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Abstract 

 
We obtained a new generalization of Lindley-Quasi Xgamma distribution by adding weight parameter to it 

through weighting technique and have shown the flexibility of proposed model. Expression for reliability 
measures, order statistics, Bonferroni curves & indices, Renyi entropy along with some other important 

properties are derived. Maximum likelihood estimation method is put to use for estimation of unknown 

parameters of proposed model. Simulation study for checking the performance of maximum likelihood 
estimates and for model comparison is carried out. Proposed model and its related models are fitted to real 

life data sets and goodness of fit measure Kolmogorov statistic & p-value, loss of information criteria’s 

AIC, BIC, AICC & HQIC are computed through R software to check the applicability of proposed model 
in real life. The significance of weight parameter is also tested by using likelihood ratio test for both 

randomly generated data as well as real life data. 
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1. INTRODUCTION 

Probability models are and have been generalized for providing more flexibility 

in terms of hazard rate, reliability, prediction and moments. Because of presence of 

extra parameter generalized probability models find greater applicability in real life. 

Probability models can be generalized by using various methods. One of the method 

employed for generalizing probability models by adding weight parameter is 

weighting technique. Weighted models are mostly used in those situations where 

observations are recorded with unequal probabilities which generally happens in 

encountered sampling. Weighted models find applications in many fields of real life 

like forestry, medical sciences, socioeconomic surveys etc. Warren [1] applied the 

size biased distributions in connection with sampling wood cells. Hassan, Dar and 

Para [2] introduced a new generalization of Ishita distribution and obtained vital 

mathematical properties of the distribution along with applications of the proposed 

model. Hassan, Wani and Para [3] formulated three parameter Quasi Lindley 
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distribution by using weighting technique and obtained various properties of that 

model.  Das and Roy [4] studied the length biased weighted generalized Rayleigh 

distribution with properties and applications. Patil and Rao [5] introduced weighted 

distributions and size biased sampling with applications to wild life populations and 

human families and obtained its properties. Hassan, Wani and Shafi [6] introduced 

Poisson Pranav distribution and obtained its various mathematical properties along 

with obtaining applications of the proposed model. Rezaeia, Nadarajah and  

Tahghighnia [7] worked on a new three parameter life time distribution and studied 

its properties & applications. Hassan, Wani, Bilal and Akhtar [8] introduced weighted 

Quasi Xgamma distribution and studied its properties and applications. 

Hassan, Wani, Shafi and Sheikh [9] introduced Lindley-Quasi Xgamma Distribution 

(LQXD). With p.d.f, c.d.f and cth moment about origin  )(
c

xE   given below in (1.1), 

(1.2) and (1.3) respectively 
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The important statistical properties along with application in real life were studied for 

the model given in (1.1).   

In this paper we have obtained weighted version of Lindley-Quasi Xgamma (LQXD) 

distribution with p.d.f given in (1.1). 
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2. WEIGHTED LINDLEY-QUASI XGAMMA DISTRIBUTION 

Consider X to be a non-negative random variable following Lindley Quasi 

Xgamma distribution with p.d.f ( ).xf  
Suppose ( )xW  is the non-negative weight 

function, then the probability density function of the weighted Lindley Quasi 

Xgamma distribution (WLQXD) is  

( )
( ) ( )

( )( )
0, = x

xwE

xfxW
xfw

 

Where ( ) c
xxw = is a non-negative weight function and )(),(

c
xExf are given in (1.1), 

(1.3) respectively. 
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Proof of (2.2) being a probability density function is given below 

PROOF: ( )
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So (2.2) is a probability density function 

where 
 −− 

=
0

1








dxex

x is a  gamma function

 

The plots of p.d.f and c.d.f  for different values of parameters are given in graphs 1 & 

2 below. Graph 1 indicating that proposed model is positively skewed & platykurtic 

as well as leptokurtic. Graph 2 Indicating curve starts with zero and ends at one and 

showing c.d.f is non-decreasing function. 

 

The corresponding c.d.f of Weighted Lindley-Quasi Xgamma distribution is given in 

(2.3) & obtained as
( ) ( )( )
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Put tx = in (2.3) 

dtdx =  

xtxxandtxas →→→→ ,0,0  
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where ( ) 
−−

=
x ts

dtetxs
0

1
, is a lower incomplete gamma function 

3. NEED OF PROPOSED MODEL AND MOTIVATION FOR 
DEVELOPING PROPOSED MODEL 

There are many situations in real life where models with less parameters don’t 

perform better. Here in this paper we added an extra parameter known as weight 

parameter to two parameter Lindley-Quasi Xgamma distribution to obtain a 

generalized model which will find greater applicability in dealing with complex data. 

It can be observed from Table 1 that proposed model can be used for over dispersed 

as well as under dispersed data. Addition of weight parameter also brings the 

flexibility in terms of moments as can be seen from graphs of probability density 

function and hazard rate. Complex data applicability and increased flexibility were 

two important points which motivated us to work on this model. 

4. RELIABILITY MEASURES 

This division of paper presents survival function, hazard rate, reverse hazard 

rate of the proposed Weighted Lindley-Quasi Xgamma distribution for random 

variable X , where X  represents the lifetime of a system. 

4.1. Reliability Function R(x) 

The reliability function or survival function 𝑅(𝑥) gives the numerical value of 

odds of surviving of a system beyond a specified time )(t . 

Mathematically 

)(1)()( xFtXPxR ww −==  

The reliability function or the survival function of Weighted Lindley-Quasi Xgamma 

distribution is obtained as: 
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4.2. Hazard Rate 

The hazard rate which is defined as chance that a system which is surviving up 

to time “t” will fail in the small time interval after “t” is obtained for WLQXD as: 
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The graphs of reliability function and hazard rate of WLQXD for different values of 

parameter are given below 

 

 

 

From the above graph of hazard rate it is revealed that our proposed model possesses 

non-decreasing hazard rate and it can be also seen that hazard rate becomes constant 

as value of x  increases. There are many situations in real life where hazard rate is non-

decreasing, like lifetime of human beings, animals etc.  
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4.3. Reverse Hazard Rate 

The reverse hazard rate of the Weighted Lindley-Quasi Xgamma distribution is given 

as:  
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5. STATISTICAL PROPERTIES 

Moments, characteristic function, mean deviation, harmonic mean, coefficient 

of variation characterize probability models. Here we have obtained these statistical 

properties for proposed Weighted Lindley-Quasi Xgamma distribution.  

5.1. Moments and Related Measures 

Assuming X  to be a random variable having Weighted Lindley-Quasi Xgamma 

distribution with parameters c, and .Then the rth moment about origin for a given 

probability distribution is given by 
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Put r=1 in equation (5.1.1) we get 
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Which is mean of the WLQXD. 
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Put r=2 in equation (5.1.1) we get 
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The variance 2 of WLQXD is 
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The coefficient of variation (C.V) of WLQXD is 
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The index of dispersion )( of WLQXD is
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Table 1: Description of WLQXD for different parameter values. 

    c  Mean Variance Index of 

dispersion 

Coefficient 

of variation 

0.5 0.5 0.3 6.353521 14.5477 2.289707 0.6003198 

2.5 0.5 0.5 4.704545 14.00362 2.976614 0.7954308 

2.5 5.5 1.5 0.6199305 0.1368836 0.2208048 0.5968055 

0.5 5.5 2.0 0.7485493 0.1655399 0.2211476 0.5435393 

 

It can be observed from Table 1 that WLQXD is over dispersed as well as under 

dispersed for different parameter values. 

5.2. Harmonic Mean of Weighted Lindley-Quasi Xgamma Distribution 

The harmonic mean H of the WLQXD is determined as 
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5.3. Mean Deviation about Mean and Median of WLQXD 

We have derived the expressions for mean deviation about mean and median of 

WLQXD in this section. 

THEOREM 1. If X has the WLQXD ( )c,, , then the mean deviation about mean 

))(( 1 X  and mean deviation about median ))(( 2 X  are given as: 
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And 
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PROOF. Mean deviation about mean and mean deviation about median are 

defined as  
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Now  
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Using expressions (5.3.1), (5.3.2), (5.3.3) and (5.3.4) and expression for c.d.f (2.4) 

we obtain mean deviation about mean ))(( 1 X  and mean deviation about median 
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5.4. Generating functions of Weighted Lindley-Quasi Xgamma Distribution  

We will derive moment generating function and characteristic function of 

WLQXD in this segment of paper. 

THEOREM 2. If ),,(~ cWLQXDX  then the moment generating function )(tM X
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And 
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Which is the m.g.f of Weighted Lindley-Quasi Xgamma distribution. 

Also we know that  ( ) ( )itMt XX =  
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Which is the characteristic function of WLQXD distribution.  
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6. ORDER STATISTICS OF WEIGHTED LINDLEY-QUASI XGAMMA 

DISTRIBUTION 

Consider ( ) ( ) ( ) ( )nXXXX ....,,, 321
to be the ordered statistics of the random sample 

nxxxx ,....,, 321  obtained from the Weighted Lindley-Quasi Xgamma distribution with 

cumulative distribution function ( )xFw and probability density function ( )xf w , then the 

probability density function of vth order statistics ( )vX  is given by: 
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Using the equations (2.2) and (2.3), the probability density function of vth order 

statistics of Weighted Lindley-Quasi Xgamma distribution is given by: 
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Then, the p.d.f of first order statistic
( )1X  of Weighted Lindley-Quasi Xgamma 

distribution is given by: 
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and the pdf of nth order statistic 
( )nX of Weighted Lindley-Quasi Xgamma distribution 

is given as: 
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7. BONFERRONI AND LORENZ CURVES AND INDICES OF WLQXD 

The Bonferroni curve ))(( pB , Lorenz curve ))(( pL , Bonferroni index )(B   and Gini 

index )(G have find applicability in fields of economics, demography, reliability, life 

testing and medical sciences. The Bonferroni and Lorenz curves are defined as 
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Using the p.d.f (2.2) of WLQXD we get 
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Using equation (7.5) in (7.1) & (7.2) we get 

( ) ( )
( ) 









++−+++++

+++−+++++
=

))1()(1(2))2)(1(2)((!

),3(),2()1(2),4(),2(2)(1
)(

cccc

qcqcqcqc

p
pB







        

(7.6) 

And 
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Using (7.6) & (7.7) in (7.3) & (7.4) we get 
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8. RENYI ENTROPY  

The information associated with various values of random variable following a 

particular distribution is called entropy. Renyi entropy )(RT  of random variable X 

following Weighted Lindley-Quasi Xgamma distribution is obtained as 
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Using the binomial expansion  
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Using (8.2) in (8.1) we get 
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9. ESTIMATION OF PARAMETERS OF WEIGHTED LINDLEY-QUASI-
XGAMMA DISTRIBUTION 

Parameters are estimated by using method of maximum likelihood estimation. 

Considering nxxx ,..., 21 to be the random sample of size n drawn from Weighted 

Lindley-Quasi Xgamma distribution having density function given by (2.2), then the 

likelihood function of WLQXD is given as: 
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Taking log on both sides of likelihood function we get log likelihood function as: 
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(9.1)              

Now partially differentiate (9.1) with respect to c,,  and equating the result to zero, 

we obtain the following normal equations,  
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MLEs of c,, cannot be obtained by solving above complex equations as these 

equations are not in closed form. So we solve above equations by using iteration 

method through R software. 
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10. SIMULATION STUDY 

In this part of paper we have carried out the simulation study for checking the 

performance of maximum likelihood (ML) estimates by taking different sample sizes 

(n=30, 50, 70, 110). We have used the inverse CDF technique for data simulation for 

WLQXD using R software. The process was repeated 1000 times for calculation of 

bias, variance & mean square error (MSE) as are given values in Table 2.  For two 

parameter combinations of WLQXD, decreasing trend is being observed in average 

bias, variance and MSE as we increase the sample size. Hence, the performance of 

ML estimators is quite good and consistent in case of Weighted Lindley-Quasi 

Xgamma Distribution. 

 

Table 2: Simulation Study of ML estimators for WLQXD. 

 

Parameter 

 

n 

(sample 

size) 

8.0,7.0,8.0 === c  6.0,7.1,5.0 === c  

Bias Variance MSE Bias Variance MSE 

 

  
 

 

30 

0.4862598 0.4406534 0.677102 0.40865 0.540489 0.7074845 

  1.625651 2.056811 4.699553 0.6685304 1.925161 2.372094 

c  0.4383506 0.5523539 0.7445051 0.5508202 0.5480579 0.8514608 

  
 

 

50 

0.478908 0.438007 0.6673606 0.36540 0.454492 0.5880101 

  1.434994 0.9519631 3.011171 0.4003302 1.001894 1.162159 

c  0.3290241 0.2367339 0.3449908 0.4239412 0.2483344 0.4280606 

  
 

 

70 

0.467299 0.4364103 0.6547787 0.30907 0.447506 0.5430311 

  1.261992 0.6351194 2.227743 0.338809 0.6839647 0.7987562 

c  0.2534664 0.1573207 0.2215659 0.3918621 0.1738424 0.3273983 

  
 

 

110 

0.459871 0.4333168 0.6447982 0.26780 0.398899 0.4706166 

  1.17978 0.3789148 1.770795 0.2331814 0.4179511 0.4723247 

c  0.2156018 0.09346848 0.1399526 0.3397029 0.1026403 0.2180383 
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11. TESTING SIGNIFICANCE OF WEIGHT PARAMETER ON BASIS OF 

SIMULATED DATA FROM WLQXD 

For comparing proposed model with base model and for testing the significance 

of weighted parameter we generated random samples of sizes (50, 100, 200, 500) from 

WLQXD using inverse CDF technique. It is evident from the Table 3 that weighted 

parameter plays a highly significant role for large samples. Even though in small 

samples, the AIC, AICC, BIC and Negative Log likelihood values are also minimum 

in case of Weighted model as compared to base model. LR statistic for testing H0 

versus H1 is ))ˆ()ˆ((2 0−= LL , where ̂ and
0̂ are the MLEs under H1 and H0. The 

statistic   is asymptotically →nas ( ) distributed as 2
k , with k degrees of freedom 

which is equal to the difference in dimensionality of ̂ and 0̂ . H0 will be rejected if 

the LR-test p-value is <0.01 (or LR Statistic value >3.841) at 95% confidence level 

Table 3: Model Comparison Based On Simulated Data from WLQXD. 

5.1ˆ,9.0ˆ,6.0ˆ === c  Parameter Estimates Likelihood 

Ratio 

Statistic Criterion WLQXD LQXD 
Sample 

Size (n) 
WLQXD LQXD 

-logL 13.02580 17.33376 

50 

 

)(0.9328238

4.8614277ˆ

)(3.0450987

 0.7541315ˆ

)(0.3682644

 0.7756921ˆ

=

=

=





c

 

(0.352400)

 3.107664ˆ

 (1.466524)

 1.317147ˆ

=

=





 
8.615 

AIC 32.05161 38.66752 

AICC 24.05161 32.66752 

BIC 37.78767 42.49157 

-logL 19.48443 31.00223 

100 

)(0.6873024

 5.3480262ˆ

 )(3.0526314

 1.9131216ˆ

)(0.2523067

 0.9303426ˆ

=

=

=





c

 

)(0.2635093

 3.1965086ˆ

)(1.1262244

 1.6114539ˆ

=

=





 
23.035 

AIC 44.96885 66.00447 

AICC 36.96885 60.00447 

BIC 52.78436 71.21481 
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-logL 33.61176 61.80406 

200 

)(0.6560791

 5.9318359ˆ

 )(1.9152323

0.4499443 ˆ

.)(0.2734827

 1.1748909ˆ

=

=

=





c

 

)(0.1854941

 3.2011676ˆ

)(0.7844924

 1.5711807ˆ

=

=





 
56.384 

AIC 73.22353 127.60812 

AICC 65.22353 121.6081 

BIC 83.11848 134.2048 

-logL 106.5939 134.1149 

500 

 8)(0.2643538

 4.64187400 ˆ

3)(1.0533225

 1.50125869ˆ

4)(0.0891730

 0.54764349ˆ

=

=

=





c

 

)(0.1221850

 3.2970302 ˆ

 )(0.5568915

1.5740119ˆ

=

=





 
55.042 

AIC 219.1878 272.2297 

AICC 211.1878 266.2297 

BIC 231.8316 280.6589 

 

12. APPLICATIONS OF WEIGHTED LINDLEY-QUASI XGAMMA 
DISTRIBUTION 

Proposed model, its base model and some other lifetime models are fitted to two 

real life data sets for testing how fine proposed model fits to real life data sets as 

compared to other mentioned models. 

DATA SET 1. The data set given in Table 4 represents the tensile strength 

measures in GPa of 69 carbon fibres tested under tension at gauge lengths of 20mm  

and has been taken from Bader and Priest [10]. 

Table 4: Tensile strength measures in GPa of 69 carbon fibres. 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 

1.944 1.958 1.966 1.997 2.006 2.021 2.027 2.055 

2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 

2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 

2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554 

2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 

2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 

2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096 

3.128 3.233 3.433 3.585 3.585    
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DATA SET 2. This data set given in Table 5 is due to Smith and Naylor [11] 

consists of 63 observations of the strengths of 1.5 cm glass fibres, originally obtained 

by workers at the UK National Physical Laboratory.  

Table 5: The strengths of 1.5 cm glass fibres of 63 observations. 

0.55 0.74 0.77 0.81 0.84 0.93 1.04 1.11 

1.13 1.24 1.25 1.27 1.28 1.29 1.30 1.36 

1.39 1.42 1.48 1.48 1.49 1.49 1.50 1.50 

1.51 1.52 1.53 1.54 1.55 1.55 1.58 1.59 

1.60 1.61 1.61 1.61 1.61 1.62 1.62 1.63 

1.64 1.66 1.66 1.66 1.67 1.68 1.68 1.69 

1.70 1.70 1.73 1.76 1.76 1.77 1.78 1.81 

1.82 1.84 1.84 1.89 2.00 2.01 2.24  

 

For the analysis of both the data sets we used R Software version 3.5.3. 

Table 6: Summary Statistic of data set 1 and 2. 

Data 

set  

Number of 

observations  

Min. Mean First 

Quartile 

Median Third 

Quartile 

Max. 

1 69 1.312 2.451 2.098 2.478 2.773 3.585 

2 63 0.550 1.507 1.375 1.590   1.685 2.240 

  

Table 7: Model function of fitted models. 

Distribution Model function 

Weighted Lindley Quasi 

Xgamma Distribution 

(WLQXD) 
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Table 8: ML estimates, -logL, AIC, AICC, BIC, HQIC, KS-distance, for fitted 

WLQXD and other mentioned models for data set 1. 

 

Table 9: ML estimates, -logL, AIC, AICC, BIC, HQIC, KS-distance, for fitted 

WLQXD and other mentioned models for data set 2. 

 

Distribution WLQXD LQXD QLD ED QAD 

-logL 49.9985 96.20767 105.7322 130.8676 92.28544 

AIC 105.997 196.4153 215.4644 263.7352 188.5709 

AICC 106.3662 196.5972 215.6462 263.7949 188.7527 

BIC 112.6993 200.8836 219.9326 265.9693 193.0391 

HQIC 108.656 198.188 217.2371 264.6216 190.3436 

KS-Distance 

(D) 
0.057772 0.355 0.36154 0.44828 0.31119 

Likelihood 

ratio statistic 
                          92.418   

   

ML Estimates 

1.716879)  (

 9.793707ˆ

5)(958.21578

125.672241ˆ

5.169830)  (

 21.760292ˆ

=

=

=





c

 1)(0.0583184

 0.98255426ˆ

001000.0ˆ

=

=





 

5)(0.0635997

0.8156695ˆ

001000.0ˆ

=

=





 

)(0.2951056 

 2.4513330ˆ =

 
2)(0.0677973

1.22351031ˆ

001000.0ˆ

=

=





 

Distribution WLQXD LQXD QLD ED QAD 

-logL 23.75059 73.63075 66.34654 88.83032 54.55285 

AIC 53.50119 151.2615 136.6931 179.6606 113.1057 

AICC 53.90797 151.4615 136.8931 179.7262 113.3057 

BIC 59.93059 155.5478 140.9793 181.8038 117.392 

HQIC 56.0299 152.9473 138.3789 180.5035 114.7915 

KS-Distance (D) 0.2156 0.30991 0.34707 0.418 0.30549 

Likelihood ratio 

statistic 
                         99.760       

ML Estimates 

1.464477) (

  11.732504ˆ

0.001000ˆ

 14.829858ˆ

=

=

=





c

 

)(0.1004913

 1.4647349ˆ

001000.0ˆ

=

=





 

)(0.1075059

 1.3269391ˆ

001000.0ˆ

=

=





 

(0.189842) 

 1.506826ˆ =

 
)(0.1132172

 1.9900949ˆ

001000.0ˆ

=

=





 



JAMSI, 17 (2021), No. 1 27 

 

 
Different criteria’s of goodness of fit like AIC, BIC, AICC, HQIC and K-S distance 

have been computed by using R software for both the data sets and it has been 

observed from Tables 8 and 9 that proposed model possesses lesser AIC, BIC, AICC, 

HQIC & K-S distance values as compared to Lindley Quasi Xgamma distribution, 

Quasi Lindley distribution, Exponential distribution and Quasi Akash distribution for 

both the data sets. Hence proposed model provides a good fit to both the mentioned 

data sets. 

AIC = 2k-2logL                               AICC = AIC+
1

)1(2

−−

+

kn

kk  

 BIC = k logn-2logL                         HQIC=2k log(log(n))-2 log L 

Where k= number of parameters in model 

n= size of the sample (number of observations in data set)  

logL= value of likelihood function of model 

Likelihood ratio statistic is used for testing the significance of weight parameter in 

both the data sets. For testing 0:0 =cH  versus 0:1 cH  the LR statistic for testing 0H

is 418.92)}ˆ()ˆ({2 01 =−= LL for data set 1 as in Table 8, 760.99)}ˆ()ˆ({2 02 =−= LL

for data set 2 as in Table 9, where ̂ and 0̂ are MLEs under 1H  and 0H .LR statistic

 ~ )841.3)05.0((
2

)1( == as →n , where 1= degrees of freedom is the difference in 

dimensionality. From Table 8 841.3418.921 = & from Table 9 841.3760.992 = at 

5% level of significance for both the data sets, so we reject 0H and conclude that 

weight parameter c  plays statistically a significant role. 



28 S. A. Wani and S. Shafi 

 

 

 

 

13. CONCLUSION 

Generalized version of Lindley-Quasi Xgamma distribution by using weighting 

technique has been proposed in this paper. We obtained the important statistical 

properties like moments, reliability, moment generating function, order statistics, 

Bonferroni and Gini indices of formulated model. Expression for Renyi entropy has 

been derived. For obtaining the estimates of unknown parameters maximum 

likelihood estimation method is used. For testing the suitability of ML estimates 

simulation study has been carried which showed that ML estimation method performs 

well for proposed model. For testing the goodness of fit of proposed model and for 

investigating the application of proposed model in real life we fitted our proposed 

model and its related models to two real life data sets and computed log-likelihood 

values, AIC, AICC, HQIC, BIC and Kolmogorov statistic (D). We observed that our 

model possesses lesser values of AIC, BIC, AICC, HQIC and D values. Hence our 

model finds greater applicability in modeling survival times. From generated data as 

well as from real life data significant role of weight parameter has been observed. 
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In the present paper, we study and develop Fractional derivatives of multivariable A – function. We derive 

two theorems which will act as the key formulas from which can obtain their special cases. 
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1. INTRODUCTION 

A number of earlier works on the subject of fractional calculus give interesting 

account of the theory and application of fractional calculus operators in many different 

areas of mathematical analysis. In this paper, we define the Fractional Derivatives 

involving A – function of multivariable and derive two main theorems involving 

Fractional Derivative of the product of A – function of multivariable and the Horn’s 

function. Some new and known results are also established as special cases of our 

main results. The  Fractional  Derivative  of  the  product  of  the  multivariable  A – 

function  and Horn’s  function  has  not  been established so far, and  some  new  

Fractional  Derivative  formulae  for  the  product  of  the  multivariable  A – function  

and  Horn’s  function  are  derived  by making  use  of  generalized Leibnitz rule. 

Recently, Berndt and Bowman [1], Chaurasia and Godika  [2], Saxena [3], Tripathi et 

al [4] gives  some  integrals  and  series.  

 

Gautam and Asgar [5, 6], Ram and  Kumar [7], Srivastava and Panda [8] and several 

other authors have evaluated  some  definite  and  indefinite  integrals  involving  the  

A – function  of  one, two  and  multivariables.   
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2. DEFINITION OF FRACTIONAL DERIVATIVE 

Following Oldham and Spainer [9], we define the (Riemann Liouville) fractional 

derivatives of a function f(x) of complex order 𝜗 or alternatively (𝑎 − 𝜗)𝑡ℎ   by the 

following 

      𝛼𝐷𝑥
𝜗{𝑓(𝑥)} = {

1

⎾(−𝜗)
∫ (𝑥 − 𝑡)−𝜗−1𝑓(𝑦)𝑑𝑦 , 𝑅𝑒 (𝜗) < 0,

𝑥

𝛼

𝑑𝑛

𝑑𝑥𝑛 𝛼𝐷𝑥
𝜗−𝑘{𝑓(𝑥)}, 0 ≤ 𝑅𝑒 (𝜗) < 𝑛,

                                       (2.1) 

where n is a positive integer . 

For simplicity, the special case of the Fractional Derivative Operator 𝛼𝐷𝑥
𝜗 when 𝛼 =

0 will be written as 𝛼𝐷𝑥
𝜗 .  Thus, we have 

       0𝐷𝑥
𝜗 = 𝐷𝑥

𝜗.                                                                                            (2.2) 

 

3. MAIN RESULTS 

THEOREM 1.  If  min{𝜌𝑟,𝜎𝑟} > 0, | arg(𝑥 𝜉⁄ ) | <  𝜋, Re (m) +𝜌𝑟 min {Re (𝑏𝑗,𝛽𝑗)}>

 −1 (𝑗 = 1, … . , 𝑟),|𝑧𝑟𝑥𝜌𝑟  |  <  𝑟1, |(𝑥 + 𝜉)𝜎𝑟 𝑧𝑟 | < 𝑟2, 𝑟1 + 𝑟2 = 1 ;  then 

𝐷𝑥
𝜗{𝑥𝑚(𝑥 +

𝜉)𝜆𝐴𝑝𝑟,𝑞𝑟:𝑌

0.𝑛𝑟;𝑋
[
𝑧1𝑥𝜌1(𝑥 + 𝜉)𝜎1

⋮
𝑧𝑟𝑥𝜌𝑟(𝑥 + 𝜉)𝜎𝑟

| ,…,…
,…,…,

] 𝐺1(𝛾, 𝛿, 𝛿′: 𝑍2 𝑥𝜌2,(x+ξ)𝜎2𝑧3, . . , . . , 𝑧𝑟)} 

=∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)!(𝑠)!
∞
𝑟,𝑠=0 (𝑧2𝑥𝜌2 )𝑟(𝑧3𝜉𝜎2)𝑠𝑧𝑟𝜉𝜆𝑥𝑚−𝜗 ∑

(𝑥 𝜉⁄ )𝑅

(𝑅)!
∞
𝑅=0  

𝐴𝑝𝑟+2,𝑞𝑟+2:𝑌

0.𝑛𝑟+2;𝑋
[
𝑧1𝜉𝜎1𝑥𝜌1

⋮
𝑧𝑟𝜉𝜎𝑟𝑥𝜌𝑟

|
(−𝜆−𝜎2𝑠,𝜎1,…..,𝜎𝑟),(−𝑅−𝑚−𝜌2𝑟,𝜌1,…,..𝜌𝑟),…,……

….,….(𝑅−𝜆−𝜎2𝑠,𝜎1,…,..𝜎𝑟)(𝜗−𝑚−𝑅−𝜎2𝑠,𝜌1,….,…,𝜌𝑟)
].              (3.1)    

PROOF. We first replace the A – function of multivariable occurring on the left 

–hand – side by its Mellin –Barnes type contour integral and Horn’s function 𝐺1, and 

changing the order of integration and differentiation, which is readily justified in view 

of conditions stated above and collecting the powers of x and (x+ξ), we get 

∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)! (𝑠)!

∞

𝑟,𝑠=0

 𝑧2
𝑟𝑧3

𝑠
1

(2𝜋𝜔)𝑟  ∫𝐿1
, … . , ∫𝐿𝑟

∅(𝑠1, … . . , 𝑠𝑟) ∏ ∅𝑖

𝑟

𝑖=1

(𝑠𝑖)𝑧𝑖
𝑠𝑖  

            {𝐷𝑥
𝑣𝑥𝑚+𝜌1𝑠+𝜌2𝑟𝛼(𝑥 + 𝜉)𝜆+𝜎1𝑠+𝜎2𝑟)} d𝑠1, … , 𝑑𝑠𝑟           (3.2) 
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Now, applying well known binomial expansion , we have  

∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)! (𝑠)!

∞

𝑟,𝑠=0

 𝑧2
𝑟𝑧3

𝑠
1

(2𝜋𝜔)𝑟
 ∫

𝐿1
, … . , ∫

𝐿𝑟
∅(𝑠1, … . . , 𝑠𝑟) ∏ ∅𝑖

𝑟

𝑖=1

(𝑠𝑖)𝑧𝑖
𝑠𝑖𝜉𝜆+𝜎1𝑠+𝜎2 𝑟 

    𝐷𝑥
𝑣𝑥𝑚+𝜌1𝑠+𝜌2𝑟 ∑ (𝜆+𝜎1𝑠+𝜎2𝑟

𝑅
)∞

𝑅=0 (
𝑥

𝜉
)

𝑅
d𝑠1, … , 𝑑𝑠𝑟 .                              (3.3) 

Making use of the formula [the result Oldham and Spanier [9]], we get  

∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)! (𝑠)!

∞

𝑟,𝑠=0

1

(2𝜋𝜔)𝑟
 ∫

𝐿1
, … . , ∫

𝐿𝑟
∅(𝑠1, … . . , 𝑠𝑟) ∏ ∅𝑖

𝑟

𝑖=1

(𝑠𝑖)𝑧𝑖
𝑠𝑖𝜉𝜆+𝜎1𝑠+𝜎2 𝑟−𝑅 

×
⎾[1 − (−𝜆 − 𝜎2𝑠) + 𝜎1𝑠, … , 𝜎𝑟𝑠]⎾[1 − (−𝑚 − 𝑅 − 𝜌2𝑟) + 𝜌1𝑠, … , 𝜌𝑟𝑠]

(𝑅)! ⎾[1 − (𝑅 − 𝜆 − 𝜎2𝑆) + 𝜎1𝑠, … , 𝜎𝑟𝑠]⎾[1 − (𝜗 − 𝑚 − 𝑅 − 𝜌2𝑟) + 𝜌1𝑠, … , 𝜌𝑟𝑠]
 

        × (𝑧2𝑥𝜌2)𝑟(𝑧3𝜉𝜎2)𝑠𝑥𝑚+𝜌1𝑠+𝜌2𝑟+𝑅−𝜗𝑧1
𝑠, … , 𝑧𝑟

𝑠d𝑠1, … , 𝑑𝑠𝑟                         (3.4) 

If we interpret the resulting Mellin–Barnes contour integral as an A- function of 

multivariable, we shall arrive (3.1). 

       

THEOREM 2. If min{𝜌𝑟,𝜎𝑟} > 0, | arg(− 𝑥 𝜉⁄ ) | <  𝜋, Re (m) +𝜌𝑟 min {Re 

(𝛿𝑗,𝛾𝑗)}>  −1 (𝑗 = 1,2, … . , 𝑟), |𝑧2(𝑥 − 𝜉)𝜌𝑟|  <  𝑟1, |(𝜂 − 𝑥)𝜎𝑟 𝑧𝑟 | < 𝑟2, 𝑟1 + 𝑟2 + 𝑟𝑛 = 1 ;  

then 

𝐷𝑥
𝜗{(𝑥 − 𝜉)𝜆(𝜂 − 𝑥)𝜆𝐴𝑝𝑟,𝑞𝑟:𝑌

0.𝑛𝑟;𝑋
[ 

𝑧1(𝑥 − 𝜉)𝜌1(𝜂 − 𝜉)𝜎1

⋮
𝑧𝑟𝑥 − 𝜉)𝜌𝑟(𝜂 − 𝜉)𝜎𝑟

| …….,…….
…….,…….

] 

𝐺1(𝛾, 𝛿, 𝛿′: 𝑍2 𝑥𝜌2,(x-ξ)𝜎2 , (𝜂 − 𝑥)𝜎𝑟𝑧3 , … , . . , 𝑧𝑟)} 

  =  ∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)!(𝑠)!
∞
𝑟,𝑠=0  [(𝑧2(−𝜉)𝜌2 ]𝑟 [𝑧3𝜂𝜎2]𝑠 (-ξ)𝑚(𝜂)𝜆 

∑ ∑
𝑥−𝜗 (𝑥 𝜉⁄ )𝑅1(𝑥 𝜂⁄ )𝑅2

(𝑅1)!(𝑅2)!
∞
𝑅2=0

∞
𝑅1=0

⎾(𝑅1+𝑅2+1)

⎾(𝑅1+𝑅2−𝜗+1)
  

𝐴𝑝𝑟+2,𝑞𝑟+2:𝑌

0.𝑛𝑟+2;𝑋
[
𝑧1(−𝜉)𝜌1𝜂𝜎1

⋮
𝑧𝑟(−𝜉)𝜌𝑟𝜂𝜎𝑟

|
(−𝜆−𝜌2𝑠,𝜌1,…..,𝜌𝑟),(−𝜌−𝜎2𝑠,𝜎1,…,..𝜎𝑟),…,……

….,….(𝑅1−𝑚−𝜌2𝑟,𝜌1,…,..𝜌𝑟)(𝑅2−𝜎2𝑠,𝜎1,….,…,𝜎𝑟)
].         (3.5)  

PROOF. we first replace the A-function of several variable occurring on the left 

– hand side by its Mellin –Barnes type contour integral and Horn’s function 𝐺1 by its 

definition and changing the order of integration and differentiation, which is readily 

justified in view of conditions stated above and collecting the powers of (x-ξ) and (𝜂-

x), we get 
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∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)! (𝑠)!

∞

𝑟,𝑠=0

 𝑧2
𝑟𝑧3

𝑠
1

(2𝜋𝜔)𝑟  ∫𝐿1
, … . , ∫𝐿𝑟

∅(𝑠1, … . . , 𝑠𝑟) ∏ ∅𝑖

𝑟

𝑖=1

(𝑠𝑖)𝑧𝑖
𝑠𝑖  

       {𝐷𝑥
𝑣(𝑥 − 𝜉)𝑚+𝜌1𝑠+𝜌2𝑟 × (𝜂 − 𝑥)𝜆+𝜎1𝑠+𝜎2𝑟)} d𝑠1, … , 𝑑𝑠𝑟                     (3.6) 

 

Now, applying well known Binomial expansion, we have  

∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)! (𝑠)!

∞

𝑟,𝑠=0

 𝑧2
𝑟𝑧3

𝑠
1

(2𝜋𝜔)𝑟
 ∫

𝐿1
, … . , ∫

𝐿𝑟
∅(𝑠1, … . . , 𝑠𝑟) ∏ ∅𝑖

𝑟

𝑖=1

(𝑠𝑖)𝑧𝑖
𝑠𝑖(−𝜉)𝑚+𝜌1𝑠+𝜌2 𝑟 

× (𝜂)𝜆+𝜎1𝑠+𝜎2𝑟𝐷𝑥
𝑣  ∑ (𝑚+𝜌1𝑠+𝜌2𝑟

𝑅1
)∞

𝑅1=0 (
−𝑥

𝜉
)

𝑅1
∑ (𝜆+𝜎1𝑠+𝜎2𝑟

𝑅2
)∞

𝑅2=0 (
−𝑥

𝜂
)

𝑅2

} 

𝑧1
𝑠, … , 𝑧𝑟

𝑠 d𝑠1, … , 𝑑𝑠𝑟                                                                               (3.7) 

Making the use of the formula [the result Oldham and Spanier [9]], we get  

∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)! (𝑠)!

∞

𝑟,𝑠=0

 𝑧2
𝑟𝑧3

𝑠(−𝜉)𝑚+𝜌1𝑠(𝜂)𝜆+𝜎1𝑠  ∑ ∑
(−1)𝑅1+𝑅2 (

𝑥
𝜉

)
𝑅1

(
𝑥
𝜂

)
𝑅2

𝑥−𝜗

(𝑅1)! (𝑅2)!

∞

𝑅2=0

∞

𝑅1=0

 

⎾(𝑅1+𝑅2+1)

⎾(𝑅1+𝑅2−𝜗+1)
 

1

(2𝜋𝜔)𝑟
 ∫

𝐿1
, … . , ∫

𝐿𝑟
∅(𝑠1, … . . , 𝑠𝑟) ∏ ∅𝑖

𝑟
𝑖=1 (𝑠𝑟)𝑧𝑖

𝑠𝑟(−𝜉)𝜌1𝑠(-𝜂)𝜎1𝑠 

×
⎾[1 − (−𝑚 − 𝜌2𝑟) + 𝜌1𝑠, … , 𝜌𝑟𝑠]⎾[1 − (−𝜆 − 𝜎2𝑠) + 𝜎1𝑠, … , 𝜎𝑟𝑠]

⎾[1 − (𝑅1 − 𝑚 − 𝜌2𝑟) + 𝜌1𝑠, … , 𝜌𝑟𝑠]⎾[1 − (𝑅2 − 𝜎2𝑆) + 𝜎1𝑠, … , 𝜎𝑟𝑠]
 

          𝑧1
𝑠, … , 𝑧𝑟

𝑠 d𝑠1, … , 𝑑𝑠𝑟  .                                                             (3.8) 

If we interpret the resulting Mellin –Barnes contour integral as an A- function of 

multivariable, we shall arrive (3.5).  

 

4. SPECIAL CASES OF (3.1) AND (3.5) 

(1) Putting 𝜎𝑟 → 0 another four Fractional Derivative formulae corresponding 

to (3.1)  and (3.5): 

𝐷𝑥
𝜗𝑥𝑚(𝑥𝜉)𝜆𝐴𝑝𝑟,𝑞𝑟:𝑌

0.𝑛𝑟;𝑋
 [ 

𝑧1(−𝜉)𝜌1𝜂𝜎1

⋮
𝑧𝑟(−𝜉)𝜌𝑟𝜂𝜎𝑟

| ….,….
….,….

] 𝐺1(𝛾, 𝛿, 𝛿′: 𝑍2 𝑥𝜌2,(x+ξ)𝜎2𝑧3, . . , . . , 𝑧𝑟)} 

=∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)!(𝑠)!
∞
𝑟,𝑠=0 (𝑧2𝑥𝜌2 )𝑟(𝑧3𝜉𝜎2)𝑠𝑧𝑟𝜉𝜆𝑥𝑚−𝜗 ∑

(𝑥 𝜉⁄ )𝑅

(𝑅)!
∞
𝑅=0  

×
⎾(1+𝜆+𝜎2𝑠)

⎾(1+𝜆+𝜎2𝑠−𝑅)
𝐴𝑝𝑟+1,𝑞𝑟+1:𝑌

0.𝑛𝑟+1;𝑋
 [

𝑧1𝑥𝜌1

⋮
𝑧𝑟𝑥𝜌𝑟

|
(−𝑅−𝑚−𝜌2𝑟,𝜌1,…,..𝜌𝑟),…,……

….,….(𝜗−𝑚−𝑅−𝜎2𝑠,𝜌1,….,…,𝜌𝑟)
],         (4.1)  
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min{𝜌𝑟,} > 0, | arg(𝑥 𝜉⁄ ) | <  𝜋, 

Re (m) +𝜌𝑟  min {Re (𝛿𝑗,𝛾𝑗)}>  −1 (𝑗 = 1, … . , 𝑟), 

|𝑧𝑟𝑥𝜌𝑟|  <  𝑟1, |(𝑥 + 𝜉)𝜎𝑟 𝑧𝑟 | < 𝑟2, 𝑟1 + 𝑟2+, … , 𝑟𝑛 = 1 ; 

        𝐷𝑥
𝜗{(𝑥 − 𝜉)𝜆(𝜂 − 𝑥)𝜆𝐴𝑝𝑟,𝑞𝑟:𝑌

0.𝑛𝑟;𝑋
[
𝑧1(𝑥 − 𝜉)𝜌1

⋮
𝑧𝑟(𝑥 − 𝜉)𝜌𝑟

| ….,….
….,….

] 

        × 𝐺1(𝛾, 𝛿, 𝛿′: 𝑍2 ,(x-ξ)𝜌𝑟 , (𝑥 − 𝜂)𝜎𝑟𝑧3 , … , . . , 𝑧𝑟)} 

                                                          =  ∑
(𝛾)𝑟+𝑠(𝛿)𝑠−𝑟(𝛿)′

𝑟−𝑠

(𝑟)!(𝑠)!
∞
𝑟,𝑠=0  [(𝑧2(−𝜉)𝜌2 ]𝑟 [𝑧3𝜂𝜎2]𝑠 (-ξ)𝑚(𝜂)𝜆 

         ∑ ∑
𝑥−𝜗 (𝑥 𝜉⁄ )𝑅1(𝑥 𝜂⁄ )𝑅2

(𝑅1)!(𝑅2)!
∞
𝑅2=0

∞
𝑅1=0

⎾(𝑅1+𝑅2+1)

⎾(𝑅1+𝑅2−𝜗+1)
 ×

⎾(1+𝜆+𝜎𝑟𝑠)

⎾(1+𝜎𝑟𝑠−𝑅2)
 

          𝐴𝑝𝑟+1,𝑞𝑟+1:𝑌

0.𝑛𝑟+1;𝑋
[
𝑧1(−𝜉)𝜌1

⋮
𝑧𝑟(−𝜉)𝜌𝑟

|
(−𝑚−𝜌2𝑟,𝜌1,…,..𝜌𝑟),…,……

….,….(𝑅1−𝑚−𝜌2𝑟1,𝜌1,…,..𝜌𝑟)(𝑅2−𝜎2𝑠,𝜎1,….,…,𝜎𝑟)
],                  (4.2)  

min{𝜌𝑟,} > 0, | arg(− 𝑥 𝜉⁄ ) | <  𝜋, 

Re (m) +𝜌𝑟  min {Re (𝛿𝑗,𝛾𝑗)}>  −1 (𝑗 = 1,2, … . , 𝑟), 

|𝑧2(𝑥 − 𝜉)𝜌𝑟|  <  𝑟1, |(𝜂 − 𝑥)𝜎𝑟 𝑧3| < 𝑟2, 𝑟1 + 𝑟2 + 𝑟𝑛 = 1 ;     
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Some new inequalities for generalized convex
functions pertaining generalized fractional
integral operators and their applications

A. KASHURI, M.A. ALI, M. ABBAS AND M. TOSEEF

Abstract

In this paper, authors establish a new identity for a differentiable function using generic integral operators.
By applying it, some new integral inequalities of trapezium, Ostrowski and Simpson type are obtained.
Moreover, several special cases have been studied in detail. Finally, many useful applications have been
found.

Mathematics Subject Classification 2010: 26A51; 26A33, 26D07, 26D10, 26D15.
Keywords: Inequalities; convexity; Raina’s function; special means; error estimation.

1. INTRODUCTION AND PRELIMINARIES

DEFINITION 1.1. [49] Λ : I⊆ R→ R is called convex function on I, if

Λ((1−ζ )[1 +ζ [2)≤ (1−ζ )Λ([1)+ζ Λ([2), ∀[1, [2 ∈ I, ζ ∈ [0,1].

THEOREM 1.2. (Trapezium inequality) Suppose that Λ : I⊆ R→ R be a convex
function, [1, [2 ∈ I with [1 < [2, then

Λ

(
[1 + [2

2

)
≤ 1

[2− [1

∫ [2

[1

Λ(`)d`≤ Λ([1)+Λ([2)

2
. (1)

Interested readers are referred to [4]-[6],[15; 19; 20; 22; 25; 26; 28],[33]-[38],[45; 47;
52; 53; 55; 56].

THEOREM 1.3. (Ostrowski inequality) Assume that Λ : I→R be a differentiable
function on I◦, [1, [2 ∈ I◦ with [1 < [2. If |Λ′(`)| ≤K , then∣∣∣∣∣Λ(`)− 1

[2− [1

∫ [2

[1

Λ(ξ )d ξ

∣∣∣∣∣≤K ([2− [1)

[
1
4
+

(
`− [1+[2

2

)2

([2− [1)2

]
, ∀` ∈ [[1, [2]. (2)

For other recent published papers about Ostrowski type inequalities, see [1]-[3],[7]-
[14],[17],[29]-[32],[39]-[41],[43; 44; 50; 54; 57].

10.2478/jamsi-2021-0003
University of SS. Cyril and Methodius in Trnava
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THEOREM 1.4. (Simpson inequality) Let Λ : [[1, [2] → R be four times
differentiable on ([1, [2) and suppose that

‖Λ(4)‖∞ := sup
`∈([1 ,[2)

|Λ(4)|<+∞.

Then∣∣∣∣∣
∫ [2

[1

Λ(`)d`− [2− [1

3

[
Λ([1)+Λ([2)

2
+2Λ

(
[1 + [2

2

)]∣∣∣∣∣≤ ([2− [1)
5

2880
‖Λ(4)‖∞. (3)

About Simpson type inequalities, see [27; 42; 51; 57].

In our paper we will establish some new trapezium, Ostrowski and Simpson type
inequalities pertaining generalized convex functions with respect to another function.
Moreover, many useful applications will be given. Hence, it is important to recall
some essential facts relevant to fractional integrals.

DEFINITION 1.5. [34] Assume that Λ ∈ L [[1, [2], then κ–fractional integrals,
η ,κ > 0 with [1 ≥ 0 are

Iη ,κ

[+1
Λ(ξ1) =

1
κΓκ(η)

∫
ξ1

[1

(ξ1−ξ )
η

κ
−1

Λ(ξ )d ξ , [1 < ξ1,

and

Iη ,κ

[−2
Λ(ξ1) =

1
κΓκ(η)

∫ [2

ξ1

(ξ −ξ1)
η

κ
−1

Λ(ξ )d ξ , [2 > ξ1, (4)

respectively.

DEFINITION 1.6. [35; 36] S is called ϖ–convex set, if

ϖ()[2 +(1−ϖ())[1 ∈ S, ∀[1, [2 ∈ S,  ∈ [0,1].

DEFINITION 1.7. Λ : S→ R on ϖ–convex set S is called ϖ–convex function, if

Λ([1 + eiϖ([2− [1))≤ (1− )Λ([1)+ Λ([2), ∀[1, [2 ∈ S,  ∈ [0,1].

Raina, in [48], defined for ρ,δ > 0 and |z|< R, the following class of functions:

F σ

ρ,δ (z) = F σ(0),σ(1),...
ρ,δ (z) =

+∞

∑
k=0

σ(k)
Γ(ρk+δ )

zk. (5)
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Choosing |z| ≤ 1, we take hypergeometric function. For σ = (1,1, . . .) with
ρ = η ,(ℜ(η)> 0),δ = 1 and z ∈ C in (5), we obtain Mittag–Leffler function

Eη(z) =
+∞

∑
k=0

zk

Γ(1+ηk)
.

DEFINITION 1.8. S 6= /0 is called generalized convex set, if

m[1 +ζF σ

ρ,δ ([2−m[1) ∈ S, ∀ [1, [2 ∈ S, m ∈ (0,1], ζ ∈ [0,1]. (6)

DEFINITION 1.9. Λ is called generalized convex function, if

Λ(m[1+ζF σ

ρ,δ ([2−m[1))≤ (1−ζ )Λ(m[1)+ζ Λ([2), ∀ [1, [2 ∈ S, m∈ (0,1], ζ ∈ [0,1].
(7)

REMARK 1.10. Taking m = 1 and F σ

ρ,δ ([2− [1) = [2− [1 > 0, we get definition
1.1. For suitable choice of F σ

ρ,δ (·), we obtain definition 1.7. This describes the
reasons and motivations of newly defined notions and the relation with these known
definitions.

DEFINITION 1.11. [23; 24] Assume that Λ2 : [[1, [2]→ R is an increasing and
positive monotone function on [[1, [2], with continuous derivative on ([1, [2). The left-
right- fractional integrals of Λ1 with respect to Λ2 on [[1, [2], η > 0 are

Iη ,Λ2
[1+

Λ1 (ξ1) =
1

Γ(η)

∫
ξ1

[1

Λ′2(ξ )Λ1 (ξ )

[Λ2(ξ1)−Λ2(ξ )]
1−η

d ξ , [1 < ξ1, (8)

and

Iη ,Λ2
[2− Λ1 (ξ1) =

1
Γ(η)

∫ [2

ξ1

Λ′2(ξ )Λ1 (ξ )

[Λ2(ξ )−Λ2(ξ1)]
1−η

d ξ , [2 > ξ1, (9)

respectively.

Function ϖ : [0,+∞)→ [0,+∞) constructed from Sarikaya et al. in [45; 46], has the
following properties:∫ 1

0

ϖ(ξ )

ξ
d ξ <+∞, (10)

1
A1
≤ ϖ(ε)

ϖ(ξ1)
≤ A1 for

1
2
≤ ε

ξ1
≤ 2, (11)

ϖ(ξ1)

ξ 2
1
≤ A2

ϖ(ε)

ε2
for ε ≤ ξ1, (12)∣∣∣∣∣ϖ(ξ1)

ξ 2
1
− ϖ(ε)

ε2

∣∣∣∣∣≤ A3|ξ1− ε|ϖ(ξ1)

ξ 2
1

for
1
2
≤ ε

ξ1
≤ 2, (13)
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where A1,A2,A3 > 0 are independent of ε,ξ1 > 0. Moreover, Sarikaya et al. defined the
following useful operators:

[+1
Iϖ Λ(ξ1) =

∫
ξ1

[1

ϖ(ξ1−ξ )

ξ1−ξ
Λ(ξ )d ξ , [1 < ξ1, (14)

[−2
Iϖ Λ(ξ1) =

∫ [2

ξ1

ϖ(ξ −ξ1)

ξ −ξ1
Λ(ξ )d ξ , [2 > ξ1. (15)

About their efficiency, see [18; 21; 45]. Finally, Farid in [16], defined the following
generic operators:

Gϖ ,Λ2
[1+

Λ1 (ξ1) =
∫

ξ1

[1

ϖ (Λ2(ξ1)−Λ2(ξ ))

Λ2(ξ1)−Λ2(ξ )
Λ
′
2(ξ )Λ1 (ξ )d ξ , [1 < ξ1, (16)

and

Gϖ ,Λ2
[2− Λ1 (ξ1) =

∫ [2

ξ1

ϖ (Λ2(ξ )−Λ2(ξ1))

Λ2(ξ )−Λ2(ξ1)
Λ
′
2(ξ )Λ1 (ξ )d ξ , [2 > ξ1, (17)

respectively.

The paper is constructed in this way: In Section 2, we will find an interesting identity
with parameter λ and using generic integral operators form auxiliary equality, some
new integral inequalities of trapezium, Ostrowski and Simpson type will be obtain.
Section 3 is devoted to useful applications.

2. MAIN RESULTS

Let P = [m[1, [2], where [1 < [2 for some fixed m ∈ (0,1] with ζ ∈ [0,1].

Π
ϖ ,ϒ
m (`,ζ ) :=

∫
ζ

0

ϖ

(
ϒ

(
m[1 +ξF σ

ρ,δ (`−m[1)
)
−ϒ(m[1)

)
ϒ

(
m[1 +ξF σ

ρ,δ (`−m[1)
)
−ϒ(m[1)

(18)

×ϒ
′ (m[1 +ξF σ

ρ,δ (`−m[1)
)

d ξ <+∞,

and

Ξ
ϖ ,ϒ
m (`,ζ ) :=

∫ 1

ζ

ϖ

(
ϒ

(
m`+F σ

ρ,δ ([2−m`)
)
−ϒ

(
m`+ξF σ

ρ,δ ([2−m`)
))

ϒ

(
m`+F σ

ρ,δ ([2−m`)
)
−ϒ

(
m`+ξF σ

ρ,δ ([2−m`)
) (19)
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×ϒ
′ (m`+ξF σ

ρ,λ ([2−m`)
)

d ξ <+∞.

The following lemma will help us to find new results.

LEMMA 2.1. Let Λ : P → R be a differentiable function on P◦ and λ ∈ R.
Assume that Λ′ ∈L (P) and F σ

ρ,λ ([2−m[1)> 0, then

F σ

ρ,δ (`−m[1)Λ
(

m[1 +ζF σ

ρ,δ (`−m[1)
)
+F σ

ρ,δ ([2−m`)Λ(m`)

F σ

ρ,δ ([2−m[1)

− λ

F σ

ρ,δ ([2−m[1)
×

[
F σ

ρ,δ (`−m[1)Λ
(

m[1 +ζF σ

ρ,δ (`−m[1)
)

Π
ϖ ,ϒ
m (`,1)

+
F σ

ρ,δ ([2−m`)Λ(m`)

Ξ
ϖ ,ϒ
m (`,0)

]

+
λ

F σ

ρ,δ ([2−m[1)
×

[
F σ

ρ,δ (`−m[1)Λ(m[1)

Π
ϖ ,ϒ
m (`,1)

+
F σ

ρ,δ ([2−m`)Λ(m`+F σ

ρ,δ ([2−m`))

Ξ
ϖ ,ϒ
m (`,0)

]

− 1
F σ

ρ,δ ([2−m[1)
×

[Gϖ ,ϒ

(m[1+F σ

ρ,δ
(`−m[1))

−Λ(m[1)

Π
ϖ ,ϒ
m (`,1)

+
Gϖ ,ϒ

(m`)+Λ(m`+F σ

ρ,δ ([2−m`))

Ξ
ϖ ,ϒ
m (`,0)

]

=

[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)
×
∫ 1

0

[
Π

ϖ ,ϒ
m (`,ζ )−λ

]
Λ
′ (m[1 +ζF σ

ρ,δ (`−m[1)
)

d ζ (20)

−
[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)
×
∫ 1

0

[
Ξ

ϖ ,ϒ
m (`,ζ )−λ

]
Λ
′ (m`+ζF σ

ρ,δ ([2−m`)
)

d ζ .

We denote

T
Λ,Π

ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2) :=

[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)
(21)

×
∫ 1

0

[
Π

ϖ ,ϒ
m (`,ζ )−λ

]
Λ
′ (m[1 +ζF σ

ρ,δ (`−m[1)
)

d ζ

−
[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)
×
∫ 1

0

[
Ξ

ϖ ,ϒ
m (`,ζ )−λ

]
Λ
′ (m`+ζF σ

ρ,δ ([2−m`)
)

d ζ .
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PROOF. By integrating by parts (21), we derive

T
Λ,Π

ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2) =

[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

×

{∫ 1

0
Π

ϖ ,ϒ
m (`,ζ )Λ′

(
m[1 +ζF σ

ρ,δ (`−m[1)
)

d ζ −λ

∫ 1

0
Λ
′ (m[1 +ζF σ

ρ,δ (`−m[1)
)

d ζ

}

−
[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

×

{∫ 1

0
Ξ

ϖ ,ϒ
m (`,ζ )Λ′

(
m`+ζF σ

ρ,δ ([2−m`)
)

d ζ −λ

∫ 1

0
Λ
′ (m`+ζF σ

ρ,δ ([2−m`)
)

d ζ

}

=

[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)
×

{
Πϖ ,ϒ

m (`,ζ )Λ
(

m[1 +ζF σ

ρ,δ (`−m[1)
)

F σ

ρ,δ (`−m[1)

∣∣∣∣∣
1

0

− 1
F σ

ρ,δ (`−m[1)

×
∫ 1

0

ϖ

(
ϒ

(
m[1 +ζF σ

ρ,δ (`−m[1)
)
−ϒ(m[1)

)
ϒ

(
m[1 +ζF σ

ρ,δ (`−m[1)
)
−ϒ(m[1)

×ϒ
′ (m[1 +ζF σ

ρ,δ (`−m[1)
)

Λ
(
m[1 +ζF σ

ρ,δ (`−m[1)
)

d ζ

− λ

F σ

ρ,δ (`−m[1)
Λ
(
m[1 +ζF σ

ρ,δ (`−m[1)
)∣∣∣1

0

}
−

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

×

{
Ξϖ ,ϒ

m (`,ζ )Λ
(

m`+ζF σ

ρ,δ ([2−m`)
)

F σ

ρ,δ ([2−m`)

∣∣∣∣∣
1

0

− 1
F σ

ρ,δ ([2−m`)
×
∫ 1

0

ϖ

(
ϒ

(
m`+F σ

ρ,δ ([2−m`)
)
−ϒ

(
m`+ζF σ

ρ,δ ([2−m`)
))

ϒ

(
m`+F σ

ρ,δ ([2−m`)
)
−ϒ

(
m`+ζF σ

ρ,δ ([2−m`)
)

×ϒ
′ (m`+ζF σ

ρ,δ ([2−m`)
)

Λ
(
m`+ζF σ

ρ,δ ([2−m`)
)

d ζ

− λ

F σ

ρ,δ ([2−m`)
Λ
(
m`+ζF σ

ρ,δ ([2−m`)
)∣∣∣1

0

}
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=
F σ

ρ,δ (`−m[1)Λ
(

m[1 +ζF σ

ρ,δ (`−m[1)
)
+F σ

ρ,δ ([2−m`)Λ(m`)

F σ

ρ,δ ([2−m[1)

− λ

F σ

ρ,δ ([2−m[1)
×

[
F σ

ρ,δ (`−m[1)Λ
(

m[1 +ζF σ

ρ,δ (`−m[1)
)

Π
ϖ ,ϒ
m (`,1)

+
F σ

ρ,δ ([2−m`)Λ(m`)

Ξ
ϖ ,ϒ
m (`,0)

]

+
λ

F σ

ρ,δ ([2−m[1)
×

[
F σ

ρ,δ (`−m[1)Λ(m[1)

Π
ϖ ,ϒ
m (`,1)

+
F σ

ρ,δ ([2−m`)Λ(m`+F σ

ρ,δ ([2−m`))

Ξ
ϖ ,ϒ
m (`,0)

]

− 1
F σ

ρ,δ ([2−m[1)
×

[Gϖ ,ϒ

(m[1+F σ

ρ,δ
(`−m[1))

−Λ(m[1)

Π
ϖ ,ϒ
m (`,1)

+
Gϖ ,ϒ

(m`)+Λ(m`+F σ

ρ,δ ([2−m`))

Ξ
ϖ ,ϒ
m (`,0)

]
.

REMARK 2.2. a. Taking m = 1, λ = 0, F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) =

[2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in Lemma 2.1, then

TΛ(`, [1, [2) := Λ(`)− 1
[2− [1

∫ [2

[1

Λ(ζ )d ζ .

b. Choosing m = 1, λ = 1, F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) = [2−m`, F σ

ρ,δ ([2−
m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in Lemma 2.1, then

TΛ(`, [1, [2) :=
(`− [1)Λ([1)+([2− `)Λ([2)

[2− [1
− 1

[2− [1

∫ [2

[1

Λ(ζ )d ζ .

c. Taking m = 1, `= [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) = [2−m`, F σ

ρ,δ ([2−
m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in Lemma 2.1, then

TΛ(λ ;[1, [2) := λ

[
Λ([1)+Λ([2)

2

]
+(1−λ )Λ

(
[1 + [2

2

)
− 1

[2− [1

∫ [2

[1

Λ(ζ )d ζ .

THEOREM 2.3. Let Λ : P→R be a differentiable function on P◦ and λ ∈ [0,1].
If |Λ′|q is generalized convex function on P and F σ

ρ,δ ([2−m[1)> 0, then for q > 1 and
1
p +

1
q = 1, we have ∣∣T

Λ,Π
ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2)
∣∣

≤
[
F σ

ρ,δ (`−m[1)
]2

q
√

2Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

p
√

Bϖ ,ϒ
Πm

(`;λ , p)× q
√
|Λ′(m[1)|q + |Λ′(`)|q (22)
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+

[
F σ

ρ,δ ([2−m`)
]2

q
√

2Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

p
√

Bϖ ,ϒ
Ξm

(`;λ , p)× q
√
|Λ′(m`)|q + |Λ′([2)|q,

where

Bϖ ,ϒ
Πm

(`;λ , p) :=
∫ 1

0

∣∣∣Πϖ ,ϒ
m (`,ζ )−λ

∣∣∣p d ζ , Bϖ ,ϒ
Ξm

(`;λ , p) :=
∫ 1

0

∣∣∣Ξϖ ,ϒ
m (`,ζ )−λ

∣∣∣p d ζ . (23)

PROOF. Applying Lemma 2.1, generalized convexity of |Λ′|q, Hölder’s
inequality, we get ∣∣T

Λ,Π
ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2)
∣∣

≤
[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)
×
∫ 1

0

∣∣∣Πϖ ,ϒ
m (`,ζ )−λ

∣∣∣∣∣∣Λ′ (m[1 +ζF σ

ρ,δ (`−m[1)
)∣∣∣d ζ

+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)
×
∫ 1

0

∣∣∣Ξϖ ,ϒ
m (`,ζ )−λ

∣∣∣∣∣∣Λ′ (m`+ζF σ

ρ,δ ([2−m`)
)∣∣∣d ζ

≤
[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

×
(∫ 1

0

∣∣∣Πϖ ,ϒ
m (`,ζ )−λ

∣∣∣p d ζ

) 1
p
(∫ 1

0

∣∣∣Λ′ (m[1 +ζF σ

ρ,δ (`−m[1)
)∣∣∣q d ζ

) 1
q

+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

×
(∫ 1

0

∣∣∣Ξϖ ,ϒ
m (`,ζ )−λ

∣∣∣p d ζ

) 1
p
(∫ 1

0

∣∣∣Λ′ (m`+ζF σ

ρ,δ ([2−m`)
)∣∣∣q d ζ

) 1
q

≤
[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

p
√

Bϖ ,ϒ
Πm

(`;λ , p)
(∫ 1

0

[
(1−ζ )|Λ′(m[1)|q +ζ |Λ′(`)|q

]
d ζ

) 1
q

+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

p
√

Bϖ ,ϒ
Ξm

(`;λ , p)
(∫ 1

0

[
(1−ζ )|Λ′(m`)|q +ζ |Λ′([2)|q

]
d ζ

) 1
q
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=

[
F σ

ρ,δ (`−m[1)
]2

q
√

2Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

p
√

Bϖ ,ϒ
Πm

(`;λ , p)× q
√
|Λ′(m[1)|q + |Λ′(`)|q

+

[
F σ

ρ,δ ([2−m`)
]2

q
√

2Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

p
√

Bϖ ,ϒ
Ξm

(`;λ , p)× q
√
|Λ′(m`)|q + |Λ′([2)|q.

COROLLARY 2.4. Taking p = 2 = q in Theorem 2.3, we have∣∣T
Λ,Π

ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2)
∣∣

≤
[
F σ

ρ,δ (`−m[1)
]2

√
2Π

ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

√
Bϖ ,ϒ

Πm
(`;λ ,2)×

√
|Λ′(m[1)|2 + |Λ′(`)|2 (24)

+

[
F σ

ρ,δ ([2−m`)
]2

√
2Ξ

ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

√
Bϖ ,ϒ

Ξm
(`;λ ,2)×

√
|Λ′(m`)|2 + |Λ′([2)|2.

COROLLARY 2.5. Choosing |Λ′| ≤K in Theorem 2.3, we get∣∣T
Λ,Π

ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2)
∣∣≤ K

F σ

ρ,δ ([2−m[1)
(25)

×

[[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)

p
√

Bϖ ,ϒ
Πm

(`;λ , p)+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)

p
√

Bϖ ,ϒ
Ξm

(`;λ , p)

]
.

COROLLARY 2.6. Taking m = 1, λ = 0, F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) =

[2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.3, we obtain∣∣TΛ(`, [1, [2)
∣∣≤ 1

q
√

2 p
√

p+1([2− [1)
(26)

×
{
(`− [1)

2 q
√
|Λ′([1)|q + |Λ′(`)|q +([2− `)2 q

√
|Λ′(`)|q + |Λ′([2)|q

}
.

COROLLARY 2.7. Choosing `= [1+[2
2 in Corollary 2.6, we have∣∣TΛ([1, [2)
∣∣≤ ([2− [1)

4 q
√

2 p
√

p+1
(27)

×

{
q

√
|Λ′([1)|q +

∣∣∣Λ′( [1 + [2

2

)∣∣∣q + q

√∣∣∣Λ′( [1 + [2

2

)∣∣∣q + |Λ′([2)|q
}
.

COROLLARY 2.8. Taking m = 1, λ = 1, F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) =
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[2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.3, we get∣∣TΛ(`, [1, [2)
∣∣≤ 1

q
√

2 p
√

p+1([2− [1)
(28)

×
{
(`− [1)

2 q
√
|Λ′([1)|q + |Λ′(`)|q +([2− `)2 q

√
|Λ′(`)|q + |Λ′([2)|q

}
.

COROLLARY 2.9. Choosing m = 1, λ = 1
3 , F

σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2 −
m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.3, we
obtain ∣∣∣∣∣TΛ

(
1
3

;[1, [2

)∣∣∣∣∣≤ 1
q
√

2([2− [1)
p

√
2p+1 +1

3p+1(p+1)
(29)

×
{
(`− [1)

2 q
√
|Λ′([1)|q + |Λ′(`)|q +([2− `)2 q

√
|Λ′(`)|q + |Λ′([2)|q

}
.

COROLLARY 2.10. Substituting λ = 0 and ϖ(ζ ) = ζ in Theorem 2.3, we have∣∣TΛ,Πϒ
m ,Ξϒ

m
(0;`, [1, [2)

∣∣≤ 1
q
√

2F σ

ρ,δ ([2−m[1)
(30)

×

{
q

√
F σ

ρ,δ (`−m[1)
p
√

Bϒ

1 (`; p)× q
√
|Λ′(m[1)|q + |Λ′(`)|q

+ q

√
F σ

ρ,δ ([2−m`) p
√

Bϒ

2 (`; p)× q
√
|Λ′(m`)|q + |Λ′([2)|q

}
,

where

Bϒ

1 (`; p) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

[
ϒ(ζ )−ϒ(m[1)

]p
d ζ (31)

and

Bϒ

2 (`; p) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`

[
ϒ(m`+F σ

ρ,δ ([2−m`))−ϒ(ζ )
]p

d ζ . (32)

COROLLARY 2.11. For λ = 0 and ϖ(ζ ) = ζ α

Γ(α)
in Theorem 2.3, we get

∣∣TΛ,Πϒ
m ,Ξϒ

m
(0;`, [1, [2)

∣∣≤ 1
q
√

2F σ

ρ,δ ([2−m[1)
(33)
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×

{
q

√
F σ

ρ,δ (`−m[1)
p
√

Bϒ

3 (`; p,α)× q
√
|Λ′(m[1)|q + |Λ′(`)|q

+ q

√
F σ

ρ,δ ([2−m`) p
√

Bϒ

4 (`; p,α)× q
√
|Λ′(m`)|q + |Λ′([2)|q

}
,

where

Bϒ

3 (`; p,α) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

[
ϒ(ζ )−ϒ(m[1)

]pα

d ζ (34)

and

Bϒ

4 (`; p,α) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`

[
ϒ(m`+F σ

ρ,δ ([2−m`))−ϒ(ζ )
]pα

d ζ . (35)

COROLLARY 2.12. Substituting λ = 0 and ϖ(ζ ) = ζ
α
κ

κΓκ (α)
in Theorem 2.3, we

obtain ∣∣TΛ,Πϒ
m ,Ξϒ

m
(0;`, [1, [2)

∣∣≤ 1
q
√

2F σ

ρ,δ ([2−m[1)
(36)

×

{
q

√
F σ

ρ,δ (`−m[1)
p
√

Bϒ

5 (`; p,α,κ)× q
√
|Λ′(m[1)|q + |Λ′(`)|q

+ q

√
F σ

ρ,δ ([2−m`) p
√

Bϒ

6 (`; p,α,κ)× q
√
|Λ′(m`)|q + |Λ′([2)|q

}
,

where

Bϒ

5 (`; p,α,κ) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

[
ϒ(ζ )−ϒ(m[1)

] pα

κ d ζ (37)

and

Bϒ

6 (`; p,α,κ) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`

[
ϒ(m`+F σ

ρ,δ ([2−m`))−ϒ(ζ )
] pα

κ d ζ . (38)

COROLLARY 2.13. For λ = 0, ∀ξ ∈ [0,ζ ], ϖϒ(`,ζ ) = ζ (ϒ(m[1+F σ

ρ,δ (`−m[1))−
ζ )α−1 and ∀ξ ∈ [ζ ,1], ϖϒ(`,ζ ) = ζ (ϒ(m`+F σ

ρ,δ ([2−m`))−ζ )α−1 in Theorem 2.3, we
have

∣∣TΛ,Πϒ
m ,Ξϒ

m
(0;`, [1, [2)

∣∣≤ [
F σ

ρ,δ (`−m[1)
] q+1

q

q
√

2
[
ϒ(m[1 +F σ

ρ,δ (`−m[1))−ϒ(m[1)
]
F σ

ρ,δ ([2−m[1)
(39)

× p
√

Bϒ

7 (`; p)× q
√
|Λ′(m[1)|q + |Λ′(`)|q
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+

[
F σ

ρ,δ ([2−m`)
] q+1

q

q
√

2
[
ϒα(m`+F σ

ρ,δ ([2−m`))−ϒα(m`)
]
F σ

ρ,δ ([2−m[1)

× p
√

Bϒ

8 (`; p,α)× q
√
|Λ′(m`)|q + |Λ′([2)|q,

where

Bϒ

7 (`; p) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

[
ϒ(ζ )−ϒ(m[1)

]p
d ζ (40)

and

Bϒ

8 (`; p,α) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`

[
ϒ

α(m`+F σ

ρ,δ ([2−m`))−ϒ
α(ζ )

]p
d ζ . (41)

COROLLARY 2.14. Substituting λ = 0 and ϖ(ζ ) = ζ

α
exp(−Aζ ), where A = 1−α

α
,

in Theorem 2.3, we get

∣∣TΛ,Πϒ
m ,Ξϒ

m
(0;`, [1, [2)

∣∣≤ [F σ

ρ,δ (`−m[1)
] q+1

q

q
√

2F σ

ρ,δ ([2−m[1)
(42)

× p
√

Bϒ

9 (`; p,A)× q
√
|Λ′(m[1)|q + |Λ′(`)|q

+

[
F σ

ρ,δ ([2−m`)
] q+1

q

q
√

2F σ

ρ,δ ([2−m[1)

p
√

Bϒ

10(`; p,A)× q
√
|Λ′(m`)|q + |Λ′([2)|q,

where

Bϒ

9 (`; p,A) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

{
1− exp

[
A(ϒ(m[1)−ϒ(ζ ))

]}p
d ζ (43)

and

Bϒ

10(`; p,A) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`

{
1−exp

[
A
(
ϒ(ζ )−ϒ(m`+F σ

ρ,δ ([2−m`))
)]}p

d ζ . (44)

THEOREM 2.15. Let Λ : P→R be a differentiable function on P◦ and λ ∈ [0,1].
If |Λ′|q is generalized convex on P and F σ

ρ,δ ([2−m[1)> 0, then for q≥ 1, we have

∣∣T
Λ,Π

ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2)
∣∣≤ [

F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

[
Bϖ ,ϒ

Πm
(`;λ ,1)

]1− 1
q

(45)

× q

√[
Bϖ ,ϒ

Πm
(`;λ ,1)−Eϖ ,ϒ

Πm
(`;λ )

]
|Λ′(m[1)|q +Eϖ ,ϒ

Πm
(`;λ )|Λ′(`)|q
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+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

[
Bϖ ,ϒ

Ξm
(`;λ ,1)

]1− 1
q

× q

√[
Bϖ ,ϒ

Ξm
(`;λ ,1)−Gϖ ,ϒ

Ξm
(`;λ )

]
|Λ′(m`)|q +Gϖ ,ϒ

Ξm
(`;λ )|Λ′([2)|q,

where

Eϖ ,ϒ
Πm

(`;λ ) :=
∫ 1

0
ζ

∣∣∣Πϖ ,ϒ
m (`,ζ )−λ

∣∣∣d ζ , Gϖ ,ϒ
Ξm

(`;λ ) :=
∫ 1

0
ζ

∣∣∣Ξϖ ,ϒ
m (`,ζ )−λ

∣∣∣d ζ . (46)

PROOF. By Lemma 2.1, generalized convexity of |Λ′|q and power mean
inequality, we get ∣∣T

Λ,Π
ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2)
∣∣

≤
[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)
×
∫ 1

0

∣∣∣Πϖ ,ϒ
m (`,ζ )−λ

∣∣∣∣∣∣Λ′ (m[1 +ζF σ

ρ,δ (`−m[1)
)∣∣∣d ζ

+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)
×
∫ 1

0

∣∣∣Ξϖ ,ϒ
m (`,ζ )−λ

∣∣∣∣∣∣Λ′ (m`+ζF σ

ρ,δ ([2−m`)
)∣∣∣d ζ

≤
[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

×
(∫ 1

0

∣∣∣Πϖ ,ϒ
m (`,ζ )−λ

∣∣∣d ζ

)1− 1
q
(∫ 1

0

∣∣∣Πϖ ,ϒ
m (`,ζ )−λ

∣∣∣∣∣∣Λ′ (m[1 +ζF σ

ρ,δ (`−m[1)
)∣∣∣q d ζ

) 1
q

+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

×
(∫ 1

0

∣∣∣Ξϖ ,ϒ
m (`,ζ )−λ

∣∣∣d ζ

)1− 1
q
(∫ 1

0

∣∣∣Ξϖ ,ϒ
m (`,ζ )−λ

∣∣∣∣∣∣Λ′ (m`+ζF σ

ρ,δ ([2−m`)
)∣∣∣q d ζ

) 1
q

≤
[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

p
√

Bϖ ,ϒ
Πm

(`;λ , p)

×
(∫ 1

0

∣∣∣Πϖ ,ϒ
m (`,ζ )−λ

∣∣∣[(1−ζ )|Λ′(m[1)|q +ζ |Λ′(`)|q
]

d ζ

) 1
q
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+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

p
√

Bϖ ,ϒ
Ξm

(`;λ , p)

×
(∫ 1

0

∣∣∣Ξϖ ,ϒ
m (`,ζ )−λ

∣∣∣[(1−ζ )|Λ′(m`)|q +ζ |Λ′([2)|q
]

d ζ

) 1
q

=

[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)

[
Bϖ ,ϒ

Πm
(`;λ ,1)

]1− 1
q

× q

√[
Bϖ ,ϒ

Πm
(`;λ ,1)−Eϖ ,ϒ

Πm
(`;λ )

]
|Λ′(m[1)|q +Eϖ ,ϒ

Πm
(`;λ )|Λ′(`)|q

+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

[
Bϖ ,ϒ

Ξm
(`;λ ,1)

]1− 1
q

× q

√[
Bϖ ,ϒ

Ξm
(`;λ ,1)−Gϖ ,ϒ

Ξm
(`;λ )

]
|Λ′(m`)|q +Gϖ ,ϒ

Ξm
(`;λ )|Λ′([2)|q.

COROLLARY 2.16. For q = 1 in Theorem 2.15, we get

∣∣T
Λ,Π

ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2)
∣∣≤ [

F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)F σ

ρ,δ ([2−m[1)
(47)

×
[(

Bϖ ,ϒ
Πm

(`;λ ,1)−Eϖ ,ϒ
Πm

(`;λ )
)
|Λ′(m[1)|+Eϖ ,ϒ

Πm
(`;λ )|Λ′(`)|

]

+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)F σ

ρ,δ ([2−m[1)

×
[(

Bϖ ,ϒ
Ξm

(`;λ ,1)−Gϖ ,ϒ
Ξm

(`;λ )
)
|Λ′(m`)|+Gϖ ,ϒ

Ξm
(`;λ )|Λ′([2)|

]
.

COROLLARY 2.17. Taking |Λ′| ≤K in Theorem 2.15, we have

∣∣T
Λ,Π

ϖ ,ϒ
m ,Ξ

ϖ ,ϒ
m

(λ ;`, [1, [2)
∣∣≤ K

F σ

ρ,δ ([2−m[1)
(48)

×

[[
F σ

ρ,δ (`−m[1)
]2

Π
ϖ ,ϒ
m (`,1)

Bϖ ,ϒ
Πm

(`;λ ,1)+

[
F σ

ρ,δ ([2−m`)
]2

Ξ
ϖ ,ϒ
m (`,0)

Bϖ ,ϒ
Ξm

(`;λ ,1)

]
.
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COROLLARY 2.18. Choosing m = 1, λ = 0, F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−
m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.15, we
get ∣∣TΛ(`, [1, [2)

∣∣≤ 1
2 q
√

3([2− [1)
(49)

×
{
(`− [1)

2 q
√
|Λ′([1)|q +2|Λ′(`)|q +([2− `)2 q

√
2|Λ′(`)|q + |Λ′([2)|q

}
.

COROLLARY 2.19. Taking `= [1+[2
2 in Corollary 2.18, we obtain∣∣TΛ([1, [2)
∣∣≤ ([2− [1)

8 q
√

3
(50)

×

{
q

√
|Λ′([1)|q +2

∣∣∣Λ′( [1 + [2

2

)∣∣∣q + q

√
2
∣∣∣Λ′( [1 + [2

2

)∣∣∣q + |Λ′([2)|q
}
.

COROLLARY 2.20. Choosing m = 1, λ = 1, F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−
m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.15, we
have ∣∣TΛ(`, [1, [2)

∣∣≤ 1
2 q
√

3([2− [1)
(51)

×
{
(`− [1)

2 q
√

2|Λ′([1)|q + |Λ′(`)|q +([2− `)2 q
√
|Λ′(`)|q +2|Λ′([2)|q

}
.

COROLLARY 2.21. Taking m = 1, λ = 1
3 , F

σ

ρ,δ (` − m[1) =

`−m[1, F σ

ρ,δ ([2 −m`) = [2 −m`, F σ

ρ,δ ([2 −m[1) = [2 −m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) in
Theorem 2.15, we get ∣∣∣∣∣TΛ

(
1
3

;[1, [2

)∣∣∣∣∣≤ 1
2 q
√

243([2− [1)
(52)

×
{
(`− [1)

2 q
√

185|Λ′([1)|q +58|Λ′(`)|q +([2− `)2 q
√

195|Λ′(`)|q +48|Λ′([2)|q
}
.

COROLLARY 2.22. Substituting λ = 0 and ϖ(ζ )= ζ in Theorem 2.15, we obtain∣∣TΛ,Πϒ
m,Ξϒ

m
(0;`, [1, [2)

∣∣≤ 1[
F σ

ρ,δ (`−m[1)
] q+1

q F σ

ρ,δ ([2−m[1)
(53)
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×
[
Bϒ

1 (`;1)
]1− 1

q q

√[
Bϒ

1 (`;1)F σ

ρ,δ (`−m[1)−Cϒ

1 (`)
]
|Λ′(m[1)|q +Cϒ

1 (`)|Λ′(`)|q

+
1[

F σ

ρ,δ ([2−m`)
] q+1

q F σ

ρ,δ ([2−m[1)

[
Bϒ

2 (`;1)
]1− 1

q

× q

√[
Bϒ

2 (`;1)F σ

ρ,δ ([2−m`)−Eϒ

1 (`)
]
|Λ′(m`)|q +Eϒ

1 (`)|Λ′([2)|q,

where

Cϒ

1 (`) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

(ζ −m[1)(ϒ(ζ )−ϒ(m[1))d ζ , (54)

Eϒ

1 (`) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`
(ζ −m`)(ϒ(m`+F σ

ρ,δ ([2−m`))−ϒ(ζ ))d ζ . (55)

COROLLARY 2.23. For λ = 0 and ϖ(ζ ) = ζ α

Γ(α)
in Theorem 2.15, we have

∣∣TΛ,Πϒ
m,Ξϒ

m
(0;`, [1, [2)

∣∣≤ 1[
F σ

ρ,δ (`−m[1)
] q+1

q F σ

ρ,δ ([2−m[1)
(56)

×
[
Bϒ

3 (`;1,α)
]1− 1

q

× q

√[
Bϒ

3 (`;1,α)F σ

ρ,δ (`−m[1)−Cϒ

1 (`,α)
]
|Λ′(m[1)|q +Cϒ

1 (`,α)|Λ′(`)|q

+
1[

F σ

ρ,δ ([2−m`)
] q+1

q F σ

ρ,δ ([2−m[1)

[
Bϒ

4 (`;1,α)
]1− 1

q

× q

√[
Bϒ

4 (`;1,α)F σ

ρ,δ ([2−m`)−Eϒ

1 (`,α)
]
|Λ′(m`)|q +Eϒ

1 (`,α)|Λ′([2)|q,

where

Cϒ

1 (`,α) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

(ζ −m[1)
[
ϒ(ζ )−ϒ(m[1)

]α

d ζ , (57)

Eϒ

1 (`,α) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`
(ζ −m`)

[
ϒ(m`+F σ

ρ,δ ([2−m`))−ϒ(ζ )
]α

d ζ . (58)

COROLLARY 2.24. Substituting λ = 0 and ϖ(ζ ) = ζ
α
κ

κΓκ (α)
in Theorem 2.15, we



JAMSI, 17 (2021), No. 1 53

get ∣∣TΛ,Πϒ
m ,Ξϒ

m
(0;`, [1, [2)

∣∣≤ 1[
F σ

ρ,δ (`−m[1)
] q+1

q F σ

ρ,δ ([2−m[1)

[
Bϒ

5 (`;1,α,κ)
]1− 1

q
(59)

× q

√[
Bϒ

5 (`;1,α,κ)F σ

ρ,δ (`−m[1)−Cϒ

1 (`,α,κ)
]
|Λ′(m[1)|q +Cϒ

1 (`,α,κ)|Λ′(`)|q

+
1[

F σ

ρ,δ ([2−m`)
] q+1

q F σ

ρ,δ ([2−m[1)

[
Bϒ

6 (`;1,α,κ)
]1− 1

q

× q

√[
Bϒ

6 (`;1,α,κ)F σ

ρ,δ ([2−m`)−Eϒ

1 (`,α,κ)
]
|Λ′(m`)|q +Eϒ

1 (`,α,κ)|Λ′([2)|q,

where

Cϒ

1 (`,α,κ) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

(ζ −m[1)
[
ϒ(ζ )−ϒ(m[1)

] α
κ d ζ , (60)

Eϒ

1 (`,α,κ) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`
(ζ −m`)

[
ϒ(m`+F σ

ρ,δ ([2−m`))−ϒ(ζ )
] α

κ d ζ . (61)

COROLLARY 2.25. For λ = 0, ∀ξ ∈ [0,ζ ], ϖϒ(`,ζ ) = ζ (ϒ(m[1+F σ

ρ,δ (`−m[1))−
ζ )α−1 and ∀ξ ∈ [ζ ,1], ϖϒ(`,ζ ) = ζ (ϒ(m`+F σ

ρ,δ ([2−m`))−ζ )α−1 in Theorem 2.15, we
obtain ∣∣TΛ,Πϒ

m,Ξϒ
m
(0;`, [1, [2)

∣∣≤ 1[
F σ

ρ,δ (`−m[1)
] q+1

q F σ

ρ,δ ([2−m[1)
(62)

×
[
Bϒ

7 (`;1,α)
]1− 1

q q

√[
Bϒ

7 (`;1,α)F σ

ρ,δ (`−m[1)−Cϒ

1 (`)
]
|Λ′(m[1)|q +Cϒ

1 (`)|Λ′(`)|q

+
1[

F σ

ρ,δ ([2−m`)
] q+1

q F σ

ρ,δ ([2−m[1)

[
Bϒ

8 (`;1,α)
]1− 1

q

× q

√[
Bϒ

8 (`;1,α)F σ

ρ,δ ([2−m`)−Lϒ

2 (`,α)
]
|Λ′(m`)|q +Lϒ

2 (`,α)|Λ′([2)|q,

where

Lϒ

2 (`,α) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`
(ζ −m`)

[
ϒ

α(m`+F σ

ρ,δ ([2−m`))−ϒ
α(ζ )

]
d ζ . (63)

COROLLARY 2.26. Substituting λ = 0 and ϖ(ζ ) = ζ

α
exp(−Aζ ), where A = 1−α

α
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in Theorem 2.15, we have∣∣TΛ,Πϒ
m ,Θϒ

m
(0;`, [1, [2)

∣∣≤ 1

(1−α)
[
F σ

ρ,δ (`−m[1)
] q+1

q F σ

ρ,δ ([2−m[1)
(64)

×

{[
Bϒ

9 (`;1,A)
]1− 1

q q
√

Lϒ

3 (`,A)|Λ′(m[1)|q +Lϒ

4 (`,A)|Λ′(`)|q

+
1

(1−α)
[
F σ

ρ,δ ([2−m`)
] q+1

q F σ

ρ,δ ([2−m[1)

×
[
Bϒ

10(`;1,A)
]1− 1

q q
√

Lϒ

5 (`,A)|Λ′(m`)|q +Lϒ

6 (`,A)|Λ′([2)|q
}
,

where

Lϒ

3 (`,A) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

(
m[1 +F σ

ρ,δ (`−m[1)−ζ
)

(65)

×
{

1− exp
[
A(ϒ(m[1)−ϒ(ζ ))

]}
d ζ ,

Lϒ

4 (`,A) :=
∫ m[1+F σ

ρ,δ
(`−m[1)

m[1

(ζ −m[1)
{

1− exp
[
A(ϒ(m[1)−ϒ(ζ ))

]}
d ζ , (66)

Lϒ

5 (`,A) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`

(
m`+F σ

ρ,δ ([2−m`)−ζ
)

(67)

×
{

1− exp
[
A
(
ϒ(ζ )−ϒ(m`+F σ

ρ,δ ([2−m`))
)]}

d ζ ,

Lϒ

6 (`,A) :=
∫ m`+F σ

ρ,δ
([2−m`)

m`
(ζ −m`)

{
1− exp

[
A
(
ϒ(ζ )−ϒ(m`+F σ

ρ,δ ([2−m`))
)]}

d ζ .

(68)
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3. APPLICATIONS

For [1, [2 ∈ R and 0 < [1 < [2 we recall:

(1) arithmetic mean:

A([1, [2) =
[1 + [2

2
;

(2) harmonic mean:

H([1, [2) =
2

1
[1
+ 1

[2

;

(3) logarithmic mean:

L([1, [2) =
[2− [1

ln |[2|− ln |[1|
;

(4) generalized log-mean:

Lr([1, [2) =

[
[r+1

2 − [r+1
1

(r+1)([2− [1)

] 1
r

; r ∈ R\{−1,0}.

From the main results in Section 2, we get

PROPOSITION 3.1. Let r, [1, [2 ∈R with 0<[1 <[2, then for r,q> 1 and 1
p +

1
q = 1,

we have ∣∣∣Ar([1, [2)−Lr
r([1, [2)

∣∣∣≤ r([2− [1)

4 p
√

p+1
(69)

×

{
q

√
A
(
[

q(r−1)
1 ,

( [1 + [2

2

)q(r−1)
)
+ q

√
A
(( [1 + [2

2

)q(r−1)
, [

q(r−1)
2

)}
.

PROOF. Taking m = 1, λ = 0, `= [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) =

[2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1, Λ(ζ ) = ζ r and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.3, we
get (69).

PROPOSITION 3.2. Let r, [1, [2 ∈R with 0<[1 <[2, then for r,q> 1 and 1
p +

1
q = 1,

we obtain ∣∣∣A([r
1, [

r
2)−Lr

r([1, [2)
∣∣∣≤ r([2− [1)

4 p
√

p+1
(70)
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×

{
q

√
A
(
[

q(r−1)
1 ,

( [1 + [2

2

)q(r−1)
)
+ q

√
A
(( [1 + [2

2

)q(r−1)
, [

q(r−1)
2

)}
.

PROOF. Choosing m = 1, λ = 1, ` = [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−
m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1, Λ(ζ ) = ζ r and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem
2.3, we have (70).

PROPOSITION 3.3. Let [1, [2 ∈ R with 0 < [1 < [2, then for q > 1 and 1
p +

1
q = 1,

we get ∣∣∣∣∣ 1
A([1, [2)

− 1
L([1, [2)

∣∣∣∣∣≤ ([2− [1)

4 p
√

p+1
(71)

×

{
1

q

√
H
(
[2q

1 ,
(

[1+[2
2

)2q
) +

1

q

√
H
((

[1+[2
2

)2q
, [2q

2

)
}
.

PROOF. Taking m = 1, λ = 0, `= [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) =

[2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1, Λ(ζ ) =
1
ζ

and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.3, we

obtain (71).

PROPOSITION 3.4. Let [1, [2 ∈ R with 0 < [1 < [2, then for q > 1 and 1
p +

1
q = 1,

we have ∣∣∣∣∣ 1
H([1, [2)

− 1
L([1, [2)

∣∣∣∣∣≤ ([2− [1)

4 p
√

p+1
(72)

×

{
1

q

√
H
(
[2q

1 ,
(

[1+[2
2

)2q
) +

1

q

√
H
((

[1+[2
2

)2q
, [2q

2

)
}
.

PROOF. Choosing m = 1, λ = 1, ` = [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−

m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1, Λ(ζ ) =
1
ζ

and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem

2.3, we get (72).

PROPOSITION 3.5. Let r, [1, [2 ∈ R with 0 < [1 < [2 and r > 1, then for q≥ 1, we
obtain ∣∣∣Ar([1, [2)−Lr

r([1, [2)
∣∣∣≤ q

√
2
3

r([2− [1)

8
(73)
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×

{
q

√
A
(
[

q(r−1)
1 ,2

( [1 + [2

2

)q(r−1)
)
+ q

√
A
(

2
( [1 + [2

2

)q(r−1)
, [

q(r−1)
2

)}
.

PROOF. Taking m = 1, λ = 0, `= [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) =

[2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1, Λ(ζ ) = ζ r and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.15,
we have (73).

PROPOSITION 3.6. Let r, [1, [2 ∈ R with 0 < [1 < [2 and r > 1, then for q≥ 1, we
get ∣∣∣A([r

1, [
r
2)−Lr

r([1, [2)
∣∣∣≤ q

√
2
3

r([2− [1)

8
(74)

×

{
q

√
A
(

2[q(r−1)
1 ,

( [1 + [2

2

)q(r−1)
)
+ q

√
A
(( [1 + [2

2

)q(r−1)
,2[q(r−1)

2

)}
.

PROOF. Choosing m = 1, λ = 1, ` = [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−
m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1, Λ(ζ ) = ζ r and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem
2.15, we obtain (74).

PROPOSITION 3.7. Let [1, [2 ∈ R with 0 < [1 < [2, then for q≥ 1, we have∣∣∣∣∣ 1
A([1, [2)

− 1
L([1, [2)

∣∣∣∣∣≤ q

√
4
3
([2− [1)

8
(75)

×

{
1

q

√
H
(

2[2q
1 ,
(

[1+[2
2

)2q
) +

1

q

√
H
((

[1+[2
2

)2q
,2[2q

2

)
}
.

PROOF. Taking m = 1, λ = 0, `= [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) =

[2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1, Λ(ζ ) =
1
ζ

and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem 2.15,

we get (75).

PROPOSITION 3.8. Let [1, [2 ∈ R with 0 < [1 < [2, then for q≥ 1, we obtain∣∣∣∣∣ 1
H([1, [2)

− 1
L([1, [2)

∣∣∣∣∣≤ q

√
4
3
([2− [1)

8
(76)
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×

{
1

q

√
H
(
[2q

1 ,2
(

[1+[2
2

)2q
) +

1

q

√
H
(

2
(

[1+[2
2

)2q
, [2q

2

)
}
.

PROOF. Choosing m = 1, λ = 1, ` = [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−

m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1, Λ(ζ ) =
1
ζ

and ϒ(ζ ) = ζ = ϖ(ζ ) in Theorem

2.15, we have (76).

Finally, we will find some new error estimations pertaining quadrature formula. Let
denote Q : [1 = ς0 < ς1 < .. . < ςk = [2. The following quadrature formulas are very
useful in the sequel.∫ [2

[1

Λ(`)d`= M(Λ,Q)+E(Λ,Q),
∫ [2

[1

Λ(`)d`= T(Λ,Q)+E∗(Λ,Q)

where

M(Λ,Q) :=
k−1

∑
j=0

Λ

(
ς j + ς j+1

2

)
(ς j+1− ς j), T(Λ,Q) :=

k−1

∑
j=0

Λ(ς j)+Λ(ς j+1)

2
(ς j+1− ς j),

and E(Λ,Q), E∗(Λ,Q) are denoted their corresponding errors.

PROPOSITION 3.9. Let Λ : [[1, [2]→ R be a differentiable function on ([1, [2),

where [1 < [2. If |Λ′|q is convex on [[1, [2], then for q > 1 and 1
p +

1
q = 1, we have

∣∣E(Λ,Q)
∣∣≤ 1

4 q
√

2 p
√

p+1
×

k−1

∑
j=0

(ς j+1− ς j)
2 (77)

×

{
q

√
|Λ′(ς j)|q +

∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + q

√∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + |Λ′(ς j+1)|q
}
.

PROOF. From Theorem 2.3 for m = 1, λ = 0, ` = [1+[2
2 , F σ

ρ,δ (`− m[1) =

`−m[1, F σ

ρ,δ ([2−m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) on
[ς j,ς j+1] ( j = 0, . . . ,k−1) of Q, we get∣∣∣∣∣Λ

(
ς j + ς j+1

2

)
− 1

ς j+1− ς j

∫
ς j+1

ς j

Λ(`)d`

∣∣∣∣∣≤ (ς j+1− ς j)

4 q
√

2 p
√

p+1
(78)

×

{
q

√
|Λ′(ς j)|q +

∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + q

√∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + |Λ′(ς j+1)|q
}
.
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From (78), we have

∣∣E(Λ,Q)
∣∣= ∣∣∣∣∣

∫ [2

[1

Λ(`)d`−M(Λ,Q)

∣∣∣∣∣
≤

∣∣∣∣∣ k−1

∑
j=0

{∫
ς j+1

ς j

Λ(`)d`−Λ

(
ς j + ς j+1

2

)
(ς j+1− ς j)

}∣∣∣∣∣
≤

k−1

∑
j=0

∣∣∣∣∣
{∫

ς j+1

ς j

Λ(`)d`−Λ

(
ς j + ς j+1

2

)
(ς j+1− ς j)

}∣∣∣∣∣
≤ 1

4 q
√

2 p
√

p+1
×

k−1

∑
j=0

(ς j+1− ς j)
2

×

{
q

√
|Λ′(ς j)|q +

∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + q

√∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + |Λ′(ς j+1)|q
}
.

PROPOSITION 3.10. Let Λ : [[1, [2]→ R be a differentiable function on ([1, [2),

where [1 < [2. If |Λ′|q is convex on [[1, [2], then for q≥ 1, we obtain

∣∣E(Λ,Q)
∣∣≤ 1

8 q
√

3
×

k−1

∑
j=0

(ς j+1− ς j)
2 (79)

×

{
q

√
|Λ′(ς j)|q +2

∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + q

√
2
∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + |Λ′(ς j+1)|q
}
.

PROOF. The proof is analogous as to that of Proposition 3.9 taking m = 1, λ =

0, `= [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1

and ϒ(ζ ) = ζ = ϖ(ζ ) using Theorem 2.15.

PROPOSITION 3.11. Let Λ : [[1, [2]→ R be a differentiable function on ([1, [2),

where [1 < [2. If |Λ′|q is convex on [[1, [2], then for q > 1 and 1
p +

1
q = 1, we have

∣∣E∗(Λ,Q)
∣∣≤ 1

4 q
√

2 p
√

p+1
×

k−1

∑
j=0

(ς j+1− ς j)
2 (80)

×

{
q

√
|Λ′(ς j)|q +

∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + q

√∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + |Λ′(ς j+1)|q
}
.
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PROOF. By Theorem 2.3 for m = 1, λ = 1, ` = [1+[2
2 , F σ

ρ,δ (` − m[1) =

`−m[1, F σ

ρ,δ ([2−m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1 and ϒ(ζ ) = ζ = ϖ(ζ ) on
[ς j,ς j+1] ( j = 0, . . . ,k−1) of Q, we get∣∣∣∣∣Λ(ς j)+Λ(ς j+1)

2
− 1

ς j+1− ς j

∫
ς j+1

ς j

Λ(`)d`

∣∣∣∣∣≤ (ς j+1− ς j)

4 q
√

2 p
√

p+1
(81)

×

{
q

√
|Λ′(ς j)|q +

∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + q

√∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + |Λ′(ς j+1)|q
}
.

From (81), we get

∣∣E∗(Λ,Q)
∣∣= ∣∣∣∣∣

∫ [2

[1

Λ(`)d`−T(Λ,Q)

∣∣∣∣∣
≤

∣∣∣∣∣ k−1

∑
j=0

{∫
ς j+1

ς j

Λ(`)d`− Λ(ς j)+Λ(ς j+1)

2
(ς j+1− ς j)

}∣∣∣∣∣
≤

k−1

∑
j=0

∣∣∣∣∣
{∫

ς j+1

ς j

Λ(`)d`− Λ(ς j)+Λ(ς j+1)

2
(ς j+1− ς j)

}∣∣∣∣∣
≤ 1

4 q
√

2 p
√

p+1
×

k−1

∑
j=0

(ς j+1− ς j)
2

×

{
q

√
|Λ′(ς j)|q +

∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + q

√∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + |Λ′(ς j+1)|q
}
.

PROPOSITION 3.12. Let Λ : [[1, [2]→ R be a differentiable function on ([1, [2),

where [1 < [2. If |Λ′|q is convex on [[1, [2], then for q≥ 1, we obtain

∣∣E∗(Λ,Q)
∣∣≤ 1

8 q
√

3
×

k−1

∑
j=0

(ς j+1− ς j)
2 (82)

×

{
q

√
2|Λ′(ς j)|q +

∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q + q

√∣∣∣Λ′(ς j + ς j+1

2

)∣∣∣q +2|Λ′(ς j+1)|q
}
.

PROOF. The proof is analogous as to that of Proposition 3.11 taking m = 1, λ =

1, `= [1+[2
2 , F σ

ρ,δ (`−m[1) = `−m[1, F σ

ρ,δ ([2−m`) = [2−m`, F σ

ρ,δ ([2−m[1) = [2−m[1

and ϒ(ζ ) = ζ = ϖ(ζ ) using Theorem 2.15.
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Applying fractional calculus to analyze final
consumption and gross investment

influence on GDP
A. BADÍK AND M. FEČKAN

Abstract

This paper points out the possibility of suitable use of Caputo fractional derivative in regression model.
Fitting historical data using a regression model seems to be useful in many fields, among other things, for
the short-term prediction of further developments in the state variable. Therefore, it is important to fit the
historical data as accurately as possible using the given variables. Using Caputo fractional derivative, this
accuracy can be increased in the model described in this paper.

Mathematics Subject Classification 2010: 26A33, 26A51, 26D15.
Keywords: Caputo derivative, Method of least squares, Regression model.

1. INTRODUCTION

Fractional (fractional-order) derivative also known as derivative with memory
appears to be a powerful tool for examining the development of economic indicators
(such as GDP) because of ‘memory’. It has been proved that fractional models
[Hilfer et al. 2000] are better then integer models, giving us a great opportunity
to use it. It turns out that fractional calculus is also advantageous to use in regression
models, which then provide better accuracy for modeling variable of interest based
on a set of predictor variables than can be seen in [Luo et al. 2018].

In [Anghelache et al. 2015], the authors study GDP evolution for the Romanian
case by using multiple linear regression model with final consumption value and the
value of gross investment as independent variables via data between 1990 and 2014.

In the present paper, we go on the study of final consumption and gross investment
influence on GDP for the Romanian case by using Caputo fractional derivative. We
note that the Romanian case is used in this paper only for possibility to compare our
achievement and proposed model with previous one.

Partially supported by the Slovak Research and Development Agency under the contract No. APVV-18-
0308 and by the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20.

10.2478/jamsi-2021-0004
University of SS. Cyril and Methodius in Trnava
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2. APPROXIMATION TO CAPUTO FRACTIONAL DERIVATIVE BASED
ON POLYNOMIAL INTERPOLATION

From the definition of the Caputo derivative, we can find that the αth-order
(m−1 < α < m) Caputo derivative of the given function f (t) can be seen as the
(m−α)th-order fractional integral of the function f (m)(t). In our case, we decided to
use fractional rectangular formula.

For 0 < α < 1 we get the following formula

[
CDα

0,t f (t)
]

t=tn
≈

n−1

∑
k=0

wn−k−1δt f (tk), (1)

where

wi =
∆t1−α

Γ(2−α)

[
(i+1)1−α − i1−α

]
and

δt f (tk) =
f (tk+1)− f (tk)

∆t
≈ f ′(tk).

3. REGRESSION MODELS WITH FRACTIONAL-ORDER DERIVATIVES

Throughout of this paper, we denote GDP by y, final consumption by x1 and gross
investments by x2.

The modification of original model leads to

y(t) = β0 +β1 CDα1
t0,t

x1(t)+β2 CDα2
t0 ,t

x2(t)+ ε(t), (2)

where βi (i = 0,1,2) are regression coefficients, α1, α2 ∈ [0,1] are unknown orders and
ε(t) is a function of residuals.

We also denote the mean square error by MSE, the coefficient of determination by
R2, the adjusted coefficient of determination by R̄2, the mean absolute deviation by
MAD and Akaike Information Criterion by AIC.

Define

MSE =
1
n

n

∑
i=0

(yi− ŷi)
2
,

R2 = 1−

n

∑
i=0

(yi− ŷi)
2

n

∑
i=0

(yi− ȳ)2
,
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R̄2 = 1− (1−R2)
n−1

n− k−1
,

MAD =
1
n

n

∑
i=0

|yi− ŷi| ,

AIC = n ln
(

1
n

n

∑
i=0

(yi− ŷi)
2
)
+2k+

2k(k+1)
n− k−1

,

where n denotes the sample size and k denotes the number of parameters.

3.1. Results

The least squares method gives the following estimates of coefficients and orders of
the fractional operators (see Table I).

original model model (2)

β0 −2.14384 82.43610

β1 1.16311 1.34269

β2 0.32493 −10.88530

α1 − 4.41093×10−17

α2 − 0.58188

Table I. Estimates of coefficients and orders of the fractional operators.

Results obtained by using (1)-(2) are as follows (see Table II).

original model model (2)

MSE 22.8812 19.9679

R2 0.98308 0.98523

R̄2 0.98154 0.98389

MAD 4.21674 3.82673

AIC 85.3488 81.9441

Table II. Performance indices for the Romanian economy.

Now, when we know the coefficients and orders of the fractional operators, we are
ready to give the fitting results (see Figure 1).
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Fig. 1. Data fitting.

One can see that the simulation results of original and model (2) are close to real
data. However, R2 of modified model is closer to 1 than R2 of original model. Thus,
model (2) is better than original model.

3.2. More General Models

We consider extension of (2) in a form

y(t) = β0 +β1,1 CDα1,1
t0 ,t x1(t)+β1,2 CDα1,2

t0 ,t x1(t)

+β2,1 CDα2,1
t0 ,t x2(t)+β2,2 CDα2,2

t0 ,t x2(t)+ ε(t),
(3)

where β0, β1,i, β2,i (i = 0,1,2) are regression coefficients, α1,i, α2,i ∈ [0,1] (i = 0,1,2)
are unknown orders and ε(t) is a function of residuals. In general, we have

y(t) = β0 +
p

∑
i=1

β1,i CDα1,i
t0 ,t x1(t)+

q

∑
j=1

β2, j CDα2, j
t0 ,t x2(t)+ ε(t) (4)

for α1,i, α2, j ∈ [0,1], i = 1, . . . , p, j = 1, . . . ,q. Letting p→ ∞ and q→ ∞, we get

y(t) = β0 +
∫ 1

0
β1(α1)CDα1

t0 ,t
x1(t)dα1 +

∫ 1

0
β2(α2)CDα2

t0,t
x2(t)dα2 + ε(t).
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Due to the computational complexity of the least squares method for all parameters,
we chose a different method for estimating the models parameters and we get the
following estimates of coefficients and orders of the fractional operators (see Table
III). Note that there is no proof of the best estimate of parameters obtained using this
method.

model (3) model (4), p = q = 3 model (4), p = q = 4 model (4), p = q = 5

β0 83.20526 84.04196 85.22125 85.15662

β1,1 1.47409 19.39253 72.97881 31.97668

β1,2 −1.27170 −40.21083 −169.16983 −60.53592

β1,3 − 52.15342 303.43792 −9.41558

β1,4 − − −2333.38776 −33494.91513

β1,5 − − − 25613.50872

β2,1 −4.15815 421.22459 2453.17281 −124.40979

β2,2 3.28790 −103.72563 −556.75607 −30.71726

β2,3 − −341.06431 −2106.16932 264.10137

β2,4 − − 839.70531 −2685.75423

β2,5 − − − 9747.93546

α1,1 3.1716×10−11 1.4432×10−14 8.2771×10−10 1.49024×10−9

α1,2 0.09639 0.08246 0.08246 0.08246

α1,3 − 0.35410 0.35408 0.35413

α1,4 − − 0.99967 0.99967

α1,5 − − − 0.94407

α2,1 0.07450 0.07450 0.07450 0.07450

α2,2 1.0001×10−20 0.00561 0.00561 0.00561

α2,3 − 0.11702 0.11702 0.11702

α2,4 − − 0.68561 0.68561

α2,5 − − − 0.99984

Table III. Estimates of coefficients and orders of the fractional operators.
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Results obtained by using (1)-(4) are as follows (see Table IV).

original model model (2) model (3)

MSE 22.8812 19.9679 6.8990

R2 0.98308 0.98523 0.99490

R̄2 0.98154 0.98390 0.99388

MAD 4.21674 3.82673 2.12068

AIC 85.3488 81.9441 58.2843

model (4), p = q = 3 model (4), p = q = 4 model (4), p = q = 5

MSE 3.53354 1.51559 1.45406

R2 0.99739 0.99888 0.99893

R̄2 0.99652 0.99832 0.99816

MAD 1.42666 0.96946 0.93319

AIC 48.2242 35.3951 45.0733

Table IV. Performance indices for the Romanian economy.

Now, when we know the coefficients and orders of the fractional operators, we are
ready to give the fitting results (see Figure 2).

real data
model (2)
model (3)

real data
model (3)
model (4), p = q = 3

real data
model (4), p = q = 4
model (4), p = q = 5

real data
model (4), p = q = 3
model (4), p = q = 4
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Fig. 2. Data fitting.
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The simulation results of models where we estimated the parameters are close to
real data. Due to the different count of parameters of models, we can use adjusted
coefficient of determination for the model comparison to each other.

One can see, that data obtained by model (4) with p = q = 4 better fits real data
than data obtained by other models, which is also indicated by values of R̄2 of these
models. R̄2 of model (4) with p = q = 4 is closer to 1 than R̄2 of any other model where
we estimated the parameters. Thus, model (4) with p = q = 4 is better then any other
model where we estimated the parameters.

4. CONCLUSIONS

This paper studies a final consumption and gross investment influence on GDP for
the Romanian case. Based on our results, it is shown that using the Caputo fractional
derivative is convenient in this case. In addition, the data of general models are better
than the data of original model from [Anghelache et al. 2015].
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Abstract 

 
The main object of this paper is to study doubly stochastic matrices with majorization and the Birkhoff 

theorem. The Perron-Frobenius theorem on eigenvalues is generalized for doubly stochastic matrices. The 
region of all possible eigenvalues of n-by-n doubly stochastic matrix is the union of regular (n – 1) polygons 

into the complex plane. This statement is ensured by a famous conjecture known as the Perfect-Mirsky 

conjecture which is true for n = 1, 2, 3, 4 and untrue for n = 5. We show the extremal eigenvalues of the 
Perfect-Mirsky regions graphically for n = 1, 2, 3, 4 and identify corresponding doubly stochastic matrices. 

Bearing in mind the counterexample of Rivard-Mashreghi given in 2007, we introduce a more general 

counterexample to the conjecture for n = 5. Later, we discuss different types of positive maps relevant to 
Quantum Channels (QCs) and finally introduce a theorem to determine whether a QCs gives rise to a doubly 

stochastic matrix or not. This evidence is straightforward and uses the basic tools of matrix theory and 

functional analysis. 
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1. INTRODUCTION 

Stochastic and doubly stochastic matrices are mostly studied matrices for many 

years. Motivation has come from pure mathematics. The concept of stochastic 

matrices, a special type of nonnegative matrices, was introduced by Andrey Markov 

when he was working on the well-known mathematical system of the Markov chain 

in 1906. His intention of using these types of matrices was only for linguistic analysis 

and card shuffling. In 2017, the notion of steady-state is explored in connection with 

the long-run distribution, behavior of the Markov chain, and predictions based on 

Markov chains with more than two states are examined, followed by a discussion of 

the notion of absorbing Markov chains in Gagniuc [10].  Later Andrey Kolmogorov 

gave rise to developments of this type of matrices extending the possibilities of uses 

for continuous-time Markov processes [14].   
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As they were found to have a variety of applications in the fields like probability 

theory, statistics, mathematical finance, and linear algebra, as well as economics, 

engineering, computer science, population genetics, and QI; many of the researchers 

were intensely motivated by this. Prashanth et. al. [25] introduced some results using 

eigenvalues of signed graph using the number of vertices. In addition to these 

applications, stochastic modeling is an interesting and challenging domain of statistics 

and data science, for more details see Bhuiyan [3]. Moreover, the spectral properties 

of stochastic matrices appeared of great interest in the various domains of 

mathematics. The most facetious thing about the spectral properties of those matrices 

is the location of eigenvalues for different n. In 1936, Romanovsky [26] first tried to 

characterize the location of eigenvalues of stochastic matrices in the complex plane 

and he managed to find the points on the circumference of the unit circle where some 

eigenvalues of a different order of stochastic matrices may lie. But the problem of 

finding the possible area covering all the proper values of stochastic matrices was first 

suggested by Kolmogorov in 1938. 

In 1946, Dmitriev et. al. [9] tried to mark the region, denoted by Θ𝑛, given by 

the subset of the complex plane containing all possible eigenvalues of all n-by-n 

stochastic matrices. They managed to find that area in part. In 1938, Kolmogorov 

raised the question that what point of the circle of unity may serve as the characteristic 

root of a stochastic matrix. Later in 1946, Dmitriev and Dynkin [9] solved the problem 

completely for n ≤ 4 and partially for n > 5. On the basis of Dmitriv and Dynkin 

problem, Karpelevich [13] solved a similar problem completely and found the 

Karpelevich’s region  𝕂𝒏  in 1949. Karpelevič was able to solve the problem 

completely, but a new statement about it was made by Ito [11] in 1997. Some time 

later, Perfect et. al. [23] considered the same problem for double stochastic matrices, 

i.e., they tried to characterize the region 𝜔𝑛 ⊂ 𝐶 containing all the eigenvalues of n-

by-n doubly stochastic matrices. They gave a conjecture about the possible region 

known as the Perfect-Mirsky conjecture. Recently, in 2015, Perfect-Mirsky 

Conjecture on the structure of the set of eigenvalues for all n-by-n doubly stochastic 

matrices in the four-dimensional case were studied by Levick J., Rajesh Pereira and 

David W. Kribs [19] and based on the analysis they made new conjectures for the 
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general case.  In this article, a detailed description of these results along with the 

diagrams of the regions are given to discuss matrices with extremal characteristic 

roots.  

In the Quantum Information (QI) theory and Quantum system, a very important 

notion of quantum mechanics is the QCs are a special type of communication channel 

that delivers information from sender to receiver. The information conveyed by QCs 

is described by the quantum states of a quantum system. In addition, QCs can be 

regarded as a special type of positive maps on the matrix space. In this article, we 

discuss the idea of quantum information and the various types of positive maps 

concerning QCs. We also generalize the requirement that a QCs produces or does not 

produce a doubly stochastic matrix. An algebraic point of view, a QCs is a completely 

positive trace-preserving map that acts on space and gives the output of information 

to another space. Moreover, an euclidean formulation of relativistic quantum 

mechanics for systems of a finite number of degrees of freedom is considered in [27]. 

Based on unitarily, there may be two types of QCs: unital and non-unital. The initial 

QCs maintain the average of a quantum state. On the other hand, non-initial QC does 

not. As there is a connection between the positive trace-preserving initial maps and 

doubly stochastic matrices [5] there might have a connection between initial QCs and 

doubly stochastic matrices. In this paper, we will discuss the relationship between 

them. The remainder of this paper is divided into five sections. We first introduce 

some preliminary definitions and some relevant theorems as well as majorization 

illustrating with an example. In section three, we state the Perron-Frobenius theorem 

of nonnegative matrices. For showing the region of characteristic roots of such 

matrices, we first recall a theorem of Karpelevich regarding stochastic matrices. Then, 

we discuss the Perfect-Mirsky conjecture and show the matrices with extremal roots 

graphically in the star shaped region. In section four, we introduce a more general 

form of counterexamples for Perfect-Mirsky conjecture and compare it with that of 

previously found Rivard-Mashreghi counterexample for n = 5. Section five is devoted 

to the quantum channels and discusses the connection between doubly stochastic 

matrices and trace preserving initial positive maps. We finally generalize the 
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condition, whether a quantum channel gives rise to doubly stochastic matrix or not by 

a theorem. 

2. MATHEMATICAL BACKGROUND 

A special type of real matrices whose all entries are positive, called positive 

matrices. The stochastic matrices are the simplest form of positive matrices in which 

certain conditions are implemented. There are two simple types of positive matrices 

row (column) stochastic matrices and doubly stochastic matrices. Each entry of such 

matrices represents a probability. In this section, we discuss doubly stochastic 

matrices and the famous theorem of Birkhoff is regarding those types of matrices. We 

define majorization for one dimensional and multidimensional case and formulate a 

lemma connecting doubly stochastic matrices and majorization. (For more details, see 

Armandnejad et. al. [1].)  

DEFINITION 1. A matrix A=(aij) ∈ 𝑀𝑛(ℜ) is called row (column) stochastic if 

the sum of each of its rows (columns) equals to 1. That is, 

( ) ....,...,...1,,0 njiforai ij =  

( ) niforaii
n

j

ij ...,...,...1,1
1

==
=

....,...,...11
1









==

=

njfora
n

i

ij

 

The set of  all 𝑛 × 𝑛 row (column) stochastic matrices is denoted by Ω𝑛
𝑟𝑜𝑤(Ω𝑛

𝑐𝑜𝑙𝑢𝑚𝑛). 

DEFINITION 2. A matrix 𝐴 ∈ 𝑀𝑛(ℜ) is called doubly stochastic if the sum of 

each of its rows and columns equals to 1 i. e. (𝑖)𝑎𝑖𝑗 ≥ 0, for 𝑖, 𝑗 = 1, . . . 𝑛 , and 

(𝑖𝑖) ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 = ∑ 𝑎𝑖𝑗

𝑛
𝑖=1 = 1, 𝑓𝑜𝑟𝑖, 𝑗 = 1, . . . 𝑛. 

Doubly stochastic matrices are also known as Bistochastic matrices, Schur 

transformation. The set of all 𝑛 × 𝑛  doubly stochastic matrices is called Birkhoff 

polytope and is denoted by Ω𝑛. A special example of doubly stochastic matrices are 

the permutation matrices, the square matrices whose entries are all either 0 or 1 and 

which contain exactly a 1 in each row and each column. 

THEOREM 1. (Mehlum [22]) The set of all 𝑛 × 𝑛 doubly stochastic matrices is 

convex. 
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THEOREM 2. (Birkhoff [2]) The set Ω𝑛 of doubly stochastic matrices of size n-

by-n is the convex hull of the n-by-n permutation matrices.   

To get a better understanding of the Birkhoff theorem of doubly stochastic matrices 

and their importance for this paper, we present an example to illustrate how the doubly 

stochastic matrices can be expressed as the convex combination of permutation 

matrices. This is illustrated by the following example: 

EXAMPLE 1. Illustrate the doubly stochastic matrix 

(

 
 

𝟏

𝟏𝟎

𝟑

𝟏𝟎

𝟑

𝟓
𝟑

𝟓

𝟏

𝟏𝟎

𝟑

𝟏𝟎
𝟑

𝟏𝟎

𝟑

𝟓

𝟏

𝟏𝟎)

 
 

  for 

Birkhoff theorem.  

Proof: To illustrate the Birkhoff theorem,  set  𝐴0 =

(

 
 

1

10

3

10

3

5
3

5

1

10

3

10
3

10

3

5

1

10)

 
 

, then we have the 

following: 

 

 Fig. 1: Bipartite graph associated to A0 matrix 

 

A perfect matching is {(1,1), (2,3), (3,2)} and the corresponding permutation matrix is 

𝑃0 = (
1 0 0
0 0 1
0 1 0

). The smallest entry of A0 corresponding to the non-zero entries of P0 

is 𝛼0 =
1

10
  (If 𝛼0 = 1,  then we would have 𝐴0 = 𝑃0 ), then we get the following 

doubly stochastic matrix, 
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  and we 

have the bipartite graph associated to 𝐴1 in the following: 

 

Fig. 2: Bipartite graph associated to 𝐴1 matrix 

 

A perfect matching is {(1,2), (2,1), (3,3)}, and the corresponding permutation matrix is 

𝑃1 = (
0 1 0
1 0 0
0 0 1

) .  Then we have 𝐴2 =
1

1−𝛼1
(𝐴1 − 𝛼1𝑃1) =

(

 
 
0

1

4

3

4
5

8

1

8

1

4
3

8

5

8
0
)

 
 

   of A1 

corresponding to the non-zero entries of 𝑃1 is 𝛼1 =
1

9
.  Bipartite graph associated to 

A2 is   

 

Fig. 3: Bipartite graph associated to A2 matrix 
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A perfect matching is ( ) ( ) ( ) 1,3,2,2,3,1  and the corresponding permutation matrix is 

𝑃2 = (
0 0 1
0 1 0
1 0 0

) . We then get 𝐴3 =
1

1−𝛼2
(𝐴2 − 𝛼2𝑃2) =

(

 
 
0

2

7

5

7
5

7
0

2

7
2

7

5

7
0
)

 
 

 by choosing the 

smallest entry of A2  and then Bipartite graph associated to A3 is following. 

 

Fig. 4: Bipartite graph associated to A3 matrix 

 

A perfect matching is{(1,3), (2,1), (3,2)}  and the corresponding permutation matrix is 

𝑃3 = (
0 0 1
1 0 0
0 1 0

). The smallest entry of A3 to the non-zero entries of P3 is 𝛼3 =
5

7
,  then 

we get 𝐴4 =
1

1−𝛼2
(𝐴2 − 𝛼2𝑃2) = (

0 1 0
0 0 1
1 0 0

) = 𝑃4. Thus,  

( ) ,
7

2

7

5
1 4343333 PPAPA +=−+=  44 PA =  , 

( ) 43232222
8

2

8

5

8

1
1 PPPAPA ++=−+=   , 

( ) 432121111
9

2

9

5

9

1

9

1
1 PPPPAPA +++=−+=  , and finally we get  

( ) 4321010000
10

2

10

5

10

1

10

1

10

1
1 PPPPPAPA ++++=−+=  .  Therefore, we finally have  

11

22

33
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 , 

where 𝛼0 + 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = 1.  

We now describe how two vectors X   and Y are related to each other by majorization 

and doubly stochastic matrices. Normally, it measures which of the vectors of X or Y  

is “more or less spread out”. For example, in economics, the majorization is used to 

compare the income distribution of two groups of the population.  

DEFINITION 3. Let 𝑋 = (𝑥1, 𝑥2, . . . . . . . . . , 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2 , . . . . . . . . . , 𝑦𝑛) be 

the n-tuples of real numbers. Then we say that X is majorized by Y, written 𝑋 ≺ 𝑌, if  

∑ 𝑥𝑖
↓𝑘

𝑖=1 = ∑ 𝑦𝑖
↓𝑘

𝑖=1 ; 1 ⥂≤ 𝑘 ≤ 𝑛  and ∑ 𝑥𝑖
𝑛
𝑖=1 = ∑ 𝑦𝑖 .

𝑛
𝑖=1   The notation 𝑋↓  means that 

the entries of X are arranged in descending order. We present now a real life example 

for explaining the notion of majorization in our own way as follows: 

EXAMPLE 2. Consider two Cricket teams in Oklahoma State University, 

Stillwater, OK, USA namely, Cowboy cricket club A, and Cowboy cricket club B. 

Both teams scored 150  runs in a 2020 −  over match, resulted in a tie. But someone 

may try to identify which team was better. The question is: can we really identify 

properly which team was better? 

Two teams played 20  overs, scored ,150  but they scored different runs in different 

phase of the game. Let us divide the phases in terms of overs. That is, the scoring rate 

in each over is not equally distributed. We re-arrange the runs scored in each over in 

an ascending sequence. 𝑥𝑖 and 𝑦𝑖  represent the runs in the 𝑖𝑡ℎ over of team A and B 

respectively. Now we compute the relative runs of the 𝑖𝑡ℎ over to be sum of the 𝑖𝑡ℎ 

smallest overs divided by total runs. We represent this numbers by 𝑥𝑖  and 𝑦𝑖 

respectively. We also define 𝑛𝑖  to be the proportion of overs having runs 𝑥𝑖(𝑦𝑖)  or 

less, such that 𝑛𝑛 denotes the whole overs. Then we plot the pairs (𝑛𝑖 , 𝑥𝑖) and (𝑛𝑖 , 𝑦𝑖),

𝑖 = 1, . . . . . . . . . , 20  in the same axes of coordinates. We add a straight line which 
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represents the overs where scores are at level. The associated graph shown in the 

following: 

 

Fig. 5: Comparison of two Cowboy Cricket Clubs over by over 

 

we observe that the graph of A is less convex than the graph of B or B spread out more 

than A Using this concept, we can conclude that A  is more evenly distributed than B 

or A is a better team than B  Although the idea of majorization comes from the 

comparison of two distinct objectives such as their income, height or other things, this 

concept is extended for a vector of more objects or points. But the problem for solving 

the comparison for a multidimensional array is more complicated than that of the 

single vector case. For a multidimensional case or simply for a matrix, the 

majorization is characterized differently using the concept of doubly stochastic 

matrices. 
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THEOREM 3. Let 𝑿 = {𝒙: 𝑿 ≺ 𝒀}. Then the set X is the convex hull of points 

generated by permuting the points of Y. (Marshall [20]) 

DEFINITION 4. Let A and B be two 𝑚 × 𝑛 real matrices. Then we say that A is 

majorized by B if there exists at least one doubly stochastic matrix D of order 𝑚 ×𝑚 

such that A  = BD.  

The definition above is equivalent to saying that A is row (column) majorized by B if 

each row (column) of A is majorized by the corresponding row (column) of B. For 

more details characterization of row or column majorization one can see Armandnejad 

et. al. [1], and Dahl [8]. Linking up theorem 3 and definitions above, we have the 

following relation between majorization and doubly stochastic matrices. 

LEMMA 1. Let 𝑥, 𝑦 ∈ ℜ≥0
𝑛 . Then the followings are equivalent: 

1. 𝑥 ≺ 𝑦 

2. 𝑥 ∈ 𝐶𝑜𝑛𝑣{𝑦} 

3. 𝑥 = 𝑦𝐷 for some doubly stochastic matrix 𝐷 ∈ Ω𝑛. 

3. REGIONS OF CHARACTERISTIC ROOTS OF DOUBLY STOCHASTIC 
MATRICES 

One of the most important theorems in matrix analysis is the Perron-Frobenius 

theorem, a theorem regarding the eigenvalues and corresponding eigenvectors of non-

negative matrices. This theorem also has a similar assertion for different classes of 

non-negative matrices. In 2012, Cheng et.al. [4], provide  a  simple  proof  for  the  

Perron-Frobenius  theorem  concerned  with  positive  matrices  using  a  homotopy  

technique.  In this section, we give our observation of the Perron-Frobenius theorem 

in the case of stochastic and doubly stochastic matrices. We discuss the Perfect-

Mirsky conjecture for doubly stochastic matrices and show the extremal characteristic 

roots of 𝜔𝑛 for 𝑛 ≥ 2. 

THEOREM 4. (Perron-Frobenius theorem, (Cheng et. Al. [4])) If 𝐴 = (𝑎𝑖𝑗) is a 

real 𝑛 × 𝑛 non-negative matrix, then 
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(i) A has a non-negative eigenvalue   which is equal to the spectral radius 

of A 

(ii) There is a unique eigenvector corresponding to 𝜆 whose all entries are 

non-negative. 

In our case, the simple observation of Perron-Frobenius theorem is that 

(i) Every stochastic and doubly stochastic matrix has spectral radius 1. 

(ii) The eigenvector corresponding to the spectral radius is 

(1,1, . . . . . . . . . ,1)𝑇. 

Perfect-Mirsky Conjecture.  

It was observed that the subset of C  which may contain the eigenvalues of an 𝑛 × 𝑛 

doubly stochastic matrix is a subset of the characteristic region of an 𝑛 × 𝑛 stochastic 

matrix. Also, the characteristic region of (𝑛 − 1) × (𝑛 − 1) doubly stochastic matrices 

is a subset of the characteristic region of 𝑛 × 𝑛 doubly stochastic matrices. 

DEFINITION 5. Let A be an 𝑛 × 𝑛  doubly stochastic matrix and 𝜆  be any 

complex number inside the unit circle. Then the set of eigenvalues of A consists of the 

collection of all 𝜆′𝑠 if there exists a v  corresponding to 𝜆 such that 𝐴𝑣 = 𝜆𝑣.  

 .,:,. vAvACei nn  ==  

DEFINITION 6. The region ∏𝑛 is the closed region whose boundary is the 

regular n-gon circumscribed in the unit circle with vertices at 

{1, 𝑒
𝑖2𝜋

𝑛 , 𝑒
𝑖4𝜋

𝑛 , . . . . . . . . . , 𝑒
𝑖2(𝑛−1)𝜋

𝑛 }. That is,  

.10:

2









−= nkeConv n

ki

n



 

CONJECTURE 1. (Perfect and Mirsky [23] ) 
n

i

in

1

.
=

=  

The Perfect-Mirsky conjecture is trivially true for 2,1=n   and Perfect and Mirsky 

proved the conjecture for n = 3. In 2015 Levick et. al. [19], Levick [18] in his Ph.D. 
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thesis, and latter in 2016  Levick [17] proved this conjecture for n = 4, and the 

conjecture is false for n = 5. Still for the higher values of n, the conjecture is unknown. 

Matrices with Extremal Eigenvalues 

According to the Perfect-Mirsky conjecture the region 𝜔𝑛 is the union of the n-gons 

in the unit circle. For n = 1, the matrix 𝐴 = [1]  has the requirement of doubly 

stochastic matrices and its only eigenvalue is ,1  located at the point ( )0,1  on the arc of 

the unit circle. To discuss the matrices with extremal characteristic roots for 𝑛 ≥ 2, 

we first define doubly stochastic circulant matrix slightly modifying the definition of 

circulant matrix in Kra and Simanca [15] as follows: 

DEFINITION 7. Let us consider a row vector 

( )   .1,1,0:...,......,,

1

0

110












== 
−

=

−

n

i

ii
n

n vvvvvv  

and define a shift operator 𝜎(𝑣0, 𝑣1, . . . . . . . . . , 𝑣𝑛−1) = (𝑣𝑛−1, 𝑣0, . . . . . . . . . , 𝑣𝑛−2). 

Then the doubly stochastic circulant matrix 𝐴 = 𝑐𝑖𝑟(𝑣) associated to the vector 𝑣 ∈

ℜ
𝑛 is the 𝑛 × 𝑛 matrix whose rows are generated by the shift operator 𝜎 defined on 𝑣; 

its 𝑖𝑡ℎ row is 𝜎𝑖−1(𝑣), 𝑖 = 1, . . . . . . . . . , 𝑛: 
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PROPOSITION 1. For 𝑛 ≥ 3, the n-gon described in definition 6 corresponds 

𝑛

2
(𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛) or 

𝑛+1

2
(𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑) doubly stochastic circulant matrices.  

The sides connected with the point 1   represent a trace non-zero doubly stochastic 

circulant matrix with at most two non-zero adjacent entries. The other sides of the   
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n-gon represent trace zero doubly stochastic circulant matrices with at most two non-

zero adjacent entries. For example, in the heptagon (∏7) for n = 7, we get  

 

Fig. 6: The region ∏7. 

 

where the lines connected to the point 1  is represented by the trace non-zero doubly 

stochastic circulant matrix 
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A. The Region 𝝎𝟐 

The region𝜔2 = ∏1⋃∏2  consists of the line joining the points 1  and 𝑒𝑖𝜋. The 2 × 2 

doubly stochastic circulant matrix with eigenvalues located on this line is of the form 

𝐴 = (
𝑡 1 − 𝑡

1 − 𝑡 𝑡
) , 𝑡 ∈ [0,1]. Note that, all roots on this line are extremal and as t  

varies we get 
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Fig. 7: Extremal roots of 𝜔2 

B. The Region 𝝎𝟑 

The region 𝜔3 = ∏1⋃∏2⋃∏3 consists of a regular triangle with vertices at 1, 𝑒
𝑖2𝜋

3  

and 𝑒
𝑖4𝜋

3  and of the closed interval [−1,−
1

2
]. 

(1)  The 3 × 3  doubly stochastic trace non-zero circulant matrix with extremal 

eigenvalues located on the lines joining the point 1 to the points 𝑒
𝑖2𝜋

3  and 𝑒
𝑖4𝜋

3  is of the 

form 𝐴31 = (
𝑡 1 − 𝑡 0
0 𝑡 1 − 𝑡

1 − 𝑡 0 𝑡
) and the following figure shows the location of the 

roots as t varies: 

 

Fig. 8: Extremal roots of 𝜔3 between ⟨1, 𝑒
𝑖2𝜋

3 ⟩ and ⟨1, 𝑒
𝑖4𝜋

3 ⟩. 
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(2)  The 3 × 3  doubly stochastic trace zero circulant matrix with extremal 

eigenvalues located on the lines joining the points 𝑒
𝑖2𝜋

3  and 𝑒
𝑖4𝜋

3  is of the form: 

.

01

01

10

32

















−

−

−

=

tt

tt

tt

A
 

Following figure shows the location of the roots as t varies: 

 

Fig. 9: Extremal roots of 𝜔3 between ⟨𝑒
𝑖2𝜋

3 , 𝑒
𝑖4𝜋

3 ⟩ 

 

(3)  For the closed interval [−1,−
1

2
]  this line has the characteristic polynomial 

multiplied by  the factor 𝜆 − 1 to the characteristic polynomial of A in 2 × 2 case. So 

the 3 × 3 matrix is obtained simply by adding a new column and a new row with 3𝑟𝑑 

entry 1 to the matrix A. The 3 × 3  doubly stochastic matrix with extremal 

eigenvalues located [−1,−
1

2
] on the real line is of the form 𝐴33 = (

𝑡 1 − 𝑡 0
1 − 𝑡 𝑡 0
0 0 1

), 

and following figure shows the location of the roots as t  varies: 



88 H. K. Das and Md. Kaisar Ahmed 

 

 

 

Fig. 10: Extremal roots of 𝜔3 between [−1,−
1

2
] 

 

C. The Region 𝝎𝟒 

The region 𝜔4  intersects the unit circle at six points, 1, 𝑒
𝑖𝜋

2 , 𝑒
i2𝜋

3 , 𝑒
i4𝜋

3 , 𝑒𝑖𝜋  and 𝑒
i3𝜋

2 , 

consisting of  ∏1⋃∏2⋃∏3⋃∏4 . 

(1)  The 4 × 4  doubly stochastic trace non-zero circulant matrix with extremal 

eigenvalues located on the lines joining the points 1 to the points 𝑒
i2𝜋

3  and 𝑒
i4𝜋

3 is of the 

form 𝐴41 = (

𝑡 1 − 𝑡 0 0
0 𝑡 1 − 𝑡 0
0 0 𝑡 1 − 𝑡

1 − 𝑡 0 0 𝑡

), and following figure shows the location 

of  roots as t varies 
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Fig. 11: Extremal roots of 𝜔4. between ⟨1, 𝑒
𝑖𝜋

2 ⟩ ⟨1, 𝑒
𝑖𝜋

2 ⟩ and ⟨1, 𝑒
i3𝜋

2 ⟩

 
 

(2) Following figure shows the location of the root as t varies: 

 

Fig. 12: Extremal roots of 
.4  between 2,





i

i ee and 2

3

,





i

i ee  
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Where, the 4 × 4 doubly stochastic trace zero circulant matrix with extremal 

eigenvalues located on the lines joining the points 𝑒𝑖𝜋 to the points 𝑒
i2𝜋

3  and 𝑒
i4𝜋

3  is of 

the form  





















−

−

−

−

=

001

001

100

010

42

tt

tt

tt

tt

A
. 

(3)  For the lines joining the point 1   to the points 𝑒
𝑖2𝜋

3   and 𝑒
𝑖4𝜋

3   respectively, these 

lines have the  characteristic polynomial multiplied by the factor 𝜆 − 1  to the 

characteristic polynomial of the matrix 𝐴31  in 3 × 3  case. So the 4 × 4  doubly 

stochastic trace non-zero  matrix is obtained simply by adding a new column and a 

new row with 4𝑡ℎ entry 1 to the matrix 𝐴31. The 4 × 4 doubly stochastic matrix with 

extremal eigenvalues are of the form 𝐴43 = (

𝑡 1 − 𝑡 0 0
0 𝑡 1 − 𝑡 0

1 − 𝑡 0 𝑡 0
0 0 0 1

) , and 

following figure shows the location of the roots as t varies: 

 

Fig. 13: Extremal roots of 𝜔4 between ⟨1, 𝑒
i2𝜋
3 ⟩ and ⟨1, 𝑒

i4𝜋
3 ⟩ 
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(4)  For the line joining the points 𝑒
i2𝜋

3   and 𝑒
i4𝜋

3   has the characteristic polynomial 

multiplied by the factor 𝜆 − 1 to the characteristic polynomial of the matrix 𝐴32 in 

3 × 3 case. Thus 4 × 4 doubly stochastic matrix is obtained simply by adding a new 

column and a new row with 4𝑡ℎ entry 1 to the matrix 𝐴32. The 44  doubly stochastic 

matrix with extremal eigenvalues is of the form 𝐴44 = (

0 𝑡 1 − 𝑡 0
1 − 𝑡 0 𝑡 0
𝑡 1 − 𝑡 0 0
0 0 0 1

), 

and following figure shows the location of the roots as t varies: 

 

Fig. 14: Extremal roots of 𝜔4. between ⟨𝑒
𝑖2𝜋

2 , 𝑒
𝑖4𝜋

3 ⟩ 

 

4.  COUNTEREXAMPLE FOR 𝒏 = 𝟓 

In this section, we give a more general structure of counterexample of the Perfect-

Mirsky conjecture for 𝑛 = 5  than that of Rivard-Mashreghi and at the end, we 

produce some particular cases for counterexample to make reasonable comparison. 

Rivard-Mashreghi Counterexample.  

In 2007, Mashregi et. al. [21] found a counterexample, showing that ⋃ ∏ 𝑖 ⊂
≠
𝜔5.

5
𝑖=1  
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They numerically showed that the matrix has an eigenvalue for 𝑡 ∈ [0.5 − 𝜀, 0.5 + 𝜀] 

outside the Perfect-Mirsky region. They showed that the matrix 























=

00001

5.0005.00

005.05.00

5.005.000

01000

5.0P
 

has two complex eigenvalues 𝜆 ≈ 0.28 ± 0.76𝑖, lying outside the region 𝜔5. 

 

 

Fig. 15: The Rivard-Mashregi Counterexample for 𝜔5 
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New Counterexamples for 𝒏 = 𝟓. 

We propose a new matrix of the form 

( )1

0001

010

010

100

0100























−

−−

−−

−−

−

rr

tsts

stst

tsts

rr

 

For 𝑟 ∈ [0 − 𝜀, 0 + 𝜀], 𝑠 ∈ [0 − 𝜂, 0 + 𝜂]  and 𝑡 ∈ [0.5 − 𝜐, 0.5 + 𝜐] , the matrix has 

some eigenvalues outside the Perfect-Mirsky region. 

CASE (I). For 𝑟 = 0, 𝑠 = 0,  and 𝑡 =
1

2
 , we get the Rivard-Mashreghi 

counterexample from our proposed structure of matrix.
 

CASE (II). Again, from equation ( )1  , for 𝑟 = 0.001, 𝑠 = 0.001, 𝑡 = 0.494 , we 

have the matrix 

( )2

0001.000999.0

494.00001.0505.00

001.00505.0494.00

505.00494.0001.00

0999.000001.0























=A
 

has two roots outside the region 𝜔5, and geometrically we have 

 

Fig. 16: Eigenvalue location of the matrix A 
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CASE (II) MATHEMATICAL EXPLAINATION.  The characteristic 

polynomial of A is 

𝐷𝑒𝑡(𝜆𝐼 − 𝐴) = −𝜆5 + 0.507𝜆4 + 0.243519𝜆3 + 0.492774𝜆2 + 0.00480328𝜆 − 0.248096. 

One root of the polynomial is ,1  so we factor out the term 𝜆 − 1 and let the remaining 

part be denoted by 𝑓(𝜆) = −𝜆4 − 0.493𝜆3 − 0.249481𝜆2 + 0.243292𝜆 + 0.248096. 

The characteristic polynomial has two more real roots and two complex roots which 

are (using the Mathematica software) approximately 𝜆1 ≈ 0.642647, 𝜆2 ≈ −0.587367, 

and 𝑎 ± 𝑖𝑏 ≈ −0.27414 ± 0.762959𝑖. Let 𝜆1, 𝜆2 ∈ ℜ and 𝑎 ± 𝑖𝑏 be the other roots of the 

equation 𝑓(𝜆) = −𝜆4 − 0.493𝜆3 − 0.249481𝜆2 + 0.243292𝜆 + 0.248096 = 0.   Then the 

sum of the roots is 

( )3493.0221 −=++ a  

and the product of the roots is 

( ) ( )4248096.022

21 −=+ ba  

Now we show that the roots iba   to the forbidden region denoted by Δ. 

We find that 𝑓(0.642646) > 0,  and 𝑓(0.642648) < 0.  Hence, by the Intermediate 

Value, we have 𝜆1 ∈ [0.642646,0.642648]. In a similar way, 𝑓(−0.587366) > 0, and 

𝑓(−0.587368) < 0 and we find 𝜆2 ∈ [−0.587366,−0.587368]. 

Hence, by
 ( )3  , we get  ,27415.0,27413.0 −−a  and, by ( )4  , we get 𝑏 ∈

[0.762958,0.762960], 

This is same to saying that 

𝑎 + 𝑖𝑏 ∈ [−0.27413,−0.27415] × [0.762958,0.762960] = 𝛧. 

Now, the equation of the line joining the points (−1,0) and ( )1,0  is 𝑦 − 𝑥 − 1 = 0, the 

equation of the line joining the points (1,0)  and 𝑒
𝑖4𝜋

3   is √3𝑦 + 𝑥 − 1 = 0, and the 

equation of the line joining the points 𝑒
𝑖2𝜋

5   and 𝑒
𝑖4𝜋

5   is 

.

5

2

5

4

5

2

5

2

5

4

5

2









−

















−

−









−

















−









SinSin

Siny

CosCos

Cosx
 

Let 𝐹(𝑥, 𝑦) = 𝑦 − 𝑥 − 1 = 0, ( ) ,013, =−+= xyyxG  
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( ) .
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4

5

2

5

2

5

4

5

2
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−

















−

−









−

















−

=








SinSin

Siny

CosCos

Cosx

yxH
 

Then it is easy to verify that 𝐹(𝑥, 𝑦) > 0, 𝐺(𝑥, 𝑦) > 0,𝐻(𝑥, 𝑦) > 0 for the four extreme 

corner points of 𝛧 and ensure that the rectangle 𝛧 lies in the forbidden region Δ. 

CASE (III).  For 𝑟 = 0, 𝑠 = 0.01, 𝑡 = 0.52,  from equation ( )1.5.4  , we have the 

matrix 

( )5

00001

52.0001.047.00

01.00505.052.00

47.0052.001.00

01000























=B
 

has two roots 𝜆 ≈ −0.298683 ± 0.755402 outside the region 𝜔5. 
Note that, the following matrices A and B are a Convex Combination of 3 Permutation 

Matrices, where  























=

0001.000999.0

494.00001.0505.00

001.00505.0494.00

505.00494.0001.00

0999.000001.0

A
, and 























=

00001

52.0001.047.00

01.00505.052.00

47.0052.001.00

01000

B
. 

 

Proof: Let us consider the matrix B. We set it as 

( )6

00001

52.00001.047.00

01.0047.052.00

47.0052.001.00

01000

0























=B
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The bipartite graph associated to B0 is the following: 

 

Fig. 17: Bipartite graph associated to B0 matrix 

 

A perfect matching is (1,4), (2,3), (3,2), (4,5), (5,1) and the corresponding permutation 

matrix is 

( )7

00001

10000

00010

00100

01000

0























=P
 

The smallest entry of B0 corresponding to the non-zero entries of P0  is 𝛼0 = 0.52. 

Then, we get 

( )



























=























=−
−

=

00001

00
48

1

48

47
0

48

1
0

48

47
00

48

47
00

48

1
0

01000

000048.0

0001.047.00

01.0047.000

47.00001.00

048.0000

48.0

1

1

1
000

0

1 PBB 


. 
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The bipartite graph associated to B1 is the following: 

 

Fig. 18: Bipartite graph associated to B1 matrix 

 

A perfect matching is (1,4), (2,2), (3,5), (4,3), (5,1) and the corresponding permutation 

matrix is 

( )8

00001

00100

10000

00010

01000

1























=P
 

The smallest entry of B1 corresponding to the non-zero entries of P1 is 𝛼1 =
1

48
. 

Then, we get 

( ) 2111

1

2

00001

00010

00100

10000

01000

0000
48

47

000
48

47
0

00
48

47
00

48

47
0000

0
48

47
000

47.0

48

1

1
PPBB =























=

































=−
−

= 
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We now go backward, and then  

( ) 21111 1 BPB  −+=  

( ) 10000 1 BPB  −+=
 

( ) ( ) 2111000 11 PPP  −+−+=  

210 47.001.052.0 PPP ++= . 

Finally we have  

,

00001

00010

00100

10000

01000

47.0

00001

00100

10000

00010

01000

01.0

00001

10000

00010

00100

01000

52.0

00001

52.00001.047.00

01.0047.052.00

47.0052.001.00

01000























+























+























=























 

as a consequence of Birkhoff theorem which says that B0 is a convex combination of 

3  permutation matrices. 

 

Comparing our counterexamples to that of Rivard-Mashreghi.  

We note that the Rivard-Mashreghi counterexample is a convex combination of just 

two permutation matrices; but our new counterexamples are convex combination of 

three permutation matrices. 

 

Fig. 19: Comparison of counterexamples of case (i), (ii) and (iii) 
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Comparing our counterexamples to that of Rivard-Mashreghi, we see that for more 

terms in the convex combination, the eigenvalues are more close to the real boundary 

of 𝜔5. Since the region 𝜔𝑛 approaches the full circle, the forbidden region inside the 

circle becomes smaller. And since each vertex on the unit circle represents a 

permutation matrix, so if there exists any counterexample to the Perfect-Mirsky 

conjecture for higher values of 𝑛, they are expected to be a convex combination of 

fewer permutation matrices. For deeper understanding, one can see Levick [18]. 

5. QUANTUM CHANNELS 

In this section, we introduce a theorem to determine whether a QCs gives rise to a 

doubly stochastic matrix or not. 

DEFINITION 8. A symmetric matrix A  is called positive semidefinite if 𝑥∗𝐴𝑥 ≥

0 for all column vector x in ℂn (or, x in n  for the real matrices). If 𝑥∗𝐴𝑥 > 0, then A  

is said to be positive definite. We note that the eigenvalues of all positive semidefinite 

matrices are nonnegative whereas the eigenvalues of all positive definite matrices are 

positive. 

DEFINITION 9. A positive semidefinite matrix 𝜌 of 𝑛 × 𝑛 complex entries is 

called a density matrix if  𝑇𝑟(𝜌) = 1.  Mathematically, density matrices can be 

formulated as 𝜌 = ∑𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖|  (see details Das[7] for some remarkable results 

depending on density matrices). Thus, any general density matrix is a convex 

combination of pure state density matrices; hence density matrices are generally 

considered to be as mixed states.  

DEFINITION 10. Let 𝑀𝑛 be a set of 𝑛 × 𝑛 complex matrices. A positive map is 

a linear map defined as Φ:𝑀𝑛1 → 𝑀𝑛2  such that it maps positive semidefinite matrix 

𝑋 ∈ 𝑀𝑛1  into a positive semidefinite matrix Φ(𝑋) ∈ 𝑀𝑛2 . We recall that if the matrix 

X is positive, then we have 

( )90 X  
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for all 𝜓 ∈ 𝐶𝑛,  and the map Φ is positive if it satisfies 

( ) ( )10.0   

for 𝜑 ∈ 𝐶𝑛1  and 𝜓 ∈ 𝐶𝑛2 . 

DEFINITION 11. Let 𝑖𝑑𝑛: 𝑀𝑛 → 𝑀𝑛 be an identity map for which 𝑖𝑑𝑛(𝑋) = 𝑋 

for any 𝑋 ∈ 𝑀𝑛 . Then a linear map Φ: 𝑀𝑛1 → 𝑀𝑛2 is said to be n-positive if  Φ⊗

𝑖𝑑𝑛:𝑀𝑛1⊗𝑀𝑛 → 𝑀𝑛2⊗𝑀𝑛 is positive. 

DEFINITION 12. A linear map Φ: 𝑀𝑛1 → 𝑀𝑛2 is said to be completely positive 

if it is n-positive for all 𝑛 = 1,2, . . . ..
 

we note that due to Kraus et. al. [16], any completely positive map Φ: 𝑀𝑛1 → 𝑀𝑛2 can 

be expressed as 

( ) ( )11*

=
i

ii XKKX

 

The representation ( )11   is called the Kraus decomposition of the map Φ, and the 

operators {𝐾𝑖} are called the Kraus operators of Φ. Every Kraus operator is an 𝑛1 × 𝑛2 

matrix such that ( )11  holds for all 𝑋 ∈ 𝑀𝑛1 . We recall that similar to the definition 10, 

the condition ( )9  for the positivity of the matrix X reduces to the simple spectral 

condition: all eigenvalues of the matrix X have to be nonnegative. But this is not true 

for the condition ( )10 . Because the map Φ may be checked −1 positive, 2-positive etc; 

that condition does not ensure the positivity for all 𝑛 = 1,2, . . . . . . . .. To get a simple 

spectral condition for complete positivity , let us define the Choi-Jamiolkowsky 

matrix ([6], [10]) 

( ) ( )12,:
1

1,

ji

n

ji

ji eeeeC = 
=


 

where (𝑒1, 𝑒2, . . . . . . . . . , 𝑒𝑛1)  is an orthonormal basis in 𝐶𝑛1 .  The Choi matrix 𝐶𝛷 ∈

𝑀𝑛1𝑛2(𝐶) in (5) can also be written as 

( ) ( )13
1

1,

ij

n

ji

ij EEC = 
=
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Now, for n-positivity of the map Φ can be rewritten from condition (2) as follows: 

( )140  C  

EXAMPLE 3. Let us consider a map Φ: 𝑀𝑛 → 𝑀𝑛 defined by 

( ) .TXX =  

This map is trace preserving and trivially positive; since for 𝑛 = 2, we have 

















=







=

101

000

101

2221

1211

EE

EE
X

 

has spectrum {1,1,0,0} and after performing the operation transposition the spectrum 

is not changed. But 

( )( )






















=

2221

1211

22
EE

EE
XI

 
( ) ( )
( ) ( )





















=











=

1000

0010

0100

0001

2221

1211

EE

EE  

has spectrum {−1,1,1,1}, shows that the matrix is indefinite. Hence, Φ is a positive 

map but not completely positive. 

The following theorem is the generalized condition of completely positivity for all 

trivially positive maps: 

THEOREM 5. (Choi theorem [17]) A map Φ:𝑀𝑛1(𝐶) → 𝑀𝑛2(𝐶)  is completely 

positive if and only if its Choi matrix 

( )
=

 =
1

1,

n

ji

ijij EEC

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )































=

1111

1

1

.........

.........

.........

21

22221

11211

nnnn

n

n

EEE

EEE

EEE





  

is positive semidefinite. 
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DEFINITION 13. A completely positive map Φ:𝑀𝑛1 → 𝑀𝑛2 is said to be trace 

preserving if  𝑇𝑟(Φ(𝑋)) = 𝑇𝑟(𝑋) for all 𝑋 ∈ 𝑀𝑛1 . 

A completely positive trace preserving map sends QI of a n1 – dimensional quantum 

system to a n2 – dimensional quantum system. Thus, a completely positive trace 

preserving map is considered to be a QC. 

DEFINITION 14. A QC  Φ:𝑀𝑛1 → 𝑀𝑛2  is called unital if Φ(𝐼𝑛1) = 𝐼𝑛2 . 

Otherwise, it will be said non-unital. 

Relation Between QCs and Doubly Stochastic Matrices. 

Positive maps acting on a space of nonnegative elements yield another nonnegative 

elements of a second space. Linear positive maps which are trace preserving and unital 

give rise to doubly stochastic matrices. Let {𝑢1, 𝑢2, . . . . . . . . . , 𝑢𝑛} and {𝑣1, 𝑣2, . . . . . . . . . , 𝑣𝑛} 

be to orthonormal basis in 𝐶𝑛. Then, we define 

( ) ( )15.ijjiij uvvuD =  

Now, by definition Φ is positive if 𝐷𝑖𝑗 ≥ 0. Taking sum over 𝑖, we obtain 

( ) ( )( ) )16(,
11

jj

n

i

ijji

n

i

ij vvTruvvuD ==
==

 

Since Φ is trace preserving, we have 𝑇𝑟(Φ(𝑋)) = 𝑇𝑟(𝑋).  Using this fact, we get 

∑ 𝐷𝑖𝑗
𝑛
𝑖=1 = 𝑇𝑟 (𝛷(|𝑣𝑗⟩⟨𝑣𝑗|)) = 1,  shows that 

ijD   is a row stochastic Matrix. Again, 

taking sum over ,j  we obtain ∑ 𝐷𝑖𝑗
𝑛
𝑗=1 = ⟨𝑢𝑖| ∑ 𝛷(|𝑣𝑗⟩⟨𝑣𝑗|)|𝑢𝑖⟩

𝑛
𝑗=1 . 

Here, ∑ 𝛷(|𝑣𝑗⟩⟨𝑣𝑗|)
𝑛
𝑗=1 = 𝛷(∑ |𝑣𝑗⟩⟨𝑣𝑗|

𝑛
𝑗=1 ) = 𝛷(𝐼𝑛),  and for unitality of Φ, Φ(𝐼𝑛) = 𝐼𝑛 . 

Using these facts, we obtain 

( )
==

=
n

j

ijji

n

j

ij uvvuD
11  

( ) ,1=== iniini uIuuIu  

shows that 𝐷𝑖𝑗  is column stochastic. 
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THEOREM 6. (Poon [24])  Let Φ:𝑀𝑛1 → 𝑀𝑛2  and 𝑛 ≥ 1. Then the followings 

are equivalent: 

( )i  Φ is 𝑛 −positive  

( )ii Φ is completely positive 

( )iii  The Choi matrix 𝐶𝛷 is positive semidefinite 

( )iv  Φ admits an operator-sum representation  

( ) ( )17.
1

*
=

=
n

i

ii XKKX  

If a map Φ is completely positive, then it is positive. Hence, a completely positive 

trace preserving unital map or unital QC, also gives rise to doubly stochastic matrices. 

EXAMPLE 4. (Gagniuc [10]) Let us consider a family of Choi maps in 𝑀𝑛 

defined by  

( ) ( ) ( )18.1, −= tXtXTrIX nt
 

Now, if 
1

𝑘+1
≤ 𝑡 ≤

1

𝑘
, then Φt is k  positive but not completely positive. Hence, Φt is 

completely positive if 𝑡 ≤
1

𝑛
. For 𝑛 = 2, the Choi matrix of Φt is 





















−−

−−

=

tt

tt

C

100

0100

0010

001

 

which has the spectrum {1 − 2𝑡, 1,1,1}.  Hence, Φt is completely positive if 𝑡 ≤
1

2
. 

Then the corresponding doubly stochastic matrix is     

( ) 







+








−=

01

10

10

01
1 ttDij

 

That is , convex combination of two permutation matrices and hence a doubly 

stochastic matrix. For 𝑡 ≤
1

2
, Φt is a unital QC yielding a doubly stochastic matrix.  

By the motivation of the above remarkable results we present the following theorem 

in this article. We now generalize the condition whether a QC gives rise to a doubly 

stochastic matrix or not.  
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THEOREM 7. Let Φ: 𝑀𝑛1 → 𝑀𝑛2  be a completely positive map with Kraus 

operator {𝐾𝑖}. Then the map Φ gives rise to doubly stochastic matrix  if and only if 

∑ 𝐾𝑖
∗𝐾𝑖 = 𝐼

𝑛1
𝑖=1  and ∑ 𝐾𝑖𝐾𝑖

∗ = 1.
𝑛1
𝑖=1

 Or, Let Φ: 𝑀𝑛1 → 𝑀𝑛2 be a QC with Kraus operator {𝐾𝑖}. Then the QC Φ gives rise 

to doubly stochastic matrix  if and only if  ∑ 𝐾𝑖𝐾𝑖
∗ = 1.

𝑛1
𝑖=1  

Proof: We already know that every completely positive map Φ: 𝑀𝑛1 → 𝑀𝑛2 can be 

expressed as 

( ) ( )19,
1

1

*
=

=
n

i

ii XKKX

 

Now, the map Φ gives rise to doubly stochastic matrix if and only if Φ is trace 

preserving and unital. 

By definition, Φ is unital ⇔ Φ(𝐼𝑛1) = 𝐼𝑛2 ⇔ ∑ 𝐾𝑖𝐼𝑛1𝐾𝑖
∗𝑛1

𝑖=1 = 𝐼𝑛2 ⇔ ∑ 𝐾𝑖𝐾𝑖
∗ =

𝑛1
𝑖=1

𝐼𝑛2and Φ is trace preserving ⇔ 𝑇𝑟(Φ(𝑋)) = 𝑇𝑟(𝑋) 

( )XTrXKKTr
n

i

ii =







 

=

1

1

*  for all 
1nMX   

( )XTrKXKTr
n

i

ii =







 

=

1

1

*  for all 
1nMX   

     ( ) 0
1

* =−







  XTrKXKTr

n

i

ii
 for all

1nMX   

      0
1

1

1

* =






















− 

=

n

n

i

ii IKKXTr  for all 
1nMX   

                                           ;0
1

1

1

* =







− 

=

n

n

i

ii IKK  since ( ) 0XTr  

                                           .
1

1

1

*
=

=
n

i

ni IKK
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6. CONCLUSION 

We studied the relationship between doubly stochastic matrices and majorization 

along with the structures of marginal doubly stochastic matrices in the Perfect-Mirsky 

region simply. We extended the Rivard-Mashreghi counterexample into a more 

general form for n = 5 of the conjecture. Since the new conjecture for the characteristic 

region of doubly stochastic matrices given by Levick [18] contains a large part of the 

forbidden region for n = 5 it needs a better analysis of the case n ≥ 5 . For a better idea 

of the location of eigenvalues in the Perfect-Mirsky region for n ≥ 5  these 

counterexamples may be helpful to the readers for future research in the field. Every 

completely positive map has an operator-sum representation. Using these, we 

considered, in general, how can we get a doubly stochastic matrix corresponding to a 

QCs. The reader can go for further investigation into the relationship between doubly 

stochastic matrices and private QCs as well as the connection between spectra of 

doubly stochastic matrices and QCs. The connections between majorization, QCs, and 

private QCs are to be investigated. There are also many interesting connections 

between QCs, private QCs, and probability distribution. 
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