian inference allows offering 
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the more accurate, flexible, clear, and direct inference model using all available 

information (Bland and Altman 1999). Besides, Bayesian inference provides 

creativity in helpful directions because of flexibility. Also, it is simple in defining and 

interpreting (Boscardin and Gelman 1994; Hanneman 2018). More information can 

be incorporated in an inference when considering the necessity of specifying prior 

distributions. The information we gathered from the past we used as the prior 

information. Moreover, the Bayesian inference can be used with high accuracy even 

for small sample sizes. Another noteworthy reason nowadays is that Bayesian 

inference can be considered the breakthrough in computational algorithms and 

computing speed when performing very complex and realistic calculations. When 

dealing with the missing data, Bayesian methods allow for great flexibility (Kass and 

Wasserman 1996; Lin 1989). Based on the above reasons, Bayesian inference is a 

more suitable approach for method comparison studies dealing with heteroscedastic 

measurements. 

The proposed model is the pioneer model using Bayesian inference to deal with 

the heteroscedastic method comparison data. The model is set up using the Bayesian 

theorem, and it calculates the posterior using likelihood, priors, and conditioning on 

observed data are rigid (Gardner and Altman 1986). Rather than removing 

heteroscedasticity from measurements, we are dealing with it using Bayesian 

inference, as it is more suitable and easy to interpret the results. The Bayesian 

computations for heteroscedastic linear models were used for method comparison as 

the first experience to deal with the heteroscedasticity measurements (Lim 2000; Lin 

et al. 2002). Also, we used a simulation study to examine and evaluate the 

performance of the proposed model. Finally, a practical illustration was used to verify 

the proposed model in method comparison data. 

This article is organized as follows. Section 2 presents the proposed 

Heteroscedastic Bayesian Regression model for method comparison data. Section 3 

explains the procedure to evaluate the agreement in method comparison data under 

the proposed heteroscedastic model, and section 4 explains the simulation study 

results. Section 5 shows an application of the proposed model using the gold particles 
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dataset. In Section 6, the conclusion describes the main findings and further discusses 

the limitations of the study. 

2. BAYESIAN HETEROSCEDASTIC MODEL FOR METHOD 
COMPARISON    

Let Yi ;  i = 1,2,…,n be the observed ith measurement of the new method and Xi; 

i =1,2,…,n be the observed ith measurement of the reference method. Yi's are assumed 

to be normally distributed with mean μi and variance σi
2 where the variance is not 

constant because it depends on the magnitude of measurements.   The extended 

version of simple linear regression is used to deal with heteroscedastic measurements. 

The proposed heteroscedastic measurement method for method comparison is defined 

as below. 

First, consider the homoscedastic model, 

Yi = α + β * Xi + εi ; i =1,2,…,n,                                      (1) 

where μi  = α + β * Xi and εi ~ N(0, σ2).  

Yi  \ α, β, σ2 ~ N (α + β * Xi, σ2) 

where α and β are constants. The precision of this model can be expressed as, τ = 1⁄σ2.  

 

The extended version of the above model for heteroscedastic model, 

Yi = α + β * Xi + εi  where i =1,2,…,n                               (2) 

μi  = α + β * Xi and εi ~ N(0, σi
2) 

Yi  \ α, β, σi
2 ~ N (α + β * Xi, σi

2) 

where α and β, are constants. The precision of this model can be expressed as, τ = 

1⁄(σi
2). Here Xi and Yi are normally distributed. Rather than normality assumption, 

there are no other special assumptions because we used Bayesian inference for the 

proposed model. Also, we identify the function of Xi that can deal with the variance 

σi
2 and it depends on the dataset. Hence we should select the function of Xi according 

to the dataset.  

In Bayesian implementation, it is crucial to identify the specific prior distribution, 

which leads to estimating the accurate posterior distribution. Let the prior distribution 
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be p(β,η) for simplicity (Montenij et al. 2016). Then, the prior distribution can be 

written as below:  

(
𝛽
𝜂

) ~ 𝑁 [(
𝑏
𝑔

) , (
𝑏 𝐶
𝐶′ 𝐺

)], 

Using Bayes theorem, we can obtain the posterior distribution as π(β, η | data) α 

L(β,η)p(β,η) where L(β,η) is the likelihood function under the normal distribution. 

According to the past literature, we have to use non-informative priors (Lin 2000). 

Hence, we must set up a different parameter setting and select the more appropriate 

priors related to our proposed model to give more accurate results.  

 

3. EVALUATION OF THE AGREEMENT UNDER THE 
HETEROSCEDASTIC MODEL 

 

 Agreement evaluation is the main aim of the method comparison. Method 

comparison helps in decision making to select a more appropriate method. 

Concordance Correlation Coefficient (CCC) (Lin 1989; Lawrence et al 2007), Total 

Deviation Index (TDI), Intra-class Correlation Coefficient (ICC) are popular 

agreement measures used in method comparison (Chinchilli et al. 1996; Choudhary 

and Nagaraja 2007; Choudhary 2009; Choudhary and Yin 2010).  

 CCC is one of the agreement measures that takes values between -1 and +1. 

Higher values indicate a better agreement. The CCC measure presented by 

(Nawarathna and Choudhary 2015), defined as the, 

CCC =  
2𝜌𝜎1𝑖𝜎2𝑖

(𝜇1−𝜇2)2+ 𝜎1𝑖
2 +𝜎2𝑖

2                                                            (3) 

According to equation (3), μ1, μ2 are the means of two measurements and σ1, σ2 

are the respective variance's while ρ is the correlation coefficient of two 

measurements. The Heteroscedastic version of CCC is equation (4). 

CCC =  
2 𝑐𝑜𝑣(𝑌𝑖,𝑋𝑖) 𝜎1𝑖𝜎2𝑖

(𝜇1−𝜇2)2+ 𝜎1𝑖
2 +𝜎2𝑖

2                                                           (4) 
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TDI measure indicates good agreement by small values. It is a non-negative 

value, and TDI is introduced by (Montenij et al. 2016). The general equation of TDI 

is equation (5).  

TDI(𝜋0) = 𝜏 {𝑋1
2(𝜋0,

𝜇2

𝜏2 )}
1

2⁄

                                                 (5) 

In the above equation, 𝑋1
2(𝜋0, ∆) denotes the π0

th percentile of a non-

centralized Chi-Squared distribution with one degree of freedom. Generally              

0.80 ≤ π0 ≤ 0.9, and for this calculation, π0 taken as 0.95. Its heteroscedastic version 

with the proposed model can be obtained as, 

TDI(𝜋0) = 𝜏 {𝑋1
2(𝜋0,

(∝+𝛽𝑋𝑖)2

(𝜂+ϒ√𝑋𝑖)2)}

1
2⁄

                                               (6) 

 

ICC is another agreement measure that takes values between 0 and +1. 

Moreover, higher values indicate good agreement. ICC value can be expressed as, 

ICC =  
𝜎12

(𝑌̅−𝑋̅)2+𝜎1𝑖
2 +𝜎2𝑖

2 −
𝜎𝐷𝑖

2

𝑛⁄
                                                         (7) 

σ12 is the covariance of the two measurements and  𝑌̅, 𝑋̅ indicate the mean 

of two measurements. Also 𝜎1𝑖
2 , 𝜎2𝑖

2  and 𝜎𝐷𝑖
2  are the variance of two methods and the 

difference between two methods, respectively. This measure also can be presented in 

the heteroscedastic version in equation (8).  

ICC =  
 𝑐𝑜𝑣(𝑌𝑖,𝑋𝑖)

(𝑌̅−𝑋̅)2+𝜎1𝑖
2 +𝜎2𝑖

2 −
(𝜂+ϒ√𝑋𝑖)2

𝑛⁄
                                             (8) 

 

Credible Interval (CI) (Peter 2001) is a measure that gives the interval, which lies 

the value of a parameter. When estimating the unknown parameters, CI describes and 

summarizes the uncertainty of the unknown parameter. CI is just the range or interval 

containing a particular percentage of probable values in the domain of Posterior 

distribution. Generally CI = sample statistics ± margin of error. The product of the 

critical value (z) and standard error of the point estimator gives the margin of error 

using the standard normal table. The critical value can be calculated. Standard error =  
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𝜎𝑖

√𝑛
  where σi is the standard deviation of the point estimate and n is the sample size. 

The following equations illustrate the CI for all parameters in the proposed model.  

 

CI = ∝̂± 𝑍𝛼

2
 (

(𝜂0+𝜂1√𝑋𝑖

√𝑛
)                                                         (9) 

CI =  𝛽̂ ± 𝑍𝛼

2
 
(

(𝜂0+𝜂1√𝑋𝑖

√𝑛
)                                                     (10) 

CI =  𝜂0̂ ± 𝑍𝛼

2
 (

(𝜂0+𝜂1√𝑋𝑖

√𝑛
)                                                    (11) 

CI =  𝜂1̂ ± 𝑍𝛼

2
 (

(𝜂0+𝜂1√𝑋𝑖

√𝑛
)                                                   (12) 

Here 𝑍𝛼

2
  is taken from the normal distribution while α is the confidence coefficient.   

4. SIMULATION STUDY 

This section is used to evaluate and compare the accuracy of the proposed model 

under different settings and different sample sizes. The main focus of this section is 

to assess the characteristics of the proposed model using the Monte Carlo simulation 

(Linnet 1998; Montenij et al. 2016). Results of the model under different conditions 

are foreseen using simulation and representing the model behaviour more accurately. 

Just another Gibbs sampler (jags) programme was used for simulation because jags 

provides a helpful Bayesian modelling platform (Nawarathna and Choudhary 2013). 

The model fitting and analysis was performed by R 3.6.1 statistical software.  

This study selects six different settings to evaluate the model behaviour. 

Simulation settings are set according to the strength of the variance and agreement. 

Besides, each of these settings also run under different sample sizes 1000 times. This 

simulation process can be divided into two steps. Under the first step, we calculate 

the point estimator for each parameter and credible intervals, coverage probabilities 

for each trial to evaluate the model's accuracy. In the second step, six different 

settings and sample sizes are used to assess the proposed model's performance and 

behaviour by calculating credible interval and coverage probabilities (cp) with error 

values. Initial values of the parameter values are given in table I.   
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Table I: Initial values for all parameters. 

Parameter α β  η0 η1 

Initial value 0.13 0.576 -1.551 -0.523 

 

As the first part of the simulation, average values, coverage probabilities, 

credible intervals, and error values are calculated for each run for all the point 

estimates to measure the accuracy of the proposed model. The simulation results 

imply that all the data points perfectly match the proposed model with acceptable 

coverage probabilities with minimum error values.  

The coverage probabilities of α, β, η0 and η1 are 0.975, 0.95, 0.96, and 0.965, 

respectively. These coverage probabilities imply that each estimator's probability lies 

between appropriate credible intervals is higher than 0.95, and all probabilities are in 

an acceptable range. In this simulation, we calculated the four error values to get an 

idea about the accuracy. Four error measurements are calculated, namely Mean 

Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Percentage 

Error (MAPE), and Symmetric Mean Absolute Percentage Error (SMAPE), and those 

values are 0.034, 0.1829, 0.4316 and 0.4811 respectively. All the error values are 

relatively low, implying that the proposed model has high accuracy. These values also 

indicate the good significance of the proposed model. 

It is necessary to identify the characteristics of the model with the different 

settings under the different sample sizes. We have selected six different settings for 

the second part of the simulation. When selecting these different settings, variance 

changes and the strength of the agreement are considered. We want to identify the 

model behavior for selecting these different settings with the changes of 

heteroscedastic parameters and changes of the agreement. Moreover, we verify the 

model behavior with different sample sizes. Our second simulation step was carried 

out to verify the characteristics under sample sizes of 20, 50, 70, 100, 500 and 1000. 

Values of the samples are estimated by the proposed model using selected priors.  

The simulation was carried out for all samples sizes under each setting. 

Simulation results for different settings under different sample sizes are summarized 
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in Table II with respective error values. Moreover, Figures 1 & 2 represent the 

graphical representations of simulation results of error value and coverage probability 

changes according to the sample sizes. For each setting, simulation is run 1000 times 

to ensure the accuracy of the results.  

In all the settings, sample size 500 shows the good coverage probabilities for all 

parameters. Further, coverage probabilities have higher values than others in all six 

settings when the agreement is high. Coverage probabilities of the low variance 

related settings have reasonable values than other settings. The error values for all 

sample sizes are shallow, and when variance is high, error values are lower in many 

settings. According to the results, the best sample size for this proposed model is 500. 

The model plays well when the measurements are in high agreement. In this way, 

simulation verifies the characteristics of the proposed model more clearly and 

accurately. 
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Table II: Summary simulation results for different settings and sample sizes. 
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Fig 1: Error values of each setting according to the sample sizes; n = 20, 50, 70, 100, 500 and 1000. 



70 S. M. M. Lakmali, L. S. Nawarathna and P. Wijekoon 

 

 

 

Fig 2: Coverage Probabilities of Parameters according to sample sizes; n = 20, 50, 70, 100, 500 and 1000. 
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5. APPLICATION 

This section explains the practical viewpoint of the proposed model. For this 

purpose, the gold particles dataset was selected from (Tim et al. 2019). The dataset 

consists of gold particles in copper deposits with 501 subjects. Also, it involves two 

methods called Classical Fire Assay (CFA) and Screen Fire Assay (SFA), which are 

used to check the content of gold particles. The existing classical method serves as a 

reference method, and the screen fire assay method serves as a test method for this 

analysis. The method comparison aims to check that the measurements of the two 

methods agree well and those two methods can be comparable. A small number of 

gold particles are included in the copper deposits deposit, and the chemical laboratory 

collects those samples. Hence, a more accurate method is essential. We evaluate the 

agreement using the proposed model and check whether the two methods have a 

satisfactory agreement to interchange the two methods. The trellis plot of the gold 

particles dataset displayed in Figure 3 shows how data appears in two methods by two 

colours. 
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Fig 3: Trellis plot of gold particles dataset. 

The above plot represents the measurements of two methods separately by 

colour, and CFA shows a higher within-subject variation than the SFA measurements. 

Moreover, the plot indicates that the variation of both methods increases with the 

magnitude of the measurements.  

Then, we select the suitable version of the heteroscedastic parameter for this 

dataset. We used several linear and non-linear equations and calculated the error 

values to measure the accuracy. Finally, the following non-linear equation was 

established for gold particles data because it gives the minimum error values with 

higher accuracy. Hence we selected this equation to deal with the heteroscedasticity 

of this proposed model. 

𝜎𝑖
2 = exp ( 𝜂0 + 𝜂1√𝑋𝑖) 

Further, priors for the proposed model can be mentioned as follows.  

α ~ N  (0, 100) 

β ~ N  (0, 100) 

η0 ~ N  (0, 100) 

η1 ~ N  (0, 100) 

To check the accuracy of the proposed model, the above priors are used. 

Summary results of model fitting for gold particles data are summarized in Table III. 

MSE, RMSE, MAPE, and SMAPE values are calculated to examine the accuracy of 

the fitted proposed model. Also, CIs are calculated for each parameter, implying the 

range of the values for parameters and, according to table values, estimated ∝ near to 

zero and estimated β value near to one.  

 

Table III: summary results of model fitting for gold particles data.  

 α β  η0 η1 

Estimated value 0.13 0.576 -1.551 -0.523 

Lower Limit 0.084 0.502 -1.723 -0.691 

Upper Limit 0.175 0.648 -1.378 -0.354 
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According to Table III, a better agreement of two methods is implied. To 

examine the accuracy of the fitted proposed model, MSE, RMSE, MAPE, and 

SMAPE values are calculated, and the estimated values are 0.0444, 0.2107, 0.4203, 

and 0.4716, respectively. Hence, all error values are relatively low, and the fitted 

model has higher accuracy. 

 

Moreover, agreement measures are calculated to check whether the two methods 

can be interchanged. The estimated CCC, TDI, and ICC values are 0.8387, 0.055 and 

0.4194, respectively. All the values are verified that the two methods have a good 

agreement to use interchangeably.  

 

6. CONCLUSION 

This paper proposes the Bayesian model to evaluate the agreement between two 

methods when the variability of measurements depends on the magnitude. The 

proposed model fits well with low error values and high coverage probabilities. 

Simulation results show that all parameters have 0.95 or more than coverage 

probability. Those results imply the best fit of the proposed model. Moreover, 

simulation results indicate that this model is more suitable for sample size 500 and not 

performing well with sample sizes less than 20. Moreover, the proposed model works 

well when high heteroscedasticity is present with high accuracy. One limitation of the 

proposed model is that it does not fit well with small sample sizes. 
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A new generalized transmuted distribution
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Abstract 

We introduced Transmuted another Two-Parameter Sujatha Distribution by using Quadratic Rank 
Transmutation Map technique. Various necessary statistical properties of Transmuted another Two-

Parameter Sujatha Distribution are obtained. The reliability measures of proposed model are also derived 

and model parameters are estimated by using maximum likelihood estimation method. The significance 

of transmuted parameter has been tested by using likelihood ratio statistic. Finally, an application to real 

data sets is presented to examine the significance of newly introduced model by computing Kolmogorov 

statistic, p-value, AIC, BIC, AICC, HQIC. 

General Terms: Method Comparison, Simulation, Bayesian Inference. 

Mathematics Subject Classification: 60E05, 62F10 

Keywords: Quadratic Rank Transmutation Map technique, Simulation study, Transmuted parameter, 
Statistical properties and Maximum likelihood estimation. 

____________________________________________________________________ 

1. INTRODUCTION

Data analysts and researchers fit appropriate model to various real life data sets 

depending on the nature of the real life data among other things. A model with large 

number of parameters brings more flexibility and covers more variation from the 

data. There are many techniques for obtaining generalized probability models. One 

of the techniques for adding extra parameter to the existing models is Quadratic 

Rank Transmutation Map technique (QRTM). Data analysts make use of Quadratic 

Rank Transmutation Map technique for analyzing very complex data. Shaw and 

Buckley (2007) introduced Quadratic Rank Transmutation Map technique for 

generalization of classical probability models [1]. Aryal and Tsokos (2009) worked 

on transmuted generalized extreme value distribution and studied its applications 

and properties [2]. Hassan, Wani & Para (2018) introduced three parameter Quasi 

Lindley distribution by using weighting technique and studied various properties of 

that model [3]. Hassan, Wani, Shafi and Sheikh (2020) introduced Lindley-Quasi 

Xgamma Distribution (LQXD) and studied its applications along with properties [4] 

Merovci (2013) developed transmuted Rayleigh distribution and studied its 

10.2478/jamsi-2022-0013 
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necessary properties and applications [5]. Para and Jan (2018) formulated 

transmuted inverse log-logistic distribution and obtained its various characteristic 

properties [6]. Haq (2016) studied transmuted exponentiated inverse Rayleigh 

distribution and obtained its various properties [7]. Hassan, Wani, Shafi (2020) 

introduced Poisson Pranav distribution and obtained its various mathematical 

properties along with obtaining applications of the proposed model [8]. 

Here we have incorporated an extra parameter known as transmuted parameter to 

Another Two-Parameter Sujatha distribution [9].  

A continuous random variable X is said to follow another Two-Parameter Sujatha 

Distribution (ATPSD) if its probability density function is of the form 

𝑔𝑏(𝑥) =
𝜃3

(𝜃2+𝛼𝜃+2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0

     (1.1)
 

And is denoted by X~ATPSD (𝛼, 𝜃) 

The cumulative distribution function of Another Two-Parameter Sujatha 

Distribution is given by 

𝐺𝑏(𝑥) = 1 − [1 +
𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥

      

𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0
      (1.2)

 

By using Quadratic Rank Transmutation Map technique. The c.d.f of transmuted 

model𝐹𝜏(𝑥) is of the below form 

 

𝐹𝜏(𝑥) = (1 + 𝜆)𝐺𝑏(𝑥) − 𝜆[𝐺𝑏(𝑥)]
2, −1 ≤ 𝜆 ≤ 1,

 

Which on differentiation yields the p.d.f 𝑓𝜏(𝑥) of transmuted model as
 

𝑓𝜏(𝑥) = 𝑔𝑏(𝑥)[1 + 𝜆 − 2𝜆𝐺𝑏(𝑥)] 

  Where 𝑔𝑏(𝑥) and 𝐺𝑏(𝑥) are p.d.f and c.d.f of base model respectively. 
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2. TRANSMUTED ANOTHER TWO-PARAMETER SUJATHA DISTRIBUTION 

(TATPSD) 

       A non-negative random variable𝑋 is said to have Transmuted another Two-

Parameter Sujatha Distribution (TATPSD) if its cumulative distribution 

function𝐹𝜏(𝑥) is obtained as 

𝐹𝜏(𝑥, 𝛼, 𝜃, 𝜆) = (1 + 𝜆)𝐺𝑏(𝑥) − 𝜆[𝐺𝑏(𝑥)]
2, −1 ≤ 𝜆 ≤ 1, 

𝐹𝜏(𝑥, 𝛼, 𝜃, 𝜆) = 𝐺𝑏(𝑥){1 + 𝜆(1 − 𝐺𝑏(𝑥))}      (2.1) 

 

Putting the value of 𝐺𝑏(𝑥) from equation (1.2) in equation (2.1) we get 

𝐹𝜏(𝑥, 𝛼, 𝜃, 𝜆) = {1 − [1 +
𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥}}    

(2.2)

                                                               

 

The graphs of c.d.f of Transmuted Another Two-Parameter Sujatha Distribution are 

given below: 

 
Where 𝐺𝑏(𝑥) is the c.d.f of base distribution (Another Two-Parameter Sujatha 

Distribution). For 𝜆 = 0 in (2.1) we get the base distribution. 
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As can be seen from Figures 1(a) and 1(b) c.d.f starts at zero and ends with one for 

different parameter values which shows that c.d.f is accurate. 

The corresponding probability density function of Transmuted Another Two-

Parameter Sujatha Distribution 𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆) is obtained by differentiating (2.1) as 

𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆) = 𝑔𝑏(𝑥)[1 + 𝜆 − 2𝜆𝐺𝑏(𝑥)]                                             (2.3) 

 

Putting the value of 𝑔𝑏(𝑥) and 𝐺𝑏(𝑥) in equation (2.3) 

𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆) =
𝜃3

(𝜃2+𝛼𝜃+2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥}}      

(2.4)

                                                         

 

  𝑥 > 0, 𝜃 > 0    𝑎𝑛𝑑    𝛼 > 0 ,-1 ≤ 𝜆 ≤ 1 

Where
 
𝛼, 𝜃&𝜆are shape, scale and transmuted parameters respectively. 

Which is the p.d.f of Transmuted another Two-Parameter Sujatha distribution. 

Where 𝑔𝑏(𝑥) and 𝐺𝑏(𝑥) are p.d.f and c.d.f of base model respectively. 

As can be seen from figure 2(a) and 2(b) the Transmuted another Two-Parameter 

Sujatha Distribution is positively skewed as is clear from graphs given below: 
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3. SPECIAL CASES 

CASE 1: If we put𝜆 = 0, then Transmuted another Two-Parameter Sujatha 

distribution (2.4) reduces to Another Two-Parameter Sujatha distribution with shape 

parameter 𝛼 & scale parameter 𝜃 and having probability density function as:  

       

 

 𝑓(𝑥) =
𝜃3

(𝜃2+𝛼𝜃+2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥

            

𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0
 

 

CASE 2:
 
If we put𝛼 = 0, 𝜆 = 0, then Transmuted another Two-Parameter Sujatha 

distribution (2.4) reduces to Exponential distribution having probability density 

function as: 

 𝑓(𝑥) = 𝜃𝑒−𝜃𝑥

                              

𝑥 > 0, 𝜃 > 0 

 

4. RELIABILITY ANALYSIS 

We explored survival function, hazard rate and reverse hazard rate of the 

proposed transmuted another Two-Parameter Sujatha distribution in this segment of 

paper. 

 

4.1 Reliability function R(x) 

The reliability function or survival function 𝑅(𝑥, 𝛼, 𝜃, 𝜆) is the measure of 

chance that a system survives beyond a specified time(𝑡). 

Mathematically 

𝑅(𝑥, 𝛼, 𝜃, 𝜆) = 𝑃(𝑋 > 𝑡) 

It can be obtained as complement of the cumulative distribution function of the 

model. The reliability function or the survival function of Transmuted another Two-

Parameter Sujatha distribution is calculated as: 

𝑅(𝑥, 𝛼, 𝜃, 𝜆) = 1 − {1 − [1 +
𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥}}
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The graphs of reliability function are given below:

 

 

As can be seen from Figures 3(a) and 3(b) survival function starts at one and ends 

with zero for different parameter values which shows that survival function is 

accurate. 

 

4.2 Hazard function 

The hazard function of TATPSD is obtained as 

𝐻. 𝑅 = ℎ(𝑥; 𝛼, 𝜃, 𝜆) =
𝑓(𝑥, 𝛼, 𝜃, 𝜆)

𝑅(𝑥, 𝛼, 𝜃, 𝜆)
 

=

𝜃3

(𝜃2+𝛼𝜃+2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥}}

1 − {1 − [1 +
𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥}}

 

 

The graph of hazard rate of Transmuted another Two-Parameter Sujatha distribution 

is given below 
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The above graph of hazard rate of TATPSD reveals increasing, decreasing and 

constant hazard rate for different values of transmuted parameter. The shape of 

hazard rate graph is bathtub showing the flexibility of proposed model and greater 

applicability in real life.  

 

4.3 Reverse hazard rate 

The reverse hazard rate of the TATPSD is given as:  

𝑅.𝐻. 𝑅 = ℎ(𝑥, 𝛼, 𝜃, 𝜆) =
𝑓(𝑥, 𝛼, 𝜃, 𝜆)

𝐹(𝑥, 𝛼, 𝜃, 𝜆)
 

=

𝜃3

(𝜃2+𝛼𝜃+2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥}}

{1 − [1 +
𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥}}

 

 

 

5. STATISTICAL PROPERTIES 

In this section we have obtained the different structural and statistical 

properties of the proposed Transmuted another Two-Parameter Sujatha model. 

These include moments, moment generating function and characteristic function 
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5.1 Moments 

Suppose X is a random variable following Transmuted another Two-Parameter 

Sujatha distribution with parameters 𝛼, 𝜃and𝜆.Then the rth moment about origin for 

TATPSD is given by 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟

∞

0
𝑓(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥

                                        

 r=1, 2, 3… n

 
= ∫ 𝑥𝑟

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}} 𝑑𝑥

∞

0

 

 

𝜇𝑟
′ =

(

 
 
 
 

𝑟!

𝜃𝑟(𝜃2+𝛼𝜃+2𝛼)

{
 
 

 
 
(1 − 𝜆)(𝜃2 + (𝑟 + 1)𝛼𝜃 + 𝛼(𝑟 + 1)(𝑟 + 2)) +

2𝜆

{
 

 
1

2𝑟+3
(4𝜃2 + 2𝛼𝜃(𝑟 + 1) + 𝛼(𝑟 + 1)(𝑟 + 2)) +

1

(𝜃2+𝛼𝜃+2𝛼)

{

𝛼(𝑟+1)(𝑟+2)

2𝑟+5
(4𝜃2 + 2𝛼𝜃(𝑟 + 3) + 𝛼(𝑟 + 3)(𝑟 + 4)) +

𝛼(𝛼𝜃+2)(𝑟+1)

2𝑟+4

(4𝜃2 + 2𝛼𝜃(𝑟 + 2) + 𝛼(𝑟 + 3)(𝑟 + 2))
}
}
 

 

}
 
 

 
 

)

 
 
 
 

  (5.1.1) 

 

5.2 Moment generating function and characteristic function of TATPSD 

We will derive moment generating function and characteristic function of 

TATPSD in this section of paper. 

THEOREM 5.2.1: If X has the TATPSD(𝜃, 𝛼, 𝜆), then the moment generating 

function 𝑀𝑋(𝑡) and characteristic generating function 𝜑𝑋(𝑡)are 

𝑀𝑋(𝑡) = 

(

 
 
 
 
 
 

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)

{
  
 

  
 (1 − 𝜆) (

1

𝜃 − 𝑡
+

𝛼

(𝜃 − 𝑡)2
+

2𝛼

(𝜃 − 𝑡)3
) + 2𝜆

{
 

 (
1

(2𝜃 − 𝑡)
+

𝛼

(2𝜃 − 𝑡)2
+

2𝛼

(2𝜃 − 𝑡)3
) +

𝛼𝜃

(𝜃2 + 𝛼𝜃 + 2𝛼)

{𝜃 (
2

(2𝜃 − 𝑡)3
+

6𝛼

(2𝜃 − 𝑡)4
+

24𝛼

(2𝜃 − 𝑡)5
) + (𝛼𝜃 + 2) (

1

(2𝜃 − 𝑡)2
+

2𝛼

(2𝜃 − 𝑡)3
+

6𝛼

(2𝜃 − 𝑡)4
)}
}
 

 

}
  
 

  
 

)
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and  

𝜑𝑋(𝑡) =    

(

 
 
 
 
 
 

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)

{
  
 

  
 (1 − 𝜆) (

1

𝜃 − 𝑖𝑡
+

𝛼

(𝜃 − 𝑖𝑡)2
+

2𝛼

(𝜃 − 𝑖𝑡)3
) + 2𝜆

{
 

 (
1

(2𝜃 − 𝑖𝑡)
+

𝛼

(2𝜃 − 𝑖𝑡)2
+

2𝛼

(2𝜃 − 𝑖𝑡)3
) +

𝛼𝜃

(𝜃2 + 𝛼𝜃 + 2𝛼)

{𝜃 (
2

(2𝜃 − 𝑖𝑡)3
+

6𝛼

(2𝜃 − 𝑖𝑡)4
+

24𝛼

(2𝜃 − 𝑖𝑡)5
) + (𝛼𝜃 + 2) (

1

(2𝜃 − 𝑖𝑡)2
+

2𝛼

(2𝜃 − 𝑖𝑡)3
+

6𝛼

(2𝜃 − 𝑖𝑡)4
)}
}
 

 

}
  
 

  
 

)

 
 
 
 
 
 

 

respectively.  

And hence show that Another Two-Parameter Sujatha distribution and Exponential 

distribution are particular cases of Transmuted another Two-Parameter Sujatha 

distribution. 

PROOF: We begin with the well-known definition of the moment generating 

function given by 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑥; 𝛼, 𝜃, 𝜆)𝑑𝑥
∞

0

 

= ∫ 𝑒𝑡𝑥
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}} 𝑑𝑥

∞

0

 

=
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
∫ 𝑒𝑡𝑥(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}} 𝑑𝑥

∞

0

 

𝑀𝑋(𝑡) =

(

 
 
 
 

𝜃3

(𝜃2+𝛼𝜃+2𝛼)

{
 
 

 
 (1 − 𝜆) (

1

𝜃−𝑡
+

𝛼

(𝜃−𝑡)2
+

2𝛼

(𝜃−𝑡)3
) + 2𝜆

{
(

1

(2𝜃−𝑡)
+

𝛼

(2𝜃−𝑡)2
+

2𝛼

(2𝜃−𝑡)3
) +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)

{𝜃 (
2

(2𝜃−𝑡)3
+

6𝛼

(2𝜃−𝑡)4
+

24𝛼

(2𝜃−𝑡)5
) + (𝛼𝜃 + 2) (

1

(2𝜃−𝑡)2
+

2𝛼

(2𝜃−𝑡)3
+

6𝛼

(2𝜃−𝑡)4
)}
}

}
 
 

 
 

)

 
 
 
 

    (5.2.1)

                                      

 Which is the m.g.f of Transmuted another Two-Parameter Sujatha distribution. 

For𝜆 = 0 in equation (5.3.1) we get 
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𝑀𝑋(𝑡) =
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(
1

𝜃 − 𝑡
+

𝛼

(𝜃 − 𝑡)2
+

2𝛼

(𝜃 − 𝑡)3
) 

Which is m.g.f of Another Two-Parameter Sujatha distribution with parameters𝛼, 𝜃
 

For𝜆 = 0, 𝛼 = 0 in equation (5.3.1) we get 

𝑀𝑋(𝑡) =
𝜃

(𝜃 − 𝑡)

 
Which is the m.g.f of Exponential distribution 

Also we know that  𝜑𝑋(𝑡) = 𝑀𝑋(𝑖𝑡) 

Therefore,  

𝜑𝑋(𝑡) =

(

 
 
 
 

𝜃3

(𝜃2+𝛼𝜃+2𝛼)

{
 
 

 
 (1 − 𝜆) (

1

𝜃−𝑖𝑡
+

𝛼

(𝜃−𝑖𝑡)2
+

2𝛼

(𝜃−𝑖𝑡)3
) + 2𝜆

{
(

1

(2𝜃−𝑖𝑡)
+

𝛼

(2𝜃−𝑖𝑡)2
+

2𝛼

(2𝜃−𝑖𝑡)3
) +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)

{𝜃 (
2

(2𝜃−𝑖𝑡)3
+

6𝛼

(2𝜃−𝑖𝑡)4
+

24𝛼

(2𝜃−𝑖𝑡)5
) + (𝛼𝜃 + 2) (

1

(2𝜃−𝑖𝑡)2
+

2𝛼

(2𝜃−𝑖𝑡)3
+

6𝛼

(2𝜃−𝑖𝑡)4
)}
}

}
 
 

 
 

)

 
 
 
 

            (5.2.2)                      

Which is the characteristic function of Transmuted another Two-Parameter Sujatha 

distribution. 

5.3 Mean deviation about mean and median of TATPSD 

We have derived the expressions for mean deviation about mean and median of 

TATPSD in this section. 

THEOREM 5.3.1: If X has the TATPSD(𝜃, 𝛼, 𝜆), then the mean deviation 

about mean (𝛿1(𝑋)) and mean deviation about median (𝛿2(𝑋)) are given as: 

𝛿1(𝑋) =

[
 
 
 
 2𝜇 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}

−2 {
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
[(1 − 𝜆)𝐴 + 2𝜆 {𝐵 +

𝛼𝜃

(𝜃2 + 𝛼𝜃 + 2𝛼)
(𝐶 + (𝛼𝜃 + 2)𝐷)}]}

]
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Where  

𝐴 =
1

𝜃4
{𝜃2 + 2𝜃𝛼 + 6𝛼 − 𝑒−𝜃𝜇(𝜃2 + 𝜇𝜃3 + 2𝛼𝜃 + 2𝜇𝛼𝜃2 + 𝜇2𝜃3𝛼 + 6𝛼𝜃𝜇 + 6𝛼 + 3𝜇2𝜃2𝛼 + 𝜇3𝜃3𝛼)} 

𝐵 = (
1

16𝜃4
{
4𝜃2 + 4𝛼𝜃 + 6𝛼 − 𝑒−2𝜃𝜇

(4𝜃2 + 8𝜇𝜃3 + 4𝛼𝜃 + 8𝜇𝛼𝜃2 + 8𝜇2𝜃3𝛼 + 12𝛼𝜃𝜇 + 6𝛼 + 12𝜇2𝜃2𝛼 + 8𝜇3𝜃3𝛼)
}) 

𝐶 =
1

64𝜃5
{
24𝜃2 + 48𝛼𝜃 + 120𝛼 − 𝑒−2𝜃𝜇

(
24𝜃2 + 48𝜇𝜃3 + 48𝛼𝜃 + 48𝜇2𝜃4 + 32𝜇3𝜃5 + 96𝜇𝜃2𝛼 + 96𝜇2𝜃3𝛼 + 64𝜇3𝜃4𝛼

+32𝜇4𝜃5𝛼 + 32𝜇5𝜃5𝛼 + 240𝜇𝜃𝛼 + 120𝛼 + 240𝜃2𝜇2𝛼 + 160𝜇3𝜃3𝛼 + 80𝜇4𝜃4𝛼
)
} 

𝐷 =
1

32𝜃5
{
8𝜃2 + 12𝛼𝜃 + 24𝛼 − 𝑒−2𝜃𝜇

(
8𝜃2 + 16𝜇𝜃3 + 12𝛼𝜃 + 16𝜇2𝜃4 + 24𝜇𝜃2𝛼 + 24𝜇2𝜃3𝛼 + 16𝜇3𝜃4𝛼

+48𝜇𝜃𝛼 + 24𝛼 + 48𝜃2𝜇2𝛼 + 32𝜇3𝜃3𝛼 + 16𝜇4𝜃4𝛼
)
} 

And 

𝛿2(𝑋) = [𝜇 − 2 {
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
[(1 − 𝜆)𝐴′ + 2𝜆 {𝐵′ +

𝛼𝜃

(𝜃2 + 𝛼𝜃 + 2𝛼)
(𝐶′ + (𝛼𝜃 + 2)𝐷′)}]}]

 

Where  

𝐴′ = (
1

𝜃4
{
𝜃2 + 2𝜃𝛼 + 6𝛼 − 𝑒−𝜃𝑀

(𝜃2 +𝑀𝜃3 + 2𝛼𝜃 + 2𝑀𝛼𝜃2 +𝑀2𝜃3𝛼 + 6𝛼𝜃𝑀 + 6𝛼 + 3𝑀2𝜃2𝛼 +𝑀3𝜃3𝛼)
}) 

𝐵′ = (
1

16𝜃4
{
4𝜃2 + 4𝛼𝜃 + 6𝛼 − 𝑒−2𝜃𝑀

(4𝜃2 + 8𝑀𝜃3 + 4𝛼𝜃 + 8𝑀𝛼𝜃2 + 8𝑀2𝜃3𝛼 + 12𝛼𝜃𝑀 + 6𝛼 + 12𝑀2𝜃2𝛼 + 8𝑀3𝜃3𝛼)
}) 

𝐶′ = (
1

64𝜃5
{
24𝜃2 + 48𝛼𝜃 + 120𝛼 − 𝑒−2𝜃𝑀

(24𝜃
2 + 48𝑀𝜃3 + 48𝛼𝜃 + 48𝑀2𝜃4 + 32𝑀3𝜃5 + 96𝑀𝜃2𝛼 + 96𝑀2𝜃3𝛼 + 64𝑀3𝜃4𝛼

+32𝑀4𝜃5𝛼 + 32𝑀5𝜃5𝛼 + 240𝑀𝜃𝛼 + 120𝛼 + 240𝜃2𝑀2𝛼 + 160𝑀3𝜃3𝛼 + 80𝑀4𝜃4𝛼
)
}) 

𝐷′ =
1

32𝜃5
{
8𝜃2 + 12𝛼𝜃 + 24𝛼 − 𝑒−2𝜃𝑀

(8𝜃
2 + 16𝑀𝜃3 + 12𝛼𝜃 + 16𝑀2𝜃4 + 24𝑀𝜃2𝛼 + 24𝑀2𝜃3𝛼 + 16𝑀3𝜃4𝛼

+48𝑀𝜃𝛼 + 24𝛼 + 48𝜃2𝑀2𝛼 + 32𝑀3𝜃3𝛼 + 16𝑀4𝜃4𝛼
)
} 

respectively.  

Proof: Mean deviation about mean and mean deviation about median are defined as  

𝛿1(𝑋) = ∫ |𝑥 − 𝜇|𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥
∞

0
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And 𝛿2(𝑋) = ∫ |𝑥 − 𝑀|𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥
∞

0
 

respectively. 

Where 𝜇 and M are mean and median respectively of random variable X~TATPSD. 

The measures 𝛿1(𝑋) and 𝛿2(𝑋) can be obtained by using the simplified 

relationships. 

𝛿1(𝑋) = ∫ (𝜇 − 𝑥)𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥 + ∫ (𝑥 − 𝜇)𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥
∞

𝜇

𝜇

0

 

 𝛿1(𝑋) = 2𝜇𝐹𝜏(𝜇) − 2∫ 𝑥𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥
𝜇

0

                  

(5.3.1)

  
And 

 

𝛿2(𝑋) = ∫ (𝑀 − 𝑥)𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥 + ∫ (𝑥 − 𝑀)𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥
∞

𝑀

𝑀

0

 

 𝛿2(𝑋) = 𝜇 − 2∫ 𝑥𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥
𝑀

0

     

(5.3.2) 

 Where  

𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆) =
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}

 

Now 

 

∫ 𝑥𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥 =
𝜃3

(𝜃2+𝛼𝜃+2𝛼)

𝜇

0
[(1 − 𝜆)𝐴 + 2𝜆 {𝐵 +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)
(𝐶 + (𝛼𝜃 + 2)𝐷)}]

  

(5.3.3) 

Where  

𝐴 =
1

𝜃4
{𝜃2 + 2𝜃𝛼 + 6𝛼 − 𝑒−𝜃𝜇(𝜃2 + 𝜇𝜃3 + 2𝛼𝜃 + 2𝜇𝛼𝜃2 + 𝜇2𝜃3𝛼 + 6𝛼𝜃𝜇 + 6𝛼 + 3𝜇2𝜃2𝛼 + 𝜇3𝜃3𝛼)} 

𝐵 =
1

16𝜃4
{
4𝜃2 + 4𝛼𝜃 + 6𝛼 − 𝑒−2𝜃𝜇

(4𝜃2 + 8𝜇𝜃3 + 4𝛼𝜃 + 8𝜇𝛼𝜃2 + 8𝜇2𝜃3𝛼 + 12𝛼𝜃𝜇 + 6𝛼 + 12𝜇2𝜃2𝛼 + 8𝜇3𝜃3𝛼)
} 
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𝐶 = |
1

64𝜃5
{
24𝜃2 + 48𝛼𝜃 + 120𝛼 − 𝑒−2𝜃𝜇

(
24𝜃2 + 48𝜇𝜃3 + 48𝛼𝜃 + 48𝜇2𝜃4 + 32𝜇3𝜃5 + 96𝜇𝜃2𝛼 + 96𝜇2𝜃3𝛼 + 64𝜇3𝜃4𝛼

+32𝜇4𝜃5𝛼 + 32𝜇5𝜃5𝛼 + 240𝜇𝜃𝛼 + 120𝛼 + 240𝜃2𝜇2𝛼 + 160𝜇3𝜃3𝛼 + 80𝜇4𝜃4𝛼
)
}| 

𝐷 =
1

32𝜃5
{
8𝜃2 + 12𝛼𝜃 + 24𝛼 − 𝑒−2𝜃𝜇

(
8𝜃2 + 16𝜇𝜃3 + 12𝛼𝜃 + 16𝜇2𝜃4 + 24𝜇𝜃2𝛼 + 24𝜇2𝜃3𝛼 + 16𝜇3𝜃4𝛼

+48𝜇𝜃𝛼 + 24𝛼 + 48𝜃2𝜇2𝛼 + 32𝜇3𝜃3𝛼 + 16𝜇4𝜃4𝛼
)
} 

And  

∫ 𝑥𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥 =
𝜃3

(𝜃2+𝛼𝜃+2𝛼)

𝑀

0
[(1 − 𝜆)𝐴′ + 2𝜆 {𝐵′ +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)
(𝐶′ + (𝛼𝜃 + 2)𝐷′)}]  (5.3.4) 

Where  

𝐴′ =
1

𝜃4
{
𝜃2 + 2𝜃𝛼 + 6𝛼 − 𝑒−𝜃𝑀

(𝜃2 +𝑀𝜃3 + 2𝛼𝜃 + 2𝑀𝛼𝜃2 +𝑀2𝜃3𝛼 + 6𝛼𝜃𝑀 + 6𝛼 + 3𝑀2𝜃2𝛼 +𝑀3𝜃3𝛼)
} 

𝐵′ = (
1

16𝜃4
{
4𝜃2 + 4𝛼𝜃 + 6𝛼 − 𝑒−2𝜃𝑀

(4𝜃2 + 8𝑀𝜃3 + 4𝛼𝜃 + 8𝑀𝛼𝜃2 + 8𝑀2𝜃3𝛼 + 12𝛼𝜃𝑀 + 6𝛼 + 12𝑀2𝜃2𝛼 + 8𝑀3𝜃3𝛼)
}) 

𝐶′ =
1

64𝜃5
{
24𝜃2 + 48𝛼𝜃 + 120𝛼 − 𝑒−2𝜃𝑀

(24𝜃
2 + 48𝑀𝜃3 + 48𝛼𝜃 + 48𝑀2𝜃4 + 32𝑀3𝜃5 + 96𝑀𝜃2𝛼 + 96𝑀2𝜃3𝛼 + 64𝑀3𝜃4𝛼

+32𝑀4𝜃5𝛼 + 32𝑀5𝜃5𝛼 + 240𝑀𝜃𝛼 + 120𝛼 + 240𝜃2𝑀2𝛼 + 160𝑀3𝜃3𝛼 + 80𝑀4𝜃4𝛼
)
} 

𝐷′ =
1

32𝜃5
{
8𝜃2 + 12𝛼𝜃 + 24𝛼 − 𝑒−2𝜃𝑀

(8𝜃
2 + 16𝑀𝜃3 + 12𝛼𝜃 + 16𝑀2𝜃4 + 24𝑀𝜃2𝛼 + 24𝑀2𝜃3𝛼 + 16𝑀3𝜃4𝛼

+48𝑀𝜃𝛼 + 24𝛼 + 48𝜃2𝑀2𝛼 + 32𝑀3𝜃3𝛼 + 16𝑀4𝜃4𝛼
)
} 

Using expressions (5.3.1), (5.3.2), (5.3.3) and (5.3.4) and expression for c.d.f (2.2) 

we obtain mean deviation about mean (𝛿1(𝑋)) and mean deviation about median 

(𝛿2(𝑋))  

𝛿1(𝑋) =

[
 
 
 
 2𝜇 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}

−2 {
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
[(1 − 𝜆)𝐴 + 2𝜆 {𝐵 +

𝛼𝜃

(𝜃2 + 𝛼𝜃 + 2𝛼)
(𝐶 + (𝛼𝜃 + 2)𝐷)}]}

]
 
 
 
 

 

& 

𝛿2(𝑋) = [𝜇 − 2 {
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
[(1 − 𝜆)𝐴′ + 2𝜆 {𝐵′ +

𝛼𝜃

(𝜃2 + 𝛼𝜃 + 2𝛼)
(𝐶′ + (𝛼𝜃 + 2)𝐷′)}]}] 
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6.  BONFERRONI AND LORENZ CURVES AND INDICES OF TATPSD 

The Bonferroni curve(𝐵(𝑝)), Lorenz curve(𝐿(𝑝)), Bonferroni index (𝐵)  and 

Gini index (𝐺) have find applicability in fields of economics, demography, 

reliability, life testing and medical sciences. The Bonferroni and Lorenz curves are 

defined as 

 𝐵(𝑝) =
1

𝑝𝜇
∫ 𝑥𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥
𝑞

0
                   (6.1)                                                                                                    

 𝐿(𝑝) =
1

𝜇
∫ 𝑥𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥
𝑞

0
                    (6.2)                 

Where 𝜇 = 𝐸(𝑥) is the mean of TATPSD and 𝑞 = 𝐹−1(𝑝). 

The Bonferroni and Gini indices are defined as   

 𝐵 = 1 − ∫ 𝐵(𝑝)𝑑𝑝
1

0
      (6.3) 

 𝐺 = 1 − 2∫ 𝐿(𝑝)𝑑𝑝
1

0
          (6.4) 

Using the p.d.f (2.4) of TATPSD we get 

∫ 𝑥𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆)𝑑𝑥 =
𝜃3

(𝜃2+𝛼𝜃+2𝛼)

𝑞

0
[(1 − 𝜆)𝐴" + 2𝜆 {𝐵" +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)
(𝐶" + (𝛼𝜃 + 2)𝐷")}]  

(6.5) 

Where 

 𝐴" =
1

𝜃4
{
𝜃2 + 2𝜃𝛼 + 6𝛼 − 𝑒−𝜃𝑞

(𝜃2 + 𝑞𝜃3 + 2𝛼𝜃 + 2𝑞𝛼𝜃2 + 𝑞2𝜃3𝛼 + 6𝛼𝜃𝑞 + 6𝛼 + 3𝑞2𝜃2𝛼 + 𝑞3𝜃3𝛼)
} 

𝐵" =
1

16𝜃4
{
4𝜃2 + 4𝛼𝜃 + 6𝛼 − 𝑒−2𝜃𝑞

(4𝜃2 + 8𝑞𝜃3 + 4𝛼𝜃 + 8𝑞𝛼𝜃2 + 8𝑞2𝜃3𝛼 + 12𝛼𝜃𝑞 + 6𝛼 + 12𝑞2𝜃2𝛼 + 8𝑞3𝜃3𝛼)
} 

𝐶" =
1

64𝜃5
{
24𝜃2 + 48𝛼𝜃 + 120𝛼 − 𝑒−2𝜃𝑞

(
24𝜃2 + 48𝑞𝜃3 + 48𝛼𝜃 + 48𝑞2𝜃4 + 32𝑞3𝜃5 + 96𝑞𝜃2𝛼 + 96𝑞2𝜃3𝛼 + 64𝑞3𝜃4𝛼

+32𝑞4𝜃5𝛼 + 32𝑞5𝜃5𝛼 + 240𝑞𝜃𝛼 + 120𝛼 + 240𝜃2𝑞2𝛼 + 160𝑞3𝜃3𝛼 + 80𝑞4𝜃4𝛼
)
} 

𝐷" =
1

32𝜃5
{
8𝜃2 + 12𝛼𝜃 + 24𝛼 − 𝑒−2𝜃𝑞

(
8𝜃2 + 16𝑞𝜃3 + 12𝛼𝜃 + 16𝑞2𝜃4 + 24𝑞𝜃2𝛼 + 24𝑞2𝜃3𝛼 + 16𝑞3𝜃4𝛼

+48𝑞𝜃𝛼 + 24𝛼 + 48𝜃2𝑞2𝛼 + 32𝑞3𝜃3𝛼 + 16𝑞4𝜃4𝛼
)
} 
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Using equation (6.5) in (6.1) & (6.2) we get 

𝐵(𝑝) =
1

𝑝𝜇
[

𝜃3

(𝜃2+𝛼𝜃+2𝛼)
[(1 − 𝜆)𝐴" + 2𝜆 {𝐵" +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)
(𝐶" + (𝛼𝜃 + 2)𝐷")}]]

     

(6.6) 

And 

𝐿(𝑝) =
1

𝜇
[[

𝜃3

(𝜃2+𝛼𝜃+2𝛼)
[(1 − 𝜆)𝐴" + 2𝜆 {𝐵" +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)
(𝐶" + (𝛼𝜃 + 2)𝐷")}]]]

      

(6.7) 

Using (6.6) & (6.7) in (6.3) & (6.4) we get 

𝐵 = 1 −
1

𝜇
[[

𝜃3

(𝜃2+𝛼𝜃+2𝛼)
[(1 − 𝜆)𝐴" + 2𝜆 {𝐵" +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)
(𝐶" + (𝛼𝜃 + 2)𝐷")}]]]    (6.8) 

𝐿 = 1 −
2

𝜇
[[

𝜃3

(𝜃2+𝛼𝜃+2𝛼)
[(1 − 𝜆)𝐴" + 2𝜆 {𝐵" +

𝛼𝜃

(𝜃2+𝛼𝜃+2𝛼)
(𝐶" + (𝛼𝜃 + 2)𝐷")}]]]    (6.9) 

7. ORDER STATISTICS OF TATPSD 

Assuming 𝑿(𝟏), 𝑿(𝟐), 𝑿(𝟑). . . . , 𝑿(𝒏)to be the ordered statistics of the random 

sample 𝑥1, 𝑥2, 𝑥3, . . . . 𝑥𝑛 obtained from the Transmuted another Two-Parameter 

Sujatha distribution with cumulative distribution function 𝐹𝜏(𝑥, 𝛼, 𝜃, 𝜆)and 

probability density function𝑓𝜏(𝑥, 𝛼, 𝜃, 𝜆), then the probability density function of rth 

order statistics 𝑋(𝑟) is given by: 

𝑓(𝑟)(𝑥, 𝛼, 𝜃, 𝜆) =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
𝑓(𝑥, 𝛼, 𝜃, 𝜆)[𝐹(𝑥, 𝛼, 𝜃, 𝜆)]𝑟−1[1 − 𝐹(𝑥, 𝛼, 𝜃, 𝜆)]𝑛−𝑟 . 

r=1, 2, 3… n 

Using the equations (2.2) and (2.4), the probability density function of rth order 

statistics of transmuted another Two-Parameter Sujatha distribution is given by: 
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𝑓(𝑟)(𝑥, 𝛼, 𝜃, 𝜆) = 

[
 
 
 
 
 
 
 
 𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}

[{1 − [1 +
𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}]

𝑟−1

[1 − {1 − [1 +
𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}]

𝑛−𝑟

.
]
 
 
 
 
 
 
 
 

 

 

Then, the p.d.f of first order statistic𝑋(1) of Transmuted another Two-Parameter 

Sujatha distribution is given by: 

𝑓(1)(𝑥, 𝛼, 𝜃, 𝜆) = 

[
 
 
 
 
 𝑛

𝜃2

(𝛼𝜃 + 2)2
𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}

[1 − {1 − [1 +
𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}]

𝑛−1

.
]
 
 
 
 
 

 

and the pdf of nth order statistic 𝑋(𝑛)of Transmuted another Two-Parameter Sujatha 

distribution is given as: 

𝑓(𝑛)(𝑥, 𝛼, 𝜃, 𝜆) = 

[
 
 
 
 
 𝑛

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}

[{1 − [1 +
𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥} {(1 + 𝜆) − 𝜆 {1 − [1 +

𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}}]

𝑛−1

.
]
 
 
 
 
 

 

 

8. ESTIMATION OF PARAMETERS OF TATPSD 

Assuming 𝑥1, 𝑥2, 𝑥3. . . . . 𝑥𝑛to be the random sample of size n drawn from 

Transmuted another Two-Parameter Sujatha distribution having density function 

given by (2.4), then the likelihood function of Transmuted another Two-Parameter 

Sujatha distribution is given as: 
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𝐿(𝑥|𝛼, 𝜃, 𝜆) = ∏ [
𝜃3

(𝜃2+𝛼𝜃+2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 {(1 − 𝜆) + 2𝜆 {[1 +

𝛼𝜃𝑥(𝜃𝑥+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥}}]𝑛

𝑖=1    

    

The log likelihood function becomes: 

𝑙𝑜𝑔 𝐿 = (

{3𝑛 𝑙𝑜𝑔 𝜃 − 𝑛 𝑙𝑜𝑔( 𝜃2 + 𝛼𝜃 + 2𝛼) − 𝜃∑ 𝑥𝑖 +∑ 𝑙𝑜𝑔
𝑛∑
𝑖=1

𝑛∑{1+𝛼𝑥𝑖+𝛼𝑥𝑖
2}

𝑖=1 {}}

+∑ 𝑙𝑜𝑔 {(1 − 𝜆) + 2𝜆 {[1 +
𝛼𝜃𝑥𝑖(𝜃𝑥𝑖+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
] 𝑒−𝜃𝑥𝑖}}𝑛

𝑖=1

)                           

(8.1) 

Differentiating the log-likelihood function with respect to𝛼, θ and𝜆.This is done by 

partially differentiate (8.1) with respect to θ,𝛼 and𝜆 equating the result to zero, we 

obtain the following normal equations, 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜃
=

[
 
 
 
 
 
 
 
 
 
 
 
3𝑛

𝜃
−

𝑛(2𝜃+𝛼)

(𝜃2+𝛼𝜃+2𝛼)
− ∑ 𝑥𝑖

𝑛
𝑖=1

+∑

{
 
 
 
 

 
 
 
 

2𝜆𝑒−𝜃𝑥𝑖

{
  
 

  
 (𝜃

2+𝜃𝛼+2𝛼)(2𝛼𝜃𝑥𝑖
2+2𝜃𝛼2𝑥𝑖+2𝛼𝑥𝑖)−(𝛼𝜃𝑥𝑖(𝜃𝑥𝑖+𝛼𝜃+2)(2𝜃+𝛼))

(𝜃2+𝛼𝜃+2𝛼)
2

−𝑥𝑖(1+
𝛼𝜃𝑥𝑖(𝜃𝑥𝑖+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
)

}
  
 

  
 

{(1−𝜆)+2𝜆{[1+
𝛼𝜃𝑥𝑖(𝜃𝑥𝑖+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
]𝑒−𝜃𝑥𝑖}}

}
 
 
 
 

 
 
 
 

𝑛
𝑖=1

]
 
 
 
 
 
 
 
 
 
 
 

= 0  (8.2)

                       

 

  

 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛼
=

(

 
 

−
𝑛(𝜃+2)

(𝜃2+𝛼𝜃+2)
+ ∑ (

𝑥𝑖+𝑥𝑖
2

1+𝛼𝑥𝑖+𝛼𝑥𝑖
2
)𝑛

𝑖=1

+∑ {
2𝜆𝑒−𝜃𝑥𝑖{(𝜃2𝑥𝑖

2+2𝛼𝜃2𝑥𝑖+2𝜃𝑥𝑖)(𝜃
2+𝛼𝜃+2𝛼)−𝛼𝜃𝑥𝑖(𝜃𝑥𝑖+𝛼𝜃+2)(𝜃+2)}

(𝜃2+𝛼𝜃+2𝛼)2{(1−𝜆)+2𝜆{[1+
𝛼𝜃𝑥𝑖(𝜃𝑥𝑖+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
]𝑒−𝜃𝑥𝑖}}

}𝑛
𝑖=1

)

 
 
= 0

    

(8.3)

                                   

 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜆
= ∑ [

{2[1+
𝛼𝜃𝑥𝑖(𝜃𝑥𝑖+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
]𝑒−𝜃𝑥𝑖−1}

{{(1−𝜆)+2𝜆{[1+
𝛼𝜃𝑥𝑖(𝜃𝑥𝑖+𝛼𝜃+2)

(𝜃2+𝛼𝜃+2𝛼)
]𝑒−𝜃𝑥𝑖}}}

]𝑛
𝑖=1 = 0

             

(8.4) 

MLEs of 𝛼, 𝜃, 𝜆cannot be obtained by solving above complex equations as these 

equations are not in closed form. So we solve above equations by using iteration 

method through R software. 
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9. MOTIVATION BEHIND PROPOSED MODEL 

 

Addition of transmuted parameter has increased flexibility in terms of 

moments of distribution. So it was the flexibility of proposed model which is 

increased by transmuted parameter which motivated me to work on this model. Also 

proposed model has increasing as well as decreasing hazard rate as can be seen from 

graph 4, which is an interesting feature and finds greater applicability in real life. 

 

10. APPLICATIONS OF TATPSD 

We have analyzed two real life data sets to show that the transmuted another 

two-parameter Sujatha distribution can be a better model than another two-

parameter Sujatha distribution, exponential distribution and Lindley Pareto 

distribution. We also tested the significance of transmuted parameter. 

DATA SET 1:  The data set given in table 1 is related to the burning velocity 

(cm/sec) of different chemical materials. The source of the data set related to the 

burning velocity of different chemical materials for the year 2005 is available on the 

website and has been used by Sajid and Riyaz (2014) [12]. 

TABLE 1: Burning velocity (cm/sec) of different chemical materials 

68 61 64 55 51 68 44 82 

60 89 61 54 166 66 50 87 

48 42 58 46 67 46 46 44 

48 56 47 54 47 80 38 108 

46 40 44 312 41 31 40 41 

40 56 45 43 46 46 46 46 

52 58 82 71 48 39 41  

 

DATA SET 2: The data set given in table 2 represents the survival times (in 

months). This data is non-censored data for lung cancer patients obtained from Pena 

(2002). This data set was recently used by L. S. Diab & E. S. El-Atfy (2017) in 
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paper “A moment inequality for overall decreasing life class of life distributions 

with hypothesis testing applications” [13].    

TABLE 2:  Survival times (in months) for lung cancer patients. 

0.99 1.28 1.77 1.97 2.17 2.63 2.66 2.76 2.79 2.86 

2.99 3.06 3.15 3.45 3.71 3.75 3.81 4.11 4.27 4.34 

4.40 4.63 4.73 4.93 4.93 5.03 5.16 5.17 5.49 5.68 

5.72 5.85 5.98 8.15 8.62 8.48 8.61 9.46 9.53 10.05 

10.15 10.94 10.94 11.24 11.63 12.26 12.65 12.78 13.18 13.47 

13.96 14.88 15.05 15.31 16.13 16.46 17.45 17.61 18.20 18.37 

19.06 20.70 22.54 23.36       

 

These data sets are used here only for illustrative purposes. The required numerical 

evaluations are carried out using R software version R 3.3.5. We have fitted another 

two-parameter Sujatha distribution, exponential distribution, Lindley Pareto 

distribution and transmuted another two-parameter Sujatha distribution to these data 

sets. The summary statistics of the data set 1& 2 is displayed in table 3, MLEs of the 

parameters, model functions are displayed in table 4 for both the data sets and the 

corresponding log-likelihood values, LR statistic, AIC, AICC, BIC, HQIC,  

Kolmogorov statistic and p value are displayed in Table 5 & 6 for data sets 1 & 2 

respectively.      

TABLE 3:  Summary statistic of data sets 1 & 2. 

Data Set  No. of 

observations 

Min. First 

quartile 

median mean Third 

quartile 

Max. 

Data Set 1 55 31.0 44.5 48.0 61.0 62.5 312.0 

Data Set 2 64 0.990 3.795 5.915 8.710 12.880 23.360 
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TABLE 4: ML Estimates, Standard Error of Estimates in parenthesis, model 

function of proposed model and related models for data sets 1 & 2. 

Data 

set 

Distribution ML estimates 

(standard errors) 

Model Function 

 

 

 

 

 

1 

Transmuted 

Another Two-

Parameter 

Sujatha 

Distribution 

(TATPSD) 

𝜃 =  0.06406471 

𝛼̂ = 0.29756831   

( 0.63519694) 

𝜆̂ =  -1.00000000 

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥  

{(1 − 𝜆)

+ 2𝜆 {[1 +
𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}} 

Another Two-

Parameter 

Sujatha 

Distribution 

(TATPSD) 

𝜃 = 0.04879202 

( 0.00379731) 

𝛼̂ = 7.88106111 

(75.65217391) 

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 

Exponential 

Distribution 

(ED) 

𝜃 = 61.000000  

 ( 8.225236)

 

1

𝜃
𝑒−

𝑥

𝜃

 

Lindley Pareto 

Distribution 

(LPD) 

𝜃 = 0.007626414  

(0.003924553) 

𝛼̂ = 0.916469935   

(0.470474649) 

𝑘̂ = 1.313641828  

(0.107580641) 

𝑘𝜃2𝑒𝜃𝑥2𝑘−1

(𝜃 + 1)𝛼2𝑘
𝑒
−𝜃(

𝑥

𝛼
)
𝑘

 

 

 

 

 

 

 

2 

Transmuted 

Another Two-

Parameter 

Sujatha 

Distribution 

(TATPSD) 

𝜃 = 0.28884058  

( 0.01689813) 

𝛼̂ =  0.02223941   

𝜆̂ = -1.00000000  

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥  

{(1 − 𝜆)

+ 2𝜆 {[1 +
𝛼𝜃𝑥(𝜃𝑥 + 𝛼𝜃 + 2)

(𝜃2 + 𝛼𝜃 + 2𝛼)
] 𝑒−𝜃𝑥}} 

Another Two-

Parameter 

Sujatha 

Distribution 

(ATPSD) 

𝜃 =  0.3254563   

𝛼̂ = 3.2962191 

𝜃3

(𝜃2 + 𝛼𝜃 + 2𝛼)
(1 + 𝛼𝑥 + 𝛼𝑥2)𝑒−𝜃𝑥 
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Exponential 

Distribution 

(ED) 

𝜃 = 8.71000  

 (1.08875)

 

1

𝜃
𝑒−

𝑥

𝜃

 

Lindley Pareto 

Distribution 

(LPD) 

𝜃 =  0.02029546 

(0.02490351) 

𝛼̂ = 0.08779542    

(0.11279414) 

𝑘̂ = 0.99870938   

(0.09371982) 

𝑘𝜃2𝑒𝜃𝑥2𝑘−1

(𝜃 + 1)𝛼2𝑘
𝑒
−𝜃(

𝑥

𝛼
)
𝑘

 

 

TABLE 5: Model comparison and Likelihood ratio statistic of related models and 

proposed model for data set 1. 

Distri-

bution 

− 𝑙𝑜𝑔 𝐿 AIC BIC AICC HQIC K-S (D) P Value Likelihood 

Ratio 

TATPSD 251.695 509.390 515.41 

 

509.861 511.719 0.1888 0.0395 

 

 

14.48 

 

 

 
ATPSD 258.935 521.871 525.88 522.102 523.424 0.2246 0.0077 

ED 281.098 564.196 566.20 564.271 564.972 0.4454 6.628e-10  

LPD 260.174 526.348 532.37 526.819 528.677 0.2523 0.00181  

 

TABLE 6: Model comparison and Likelihood ratio statistic of related models and 

proposed model for data set 2. 

Distri-

bution 

− 𝑙𝑜𝑔 𝐿 AIC BIC AICC HQIC K-S (D) P Value Likelihood 

Ratio 

TATPSD 

 

193.137 392.274 398.75 392.674 394.826 0.1156 0.358 5.936 

 

 

 

 
ATPSD 196.105 396.210 400.52 396.407 397.911 0.2542 0.0005 

ED 202.526 407.052 409.21 407.116 407.902 0.1825 0.0281  

LPD 194.481 394.963 401.43 395.363 397.514 0.1162 0.352  
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For testing the significance of transmuted parameter𝜆of our proposed model and for 

checking superiority of Transmuted Another Two-Parameter Sujatha Distribution 

over Another Two-Parameter Sujatha Distribution, Lindley Pareto distribution and 

Exponential Distribution for given data sets 1 & 2 we computed likelihood ratio 

(LR) statistic. For testing 𝐻0: 𝜆 = 0 versus 𝐻1: 𝜆 ≠ 0 the LR statistic for testing 𝐻0is 

𝜔1 = 2{𝐿(𝛩̂) − 𝐿(𝛩̂0)} = 14.48 
for data set 1 & 𝜔2 = 2{𝐿(𝛩̂) − 𝐿(𝛩̂0)} =

5.936for data set 2 where 𝛩̂and 𝛩̂0are MLEs under 𝐻1 and𝐻0. LR statistic𝜔 

~(𝜒(1)
2(𝛼 = 0.05) = 3.841) as𝑛 → ∞, where 1= degrees of freedom is the 

difference in dimensionality. From table 5, 6 𝜔1 = 14.48 > 3.841 & 𝜔2 = 5.936 >

3.841 at 5% level of significance for both the data sets, so we reject 𝐻0and conclude 

that transmuted parameter 𝜆 plays statistically a significant role. 

Further in order to compare the proposed model with related models, we consider 

the criteria like AIC (Akaike information criterion), AICC (corrected Akaike 

information criterion), BIC (Bayesian information criterion) and HQIC. The better 

distribution corresponds to lesser AIC, AICC, BIC and HQIC values.   

 AIC = 2k-2logL                    AICC = AIC+
2𝑘(𝑘+1)

𝑛−𝑘−1
 

 BIC = k logn-2logL                HQIC=2k log(log(n))+2 log L 

where k is the number of parameters in the statistical model, n is the sample size and 

-2logL is the maximized value of the log-likelihood function under the considered 

model. From Table 5 & 6, it has been observed that the Transmuted Another Two-

Parameter Sujatha distribution possesses the lesser AIC, AICC BIC and HQIC 

values as compared to Another Two-Parameter Sujatha distribution, Lindley Pareto 

distribution  & Exponential distribution for data sets 1 & 2. Hence we can conclude 

that the Transmuted Another Two-Parameter Sujatha distribution leads to a better fit 

than Another Two-Parameter Sujatha distribution and exponential distribution for 

data sets 1 & 2 

For testing the goodness of fit of our proposed model Transmuted Another Two 

Parameter Sujatha distribution over its related models Another Two-Parameter 

Sujatha distribution, Lindley Pareto distribution & Exponential distribution to the 
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two data sets we computed Kolmogorov statistic and p value. The better model 

possesses lesser Kolmogorov statistic value and higher p value. It can be seen from 

tables 5 & 6 that Transmuted Another Two-Parameter Sujatha distribution possesses 

lesser Kolmogorov statistic value and higher p value for both the data sets as 

compared to Another Two-Parameter Sujatha distribution, Lindley Pareto 

distribution & Exponential distribution. 

 

11. CONCLUSION 

We developed Transmuted another Two-Parameter Sujatha Distribution by 

using Quadratic Rank Transmutation Map technique. The various important 

properties of this distribution have been obtained.  From the p.d.f plots (graphs 2(a) 

& 2(b)) it has been observed that our proposed model is positively skewed. Various 

reliability measures have been obtained for the proposed model. We fitted our model 

and its related models to two real life data sets and found that our proposed model 

gives better results for both the data sets than its related models as Kolmogorov 

statistic value, AIC, BIC, AICC, HQIC are lesser for proposed model on the both 

data sets than base model and exponential distribution. The significance of 
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transmuted parameter has been tested and it has been concluded that transmuted 

parameter plays a significant role. Researchers in future can generalize the proposed 

model and proposed model finds applicability in life testing. 

12. BENEFITS OF THE PROPOSED MODEL 

The proposed model can be used in variety of real life situations. As can be 

seen from application part of the paper, proposed model can be used for modeling of 

survival time’s data. Also statistical significance of transmuted parameter shows the 

importance of proposed model.  
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