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Abstract 

 
Principal Component Analysis (PCA) is the main method of dimension reduction and data processing when 

the dataset is of high dimension. Therefore, PCA is a widely used method in almost all scientific fields. 

Because PCA is a linear combination of the original variables, the interpretation process of the analysis 
results is often encountered with some difficulties. The approaches proposed for solving these problems are 

called to as Sparse Principal Component Analysis (SPCA). Sparse approaches are not robust in existence 

of outliers in the data set. In this study, the performance of the approach proposed by Croux et al. (2013), 
which combines the advantageous properties of SPCA and Robust Principal Component Analysis (RPCA), 

will be examined through one real and three artificial datasets in the situation of full sparseness. In the light 

of the findings, it is recommended to use robust sparse PCA based on projection pursuit in analyzing the 
data. Another important finding obtained from the study is that the BIC and TPO criteria used in 

determining lambda are not much superior to each other. We suggest choosing one of these two criteria that 

give an optimal result. 
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_____________________________________________________________________________________ 

 

1. INTRODUCTION 

Principal component analysis (PCA) is the first referenced dimension reduction 

method when there is a multidimensional data set. PCA aims to reduce size by finding 

𝑘 (𝑘 ≤ 𝑝)  linear combinations of the p original variables in a reduced-dimensional 

space. Thus, more easily interpretable results are obtained. Principal components 

(PCs) are vectors that make the maximum variance of k linear combinations (Croux 

et al., 2013). The first 𝑘 principal component explains an important part of the total 

variance of the original data. The PCA uses the sample covariance (or correlation) 

matrix and the mean vector. Although PCA is a widely used multivariate statistical 

analysis method in almost all scientific fields, it has too many deficiencies. 

In PCA, there is a transformation matrix that identifies the principal components 

It is called the loading matrix. Interpretation of loadings is often a difficult process. 

Various suggestions have been put forward in the literature to solve the problem of 

interpretability of PCA results. One of these suggestions is to use the rotation methods 
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to obtain the simple structure of the loading matrix (Jolliffe, 1995). Researchers, rather 

than the contribution of a variable with moderate loading values, which contribute a 

weak or uncertain contribution to a principal component, want to be concerned with 

the contribution of variables that have the big loadings. Otherwise, interpreting 

principal components can be very difficult. In order to increase the interpretability of 

PCA results, many approaches, called sparse principal component analysis (SPCA), 

are presented to estimate the principal components with many zero loadings. When 

the dataset is multidimensional, the SPCA is useful because only a subset of variables 

needs to be analyzed. SPCA offers researchers the advantage of easier interpretation 

of principal components. The easiest way to do this is to set the loadings to zero that 

have smaller values than a certain threshold. This method is called simple 

thresholding. Cadima and Jolliffe (1995) found that this method could be misleading. 

In this context, they emphasized the necessity of examining the standard deviations 

of variables for determining the contribution of a variable to a given principal 

component. In the context of PCA, the concept of sparseness was first described by 

Jolliffe et al. (2003). Later, Zou et al. (2006) suggested SPCA algorithm based on 

elastic-net regression, which gives better results than SCoTLASS. The adaptations 

and improvements of the method were made by Wang et al. (2009). D’Aspremont et 

al. (2007) suggested a direct formulation for SPCA. Sigg et al. (2008) designed EM-

PCA based on probabilistic PCA to solve SPCA. Witten et al. (2009) developed a 

general procedure for the separation of penalty matrix. They showed how this 

procedure is applied. Journée et al. (2010) derived the GPower algorithm that 

formulated the SPCA. Guo et al. (2010) have introduced a fusion penalty that captures 

block structures within the variables. Other recommendations for obtaining SPCA are 

described in Jenatton et al. (2010) and Bien et al. (2010). 

In the presence of outliers in the dataset, many robust alternative solutions have 

been proposed for PCA. The most important of these were Li and Chen (1985), Hubert 

et al. (2002), projection pursuit PCA approach given by Croux and Ruiz-Gazen 

(2005), global PCA approach given by Locantore et al. (1999) as a robust PCA 

approach. This approach works well as long as there is a robust estimate of 

multivariate location and scale is possible. 
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The robust PCA approach proposed by Croux and Ruiz-Gazen (2005) based on 

the projection pursuit, is suitable when the number of variables is more than the 

number of observations and the presence of high dimensional data sets. The advantage 

of the projection pursuit method is that it is not necessary to estimate the covariance 

matrix for PCA. Robust estimates of eigenvalues and eigenvectors are obtained 

successively. In the literature, it is possible to find many studies about the robust 

versions of the PCA and their robustly characteristics. In addition, sparse PCA has 

also gained importance in the analysis of multidimensional (large data) datasets, 

which have emerged in recent years as a result of increasingly rapid technological 

developments, especially in areas such as internet technologies, gene expression and 

machine learning. He et al. (2014) combining the advantageous properties of Croux 

et al. (2013) sparse and robust PCA, proposed an algorithm for improving the 

durability of SPCA. They examined the robustness and effectiveness of the proposed 

algorithm through artificial and real data sets. A recent study on SPCA was made by 

Hubert et al. (2016). The main difference from Hubert et al. (2016) 's study of the 

Croux et al. (2013) is the separation of the sparse step and the steps of identifying 

outlier observations. 

In this study, the performance of the approach proposed by Croux et al. (2013), 

which combines the important properties of SPCA and Robust Principal Component 

Analysis (RPCA), will be examined through one real and three artificial datasets in 

the situation of full sparseness. In the light of the findings, in cases where the number 

of variables (𝑝) is greater than the number of observations (𝑛), it is recommended to 

use robust sparse PCA based on projection pursuit in analysing the data. Another 

important conclusion obtained from the study is that the BIC and TPO criteria used in 

determining 𝜆 are not much superior to each other. We propose to choose the criterion 

that gives an optimal result. In the second part of the study, the mathematical theory 

required for SPCA and robust sparse PCA is summarized. In the next section, the 

applications of the methods discussed in detail in the previous sections on real and 

artificial datasets are given. In the last section, the results obtained from the study are 

discussed. 
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2. SPARSE PCA (SPCA) 

The first PCA vector for the 𝒙1, … , 𝒙𝑛 ∈ ℝ𝑝, 𝑛 multivariable observations in the 

rows of the X data matrix is given by, 

argmax‖𝒑‖=1𝑉(𝒑′𝑥1, … , 𝒑′𝑥𝑛)  (1) 

Here, 𝑉 is a measure of variance. In the standard non-robust state 𝑉 is the experimental 

variant (𝑣𝑎𝑟) and the optimal 𝒑1 vector corresponds to the first eigenvector of the 

sample covariance matrix. Equation (1) is the projection pursuit formulation to find 

the first PC.  

Robust PCA vectors can be easily obtained by taking a robust variance measure 

for 𝑉. This measure can be selected as a quadratic median absolute deviation or as a 

more efficient quadratic 𝑄𝑛estimator. 

       The 𝑄𝑛 scale estimator is defined as the first quarter of all binary distances, 

|𝑦𝑖 − 𝑦𝑗|, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, for a univariate data set 𝑦1,…,𝑦𝑛. This first quarter should 

then be multiplied by the constant 2.219 to obtain a consistent estimator for a normal 

distribution scale. Therefore, 𝑄𝑛
2 is a consistent and robust predictor of variance. 

Croux and Ruiz-Gazen (2005) suggested using the 𝑄𝑛
2 estimator as the projection 

tracking index which provides robust and effective estimates for the basic 

components. In this study, 𝑄𝑛
2 was taken as a robust variance estimator. 

        Suppose the first 𝑗 −1 PCA vectors are present (𝑗 >1). In this case 𝑗. vector (𝑗 ≤

𝑝) is defined as, 

argmax‖𝒑‖=1,𝒑⊥𝒑1,…,𝒑⊥𝒑𝑗−1
𝑉(𝒑′𝑥1, … , 𝒑′𝑥𝑛).                                                                   (2) 

The sparsity of PCA was first used with SCoTLASS method by Jolliffe et al. 

(2003). SCoTLASS combines an 𝐿1 constraint with PCA to provide sparse loadings. 

The resulting objective function is written as 

𝑚𝑎𝑥‖𝒑‖=1,𝒑⊥𝒑1,…,𝒑⊥𝒑𝑗−1
𝒑′𝑺𝒑,  constraint ‖𝒑‖1 ≤ 𝒕 ,                       (3)

 

This objective function tries to find the vertical loadings 𝒑𝑗that maximize the variance 

described. Here, ‖𝒑𝑗‖
1
 is the L1 norm of 𝒑𝑗, ‖𝒑‖1 = ∑ |𝒑𝑗|

𝑝
𝑗=1 . The dual formulation 

of the above form is given by  
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 𝑚𝑎𝑥‖𝒑‖=1,𝒑⊥𝒑1,…,𝒑⊥𝒑𝑗−1
(𝒑′𝑺𝒑 − 𝜆1‖𝒑‖1)                                                                (4)    

      

Where 𝒑𝒋 is the 𝒋th PCA vector. 𝝀𝟏 is the sparsity parameter for SCoTLASS and is 

used instead of 𝒕. The larger values of  𝝀𝒋 mean greater sparsity and the zero value 

means no sparsity. 

2.1. Robust Sparse PCA 

Croux et al. (2013) proposed the robust SPCA method, which combines the 

projection pursuit (PP) approach and SPCA. Their approach consists of adding 𝐿1 

penalty to PP equations. This method searches for vectors that maximize the scale of 

the data projected onto these vectors under the constraint that vector loadings are not 

too large. The principal components are obtained directly using the PP approach 

without estimating a covariance matrix.  

To find the first sparse PCA vector, the 𝐿1 constraint is added and 

 

𝒑̃1 = argmax‖𝒑‖=1(𝑉(𝒑′𝑥1, … , 𝒑′𝑥𝑛) − 𝜆1‖𝒑‖1)   (5) 

                      

equation is obtained. Here, the vector 𝒑̃1 is the first SPCA vector, its sparsity is 

controlled by parameter 𝜆1. If  𝜆1= 0, the constraint is not added to the first PCA vector 

𝒑1. Similarly, 𝑗th SPCA vector (1 <  𝑗 ≤  𝑝), 

 

𝒑̃𝑗 = argmax‖𝒑‖=1,𝒑⊥𝒑̃1,…,𝒑⊥𝒑̃𝑗−1
(𝑉(𝒑′𝑥1, … , 𝒑′𝑥𝑛) − 𝜆𝑗‖𝒑‖1)      (6)        

 

as defined. Here, 𝑉 is the variance estimator, a measure of the scale. This is the 

empirical (experimental) variant for the classical basic components. For the robust 

sparse PCA, this variance estimator is a robust variance estimator such as squared 𝑄𝑛. 

If 𝑉 = 𝑣𝑎𝑟 exist, then equality (4) and equality (5) are the same. Croux et al. (2013), 

Rousseeuw and Croux (1993) proposed the robust 𝑄𝑛 estimator. This 𝑄𝑛 estimator is 

the first quartile of the binary distances between the elements of a vector. 

It is not easy to solve the optimization problems given in equations (5) and (6). Croux 

et al. (2013) is an algorithm based on iterative grid searches in spaces stretched by 

binary pairs of variables to find sparse vectors. Croux et al. (2007), the grid algorithm 



10 B. Barış Alkan and I. Ünaldi 

 

 

 

used to obtain PCA vectors is a well-working algorithm. This algorithm was 

developed by Croux et al. (2013) expanded to sparse PCA. 

         Grid algorithm is a kind of coordinate origin methods. The extended grid 

algorithm always provides robust and sparse solutions with an appropriate calculation 

time (Croux et al., 2013). 

2.2. Selection of Sparsity Parameter λ 

The selection of the sparsity parameter 𝜆 is made by optimizing the objective 

function calculated for a set of 𝑛. λ can take different values, ranging from zero to the 

maximum value. If the maximum value that can be taken by 𝜆 cannot be determined, 

then the minimum 𝜆 value that provides full sparseness is preferred. The absolute 

sparseness state refers to the minimum absolute sum of the loadings, which usually 

consist only of zero and one in the loadings matrix. Researchers can complete this 

process using one of two optimization approaches for 𝜆 selection. These approaches 

are given as TPO (Tradeoff Product Optimization) and BIC (Bayes Information 

Criteria) respectively. The BIC approach selects the same 𝜆 value for all PCs and 

expresses a specific choice of the number of PCs considered. However, the TPO 

approach is optimized for each PC separately, so that different 𝜆 values are derived in 

a model that is not bound to a decision over 𝑘. In the TPO approach, tradeoff in the 

context of SPCA refers to the sparsity gained against the explained variance loss. The 

TPO maximizes the product of the variance explained by the number of zero loadings 

of the sparse principal component 𝑗th. Here, 𝜆𝑗 values for 𝑘 PC according to TPO 

approach are obtained by equation (7). 

 

𝜆𝑗
𝑇𝑃𝑂 = 𝑉((𝑆𝑇𝐵)𝑗)𝛼𝑗,   𝑗 = 1,2,…,𝑘   (7)  

                                    

where 𝛼𝑗 is the number of zero loadings for the 𝑗th SPC. Croux et al. (2013) used a 

BIC type criterion to select the 𝜆. Let 𝑃𝑘
𝑠 and 𝑃𝑘

𝑐 be the matrices of loadings that 

contain sparse and non-sparse basic components that contain the first 𝑘 PC, 

respectively. From this, residual matrices 𝑅𝑠 = 𝑋 − 𝑋𝑃𝑘
𝑠(𝑃𝑘

𝑠)′ and 𝑅𝑐 = 𝑋 −
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𝑋𝑃𝑘
𝑐(𝑃𝑘

𝑐)′are defined. The 𝑗th columns of residual matrices are defined as 𝑟𝑗
𝑠 =

(𝑟1𝑗
𝑠 , 𝑟2𝑗

𝑠 , … , 𝑟𝑛𝑗
𝑠 ) and   𝑟𝑗

𝑐 = (𝑟1𝑗
𝑐 , 𝑟2𝑗

𝑐 , … , 𝑟𝑛𝑗
𝑐 ) respectively. 

 

The BIC criterion is defined by the equation   

 

𝜆𝐵𝐼𝐶 =
∑ 𝑉(𝑟𝑗

𝑠)𝑘
𝑗=1

∑ 𝑉(𝑟𝑗
𝑐)𝑘

𝑗=1

+ 𝛽
log 𝑛(𝑛)

𝑛
        (8) 

 

Here, 𝛽 is the number of non-zero loadings. 

 

        In practice, the selection of 𝜆 is made by minimizing 𝜆 in a grid [0, 𝜆𝑚𝑎𝑥] range. 

Here, 𝜆𝑚𝑎𝑥  is the result of the full sparseness of 𝑘-component sparse PCA results. In 

addition to 𝜆, it is also necessary to select the number of components of 𝑘. The 

appropriate choice of 𝑘 is an old and common problem in PCA. Many suggestions 

have been made to solve this problem. In this study, the number of 𝑘 is determined by 

the robust variance explanation ratio (VER),  

 

𝑉𝐸𝑅𝑘 =
𝑉(𝑇𝑘)

𝑉(𝑋)
  (9) 

 

Here, 𝑇𝑘 contains the principal component scores. For 𝑉 =  𝑣𝑎𝑟, 𝑉𝐸𝑅𝑘, 𝑘 is the ratio 

of the sum of the biggest eigenvalues to the sum of all eigenvalues of the sample 

covariance matrix. For this value of 𝑘, a selected 𝜆 must have a more sparse matrix 

and a smaller robust variance. 

 

3. ARTIFICIAL AND REAL DATA EXAMPLES 

In this section, the performance of RPCA based on PP (PP-RPCA) nd robust 

sparse PCA based on PP (PP-RSPCA) methods based on projection-pursuit (PP) will 

be compared over one real and three artificial data sets. The codes written with the 

help of pcaPP, pls, lars, lasso2, spls, lattice, elasticnet, stats, stats4, robust, robustbase, 

rrcov, rrcovHD libraries were used in the R program to apply PP-RPCA and PP-

RSPCA to real and artificial data sets (R Core Team,2019). 

Artificial data sets were used in the design given in the study. As the actual data 

set was made for the monthly stock exchange traded on the Istanbul Stock Exchange 

between January 2005 and March 2013.  
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Artificial Data Designs 

 

1) Artificial Data Set 1 

10% outlier situation: A data set of 100 observations (𝑛 = 100) and 5 variables (𝑝 = 

5) was generated from a multivariate t distribution (𝑇5):10% and  N5(0, I):90%. 

 

20% outlier situation: A data set of 100 observations (n = 100) and 5 variables (p = 5) 

was generated from a multivariate t distribution (𝑇5): 20% and  N5(0, I):80%. 

 

30% outlier situation: A data set of 100 observations (n = 100) and 5 variables (p = 5) 

was generated from a multivariate t distribution (T5): 30% and N5(0, I):70% 

 

2) Artificial Data Set 2 

It was planned to produce a 215 × 6 data set consisting of 215 observations (n = 215) 

and 6 variables (p = 6). Of these 215 observations, N6 (𝜇1, Σ1): 200 and N6 (𝜇2, Σ2): 

15. 

200 observations were generated from the multivariate normal distribution and 15 

from the multivariate normal distribution.  

 

𝜇1 = [0   0   0   0   0   0], Σ1 = 𝑑𝑖𝑎𝑔 [5   1   1   1   1   1]  
 

𝜇2 = [0   20   20   20   20   20], Σ2 = 𝑑𝑖𝑎𝑔 [1  1   1   1   1   1] 
 

3) Artificial Data Set 3 (p > n  status) 

An 18 × 20 data set consisting of 18 observations and 20 variables was produced. Of 

the 18 observations, N20 (𝜇3, Σ3): 15 and N20 (𝜇4, Σ4): 3. 

 

𝜇3 = [0   0   0  …    0], Σ3 = 𝑑𝑖𝑎𝑔[5   1   1  …    1] 
 

𝜇4 = [0   20   20  …    20], Σ4 = 𝑑𝑖𝑎𝑔[1   1   1  …    1] 
 

Real Data (Stock Exchange Data) 

 

The data set containing the quarterly return rates of eight stocks traded between 

January 2005 and March 2013 on the Istanbul Stock Exchange was used. The analyzed 

dataset has a size of 33 × 8. 
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3.1. Comparison of PP-RPCA and PP-RSPCA over Artificial Data Set 1 

The Artificial Data Set 1 has been analyzed with the written R code and the 

results are presented in Table 3.1, Table 3.2, Table 3.3 according to 10%, 20%, 30% 

outlier rates. For the 10% outlier rate, 𝜆’s were determined by using TPO and BIC 

criteria, and the most optimal 𝜆 value was selected as 𝜆 =  7.8 according to TPO 

criteria.  When Table 3.1 is examined, it is seen that PP-RPCA explains 88% of the 

total variance with the first four principal components. When PP-RSPCA results are 

analyzed, it is seen that 84% of the total variance is explained by the first four main 

components. In this case, the cost of using the sparsity feature is equivalent to the loss 

of 4% variance explanation rate. However, in Table 3.1, it is seen that the number of 

non-zero loadings in the PP-RPCA is 20 while the number of non-zero loadings in the 

PP-RSPCA is reduced to 4. It is seen that the sparsity feature added to the loadings 

matrix facilitates the interpretation of the main components with extremely good 

performance and a low error rate. 

Table 3.1. In the presence of 10% outlier of the variables, the first four non sparse 

robust (𝜆 = 0) and sparse robust (𝜆 = 7.8) main component loadings 

 

Variables PP-RPCA PP-RSPCA 

 
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

X1 0.59 0.30 -0.59 -0.07 1.00 0.00 0.00 0.00 

X2 0.18 -0.09 0.65 0.24 0.00 0.00 0.00 1.00 

X3 0.74 0.03 0.30 0.22 0.00 0.00 0.00 0.00 

X4 -0.14 0.92 0.31 -0.21 0.00 0.00 1.00 0.00 

X5 -0.21 0.25 -0.22 0.92 0.00 1.00 0.00 0.00 

VER* % 0.25 0.24 0.23 0.16 0.25 0.21 0.19 0.18 

Cumulative VER % 0.25 0.48 0.72 0.88 0.25 0.46 0.66 0.84 

 

For the 20% outlier rate, 𝜆’s were determined by using TPO and BIC criteria and               

𝜆 = 12.14 was selected as the most optimal 𝜆 value according to TPO criteria. 

When Table 3.2 is examined, it is seen that PP-RPCA explains 88% of the total 

variance with the first four main components. When PP-RSPCA results are analyzed, 

it is seen that 86% of the total variance is explained by the first four main components. 
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In this case, the cost of using the sparsity feature is equivalent to the loss of 2% 

variance explanation rate. However, in Table 3.2, it is seen that the number of non-

zero loads in PP-RPCA is 19 while the number of non-zero loads in PP-RSPCA is 

reduced to 4. It is seen that the sparsity feature added to the loadings matrix facilitates 

the interpretation of the principal components with extremely good performance and 

a low error rate. 

Table 3.2. In the presence of 20% outlier of the variables, the first four non sparse 

robust (𝜆 = 0) and sparse robust (𝜆 = 12.14) main component loadings 

 

Variables PP-RPCA PP-RSPCA  
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

X1 0.04 0.73 -0.67 0.01 0.00 1.00 0.00 0.00 

X2 -0.03 0.57 0.71 0.00 0.00 0.00 1.00 0.00 

X3 0.68 -0.27 -0.12 -0.29 0.00 0.00 0.00 1.00 

X4 -0.28 -0.24 -0.14 0.74 1.00 0.00 0.00 0.00 

X5 0.67 0.15 0.12 0.61 0.00 0.00 0.00 0.00 

VER* % 0.31 0.23 0.19 0.15 0.23 0.23 0.21 0.19 

Cumulative VER* % 0.31 0.54 0.73 0.88 0.23 0.46 0.67 0.86 

 

For the case of 30% outlier, 𝜆’s were determined by using TPO and BIC criteria and            

𝜆 = 3.87 according to TPO criterion. 

When Table 3.3 is examined, it is seen that PP-SPCA explains 91% of the total 

variance with the first four main components. When PP-RSPCA results are analyzed, 

it is seen that 81% of the total variance is explained by the first four main components. 

In this case, the cost of using the sparsity feature is equivalent to the loss of variance 

explanation rate of 10%. However, in Table 3.3, it is seen that the number of non-zero 

loads in PP-RPCA is 19 while the number of non-zero loadings in PP-RSPCA is 

reduced to 7. It is seen that the sparsity feature added to the loadings matrix facilitates 

the interpretation of the principal components with extremely good performance and 

a low error rate.  
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Table 3.3. In the presence of 30% outlier of the variables, the first four non sparse 

robust (𝜆 = 0) and sparse robust (𝜆 = 3.87) main component loadings 

 

Variables PP-RPCA PP-RSPCA  
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

X1 0.04 0.73 -0.67 0.01 0.00 1.00 0.00 0.00 

X2 -0.03 0.57 0.71 0.00 0.00 0.00 1.00 0.00 

X3 0.68 -0.27 -0.12 -0.29 0.00 0.00 0.00 1.00 

X4 -0.28 -0.24 -0.14 0.74 1.00 0.00 0.00 0.00 

X5 0.67 0.15 0.12 0.61 0.00 0.00 0.00 0.00 

VER % 0.31 0.23 0.19 0.15 0.23 0.23 0.21 0.19 

Cumulative VER % 0.31 0.54 0.73 0.88 0.23 0.46 0.67 0.86 

 

3.2. Comparison of PP-RPCA and PP-RSPCA over Artificial Data Set 2 

The Artificial Data Set 2 was analyzed by R code and the results are presented 

in Table 3.4.  

 

Table 3.4. The first four non sparse robust (𝜆 = 0) and sparse robust (𝜆 = 11.03) 

principal component loadings of variables in Artificial Dataset 2 

 

Variables PP-RPCA PP-RSPCA  
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

X1 0.99 -0.06 0.03 0.11 1.00 0.00 0.00 0.00 

X2 0.04 0.26 0.86 -0.18 0.00 0.00 0.00 1.00 

X3 0.08 0.79 -0.23 -0.47 0.00 0.00 0.00 0.00 

X4 0.07 0.00 0.08 -0.18 0.00 0.00 1.00 0.00 

X5 0.07 0.40 -0.36 0.39 0.00 0.00 0.00 0.00 

X6 -0.11 0.37 0.27 0.74 0.00 1.00 0.00 0.00 

VER % 0.23 0.18 0.17 0.16 0.18 0.18 0.18 0.16 

Cumulative VER % 0.23 0.41 0.59 0.74 0.18 0.36 0.54 0.71 

 

For Artificial Data Set 2, 𝜆’s were determined by using TPO and BIC criteria, and the 

most optimal 𝜆 value was chosen as 𝜆 = 11.03 according to BIC criteria. 

When Table 3.4 is examined, it is seen that PP-RPCA explained 74% of the total 

variance with the first four main components. When PP-RSPCA results are analyzed, 

it is seen that 71% of the total variance is explained by the first four main components. 
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In this case, the cost of using sparsity is equivalent to loss of 3% variance explanation 

rate. However, in Table 3.4, the number of non-zero loadings in PP-RPCA is 23 while 

it is seen that the number of non-zero loadings in PP-RSPCA is reduced to 4. 

It is seen that the sparsity feature added to the loadings matrix facilitates the 

interpretation of the principal components with extremely good performance and a 

low error rate. 

3.3. Comparison of PP-RPCA and PP-RSPCA over Artificial Data Set 3  

(𝑝 >  𝑛)  

The Artificial Data Set 3 has been analyzed with R code written and the results 

are presented in Table 3.5. For Artificial Data Set 3, 𝜆’s were determined by using 

TPO and BIC criteria, and the most optimal 𝜆 value was selected as 𝜆 = 50.69 

according to BIC criteria.  

When Table 3.5 is examined, it is seen that PP-RPCA explains 87% of the total 

variance with the first four main components. When PP-RSPCA results are analyzed, 

it is seen that 84% of the total variance is explained by the first four main components. 

In this case, the cost of using sparsity is equivalent to loss of 3% variance explanation 

rate. However, it is seen that the number of non-zero loadings in PP-RPCA in Table 

3.5 is 71 while the number of non-zero loadings in PP-RSPCA is reduced to 4. It is 

seen that the sparsity feature added to the loadings matrix facilitates the interpretation 

of the principal components with extremely good performance and a low error rate. 

 

Table 3.5. The first four non sparse robust (𝜆 = 0) and sparse robust (𝜆 = 50.69) 

principal component loadings of the variables in Artificial Dataset 3 

 

Variables PP-RPCA PP-RSPCA  
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

X1 0.62 -0.18 0.36 -0.25 0.00 0.00 0.00 1.00 

X2 0.35 0.03 -0.10 0.13 0.00 0.00 0.00 0.00 

X3 -0.22 0.25 -0.22 -0.10 0.00 0.00 0.00 0.00 

X4 -0.04 -0.15 0.00 -0.02 0.00 0.00 0.00 0.00 

X5 -0.24 -0.14 -0.13 0.33 1.00 0.00 0.00 0.00 

X6 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 
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X7 0.00 -0.14 -0.07 0.00 0.00 0.00 0.00 0.00 

X8 0.13 0.03 -0.22 -0.07 0.00 0.00 0.00 0.00 

X9 0.02 0.50 0.23 0.13 0.00 0.00 0.00 0.00 

X10 0.00 -0.13 -0.41 -0.50 0.00 1.00 0.00 0.00 

X11 -0.20 0.16 -0.11 -0.08 0.00 0.00 0.00 0.00 

X12 -0.08 0.13 0.05 -0.03 0.00 0.00 0.00 0.00 

X13 0.11 -0.24 -0.12 0.05 0.00 0.00 0.00 0.00 

X14 0.00 0.50 0.07 0.00 0.00 0.00 0.00 0.00 

X15 -0.03 -0.21 -0.28 0.55 0.00 0.00 1.00 0.00 

X16 0.01 -0.08 -0.07 0.01 0.00 0.00 0.00 0.00 

X17 0.00 -0.22 0.14 0.03 0.00 0.00 0.00 0.00 

X18 -0.08 0.06 -0.34 -0.41 0.00 0.00 0.00 0.00 

X19 0.17 0.25 -0.10 0.07 0.00 0.00 0.00 0.00 

X20 -0.53 -0.23 0.51 -0.22 0.00 0.00 0.00 0.00 

VER % 0.28 0.24 0.21 0.14 0.27 0.23 0.19 0.16 

Cumulative VER % 0.28 0.53 0.73 0.87 0.27 0.50 0.68 0.84 

 

 

3.4. Comparison of PP-RPCA and PP-RSPCA on Real Data 1- Stock 

Market Data 

Real Data 1-Stock Market Data is analyzed with R code written and the results 

are presented in Table 3.6. 

 

Table 3.6. The first four non sparse robust (𝜆 = 0) and sparse robust (𝜆 = 3.31) 

principal component loadings of the variables in Real Data 1-Stock Market Data 

 

Variables PP-RPCA PP-RSPCA  
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

X1 0.36 -0.12 -0.48 0.19 0.00 0.00 0.00 1.00 

X2 -0.02 0.56 -0.22 -0.26 0.79 -0.01 0.00 0.00 

X3 0.29 0.39 0.19 -0.45 0.00 0.00 0.17 0.01 

X4 0.22 0.00 -0.34 0.18 0.00 0.00 0.00 0.00 

X5 0.15 0.54 0.11 0.02 0.00 0.00 0.99 0.00 

X6 0.59 0.00 -0.35 0.01 0.01 0.10 0.00 0.00 

X7 0.46 0.09 0.61 0.55 0.00 1.00 0.00 0.00 

X8 -0.39 0.47 -0.26 0.61 0.62 0.01 0.00 0.00 



18 B. Barış Alkan and I. Ünaldi 

 

 

 

VER % 0.34 0.24 0.15 0.15 0.28 0.19 0.19 0.10 

Cumulative VER % 0.34 0.58 0.73 0.87 0.28 0.47 0.66 0.76 

 

For the Stock Market Data, 𝝀’s were determined by using TPO and BIC criteria, and 

the most optimal 𝝀 value was selected as 𝝀 = 3.31 according to TPO criteria.  

Table 3.6 shows that PP-RPCA explains 87% of the total variance with the first 

four main components. When PP-RSPCA results are analyzed, it is seen that 76% of 

the total variance is explained by the first four main components. In this case, the cost 

of using the sparsity feature is equivalent to the loss of 11% variance explanation rate. 

However, in Table 3.6, it is seen that the number of non-zero loadings in PP-RPCA is 

30 while the number of non-zero loadings in PP-RSPCA is reduced to 11. It is seen 

that the sparsity feature added to the loadings matrix facilitates the interpretation of 

the principal components with extremely good performance and a low error rate. 

 

4. DISCUSSION AND CONCLUSION  

The sparse principal component analysis is very useful in finding vectors in the 

direction of maximizing the variance described and improving the interpretability of 

the principal components. The robust sparse principal component analysis also allows 

the identification of principal component analysis vectors, which also facilitate 

interpretability and are unaffected by outliers. 

The projection-pursuit approach discussed maximizes a robust variance to find 

the principal component analysis vectors. One of the advantages of the projection-

pursuit approach is that the principal components are calculated sequentially and the 

algorithm stops when the desired number of principal components is reached. This 

feature is particularly useful in cases where the number of variables is greater than the 

number of observations  (𝑝 > 𝑛) in high-dimensional data sets.  

In the study, the performance of the RSPCA method suggested by Croux et al. 

(2013) was examined on one real and three artificial data sets with different outliers 

ratios. Artificial dataset 3 includes the number of variables (𝑝)  > number of 

observations (𝑛). Therefore, the findings to be obtained in the solution of such data 
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set with RSPCA are very important. The projection-pursuit method is also a widely 

used robust method in case of  𝑝 >  𝑛. 

The optimal value of the sparse parameter λ used to obtain the optimal result in 

terms of both interpretability and variance explanation rate can be found by BIC and 

TPO approaches. The BIC and TPO criteria used in the determination of lambda did 

not show much superiority compared to each other. However, in each application, the 

optimum of the 𝜆 determination criteria (BIC and TPO), which gives the 𝜆 value, has 

been selected.  

In the future study, RSPCA based on projection-pursuit discussed in this study 

can be compared with RSPCA results based on different robust variance estimators. 

For small sample and large sample cases, the performance of the methods for different 

outlier ratios can be evaluated. The effects of the use of different approaches such as 

MCD instead of projection-pursuit approach on RSPCA can also be examined. 
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Abstract 

 
The Lonely Runner Conjecture is a known open problem that was defined by Wills in 1967 and in 1973 

also by Cusick independently of Wills. If we suppose 𝑛 runners having distinct constant speeds start at a 

common point and run laps on a circular track with a unit length, then for any given runner, there is a time 

at which the distance of that runner is at least 1/𝑛 from every other runner. There exist several hypothesis 

verifications for different 𝑛 mostly based on principles of approximation using number theory. However, 

the general solution of the conjecture for any 𝑛 is still an open problem. In our work we will use a unique 

approach to verify the Lonely Runner Conjecture by the methods of differential geometry, which presents 

a non-standard solution, but demonstrates to be a suitable method for solving this type of problems. In the 
paper we will show also the procedure to build an algorithm that shows the possible existence of a solution 

for any number of runners. 
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1. INTRODUCTION 

The conjecture, today known as "Lonely Runner Conjecture," was introduced 

by Wills (1967) [1] and independently by Cusick (1973) [2]. In its original form, it 

was formulated as follows: „For any 𝑛 positive integers 𝑤1 , 𝑤2, … , 𝑤𝑘, there is a real 

number 𝑥 such that 

‖𝑤𝑖𝑥‖ ≥
1

𝑘 + 1
, 

for each 𝑖 =  1, 2, . . . , 𝑘, where for a real number 𝑥, ‖𝑤𝑖𝑥‖ is the distance of real 

number 𝑥 from the nearest integer to 𝑥.“. 

The name of this hypothesis, "Lonely Runner Conjecture", is the result of an 

interpretation made by Bienia et al. (1998) [3]: “At time zero, 𝑘 runners start from the 

beginning of the circular track with a unit length to run the repeated laps. Each runner 

maintains a constant non-zero speed. Then there is a time when all runners are at 
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least 1/ (𝑘 + 1) away from their common starting point, regardless of their speeds.”. 

The term "lonely runner" refers to an equivalent formulation in which there are 𝑘 + 1 

runners with different speeds. Then there is the time in which the runner is "lonely", 

that is, at a distance of at least 1/(𝑘 + 1) from the others. 

The proof of Lonely Runner Conjecture for 𝑘 = 2 is very simple. For 𝑘 = 3 

there are more approaches. Wills (1967) [1], for example, considered this problem in 

terms of Diophantine approximation, independently of Cusick (1973) [2]. Cusick 

considered a 𝑘-dimensional "view-obstruction" problem. The case of 𝑘 = 4 was first 

proved by Cusick and Pomerance (1984) [4], and this proof required computer 

control. Later, Bienia et al. (1998) [3] provided simpler proof for the case 𝑘 = 4. Case 

𝑛 = 5 was proved by Bohman, Holzman and Kleitman (2001) [5]. A simpler proof 

for case 𝑛 = 5 was provided by Renault (2004) [6]. Barajas and Serra (2008) [7] 

proved the hypothesis for 𝑛 = 6 and also solve the case of the conjecture for 𝑛 = 7 

[8]. The work [8] focuses on a specific case for seven runners, using congruences for 

dividing the track into appropriate intervals. Pandey (2009) [9] proved the conjecture 

for two or more runners provided the speed of the (𝑖 + 1)-th runner is more than 

double the speed of the 𝑖-th runner for each 𝑖, with the speeds arranged in an increasing 

order. Finding a universal conjecture verification for any 𝑛 is still an open problem. 

Some authors have verified the hypothesis for selected large 𝑛 when determining 

initial assumptions, e.g. in Dubickas (2011) [10] we can find conjecture verification 

for 𝑛 > 16342 under assumption that the speeds of the runners satisfy 
𝑣𝑗+1

𝑣𝑗
≥ 1 +

33 log 𝑛

𝑛
 for 𝑗 = 1, … , 𝑛 − 1. The work [10] points to the possibility of creating some 

distribution intervals based on the ratio of the speeds of neighboring runners. 

Although this approach is approximate, it can be extended to an unlimited number of 

runners. 

 

2. MAIN RESULTS 

Let there be 𝑛 runners on a circular track. If each runner runs at a different speed 

and we let them run for a sufficiently long time, we examine if there occurs a situation 

where the runners will be evenly distributed on the track. This problem is designed so 
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that the computational methods lead to advances in the field of Diophantine 

approximation [11].  

We will solve the problem using kinematics, by the methods of differential 

geometry to determine distances. This approach makes it easier for us to create a 

moving coordinate system. Given that this concept will follow the physical 

interpretation of the problem, therefore the techniques we will use are based on 

theoretical physics [12]. For a length element in 𝑁-dimensional space with the metric 

𝑔𝑘𝑙, it holds 

𝑑𝑙2 = 𝑔𝑘𝑙𝑑𝑞𝑘𝑑𝑞𝑙, 

where we use the generalized coordinates 𝑞𝑘 and Einstein's summation rule [13-14]. 

In addition, we determine the metric based on the inner product of the respective base 

vectors 

𝑔𝑘𝑙 = 𝑒𝑘 ∙ 𝑒𝑙. 

Consider a non-stationary coordinate system (the analogy of the Galilean 

transformation [15]) and define a distance for individual length elements 

 

𝑑𝑙 = ∑ 𝑑𝑙𝑘𝑙
𝑛
𝑘=1
𝑙=1

= (𝑣𝑘 − 𝑞𝑙)𝑑𝑡. 

Next, consider an oriented space, in which the distance throughout the whole space 

can be determined as 

𝑑𝑙2 = 𝑔𝑗𝑗𝑑𝑞𝑗𝑑𝑞𝑗 = 0, 

𝑑𝑙𝑘𝑗 = (𝑂𝑘 − 𝑣𝑗𝑑𝑡), 

𝑂𝑘 = 𝑣𝑘𝑑𝑡. 

 

This means that each runner is considered to be the origin of his coordinate system 

𝑔𝑗𝑗 = 0 

and 

𝑔𝑘𝑙 = −𝑔𝑙𝑘. 
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The whole track consists of individual partial sections, where the partial sections are 

determined as the distance between the runner and his nearest co-runner. Thus, when 

we count all the partial sections, we get the whole circle and we actually return to the 

position of the first runner. 

 

Let’s show a solution for the well-known trivial case of two runners 

𝑑𝑙 = ∑ 𝑑𝑙𝑘𝑙
𝑛
𝑘=1
𝑙=1

= |𝑣𝑘 − 𝑞𝑙|𝑑𝑡. 

From the point of view of the second runner, we consider that the origin of the 

coordinate system is at first runner. At time 𝑡, the second runner is far from the first 

runner so that they are exactly opposite each other, then 𝑙 =
1

2
. By substitution we get 

1

2
= (𝑣2 − 𝑣1) ∙ 𝑡. 

By simplification we get a known formula for the situation of two runners 

𝑡 =
1

2∙(𝑣2−𝑣1)
. 

For the case of several runners, we're looking for the time 𝜏 = 𝑘𝑖 ∙ 𝑡𝑖  , 𝑘𝑖 ∈ ℝ, 

which ensues as a shift based on the performed circuits. To illustrate, we can state the 

problem for three runners, while on the left side of the equation we have the distance 

determined the way that the two runners are 
1

3
 of a distance apart and are also divided 

by the distance created by the mutual circulation with respect to the starting position. 

For this reason consider 𝛼 ∈ ℝ and 𝑘𝑖 = 𝑛𝑖 + 𝛼 under the condition 𝑛𝑖 ∈ ℕ, where 𝑛𝑖 

is the number of circuits and 𝛼 is the shift of the runner closest to the starting position 

from the starting position. Hence we can determine the system of equations 

 

1

3
+ 𝑘1 = (𝑣2 − 𝑣1) ∙ 𝑡, 

1

3
+ 𝑘2 = (𝑣3 − 𝑣2) ∙ 𝑡, 

1

3
+ 𝑘3 = (𝑣3 − 𝑣1) ∙ 𝑡. 
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After adding the equations we get 

1 + 𝐾 = 2(𝑣3 − 𝑣1)𝑡, 

while 𝐾 = 𝑘1 + 𝑘2 + 𝑘2 + 3𝛼. Then 

𝑡 =
1+𝐾

2(𝑣3−𝑣1)
. 

After substituting 𝑡 we have 

1

3
+ 𝑘3 =

1+𝑘1+𝑘2+𝑘2

2
. 

From that after subsequent simplification it holds 

𝑘3 =
1

3
+ 𝑘1 + 𝑘2. 

In this way we can sequentially obtain next values for 𝑘1 or 𝑘2. This way we get one 

open parameter and a formula for the other parameters. The resulting relationship 

between the two parameters is very similar to the linear Diophantine equation, so even 

here we can search the solution using lattice points [16]. The geometric representation 

of the solution is a line passing through the grid points, and we can determine the 

solvability by the parameter 𝑎 ∈ ℝ, which also determines the shift of the runners 

from the starting position. In addition, we see that the Diophantine equation provides 

us with a whole set of solutions. 

Finally, we will show how to solve the case for 𝑛 runners. By applying a length 

element it holds 

𝑑𝑙 = ∑ 𝑑𝑙𝑘𝑙
𝑛
𝑘=1
𝑙=1

= |𝑣𝑘 − 𝑞𝑙|𝑑𝑡. 

From the point of view of individual runners with respect to the nearest neighbor, we 

get a system of equations in the form 

1

𝑛
+ 𝑘𝑖 = |𝑣𝑖 − 𝑣𝑖+1| ∙ 𝑡, 
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where 𝑘𝑖 = 𝑛𝑖 + 𝛼 under the condition 𝑛𝑖 ∈ ℕ , 𝛼 ∈ ℝ. Due to the fact that we have a 

cyclical situation, the time will depend mostly on the runners we placed as first and 

last, specifically 𝑣1 and 𝑣𝑛. Then we are able to determine the resulting formula for 

the time needed 

𝑡 =
1+∑ 𝑘𝑖

2(𝑣3−𝑣1)
. 

Hence, by sequentially substitution we get the Diophantine equation for 𝑘𝑖 and 𝑘𝑗 and 

open parameter 𝑎 ∈ ℝ, which provides the solvability. This approach is equivalent to 

the consequences we would achieve by applying the Kantorovich metric applied to a 

circle, which is shown in detail in the work [17]. In this article, the authors solve the 

resulting measures on a circle based on the division of the circle. Although the 

considered measure is applied to statistics, its fundamentals is to create a measure that 

in equity divides the circle. This is an analogy to the distribution of runners in our 

approach. 

 

3. CONCLUSION 

The paper focused on the use of differential geometry methods in solving the 

problem of the "Lonely Runner Conjecture". Although most methods are based on the 

principles of approximation, we focused on the geometric interpretation of the 

problem. We inserted a circle with a unit length into the coordinate system in such a 

way that each runner created his own coordinate system. Based on this, we created a 

mapping that describes the distribution of runners from the perspective of any runner. 

Given that our approach is close to the solution of a physical problem and thus also 

the analysis of a problem as kinematics problem, we've used this method for solving 

lonely runner problem. We also pointed out that the solution matches the known 

solution for two runners and subsequently we applied it to a situation with three 

runners. The provided solution gives prescription for an algorithm that increases its 

difficulty with the growing number of runners. On the other hand, it shows the 

existence of a solution for any number of runners, what was the main contribution of 

our article. 
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Abstract 

 
In this study, the difficulty of estimating the population mean in the situation of post-stratification is 

discussed. The case of post-stratification is presented for ratio-type exponential estimators of finite 

population mean. Mean-squared error of the proposed estimator is obtained up to the first degree of 
approximation. In the instance of post-stratification, the proposed estimator was compared with the 

existing estimators. An empirical study by using some real data and further, simulation study has been 

carried out to demonstrate the performance of the proposed estimator. 
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1. INTRODUCTION 

One of the most prevalent survey sample approaches is stratification. The use 

of stratified random sampling ensures that the size of each stratum as well as the 

sampling frame for each stratum is known ahead of time. However, in many 

practical cases, the overall population size and percentage of the unit that falls into 

distinct strata or stratum sizes are known, but a sampling frame for each stratum is 

either not accessible or is too expensive and time-consuming to produce. We can't 

use stratified random sampling in these scenarios. To overcome this problem, a post-

stratification procedure is utilized, in which a sample of the requisite size is taken 

from the population using SRS and then stratified using the stratification factor. 

Many authors contributed in the field of post stratification including Holt and Smith 

(1979), Jagers et al. (1985), Jagers (1986), Ige and Tripathi (1989), Agrawal and 

Panda (1993), and Singh and Ruiz Espezo (2003). 

We assume a finite population of size N which is divided into L strata of sizes 

𝑁1, 𝑁2, … , 𝑁𝐿  such that ∑ 𝑁ℎ = 𝑁𝐿
ℎ=1 . Let y be the study variate, and x be the 
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auxiliary variate, positively and negatively correlated with study variate y, 

respectively. Let 𝑦ℎ𝑖  be the observation on 𝑖𝑡ℎ unit of ℎ𝑡ℎ stratum for study variate, 

and 𝑥ℎ𝑖   be the observation on 𝑖𝑡ℎ  unit of ℎ𝑡ℎ  stratum for auxiliary variate x. For 

study variate y and auxiliary variate x population means are denoted by 𝑌̅ and  𝑋̅ , 

respectively, while ℎ𝑡ℎ  stratum means are denoted by 𝑌̅ℎ  and 𝑋̅ℎ  respectively. A 

sample of size n is drawn from the population using simple random sampling 

without replacement (SRSWR). It is observed that how many and which units 

belong to the ℎ𝑡ℎ stratum. Let 𝑛ℎ be the size of the sample falling in, ℎ𝑡ℎ  stratum 

such that ∑ 𝑛ℎ = 𝑛𝐿
ℎ=1  here, it is assumed that n is so large that possibility of 𝑛ℎ 

being zero is very small.  

After stratification, ratio and product estimators for population mean were 

discussed Ige and Tripathi (1989). Tailor investigated the ratio exponential estimator 

of Bahl and Tuteja (1991) in post-stratification Tailor et al. (2017). The authors are 

motivated to research ratio and ratio type exponential estimators in post-

stratification as a result of their previous work. In post stratification, usual unbiased 

estimator for population mean is explained as. 

𝑦̅𝑝𝑠 = ∑ 𝑊ℎ𝑦̅ℎ

𝐻

ℎ=1

                                                                                                                  (1.1) 

where, 
𝑁ℎ

𝑁
 is the weight of ℎ𝑡ℎ stratum and 𝑦̅ℎ is the sample mean of 𝑛ℎ sample units 

that fall in the ℎ𝑡ℎ stratum. 

Using the results from Stephen (1945), the variance is given as 

𝑉𝑎𝑟(𝑌̂̅𝑝𝑠) = (
1

𝑛
−

1

𝑁
) ∑ 𝑊ℎ

𝐿

ℎ=1

𝑆𝑦ℎ
2 +

1

𝑛2
∑(1 − 𝑊ℎ)

𝐿

ℎ=1

𝑆𝑦ℎ
2                                           (1.2) 

Ige and Tripathi (1989) defined classical ratio type estimator in post-

stratification, as 

𝑌̂̅𝑅 = 𝑦̅𝑝𝑠 (
𝑋̅

𝑥̅𝑝𝑠

)                                                                                                                   (1.3) 
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where 

𝑋̅ = ∑ 𝑊ℎ𝑋̅ℎ

𝑳

𝒉=𝟏

𝑎𝑛𝑑     𝑦̅𝑝𝑠 = ∑ Why̅h

L

h=1

, 𝑥̅𝑝𝑠 = ∑ 𝑊ℎ𝑥̅ℎ

𝐿

ℎ=1

 

Upto the fda, the bias and MSE statement of Ŷ̅ps
R  is defined as 

𝐵(𝑌̂̅𝑅) = (
1

𝑛
−

1

𝑁
)

1

𝑋̅
∑ 𝑊ℎ(𝑅1𝑆𝑥ℎ

2 − 𝑆𝑦𝑥ℎ)

𝐿

ℎ=1

                                                               (1.4) 

And 

𝑀𝑆𝐸(𝑌̂̅𝑅) = (
1

𝑛
−

1

𝑁
) ∑ 𝑊ℎ(𝑆𝑦ℎ

2 + 𝑅1
2 − 2𝑅1𝑆𝑦𝑥ℎ)

𝐿

ℎ=1

                                                (1.5) 

where R1 =
Y̅

X̅
 

Tailor et al. (2017) defined Bahl and Tuteja (1991) ratio type exponential estimator 

as 

𝑌̂̅𝑅𝐶 = 𝑦̅𝑝𝑠𝑒𝑥𝑝 (
𝑥̅𝑝𝑠 − 𝑋̅

𝑥̅𝑝𝑠 + 𝑋̅
)                                                                                                 (1.6) 

Up to the fda, the bias and MSE assertion of  𝑌̂̅𝑅𝐶   are respectively given by 

𝐵(𝑌̂̅𝑅𝐶) = (
1

𝑛
−

1

𝑁
)

1

𝑋̅
∑ 𝑊ℎ (

3

8
𝑅1𝑆𝑥ℎ

2 +
1

2
𝑆𝑦𝑥ℎ)

𝐿

ℎ=1

                                                      (1.7) 

𝑀𝑆𝐸(𝑌̂̅𝑅𝐶) = (
1

𝑛
−

1

𝑁
) ∑ 𝑊ℎ (𝑆𝑦ℎ

2 +
1

4
𝑅1

2𝑆𝑥ℎ
2 − 𝑅1𝑆𝑦𝑥ℎ)

𝐿

ℎ=1

                                    (1.8) 

𝑌̂̅𝑃𝐶 = 𝑦̅𝑝𝑠𝑒𝑥𝑝 (
𝑋̅ − 𝑥̅𝑝𝑠

𝑋̅ + 𝑥̅𝑝𝑠

)                                                                                                 (1.9) 
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Up to the fda, the bias and MSE assertion of  𝑌̂̅𝑅  are respectively given by 

𝐵(𝑌̂̅𝑃𝐶) = (
1

𝑛
−

1

𝑁
)

1

𝑋̅
∑ 𝑊ℎ (

3

8
𝑅1𝑆𝑥ℎ

2 −
1

2
𝑆𝑦𝑥ℎ)

𝐿

ℎ=1

                                                   (1.10) 

𝑀𝑆𝐸(𝑌̂̅𝑃𝐶) = (
1

𝑛
−

1

𝑁
) ∑ 𝑊ℎ (𝑆𝑦ℎ

2 +
1

4
𝑅1

2𝑆𝑥ℎ
2 − 𝑅1𝑆𝑦𝑥ℎ)

𝐿

ℎ=1

                                   (1.11) 

2. PROPOSED ESTIMATOR 

Motivated by Subramani (2016), we have proposed the following general ratio 

type estimator of population mean of study variable under post stratification.   

𝑌̂̅𝑅𝐾 = 𝑦̅𝑃𝑆 [𝑘 + (1 − 𝑘)𝑒𝑥𝑝 (
𝑋̅ − 𝑥̅𝑝𝑠

𝑋̅ + 𝑥̅𝑝𝑠

)]                                                                      (2.1) 

  where k is constant and we write, 

To obtain the MSE of 𝑌̂̅𝑅𝐾 , write   

e0 =
1

Y̅
∑ WhY̅h

L

h=1

 and   𝑒1 =
1

X̅
∑ WhX̅h

L

h=1

 

 such that 

𝐸(𝑒0) = 𝐸(𝑒1) = 0, and 

𝐸(𝑒0
2) =

1

𝑌̅2̅̅ ̅
(

1

𝑛
−

1

𝑁
) ∑ 𝑊h

𝑙

h=1

𝑆𝑦ℎ
2  

 𝐸(𝑒1
2) =

1

𝑋̅2
(

1

𝑛
−

1

𝑁
) ∑ 𝑊ℎ

𝐿

ℎ=1

𝑆𝑥ℎ
2 ,      

 𝐸(𝑒0𝑒1) =
1

𝑌̅𝑋̅
(

1

𝑛
−

1

𝑁
) ∑ 𝑊ℎ

𝐿

ℎ=1

𝑆𝑦𝑥ℎ  
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 The proposed estimator Ŷ̅RK  expressed in terms of 𝑒𝑖,s 

𝑌̂̅𝑅𝐾 = 𝑌̅(1 + 𝑒0) {𝑘 + (1 − 𝑘)𝑒𝑥𝑝 (
−𝑋̅𝑒1

2𝑋̅ + 𝑋̅𝑒1

)} 

𝑌̂̅𝑅𝐾 = 𝑌̅(1 + 𝑒0) {𝑘 + (1 − 𝑘)𝑒𝑥𝑝 (
−𝑒1ℎ

(2 + 𝑒1ℎ)
)} 

𝑌̂̅𝑅𝐾 = 𝑌̅(1 + 𝑒0) {𝑘 + (1 − 𝑘)𝑒𝑥𝑝 (
−𝑒1

2
(1 +

𝑒1

2
)

−1

)}                                            (2.2) 

Expanding the right hand side of (2.2) and retaining terms up to the second power of 

e’s, 

𝑌̂̅𝑅𝐾 = 𝑌̅(1 + 𝑒0) {𝑘 + (1 − 𝑘)𝑒𝑥𝑝 (
−𝑒1

2
−

𝑒1
2

4
)} 

𝑀𝑆𝐸(𝑌̂̅𝑅𝐾) = {𝐸(𝑒0
2) + 𝑘2𝐸 (

𝑒1
2

4
) − 𝑘𝐸(𝑒0𝑒1)} 

𝑀𝑆𝐸(𝑌̂̅𝑅𝐾) = 𝑓 ∑ 𝑊ℎ (𝑆𝑦ℎ
2 +

1

4
𝑘2𝑅1

2𝑆𝑥ℎ
2 − 𝑘𝑅1𝑆𝑦𝑥ℎ)

𝐿

ℎ=1

                                           (2.3) 

2.1. Optimality of  

Obtain the optimum k to minimize 𝑀𝑆𝐸(𝑌̂̅𝑅𝐾). Differentiating 𝑀𝑆𝐸(𝑌̂̅𝑅𝐾) with 

respect to k and equating the derivative to zero, optimum value of k is given by 

𝑘∗ = 2 ∑
𝑊ℎ𝑆𝑦𝑥ℎ

𝑊ℎ𝑅1𝑆𝑥ℎ
2

𝐿

ℎ=1

                                                                                                          (2.4) 

Substituting the value of 𝑘∗ in (2.3), we get the minimum value of 𝑀𝑆𝐸(𝑌̂̅𝑅𝐾(𝑚𝑖𝑛)) 

𝑀𝑆𝐸(𝑌̂̅𝑅𝐾(𝑚𝑖𝑛)) = 𝑓 ∑ [𝑆𝑦ℎ
2 + 2 (

𝑊ℎ𝑆𝑦𝑥ℎ
2

𝑊ℎ𝑆𝑥ℎ
2 )]

𝐿

ℎ=1

                                                            (2.5) 
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3. EFFICIENCY COMPARISON 

In this section, the performance of the proposed estimator has been 

demonstrated over the existing estimators in the literature as follows: 

From (1.2) and (2.5) 

I. [𝑉𝑎𝑟(𝑌̂̅𝑝𝑠) − 𝑀𝑆𝐸(𝑌̂̅𝑅𝐾(𝑚𝑖𝑛))] > 0  

1

𝑛2
∑(1 − 𝑊ℎ)

𝐿

ℎ=1

𝑆𝑦ℎ
2 − ∑ 𝑊ℎ

𝐿

ℎ=1

(
2𝑆𝑦𝑥ℎ

2

𝑆𝑥ℎ
2 ) > 0                                                                (3.1) 

From (1.5) and (2.5) 

II. [𝑀𝑆𝐸(𝑌̂̅𝑅) − 𝑀𝑆𝐸(𝑌̂̅𝑅𝐾(𝑚𝑖𝑛))] > 0  

∑ 𝑊ℎ(𝑅1
2 − 2𝑅1𝑆𝑦𝑥ℎ) − ∑ 𝑊ℎ

𝐿

ℎ=1

(
2𝑆𝑦𝑥ℎ

2

𝑆𝑥ℎ
2 ) > 0      

𝐿

ℎ=1

                                                   (3.2) 

From (1.8) and (2.5) 

III. [𝑀𝑆𝐸(Ŷ̅RC) − MSE(Ŷ̅RK(min))] > 0 

∑ 𝑊ℎ (
1

4
𝑅1

2𝑆𝑥ℎ
2 − 𝑅1𝑆𝑦𝑥ℎ) − ∑ 𝑊ℎ

𝐿

ℎ=1

(
2𝑆𝑦𝑥ℎ

2

𝑆𝑥ℎ
2 )

𝐿

ℎ=1

> 0                                                 (3.3) 

From (1.11) and (2.5) 

IV. [𝑀𝑆𝐸(𝑌̂̅𝑃𝐶) − 𝑀𝑆𝐸(𝑌̂̅𝑅𝐾(𝑚𝑖𝑛))] > 0          

∑ 𝑊ℎ (
1

4
𝑅1

2𝑆𝑥ℎ
2 + 𝑅1𝑆𝑦𝑥ℎ) − ∑ 𝑊ℎ

𝐿

ℎ=1

(
2𝑆𝑦𝑥ℎ

2

𝑆𝑥ℎ
2 )

𝐿

ℎ=1

> 0                                                 (3.4) 

It is observed that 𝑌̂̅𝑅𝐾(𝑚𝑖𝑛) is always more efficient than the traditional estimators 

𝑌̂̅𝑝𝑠 , 𝑌̂̅𝑅 , Ŷ̅RC and 𝑌̂̅𝑃𝐶 , because the conditions from (3.1) to (3.4) are always satisfied. 
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4. EMPIRICAL STUDY 

A data set is considered to exhibits the performance of the suggested estimator; 

we use some real-life populations. Description of the populations is given below: 

Population I [Source: Murthy (1967), p. 228] 

𝑦 : Output,   

𝑥: Fixed capital 

Constant                               Stratum I Stratum II 

𝑁ℎ 

𝑛ℎ 

𝑌̅ℎ 

𝑋̅ℎ 

𝑆𝑦ℎ  

𝑆𝑥ℎ  

𝑆𝑦𝑥ℎ  

05 

4 

1925 

214.40 

615.92 

74.87 

39360.68 

05 

4 

3115.60 

333.80 

340.38 

66.35 

22356.50 

 

Population II [Source: Murthy (1967), p. 228] 

𝑦 : Output,  

𝑥: Fixed capital  

Constant            Stratum I             Stratum II 

𝑁ℎ 

𝑛ℎ 

𝑌̅ℎ 

𝑋̅ℎ 

𝑆𝑦ℎ  

𝑆𝑥ℎ  

𝑆𝑦𝑥ℎ  

05 

2 

1925 

214.40 

615.92 

74.87 

39360.68 

05 

2 

3115.60 

333.80 

340.38 

66.35 

22356.50 
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Population III 

[Source: Japan Meteorological Society. Retrieved from the World Wide Web 

http://www.data.jma.go.jp/obd/stats/data/en/index.html] 

Constant           Stratum I           Stratum II 

𝑁ℎ 

𝑛ℎ 

𝑌̅ℎ 

𝑋̅ℎ 

𝑆𝑦ℎ  

𝑆𝑥ℎ  

𝑆𝑦𝑥ℎ  

10 

4 

1629.99 

149.7 

32.305 

74.872 

-1072.8 

10 

4 

2035.96 

102.6 

103.26 

66.35 

-655.25 

Table 4.1 Mean square errors (MSEs) of the estimators for Population I: 

Estimators MSE 

𝑉(𝑦̅𝑝𝑠) 10059.07 

𝑌̂𝑅

  

 2580.72 

𝑌̂𝑅𝐶

  

 15929.74 

𝑌̂𝑃𝐶

  

 1740.528 

𝒀̂𝑹𝑲

∗ 

 1432.67 

 

Table 4.2 PRE of Estimators for Population I:  

Estimators PRE 

𝑉(𝑦̅𝑝𝑠) 100 

𝑌̂𝑅

  

 389.78 

𝑌̂𝑅𝐶

  

 63.15 

𝑌̂𝑃𝐶

  

 577.93 

𝒀̂𝑹𝑲

∗ 

 702.12 



JAMSI, 18 (2022), No. 1 37 

 

 
Table 4.2, revealed the percent relative efficiencies (PRE) of estimators for 

population I. It is observed that the proposed exponential ratio type estimator 𝑌̅𝑅𝐾  

proved to be the best estimator in the sense of having highest percent relative 

efficiency than usual unbiased estimators𝑉(𝑦̅𝑝𝑠), 𝑌̂𝑅

  

 , 𝑌̂𝑅𝐶

  

 , 𝑌̂𝑃𝐶

  

  for the population 

I. 

Table 4.3 Mean square errors (MSEs) of the estimators for Population II: 

Estimators MSE 

𝑉(𝑦̅𝑝𝑠) 52617.18 

𝑌̂𝑅

  

 15483.09 

𝑌̂𝑅𝐶

  

 95578.39 

𝑌̂𝑃𝐶

  

 10443.09 

𝒀̂𝑹𝑲

∗ 

 8595.62 

 

Table 4.4 PRE of Estimators for Population II:  

Estimators PRE 

𝑉(𝑦̅𝑝𝑠) 100 

𝑌̂𝑅

  

 339.84 

𝑌̂𝑅𝐶

  

 55.05 

𝑌̂𝑃𝐶

  

 503.85 

𝒀̂𝑹𝑲

∗ 

 612.14 

 

Table 4.4, revealed the percent relative efficiencies (PRE) of estimators for 

population II. It is observed that the proposed exponential ratio type estimator 𝑌̅𝑅𝐾 

proved to be the best estimator in the sense of having highest percent relative 
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efficiency than usual unbiased estimators 

𝑉(𝑦̅𝑝𝑠), 𝑌̂𝑅

  

 , 𝑌̂𝑅𝐶

  

 , 𝑌̂𝑃𝐶

  

  for the population II. 

Table 4.5 Mean square errors (MSEs) of the estimators for Population III: 

Estimators MSE 

𝑉(𝑦̅𝑝𝑠) 530.48 

𝑌̂𝑅

  

 2709.97 

𝑌̂𝑅𝐶

  

 112.85 

𝑌̂𝑃𝐶

  

 1304.72 

𝒀̂𝑹𝑲

∗ 

 
109.90 

 

Table 4.6 PRE of Estimators for Population III:  

Estimators PRE 

𝑉(𝑦̅𝑝𝑠) 100 

𝑌̂𝑅

  

 19.58 

𝑌̂𝑅𝐶

  

 470.06 

𝑌̂𝑃𝐶

  

 40.66 

𝒀̂𝑹𝑲

∗ 

 482.67 

 

Table 4.4, revealed the percent relative efficiencies (PRE) of estimators for 

population III. It is observed that the proposed exponential ratio type estimator 𝑌̅𝑅𝐾  

proved to be the best estimator in the sense of having highest percent relative 

efficiency than usual unbiased estimators 𝑉(𝑦̅𝑝𝑠), 𝑌̂𝑅

  

 , 𝑌̂𝑅𝐶

  

 , 𝑌̂𝑃𝐶

  

  for the population 

III. 
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5. SIMULATION STUDY 

We did a simulation research in this section to explore the qualities of proposed 

estimators. We use a bivariate normal distribution to produce finite populations of 

size N=10000 in the simulation study. The samples were created from a bivariate 

normal distribution using the R program's mvrnorm function. In the simulation, we 

considered 𝜇𝑥 = 2, 𝜇𝑦 = 4,  we have computed mean square errors (MSEs) and 

percent relative efficiencies (PREs) of estimators with respect to 𝑉(𝑦̅𝑝𝑠)  and 

displayed in Table 5.1- Table 5.2. From the Tables we can say that proposed 

estimator 𝑌̂𝑅𝐾

∗ 

 is the most efficient estimator than the existing estimators in literature 

for this simulation study. 

 

Table 5.1 MSE and PRE Values of Estimators for population I 

ρyx1 : ρyx2 MSE PRE 

0.75:0.88 

10059.07 

4249.29 

15095.45 

2574.82 

2551.59 

100 

236.72 

66.64 

390.67 

294.23 

0.80:0.93 

10059.07 

3459.59 

15490.3 

7179.96 

2022.02 

100 

290.76 

64.94 

461.43 

497.48 

0.85:0.98 

10059.07 

2669.88 

15885.16 

1785.11 

1492.46 

100 

376.76 

63.32 

563.50 

673.99 

 



40 K. Ul Islam Rather, et al. 

 

 
Table 5.2 MSE and PRE Values of Estimators for population II 

ρyx1 : ρyx2 MSE PRE 

0.75:0.88 

52617.17 

25494.61 

90572.64 

15448.85 

15309.35 

100 

206.39 

58.09 

340.59 

343.69 

0.80:0.93 

52617.17 

20756.34 

92941.77 

13079.72 

12131.87 

100 

253.50 

56.61 

402.28 

431.71 

0.85:0.98 

52617.17 

16018.07 

95310.91 

10710.59 

8954.38 

100 

318.49 

55.206 

491.26 

587.61 

 

6. CONCLUSION 

In this article, an exponential ratio type estimator has been proposed under post 

stratification. The mathematical form of the estimator has been derived and its 

condition of efficiencies has been formulated with respect to some existing 

estimators from literature. For comparing the efficiencies of proposed estimator with 

some existing estimators, we utilized some real-life populations for estimating 

population mean. The results from these populations show that our proposed 

estimator performs efficiently as compared to existing estimators. We also observe 

that efficiency of proposed estimator increases when the correlation between study 

and auxiliary variable increases by simulation study. Therefore, it is recommended 

to use proposed estimator for estimating population mean under post stratification.  



JAMSI, 18 (2022), No. 1 41 

 

 
ACKNOWLEDGMENT 

Authors are thankful to the referee for his valuable suggestions regarding the 

improvement of the paper. 

 

REFERENCES 

Agrawal, M. C., Panda, K. B. (1993). An efficient estimator in post stratification. Metron 51:179–188. 

Bahl, S., Tuteja, R. K. (1991). Ratio and product type exponential estimator. Inf. Optim. Sci. 12:159–163. 

Cochran, W. G. (1977). Sampling techniques (3rd ed.). Wiley Eastern Limited. 

Holt, D., Smith, T. M. F. (1979). Post-stratification. J. R. Stat. Soc. 142:33–46. 

Ige, A. F., Tripathi, T. P. (1989). Estimation of population mean using post-stratification and auxiliary 

information. Abacus 18:265–276. 

Jagers, P. (1986). Post stratification against bias in sampling. Int. Statist. Rev. 55:159–167. 

Jagers, P., Oden, A., Trulsson, L. (1985). Post stratification and ratio estimation: Usages of auxiliary 

information in survey sampling and opinion polls. Int. Statist. Rev. 53:221–238. 

Murthy, M. N. (1967). Sampling Theory and Methods (p. 228). Calcutta: Statistical Publishing Society. 

Singh, H. P., Ruiz Espejo, M. (2003). Improved post stratified estimation. Bulletin of the International 

Statistical Institute, 54th session, contributed papers, vol. LX, Two Books, Book 2, pp. 341–342. 

Singh, R., Mangat, N. S . (1996). Elements of Survey Sampling (Vol. , p. 219). London: Kluwer 

Academic. 

Stephan, F. (1945). The expected value and variance of the reciprocal and other negative powers of a 

positive Bernoullian variate. Ann. Math. Stat. 16:50–61. 

Subramani, J. (2016). A new median based ratio estimator for estimation of the finite population mean, 

Statistics in Transition New Series, 17, 4:1-14. 

Tailor R., Tailor R., and Chouhan S. (2017). Improved Ratio- and Product-Type Exponential Estimators 

for Population Mean in Case of Post-Stratification. Communications in Statistics - Theory and 

Methods, Vol 46, No. 21, 10387-10393. 

Tailor R., Mehta P. (2019). A Ratio and Ratio Exponential Estimator for Finite Population Mean in Case 

of Post-Stratification. Journal of Statistics Applications & Probability. 8(3):241-246. 

 

 

  



42 K. Ul Islam Rather, et al. 

 

 
Khalid Ul Islam Rather 

Division of Statistics and Computer Science, Faculty of Basic Sciences, 

Main Campus SKUAST-J, Jammu, J&K, India, 180009. 

Email: khalidstat34@gmail.com (corresponding author) 

 

M. Iqbal Jeelani 

Division of Statistics and Computer Science, Faculty of Basic Sciences,  

Main Campus SKUAST-J, Jammu, J&K, India, 180009. 

 

M. Younis Shah 

Division of Statistics and Computer Science, Faculty of Basic Sciences,  

Main Campus SKUAST-J, Jammu, J&K, India, 180009. 

 

S. E. H. Rizvi  

Division of Statistics and Computer Science, Faculty of Basic Sciences,  

Main Campus SKUAST-J, Jammu, J&K, India, 180009. 

 

Manish Sharma 

Division of Statistics and Computer Science, Faculty of Basic Sciences,  

Main Campus SKUAST-J, Jammu, J&K, India, 180009. 

 

 



JAMSI, 18 (2022), No. 1 43

Asymptotic expectation of protected node profile
in random digital search trees

M. JAVANIAN, R. IMANY NABIYYI, J. TOOFANPOUR
AND M. Q. VAHIDI-ASL

Abstract

Protected nodes are neither leaves nor parents of any leaves in a rooted tree. We study here protected node
profile, namely, the number of protected nodes with the same distance from the root in digital search trees,
some fundamental data structures to store 0 - 1 strings. When each string is a sequence of independent and
identically distributed Bernoulli(p) random variables with 0 < p < 1 (p ̸= 1

2 ), Drmota and Szpankowski
(2011) investigated the expectation of internal profile by the analytic methods. Here, we generalize the
main parts of their approach in order to obtain the asymptotic expectations of protected node profile and
non-protected node profile in digital search trees.

Mathematics Subject Classification 2000: 05C05, 68Q87, 35A20
Keywords: Digital search trees, profile, protected node, singularity analysis, saddle point method,
probability generating function.

1. INTRODUCTION

Digital search trees (DSTs) are one of the most essential varieties of data
structures for strings in computer science algorithms (see [12] for more information).

A DST is a binary tree built from a sequence of 0 - 1 strings. The first string is
stored in the root node. The subsequent string is directed to the left subtree if its first
digit is 0, or to the right if the first digit is 1. This process works recursively for the
subtrees of the root but, at level i, the (i+1)th digit of the string is used for branching.
Internal nodes hold the strings. See Figure 1 for an example of a DST built from 20
internal nodes.

We assume here that each string is a sequence of independent and identically
distributed Bernoulli(p) random variables with 0 < p < 1, the probability of occurring
a “1”; we also use 0 < q := 1− p < p < 1. A DST built from this sequence of Bernoulli
random variables is referred to as a random DST. Random DSTs have been extensively
studied by many authors, see e.g. [2], [3], [4], [11], [14], [15], and the references
therein.
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Fig. 1. A DST built on 20 strings stored in internal nodes (rectangles) with protected (gray ones) and non-
protected (white ones) nodes, and its profiles.

By profiles, the most important shape parameters in rooted trees, we mean the
number of nodes of the same type at the same level. These parameters are connected
to some other shape parameters such as height, width. See [3], [4], [9], [10], [11],
[17], [16] for different types of results on profiles in some classes of random trees.

A node is said to be protected if it is not a leaf and, furthermore, none of its
children is a leaf; otherwise a node is said to be non-protected. E.g., Figure 1 shows
the protected and non-protected nodes in a DST. Protected nodes have been studied
for many different random trees in recent papers; see for instance, [1], [13], [7] and
the papers cited there.

In this paper, we investigate the protected node profile, namely, the number of
protected nodes with the same distance from the root in random DSTs. Throughout
the paper, we write In,k, Xn,k and Yn,k for, respectively, the number of internal nodes, the
number of protected nodes and the number of non-protected internal nodes at level k

in a DST of size n (e.g. see Figure 1 for the values of Xn,k and Yn,k in a DST). These
profiles have been analyzed by [9] for tries, and by [10] for recursive trees, newly. For
DSTs, as p = 1

2 and n → ∞, the mean, the variance and the asymptotic normality of
In,k are fully clarified in [4]. As p ̸= 1

2 , the asymptotics of the mean and variance of
In,k have been obtained in [3] and [11], respectively. Here, in the case of p ̸= 1

2 , we
generalize the main part of the proof in [3] to obtain the asymptotic means of Xn,k and
Yn,k.
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2. SETTING

In a random DST of size n, the number of protected nodes Xn,k at level k ≥ 1,
can be computed recursively by computing the number for the two subtrees at level
k−1. For k = 0, the root is protected, if and only if neither the left nor the right subtree
contains only one string. This leads to the following distributional recurrence for Xn,k:

Xn,k
d
=

 XBn ,k−1 +X∗
n−1−Bn ,k−1, k ≥ 1;

1−1{1,n−2}(Bn), k = 0,
n ≥ 2,

where d
= denotes equality in distribution, Bn

d
= Binomial(n−1, p), Xn,k

d
= X∗

n,k, 1A(·) is the
indicator function of A and Xn,k, X∗

n,k, Bn are independent. Moreover, Xn,k = 0 for n ≤ 1

and k ≥ 0. Similarly, if Y ∗
n,k is distributed as Yn,k then we have

Yn,k
d
=

 YBn ,k−1 +Y ∗
n−1−Bn ,k−1, k ≥ 1;

1{1,n−2}(Bn), k = 0,
n ≥ 2,

where Yn,k, Y ∗
n,k, Bn are independent. Furthermore, the initial boundary conditions are

Y0,k = 0 for k ≥ 0, Y1,0 = 1, Y1,k = 0 for k ≥ 1.
Let ϕn,k(u,w) := E[uXn,k wYn,k ] be the joint probability generating function of Xn,k and

Yn,k. Then, by the above recurrences, we obtain

ϕn,k(u,w) =
n−1

∑
j=0

(
n−1

j

)
p jqn−1− j

ϕ j,k−1(u,w)ϕn−1− j,k−1(u,w), n ≥ 1, k ≥ 1, (1)

with the initial and boundary conditions

ϕ0,k(u,w) = 1, k ≥ 0, ϕ1,0(u,w) = w,

ϕn,0(u,w) = u+(n−1)(pqn−2 + pn−2q)(w−u), n ≥ 2.

Denote the Poisson generating function of ϕn,k(u,w) by

ϕ̃k(z,u,w) := e−z
∑
n≥0

ϕn,k(u,w)
zn

n!
, ϕ̃k(0,u,w) = ϕ0,k(u,w) = 1, k ≥ 0.

This definition and the relation (1) fulfills the following recurrence

∂ ϕ̃k(z,u,w)
∂ z

+ ϕ̃k(z,u,w) = ϕ̃k−1(pz,u,w)ϕ̃k−1(qz,u,w), k ≥ 1, (2)

ϕ̃0(z,u,w) = e−z +wze−z +u(1− e−z − ze−z)

+(w−u)
( p

q2 (qz−1)e−pz +
q
p2 (pz−1)e−qz +

p
q2 e−z +

q
p2 e−z

)
(3)
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From (2) and (3), the following Poisson transforms

M̃[X ]
k (z) := e−z

∑
n≥0

E(Xn,k)
zn

n!
=

∂ ϕ̃k(z,u,w)
∂u

∣∣∣
u=w=1

,

M̃[Y ]
k (z) := e−z

∑
n≥0

E(Yn,k)
zn

n!
=

∂ ϕ̃k(z,u,w)
∂w

∣∣∣
u=w=1

,

satisfy the recurrence relations, for k ≥ 1,

M̃′[X ]
k (z)+ M̃[X ]

k (z) = M̃[X ]
k−1(pz)+ M̃[X ]

k−1(qz), (4)

M̃′[Y ]
k (z)+ M̃[Y ]

k (z) = M̃[Y ]
k−1(pz)+ M̃[Y ]

k−1(qz), (5)

with

M̃[X ]
0 (z) = 1− e−z − ze−z − p

q2 (qz−1)e−pz − q
p2 (pz−1)e−qz −

( p
q2 +

q
p2

)
e−z,

M̃[Y ]
0 (z) = ze−z +

p
q2 (qz−1)e−pz +

q
p2 (pz−1)e−qz +

( p
q2 +

q
p2

)
e−z.

Since M̃[I]
0 (z) = 1 − e−z has been obtained in [3], then the above initial conditions

confirm that

M̃[I]
0 (z) = 1− e−z = M̃[X ]

0 (z)+ M̃[Y ]
0 (z). (6)

By induction it is easy to prove that M̃[Y ]
k (z) can be represented as a finite linear

combination of the two functions of the forms e−pl1 ql2 z and ze−pl1 ql2 z with l1, l2 ≥ 0 and
l1 + l2 ≤ k + 1. Furthermore, Xn,k = 0 for k > n− 3; and Yn,k = 0 for k > n− 1. Thus,
M̃[X ]

k (z) = O(zk+3) and M̃[Y ]
k (z) = O(zk+1) for z → 0 which ensures that M∗[X ]

k (s) exists for
s with −k − 3 < ℜ(s) < 0; and M∗[Y ]

k (s) exists for s with ℜ(s) > −k − 1. Let us now
express M∗[X ]

k (s) and M∗[Y ]
k (s) as

M∗[X ]
k (s) =−Γ(s)F [X ]

k (s), M∗[Y ]
k (s) =−Γ(s)F [Y ]

k (s)

where Γ(s) is the Euler gamma function. From the above setting, F [X ]
k (s) and F [Y ]

k (s) are
some finite linear combinations of functions of the forms p−l1sq−l2s and sp−l1sq−l2s with
l1, l2 ≥ 0 and 0 ≤ l1 + l2 ≤ k+1. By (4) and (5),

F [X ]
k (s)−F [X ]

k (s−1) = T (s)F [X ]
k−1(s),

F [Y ]
k (s)−F [Y ]

k (s−1) = T (s)F [Y ]
k−1(s),

k ≥ 1,
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with T (s) := p−s +q−s and the initial conditions

F [X ]
0 (s) = 1+ s+

p−s

q2 (qs− p)+
q−s

p2 (ps−q)+
p
q2 +

q
p2

F [Y ]
0 (s) =−s− p−s

q2 (qs− p)− q−s

p2 (ps−q)− p
q2 −

q
p2 .

3. THE EXPECTATIONS

Here, in order to obtain the expectations of the protected and non-protected
profiles, i.e. E(Xn,k) and E(Yn,k), we first derive the asymptotic expansions of F [X ]

k (s)

and F [Y ]
k (s) (these two functions are defined in the previous section), by generalizing

the analysis of F [I]
k (s) := M∗[I]

k (s)/Γ(s) (M∗[I]
k (s) is the Mellin transform of M̃[I]

k (z)) used
to derive the expectation of internal profile E(In,k) in [3]. Then we invert the Mellin
transforms M∗[X ]

k (s) and M∗[Y ]
k (s). Finally, we invert the Poisson transforms M̃[X ]

k (z) and
M̃[Y ]

k (z) to obtain the asymptotics for the expected profiles, E(Xn,k) and E(Yn,k).
In the lemma below, we first find some explicit representations of F [X ]

k (s) and F [Y ]
k (s).

LEMMA 3.1. The functions F [X ]
k (s) and F [Y ]

k (s) are recursively given by

F [X ]
k (s) = A[F [X ]

k−1](s)−A[F [X ]
k−1](−1),

F [Y ]
k (s) = A[F [Y ]

k−1](s)−A[F [Y ]
k−1](−1),

k ≥ 1,

where the operator A is defined by A[ f ](s) = ∑ j≥0 f (s− j)T (s− j); T (s) = p−s +q−s,

F [X ]
0 (s) = 1+ s+

p−s

q2 (qs− p)+
q−s

p2 (ps−q)+
p
q2 +

q
p2 =: 1−F(s),

F [Y ]
0 (s) =−s− p−s

q2 (qs− p)− q−s

p2 (ps−q)− p
q2 −

q
p2 =: F(s),

F [X ]
k (−r) = 0, r = 1,2, . . . ,k+2,

F [Y ]
k (−r) = 0, r = 0,1,2, . . . ,k.

k ≥ 1,

Furthermore, if we set Rk(s) := Ak[1](s) and R̂k(s) := Ak[F ](s) then we have

∑
k≥0

F [X ]
k (s)wk =−∑

k≥0
R̂k(s)wk +∑

k≥0
R̂k(−1)wk · ∑k≥0 Rk(s)wk

∑k≥0 Rk(−1)wk ,

∑
k≥0

F [Y ]
k (s)wk = ∑

k≥0
R̂k(s)wk +

(
1−∑

k≥0
R̂k(−1)wk

)
∑k≥0 Rk(s)wk

∑k≥0 Rk(−1)wk .

(7)
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PROOF. Set F̃ [X ]
0 (s) = F [X ]

0 (s), F̃ [Y ]
0 (s) = F [Y ]

0 (s) and recursively

F̃ [X ]
k (s) = A[F̃ [X ]

k−1](s)−A[F̃ [X ]
k−1](−1),

F̃ [Y ]
k (s) = A[F̃ [Y ]

k−1](s)−A[F̃ [Y ]
k−1](−1),

k ≥ 1.

We first show that F̃ [X ]
k (s) = F [X ]

k (s) and F̃ [Y ]
k (s) = F [Y ]

k (s) by induction on k, namely, the
same argument as the first part of the proof of Theorem 3 in [3]: F̃ [X ]

k (s) is (as it is for
F [X ]

k (s)) a finite linear combinations of functions of the forms p−l1sq−l2s and sp−l1sq−l2s

with l1, l2 ≥ 0 and l1 + l2 ≤ k+1. By definitions, we have F̃ [X ]
k (−1) = 0,

F̃ [X ]
0 (s) = F [X ]

0 (s) and F̃ [X ]
k (s)− F̃ [X ]

k (s−1) = T (s)F̃ [X ]
k−1(s), k ≥ 1.

Now suppose F̃ [X ]
k (s) = F [X ]

k (s) holds for some k ≥ 0. Then F̃ [X ]
k+1(s) = F [X ]

k+1(s)+G[X ](s),
where G[X ](s) satisfies G[X ](s)−G[X ](s− 1) = 0. It follows that G[X ](s) is a finite linear
combinations of functions of the forms p−l1sq−l2s. Since G[X ](s) is a periodic function
such that G[X ](s) = G[X ](s− 1) then G[X ](s) is a zero function. Hence F̃ [X ]

k+1(s) = F [X ]
k+1(s).

Similarly we can conclude that F̃ [Y ]
k (s) = F [Y ]

k (s).

Since 1/Γ(−r) = 0 for r = 0,1,2, . . . ,k+ 2 and F̃ [X ]
k (s) = M∗[X ]

k (s)/Γ(s) is analytic for
−k−3 < ℜ(s)< 0 then F [X ]

k (−r) = 0 for r = 1, . . . ,k+2. Similarly we have F̃ [Y ]
k (−r) = 0

for r = 0,1,2, . . . ,k (F̃ [Y ]
k (s) is analytic for ℜ(s)>−k−1).

Now we prove (7). Let the generating functions of F [X ]
k (s) and F [Y ]

k (s) be defined by

f [X ](s,w) := ∑
k≥0

F [X ]
k (s)wk and f [Y ](s,w) := ∑

k≥0
F [Y ]

k (s)wk

with f [X ](−1,w) = 0 and f [Y ](−1,w) = 1. If I be the identity matrix then we have

f [X ](s,w) = F [X ]
0 (s)+w ∑

k≥1

(
A[F [X ]

k−1](s)−A[F [X ]
k−1](−1)

)
wk−1

= F [X ]
0 (s)+wA

[
f [X ](·,w)

]
(s)−wA

[
f [X ](·,w)

]
(−1),

which is equivalent to

(I−wA)
[

f [X ](·,w)
]
(s) = F [X ]

0 (s)−wA
[

f [X ](·,w)
]
(−1),

or

f [X ](s,w) = (I−wA)−1[F [X ]
0 ](s)−

(
wA

[
f [X ](·,w)

]
(−1)

)
(I−wA)−1[1](s)

=−∑
k≥0

R̂k(s)wk +
(

1−wA
[

f [X ](·,w)
]
(−1)

)
∑
k≥0

Rk(s)wk.
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Therefore we derive

f [X ](s,w) =−∑
k≥0

R̂k(s)wk +
(

f [X ](−1,w)+∑
k≥0

R̂k(−1)wk
)

∑k≥0 Rk(s)wk

∑k≥0 Rk(−1)wk .

Finally, we obtain the similar result for f [Y ](s,w) and then the claims in (7).

REMARK 3.2. Using F [X ]
k (−r) = 0 for k > r−3 and F [Y ]

k (−r) = 0 for k > r−1, and
setting s =−r in (7), we find

r−3

∑
k=0

F [X ]
k (−r)wk =−∑

k≥0
R̂k(−r)wk +∑

k≥0
R̂k(−1)wk · ∑k≥0 Rk(−r)wk

∑k≥0 Rk(−1)wk ,

r−1

∑
k=0

F [Y ]
k (−r)wk = ∑

k≥0
R̂k(−r)wk +

(
1−∑

k≥0
R̂k(−1)wk

)
∑k≥0 Rk(−r)wk

∑k≥0 Rk(−1)wk ,

(8)

and consequently

f [X ](s,w) =− ∑
k≥0

R̂k(s)w
k +

( r−3

∑
k=0

F [X ]
k (−r)wk + ∑

k≥0
R̂k(−r)wk

)
∑k≥0 Rk(s)wk

∑k≥0 Rk(−r)wk ,

f [Y ](s,w) = ∑
k≥0

R̂k(s)w
k +

( r−1

∑
k=0

F [Y ]
k (−r)wk − ∑

k≥0
R̂k(−r)wk

)
∑k≥0 Rk(s)wk

∑k≥0 Rk(−r)wk .

(9)

In the lemma bellow, we will analyze the generating function ĝ(s,w) := ∑k≥0 R̂k(s)wk.

LEMMA 3.3. There exists a function ĥ(s,w) that is analytic for all w and s

satisfying

wT (s−m) ̸= 1, for all m ≥ 1,

such that, for F(s) =−s−q−2 p−s(qs− p)− p−2q−s(ps−q)− pq−2 − p−2q, we have

ĝ(s,w) := ∑
k≥0

R̂k(s)wk := ∑
k≥0

Ak[F ](s)wk =
ĥ(s,w)

1−wT (s)
, (10)

where the operator A is defined by A[ f ](s) = ∑ j≥0 f (s− j)T (s− j); T (s) = p−s + q−s.
Thus, ĝ(s,w) has a meromorphic continuation where w0 = 1/T (s) is a polar singularity.

PROOF. Since R̂k+1(s) = A[R̂k](s) and R̂0(s) = F(s), then, for p > q, we have

|R̂k+1(s)| ≤ ∑
j≥0

|R̂k(s− j)| · p j ·T (ℜ(s)), k ≥ 0,

|R̂0(s)| ≤
|s|
q

T (ℜ(s))+
p
q2 T (ℜ(s))+

2|s|
q

+
2p
q2

≤

 2|s|q−1T (ℜ(s))+2pq−2T (ℜ(s)), if ℜ(s)≥ 0;
4|s|q−1 +4pq−2, if ℜ(s)< 0.

(11)
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Therefore, it follows by induction on k that

|R̂k(s)| ≤

 2∏ j≥1(1− p j)−2
(
|s|+ 1

1−p

)
T (ℜ(s))k+1, if ℜ(s)≥ 0;

4∏ j≥1(1− p j)−2
(
|s|+ 1

1−p

)
T (ℜ(s))k, if ℜ(s)< 0;

k ≥ 0.

Thus, if |w|< T (ℜ(s))−1 the series

ĝ(s,w) = ∑
k≥0

R̂k(s)wk =
(

∑
k≥0

wkAk
)
[F ](s) = (I−wA)−1[F ](s)

converges absolutely and represents an analytic function. Then ĝ(s,w) satisfies

ĝ(s,w)−w ∑
j≥0

ĝ(s− j,w)T (s− j) = (I−wA)[ĝ(·,w)](s) = F(s). (12)

Rewrite (12) by substituting ĥ(s,w)
1−wT (s) in for ĝ(s,w). So we obtain

ĥ(s,w) = F(s)+∑
j≥1

ĥ(s− j,w)
wT (s− j)

1−wT (s− j)
. (13)

Recall that ĥ(s,w) = ĝ(s,w)
(
1−wT (s)

)
exists for |w|< T (ℜ(s))−1. Now, we will use (13)

to show that ĥ(s,w) can be analytically continued to all w such that wT (s−m) ̸= 1, for
all m ≥ 1.

In order to show this claim, we define the following operator B and function U(s,w),

B[ f ](s) := ∑
j≥1

f (s− j,w)
wT (s− j)

1−wT (s− j)
, U(s,w) :=

wT (s)
1−wT (s)

.

By induction it follows that

Bk[F ](s) = ∑
i1≥1

· · · ∑
ik≥1

U(s− i1,w) · · ·U(s− i1 −·· ·− ik,w)F(s− i1 −·· ·− ik,w)

= ∑
mk≥k

mk−1

∑
mk−1=k−1

· · ·
m2−1

∑
m1=1

U(s−m1,w) · · ·U(s−mk−1,w)U(s−mk,w)F(s−mk,w).

Therefore,∣∣Bk[F ](s)
∣∣≤ ∑

mk≥k
· · · ∑

m1≥1

∣∣U(s−m1,w) · · ·U(s−mk,w)F(s−mk,w)
∣∣

≤ ∑
m1≥1

∣∣U(s−m1,w)
∣∣ · · · ∑

mk≥k

∣∣U(s−mk,w)
∣∣∣∣F(s−mk,w)

∣∣.
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From (11) and T (s−m) = O(qm), we find out that the following two series

∑
m≥1

∣∣U(s−m,w)
∣∣∣∣F(s−m,w)

∣∣= ∑
m≥1

|wT (s−m)||F(s−mk,w)|
|1−wT (s−m)|

,

S := ∑
m≥1

∣∣U(s−m,w)
∣∣= ∑

m≥1

|wT (s−m)|
|1−wT (s−m)|

,

converge if wT (s−m) ̸= 1, for all m ≥ 1. So there exists an integer k0 ≥ 1 such that

∑
m≥k0

∣∣U(s−m,w)
∣∣∣∣F(s−m,w)

∣∣≤ 2
3
, ∑

m≥k0

∣∣U(s−m,w)
∣∣≤ 2

3
.

Then, for all k ≥ k0, we have ∣∣Bk[F ](s)
∣∣≤ Sk0

(2
3
)k−k0 .

Furthermore, ∑k≥0

∣∣Bk[F ](s)
∣∣ ≤ 3

(
3
2 S
)k0 . In view of this, ĥ(s,w) := ∑k≥0 Bk[F ](s) is well

defined and it satisfies (13).

By Lemma 3 in [3], there exists a function h(s,w) that is analytic for all w and s

satisfying wT (s−m) ̸= 1, for all m ≥ 1, such that

g(s,w) := ∑
k≥0

Rk(s)wk =: ∑
k≥0

Ak[1](s)wk =
h(s,w)

1−wT (s)
(14)

where the operator A is defined by A[ f ](s) = ∑ j≥0 f (s− j)T (s− j); T (s) = p−s +q−s.

Now, as bellow, we derive some asymptotic expansions for F [X ]
k (s) and F [Y ]

k (s).

LEMMA 3.4. Let the operator B be B[ f ](s) = ∑ j≥1 f (s− j,w) wT (s− j)
1−wT (s− j) . Set

h(s,w) = ∑
k≥0

Bk[1](s), ĥ(s,w) = ∑
k≥0

Bk[F ](s),

where F(s) =−s−q−2 p−s(qs− p)− p−2q−s(ps−q)− pq−2 − p−2q; T (s) = p−s +q−s.

For every real interval [a,b] there exist k0, η > 0 and ε > 0 such that

F [X ]
k (s) = f [X ](s)T (s)k(1+O(e−ηk)

)
,

F [Y ]
k (s) = f [Y ](s)T (s)k(1+O(e−ηk)

)
,

(15)

uniformly for all s such that ℜ(s) ∈ [a,b], |ℑ(s)− 2lπ/ log(q/p)| ≤ ε for some integer l



52 M. Javanian, et al.

and k ≥ k0, where, for some r ∈ Z+, f [X ](s) and f [Y ](s) are the analytic functions

f [X ](s) :=
r−3

∑
l=0

F [X ]
l (−r)T (s)−l h(s,1/T (s))

h(−r,1/T (s))

(
1− T (−r)

T (s)

)
+

ĥ(−r,1/T (s))h(s,1/T (s))
h(−r,1/T (s))

− ĥ(s,1/T (s)),

f [Y ](s) :=
r−1

∑
l=0

F [Y ]
l (−r)T (s)−l h(s,1/T (s))

h(−r,1/T (s))

(
1− T (−r)

T (s)

)
− ĥ(−r,1/T (s))h(s,1/T (s))

h(−r,1/T (s))
+ ĥ(s,1/T (s)).

(16)

Furthermore, if |ℑ(s)−2lπ/ log(q/p)|> ε for all integers l then, for ℜ(s) ∈ [a,b],

F [X ]
k (s) = O

(
T (ℜ(s))ke−ηk), F [Y ]

k (s) = O
(
T (ℜ(s))ke−ηk). (17)

PROOF. Assume first that s >−r−1 for some integer r ≥ 0 but s is not a positive
integer. Using (14), (10) and the representations (9), we have

f [X ](s,w) =
r−3

∑
k=0

F [X ]
k (−r)wk h(s,w)

h(−r,w)
1−wT (−r)
1−wT (s)

− ĥ(s,w)
1−wT (s)

+
ĥ(−r,w)
h(−r,w)

h(s,w)
1−wT (s)

, (18)

f [Y ](s,w) =
r−1

∑
k=0

F [Y ]
k (−r)wk h(s,w)

h(−r,w)
1−wT (−r)
1−wT (s)

+
ĥ(s,w)

1−wT (s)
− ĥ(−r,w)

h(−r,w)
h(s,w)

1−wT (s)
. (19)

From Lemma 3.1 and Lemma 3 in [3], it follows, respectively, that the functions
ĥ(s,w) and h(s,w) are analytic for |w|< 1/T (s−1). Hence, w0 = 1/T (s) is a singularity
of f [X ](s,w) and f [Y ](s,w). Namely, the fraction ĥ(s,w)/(1−wT (s)), the first summand
in both (18) and (19), has no other singularities w with |w| < 1/T (s). By the proof of
Lemma 4 in [3], the second summand and, therefore, the third summand in both (18)
and (19) have no singularities on the radius of convergence |w|= 1/T (s).

Let s > −r − 1 is real (but not an integer). Hence, for some η > 0, by applying
Cauchy’s formula for a contour of integration on the circle γ = {w ∈ C : |w|= eη/T (s)}
and the residue theorem [6; 18] we have

F [X ]
k (s) =

1
2πi

∫
γ

f [X ](s,w)w−k−1dw = f [X ](s)T (s)k +O
(
|T (s)e−η |k

)
,

where f [X ](s) is given in (16). These estimates are uniform for s ∈ [a,b] ⊆ (−r−1,−r)

(r ≥ 0) or for s ∈ [a,b]⊆R+. Furthermore, we obtain the same result if a ≤ ℜ(s)≤ b and
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|ℑ(s)| ≤ ε for enough small ε > 0.
Next, assume that s ∈ R (or s is sufficiently close to the real axis) and close to an

integer −r < 0, say s ∈ [−r−η ,−r+η ] (for some η > 0). In this case we have (note that
Γ(s) is singular at s =−r)

Γ(s) ∑
k>r−3

F [X ]
k (s)wk =

Γ(s)
(
ĥ(−r,w)− ĥ(s,w)

)
1−wT (s)

+
ĥ(−r,w)
h(−r,w)

Γ(s)
(
h(s,w)−h(−r,w)

)
1−wT (s)

+
r−3

∑
k=0

F [X ]
k (−r)wk Γ(s)

(
h(s,w)−h(−r,w)

)
h(−r,w)

1−wT (−r)
1−wT (s)

+
r−3

∑
k=0

F [X ]
k (−r)wk+1 Γ(s)

(
T (s)−T (−r)

)
1−wT (s)

. (20)

Since the functions ĥ(−r,w)/h(−r,w) and ∑
r−3
k=0 F [X ]

k (−r)/h(−r,w) are analytic for |w|<
1/T (−r − 1) and the point w = 1/T (s) is a polar, then, by (20) and using Cauchy’s
formula, for k > r−3, we obtain F [X ]

k (s) in (15).
For integers l, we have |T (s+2πil/ log(q/p))|= |T (s)| due to the fact that

T (s+2πil/ log(q/p)) = e2πil log(p)/ log(q/p)T (s).

Consequently, w = 1/T (s) is a polar of f [X ](s,w) if |ℑ(s)− 2lπ/ log(q/p)| < ε for some
integer l. Thus, for s in this range, we obtain the estimate of F [X ]

k (s) in (15).
Finally, if |ℑ(s)− 2lπ/ log(q/p)| > ε for all integer l then |T (s)| < e−2η |T (ℜ(s))| for

some η > 0. Therefore, f [X ](s,w) is regular for |w| < eη/T (ℜ(s)). In conclusion, if we
use Cauchy’s formula for the contour of integration γ = {w ∈ C : |w| = eη/T (ℜ(s))},
then (17) follows. Here, ℜ(s) can vary in a finite interval [a,b].

Similarly, we can prove the estimates for F [Y ]
k (s) as given in (15) and (17).

By the above discussion, we know that F [X ]
k (s), F [Y ]

k (s), M∗[X ]
k (s) = −Γ(s)F [X ]

k (s) and
M∗[Y ]

k (s) =−Γ(s)F [X ]
k (s) behave asymptotically as T (s)k. Thus we are in a situation quite

identical to the analysis of the profile of random DSTs in [3] and similar to the analysis
of the profile of random tries in [17]. By the inverse Mellin transform [5], at z = n,

M̃[X ]
k (n) =

1
2πi

∫
ρ+i∞

ρ−i∞
M∗[X ]

k (s)n−sds, (21)

M̃[Y ]
k (n) =

1
2πi

∫
ρ+i∞

ρ−i∞
M∗[Y ]

k (s)n−sds, (22)
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Here, we evaluate the integrals (21) and (22) via the saddle point method (see [6]).
Thus, it is natural to choose ρ = ρn,k as the saddle point of the function

T (s)kn−s = ek logT (s)−s logn,

i.e., the solution of ∂

∂ s (k logT (s)− s logn) = 0. Equivalently we must find ρ from

α :=
k

logn
=

p−ρ +q−ρ

p−ρ log(1/p)+q−ρ log(1/q)
,

that is, the only real-valued saddle point ρ = ρn,k = ρ( k
logn ),

ρ = ρ(α) =
1

log(p/q)
log

1−α log(1/p)
α log(1/q)−1

,
(

log(1/q)
)−1

< α <
(

log(1/p)
)−1

. (23)

The integrands in (21) and (22), also has infinitely many complex-valued saddle points
of the form s j := ρ +2πi j/(log p/q) ( j =±1,±2, . . .). This is due to the fact

T (ρ + it) = p−ρ−it

(
1+

( q
p

)−ρ−it
)
= p−ρ · e−it log p

(
1+

( q
p

)−ρ · eit log p
q

)
.

Now by putting t = 2π j/(log p/q), we have

T
(
ρ +2πi j/(log p/q)

)
= p−ρ · e−2πi j(log p)/(log p/q)

(
1+

( q
p

)−ρ · e2πi j

)
= e−2πi j(log p)/(log p/q)T (ρ).

Therefore the behaviour of T (s)kz−s around s = s j is almost the same as that of T (s)kz−s

around s = ρ. This phenomenon gives a periodic leading factor in the asymptotics
of M̃[X ]

k (n) and M̃[Y ]
k (n); and also of E(Xn,k) ≈ M̃[X ]

k (n) and E(Yn,k) ≈ M̃[Y ]
k (n) (these two

approximations are obtained by the analytical depoissonization given in [3], [6] and
[8]).

If
(

log(1/p)
)−1

+ε < α < 2
(

log(1/p)+ log(1/q)
)−1 −ε (for some ε > 0); i.e., ρ = ρ(α)>

0, then, by shifting the line of integration in (21) to the saddle point ρ = ρ(α), we
collect a contribution of F [X ]

k (0) = 2k from the polar singularity of Γ(s)F [X ]
k (s). This

leads to

M̃[X ]
k (x) = 2k +

1
2πi

∫
ρ+i∞

ρ−i∞
M∗[X ]

k (s)x−sds. (24)

Now, our main asymptotic results are given as follows.

THEOREM 3.5. Let E(Xn,k) and E(Yn,k) denote the expectations of protected node
profile and non-protected node profile in digital search trees with 0< q := 1− p< p< 1.
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Let f [X ](s) and f [X ](s) be the functions that are given by (16). Furthermore, we set

H [X ](ρ,x) := ∑
j∈Z

Γ(ρ + it j) f [X ](ρ + it j)e−2πi jx, t j := 2π j/(log p/q),

H [Y ](ρ,x) := ∑
j∈Z

Γ(ρ + it j) f [Y ](ρ + it j)e−2πi jx, β (ρ) :=
p−ρ q−ρ log(p/q)2

(p−ρ +q−ρ)2 ,

where H [X ](ρ,x) and H [Y ](ρ,x) are 1-periodic functions. Let k and n be positive integers
and ρn,k := ρ( k

logn ) where ρ(α) is defined in (23), then we have:

(1) If 1
log 1

p
+ ε < k

logn < 2
log(1/p)+log(1/q) − ε (for some ε > 0), then uniformly

E(Xn,k) = 2k −H [X ]
(
ρn,k, logp/q pkn

) (p−ρn,k +q−ρn,k )kn−ρn,k√
2πβ (ρn,k)k

(
1+O

(
k−1/2))

(2) If 2
log(1/p)+log(1/q) + ε < k

logn < 1
log 1

q
− ε (for some ε > 0), then uniformly

E(Xn,k) = H [X ]
(
ρn,k, logp/q pkn

) (p−ρn,k +q−ρn,k )kn−ρn,k√
2πβ (ρn,k)k

(
1+O

(
k−1/2))

(3) If 1
log 1

p
+ ε < k

logn < 1
log 1

q
− ε (for some ε > 0), then uniformly

E(Yn,k) = H [Y ](
ρn,k, logp/q pkn

) (p−ρn,k +q−ρn,k )kn−ρn,k√
2πβ (ρn,k)k

(
1+O

(
k−1/2))

PROOF. By evaluating the integrals (22) and (24) via the saddle point method;
and using (8) and Lemma 3.4, the proof is quite identical to that of Theorem 4 and
Theorem 5 in [3] with the new functions f [X ](s), f [Y ](s).
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Model choice for regression models with
a categorical response

J. KALINA

Abstract

The multinomial logit model and the cumulative logit model represent two important tools for regression
modeling with a categorical response with numerous applications in various fields. First, this paper
presents a systematic review of these two models including available tools for model choice (model
selection). Then, numerical experiments are presented for two real datasets with an ordinal categorical
response. These experiments reveal that a backward model choice procedure by means of hypothesis
testing is more effective compared to a procedure based on Akaike information criterion. While the
tendency of the backward selection to be superior to Akaike information criterion has recently been
justified in linear regression, such a result seems not to have been presented for models with a categorical
response. In addition, we report a mistake in VGAM package of R software, which has however no
influence on the process of model choice.

Mathematics Subject Classification 2010: 62J12, 62J02
General Terms: Regression, Generalized linear model, Model choice, Model selection, Information
theory Keywords: categorical distribution, categorical response, Akaike information criterion.

1. INTRODUCTION

Regression models with a categorical response represent important tools for
regression modeling with numerous applications in various fields including finance,
econometrics, biomedicine, engineering, and others. We are interested in the
generalized linear models (GLMs) that extend the logistic regression to situations
with a non-binary response. Two (perhaps the most) important models are the
multinomial logit model and the cumulative logit model; the former is appropriate for
data with a nominal response and the latter for data with an ordinal response. These
two models, which allow continuous and/or categorical regressors, have been
described in the literature; still, the standard monographs on GLMs [Hosmer 2000;
Agresti 2002] do not contain all useful details, which would be appreciated by users
of statistical methods.

This work is supported by the project 21-19311S (“Information flow and equilibrium in financial markets”)
of the Czech Science Foundation.

 10.2478/jamsi-2022-0005
©2022 Jan Kalina

 
This is an open access article licensed under the Creative 
Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0).



60 J. Kalina

Let us recall some remarkable recent applications of regression modeling with
a categorical (non-binary) response. Housing demand was modeled in [Głuszak
2015] as a nominal 4-valued response, the values (levels) of which correspond to
owning the property, renting a housing unit at market rate, renting it at reduced rate,
or free accommodation. Travel and tourism in Aargau Canton in Switzerland was
modeled as a nominal 4-valued response in [Wang et al. 2017], which corresponds to
the 4 possibilities of traveling by car, transit, bicycle, or walking. Exit status of
U.S. companies in the period 1976–1995 was modeled in [Irfan et al. 2018] as
a nominal 4-valued response, the values of which correspond to voluntary liquidation
of the company, involuntary liquidation, acquisition, or non-exit. Air quality index
was modeled and forecasted as an ordinal response with 5 levels in [Kim 2017].
Finding the appropriate model, i.e. constructing a predictive model based only on the
relevant predictors, represents an important task of regression modeling in all these
applications.

Because this work is motivated by financial mathematics applications related to
model selection for financial markets, let us pay particular attention also to financial
applications of regression models with a categorical response. A cumulative logistic
model was used in [Poplaski et al. 2019] to predict self-reported health outcomes of
U.S. university students by their financial stress. A cross-nested logistic model for
modeling an equilibrium within the cumulative prospect theory was formulated in
[Yan and Yang 2021]. Financial distress of individual sectors of the U.S. economy
was modeled by logistic regression as the response of macroeconomic variables in
[Inekwe et al. 2018]. A logistic model was used to assess business financial health of
Slovak companies in [Horváthová and Mokrišová 2020]. A functional logistic model
was applied to predict anomalies of prices in the Chinese stock market in [Su et al.
2022].

We are interested in the multinomial logit model and cumulative logit model,
which are the two most commonly used models for regression with a categorical
response. In R software [R Core Team 2017], we are aware only of a single
implementation of models with an ordinal categorical response. On the other hand,
there are several recently created implementations of the multinomial logit model for
a nominal response in R software. These are present in packages that contain other
more advanced models tailor-made for specific situations. It turns out that there are
several packages overlapping each other and there is a lack of comparisons of their
test statistics. A numerical comparison of results obtained by different packages
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Table I. Software packages in R available for fitting regression models with a categorical (non-binary)
response, where the multinomial logit model (MLM) is a model for a nominal response and the cumulative
logit model (CLM) is a model for an ordinal response.

Package Response Model Function Comments
VGAM Nominal MLM vglm Generalization of GLMs for a vector response
VGAM Ordinal CLM cumulative The package includes also other

more advanced models
nnet Nominal MLM multinom Estimation by means of neural networks

mlogit Nominal MLM mlogit The package includes also other
more advanced models

mnlogit Nominal MLM mnlogit Fast estimation of [Hasan et al. 2016]

seems missing and there seems no tutorial systematically describing and comparing
the features of these packages. We present here Table I with the list of available R
packages for a nominal or ordinal response.

This paper starts with a unique overview of the multinomial logit model
(Section 2) and cumulative logit model (Section 3). Useful quantities including
log-likelihoods or likelihood ratio test statistics are expressed in these
methodological sections. Model choices for the two models are described in
Section 4; these are not novel results, but remain difficult to be found in the literature.
These include the popular backward selection based on hypothesis testing and
Akaike information criterion, which appears less frequently in this context. Further,
we present numerical experiments for two real datasets with an ordinal categorical
response in Section 5; these are aimed at comparing backward selection by means of
hypothesis testing and Akaike information criterion. The conclusions are presented
in Section 6.

2. MULTINOMIAL LOGIT MODEL

We consider a nominal categorical variable Y = (Y1, . . . ,Yn)
T , which is observed

for the total number of n observations. Let us assume that the value of this response is
equal to one of J values denoted as v1, . . . ,vJ . As Y is nominal (i.e. not ordinal), these
values cannot be meaningfully ordered. Our task is to explain Y as a response of p-
dimensional regressors (explanatory variables) X1, . . . ,Xn, which may be continuous
or categorical (or a mixture of both). For the i-th observation, the regressor is denoted
as Xi = (Xi1, . . . ,Xip)

T ∈Rp for i = 1, . . . ,n.

The multinomial logit model (MLM) [Agresti 2002] also known as the baseline-
category logit model takes one category as the reference one. It has the form of a set
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of J−1 equations. If the J-th category is taken as the reference one, the model has the
form

log
P(Yi = v j)

P(Yi = vJ)
= α j +β j1Xi1 + · · ·+β jpXip, i = 1, . . . ,n, j = 1, . . . ,J−1. (1)

This model for J−1 individual logits depends on the regression parameters

α = (α1, . . . ,αJ−1)
T ∈RJ−1, β j = (β j1, . . . ,β jp)

T ∈Rp j = 1, . . . ,J−1. (2)

From (1), we can easily obtain that

P(Yi = v j) =
exp(α j +β T

j Xi)

1+∑
J−1
h=1 exp(αh +β T

h Xi)
, i = 1, . . . ,n, j = 1, . . . ,J−1. (3)

We now express the log-likelihood in the form

logL(α,β1, . . . ,βJ−1) = logL(α,β ) =

=
J−1

∑
j=1

[
α j

(
n

∑
i=1
1[Yi = v j]

)
+

p

∑
k=1

β jk

(
n

∑
i=1

Xik1[Yi = v j]

)]
−

−
n

∑
i=1

log

[
1+

J−1

∑
j=1

exp(α j +β
T
j Xi)

]
.

(4)

The parameters of the model can be estimated e.g. by the maximum likelihood
method. It is convenient to obtain these estimates by maximizing the log-likelihood
instead. Gradient-based optimization procedures, including the approach of
Newton-Raphson, are fast and reliable in this task thanks to the concavity
of (4) [Hasan et al. 2016]. A version of the multinomial logit model that allows to
incorporate heterogeneity was proposed in [Tutz 2021].

3. CUMULATIVE LOGIT MODEL FOR AN ORDINAL RESPONSE

As in Section 2, we consider values of a categorical response Y1, . . . ,Yn and values
of p-dimensional regressors X1, . . . ,Xn. This time, we assume Y to be ordinal. This
means that Y attains one of J possible values denoted as v1, . . . ,vJ , whose ordering is
meaningful, i.e. we can use the fact that

v1 ≤ v2 ≤ ·· · ≤ vJ . (5)

It is therefore also meaningful to consider

P(Yi ≤ v1)≤ ·· · ≤ P(Yi ≤ vJ) = 1, i = 1, . . . ,n. (6)



JAMSI, 18 (2022), No. 1 63

Modeling such data with models assuming a continuous response was
empirically investigated in [Fernández et al. 2020] and was strongly discouraged.

The most common regression model for this situation is the cumulative logit
model (CLM) [Agresti 2002] described by a set of J−1 equations in the form

log
P(Yi ≤ v j)

1−P(Yi ≤ v j)
= α j +β

T Xi, i = 1, . . . ,n, j = 1, . . . ,J−1. (7)

The model depends on parameters denoted as α = (α1, . . . ,αJ−1)
T and

β = (β1, . . . ,βp)
T , where β is common for all J − 1 equations. We can express the

logarithmic likelihood as

logL(α,β ) =
n

∑
i=1

{
1[Yi = v1] log

exp(α1 +β T Xi)

1+ exp(α1 +β T Xi)
+

+1[Yi = vJ ] log
(

1− exp(αJ−1 +β T Xi)

1+ exp(αJ−1 +β T Xi)

)
+

+
J−1

∑
j=2
1[Yi = v j] log

(
exp(α j +β T Xi)

1+ exp(α j +β T Xi)
−

exp(α j−1 +β T Xi)

1+ exp(α j−1 +β T Xi)

)}
.

(8)

Bayesian estimation in cumulative logit models was recently studied in [Xu et al.
2022].

4. MODEL CHOICE

Numerous model choice approaches suitable for a continuous response including
recent methods of [Ahrens et al. 2020; Shirk et al. 2018] cannot be easily extended to
the model with a categorical response. The following methods seem to represent the
major available approaches to model choice for models with a categorical response:

(A) Backward variable selection based on hypothesis testing, well known also from
linear regression models [Kalina et al. 2019];

(B) Selecting the submodel with the minimal value of Akaike information criterion
(AIC) over all subsets;

(C) Backward variable selection by means of AIC;

(D) Non-automatic backward variable selection based on hypothesis testing,
i.e. including manual steps of the user, taking into account the interpretation of
the final model.

(E) Regularized methods, i.e. regularized regression modeling for categorical
response.
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For the approach (A), any of asymptotic tests based on the likelihood function
may be used, while the likelihood ratio test statistic (which will be expressed below)
has actually the simplest form among them. Also none of the software packages
overviewed in Table I reports any other tests besides the likelihood ratio test, which is
denoted as residual deviance test there. Actually, the Wald test and Rao’s score test
[Rao 1973], which cannot be expressed analytically, can be hardly expressed in any
elegant way because of their dependence of nuisance parameters.

Let us consider testing H0, which states that there is no effect of a given regressor
(or their block) on the response, against H1, which states the contrary of H0. The
likelihood ratio test statistic G2, commonly denoted as deviance test (residual deviance
test) in the context of GLMs, can be expressed as

LR = G2(H0|H1) = 2 [logL(H1)− logL(H0)] =−2 [logL(H0)− logL(H1)] ; (9)

here, L denotes the likelihood function evaluated for all the observations and the
remaining notation is already self-explaining. Under H0, (9) has an asymptotic
χ2 distribution, where the number of degrees of freedom corresponds to the
difference between the numbers of parameters under H1 and H0. The test rejects H0

if (9) is too large, i.e. exceeds the corresponding critical value. The LR test statistic is
a measure of goodness of fit of the submodel with the broader model. We can say
that the LR test compares the maximum possible value of L (or logL) under the
submodel with its maximum possible value attainable under the broader model.

The backward selection process based on the LR testing builds the model
sequentially, starting with a general model and proceeding to a (possibly) simple
submodel with an insignificant value of the likelihood ratio test statistic. In each
particular step of the model building, the null hypothesis corresponds to the
possibility to proceed from a model that has already been approved as suitable to its
particular submodel.

As an alternative to testing, it is possible to consider Akaike information
criterion (AIC), which represents a general information-theoretical measure of
quality of a regression fit, tailor-made for model selection [Akaike 1973]. For a given
multinomial logit model or cumulative logit model, AIC can be schematically
expressed as

AIC= 2k−2logL(α̂, β̂ ), (10)

where k is the number of parameters in the model and L represents the likelihood
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evaluated for maximum likelihood estimates. Model choice can be performed by
selecting the model with the minimal value of AIC over all possible (suitable)
models. It is surprising that AIC as a tool for model choice is not at all mentioned in
standard monographs devoted to regression models with a categorical response
[Hosmer 2000; Agresti 2002]. The approach (B) is common in linear regression,
while the idea of (C) is to simplify the computations especially for a large p [Harrell
2015].

4.1. Model choice for the multinomial logit model

In the model of Section 2, let us consider the null hypothesis H0 : β1m = · · · =
βJ−1,m = 0 for a particular m = 1, . . . , p. This corresponds to testing that there is
no effect of the m-th regressor on the response, conditionally on the effect of the
remaining regressors. The maximum likelihood estimates of α and β will be denoted
here as α̂ and β̂ = (β̂1, . . . , β̂J−1)

T . The logarithmic likelihood under H1 is obtained
by plugging α̂ and β̂ into (4), i.e. equals logL(α̂, β̂ ). Let us further use the notation
α̃ j and β̃k for maximum likelihood estimates obtained under H0, i.e. obtained so that
β̃1m = · · ·= β̃J−1,m = 0. The logarithmic likelihood ratio under H0 is obtained as

logL(α0,β 0) =
J−1

∑
j=1

[
α̃ j

(
n

∑
i=1

Yi j

)
+

p

∑
m̸=k=1

β̃ jk

(
n

∑
i=1

Xik1[Yi = v j]

)]
−

−
n

∑
i=1

log

[
1+

J−1

∑
j=1

exp

(
α̃ j +

p

∑
m̸=k=1

β̃ jkXik

)]
.

(11)

The likelihood ratio test statistic can be in our notation expressed as

LR =−2
[
logL(α0,β 0)− logL(α̂, β̂ )

]
. (12)

Under H0, the test statistic has asymptotically the χ2 distribution with J − 1 degrees
of freedom.

Because the multinomial logit model contains p(J − 1) parameters, AIC for the
model can be expressed as

AIC= 2p(J−1)−2logL(α̂, β̂ ). (13)

4.2. Model choice for the cumulative logit model

In the model of Section 3, let us consider the null hypothesis H0 : βm = 0 for a
fixed m ∈ {1, . . . , p}. The maximum likelihood estimates of the parameters will be
denoted as α̂ and β̂ . The logarithmic likelihood under H1, which is equal to
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logL(α̂, β̂ ) expressed in (8), is obtained as the log-likelihood that uses maximum
likelihood estimates of the parameters. The logarithmic likelihood under H0 can be
expressed as logL(α0,β 0), where α̃ j and β̃k are maximum likelihood estimates
obtained under H0. Particularly, it holds β̃m = 0. Again, we can construct the
likelihood ratio test statistic as in (12). Such statistic has asymptotically the χ2

distribution with J−1 degrees of freedom under H0.
Because the cumulative logit model contains p+ J − 1 parameters, AIC for the

model can be expressed as

AIC= 2(p+ J−1)−2logL(α̂, β̂ ). (14)

5. NUMERICAL EXPERIMENTS

To illustrate the model choice approaches of Section 4, we consider two datasets
obtained as two disjoint parts of the Wine Quality Dataset, which was originally
presented in [Cortez et al. 2009] and is now publicly available [Dua and Graff 2017].
We consider the part of the data corresponding to white wine as one dataset, and the
part corresponding to red wine as the other dataset. Both datasets consider the wine
quality to be the response, which is an ordinal variable with 7 possible values,
namely integers in the set {3,4,5,6,7,8,9}. There are 11 regressors in both datasets,
where the white wine dataset contains n = 4898 observations and the red wine
dataset contains n = 1599 observations. We use the package VGAM [Yee 2010] of R
software for all computations; particularly, the following code works for modeling an
ordinal response, where x denotes the matrix of regressors.

library(VGAM);

fit = vglm(y~x, family=cumulative(parallel=TRUE))

summary(fit);

First, we consider the white wine dataset. The results as well as the methods used
for the computation are presented in Table II. The backward selection (A) reduces the
model with 11 regressors to the model with 9 relevant regressors presented in the table,
while it is not possible to reduce it to any model with 8 regressors as the likelihood
ratio test is always significant. We do not report point estimates of the parameters of
individual models, because it is commonly more important in applications to interpret
which variables are those contributing to the variability of the response. If AIC is used
in (B) and (C), the resulting model is the same as under (A).

Further, we analyze the red wine dataset and present the results in Table III.
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The backward selection (A) reduces the model with 11 regressors to the model with
7 relevant regressors presented in the table. Here, it is not possible to reduce such
model to any model with 6 regressors, because the likelihood ratio test statistic would
be significant in every such situation. Approaches (B) and (C) yield a model with
9 regressors, which is one of submodels (but not the final one) considered during the
computation of (A). The computation of (B) requires to consider 2p −1 submodels of
the model with all regressors, which means that the log-likelihood is evaluated in 2047
models for each of our datasets. The complexity of the computation of (A) heavily
depends on a particular dataset. The computation of (A) required here to evaluate the
log-likelihood twice for each model (i.e. under H0 and H1) and was thus much smaller
here compared to the complexity of (B).

Let us recall a recent result of [Heinze et al. 2018] revealing AIC to be inferior to
backward selection by means of testing (A) in linear regression for data with a large
n/p ratio. Particularly, [Heinze et al. 2018] recommended (A) in linear regression if
the number of events-per-variable (EPV) exceeds 25. Here, the white wine dataset has
EPV = 4898/11 .

= 445 and the red wine dataset has EPV = 1599/11 .
= 145. In other

words, the datasets are very large in terms of EPV. This may explain (B) and (C) to be
weak, although such performance seems not to have been reported before for models
with a categorical response.

We found a mistake in the vglm function of VGAM package. It turns out in
Tables II and III that residual deviance is reported to be precisely equal to the (−2)-
multiple of the reported logarithmic likelihood. This cannot be however true, which is
clear from the definition of residual deviance. We verified that this mistake does not
appear for the simpler situation in the glm function of stats package of R software, but
there is no documentation explaining this for the VGAM package. In the analysis of
this phenomenon, we verified the residual deviance to be correct and log-likelihood
incorrect in VGAM. Still, we recommend the users to compute AIC directly from
the definition (14) instead of relying on the log-likelihood presented in the VGAM
package.

6. CONCLUSION

The paper is devoted to the multinomial logit model and cumulative logit model.
The methodological part recalls the models and expresses useful quantities such as
log-likelihoods, likelihood ratio test statistics, or Akaike information criterion. These
can be hardly found in the available literature. Therefore, this paper may potentially
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Table II. Results of the analysis for the white wine dataset. For each model, the number of parameters,
log-likelihood, residual deviance, and AIC are reported.

Model with regressors # of par. Log-lik. Residual AIC
Source of computation Own [Yee 2010] deviance [Yee 2010] Own (14)

(A) Backward selection based on the LR test
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 17 −5450.4 10 900.9 10 934.8

1, 2, 3, 4, 6, 7, 8, 9, 10, 11 16 −5450.5 10 901.1 10 933.0
1, 2, 4, 6, 7, 8, 9, 10, 11 15 −5450.7 10 901.3 10 931.4

(B) Minimal AIC over all subsets
1, 2, 4, 6, 7, 8, 9, 10, 11 15 −5450.7 10 901.3 10 931.4

(C) Backward selection based on AIC
1, 2, 4, 6, 7, 8, 9, 10, 11 15 −5450.7 10 901.3 10 931.4

Table III. Results of the analysis for the red wine dataset.
Model with regressors # of par. Log-lik. Residual AIC
Source of computation Own [Yee 2010] deviance [Yee 2010] Own (14)

(A) Backward selection based on the LR test
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 17 −1537.4 3 074.8 3 108.8

1, 2, 3, 4, 5, 6, 7, 9, 10, 11 16 −1538.0 3 076.0 3 108.0
2, 3, 4, 5, 6, 7, 9, 10, 11 15 −1538.3 3 076.6 3 106.6

2, 4, 5, 6, 7, 9, 10, 11 14 −1539.5 3 079.1 3 107.0
2, 5, 6, 7, 9, 10, 11 13 −1540.4 3 080.8 3 108.8

(B) Minimal AIC over all subsets
2, 3, 4, 5, 6, 7, 9, 10, 11 15 −1538.3 3 076.6 3 106.6

(C) Backward selection based on AIC
2, 3, 4, 5, 6, 7, 9, 10, 11 15 −1538.3 3 076.6 3 106.6

find applications as a learning material for an advanced course on GLMs. In case that
J = 2, all formulas presented in the whole paper are precisely equal to those of the
logistic regression.

The main contribution of the paper is the numerical experiments, which
illustrate different model choice approaches for the two regression models with
a categorical response. During the computations, we found a mistake in the VGAM
package of R software, which does not however influence any of the model choice
approaches. AIC turns out to be less efficient compared to the backward stepwise
procedure, as it keeps also statistically insignificant variables in the final model. The
backward selection based on testing is of course at the same time computationally
more appealing compared to computing AIC over all possible subsets of regressors.

It has been realized only recently that AIC remains less effective compared to
backward selection based on hypothesis testing in linear regression [Heinze et al.
2018]; this result seems to be little known among practitioners and definitely going
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much beyond the experience described in the fundamental monograph [Harrell
2015]. Our results evaluated over two datasets show that an analogous result may be
true also for regression with a categorical response, which would deserve to be
examined over a much larger number of diverse datasets. In any case, it is very
practical to know that the result of the hierarchical model choice procedure is stable;
instability has namely been known as the major drawback of many standard model
choice procedures [Breiman 1996].

Other more advanced models, e.g. the mixed logit models of [Sarrias and Daziano
2017] also known as random coefficients multinomial logit models, exceed the scope
of this paper. The authors intend to investigate model choice procedures and to focus
on their Bayesian versions in the context of financial modeling. To mention some
open problems for models with a categorical response, we are not aware of regression
quantiles or minimum redundance maximum relevance (MRMR) variable selection
approaches [Kalina and Schlenker 2015].
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differentiable s-convex functions
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Abstract

In this paper, based on new identity we establish some new Simpson like type inequalities for functions
whose first derivatives are s-convex via Riemann-Liouville fractional integrals. The case where the
derivatives are bounded as well as the case where the derivatives satisfy the Hölder condition are also
discussed. The obtained results extend some known results and refine another one. Applications of the
results are given at the end.
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1. INTRODUCTION

Let I be an interval of real numbers

Definition 1.1. [15] A function f : I → R is said to be convex, if

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)

holds for all x,y ∈ I and all t ∈ [0,1].

The theory of convexity plays a central and attractive role in many fields of
research. This theory provides us with a powerful tool for solving a large class of
problems that arise in pure and applied mathematics. In recent years, the concept of
convexity has been improved, generalized and extended in many directions. Among
these generalizations, we note that introduced by Breckner called s-convexity and can
be defined as follows

Definition 1.2. [6] A nonnegative function f : I ⊂ [0,∞)→R is said to be s-convex
in the second sense for some fixed s ∈ (0,1], if

f (tx+(1− t)y) ≤ ts f (x)+(1− t)s f (y)

holds for all x,y ∈ I and t ∈ [0,1].

 10.2478/jamsi-2022-0006
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The concept of convexity has a close relationship in the development of the theory
of inequalities. The combination of these theories has attracted a lot of attention from
researchers due to their nature and properties.

One of the most important and widely requested inequalities is that of Simpson
which can be stated as follows∣∣∣∣∣∣ 1

6

(
f (a)+4 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (u)du

∣∣∣∣∣∣≤ (b−a)4

2880

∥∥ f (4)
∥∥

∞
, (1)

where f is four-times continuously differentiable function on (a,b), and∥∥ f (4)
∥∥

∞
= sup

x∈(a,b)

∣∣ f (4) (x)∣∣.
Concerning some papers related to the inequality (1) see [1; 2; 3; 4; 5; 7; 8; 9; 10;

13; 16; 18], and references therein.

Recently, Shuang et al. [17] discussed an inequality similar to (1), Among the
obtained results for convex functions, we quote∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ b−a
768

(
19 | f ′ (a)|+82

∣∣ f ′ ( a+b
2

)∣∣+19 | f ′ (b)|
)
,

∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ b−a
16

(
1+3p+1

4(p+1)

) 1
p

((
| f ′(a)|q+| f ′( a+b

2 )|q
2

) 1
q

+

(
| f ′( a+b

2 )|q+| f ′(b)|q
2

) 1
q
)

and ∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ 5(b−a)
64

((
19| f ′(a)|q+41| f ′( a+b

2 )|q
60

) 1
q

+

(
41| f ′( a+b

2 )|q+19| f ′(b)|q
60

) 1
q
)
.

In [14], Luo et al. gave the analogue weighted version of the result given by Shuang
et al. [14]. They also discussed the cases where the first derivatives are bounded and
Lipschitzian, of which we quote two of the established results: For functions whose
first derivatives are bounded i.e. m ≤ f (x)≤ M for all x ∈ [a,b], we have∣∣∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt

∣∣∣∣∣∣≤ 9(b−a)(M−m)
64 .

For functions whose first derivatives satisfies a Lipschitz condition i.e. | f ′ (x)− f ′ (y)| ≤
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L |x− y| for all x,y ∈ [a,b], we have∣∣∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt

∣∣∣∣∣∣≤ 41(b−a)2L
768 + b−a

16 ( f ′ (a)+ f ′ (b)) .

Very recently, Kirmaci [12], gave the following inequalities for s-convex and convex
first derivatives ∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ (b−a)(3p+1+1)
1
p

8×16
1
p

(
1

2
s+1

q
+
(
1− 1

2s+1

) 1
q

)
(| f ′ (a)|+ | f ′ (b)|)

and ∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ (b−a)(3p+1+1)
1
p

16×8
1
p

(
| f ′ (a)|+2

∣∣ f ′ ( a+b
2

)∣∣+ | f ′ (b)|
)
.

In last decades the fractional calculus has attracted the attention of many
researchers due to its has wide applications in pure and applied mathematics,
especially the Riemann-Liouville operator which we recall the definition

Definition 1.3. [11] Let f ∈ L1[a,b]. The Riemann-Liouville fractional integrals
Iα

a+ f and Iα

b− f of order α > 0 with a ≥ 0 are defined by

Iα

a+ f (x) = 1
Γ(α)

x∫
a
(x− t)α−1 f (t)dt, x > a,

Iα

b− f (x) = 1
Γ(α)

b∫
x
(t − x)α−1 f (t)dt, b > x,

respectively. Here Γ(α) =
∞∫
0

e−ttα−1dt, is the gamma function and I0
a+ f (x) = I0

b− f (x) =

f (x).

Motivated by the results cited above, the aim of this study is to extend the results
given in [17] for functions whose first derivatives are s-convex via Riemann-Liouville
fractional integrals. We also discuss the cases where the derivatives are bounded and
satisfy the Hölder condition. The results obtained are based on a new fractional
identity and refine those of [12; 14]. We end the paper with a few applications.
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2. MAIN RESULTS

In order to prove our results, we need the following lemma

LEMMA 2.1. Let f : I ⊂ R → R be a differentiable function on I◦, a,b ∈ I◦ with
a < b, and f ′ ∈ L1 [a,b], then the following equality holds:

1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)

= b−a
4

(
1∫
0

(
tα − 1

4

)
f ′
(
(1− t)a+ t a+b

2

)
dt

−
1∫
0

(
(1− t)α − 1

4

)
f ′
(
(1− t) a+b

2 + tb
)

dt
)
.

PROOF. Let

I1 =
1∫
0

(
tα − 1

4

)
f ′
(
(1− t)a+ t a+b

2

)
dt

I2 =
1∫
0

(
1
4 − (1− t)α

)
f ′
(
(1− t) a+b

2 + tb
)

dt.

Integrating by parts I1, we get

I1 =
2

b−a

(
tα − 1

4

)
f
(
(1− t)a+ t a+b

2

)∣∣t=1

t=0

− 2α

b−a

1∫
0
tα−1 f

(
(1− t)a+ t a+b

2

)
dt

= 3
2(b−a) f

(
a+b

2

)
+ 1

2(b−a) f (a)− 2α

b−a

1∫
0
tα−1 f

(
(1− t)a+ t a+b

2

)
dt

= 3
2(b−a) f

(
a+b

2

)
+ 1

2(b−a) f (a)−α
(

2
b−a

)α+1

a+b
2∫
a

(u−a)α−1 f (u)du

= 3
2(b−a) f

(
a+b

2

)
+ 1

2(b−a) f (a)− 2α+1Γ(α+1)
(b−a)α+1 Iα

( a+b
2 )

− f (a). (2)

Similarly, we get

I2 =
2

b−a

(
(1− t)α − 1

4

)
f
(
(1− t) a+b

2 + tb
)∣∣t=1

t=0

+ 2α

b−a

1∫
0
(1− t)α−1 f

(
(1− t) a+b

2 + tb
)

dt

= − 1
2(b−a) f (b)− 3

2(b−a) f
(

a+b
2

)
+ 2α

b−a

1∫
0
(1− t)α−1 f

(
(1− t) a+b

2 + tb
)

dt

= − 1
2(b−a) f (b)− 3

2(b−a) f
(

a+b
2

)
+α

(
2

b−a

)α+1 b∫
a+b

2

(b−u)α−1 f (u)du

= − 1
2(b−a) f (b)− 3

2(b−a) f
(

a+b
2

)
+ 2α+1Γ(α+1)

(b−a)α+1 Iα

( a+b
2 )

+ f (b). (3)
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Making the difference between (2) and (3), and then multiplying the resulting
equality by b−a

4 , we get the desired result.

Before giving our main results, let’s recall some special functions that we will call
in the sequel

Definition 2.2. [11] For any complex numbers and nonpositive integers x,y such
that Re(x)> 0 and Re(y)> 0. The beta function is defined by

B(x,y) =
1∫
0

tx−1 (1− t)y−1 dt = Γ(x)Γ(y)
Γ(x+y) ,

where Γ(.) is the Euler gamma function. The incomplete beta function.

Definition 2.3. [11] For any complex numbers and nonpositive integers x,y such
that Re(x)> 0 and Re(y)> 0, we have

Ba (x,y) =
a∫
0

tx−1 (1− t)y−1 dt, a < 1.

Definition 2.4. [11] The hypergeometric function is defined for Rec > Reb > 0

and |z|< 1, as follows

2F1 (a,b,c;z) = 1
B(b,c−b)

1∫
0

tb−1 (1− t)c−b−1 (1− zt)−a dt,

where c > b > 0, |z|< 1 and B(., .) is the beta function.

THEOREM 2.5. Let f : [a,b]→ R be a differentiable function on (a,b) such that
f ′ ∈ L1 [a,b] with 0 ≤ a < b. If | f ′| is s-convex in the second sense for some fixed
s ∈ (0,1], then we have∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ b−a
4 (Θs,α | f ′ (a)|

+
(

α

(s+1)(α+s+1)

(
1
4

) s+1
α + 3s+3−α

2(s+1)(α+s+1)

)∣∣ f ′ ( a+b
2

)∣∣+Θs,α | f ′ (b)|
)
,

where

Θs,α = 1
4(s+1)

(
1−2

(
1−
(

1
4

) 1
α

)s+1
)

+B
1−( 1

4 )
1
α
(s+1,α +1)−B

( 1
4 )

1
α
(α +1,s+1) . (4)

PROOF. From Lemma 2.1, properties of modulus, and s-convexity in the second
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sense of | f ′|, we have∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ b−a
4

(
1∫
0

∣∣tα − 1
4

∣∣ ∣∣ f ′ ((1− t)a+ t a+b
2

)∣∣dt

+
1∫
0

∣∣(1− t)α − 1
4

∣∣ ∣∣ f ′ ((1− t) a+b
2 + tb

)∣∣dt
)

= b−a
4

( 1
4 )

1
α∫

0

(
1
4 − tα

)∣∣ f ′ ((1− t)a+ t a+b
2

)∣∣dt

+
1∫

( 1
4 )

1
α

(
tα − 1

4

)∣∣ f ′ ((1− t)a+ t a+b
2

)∣∣dt

+
1−( 1

4 )
1
α∫

0

(
(1− t)α − 1

4

)∣∣ f ′ ((1− t) a+b
2 + tb

)∣∣dt

+
1∫

1−( 1
4 )

1
α

(
1
4 − (1− t)α

)∣∣ f ′ ((1− t) a+b
2 + tb

)∣∣dt



≤ b−a
4

( 1
4 )

1
α∫

0

(
1
4 − tα

)(
(1− t)s | f ′ (a)|+ ts

∣∣ f ′ ( a+b
2

)∣∣)dt

+
1∫

( 1
4 )

1
α

(
tα − 1

4

)(
(1− t)s | f ′ (a)|+ ts

∣∣ f ′ ( a+b
2

)∣∣)dt

+
1−( 1

4 )
1
α∫

0

(
(1− t)α − 1

4

)(
(1− t)s ∣∣ f ′ ( a+b

2

)∣∣+ ts | f ′ (b)|
)

dt

+
1∫

1−( 1
4 )

1
α

(
1
4 − (1− t)α

)(
(1− t)s ∣∣ f ′ ( a+b

2

)∣∣+ ts | f ′ (b)|
)

dt


= b−a

4

| f ′ (a)|

( 1
4 )

1
α∫

0

(
1
4 − tα

)
(1− t)s dt +

1∫
( 1

4 )
1
α

(
tα − 1

4

)
(1− t)s dt


+
∣∣ f ′ ( a+b

2

)∣∣
( 1

4 )
1
α∫

0

(
1
4 − tα

)
tsdt +

1−( 1
4 )

1
α∫

0

(
(1− t)α − 1

4

)
(1− t)s dt
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+
1∫

( 1
4 )

1
α

(
tα − 1

4

)
tsdt +

1∫
1−( 1

4 )
1
α

(
1
4 − (1− t)α

)
(1− t)s dt


+ | f ′ (b)|

1−( 1
4 )

1
α∫

0

(
(1− t)α − 1

4

)
tsdt +

1∫
1−( 1

4 )
1
α

(
1
4 − (1− t)α

)
tsdt




= b−a
4 (Θs,α | f ′ (a)|

+
(

α

(s+1)(α+s+1)

(
1
4

) s+1
α + 3s+3−α

2(s+1)(α+s+1)

)∣∣ f ′ ( a+b
2

)∣∣+Θs,α | f ′ (b)|
)
,

where we have used

( 1
4 )

1
α∫

0

(
1
4 − tα

)
(1− t)s dt =

1∫
1−( 1

4 )
1
α

(
1
4 − (1− t)α

)
tsdt (5)

= 1
4(s+1)

(
1−
(

1−
(

1
4

) 1
α

)s+1
)
−B

( 1
4 )

1
α
(α +1,s+1) ,

1∫
( 1

4 )
1
α

(
tα − 1

4

)
(1− t)s dt =

1−( 1
4 )

1
α∫

0

(
(1− t)α − 1

4

)
tsdt (6)

= B
1−( 1

4 )
1
α
(s+1,α +1)− 1

4(s+1)

(
1−
(

1
4

) 1
α

)s+1
,

( 1
4 )

1
α∫

0

(
1
4 − tα

)
tsdt =

1∫
1−( 1

4 )
1
α

(
1
4 − (1− t)α

)
(1− t)s dt (7)

= α

4(s+1)(α+s+1)

(
1
4

) s+1
α ,

1∫
( 1

4 )
1
α

(
tα − 1

4

)
tsdt =

1−( 1
4 )

1
α∫

0

(
(1− t)α − 1

4

)
(1− t)s dt (8)

= α

4(s+1)(α+s+1)

(
1
4

) s+1
α + 3s+3−α

4(s+1)(α+s+1) ,

and Θs,α is defined as in (4). The proof is completed.

COROLLARY 2.6. In Theorem 2.5, if we take s = 1, then we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣
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≤ b−a
4

(
Θ1,α | f ′ (a)|+

(
α

2(α+2)

(
1
4

) 2
α + 6−α

4(α+2)

)∣∣ f ′ ( a+b
2

)∣∣+Θ1,α | f ′ (b)|
)
,

where

Θ1,α = (α+1)(α+2)+8
8(α+1)(α+2) − 1

4

(
1−
(

1
4

) 1
α

)2
+2
(

(α+1)−(α+2)4
1
α

(α+1)(α+2)

)(
1
4

) α+2
α .

(9)

COROLLARY 2.7. In Theorem 2.5, if we take α = 1, then we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ b−a
4(s+1)(s+2)

((
s−2

4 +2
(

3
4

)s+2
)
| f ′ (a)|+

((
1
4

)s+1
+ 3s+2

2

)∣∣ f ′ ( a+b
2

)∣∣
+
(

s−2
4 +2

(
3
4

)s+2
)
| f ′ (b)|

)
.

Remark 2.8. Corollary 2.7 will be reduced to Corollary 3.1.3 from [17], if we
take s = 1.

THEOREM 2.9. Let f : [a,b]→ R be a differentiable function on (a,b) such that
f ′ ∈ L1 [a,b] with 0 ≤ a < b. If | f ′|q is s-convex in the second sense for some fixed
s ∈ (0,1] where q > 1 with 1

p +
1
q = 1, then we have

∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ b−a
4

(
1

4p+ 1
α α

B
(

1
α
, p+1

)
+ 3p+1

4p+1α(p+1) .2F1
(
1− 1

α
,1, p+2; 3

4

)) 1
p

×
(
| f ′(a)|q+| f ′( a+b

2 )|q
s+1

) 1
q

+

(
| f ′( a+b

2 )|q+| f ′(b)|q
s+1

) 1
q
)
.

PROOF. From Lemma 2.1, properties of modulus, Hölder’s inequality, and s-
convexity in the second sense of | f ′|q, we have∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ b−a
4

((
1∫
0

∣∣tα − 1
4

∣∣p dt
) 1

p
(

1∫
0

∣∣ f ′ ((1− t)a+ t a+b
2

)∣∣q dt
) 1

q

+

(
1∫
0

∣∣(1− t)α − 1
4

∣∣p dt
) 1

p
(

1∫
0

∣∣ f ′ ((1− t) a+b
2 + tb

)∣∣q dt
) 1

q
)

≤ b−a
4


( 1

4 )
1
α∫

0

(
1
4 − tα

)p dt +
1∫

( 1
4 )

1
α

(
tα − 1

4

)p dt


1
p
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×
(

1∫
0

∣∣ f ′ ((1− t)a+ t a+b
2

)∣∣q dt
) 1

q

+

1−( 1
4 )

1
α∫

0

(
(1− t)α − 1

4

)p dt +
1∫

1−( 1
4 )

1
α

(
1
4 − (1− t)α

)p dt


1
p

×
(

1∫
0

∣∣ f ′ ((1− t) a+b
2 + tb

)∣∣q dt
) 1

q
)

≤ b−a
4

( 1
4 )

1
α∫

0

(
1
4 − tα

)p dt +
1∫

( 1
4 )

1
α

(
tα − 1

4

)p dt


1
p

×

((
1∫
0

(
(1− t)s | f ′ (a)|q + ts

∣∣ f ′ ( a+b
2

)∣∣q)dt
) 1

q

+

(
1∫
0

(
(1− t)s ∣∣ f ′ ( a+b

2

)∣∣q + ts | f ′ (b)|q
)

dt
) 1

q
)

= b−a
4

(
1

4p+ 1
α α

B
(

1
α
, p+1

)
+ 3p+1

4p+1α(p+1) .2F1
(
1− 1

α
,1, p+2; 3

4

)) 1
p

×
(
| f ′(a)|q+| f ′( a+b

2 )|q
s+1

) 1
q

+

(
| f ′( a+b

2 )|q+| f ′(b)|q
s+1

) 1
q
)
,

where we have used the fact that

( 1
4 )

1
α∫

0

(
1
4 − tα

)p dt = 1
α

1
4∫
0

(
1
4 −w

)p w
1
α
−1dw = 1

4pα

1
4∫
0
(1−4w)p w

1
α
−1dw

= 1

4p+ 1
α α

1∫
0
u

1
α
−1 (1−u)p du = 1

4p+ 1
α α

B
(

1
α
, p+1

)
,

and
1∫

( 1
4 )

1
α

(
tα − 1

4

)p dt = 1
α

1∫
1
4

(
w− 1

4

)p w
1
α
−1dw =

(
3
4

)p 1
α

3
4∫
0

(
1− 4

3 u
)p

(1−u)
1
α
−1 du

=
(

3
4

)p+1 1
α

1∫
0
(1− z)p (1− 3

4 z
) 1

α
−1 dz

= 3p+1

4p+1α(p+1) .2F1
(
1− 1

α
,1, p+2; 3

4

)
.

The proof is completed.

COROLLARY 2.10. In Theorem 2.9, if we take s = 1, then we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣
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≤ b−a
4

(
1

4p+ 1
α α

B
(

1
α
, p+1

)
+ 3p+1

4p+1α(p+1) .2F1
(
1− 1

α
,1, p+2; 3

4

)) 1
p

×
(
| f ′(a)|q+| f ′( a+b

2 )|q
2

) 1
q

+

(
| f ′( a+b

2 )|q+| f ′(b)|q
2

) 1
q
)
.

COROLLARY 2.11. In Theorem 2.9, if we take α = 1, then we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ b−a
16

(
1+3p+1

4(p+1)

) 1
p

((
| f ′(a)|q+| f ′( a+b

2 )|q
s+1

) 1
q

+

(
| f ′( a+b

2 )|q+| f ′(b)|q
s+1

) 1
q
)
.

Remark 2.12. Corollary 2.11 will be reduced to Corollary 3.2.1 from [17], if we
take s = 1.

THEOREM 2.13. Let f : [a,b]→ R be a differentiable function on (a,b) such that
f ′ ∈ L1 [a,b] with 0 ≤ a < b. If | f ′|q is s-convex in the second sense for some fixed
s ∈ (0,1] where q ≥ 1, then we have∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ b−a
4

((
2−4

1
α

)
α+3×4

1
α

4
α+1

α (α+1)

)1− 1
q

×

(Θs,α | f ′ (a)|q +

(
2−4

s+1
α

)
α+(3s+3)4

s+1
α

4
s+α+1

α (s+1)(α+s+1)

∣∣ f ′ ( a+b
2

)∣∣q) 1
q

+

((
2−4

s+1
α

)
α+(3s+3)4

s+1
α

4
s+α+1

α (s+1)(α+s+1)

∣∣ f ′ ( a+b
2

)∣∣q +Θs,α | f ′ (b)|q
) 1

q

 ,

where Θs,α is defined as in (4).

PROOF. From Lemma 2.1, properties of modulus, power mean inequality, and
s-convexity in the second sense of | f ′|q, we have∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ b−a
4

((
1∫
0

∣∣tα − 1
4

∣∣dt
)1− 1

q
(

1∫
0

∣∣tα − 1
4

∣∣ ∣∣ f ′ ((1− t)a+ t a+b
2

)∣∣q dt
) 1

q

+

(
1∫
0

∣∣(1− t)α − 1
4

∣∣dt
)1− 1

q
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×
(

1∫
0

∣∣(1− t)α − 1
4

∣∣ ∣∣ f ′ ((1− t) a+b
2 + tb

)∣∣q dt
) 1

q
)

≤ b−a
4


( 1

4 )
1
α∫

0

(
1
4 − tα

)
dt +

1∫
( 1

4 )
1
α

(
tα − 1

4

)
dt


1− 1

q

×
(

1∫
0

∣∣tα − 1
4

∣∣ ∣∣ f ′ ((1− t)a+ t a+b
2

)∣∣q dt
) 1

q

+

1−( 1
4 )

1
α∫

0

(
(1− t)α − 1

4

)
dt +

1∫
1−( 1

4 )
1
α

(
1
4 − (1− t)α

)
dt


1− 1

q

×
(

1∫
0

∣∣(1− t)α − 1
4

∣∣ ∣∣ f ′ ((1− t) a+b
2 + tb

)∣∣q dt
) 1

q
)

≤ b−a
4

( 1
4 )

1
α∫

0

(
1
4 − tα

)
dt +

1∫
( 1

4 )
1
α

(
tα − 1

4

)
dt


1− 1

q

×

((
1∫
0

∣∣tα − 1
4

∣∣((1− t)s | f ′ (a)|q + ts
∣∣ f ′ ( a+b

2

)∣∣q)dt
) 1

q

+

(
1∫
0

∣∣(1− t)α − 1
4

∣∣((1− t)s ∣∣ f ′ ( a+b
2

)∣∣q + ts | f ′ (b)|q
)

dt
) 1

q
)

= b−a
4

((
2−4

1
α

)
α+3×4

1
α

4
α+1

α (α+1)

)1− 1
q

×


| f ′ (a)|q

( 1
4 )

1
α∫

0

(
1
4 − tα

)
(1− t)s dt +

1∫
( 1

4 )
1
α

(
tα − 1

4

)
(1− t)s dt



+
∣∣ f ′ ( a+b

2

)∣∣q
( 1

4 )
1
α∫

0

(
1
4 − tα

)
tsdt +

1∫
( 1

4 )
1
α

(
tα − 1

4

)
tsdt




1
q

+


1−( 1

4 )
1
α∫

0

(
(1− t)α − 1

4

)
(1− t)s dt

+
1∫

1−( 1
4 )

1
α

(
1
4 − (1− t)α

)
(1− t)s dt

∣∣ f ′ ( a+b
2

)∣∣q
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+

1−( 1
4 )

1
α∫

0

(
(1− t)α − 1

4

)
tsdt +

1∫
1−( 1

4 )
1
α

(
1
4 − (1− t)α

)
tsdt

 | f ′ (b)|q


1
q


= b−a
4

((
2−4

1
α

)
α+3×4

1
α

4
α+1

α (α+1)

)1− 1
q

×

(Θs,α | f ′ (a)|q +

(
2−4

s+1
α

)
α+(3s+3)4

s+1
α

4
s+α+1

α (s+1)(α+s+1)

∣∣ f ′ ( a+b
2

)∣∣q) 1
q

+

((
2−4

s+1
α

)
α+(3s+3)4

s+1
α

4
s+α+1

α (s+1)(α+s+1)

∣∣ f ′ ( a+b
2

)∣∣q +Θs,α | f ′ (b)|q
) 1

q

 ,

where we have used (4)-(8). The proof is achieved.

COROLLARY 2.14. In Theorem 2.13, if we take s = 1, then we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ b−a
4

((
2−4

1
α

)
α+3×4

1
α

4
α+1

α (α+1)

)1− 1
q

×

(Θ1,α | f ′ (a)|q +

(
2−4

2
α

)
α+6×4

2
α

4
2+3α

α (α+2)

∣∣ f ′ ( a+b
2

)∣∣q) 1
q

+

((
2−4

2
α

)
α+6×4

2
α

4
2+3α

α (α+2)

∣∣ f ′ ( a+b
2

)∣∣q +Θ1,α | f ′ (b)|q
) 1

q

 ,

where Θ1,α is defined in (9).

COROLLARY 2.15. In Theorem 2.13, if we take α = 1, then we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ b−a

4[(s+1)(s+2)]
1
q

(
5

16

)1− 1
q

×
(((

s−2
4 +2

(
3
4

)s+2
)
| f ′ (a)|q + 2+(3s+2)4s+1

4s+2

∣∣ f ′ ( a+b
2

)∣∣q) 1
q

+
(

2+(3s+2)4s+1

4s+2

∣∣ f ′ ( a+b
2

)∣∣q +( s−2
4 +2

(
3
4

)s+2
)
| f ′ (b)|q

) 1
q
)
.

Remark 2.16. Corollary 2.15 will be reduced to Corollary 3.1.2 from [17], if we
take s = 1.
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3. FURTHER RESULTS

THEOREM 3.1. Let f : [a,b]→ R be a differentiable function on (a,b) such that
f ′ ∈ L1 [a,b] with 0 ≤ a < b. If there exist constants −∞ < m < M < +∞ such that m ≤
f ′ (x)≤ M for all x ∈ [a,b], then we have∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ (b−a)(M−m)
4(α+1)

(
α

2

(
1
4

) 1
α + 3−α

4

)
.

PROOF. From Lemma 2.1, we have

1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)

= b−a
4

(
1∫
0

(
tα − 1

4

)
f ′
(
(1− t)a+ t a+b

2

)
dt

−
1∫
0

(
(1− t)α − 1

4

)
f ′
(
(1− t) a+b

2 + tb
)

dt
)

= b−a
4

(
1∫
0

(
tα − 1

4

)(
f ′
(
(1− t)a+ t a+b

2

)
− m+M

2 + m+M
2

)
dt

−
1∫
0

(
(1− t)α − 1

4

)(
f ′
(
(1− t) a+b

2 + tb
)
− m+M

2 + m+M
2

)
dt
)

= b−a
4

(
1∫
0

(
tα − 1

4

)(
f ′
(
(1− t)a+ t a+b

2

)
− m+M

2

)
dt

−
1∫
0

(
(1− t)α − 1

4

)(
f ′
(
(1− t) a+b

2 + tb
)
− m+M

2

)
dt

+ m+M
2

(
1∫
0

(
tα − 1

4

)
dt −

1∫
0

(
(1− t)α − 1

4

)
dt
))

= b−a
4

(
1∫
0

(
tα − 1

4

)(
f ′
(
(1− t)a+ t a+b

2

)
− m+M

2

)
dt

−
1∫
0

(
(1− t)α − 1

4

)(
f ′
(
(1− t) a+b

2 + tb
)
− m+M

2

)
dt
)
, (10)

where we have taken into consideration that
1∫
0

(
tα − 1

4

)
dt −

1∫
0

(
(1− t)α − 1

4

)
dt =

(
1

α+1 −
1
4

)
−
(

1
α+1 −

1
4

)
= 0.

Applying the absolute value to both sides of (10), we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

= b−a
4

(
1∫
0

∣∣tα − 1
4

∣∣ ∣∣ f ′ ((1− t)a+ t a+b
2

)
− m+M

2

∣∣dt
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+
1∫
0

∣∣(1− t)α − 1
4

∣∣ ∣∣ f ′ ((1− t) a+b
2 + tb

)
− m+M

2

∣∣dt
)
. (11)

Since m ≤ f ′ (x)≤ M for all x ∈ [a,b], we have∣∣ f ′ ((1− t)a+ t a+b
2

)
− m+M

2

∣∣≤ M−m
2 , (12)

and ∣∣ f ′ ((1− t) a+b
2 + tb

)
− m+M

2

∣∣≤ M−m
2 . (13)

Using (12) and (13) in (11), we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

= (b−a)(M−m)
8

(
1∫
0

∣∣tα − 1
4

∣∣dt +
1∫
0

∣∣(1− t)α − 1
4

∣∣dt
)

= (b−a)(M−m)
4

(
1∫
0

∣∣tα − 1
4

∣∣dt
)

= (b−a)(M−m)
4(α+1)

(
α

2

(
1
4

) 1
α + 3−α

4

)
.

The proof is completed.

COROLLARY 3.2. In Theorem 3.1, if we take α = 1, then we get∣∣∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt

∣∣∣∣∣∣≤ 5(b−a)(M−m)
64 .

Remark 3.3. The result of Corollary 2.11 is finer than the result of Corollary 3.1
of [14].

THEOREM 3.4. Let f : [a,b]→ R be a differentiable function on (a,b) such that
f ′ ∈ L1 [a,b] with 0 ≤ a < b. If f ′ is r-L-Hölderian function on [a,b] (i.e. there exist L > 0

and 0 < r ≤ 1 such that | f ′ (x)− f ′ (y)| ≤ L |x− y|r), then we have∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ L(b−a)r+1

2r+2

(
−α2+(6−r)α+3r+7

4(α+1)(α+r+1) + α

2(r+1)(α+r+1)

(
1
4

) r+1
α − 1

2(r+1)

(
1−
(

1
4

) 1
α

)r+1

+ B
1−( 1

4 )
1
α
(r+1,α +1)−B

( 1
4 )

1
α
(α +1,r+1)

)
.

PROOF. From Lemma 2.1, we have

1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)
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= b−a
4

(
1∫
0

(
tα − 1

4

)
f ′
(
(1− t)a+ t a+b

2

)
dt

−
1∫
0

(
(1− t)α − 1

4

)
f ′
(
(1− t) a+b

2 + tb
)

dt
)

= b−a
4

(
1∫
0

(
tα − 1

4

)(
f ′
(
(1− t)a+ t a+b

2

)
− f ′ (a)+ f ′ (a)

)
dt

−
1∫
0

(
(1− t)α − 1

4

)(
f ′
(
(1− t) a+b

2 + tb
)
− f ′

(
a+b

2

)
+ f ′

(
a+b

2

))
dt
)

= b−a
4

(
1∫
0

(
tα − 1

4

)(
f ′
(
(1− t)a+ t a+b

2

)
− f ′ (a)

)
dt

−
1∫
0

(
(1− t)α − 1

4

)(
f ′
(
(1− t) a+b

2 + tb
)
− f ′

(
a+b

2

))
dt

+ f ′ (a)
1∫
0

(
tα − 1

4

)
dt − f ′

(
a+b

2

) 1∫
0

(
(1− t)α − 1

4

)
dt
)

= b−a
4

(
1∫
0

(
tα − 1

4

)(
f ′
(
(1− t)a+ t a+b

2

)
− f ′ (a)

)
dt

−
1∫
0

(
(1− t)α − 1

4

)(
f ′
(
(1− t) a+b

2 + tb
)
− f ′

(
a+b

2

))
dt

+ 3−α

4(α+1)

(
f ′ (a)− f ′

(
a+b

2

)))
. (14)

Applying the absolute value in both sides of (14), and by using the fact that f ′ is
r-L-Hölderian on [a,b], we obtain∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ b−a
4

(
1∫
0

∣∣tα − 1
4

∣∣ ∣∣ f ′ ((1− t)a+ t a+b
2

)
− f ′ (a)

∣∣dt

+
1∫
0

∣∣(1− t)α − 1
4

∣∣ ∣∣ f ′ ((1− t) a+b
2 + tb

)
− f ′

(
a+b

2

)∣∣dt

+ 3−α

4(α+1)

(∣∣ f ′ (a)− f ′
(

a+b
2

)∣∣))
≤ b−a

4 L
(

1∫
0

∣∣tα − 1
4

∣∣ ∣∣(1− t)a+ t a+b
2 −a

∣∣r dt

+
1∫
0

∣∣(1− t)α − 1
4

∣∣ ∣∣(1− t) a+b
2 + tb− a+b

2

∣∣r dt + 3−α

4(α+1)

(∣∣a− a+b
2

∣∣r))

= L
2

(
b−a

2

)r+1
(

1∫
0

∣∣tα − 1
4

∣∣ trdt +
1∫
0

∣∣(1− t)α − 1
4

∣∣ trdt + 3−α

4(α+1)

)
= L(b−a)r+1

2r+2

(
−α2+(6−r)α+3r+7

4(α+1)(α+r+1) + α

2(r+1)(α+r+1)

(
1
4

) r+1
α − 1

2(r+1)

(
1−
(

1
4

) 1
α

)r+1

B
1−( 1

4 )
1
α
(r+1,α +1)−B

( 1
4 )

1
α
(α +1,r+1)

)
,
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where we have used
1∫
0

∣∣tα − 1
4

∣∣ trdt = α

2(r+1)(α+r+1)

(
1
4

) r+1
α + 3r+3−α

4(r+1)(α+r+1)

and
1∫
0

∣∣(1− t)α − 1
4

∣∣ trdt = B
1−( 1

4 )
1
α
(r+1,α +1)−B

( 1
4 )

1
α
(α +1,r+1)

+ 1
4(r+1) −

1
2(r+1)

(
1−
(

1
4

) 1
α

)r+1
.

The proof is completed.

Remark 3.5. By a simple calculation of definite integrals, we have
1/ B

1−( 1
4 )

1
α
(2,α +1) = 1

(α+1)(α+2) −
1

4(α+1)

(
1
4

) 1
α + 1

4(α+2)

(
1
4

) 2
α .

2/ B
( 1

4 )
1
α
(α +1,2) = 1

4(α+1)

(
1
4

) 1
α − 1

4(α+2)

(
1
4

) 2
α .

3/ B 3
4
(r+1,2) = r+5

4(r+1)(r+2)

(
3
4

)r+1.
4/ B 1

4
(2,r+1) = 1

(r+1)(r+2) −
r+5

4(r+1)(r+2)

(
3
4

)r+1.
5/ B 3

4
(2,2) = 9

64 .
6/ B 1

4
(2,2) = 5

192 .

COROLLARY 3.6. Under the assumptions of Theorem 3.4, if f ′ is a Lipschitzian
function, then we have∣∣∣∣ 1

8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− Γ(α+1)

21−α (b−a)α

(
Iα

( a+b
2 )

− f (a)+ Iα

( a+b
2 )

+ f (b)
)∣∣∣∣

≤ L(b−a)2

8

(
6+α−α2

2(α+1)(α+2) +
α

2(α+1)

(
1
4

) 1
α

)
.

COROLLARY 3.7. In Theorem 3.4, if we take α = 1, then we get∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt
∣∣∣∣

≤ L(b−a)r+1

2r+2

(
r2+7r+2

4(r+1)(r+2) +
2(1+3r+2)

4r+2(r+1)(r+2)

)
.

COROLLARY 3.8. In Corollary 3.7, if we take r = 1, then we get∣∣∣∣∣∣ 1
8

(
f (a)+6 f

(
a+b

2

)
+ f (b)

)
− 1

b−a

b∫
a

f (t)dt

∣∣∣∣∣∣≤ 9L(b−a)2

128 .
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4. APPLICATIONS

Simpson like quadrature formula

Let ϒ be the partition of the points a = x0 < x1 < ... < xn = b of the interval [a,b], and
consider the quadrature formula

b∫
a

f (u)du = λ ( f ,ϒ)+R( f ,ϒ) ,

where

λ ( f ,ϒ) =
n−1

∑
i=0

xi+1−xi
8

(
f (xi)+6 f

( xi+xi+1
2

)
+ f (xi+1)

)
and R( f ,ϒ) denotes the associated approximation error.

PROPOSITION 4.1. Let n ∈ N and f : [a,b] → R be a differentiable function on
(a,b) with 0 ≤ a < b and f ′ ∈ L1 [a,b]. If | f ′| is s-convex function in the second sense for
some fixed s ∈ (0,1], we have

|R( f ,ϒ)| ≤
n−1
∑
i=0

(xi+1−xi)
2

4(s+1)(s+2)

((
s−2

4 +2
(

3
4

)s+2
)
| f ′ (xi)|

+
((

1
4

)s+1
+ 3s+2

2

)∣∣ f ′ ( xi+xi+1
2

)∣∣+( s−2
4 +2

(
3
4

)s+2
)
| f ′ (xi+1)|

)
.

PROOF. Applying Theorem 2.9 on the subintervals [xi,xi+1] (i = 0,1, ...,n−1) of
the partition ϒ, we get∣∣∣∣∣ 1

8

(
f (xi)+6 f

( xi+xi+1
2

)
+ f (xi+1)

)
− 1

xi+1−xi

xi+1∫
xi

f (t)dt

∣∣∣∣∣
≤ xi+1−xi

4(s+1)(s+2)

((
s−2

4 +2
(

3
4

)s+2
)
| f ′ (xi)|+

((
1
4

)s+1
+ 3s+2

2

)∣∣ f ′ ( xi+xi+1
2

)∣∣
+
(

s−2
4 +2

(
3
4

)s+2
)
| f ′ (xi+1)|

)
. (15)

Multiplying both sides of (15) by (xi+1 − xi), and then summing the obtained
inequalities for all i = 0,1, ...,n − 1 and using the triangular inequality, we get the
desired result.

Application to special means

For arbitrary real numbers a,b we have:

The Arithmetic mean: A(a,b) = a+b
2 .

The Geometric mean: G(a,b) =
√

ab, a,b > 0.

The p-Logarithmic mean: Lp (a,b) =
(

bp+1−ap+1

(p+1)(b−a)

) 1
p , a,b > 0,a ̸= b and p ∈ R‵{−1,0}.
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PROPOSITION 4.2. Let a,b ∈ R with 0 < a < b, then we have∣∣A(a2,b2)+3A2 (a,b)−4L2
2 (a,b)

∣∣≤ 5(b−a)2

8 .

PROOF. The assertion follows from Theorem 3.1, applied to the function f (x) =

x2.
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A note on generalized subclasses of multivalent
quasi-convex functions

G. SINGH AND G. SINGH

Abstract

This paper is concerned with certain generalized subclasses of multivalent quasi-convex functions defined
with subordination. Various properties of these classes in regard to the coefficient estimates, distortion
theorems, growth theorems, argument theorems and inclusion relations are discussed. Also, the relations
with the earlier known results are established.

Mathematics Subject Classification 2010: 30C45, 30C50
General Terms: Regression, Generalized linear model, Model choice, Model selection, Information
theory Keywords: Univalent functions, Subordination, multivalent functions, close-to-convex functions,
quasi-convex functions.

1. INTRODUCTION

By C, we denote the complex plane and the unit disc is defined as E = {z : z∈C, |z|< 1}.
Ap(p ≥ 1), denotes the class of analytic functions f in the open unit disc E which has
a Taylor series of the form

f (z) = zp +
∞

∑
k=p+1

akzk. (1)

For p = 1, the class Ap agrees with A1, which is the class of analytic functions of the
form f (z) = z+∑

∞

k=2 akzk and normalized by the conditions f (0) = f ′(0)− 1 = 0. The
class of functions in A1 and which are univalent in E, is denoted by S .

The class of Schwarzian functions is denoted by U and it consists of analytic
functions of the form

w(z) = ∑
∞

k=1 ckzk,

which satisfy the conditions w(0) = 0, |w(z)| < 1 in the unit disc E. It was proved in
[16] that for w ∈ U , |c1| ≤ 1 and |c2| ≤ 1−|c1|2.

 10.2478/jamsi-2022-0007
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For two analytic functions f and g in E, f is said to be subordinate to g if a
Schwarz function w ∈ U can be found, such that f (z) = g(w(z)) and it is denoted by
f ≺ g. Further, if the function g is univalent in E, then f ≺ g is equivalent to
f (0) = g(0) and f (E)⊂ g(E).

Goluzina [6] established the classes S ∗
p (α) and Kp(α) (0 ≤ α < p), which are the

subclasses of Ap that are respectively the classes of p-valently starlike functions and
p-valently convex functions of order α and defined as

S ∗
p (α) =

{
f : f ∈ Ap,Re

(
z f ′(z)

f (z)

)
> α,z ∈ E

}
and

Kp(α) =
{

f : f ∈ Ap,Re
(

(z f ′(z))′

f ′(z)

)
> α,z ∈ E

}
.

For 0 ≤ α < 1, S ∗
1 (α)≡ S ∗(α) and K1(α)≡ K (α), the classes of starlike functions of

order α and convex functions of order α respectively, introduced by Robertson [21].
Also S ∗

p (0) ≡ S ∗
p and Kp(0) ≡ Kp, the classes of p-valent starlike functions and

p-valent convex functions, respectively. Further S ∗
1 (0) ≡ S ∗ and K1(0) ≡ K , the

well known classes of starlike functions and convex functions, respectively.

Cp(α) is the class of p-valent close-to-convex functions defined as

Cp(α) =
{

f : f ∈ Ap,Re
(

z f ′(z)
g(z)

)
> α,g ∈ S ∗

p ,z ∈ E
}

.

This class was established by Umezawa [27]. For p = 1, α = 0, the class Cp(α)

reduces to C , the class of close-to-convex functions introduced by Kaplan [9].

Noor [17] introduced the class C ∗ of quasi-convex functions. A function f ∈ A1 is
said to be quasi-convex if there exists a convex function h ∈ K such that
Re

(
(z f ′(z))′

h′(z)

)
> 0. Every quasi-convex function is convex and so univalent. Different

subclasses of quasi-convex functions were studied by various authors including
Selvaraj and Stelin [23], Selvaraj et al. [24], Xiong and Liu [28] and Singh and
Singh [26].

The corresponding class of p-valent quasi convex functions is defined as below:

C ∗
p =

{
f : f ∈ Ap,Re

(
(z f ′(z))′

h′(z)

)
> 0,h ∈ Kp,z ∈ E

}
.
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Obviously C ∗
1 ≡ C ∗. Not much work has done related to the study of subclasses of

multivalent quasi-convex functions.

For −1 ≤ B < A ≤ 1 and 0 ≤ α < p, Aouf [2] introduced the class P(A,B; p;α),
which is a subclass of Ap consisting of the functions of the form p(z) = p+∑

∞

k=1 pkzk

such that p(z) ≺ p+[pB+(A−B)(p−α)]z
1+Bz . For p = 1, P(A,B; p;α) reduces to P(A,B;α), the

class introduced by Polatoglu et al. [19]. Also for p = 1,α = 0, the class P(A,B; p;α)

agrees with P(A,B), which is a subclass of A1 introduced by Janowski [8].

Again, for −1 ≤ B < A ≤ 1 and 0 ≤ α < p, Aouf [2; 4], introduced the following
useful classes:

S ∗(A,B; p;α) =
{

f : f ∈ Ap,
z f ′(z)

f (z) ≺ p+[pB+(A−B)(p−α)]z
1+Bz ,z ∈ E

}
and

K (A,B; p;α) =
{

f : f ∈ Ap,
(z f ′(z))′

f ′(z) ≺ p+[pB+(A−B)(p−α)]z
1+Bz ,z ∈ E

}
.

The following points are to be noted:
(i) S ∗(1,−1; p;α)≡ S ∗

p (α) and K (1,−1; p;α)≡ Kp(α).
(ii) S ∗(A,B; p;0) ≡ S ∗

p (A,B) and K (A,B; p;0) ≡ Kp(A,B), the classes studied by
Hayami and Owa [7].
(iii) S ∗(A,B;1;α)≡ S ∗(A,B;α), the class studied by Polatoglu et al. [19].
(iv) S ∗(A,B;1;0) ≡ S ∗(A,B) and K (A,B;1;0) ≡ K (A,B), the subclasses of starlike
and convex functions respectively, introduced by Janowski [8] and studied further by
Goel and Mehrok [5].
(v) S ∗(1,−1;1;α)≡ S ∗(α) and K (1,−1;1;α)≡ K (α).
(vi) S ∗(1,−1;1;0)≡ S ∗ and K (1,−1;1;0)≡ K .

Throughout this paper, we assume that −1 ≤ D <C ≤ 1, −1 ≤ B < A ≤ 1, 0 ≤ α < p,
0 ≤ β < p and z ∈ E.

Getting motivated by the above mentioned work, now we are on the stage to define
the following classes:
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DEFINITION 1. Let C ∗(A,B;C,D; p;β ;α) denote the class of functions f ∈Ap and
satisfying the condition

(z f ′(z))′

h′(z) ≺ p+[pD+(C−D)(p−β )]z
1+Dz ,

where

h(z) = zp +∑
∞

k=p+1 bkzk ∈ K (A,B; p;α).

DEFINITION 2. C ∗
s (A,B;C,D; p;β ;α) is the class of functions f ∈ Ap which

satisfy the condition

(z f ′(z))′

g′(z) ≺ p+[pD+(C−D)(p−β )]z
1+Dz ,

where

g(z) = zp +∑
∞

k=p+1 dkzk ∈ S ∗(A,B; p;α).

The following observations are obvious:
(i) C ∗(A,B;C,D; p;0;0)≡ C ∗(A,B;C,D; p).
(ii) C ∗(A,B;C,D;1;0;0) ≡ C ∗(A,B;C,D), the subclass of quasi-convex functions
investigated by Singh and Singh [26].
(iii) C ∗(1,−1;C,D;1;0;0)≡ C ∗(C,D), the class studied by Xiong and Liu [28].
(iv) C ∗(1,−1;1,(1−2α)β ;β ;1;0;0)≡ C ∗(α,β ), the subclass of quasi-convex functions
introduced by Selvaraj and Stelin [23].
(v) C ∗(1,−1;1,−1;1;0;0)≡ C ∗.
(vi) C ∗

s (A,B;C,D; p;0;0)≡ C ∗
s (A,B;C,D; p).

(vii) C ∗
s (A,B;C,D;1;0;0) ≡ C ∗

s (A,B;C,D), the subclass of quasi-convex functions
investigated by Singh and Singh [26].
(viii) C ∗

s (1,−1;C,D;1;0;0)≡ C ∗
s (C,D), the class discussed by Singh and Singh [26].

(ix) C ∗
s (1,−1;1,(1−2α)β ;β ;1;0;0)≡ C ∗

s (α,β ), the subclass of quasi-convex functions
studied by Selvaraj et al. [24].
(x) C ∗

s (1,−1;1,−1;1;0;0) ≡ C ∗
s , the subclass of quasi-convex functions discussed by

Singh and Singh [26].
Obsah...

LEMMA 1. [2] If P(z) = p+[pD+(C−D)(p−β )]w(z)
1+Dw(z) = p+∑

∞

k=1 pkzk ∈ P(C,D; p;β ), then

|pn| ≤ (C−D)(p−β ),n ≥ p.

The bounds are sharp for w(z) = zn and for the function

P(z) = p+(C−D)(p−β )zn + ...
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LEMMA 2. [13] Let −1 ≤ D2 ≤ D1 <C1 ≤C2 ≤ 1, then

1+C1z
1+D1z ≺

1+C2z
1+D2z .

LEMMA 3. [22] If ψ(z) is regular in E, φ(z) and h(z) are convex univalent in E

such that ψ(z)≺ φ(z), then ψ(z)∗h(z)≺ φ(z)∗h(z), z ∈ E.

In this paper, we investigate various properties such as the coefficient estimates,
distortion theorems, growth theorems, argument theorems and inclusion relations for
the classes C ∗(A,B;C,D; p;β ;α) and C ∗

s (A,B;C,D; p;β ;α). The results already proved
by various authors will follow as special cases.

2. STUDY OF THE CLASS C ∗(A,B;C,D;P;β ;α)

THEOREM 1. Let f ∈ C ∗(A,B;C,D; p;β ;α), then for n ≥ p+1,
|an| ≤ p2

n2[(n−p)!]Π
n−(p+1)
k=0 |(B−A)(p−α)+Bk|

+
(C−D)(p−β )

n2

[
p+

n−1

∑
m=p+1

p
(m− p)!

Π
m−(p+1)
k=0 |(B−A)(p−α)+Bk|

]
. (2)

The result is sharp.

PROOF. For f ∈ C ∗(A,B;C,D; p;β ;α), we have

(z f ′(z))′ = h′(z)P(z), (3)

where

h(z) = zp +∑
∞

k=p+1 bkzk ∈ K (A,B; p;α)

and

P(z) = p+∑
∞

k=1 pkzk ∈ P(C,D; p;β ).

Expansion of (3), yields
p2 +(p+1)2ap+1z+(p+2)2ap+2z2 + ...+n2anzn−p + ...

= [p+(p+1)bp+1z+(p+2)bp+2z2 + ...+nbnzn−p + ...][p+ p1z+ p2z2 + ...+ pn−1zn−1 + ...].

(4)
On equating the coefficients of zn−p in (4), we have

n2an = pnbn +(n−1)p1bn−1 +(n−2)p2bn−2 + ...+2pn−2b2 + ppn−p. (5)
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Application of triangle inequality and using Lemma 1 in (5), it gives

n2|an| ≤ pn|bn|+(C−D)(p−β ) [(n−1)|bn−1|+(n−2)|bn−2|+ ...+(p+1)|bp+1|+ p] . (6)

It was proved in [4] that, for h(z) = zp +∑
∞

k=p+1 bkzk ∈ K (A,B; p;α),

|bn| ≤
p

n[(n− p)!]
Π

n−(p+1)
j=0 |(B−A)(p−α)+B j|,n ≥ p+1. (7)

Using (7) in (6), the result (2) can be easily derived.
Equality sign in (2) is attained for the functions fn(z) defined by

(z f ′n(z))
′ = pzp−1(1−Bδ1z)

(A−B)(p−α)
B

[
p+{pD+(C−D)(p−β )}δ2z

1+Dδ2z

]
, |δ1|= |δ2|= 1. (8)

REMARK 1. (i) On putting α = 0,β = 0 in Theorem 1, the result for the class
C ∗(A,B;C,D; p) can be easily obtained.
(ii) For α = 0,β = 0, p = 1, Theorem 1 gives the result established by Singh and
Singh [26].
(iii) By giving the values A = 1,B =−1,α = 0,β = 0, p = 1, the result due to Xiong and
Liu [28], can be easily obtained from Theorem 1.
(iv) Substituting for A = 1,B =−1,C = (1−2α)β ,D = β ,α = 0,β = 0, p = 1 in Theorem
1, we can easily get the result due to Selvaraj and Stelin [23].
(v) For A = 1,B = −1,C = 1,D = −1,α = 0,β = 0, p = 1, the result established by
Noor [17], can be easily obtained from Theorem 1.

THEOREM 2. If f ∈ C ∗(A,B;C,D; p;β ;α), then for |z|= r,0 < r < 1, we have
for B ̸= 0,
1
r

∫ r
0 pt p−1(1−Bt)

(A−B)(p−α)
B

[
p−{pD+(C−D)(p−β )}t

1−Dt

]
dt ≤ | f ′(z)|

≤ 1
r

∫ r

0
pt p−1(1+Bt)

(A−B)(p−α)
B

[
p+{pD+(C−D)(p−β )}t

1+Dt

]
dt; (9)

∫ r
0

[
1
s

∫ s
0 pt p−1(1−Bt)

(A−B)(p−α)
B

[
p−{pD+(C−D)(p−β )}t

1−Dt

]
dt
]

ds ≤ | f (z)|

≤
∫ r

0

[
1
s

∫ s

0
pt p−1(1+Bt)

(A−B)(p−α)
B

[
p+{pD+(C−D)(p−β )}t

1+Dt

]
dt
]

ds, (10)

for B = 0,
1
r

∫ r
0 pt p−1e−A(p−α)t

[
p−{pD+(C−D)(p−β )}t

1−Dt

]
dt ≤ | f ′(z)|

≤ 1
r

∫ r

0
pt p−1eA(p−α)t

[
p+{pD+(C−D)(p−β )}t

1+Dt

]
dt; (11)
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∫ r
0

[
1
s

∫ s
0 pt p−1e−A(p−α)t

[
p−{pD+(C−D)(p−β )}t

1−Dt

]
dt
]

ds ≤ | f (z)|

≤
∫ r

0

[
1
s

∫ s

0
pt p−1eA(p−α)t

[
p+{pD+(C−D)(p−β )}t

1+Dt

]
dt
]

ds. (12)

Estimates are sharp.

PROOF. Equation (3) can be expressed as

|(z f ′(z))′|= |h′(z)||P(z)|. (13)

It was established in [4] that, for P(z) ∈ P(A,B; p;α),

p− [pD+(C−D)(p−β )]r
1−Dr

≤ |P(z)| ≤ p+[pD+(C−D)(p−β )]r
1+Dr

. (14)

Aouf [4] proved that, for h(z) ∈ K (A,B; p;α),

prp−1(1−Br)
A−B

B (p−α) ≤ |h′(z)| ≤ prp−1(1+Br)
A−B

B (p−α) if B ̸= 0,

and

prp−1e−A(p−α)r ≤ |h′(z)| ≤ prp−1eA(p−α)r if B = 0.

Using the above inequalities and (14) in (13), the results (9) and (11) can be easily
obtained. On integrating (9) and (11) from 0 to r, the results (10) and (12) are obvious.
Sharpness follows for the functions fn(z) defined as

(z f ′n(z))
′ = pzp−1(1+Bδ3z)

(A−B)(p−α)
B

[
p+{pD+(C−D)(p−β )}δ4z

1+Dδ4z

]
if B ̸= 0,

(z f ′n(z))
′ = pzp−1eA(p−α)δ5z

[
p+{pD+(C−D)(p−β )}δ4z

1+Dδ4z

]
if B = 0,

where |δ3|= |δ4|= |δ5|= 1.

REMARK 2. (i) Putting α = 0,β = 0 in Theorem 2, the result for the class
C ∗(A,B;C,D; p) can be easily obtained.
(ii) For α = 0,β = 0, p = 1, Theorem 2 gives the result established by Singh and
Singh [26].
(iii) By giving the values A = 1,B =−1,α = 0,β = 0, p = 1, the result due to Xiong and
Liu [28], can be easily obtained from Theorem 2.
(iv) Substituting for A = 1,B =−1,C = (1−2α)β ,D = β ,α = 0,β = 0, p = 1 in Theorem
2, we can easily get the result due to Selvaraj and Stelin [23].
(v) For A = 1,B = −1,C = 1,D = −1,α = 0,β = 0, p = 1, the result established by
Noor [17], can be easily obtained from Theorem 2.
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THEOREM 3. If f ∈ C ∗(A,B;C,D; p;β ;α) and let F(z) = z f ′(z), then∣∣∣arg F ′(z)
zp−1

∣∣∣≤ (A−B)(p−α)
B sin−1(Br)+ sin−1

(
(C−D)(p−β )r

p−[pD+(C−D)(p−β )]Dr2

)
if B ̸= 0,

and ∣∣∣arg F ′(z)
zp−1

∣∣∣≤ A(p−α)r+ sin−1
(

(C−D)(p−β )r
p−[pD+(C−D)(p−β )]Dr2

)
if B = 0.

The bounds are sharp.

PROOF. (3) can be expressed as

F ′(z) = h′(z)P(z).

Therefore, we have ∣∣∣∣arg
F ′(z)
zp−1

∣∣∣∣≤ |argP(z)|+
∣∣∣∣arg

p f1(z)
zp

∣∣∣∣ , (15)

where f1(z) =
zh′(z)

p .
Aouf [2], established that for P(z) ∈ P(A,B; p;α),

|argP(z)| ≤ sin−1
(

(C−D)(p−β )r
p− [pD+(C−D)(p−β )]Dr2

)
. (16)

It was proved by Aouf [4], that∣∣∣arg p f1(z)
zp

∣∣∣≤ (A−B)(p−α)
B sin−1(Br) if B ̸= 0,∣∣∣arg p f1(z)

zp

∣∣∣≤ A(p−α)r if B = 0.

Using the above inequalities and (16) in (15), the proof of Theorem 3 is obvious.
Results are sharp for the extremal function defined in Theorem 1.

REMARK 3. (i) On putting α = 0,β = 0 in Theorem 3, the result for the class
C ∗(A,B;C,D; p) can be easily obtained.
(ii) By giving the values A = 1,B =−1,α = 0,β = 0, p = 1, the result due to Xiong and
Liu [28] can be easily obtained from Theorem 3.
(iii) Substituting for A = 1,B = −1,C = (1 − 2α)β ,D = β ,α = 0,β = 0, p = 1 in
Theorem 3, we can easily get the result due to Selvaraj and Stelin [23].
(iv) For A = 1,B = −1,C = 1,D = −1,α = 0,β = 0, p = 1, the result established by
Noor [17], can be easily obtained from Theorem 3.
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THEOREM 4. If f ∈ C ∗(A,B;C,D; p;β ;α), then

|ap+1| ≤ p
(p+1)2 [(p−β )(C−D)+(p−α)(A−B){p+(C−D)(p−β )}],

and
|ap+2| ≤ p

(p+2)2

[
(p−β )(C−D)+(A−B)(p−α){[p+(C−D)(p−β )]

+|(C−D)(p−β )(1−D)|}
]

if |(A−B)(p−α)−B| ≤ 1,

and
|ap+2| ≤ p

(p+2)2

[
(p−β )(C−D)+(A−B)(p−α){[p+(C−D)(p−β )]

+|(C−D)(p−β )(1−D)|}+ [p+(C−D)(p−β )]+|(A−B)(p−α)−B|
2

]
if |(A−B)(p−α)−B| > 1. The

estimates are sharp.

PROOF. Using the principle of subordination in Definition 1, we obtain

(z f ′(z))′

h′(z) = p+[pD+(C−D)(p−β )]w(z)
1+Dw(z) .

On expanding and comparing the coefficients, it leads to

ap+1 =
p+(C−D)(p−β )

p+1
bp+1 +

p(C−D)(p−β )

(p+1)2 c1 (17)

and
ap+2 =

p+(C−D)(p−β )
p+2 bp+2

+
(p+1)
(p+2)2 [(C−D)(p−β )(1−D)]bp+1c1 +

p(C−D)(p−β )

(p+2)2 [c2 −Dc2
1]. (18)

Aouf [4] proved that for h(z) = zp +∑
∞

k=p+1 bkzk ∈ K (A,B; p;α),

|bp+1| ≤
p(A−B)(p−α)

p+1
(19)

and

|bp+2| ≤
p(A−B)(p−α)

2(p+2)
max{1, |(A−B)(p−α)p−B|}. (20)

Also it was proved in [10], that for any complex number γ,

|c2 − γc2
1| ≤ max{1, |γ|}. (21)

Using (19), (20) and (21) along with the inequality |c1| ≤ 1 in (17) and (18), the results
are obvious.
The results are sharp for the extremal functions defined in (8).
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THEOREM 5. Let −1 ≤ D2 = D1 <C1 ≤C2 ≤ 1 and 0 ≤ β2 ≤ β1 < p, then

C ∗(A,B;C1,D1; p;β1;α)⊂ C ∗(A,B;C2,D2; p;β2;α).

PROOF. As f ∈ C ∗(A,B;C1,D1; p;β1;α), so

(z f ′(z))′

h′(z) ≺ p+[pD1+(C1−D1)(p−β1)]z
1+D1z .

As −1 ≤ D2 = D1 <C1 ≤C2 ≤ 1 and 0 ≤ β2 ≤ β1 < p, we have

−1 ≤ D1 +
(p−β1)(C1−D1)

p ≤ D2 +
(p−β2)(C2−D2)

p ≤ 1.

So by Lemma 2, we obtain

(z f ′(z))′

h′(z) ≺ p+[pD2+(C2−D2)(p−β2)]z
1+D2z ,

which implies f ∈ C ∗(A,B;C2,D2; p;β2;α).

THEOREM 6. If f ∈ C ∗(A,B;C,D; p;β ;α), then there exists P(z) ∈ P(C,D; p;α)

such that for all s and t with |s| ≤ 1, |t| ≤ 1 (s ̸= t),

(sz f ′(sz))′P(tz)(tz)p−1

(tz f ′(tz))′P(sz)(sz)p−1 =
(

1+Bsz
1+Btz

)( A−B
B )(p−α), if B ̸= 0,

and

(sz f ′(sz))′P(tz)(tz)p−1

(tz f ′(tz))′P(sz)(sz)p−1 = eA(p−α)(s−t)z if B = 0.

PROOF. Firstly assume that B ̸= 0.
From definition, we have

(z f ′(z))′ = P(z)h′(z).

On differentiating logarithmically, it yields

z(z f ′(z))′′

(z f ′(z))′ −
zP′(z)
P(z) − p+1 = 1+ zh′′(z)

h′(z) − p.

As h ∈ K(A,B; p;α), therefore

z(z f ′(z))′′

(z f ′(z))′ −
zP′(z)
P(z) − p+1 ≺ (A−B)(p−α)z

1+Bz ,

where (A−B)(p−α)z
1+Bz is convex, univalent in E. For |s| ≤ 1, |t| ≤ 1 (s ̸= t),

h(z) =
∫ z

0

(
s

1−su −
t

1−tu

)
du

is convex univalent in E. Using Lemma 3, we have(
z(z f ′(z))′′

(z f ′(z))′ −
zP′(z)
P(z) − p+1

)
∗h(z)≺ (A−B)(p−α)z

1+Bz ∗h(z).
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For any function q(z) analytic in E with q(0) = 0, we obtain

(q∗h)(z) =
∫ sz

tz q(u) du
u ,z ∈ E.

Therefore, we have∫ sz
tz

(
u(u f ′(u))′′

(u f ′(u))′ − uP′(u)
P(u) − p+1

)
du
u ≺ (A−B)(p−α)

∫ sz
tz

du
1+Bu ,

which follows the result. On the same lines, we can easily prove the result for B = 0.

3. STUDY OF THE CLASS C ∗
S (A,B;C,D;P;β ;α)

THEOREM 7. Let f (z) ∈ C ∗
s (A,B;C,D; p;β ;α), then for n ≥ p+1,

|an| ≤ p
n Π

n−(p+1)
k=0

|(B−A)(p−α)+Bk|
k+1

+
(C−D)(p−β )

n2

[
p+

n−1

∑
m=p+1

mΠ
m−(p+1)
k=0

|(B−A)(p−α)+Bk|
k+1

]
. (22)

The result is sharp.

PROOF. Using the result due to Aouf [2] that, for
g(z) = zp +∑

∞

k=p+1 dkzk ∈ S ∗(A,B; p;α),

|dn| ≤ Π
n−(p+1)
j=0

|(B−A)(p−α)+B j|
j+1 ,n ≥ p+1,

and following the procedure of Theorem 1, the proof is obvious.

Equality sign in (22) hold for the functions fn(z) defined by
(z f ′n(z))

′

= zp−1(1−Bδ6z)
(A−B)(p−α)

B

[
p− δ7z(A−B)(p−α)

1−Bδ7z

][
p+{pD+(C−D)(p−β )}δ8z

1+Dδ8z

]
, (23)

where |δ6|= |δ7|= |δ8|= 1.

REMARK 4. (i) For α = 0,β = 0, Theorem 7 gives the result for the class
C ∗

s (A,B;C,D; p).
(ii) For α = 0,β = 0, p = 1, Theorem 7 yields the result due to Singh and Singh [26].
(iii) Putting A = 1,B = −1,α = 0,β = 0, p = 1 in Theorem 7, it yields the result for the
class C ∗

s (C,D).
(iv) Substituting for A = 1,B = −1,C = (1− 2α)β ,D = β ,α = 0,β = 0, p = 1, the result
due to Selvaraj et al. [24], can be easily obtained from Theorem 7.
(v) For A = 1,B =−1,C = 1,D =−1,α = 0,β = 0, p = 1, Theorem 7 gives the result for
the class C ∗

s .
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THEOREM 8. If f ∈ C ∗
s (A,B;C,D; p;β ;α), then for |z|= r,0 < r < 1, we have

for B ̸= 0,
1
r

∫ r
0 t p(1−Bt)

A−B
B (p−α)

[
p
t −

(A−B)(p−α)
1−Bt

][
p−{pD+(C−D)(p−β )}t

1−Dt

]
dt ≤ | f ′(z)|

≤ 1
r

∫ r

0
t p(1+Bt)

A−B
B (p−α)

[
p
t
+

(A−B)(p−α)

1+Bt

][
p+{pD+(C−D)(p−β )}t

1+Dt

]
dt; (24)

∫ r
0

[
1
s

∫ s
0 t p(1−Bt)

(A−B)(p−α)
B

[
p
t −

(A−B)(p−α)
1−Bt

][
p−{pD+(C−D)(p−β )}t

1−Dt

]
dt
]

ds ≤ | f (z)|

≤
∫ r

0

[
1
s

∫ r

0
t p(1+Bt)

(A−B)(p−α)
B

[
p
t
+

(A−B)(p−α)

1+Bt

][
p+{pD+(C−D)(p−β )}t

1+Dt

]
dt
]

ds,

(25)
for B = 0,
1
r

∫ r
0 t p−1e−A(p−α)t [p−A(p−α)t]

[
p−{pD+(C−D)(p−β )}t

1−Dt

]
dt ≤ | f ′(z)|

≤ 1
r

∫ r

0
t p−1eA(p−α)t [p+A(p−α)t]

[
p+{pD+(C−D)(p−β )}t

1+Dt

]
dt; (26)

∫ r
0

[
1
s

∫ s
0 t p−1e−A(p−α)t [p−A(p−α)t]

[
p−{pD+(C−D)(p−β )}t

1−Dt

]
dt
]

ds ≤ | f (z)|

≤
∫ r

0

[
1
s

∫ s

0
t p−1eA(p−α)t [p+A(p−α)t]

[
p+{pD+(C−D)(p−β )}t

1+Dt

]
dt
]

ds. (27)

Estimates are sharp.

PROOF. Following the procedure of Theorem 2 and using the result that, for
g ∈ S ∗(A,B; p;α),
rp(1−Br)

(A−B)(p−α)
B

[
p
r −

(A−B)(p−α)
1−Br

]
≤ |g′(z)| ≤ rp(1+Br)

(A−B)(p−α)
B

[
p
r +

(A−B)(p−α)
1+Br

]
if B ̸= 0,

rp−1e−A(p−α)r [p−A(p−α)r]≤ |g′(z)| ≤ rp−1eA(p−α)r [p+A(p−α)r] if B = 0,

the results (24), (25), (26) and (27) can be easily derived.
Sharpness follows if we take fn(z) defined as

(z f ′n(z))
′ = zp(1+Bδ9z)

(A−B)(p−α)
B

[
p
z +

(A−B)(p−α)
1+Bδ10z

][
p+{pD+(C−D)(p−β )}δ11z

1+Dδ11z

]
if B ̸= 0,

(z f ′n(z))
′ = zp−1eA(p−α)δ12z

[
p
z +

(A−B)(p−α)
1+Bδ10z

][
p+{pD+(C−D)(p−β )}δ11z

1+Dδ11z

]
if B = 0,

where |δ9|= |δ10|= |δ11|= |δ12|= 1.

REMARK 5. (i) For α = 0,β = 0, Theorem 8 gives the result for the class
C ∗

s (A,B;C,D; p).
(ii) For α = 0,β = 0, p = 1, Theorem 8 yields the result due to Singh and Singh [26].
(iii) Putting A = 1,B = −1,α = 0,β = 0, p = 1 in Theorem 8, it yields the result for the
class C ∗

s (C,D).
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(iv) Substituting for A = 1,B = −1,C = (1− 2α)β ,D = β ,α = 0,β = 0, p = 1, the result
due to Selvaraj et al. [24], can be easily obtained from Theorem 8.
(v) For A = 1,B =−1,C = 1,D =−1,α = 0,β = 0, p = 1, Theorem 8 gives the result for
the class C ∗

s .

THEOREM 9. If f ∈ C ∗
s (A,B;C,D; p;β ;α), then

|ap+1| ≤
1

(p+1)2 [p(p−β )(C−D)+(p−α)(A−B){p+(C−D)(p−β )}], (28)

and
|ap+2| ≤ (A−B)(p−α)

p+2

[
p(p+2)+(p−β )(C−D)

2 + (C−D)(p−β )(1−D)
p+2

]
+ p(C−D)(p−β )

(p+2)2 if |(A−B)(p−α)−B| ≤ p+1, and

|ap+2| ≤ (A−B)(p−α)
p+2

[
[p(p+2)+(p−β )(C−D)][|(A−B)(p−α)−B|]

2(p+1) + (C−D)(p−β )(1−D)
p+2

]
+ p(C−D)(p−β )

(p+2)2 if |(A−B)(p−α)−B|> p+1. The bounds are sharp.

PROOF. For g ∈ S ∗(A,B; p;α),

|dp+1| ≤
(A−B)(p−α)

p+1
(29)

and

|dp+2| ≤
(A−B)(p−α)

2
max

{
1,

|(A−B)(p−α)−B|
p+1

}
. (30)

Using (29) and (30) and following the procedure of Theorem 4, the proof is obvious.
The bounds are sharp for the function defined in (23).

THEOREM 10. Let −1 ≤ D2 = D1 <C1 ≤C2 ≤ 1 and 0 ≤ β2 ≤ β1 < p, then

C ∗
s (A,B;C1,D1; p;β1;α)⊂ C ∗

s (A,B;C2,D2; p;β2;α).

PROOF. Following the procedure of Theorem 5 and using Lemma 2, the proof
is obvious.
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CORRECTION*
A remark on Normalized Laplacian eigenvalues

of signed graph
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Abstract

With this article in mind, we have found some results using eigenvalues of graph with sign.
It is intriguing to note that these results help us to find the determinant of Normalized
Laplacian matrix of signed graph and their coefficients of characteristic polynomial using

the number of vertices. Also we found bounds for the lowest value of eigenvalue.
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1. INTRODUCTION

The readers should refer to [6] for expression and notations of graph theory

and only simple and finite graphs are considered.

A Signed graph Γ = (G(V,E),∇) is a graph with positive and negative signs

in every edge, where G is the underlined graph without signs and ∇ is the

function from the collection of edges E to the set having positive and negative

signs.

One of the main applications of signed graphs is to represent the relationship

among people where we assign a positive sign if the relationship between two

individuals is pleasant, otherwise we assign a negative sign. [10] & [5].

The balanced signed graph was introduced by F.Harary[7] and he defines

that every cycle of a balanced signed graph has negative edges in even number

if not Γ is said to be unbalanced. In [8], Harary and Kebel showed a simple

algorithm for balancing of a signed graph.

A graph that has been marked Γν is a signed graph with positive or
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M, Restructured class of estimators for population mean using an auxiliary variable under

simple random sampling scheme. Journal of Applied Mathematics, Statistics and Informatics
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negative signs assigned to its vertices. The process of assigning signs to the

vertices is called marking ν. For v ∈ V (Γ), marked graph Γν is defined as

ν(v) =
∏

uv∈E(Γ)

∇(uv).

Switched signed graph Γν(Γ) was defined by R.P Abelson and Rosenburg

[14] which paved the way for the study of social behavior and mathematical

analysis in graph theory.

A signed graph Γ2 is obtain from a signed graph Γ1 by reversing the sign

of edges of Γ1 whose end vertices are having opposite sign, and their

underlined graphs G1 and G2 are isomorphic. The signed graph Γ1 switching

equivalent to Γ2, is represented as Γ1 ∼ Γ2.

Following is the characterization of switched signed graphs.

Proposition 1. [15] Any two signed graphs whose underlying graphs are

same are cycle isomorphic if, and only if they are switching equivalent.

In a signed graph, degree of each vertex can be calculated by

d = d+ + d− so that degree of vertices in a signed graph Γ and their

underlined graph is the same.

In adjacent matrix A(Γ), if two vertices are adjacent then the entry aij is

1 along with the sign of the edge, otherwise the entry is zero.

In a Laplacian matrix L(Γ), if vertices vi and vj are adjacent then the

entry aij is 1 with the opposite sign of corresponding adjacent edge vivj ,

otherwise aij is zero and the diagonal entries aii being the degree of the

vertex . Also L(Γ)=S(Γ)−A(Γ), where S is the diagonal matrix.

Here (Γ,−) is a signed graph in which each edge is assigned by minus sign

and L(Γ,−) is the Laplacian matrix of (Γ,−). Eigenvalues of Laplacian matrix

of a signed graph are λ1 ≥ λ2 ≥ λ3 .... ≥ λn.
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2. NORMALIZED LAPLACIAN MATRIX OF SIGNED GRAPH

F.R.K. Chung [17] introduced the Normalized Laplacian matrix. Lower

bounds of Normalized Laplacian were investigated by Grossman [13] and its

properties were stated by Chen et. al. in [11]. Also in [4] Cvetkovic et.al.

mentioned deeply about normalized Laplacian and their bounds of eigen

values.

The Normalized Laplacian matrix L(Γ) of a signed graph Γ with vertices

u and v is given by

Luv =


1, if u = v and du ̸= 0

−∇(uv) 1√
dudv

, if u and v are adjacent

0 otherwise.

Let 0 ≤ µ1 ≤ µ2 ≤ µ3 .... ≤ µn be the eigenvalues of Normalized

Laplacian matrix of Γ, with n vertices. Also L(Γ) = S−1/2L(Γ)S−1/2.

In 2003 Yaoping Hou. et. al. [16] established new bounds in the following

theorem.

Theorem 2. [16] Let Γ be a signed graph with n vertices. Then

λ1 ≤ 2(n− 1),

equality applies if and only if Γ is switching equivalent to a complete graph

with all edges being negative.

Some of the novel results prompted by the above theorem are presented

in this article.

Theorem 3. Let Γ = (G,∇) be a signed graph. The greatest eigenvalue

of Normalized Laplacian matrix L(Γ) is 2 if and only if Γ is switching

equivalent to a complete graph with all edges being negative.

Proof. If Γ ∼ (Kn,−) then µn(L(Γ)) = µn(S
−1/2 L(Γ) S−1/2)

=µn(S
−1/2 (S(Γ)−A(Γ)) S−1/2)

=µn(S
−1/2 (S(Γ))S−1/2 − S−1/2(A(Γ)) S−1/2)
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=µn(S
−1/2 (S(Γ))S−1/2)− µn(S

−1/2(A(Γ)) S−1/2)

=µn(S
−1/2 (S(Γ))S−1/2) + µn(S

−1/2(−A(Γ)) S−1/2)

= 1 + 1

= 2.

If µn = 2 then µn(S
−1/2(S(Γ)S−1/2) = µn(S

−1/2(−A(Γ))S−1/2) .

Thus, µn(A(Γ)) = µn(−(J − I)), where J is the all one matrix.

Hence Γ ∼ (Kn,−).

Theorem 4. Let Γ be a signed graph and Kn be the complete graph

with n vertices, Γ ∼ (Kn,−) if and only if µk=
n−2
n−1 , for k < n.

Proof. If Γ ∼ (Kn,−) then µk(L(Γ)) = µk(S
−1/2(L(Γ)) S−1/2)

=µk(S
−1/2 (S(Γ)−A(Γ)) S−1/2)

=µk(S
−1/2 (S(Γ))S−1/2 − S−1/2(A(Γ)) S−1/2)

=µk(S
−1/2 (S(Γ))S−1/2)− µk(S

−1/2(A(Γ)) S−1/2)

=µk(S
−1/2 (S(Γ))S−1/2) + µk(S

−1/2(−A(Γ)) S−1/2)

= 1 + −1
n−1

= n−2
n−1 .

If µk = n−2
n−1 then µk(S

−1/2 (S(Γ))S−1/2)= µk(S
−1/2(−A(Γ))S−1/2).

Thus, µk(S
−1/2 A(Γ) S−1/2) = µk (S−1/2(−(J − I)) S−1/2), where J is the
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all one matrix. Hence Γ ∼ (Kn,−).

Corollary 5. Let Γ be a signed graph. The greatest eigenvalue of

Normalized Laplacian matrix L(Γ) is 2 if and only if Γ is switching equivalent

to a complete bipartite graph with all edges being negative.

Proposition 6. Let Γ be a graph with sign. If Γ ∼ (Kn,−) then∑n
i=1 µi = n.

Proof.
∑n

i=1 µi = µ1 + µ2 + µ3 + ...+ µn

= 2 + (n− 1) n−2
n−1

= 2 + n - 2

= n.

3. DETERMINANT OF NORMALIZED LAPLACIAN MATRIX OF SIGNED
GRAPH

3.1. Matrix Tree Theorem for a Laplacian matrix

If bc be the number of essential spanning subgraphs which contain c

negative cycles, then

Det(L(Γ)) =
∑n

c=0 4
c bc.

From the above matrix tree theorem, we determine the determinant of

Normalized Laplacian matrix of a graph with sign and n number of vertices.

Proposition 7. Let Γ be a signed graph. If Γ ∼ (Kn,−) then

Det(L(Γ)) = 2{ (n−2)
(n−1)}

(n−1) .

Proof.

Det(L(Γ)) =
∏n

i=1 µi

= 2 · {1− 1
n−1} · {1−

1
n−1} · · · {1−

1
n−1}
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= 2 · n−2
n−1 · n−2

n−1 · n−2
n−1 · · · n−2

n−1

= 2 · {n−2
n−1}

(n−1) .

4. CHARACTERISTIC POLYNOMIAL COEFFICIENTS OF A
NORMALIZED LAPLACIAN MATRIX

In the study of chemical properties of molecules and their bond

structures, coefficients of a characteristic polynomial play a vital role. Ivailo

M. Mladenov et. al. [12] introduced an algorithm to find the coefficients of

characteristic polynomial of adjacent matrix of a graph. Kel’man expanded

the latter formula and it is known as Kel’man formula.

Kel’man formula is the method to find the coefficients of a characteristic

polynomial of a matrix which is given as follows.

Theorem 8. [1]

Let G be a simple graph. Then the characteristic polynomial coefficients

of a Normalized Laplacian matrix of the graph are provided by using

bn−k = (−1)n−k
∑

F∈Fk
γ(F ) where k ≥ 1 (for k = 0, bn = 0.)

Fk denotes the set of forests in G having k components and

γ(G) =

k∏
i=1

|Fi|

is the product of the orders of the components of the forest F .

Also in [3] Carla Silva Oliveria et. al. have found second and third

Laplacian coefficients of a characteristic polynomial in 2002. Francesco

Belardo and Slobodan K. Simic [9] have found Laplacian coefficients of signed

graph by the following theorem:

Theorem 9. [9] The Laplacian characteristic polynomial of Γ is given

by ψ(Γ, x) = xn + b1x
n−1 + ...+ bn−1x+ bn for any signed graph Γ, then

bi = (−1)i
∑

H∈Hi

w(H)

where Hi denotes the set of signed TU - subgraphs of Γ containing i edges.
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We now present a simplified way of finding the coefficient of Normalized

Laplacian matrix using the number of vertices.

Proposition 10. Let Γ = (G,∇) be a signed graph. If Γ ∼ (Kn,−),

then for a positive integer t,

tr(Lt) = 2t + { (n− 2)t

(n− 1)(t−1)
}

.

Proof.

tr(L) =
∑n

i=1 µi

= 2 + (n− 1) (n−2)
(n−1)

tr(L2) = 22 + (n− 1){n−2
n−1}

2.

tr(L3) = 23 + (n− 1){n−2
n−1}

3.

Similarly for an integer k,

tr(Lk) = 2k + (n− 1){n−2
n−1}

k

tr(Lk+1) =
∑n

i=1 µ
k+1
i

= 2k+1 + {n−2
n−1}

k+1 + ...+ {n−2
n−1}

k+1

= 2k+1 + (n− 1){n−2
n−1}

k+1.

Hence by induction,

tr(Lt) = 2t + (n− 1){n−2
n−1}

t

tr(Lt) = 2t + { (n−2)t

(n−1)(t−1) }.
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Examples:

tr(L) = 2 + (n− 1){n−2
n−1} = n.

tr(L2) = 22 + (n− 1){n−2
n−1}

2 = n2

n−1 .

tr(L3) = 23 + (n− 1){ (n−2)3

(n−1)3 } = n3+2n2−4n
(n−1)2 .

tr(L4) = 24 + (n− 1){ (n−2)4

(n−1)4 } = n4+8n3−24n2+16n
(n−1)3 .

Coefficients of characteristic polynomial of a Normalized Laplacian matrix

of signed graph Γ, a1, a2, a3, a4 are calculated as follows.

a1 = −tr(L)= −n.

a2 = −1
2 tr(B1L) where B1 = L+ a1I

= −1
2 (tr(L2)− ntr(L))

= 1
2{

n2(n−2)
(n−1) }.

a3 = −1
3 tr(B2L) where B2 = B1L+ a2I

= −1
3 tr(B1L

2 + a2L)

= −1
3 (tr(L3) + a1tr(L

2) + a2tr(L))

= −1
3 {8 + (n−2)3

(n−1)2 − n(4 + (n−2)2

(n−1) ) +
n
2 (

n2(n−2)
(n−1) )}

= −1
6 (n

5−5n4+6n3+4n2−8n
(n−1)2 ).

a4 = −1
4 tr(B3L) where B3 = B2L+ a3I

= −1
4 tr(B2L

2 + a3L)
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= −1
4 tr((B1L+ a2)L

2 + a3L)

= −1
4 tr((L+ a1)L

3 + a2L
2 + a3L)

= −1
4 (tr(L4) + a1tr(L

3) + a2tr(L
2) + a3tr(L))

= −1
4 (n

4+8n3−24n2+16n
(n−1)3 − n4+2n3−4n2

(n−1)2 + n5−2n4

2(n−1)2 − n6−5n5+6n4+4n3−8n2

6(n−1)2 )

= 1
24 (

n7−9n6+26n5−8n4−96n3+176n2−96n
(n−1)3 ).

Theorem 11. Let Γ be any signed graph which is switching equivalent

to a complete graph in which each edge is negative and

ψ(Γ, x) = xn + a1x
n−1 + ... + an−1x + an be the Normalized Laplacian

characteristic polynomial of Γ with a0 = 1. Then,

aς =
−1

ς

ς−1∑
m=0

amtr(L
ς−m)

where, aς is the coefficient of characteristic polynomial and ς ̸= 0.

Proof.

Since a1 = −tr(L) = −n,

a2 = −1
2 tr(B1L) where B1 = L+ a1I

= −1
2 (a0tr(L

2) + a1tr(L)).

Similarly for an integer k,

ak = −1
k (a0tr(L

k) + a1tr(L
k−1) + a2tr(L

k−2) + ...+ ak−1tr(L))

i.e., ak = −1
k

∑k−1
m=0 amtr(L

k−m).

ak+1 = −1
k+1 tr(BkL) where Bk = Bk−1L+ akI
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= −1
k+1 tr(Bk−1L

2 + akL)

= −1
k+1 tr((LBk−2 + ak−1)L

2 + akL)

= −1
k+1 tr(L

3Bk−2 + ak−1L
2 + akL)

= −1
k+1 (tr(L

3Bk−2) + ak−1tr(L
2) + aktr(L))

ak+1 = −1
k+1 (tr(L

4Bk−3) + tr(L3)ak−1 + tr(L2)ak + tr(L))

. . .

ak+1 = −1
k+1 (a0tr(L

k+1) + a1tr(L
k) + a2tr(L

k−1) + ...+ aktr(L))

i.e., ak+1 = −1
k+1

∑k
m=0 amtr(L

k+1−m).

Hence by induction,

aς =
−1

ς

ς−1∑
m=0

amtr(L
ς−m) where ς ̸= 0.

Corollary 12. For any signed graph Γ and Γ ∼ (Kn,−) , the Normalized

Laplacian characteristic polynomial of Γ is ψ(Γ, x) = a0x
n + a1x

n−1 + ... +

an−1x+ an with a0 = 1 then,

aς =
−1

ς

ς−1∑
m=0

am{2ς−m +
(n− 2)ς−m

(n− 1)(ς−(m+1))
} where, ς ̸= 0.

Proof. By Proposition 10,

tr(Lt) = 2t + { (n− 2)t

(n− 1)(t−1)
}.
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By Theorem 11,

aς =
−1

ς

ς−1∑
m=0

amtr(L
ς−m) where, ς ̸= 0.

i.e.,

aς =
−1

ς

ς−1∑
m=0

am{2ς−m +
(n− 2)ς−m

(n− 1)(ς−(m+1))
}.

Corollary 13. any signed graph Γ and Γ ∼ (Kn,−) , the Normalized

Laplacian characteristic polynomial of Γ is ψ(Γ, x) = a0x
n + a1x

n−1 + ... +

an−1x + an with a0 = 1 and µk be the Normalized Laplacian eigenvalue of Γ

then,

aς =
−1

ς

ς−1∑
m=0

am(2ς−m + (n− 1)µς−m
k )

where, ς ̸= 0 and k < n.

Proof. From theorem 4, µk = (n−2)
(n−1) hence by corollary 12,

aς =
−1

ς

ς−1∑
m=0

am(2ς−m + (n− 1)µς−m
k )

where, ς ̸= 0 and k < n.

5. BOUNDS OF EIGENVALUES OF NORMALIZED LAPLACIAN MATRIX
OF SIGNED GRAPH.

As we know, L = S−1/2LS−1/2 , where S−1/2 is invertible.

The vectors g and gj are defined as:

If f is the eigen function of L corresponding to eigenvalue µk, then g = U1/2f ,

gj = U1/2 fj

µk = inf

∑
(f(u)−∇(u, v)f(v))2∑

u f
2(u)du

where degree of the vertex u is du.
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If Γ ∼ (Kn,−) and for a vertex v

(1− µk)f(v) =
1

dv

∑
u∼v

∇(u, v)f(u)

where, u ∼ v means u and v vertices are adjacent. Let v1, v2, ..., vm+1 be

adjacent vertices sequence, f(v1) be maximal and f(vm+1) ≤ 0. Let yi = f(vi)

and β = 1− µk. We get

βy1 =
1

dv1

∑
u∼v1

∇(u, v1)f(u) ≤
y2
dv1

+
(deg(v1)− 1)y1

dv1
≤ y2

d
+

(d− 1)y1
d

.

Assume y1 = 1, so that y2 ≥ 1− µkd.

In view of the fact, vi is adjacent to vi+1 and vi−1 for 2 ≤ i ≤ m, we get

βyi ≤
yi−1 + yi+1

d
+

(d− 2)y1
d

.

This implies

yi+1 ≥ βdyi − yi−1 − (d− 2).

If Γ ∼ (Kn,−) we observe the following:

(1) (1− µk) =
1

(n−1)

(2) f(v1) =
∑

u∼v1
∇(u, v1)f(u)

(3) y2 ≥ 3− n

(4) ym+1 ≥ 3− 2n.

Proposition 14. For 3 ≤ r ≤ m+1, yr ≥ 1−µkβ
r−3dr−2−µkβ

r−2dr−1.

Proof. We have,

y2 ≥ 1− µkd (1)

yi+1 ≥ βdyi − yi−1 − (d− 2). (2)

Proof is by induction on r.
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From (2),

y3 ≥ 1− µkd− µkβd2.

Suppose result holds for r ≤ i, where i ≥ 3.

From (2)

y3 ≥ βdy2 − 1− (d− 2)

y4 ≥ βdy3 − y2 − (d− 2)

y5 ≥ βdy4 − y3 − (d− 2)

. . .

yi ≥ βdyi−1 − yi−2 − (d− 2)

yi+1 ≥ βdyi − yi−1 − (d− 2).

∴ (y2 + y3 + y4 + ...+ yi + yi+1) ≥ βd(y2 + y3 + y4 + ...+ yi−1 + yi)− (y1 + y2 + y3 +

y4 + ...+ yi−2 + yi−1)− (i− 1)(d− 2) + 1− µkd.

yi+1 ≥ βd(y2+y3+y4+...+yi−1+yi)−(2y2+2y3+2y4+...+2yi−1+2yi)−(i−1)(d−2)+yi−µkd.

i.e., yi+1 ≥ (βd−2)(y2+y3+y4+ ...+yi−1+yi)+yi−(i−1)(d−2)−µkd (3)

From (2) we have,

y3 ≥ 1− µkd− µkβd
2

y4 ≥ 1− µkβd
2 − µkβ

2d3.

In general

yi ≥ 1− µkβ
i−3di−2 − µkβ

i−2di−1
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so,

(y2+y3+y4+...+yi−1+yi) ≥ (i−1)−2µkd−2µkβd
2−2µkβ

2d3...2µkβ
i−3di−2−µkβ

i−2di−1.

Also we have

yi ≥ 1− µkβ
i−3di−2 − µkβ

i−2di−1.

From (3) we get yi+1 ≥ (βd−2)((i−1)−2µkd−2µkβd
2−2µkβ

2d3− ...−
2µkβ

i−3di−2−µkβ
i−2di−1)+(1−µkβ

i−3di−2−µkβ
i−2di−1)−µkd−(i−1)(d−2)

yi+1 ≥ 1−(i−4)µkd+2µkβd
2+2µ2

kd
3...2µkβ

i−4di−3+µkβ
i−3di−2−µkβ

i−1di−µkβ
i−2di−1

.

yi+1 ≥ 1 + (i− 3)µkd+ 2µkd+ 2µkd+ ...+ 2µkd+ µkd− µkβ
i−2di−1 − µkβ

i−1di

yi+1 ≥ 1 + (i− 3)µkd− µkβ
i−2di − µkβ

i−2di−1

yi+1 ≥ 1− µkβ
i−1di − µkβ

i−2di−1.

As a result, yr ≥ 1− µkβ
r−3dr−2 − µkβ

r−2dr−1.

Theorem 15. Let Γ be a graph with sign having n vertices and if Γ ∼
(Kn,−). Then µk ≥ 1

n .

Proof. From Proposition 14,

0 ≥ ym+1 ≥ 1− µkβ
m−2dm−1 − µkβ

m−1dm

0 ≥ 1− µkd
m−1 − µkd

m

µk ≥ 1

(d+ 1)dm−1
.

The distance between a vertex that maximises f and one that minimises f

is at most the graph’s diameter ’D’., therefore m ≤ ⌈D/2⌉. Since the diameter

is 1,

µk ≥ 1

(d+ 1)
.

Hence the result follows.
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6. CONCLUSION

Usually the coefficients of the characteristic polynomial of a graph or a

signed graph are found using the concept of trees and TU subgraphs. But in

this paper, we have given a simple and an elegant proof of finding the

Laplacian coefficients of the characteristic polynomial of a signed graph using

the number of vertices of the graph. We believe that this new approach will

pave way for further research in this area.
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