
JAMSI, 16 (2020), No. 2 5

On topological soft sets
M. BURÇ KANDEMİR AND B. TANAY

Abstract

In this paper, we have established topological soft sets over generalized topological spaces and topological
spaces, and studied its structural properties. We have derived a topological soft set in any given topological
space, and from this point of view, we have given necessary and sufficient condition for homeomorphic
Alexandroff spaces using topological soft set technique. At last, we have derived a topological soft set
using closed sets in any topological space and we have given necessary and sufficient condition for
arbitrary homeomorphic topological spaces using them.
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1. INTRODUCTION

Topology is a major area of mathematics concerned with the most properties of
space. Topological spaces show up naturally in almost every branch of mathematics
and other sciences. This makes topology one of the great unifying ideas of
mathematics. In 2002, Császár defined the concept of generalized topology which is
the family closed under arbitrary union of subsets of a set in [6]. At the same time,
many scientists use the topology or the generalized topology to understand and
model the real world. But this is not always easy. Each phenomenon in the real world
can not always be modeled by classical methods. Many theories have been developed
for dealing with uncertainties. One of them is the soft set theory which has a rich
potential for applications in several directions. The notion of soft set theory was
initiated by Molodtsov [16] in 1999. As in [2, 18], this theory have been applied to
many area in mathematics, information science and computer science. Of course,
most of the mathematicians studied the topological structure on soft sets. Firstly,
Shabir and Naz established the concept of soft topological space which is defined
over an initial universe with a fixed set of parameters in [20]. They introduced soft
open sets, soft closed sets, soft closure, soft interior points, soft neighborhood of a
point and soft separation axioms. In [8], Ge et al. gave some relations between
topology and soft set theory. They presented some characterizations of trivial

10.2478/jamsi-2020-0006
University of SS. Cyril and Methodius in Trnava
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(discrete, T0, T1, TD, and R0) topological spaces by the null soft set, the absolute soft
set, the identical soft set and so on. In [11], Li et al. prepared new characterization
between topology and soft set theory. They defined the concept of topological soft set
which is a soft set over initial universe such that for each parameter this is topology
over initial universe, and studied relations between approximation spaces. But this
definition of topological soft set is very specific and restricted. If we have a
topological space or more general generalized topological space, then we can get a
more convenient way types of topological soft sets. For this reason, in this paper, we
re-define the concept of topological soft set in any generalized topological space
without any restriction and study its properties.

2. PRELIMINARIES

As the preliminary information, which is necessary to study, give some definitions and
properties.

2.1. Soft Set Theory

Let U be an initial universe, E be a set of parameters, P(U) be the power set of U ,
and A⊆ E. Molodtsov [16] defined the soft set in the following manner:

DEFINITION 2.1. [16] A pair (F,A) is called a soft set over U where F is a
mapping given by F : A→P(U).

Some set-theoretic operations defined by [12, 18]

DEFINITION 2.2. [18] For two soft sets (F,A) and (G,B) over a common
universe U , we say that (F,A) is a soft subset of (G,B) and is denoted by
(F,A)⊂̃(G,B) if

(i) A⊂ B and,

(ii) ∀a ∈ A, F(a)⊂ G(a).

DEFINITION 2.3. [18] Two soft sets (F,A) and (G,B) over a common universe
U are said soft equal if (F,A) is a soft subset of (G,B), and (G,B) is a soft subset of
(F,A).

DEFINITION 2.4. [18] Let (F,A) and (G,B) be two soft sets over a common
universe U such that A∩B 6= ∅. The intersection of (F,A) and (G,B) is denoted by
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(F,A)∩̃(G,B), and is defined as (F,A)∩̃(G,B) = (H,C), where C = A∩B and for all
c ∈C, H(c) = F(c)∩G(c).

DEFINITION 2.5. [12] The union of two soft sets (F,A) and (G,B) over a
common universe U is the soft set (H,C) , denoted by (F,A)∪̃(G,B) = (H,C), where
C = A∪B, and ∀c ∈C,

H(c) =


F(c) , if c ∈ A−B

G(c) , if c ∈ B−A

F(c)∪G(c) , if c ∈ A∩B

DEFINITION 2.6. [4] Let U be an initial universe set, E be the universe set of
parameters, and A⊂ E.

(i) (F,A) is called a relative null soft set (with respect to the parameter set A), denoted
by ΦA, if F(a) =∅ for all a ∈ A.

(ii) (F,A) called a relative whole soft set (with respect to the parameter set A), denoted
by UA, if F(a) =U for all a ∈ A.

The relative whole soft set UE with respect to the universe set of parameters E is called
the absolute soft set over U .

DEFINITION 2.7. [12] Let (F,A) and (G,B) be two soft sets over the common
universe U . Then (F,A) AND (G,B) denoted by (F,A)∧(G,B) and is defined by (F,A)∧
(G,B) = (H,A×B) where H((a,b)) = F(a)∩G(b), for all (a,b) ∈ A×B.

DEFINITION 2.8. [12] Let (F,A) and (G,B) be two soft sets over the common
universe U . Then (F,A) OR (G,B) denoted by (F,A)∨ (G,B) and is defined by (F,A)∨
(G,B) = (H,A×B) where H((a,b)) = F(a)∪G(b), for all (a,b) ∈ A×B.

DEFINITION 2.9. [18] The complement of a soft set (F,A) is denoted by (F,A)c

and is defined by (F,A)c =(Fc,A), where Fc : A→P(U) is a mapping given by Fc(a)=

U−F(a) for all a ∈ A.

In [14], Min has introduced the concept of similarity between soft sets and investigated
some properties. He defined the concept of similarity between soft sets as follows:

DEFINITION 2.10. [14] Let (F,A) and (G,B) be soft sets over a common universe
set U . Then (F,A) is similar to (G,B) (simply (F,A)∼= (G,B)) if there exists a bijection
function φ : A→ B such that F(x) = (G ◦ φ)(x) for every x ∈ A, where (G ◦ φ)(x) =

G(φ(x)).
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2.2. Soft Mappings

Kharal and Ahmad [9], defined the notion of a mapping on soft classes and studied
several properties of images and inverse images of soft sets supported by examples
and counterexamples. They defined that image and inverse image of a soft set under a
soft functions as follows:

DEFINITION 2.11. [9] Let U1,U2 be initial universes, E1,E2 be parameters sets,
ϕ be a function from U1 to U2 and ψ be a function from E1 to E2. Then the pair (ϕ,ψ)

is called soft function from S(U1,E1) to S(U2,E2). The image of each (F,A) ∈ S(U1,E1)

under the soft function (ϕ,ψ) is denoted by (ϕ,ψ)(F,A) = (ϕF,ψ(A)) and is defined
as following;

(ϕF)(β ) =

{
ϕ
(⋃

α∈ψ−1(β )∩A F(α)
)
,ψ−1(β )∩A 6=∅

∅ ,otherwise

for each β ∈ ψ(A).

Similarly, the inverse image of each (G,B) ∈ S(U2,E2) under the soft function (ϕ,ψ)

is denoted by (ϕ,ψ)−1(G,B) = (ϕ−1G,ψ−1(B)) and is defined as following;

(ϕ−1G)(α) =

{
ϕ−1(G(ψ(α))) ,ψ(α) ∈ B

∅ ,otherwise

for each α ∈ ψ−1(B).

2.3. Soft Equality Relations

Qin and Hong introduced the concept of soft equality relations ≈S and ≈S in [19].
Definition of soft equalities are given as follows;

DEFINITION 2.12. [19] Let (F,A), (G,B) be two soft sets over U .

(≈S). (F,A) is called soft equal to (G,B), denoted by (F,A)≈S (G,B), if for all e∈A∪B,
e ∈ A∩ B implies F(e) = G(e), e ∈ A− B implies F(e) = ∅, and e ∈ B− A implies
G(e) =∅.

(≈S). (F,A) is called soft equal to (G,B), denoted by (F,A)≈S (G,B), if for all e∈A∪B,
e ∈ A∩ B implies F(e) = G(e), e ∈ A− B implies F(e) = U , and e ∈ B− A implies
G(e) =U .

Note that these relations are equivalence relations on the family of all soft sets over U .
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3. TOPOLOGICAL SOFT SETS

In topology, topologists defined some generalization of open sets such as
semi-openness [10], pre-openness [13], α-openness [17], β -openness [1] etc. In [5]
and [6], Császár gave a frame of generalized openness as follows;

Let U be a set and γ be a map from P(U) into itself. Suppose that γ is monotonic, i.e.
A⊆ B⊆U implies γ(A)⊆ γ(B). A set A⊆U is called γ-open if and only if A⊆ γ(A),
and B⊆U is called γ-closed if its complement is γ-open. He showed that any union of
γ-open sets is γ-open in [5]. So, he defined the notion of generalized topology which is
constituted by γ-open sets in [6]. The collection g of subsets of U is called generalized

topology on U if and only if ∅ ∈ g and Gi ∈ g for i ∈ I 6= ∅ implies G =
⋃

i∈I Gi ∈ g.
If o is a topology on U in the usual sense and denote by iA the o-interior intA, by cA

the o-closure clA, we obtain as important particular cases the collection o of all open
sets (γ = i), so of all semi-open sets (γ = ci), po of all preopen sets (γ = ic), βo of all
β -open sets (γ = cic), αo of all α-open sets (γ = ici) [6]. Therefore, we obtain the
relationship

o⊂ αo⊂ so⊂ βo⊂ g (1)

and

o⊂ αo⊂ po⊂ g (2)

from [5–7]. In a similar manner, we obtain that K is closed iff c(K) ⊂ K, K is semi-
closed iff ic(K)⊂ K, K is pre-closed iff ci(K)⊂ K, K is α-closed iff cic(K)⊂ K and K

is β -closed iff ici(K)⊂ K. Then we denote the families of all type closed sets as c, sc,
pc, αc and β c, respectively. We also denote the family of generalized closed set in the
sense of Császár by gc.

We noted that o and αo are topologies on U and we obtain that o is coarser than αo

from the above relationships.

In [6], Császár define the concept of generalized continuity of any function from a
generalized topological space to another. So, given two generalized topological spaces
(U1,g1) and (U2,g2) and a mapping f : U1 → U2, f is (g1,g2)-continuous iff G ∈ g2

implies that f−1(G) ∈ g1 [6]. We shortly say that f is g-continuous if f is generalized
continuous. We call that f is g-open (g-closed, respectively) if G ∈ g implies that
f (G) ∈ g′ (or G ∈ gc⇒ f (G) ∈ g′c). We also call that f is g-homeomorphism if f is
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bijective, g-continuous and g-open (or g-closed).

Now, we can define γ-topological soft set over an initial universe space as the follows;

DEFINITION 3.1. Let U be an initial universe and γ be a monotonic map from
P(U) into itself. (F,A) be a soft set over U where A⊆ E. (F,A) is called γ-topological

soft set if F(e) is γ-open set in U i.e. F(e)⊆ γ(F(e)) for all e ∈ A.

In Definition 3.1, in the most general sense, we can conclude that there is a generalized
topology on U because of that obtained by γ-open sets. Therefore, we can explain this
definition as “(F,A) is a g-topological soft set over U if and only if F(e)∈ g for all e∈A

where g is a generalized topology on U”. If we take the γ as interior operator, then we
get the classical topology on U . In [15], W. K. Min defined that (F,A) is open soft set

over the topological space U such that F(e) is open for all e ∈ A i.e. F(e)⊆ i(F(e)) for
all e ∈ A. From his definition, we obtain that (F,A) is an o-topological soft set over U

in our sense. Clearly, every open soft set is an o-topological soft set. Furthermore, we
can characterize given any γ-topological soft set according to type of openness. For
this, we can give following definition:

DEFINITION 3.2. Let U be an initial universe, E be a parameters set, A⊆ E and
(F,A) be a soft set over U .

(1) (F,A) is called g-topological soft set if F(e) ∈ g for all e ∈ A.

(2) (F,A) is called o-topological soft set if F(e) ∈ o for all e ∈ A.

(3) (F,A) is called so-topological soft set if F(e) ∈ so for all e ∈ A.

(4) (F,A) is called po-topological soft set if F(e) ∈ po for all e ∈ A.

(5) (F,A) is called αo-topological soft set if F(e) ∈ αo for all e ∈ A.

(6) (F,A) is called βo-topological soft set if F(e) ∈ βo for all e ∈ A.

We also can characterize the topological soft sets according to type of closedness as
follows.

DEFINITION 3.3. Let U be an initial universe, E be a parameters set, A⊆ E and
(F,A) be a soft set over U .

(1) (F,A) is called gc-topological soft set if F(e) ∈ gc for all e ∈ A.

(2) (F,A) is called c-topological soft set if F(e) ∈ c for all e ∈ A.

(3) (F,A) is called sc-topological soft set if F(e) ∈ sc for all e ∈ A.
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(4) (F,A) is called pc-topological soft set if F(e) ∈ pc for all e ∈ A.

(5) (F,A) is called αc-topological soft set if F(e) ∈ αc for all e ∈ A.

(6) (F,A) is called β c-topological soft set if F(e) ∈ β c for all e ∈ A.

EXAMPLE 3.4. Let R be the set of real numbers with the usual topology and N be
the parameters set. Define the mappings F : N→P(R) such that F(n) = (n−1,n+1)

and G : N→P(R) such that G(n) = (n−1,n+1]. Then (F,N) is an o-topological soft
set and (G,N) is a so-topological soft sets over R, respectively. Moreover, if we define
the mapping H : N→P(R) such that H(n) = [n−1,n+1], then we obtain that (H,N)
is a c-topological soft set over R.

EXAMPLE 3.5. Let U = {a,b,c} and o= {∅,U,{a,b},{b,c},{b}} be a topology
on U . Let E = {1,2,3,4,5} and (F,A) = {1 = {b},2 = {b,c}} be a soft set over U with
A⊆ E. Then (F,A) is a o-topological soft set over U .

Now, we discuss the obtained results.

Firstly, soft subset of a γ-topological soft set may not be γ-topological in general. If we
specifically give the following example for o-topological soft sets, we can generalize
other type.

EXAMPLE 3.6. From Example 3.5, we have the o-topological soft set (F,A).
Although, (G,B) = {2 = {c}} is a soft subset of (F,A), it is not o-topological.

THEOREM 3.7. Let (F,A) be a soft set over U , where A⊆ E. Then we have

(F,A) is o-topological ⇒ (F,A) is αo-topological

⇒ (F,A) is so-topological

⇒ (F,A) is βo-topological

⇒ (F,A) is g-topological

and

(F,A) is o-topological ⇒ (F,A) is αo-topological

⇒ (F,A) is po-topological

⇒ (F,A) is g-topological

PROOF. From Equation (1) and Equation (2), it is obvious.
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THEOREM 3.8. If (F,A) is a g-topological soft set, then its complement (F,A)c

is a gc-topological soft set.

PROOF. Obvious.

THEOREM 3.9. If (F,A) and (G,B) are o-topological (or αo-topological), then
(F,A)∩̃(G,B) is also o-topological (or αo-topological).

PROOF. From Definition 2.4, we obtain the soft set (H,C) = (F,A)∩̃(G,B),
such that C = A∩ B and H(e) = F(e)∩G(e) for all e ∈ C. Since (F,A) and (G,B)

are topological, F(e) and G(e) in o (or αo) for all e ∈ C, respectively. So, H(e) ∈ o

(H(e)∈αo) for all e∈A∩B. Thus (H,C) is an o-topological soft set (or αo-topological
soft set) over U .

THEOREM 3.10. If (F,A) and (G,B) are g-topological, then (F,A)∪̃(G,B) is also
g−topological.

PROOF. Suppose that, (F,A)∪̃(G,B) = (H,C). Since (F,A) and (G,B) are g-
topological soft sets, we have H(c) = F(c) ∈ g for each c ∈ A−B, H(c) = G(c) ∈ g

for each c ∈ B−A and H(c) = F(c)∪G(c) ∈ g for each c ∈ A∩B from Definition 2.5.
Thus, (H,C) is a g-topological soft set.

THEOREM 3.11. Null and absolute soft sets are g-topological.

PROOF. From Definition 2.6 and Definition 3.2, it is obvious.

THEOREM 3.12. If (F,A) and (G,B) are o-topological (or αo-topological), then
(F,A)∧ (G,B) is also o-topological (or αo-topological).

PROOF. From Definition 2.7, we have the soft set (H,A×B) = (F,A)∧ (G,B),
such that C = A×B and H(a,b) = F(a)∩G(b) for all (a,b) ∈ A×B. Since (F,A) and
(G,B) are o-topological (or αo-topological), then (H,A×B) is also o-topological (or
αo-topological).

THEOREM 3.13. If (F,A) and (G,B) are g-topological, then (F,A)∨(G,B) is also
g-topological.

PROOF. From Definition 2.8 and Definition 3.2, the proof of this theorem is
similar to the proof of above theorem.

THEOREM 3.14. If (F,A) and (G,B) are gc-topological, then (F,A)∩̃(G,B) is also
gc-topological.

PROOF. Suppose that (F,A) and (G,B) are gc-topological soft set over U and
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(F,A)∩̃(G,B) = (H,C). Then C = A∩B and for all c ∈ C, H(c) = F(c)∩G(c). Since
(F,A) and (G,B) are gc-topological, F(a),G(b) ∈ gc for all a ∈ A and b ∈ B. So we
obtain that (F(a))c,(G(b))c ∈ g for all a∈A and b∈B. Since g is a generalized topology
on U . For all c ∈ C, (F(c))c ∪ (G(c))c ∈ g. Then, from the rules of de Morgan, we
obtain that [F(c)∩G(c)]c ∈ g. Hence F(c)∩G(c) ∈ gc for all c ∈C. Thus (H,C) is a
gc-topological soft set over U .

THEOREM 3.15. If (F,A) similar to (G,B) and (F,A) is a g-topological soft set,
then (G,B) is also g-topological.

PROOF. By the definition of similarity (Definition 2.10), we have a bijection
φ : A→ B such that F(a) = (G◦φ)(a) for all a ∈ A. Now, we need to see G(b) ∈ g for
all b ∈ B. Since φ is a bijection, then for all b ∈ B, there exist a ∈ A such that φ(a) = b.
So, for all b ∈ B, we obtain

G(b) = G(φ(a)) = (G◦φ)(a) = F(a).

Since F(a) ∈ g for all a ∈ A, then G(b) ∈ g for all b ∈ B. Thus (G,B) is a topological
soft set over U .

THEOREM 3.16. Let (F,A) and (G,B) be two soft sets over (U,τ).

(a) If (F,A)≈S (G,B) and (F,A) is g-topological, then (G,B) is also g-topological.

(b) If (F,A)≈S (G,B) and (F,A) is g-topological, then (G,B) is also g-topological.

PROOF. Proof of (a) and (b) is obvious from Definition 2.12 and Definition 3.2.

THEOREM 3.17. Let (U1,g1) and (U2,g2) be generalized topological spaces, ϕ :

U1 → U2 and ψ : E1 → E2 be functions and (F,A) be a soft set over U1. If ϕ is a g-
open function and (F,A) is a g-topological soft set, then its image (ϕ,ψ)(F,A) is a
g-topological soft set over U2.

PROOF. Since ∅ ∈ g2. If (ϕF)(β ) = ∅ for each β ∈ ψ(A), then (ϕF,ψ(A)) is
g-topological.

Suppose that (ϕF)(β ) 6= ∅. So, (ϕF)(β ) = ϕ
(⋃

α∈ψ−1(β )∩A F(α)
)

for each β ∈ ψ(A).
Since (F,A) is g-topological and ϕ is a g-open function, then

⋃
α∈ψ−1(β )∩A F(α) ∈ g2.

Thus (ϕ,ψ)(F,A) is a g-topological soft set over U2.

THEOREM 3.18. Let (U1,g1) and (U2,g2) be generalized topological spaces, ϕ :

U1 → U2 and ψ : E1 → E2 be functions and (G,B) be a soft set over U2. If ϕ is a
g-continuous function and (G,B) is a g-topological soft set, then its inverse image
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(ϕ,ψ)−1(G,B) is a g-topological soft set over U1.

PROOF. Since ∅ ∈ g1. If (ϕ−1G)(α) = ∅ for each α ∈ ψ−1(B), then
(ϕ−1G,ψ−1(B)) is g-topological. Otherwise, (ϕ−1G)(α) = ϕ−1 (G(ψ(α))) for each
α ∈ ψ−1(B). Since (G,B) is g-topological and ϕ is g-continuous, we obtain that
(ϕ,ψ)−1(G,B) is a g-topological soft set over U1.

Min [14] has established similarity between two soft sets over fixed initial universe U

as the above-mentioned. We can give following definition as generalization of
similarity relation between soft sets over two different generalized topological spaces
using g-homeomorphism.

DEFINITION 3.19. Let (U1,g1) and (U2,g2) be two generalized topological
spaces, (F,A) be a g-topological soft set over U1 with A ⊆ E1 and (G,B) be a
g-topological soft set over U2 with B ⊆ E2 and ϕ : U1 →U2 be a g-homeomorphism.
We called that (F,A) is homeomorphically similar to (G,B) if there exists a bijection
φ : A → B such that (ϕ ◦ F)(e) = (G ◦ φ)(e) for each e ∈ A, and denoted by
(F,A)u (G,B).

It is easily seen that if we take the identity function 1U : (U,g)→ (U,g), then we have
Definition 2.10.

EXAMPLE 3.20. Let U1 = {a,b,c} and U2 = {x,y,z} be initial universes, and
o1 = {∅,U1,{a},{b},{c}} and o2 = {∅,U2,{x},{y},{z}} be topologies on U1 and U2,
respectively. Let ϕ : U1 → U2 be an o-homeomorphism such that
ϕ = {(a,y),(b,x),(c,z)}. And let (F,A) = {1 = {a},2 = {c}} and
(G,B) = {9 = {y},10 = {x}} be topological soft sets over U1 and U2 respectively. So
if we define the bijection φ : A→ B such that φ = {(1,9),(2,10)}, then we obtain;

(ϕ ◦F)(1) = ϕ(F(1)) = ϕ({a}) = {y}= G(9) = G(φ(1)) = (G◦φ)(1)

and

(ϕ ◦F)(2) = ϕ(F(2)) = ϕ({c}) = {z}= G(10) = G(φ(2)) = (G◦φ)(2).

Consequently, (F,A)u (G,B).

THEOREM 3.21. Let U1 and U2 be generalized topological spaces.

(a) If any (F,A) g-homeomorphically similar to the null soft set ΦB with respect to B,
then (F,A) is also null.

(b) If any (F,A) g-homeomorphically similar to the absolute soft set UB with respect
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to B, then (F,A) is also absolute.

PROOF. (a) Assume that ΦB = (G,B). Since (F,A) u ΦB = (G,B), there exists
a bijection φ : A→ B such that (ϕ ◦F)(a) = (G ◦ φ)(a) for each a ∈ A where ϕ is a
homeomorphism. Since (G,B) is null, we have

(ϕ ◦F)(a) = (G◦φ)(a)

(ϕ ◦F)(a) = ∅

ϕ(F(a)) = ∅

F(a) = ∅

for each a ∈ A. Thus (F,A) is null soft set over U1.

Proof of (b) is done in a similar way to (a).

In [8], Ge et al. gave some notation for soft sets in a topological space. Their
investigations are given as follows;

Let (U,o) be a topological space, then

(1) (I,U) denotes an identical soft set, where I(x) = {x} for each x ∈U .

(2) (N,U) denotes a neighborhood soft set, where N(x) = Bx for each x ∈U .

(3) (D,U) denotes a derived soft set, where D(x) = {x}′ for each x ∈U .

(4) (C,U) denotes a closure soft set, where C(x) = {x} for each x ∈U .

(5) (Dc,U) denotes a derived-complement soft set, where Dc(x) = ({x}c)′ for each
x ∈U .

(6) (Cc,U) denotes a closure-complement soft set, where Cc(x) = ({x}c) for each x ∈
U .

(7) (D2,U) denotes a bi-derived soft set, where D2(x) = ({x}′)′ for each x ∈U .

(8) (CD,U) denotes a closure-derived soft set, where CD(x) = ({x}′) for each x ∈U .

We can obtain some results using above notations.

Note that, the neighborhood soft set (N,U) is obviously topological if N(x) = Bx ∈ o

for each x ∈U .
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THEOREM 3.22. Let (U,o) be a topological space and (I,U) be the identical soft
set over U . If (I,U) o-topological soft set over U , then o= P(U).

PROOF. Obvious.

THEOREM 3.23. Let (U,o) be a topological space. If (I,U) similar to (C,U),
then φ is identity and o= P(U).

PROOF. If (I,U) similar to (C,U), then there exists a bijection φ : U →U such
that (C ◦ φ)(x) = I(x) for each x ∈U . Therefore C(φ(x)) = {x} and {φ(x)} = {x} for
each x ∈U , so {x}= {x}. Consequently φ is identity and o= P(U).

From Definition 3.19 and Ge et al.’s construction for topological spaces in [8], we
obtain following theorem.

THEOREM 3.24. Let (U1,o1) and (U2,o2) be topological spaces. If U1

homeomorphic to U2, then

(1) (I,U1)u (I,U2),

(2) (N,U1)u (N,U2),

(3) (D,U1)u (D,U2),

(4) (C,U1)u (C,U2),

(5) (Dc,U1)u (Dc,U2),

(6) (Cc,U1)u (Cc,U2),

(7) (D2,U1)u (D2,U2),

(8) (CD,U1)u (CD,U2).

PROOF. We prove only (4). Other implications is proved by similar way. If
U1 homeomorphic to U2, then there exists a homeomorphism ϕ from the topological
space U1 to the topological space U2. Therefore, we have ϕ(X)=ϕ(X) for each X ⊆U1.
Hence, we obtain

(ϕ∗ ◦C)(x) = ϕ
∗ (C(x)) = ϕ

∗({x}) = {ϕ(x)}=C (ϕ(x)) = (C ◦ϕ)(x)

for all x ∈U1, where ϕ∗ is a function induced by ϕ from P(U1) to P(U2).

In [11], Li et al. gave a relation between topological spaces and soft sets. They defined
the concept of topological soft set, restricted form than our definition, as follows;



JAMSI, 16 (2020), No. 2 17

DEFINITION 3.25. [11] Let (F,A) be a soft set over U . Then (F,A) is called
topological, if {F(a) | a ∈ A} is a topology on U .

We can give some soft set theoretic results using this definition.

THEOREM 3.26. If (F,A) and (G,B) topological soft set in the sense of
Definition 3.25 and (F,A) is similar to (G,B), then the topologies induced by (F,A)

and (G,B) are same.

PROOF. It is obvious from Definition 2.10.

In [20], Shabir and Naz gave the concept of soft topology over an initial universe U as
follows;

DEFINITION 3.27. [20] Let õ be the collection of soft sets over U , then õ is said
to be a soft topology on U if

(1) Φ,Ũ belong to õ

(2) the union of any number of soft sets in õ belongs to õ

(3) the intersection of any two soft sets in õ belongs to õ.

The triplet (U, õ,E) is called a soft topological space over U . The members of õ are
said to be soft open sets in U .

In [20], Shabir and Naz demonstrated that if (U, õ,E) is a soft topological space over
U , then the family oe = {F(e) | (F,E) ∈ õ} for each e ∈ E, defines a topology on
U . Therefore if we have a soft topology õ over U , then every member of õ is a o-
topological soft set over U .

Note that, if we have a γ-topological soft set (F,A) over U then F(e) ⊆ γ(F(e)) for
all e ∈ A from Definition 3.1. So, this implies that (F,A)⊂̃γ(F,A). Therefore, we can
say that (F,A) is γ-open soft set in Császár’ s sense. Now, let (U,g) be generalized
topological spaces and E be fixed parameter set. Consider the family

g̃= {(F,E) | (∀e ∈ E)(F(e) ∈ g)}.

Then we have following theorem.

THEOREM 3.28. (U, g̃,E) is a generalized soft topological space.

PROOF. Since g is a generalized topology on U , then ∅ ∈ g. At that case, for all
e∈E, F(e) =∅∈ g. So, we obtain (F,E) = Φ̃∈ g̃. Therewithal, consider the subfamily
{(Fi,E) | i ∈ I} ⊂ g̃. For all i ∈ I and e ∈ E, Fi(e) ∈ g. Since g is a generalized topology
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on U , then for all e ∈ E,
⋃

i∈I Fi(e) ∈ g. Thus, we obtain ∪̃i∈I(Fi,E) ∈ g̃. Hence, g̃ is a
generalized soft topology on U .

Particularly, if we take topological space instead of generalized topological space, we
get soft topology on this way i.e.

õ= {(F,E) | (∀e ∈ E)(F(e) ∈ o)}

is a soft topology on U . As a result, we can achieve a soft topology from topological
soft sets on any given topological space.

In [16], Molodtsov pointed out that every topological space is considered a soft set.
Let (U,o) be a topological space. Define the mapping T : U→P(o) such that ∀u ∈U ,
T (u) = {V ∈ o | u∈V} i.e. T (u) is the family of open neighborhoods of u. Thus, (T,U)

is a soft set over o.

THEOREM 3.29. Let o and o′ be topologies on U , and (T,U) and (T ′,U) be o-
topological soft sets over o and o′ respectively. If (T,U)∼= (T ′,U), then o= o′.

PROOF. Suppose that A ∈ o. There is x ∈ A ∈ o. So, A is a open neighborhood of
x i.e. A∈ T (x). Since (T,U)∼= (T ′,U), there exist the bijective function φ : U→U such
that T (x) = (T ′ ◦ φ)(x) for each x ∈ X . Therefore, A ∈ T (x) = (T ′ ◦ φ)(x). We obtain
that A is a open neighborhood of φ(x). Thus A ∈ o′.

Similar to the other inclusion is shown. Thus o= o′

COROLLARY 3.30. If (T,U) ∼= (T ′,U), then φ : U → U is an identical
homeomorphism.

In [3], P. Alexandroff introduced the Alexandroff space which is a topological space
such that the intersection of every family of open sets is open (or equivalently every
point has a minimal neighborhood). These spaces are also called finitely generated

spaces since their topology is uniquely determined by the family of all finite
subspaces. Alexandroff spaces can be viewed as a generalization of finite topological
spaces.

With the above expression, we can obtain a soft set over a universe if we have a
Alexandroff topology on this universe. At the same time, starting from the above
expression over the universe, we can get an o-topological soft set over the universe
as follows. We know that if T : U →P(o) such that ∀u ∈U , T (u) = {A ∈ o | u ∈ A}
then (T,U) is a soft set over o. If we define the mapping T ∗ : U →P(U) such that
T ∗(u) =

⋂
{A ∈ o | u ∈ A}, we obtain a soft set over U , and it is an o-topological soft
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set since the intersection of open neighborhoods is open in Alexandroff spaces. Thus
for all soft sets (T,U) over a Alexandroff space U , we have an o-topological soft set
over U .

EXAMPLE 3.31. Let U = {a,b,c}, o= {∅,U,{a},{a,b}} be a topology over U .
Since U is finite, then o is an Alexandroff space. For the mapping T : U →P(o), let

(T,U) = {a = {{a},{a,b},U},b = {{a,b},U},c = {U}}.

T ∗ is induced by T as following.

T ∗(a) =
⋂
{{a},{a,b},U}= {a},

T ∗(b) =
⋂
{{a,b},U}= {a,b}

and

T ∗(c) =
⋂
{U}=U.

Thus we obtain the soft set (T ∗,U) = {a = {a},b = {a,b},c =U} over U .

So, we obtain the following theorem for Alexandroff spaces.

THEOREM 3.32. Let (U,o) and (V,o′) be Alexandroff topological spaces. (U,o)

is homeomorphic to (V,o′) if and only if (T ∗U ,U)u (T ∗V ,V ).

PROOF. Suppose that the space U is homeomorphic to the space V . Then there
exist a homeomorphism φ : U →V . We must show that

(φ ◦T ∗U )(u) = (T ∗V ◦φ)(u)

for all u ∈ U . Since φ is a homeomorphism, φ is bijective, continuous and open
function. In that case, for all u ∈U ,

(φ ◦T ∗U )(u) = φ(T ∗U (u))

= φ(
⋂
{A ∈ o | u ∈ A})

=
⋂
{φ(A) ∈ o′ | φ(u) ∈ φ(A)}

=
⋂
{B ∈ o′ | φ(u) ∈ B}

= T ∗V (φ(u)) = (T ∗V ◦φ)(u)

Thus we achieve that (T ∗,U)u (T ∗,V ).

On the other hand, suppose that (T ∗,U) u (T ∗,V ). Then we have a bijective function
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φ : U →V such that (φ ∗ ◦T ∗)(u) = (T ∗ ◦φ)(u) 1 for all u ∈U . We need to show that φ

is a homeomorphism from U to V . We know that φ is bijection. Since for all u ∈U ,
T ∗(u) =

⋂
{A ∈ o | u ∈ A} is an open set in U and (φ ∗ ◦T ∗)(u) = (T ∗ ◦φ)(u), we obtain

that φ is an open function. Afterwards, since φ is a bijection, there exist its inverse
φ−1 : V → U . Then we have (φ−1(T ∗(v)) = T ∗(φ−1(v)) for all v ∈ V . Since T ∗(v) is
an open set for all v ∈ V in the space V , φ−1 is an open function i.e. φ is continuous.
Consequently, φ is a homeomorphism from U to V .

Of course, the above theorem is not valid for arbitrary topological spaces which is
defined by o-topological soft set in the above manner, since the intersection of arbitrary
number of open sets may not be open. However, the intersection of every closed sets
is closed in arbitrary topological space. We can define the soft set using closed sets in
given any topological space. Let’ s consider a topological space (U,o). Inspired from
Molodtsov, define the mapping K : U→P(c) such that ∀u ∈U , K(u) = {A ∈ c | u ∈ A}
i.e. K(u) is the family of closed neighborhoods of u. Thus, (K,U) is a soft set over c.
If we define the mapping K∗ : U →P(U) such that K∗(u) =

⋂
{A ∈ c | u ∈ A} which is

induced by K. So, (K∗,U) is a c-topological soft set over U .

We can obtain following theorem for arbitrary topological spaces.

THEOREM 3.33. Let (U,o) and (V,o′) be topological spaces. Then (U,o) is
homeomorphic to (V,o′) if and only if (K∗U ,U)u (K∗V ,V ) for each u ∈U .

PROOF. Similar to proof of Theorem 3.32.

COROLLARY 3.34. Let (U,g) and (V,g′) be generalized topological spaces.
(U,g) is generalized homeomorphic to (V,g′) if and only if (K∗U ,U) u (K∗V ,V ) where
K∗(u) =

⋂
{A ∈ gc | u ∈ A}.

4. CONCLUSION

In this paper, we have introduced the concept of topological soft set without any
restrictions, and we have examined the relationship between them. We have been
achieved some results given the notations by Ge et al [8]. We have pointed out that
each element of soft topology given by Shabir and Naz in [20] is a topological soft
set over a relevant universe and conversely we have pointed out that soft topology
and generalized soft topology is obtained when we have topological soft sets. Finally,

1φ∗ is a mapping from P(U) to P(V ) induced by φ : U →V .
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we have obtained topological soft set for a topological space using Molodtsov’s
deduction in [16], and we have proved that two space is homeomorphic if and only if
topological soft sets derived from them are similar.

This study can be a useful source for researchers working in this area. For the future
work, we can examine structures of topological soft sets using topological properties
such as separation axioms, connectedness, compactness etc.
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Resolution of system of Volterra integral
equations of the first kind by derivation

technique and modified decomposition methods
M. A. ALZHRANI, H. O. BAKODAH AND M. AL-MAZMUMY

Abstract

A solution method for various systems of integral equations of the first kind is presented in this paper. The
method starts off by transforming the systems via the application of the Leibnitz’s derivation technique
and then employs three different decomposition methods based on the Standard Adomian decomposition
method (SADM) for solutions. To demonstrate the efficiency of the proposed method, some illustrative
examples are considered and the obtained results indicate that the approach is indeed of practical interest.

Mathematics Subject Classification: 65R20, 65L80, 45G10, 45D05, 41A30
Keywords: Integral equations; Volterra integral equations; Leibnitz’s derivation technique; Adomian
decomposition method.

1. INTRODUCTION

Volterra integral equations and their systems are important class of integral
equations that arise in many engineering applications. Such equations have been
treated by various numerical and analytical techniques [1-4]. However, despite the
fact that analytical solutions are the most desired ones, still numerical methods are
considered powerful since they solve many problems that analytical solutions do not
exist. Methods like the iterative methods, perturbation methods, series expansion in
form of certain functions are the usual numerical or approximation methods.
Regarding some numerical techniques for systems of integral equations; system of
Fredholm integral equations was numerically solved using the wavelet technique
[5,6] while the Standard Adomian decomposition method (SADM) was applied to
the various systems of Volterra and Fredholm integral equations, respectively, [7-11].
In addition, further application of the ADM in solving integral equations can be seen
in the works of Cherrualt and Seng [12] for certain integral equations of the first
kind, Babolian et al. [13] for solving linear and nonlinear systems of Volterra integral
equations of the second kind and Biazar et al. [14] for Volterra integral equations of
the first kind among others.

10.2478/jamsi-2020-0007
University of SS. Cyril and Methodius in Trnava
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Now that the SADM has been proven to be an efficient semi-analytical method for
solving various integral equations since its inception in 1980’s [15] leading to
undergoing several modifications and improvements by many researchers, see
[16-20] and also [21-26]; we therefore aim in this paper to consider the certain
modifications of the ADM to study the solution of certain systems of Volterra integral
equations of the first kind. To achieve our set goal, we first employ the Leibnitz’s
derivation technique [1] to transform our system to a canonical system suitable for
the ADM based modification procedures. We will also establish some comparative
study between the classical ADM and our modification procedures.

2. VOLTERRA INTEGRAL EQUATIONS

A system of Volterra integral equations of the first kind can be written as follows:∫ b(x)

a
ki(x, t)gi(u1(t),u2(t), · · · ,un(t))dt = fi(x), i = 1,2, · · · ,n; (1)

where fi are known functions, ki(x, t) are the kernels of the ith integral equation, gi are
linear or nonlinear functional of the unknown functions ui.

We suppose that the system (1) has unique solution. However, the necessary and
sufficient conditions for existence and uniqueness of the solution of system (1) could
be found in [21,22].

2.1. Linear case

The standard form of the system of Volterra integral equations of the first kind is
given by

f1(x) =
∫ x

0
(K1(x, t)u1(t)+ K̃1(x, t)u2(t))dt,

f2(x) =
∫ x

0
(K2(x, t)u1(t)+ K̃2(x, t)u2(t))dt, (2)

where the kernels are Ki(x, t) and K̃i(x, t), and the functions fi(x), i = 1,2 are given real-
valued functions, and ui(x), i = 1,2 are the unknown functions that will be determined.
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Now, differentiating both sides of each equation in (2), and using Leibnitz’s derivation
technique [1], we obtain

f ′1(x) = K1(x,x)u1(x)+ K̃1(x,x)u2(x)

+
∫ x

0
(K1x(x, t)u1(t)+ K̃1x(x, t)u2(t))dt,

f ′2(x) = K2(x,x)u1(x)+ K̃2(x,x)u2(x)

+
∫ x

0
(K2x(x, t)u1(t)+ K̃2x(x, t)u2(t))dt.

REMARK 2.1. Three remarks can be made here:

1. If at least one of Ki(x,x) and K̃i(x,x), i = 1,2 in each of the above equations does
not vanish, then the system is reduced to a system of Volterra integral equations of the
second kind.

2. If Ki(x,x) = 0 and K̃i(x,x) = 0, i = 1,2 for any equation, and if Kix(x,x) 6= 0 and
Kix(x,x) 6= 0, then we differentiate again that equation.

3. The functions fi(x) must satisfy specic conditions to guarantee a unique continuous
solution for each of the unknown solutions.

2.2. Nonlinear case

We will study a specific case of the systems of nonlinear Volterra integral
equations of the first kind given by

f1(x) =
∫ x

0
(K1(x, t)u1(t)+ K̃1(x, t)F1(u2(t)))dt,

f2(x) =
∫ x

0
(K2(x, t)F2(u1(t))+ K̃2(x, t)u2(t))dt, (3)

where the kernels are Ki(x, t) and K̃i(x, t), and the functions fi(x) are given real-valued
functions and ui(x), i = 1,2 are the unknown functions that will be determined. Recall
that the unknown functions ui(x) appear inside the integral sign for the Volterra integral
equations of the first kind. We first need to convert this system to a system of nonlinear
Volterra integral equation of the second kind. This can be achieved by differentiating
both sides of each part of the system. The conversion technique works effectively by
using Leibnitz’s technique or rule. Differentiating both sides of each equation in (3)
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and using Leibnitz’s rule, we obtain

f ′1(x) = K1(x,x)u1(x)+ K̃1(x,x)F1(u2(x))

+
∫ x

0
(K1x(x, t)u1(t)+ K̃1x(x, t)F1(u2(t)))dt,

f ′2(x) = K2(x,x)F2(u1(x))+ K̃2(x,x)u2(x)

+
∫ x

0
(K2x(x, t)F2(u1(t))+ K̃2x(x, t)u2(t))dt.

u1(x) =
f ′1(x)− K̃1(x,x)F1(u2(x))

K1(x,x)

− 1
K1(x,x)

∫ x

0
(K1x(x, t)u1(t)+ K̃1x(x, t)F1(u2(t)))dt, (4)

u2(x) =
f ′2(x)−K2(x,x)F2(u1(x))

K̃2(x,x)

− 1
K̃2(x,x)

∫ x

0
(K2x(x, t)F2(u1(t))+ K̃2x(x, t)u2(t))dt.

It is obvious that the last system is a system of nonlinear Volterra integral equations
of the second kind. Notice that the non-homogeneous terms and the kernels have
changed to

g1(x) =
f ′1(x)− K̃1(x,x)F1(u2(x))

K1(x,x)
,

g2(x) =
f ′2(x)−K2(x,x)F2(u1(x))

K̃2(x,x)
,

G1(x, t) =
K1x(x, t)
K1(x,x)

, G̃1(x, t) =
K̃1x(x, t)
K1(x,x)

,

G2(x, t) =
K2x(x, t)
K2(x,x)

, G̃2(x, t) =
K̃2x(x, t)
K2(x,x)

.

Then, the form of the system of nonlinear Volterra integral equation of the second kind
becomes u1(x) = g1(x)−

∫ x
0 (G1(x, t)u1(t)+ G̃1(x, t)F1(u2(t)))dt,

u2(x) = g2(x)−
∫ x

0 (G2(x, t)F2(u1(t))+ G̃2(x, t)u2(t))dt;
(5)
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which is in the Adomian’s canonical form with the following recursive scheme:

u1,0(x) = g1(x),

u1,n+1(x) = −
∫ x

0
(G1(x, t)u1,n(t)+ G̃1(x, t)A2,n(t)dt,

u2,0(x) = g2(x) (6)

u2,n+1(x) = −
∫ x

0
(G2(x, t)A1,n(t)+ G̃2(x, t)u2,n(t)),dt

where Ai,n , i = 1,2 are the Adomian polynomials given by

An =
1
n!

dn

dλ n
[F(

n

∑
i=0

λ
iui)]λ=0, n = 0,1,2, · · ·

3. SOME MODIFICATIONS OF THE ADM

3.1. Reliable modification (M1)

The standard decomposition method (SADM) by Adomian [15] was modified by
Wazwaz [23]. The modification is based on the assumption that the function gi(x), i =

1,2 can be divided into two parts, namely, gi,o(x) and gi,1(x). Under this assumption
we set

gi(x) = gi,0(x)+gi,1(x). (7)

Accordingly, a slight variation was proposed only on the components ui,0 and ui,1.
The suggestion was that only the part g0,i be assigned to the zeroth component ui,0;
whereas the remaining part g1,i should be combined with the other terms to define ui,1.
Consequently the modified recursive relation

u1,0(x) = g1,0(x),

u1,1(x) = g1,1(x)−
∫ x

0
(G1(x, t)u1,0(t)+ G̃1(x, t)A2,0(t)dt,

u1,n+1(x) = −
∫ x

0
(G1(x, t)u1,n(t)+ G̃1(x, t)A2,n(t)dt,

u2,0(x) = g2,0(x), (8)

u2,1(x) = g2,1(x)−
∫ x

0
(G2(x, t)A1,0(t)+ G̃2(x, t)u2,0(t))dt,

u2,n+1(x) = −
∫ x

0
(G2(x, t)A1,n(t)+ G̃2(x, t)u2,n(t))dt.

The choice of gi,0 such that ui,0 contains the minimal number of terms has a strong
influence in accelerating the convergence rate of the solution. This means that the
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success of this method depends mainly on the proper choice of gi,0 and gi,1 and it is
mainly trials. The modification demonstrates a rapid convergence of the series solution
if compared with the SADM, and it may give the exact solution for nonlinear equations
by using two iterations only and without using the so-called Adomian polynomials.

3.2. New modification (M2)

The modified decomposition method in (3.1) depends entirely on the proper
selection of the functions g0,i and g1,i . It appears that trials are the only criteria that
can be applied so far. In the new modification by Wazwaz [24] we can replace the
process of dividing gi into two components by a series of infinite components. We
therefore suggest that gi be expressed in Taylor series

gi(x) =
∞

∑
n=0

gi,n(x). (9)

A new recursive relationship is then expressed as

u1,0(x) = g1,0(x),

u1,n+1(x) = g1,n−
∫ x

0
(G1(x, t)u1,n(t)+ G̃1(x, t)A2,n(t)dt,

u2,0(x) = g2,0(x). (10)

u2,n+1(x) = g2,n−
∫ x

0
(G2(x, t)A1,n(t)+ G̃2(x, t)u2,n(t))dt.

It is important to note that if gi consists of one term only, then scheme in (10) reduces
to relation (7). Moreover if gi consists of two terms, then relation (10) reduces to the
modified relation (8).

3.3. Restarted Adomian decomposition method (M3)

The restarted Adomian method (RADM) by Babolian et al. [20] was based on
the standard ADM for algebraic equations, see also Sadeghi et al. [25] for the
application. The method modified the SADM by a slight variation in ui,0 and ui,1

components thereby accelerating the rate of convergence better than the SADM.
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3.3.1. Description of the method. We introduce the algorithm as the following

(1) Choose small natural numbers n and m.

(2) Apply the Adomian method on equations (5) to calculate

(u1,0,u2,0),(u1,1,u2,1), · · · ,(u1,m,u2,m).

set

w1
1 = u1,0 +u1,1 + · · ·+u1,m,

w1
2 = u2,0 +u2,1 + · · ·+u2,m.

(3) Let z1 and z2 be the proper functions which will be determined next.

For j = 2 : n do w j−1
1 = z1,

w j−1
2 = z2,

u1,0 = z1,

u2,0 = z2,

u1,1 = g1− z1 +A1,0,

u2,1 = g2− z2 +A2,0,

u1,m+1 = A1,m,

u2,m+1 = A2,m.

set

w j
1 = u1,0 +u1,1 + · · ·+u1,m,

w j
2 = u2,0 +u2,1 + · · ·+u2,m.

end.
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Remarks

(1) wn
i can be considered as the approximate solution of Eq. (1).

(2) The Adomian method usually gives sum of some first terms as an approximation
of ui. Thus, in this algorithm we can update ui,0 in each step with the exception of
the terms with large index; so n and m are considered small.

4. NUMERICAL EXAMPLE

EXAMPLE 4.1. Consider the following system of linear Volterra integral
equations with the exact solutions: u1(x) = x2 and u2(x) = x,∫ x

0 ((1− x2 + t2)u1(t)− (2x− t)u2(t))dt =− 1
3 x3− 2

15 x5,∫ x
0 ((x+ t2)u1(t)+(2− x+ t)u2(t))dt = x2− 1

6 x3 + 1
3 x4 + 1

5 x5.

Differentiating the above equations with respect to x we have

u1(x)− xu2(x)−2
∫ x

0 (xu1(t)+u2(t))dt =−x2− 2
3 x4,

(x+ x2)u1(x)+2u2(x)+
∫ x

0 (u1(t)−u2(t))dt = 2x− 1
2 x2 + 4

3 x3 + x4.

Or

u1(x) =−x2− 2
3 x4 + xu2(x)+2

∫ x
0 (xu1(t)+u2(t))dt,

u2(x) = x− 1
4 x2 + 2

3 x3 + 1
2 x4− 1

2 (x+ x2)u1(x)− 1
2

∫ x
0 (u1(t)−u2(t))dt.

Thus, SADM offers the following recursive scheme

u1,0(x) =−x2− 2
3 x4,

u2,0(x) = x− 1
4 x2 + 2

3 x3 + 1
2 x4,

u1,n+1(x) = xu2,n(x)+2
∫ x

0 (xu1,n(t)+u2,n(t))dt,

u2,n+1(x) =− 1
2 (x+ x2)u1,n(x)− 1

2

∫ x
0 (u1,n(t)−u2,n(t))d, n = 0,1,2, · · ·

(i) Relible Modification (M1)

The M1 methods gives the following recursive scheme from our problem as follows

u1,0(x) =− 2
3 x4,

u2,0(x) = x,
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u1,1(x) =−x2 + xu2,0(x)+2
∫ x

0 (xu1,0(t)+u2,0(t))dt,

u2,1(x) =− 1
4 x2 + 2

3 x3 + 1
2 x4− 1

2 (x+ x2)u1,0(x)− 1
2

∫ x
0 (u1,0(t)−u2,0(t))dt,

u1,n+1(x) = xu2,n(x)+2
∫ x

0 (xu1,n(t)+u2,n(t))dt,

u2,n+1(x) =− 1
2 (x+ x2)u1,n(x)− 1

2

∫ x
0 (u1,n(t)−u2,n(t))dt, n = 1,2, · · ·

(ii) Restarted ADM (M3)

Considering the small indexes n and m, say n = 3, m = 4;

step1:

u1,0(x) =−x2− 2
3 x4,

u2,0(x) = x− 1
4 x2 + 2

3 x3 + 1
2 x4,

u1,n+1(x) = xu2,n(x)+2
∫ x

0 (xu1,n(t)+u2,n(t))dt,

u2,n+1(x) =− 1
2 (x+ x2)u1,n(x)− 1

2

∫ x
0 (u1,n(t)−u2,n(t))dt, n = 0,1,2, · · ·



u1,1(x) = 2x2− 5
12 x3 + 1

3 x4 + 7
10 x5− 4

15 x6,

u2,1(x) = 1
4 x2 + 5

8 x3 + 7
12 x4 + 9

20 x5 + 1
3 x6,

u1,2(x) = 5
12 x3 + 109

48 x4 + 73
120 x5 + 11

15 x6 + · · ·

u2,2(x) =− 31
24 x3− 127

192 x4 + 1
15 x5− 43

80 x6 + · · ·

u1,3(x) =− 31
16 x4− 689

960 x5 + 359
360 x6 + · · ·

u2,3(x) =− 27
64 −

3143
1920 x5− 1069

720 x6 + · · ·

w1
1 = u1,0 +u1,1 +u1,2 +u1,3 = x2 +

189
320

x5 +
527
360

x6 + · · ·

w1
2 = u2,0 +u2,1 +u2,2 +g2,3 = x− 717

640
x5− 76

45
x6 + · · ·
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step2:

u1,0(x) = x2 + 189
320 x5 + 527

360 x6 + · · ·

u2,0(x) = x− 717
640 x5− 76

45 x6 + · · ·

u1,1(x) = (x2− 2
3 x4)− (x2 + 189

320 x5 + 527
360 x6 + · · ·)+ xu2,0(x)+2

∫ x
0 (xu1,0(t)+u2,0(t))dt,

u2,1(x) = (x− 1
4 x2 + 2

3 x3 + 1
2 x4)− (x− 717

640 x5− 76
45 x6 + · · ·)− 1

2 (x+ x2)u1,0(x)

− 1
2

∫ x
0 (u1,0(t)−u2,0(t))dt,

u1,n+1(x) = xu2,n(x)+2
∫ x

0 (xu1,n(t)+u2,n(t))dt,

u2,n+1(x) =− 1
2 (x+ x2)u1,n(x)− 1

2

∫ x
0 (u1,n(t)−u2,n(t))dt, n = 1,2, · · ·



u1,1(x) =− 189
320 x5− 4259

1440 x6− 43307
20160 x7 + · · ·

u2,1(x) = 717
640 x5 + 28823

23040 x6− 4261
13440 x7 + · · ·

u1,2(x) = 239
160 x6 + 5059

3584 x7− 200203
161280 x8 + · · ·

u2,2(x) = 1121
2560 x6 + 74359

35840 x7 + 1720759
645120 x8 + · · ·

u1,3(x) = 10089
17920 x7 + 432979

143360 x8 + · · ·

u2,3(x) =− 29471
35840 x7− 809239

573440 x8 + · · ·

w2
1 = x2 +

29471
2872

x8− 1139
560

x9 + · · ·

w2
2 = x+

211073
573440

x8− 213207
143360

x9 + · · ·

step3:

w3
1 = x2− 1487022307

851558400
x12− 81990701

252313600
x11 + · · ·

w3
2 = x+

519896129
425779200

x12 +
175553087
504627200

x11 + · · ·

step4:

w3
1 = x2− 162739797083

166985728000
x15− 66509498791

275526451200
x14 + · · ·

w4
2 = x− 28883455355929

33063174144000
x15− 100436326331

801531494400
x14 + · · ·

We therefore establish the comparisons between the exact solution and the solutions
obtained by SADM, M1 and M3 methods for u1(x) and u2(x) and reported in Tables 1
and 2, and Figures 1 and 2, respectively.
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x u1(x) SADM error M1 error M3 error
0.1 0.01 0.009998 0.000002 0.009999 0.000001 0.01 0
0.2 0.04 0.039877 0.000123 0.039935 0.000065 0.04 0
0.3 0.09 0.088414 0.001586 0.089162 0.000838 0.09 0
0.4 0.16 0.149935 0.010065 0.154715 0.005285 0.159998 0.000002
0.5 0.25 0.206619 0.043381 0.227417 0.022583 0.249929 0.000071

Table I: Comparison between exact solution u1(x) and approximate solutions using SADM, M1
and M3 methods

x u2(x) SADM error M1 error M3 error
0.1 0.1 0.099999 0.000001 0.1 0 0.1 0
0.2 0.2 0.199954 0.000046 0.199981 0.000019 0.2 0
0.3 0.3 0.299346 0.000654 0.299690 0.000310 0.3 0
0.4 0.4 0.395531 0.004469 0.397601 0.002399 0.399997 0.000003
0.5 0.5 0.479537 0.020463 0.487737 0.012263 0.499886 0.000114

Table II: Comparison between exact solution u2(x) and approximate solutions using SADM, M1
and M3 methods

EXAMPLE 4.2. Consider the following system of nonlinear Volterra integral
equations given the exact solutions: u1(x) = x+ ex, and u2(x) = x− ex;∫ x

0 (u1(t)+(x− t)u1(t)u2(t))dt =− 3
4 +

1
2 x+ 1

2 x2 + 1
12 x4 + ex− 1

4 e2x,∫ x
0 (u1(t)+(x− t)u1(t)u2(t))dt = 5

4 +
1
2 x+ 1

2 x2 + 1
12 x4− ex− 1

4 e2x.
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Differentiating the above equation with respect to x we get:

u1(x)+
∫ x

0 u1(t)u2(t)dt = 1
2 + x+ 1

3 x3 + ex− 1
2 e2x ,

u2(x)+
∫ x

0 u1(t)u2(t)dt = 1
2 + x+ 1

3 x3− ex− 1
2 e2x.

Or

u1(x) = 1
2 + x+ 1

3 x3 + ex− 1
2 e2x−

∫ x
0 u1(t)u2(t)dt,

u2(x) = 1
2 + x+ 1

3 x3− ex− 1
2 e2x−

∫ x
0 u1(t)u2(t)dt.

Applying the SADM to above system yields the following recursive scheme:

u1,0(x) = 1
2 + x+ 1

3 x3 + ex− 1
2 e2x,

u2,0(x) = 1
2 + x+ 1

3 x3− ex− 1
2 e2x,

u1,n+1(x) =−
∫ x

0 An(t)dt,

u2,n+1(x) =−
∫ x

0 An(t)dt, n = 0,1,2, · · ·

where An are the Adomian polynomials given by:

A0(t) = u1,0(t)u2,0(t),

A1(t) = u1,0(t)u2,1(t)+u1,1(t)u2,0(t),

A2(t) = u1,0(t)u2,2(t)+u1,2(t)u2,0(t)+u1,1(t)u2,1(t),

and so on.

(i) Relible Modification (M1)

On using M1, the following recursive scheme to the problem is obtained:

u1,0(x) = x+ ex,

u2,0(x) = x− ex,

u1,1(x) = 1
2 +

1
3 x3− 1

2 e2x−
∫ x

0 A0(t)dt,

u2,1(x) = 1
2 +

1
3 x3− 1

2 e2x−
∫ x

0 A0(t)dt,

u1,n+1(x) =−
∫ x

0 An(t)dt,

u2,n+1(x) =−
∫ x

0 An(t)dt, n = 1,2, · · ·
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(ii) New Modification (M2)

Using M2 method, we first set the Taylor’s expansion for fi(x) as

f1(x) = 1+ x− 1
2 x2− 1

6 x3 +o[x]4,

f2(x) =−1− x− 3
2 x2− 1

2 x3 +o[x]4.

Thus, we get the following recursive relation from (10);

u1,0(x) = 1,

u2,0(x) =−1,

u1,1(x) = x−
∫ x

0 A0(t)dt = 2x,

u2,1(x) =−x−
∫ x

0 A0(t)dt = 0,

u1,2(x) =− 1
2 x2−

∫ x
0 A1(t)dt = 1

2 x2,

u2,2(x) =− 3
2 x2−

∫ x
0 A1(t)dt =− 1

2 x2,

u1,3(x) =− 1
6 x3−

∫ x
0 A2(t)dt = 1

6 x3,

u2,3(x) =− 1
2 x3−

∫ x
0 A2(t)dt =− 1

6 x3,

and so on. We establish the comparisons between the exact solution and the solutions
obtained by M1 and M2 methods for u1(x) and u2(x) and reported in Tables 3 and 4,
and Figures 3 and 4, respectively.

x u1(x) SADM error M1 error M2 error
0.1 1.205171 1.205169 0.000002 1.205171 0 1.205167 0.000004
0.2 1.421403 1.421337 0.000065 1.421403 0 1.421333 0.000069
0.3 1.649859 1.649245 0.000614 1.649859 0 1.649462 0.000359
0.4 1.891825 1.888585 0.003239 1.891825 0 1.890667 0.001158
0.5 2.148721 2.136289 0.012432 2.148721 0 2.145833 0.002888

Table III: Comparison between exact solution u1(x) and approximate solutions using SADM,
M1 and M2 methods
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x u2(x) SADM error M1 error M2 error
0.1 -1.005171 -1.005173 0.000002 -1.005171 0 -1.005167 0.000004
0.2 -1.021403 -1.021468 0.000066 -1.021403 0 -1.021333 0.000064
0.3 -1.049859 -1.050473 0.000614 -1.049859 0 -1.049500 0.000359
0.4 -1.091825 -1.095064 0.003239 -1.091825 0 -1.090667 0.001158
0.5 -1.148721 -1.161153 0.012432 -1.148721 0 -1.145833 0.002888

Table IV: Comparison between exact solution u2(x) and approximate solutions using SADM,
M1 and M2 methods

5. CONCLUSIONS

In conclusion, we have presented three recursive schemes based on the
modifications of the Standard Adomian decomposition method (SADM) for solving
system of Volterra integral equations of the first kind. However in doing that, we
successfully utilized the Leibniz’ derivation technique to transform the integral
equations to the conical forms where Adomian technique is applicable. We further
applied the presented schemes to some test problems and found remarkable
approximates solutions as reported in the given tables and graphs. The computations
associated with the test problems were performed using a Maple.
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A new subclass of meromorphic functions with
positive coefficients defining by linear operator
P. THIRUPATHI REDDY, B. VENKATESWARLU AND S. SREELAKSHMI

Abstract

In this paper, we introduce and study a new class σ ,(α,λ ) of meromorphic univalent functions defined in
E = {z : z ∈ C and 0 < |z|< 1}= E \{0}. We obtain coefficient inequalities, distortion theorems, extreme
points, closure theorems, radius of convexity estimates and integral operators. Finally, we obtained
neighbourhood result for the class σp(γ,λ ).

Mathematics Subject Classification 2010: 30C45.
Keywords: meromorphic functions, analytic functions, neighborhood.

1. INTRODUCTION

Let Σ denote the class of meromorphic functions of the form

f (z) =
1
z
+

∞

∑
n=1

anzn, (an ≥ 0) (1)

which are analytic in the punctured unit disc E = {z : z∈C and 0< |z|< 1}. A function
f ∈ ∑ is meromorphic starlike of order α (0≤ α < 1) if

−Re
{

z f ′(z)
f (z)

}
> α, (z ∈ E). (2)

The class of all such functions is denoted by Σ∗(α). A function f ∈ Σ is meromorphic
convex of order α (0≤ α < 1) if

−Re
{

1+
z f ′′(z)
f ′(z)

}
> α (z ∈ E). (3)

The class of such functions is denoted by Σ∗k(α). The class Σ(α) and Σ∗k(α) were
introduced and studied by Clunie [1], Pommerenke [6], Miller [4] and Mogra et al.
[5]. Let Σp be the class of functions f ∈ Σ with an ≥ 0. The subclass of Σp consisting
of starlike function of order α is denoted by Σ∗p(α). For a function f (z) ∈ Σ, Frasin

10.2478/jamsi-2020-0008
University of SS. Cyril and Methodius in Trnava
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and Darus [2] defined an operator Ik : Σ→ Σ as follows

I0 f (z) = f (z)

I1 f (z) = z f ′(z)+
2
z

I2 f (z) = z(I1 f (z))′+
2
z

and for k = 1,2,3, · · · , we have

Ik f (z) = z(Ik−1 f (z))′+
2
z

=
1
z
+

∞

∑
n=1

nkanzk (k ∈ N0 = N∪{0},z ∈ E).

Definition 1.1. Let 0 ≤ α < 1. Further let f (z) ∈ Σp be given by (1), 0 ≤ λ < 1.

The class σp(α,λ ) is defined by

σp(α,λ ) =

{
f ∈ Σp : Re

[ z f ′(z)
(λ −1) f (z)+λ z f ′(z)

]
> α

}
. (4)

Clearly σp(α,0) reduces to Σ∗p(α).

In this paper, we obtain the coefficient inequalities, growth and distortion inequalities,
as well as closure results for the class σp(α,λ ). Properties of certain integral operators
and neighbourhood properties are also discussed for the class. The subclass of Σp

consisting of starlike functions of order α is denoted by Σ∗p(α).

2. COEFFICIENTS INEQUALITIES

Our first theorem gives a necessary and sufficient condition for a function f to be in
the class Σp(λ ,α).

THEOREM 2.1. Let f (z) ∈ Σp be given by (1). Then f ∈ σp(λ ,α) if and only if
∞

∑
n=1

nk[n+α−αλ (1+n)]an ≤ 1−α. (5)

PROOF. If f ∈ σp(λ ,α) then

Re
{ z(Ik f (z))′

(λ −1)(Ik f (z))+λ z(Ik f (z))′

}
= Re

{ −1+
∞

∑
n=1

nk+1anzn+1

−1+
∞

∑
n=1

(λ −1+λn)nkanzn+1

}
> α.
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By letting z→ 1−, we have
{ −1+

∞

∑
n=1

nk+1an

−1+
∞

∑
n=1

nk(λ−1+λn)an

}
> α.

This shows that (5) holds.

Conversely assume that (5) holds. Since
Re(w)> α if and only if |w−1|< |w+1−2α|.
It is sufficient to show that∣∣∣ z(Ik f (z))′− [(λ −1)Ik f (z)+λ z(Ik f (z))′]

z(Ik f (z))′+(1−2α)[(λ −1)Ik f (z)+λ z(Ik f (z))′]

∣∣∣ < 1.

Using (5), we see that∣∣∣ z(Ik f (z))′− [(λ −1)Ik f (z)+λ z(Ik f (z))′]
z(Ik f (z))′+(1−2α)[(λ −1)Ik f (z)+λ z(Ik f (z))′]

∣∣∣
=
∣∣∣

∞

∑
n=1

nk(1−λ )(n+1)anzn+1

−2(1−α)+
∞

∑
n=1

nk[n(1+(1−2α)λ )+(1−2α)(λ −1)]anzn+1

∣∣∣

≤

∞

∑
n=1

nk(1−λ )(n+1)an

2(1−α)−
∞

∑
n=1

nk[n(1+(1−2α)λ )+(1−2α)(λ −1)]an

≤1.

Thus we have f ∈ σp(λ ,α).

COROLLARY 2.2. If f ∈ σp(λ ,α) then

an ≤
(1−α)

nk[n+α−αλ (1+n)]
.

PROOF. The result is sharp for the functions Fn(z) given by

Fn(z) =
1
z
+

(1−α)

nk[n+α−αλ (1+n)]
zn, n = 1,2,3 · · · .

3. GROWTH AND DISTORTION THEOREM

THEOREM 3.1. If f ∈ σp(λ ,α), then

1
r
− (1−α)

(1+α−2αλ )
r ≤ | f (z)| ≤ 1

r
+

(1−α)

(1+α−2αλ )
r. (6)
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The result is sharp for the function

f (z) =
1
z
+

1−α

1+α−2αλ
z. (7)

PROOF. Since f (z) = 1
z +

∞

∑
n=1

anzn, we have

| f (z)| ≤ 1
r
+

∞

∑
n=1

anrn ≤ 1
r
+ r

∞

∑
n=1

an

since,
∞

∑
n=1

an ≤
1−α

1+α−2αλ
.

Using this, we have

| f (z)| ≤ 1
r
+

1−α

1+α−2αλ
r.

Similarly

| f (z)| ≥ 1
r
− 1−α

1+α−2αλ
r.

The result is sharp for f (z) = 1
z +

1−α

1+α−2αλ
z.

THEOREM 3.2. If f ∈ σp(α,λ ) then

1
r2
− 1−α

1+α−2αλ
≤ | f ′(z)| ≤ 1

r2
+

1−α

1+α−2αλ
(|z|= r).

The result is sharp for the function given by (7).

4. CLOSURE THEOREMS

Let the functions Fk(z) be given by

Fk(z) =
1
z
+

∞

∑
n=1

an,kzn, k = 1,2,3, · · · . (8)

We shall prove the following closure theorems for the class σp(λ ,α).

THEOREM 4.1. Let the function defined by (8) be in the class σp(λ ,α) for
every k = 1,2,3, · · · . Then the function f (z) defined by

f (z) =
1
z
+

∞

∑
n=1

anzn, (an ≥ 0)
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belongs to the class σp(λ ,α), where an =
1
m

m

∑
n=1

an,k (n = 1,2, · · ·).

PROOF. Since Fk(z) ∈ σp(λ ,α), it follows from Theorem 2.1 that,
∞

∑
n=1

nk[n+α−αλ (1+n)]an,k ≤ 1−α, for all k = 1,2, · · · ,m. (9)

Hence
∞

∑
n=1

nk[n+α−αλ (1+n)]an

=
∞

∑
n=1

nk[n+α−αλ (1+n)]
( 1

m

m

∑
k=1

an,k

)
=

1
m

m

∑
n=1

(
∞

∑
n=1

nk[n+α−αλ (1+n)]an,k

)
≤ 1−α.

By Theorem 2.1, we have f (z) ∈ σp(λ ,α).

THEOREM 4.2. The class σp(α,λ ) is closed under convex linear combination.

PROOF. Let the function Fk(z) given by (8) be in the class σp(α,λ ). Then it is
enough to show that the function

H(z) = λF1(z)+(1−λ )F2(z), (0≤ λ ≤ 1)

is also in the class σp(α,λ ). Since for (0≤ λ ≤ 1),

H(z) =
1
z
+

∞

∑
n=1

[λan,1 +(1−λ )an,2]zn.

We observe that
∞

∑
n=1

{nk[n+α−αλ (1+n)]}[λan,1 +(1−λ )an,2]

= λ

∞

∑
n=1

{nk[n+α−αλ (1+n)]}an,1 +(1−λ )
∞

∑
n=1

{nk[n+α−αλ (1+n)]}an,2

≤ 1−α.

By Theorem 2.1, we have H(z) ∈ σp(α,λ ).

THEOREM 4.3. Let F0(z) = 1 and

Fn(z) =
1
z
+

∞

∑
n=1

1−α

nk[n+α−αλ (1+n)]
zn, f or n = 1,2, · · · .
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Then f (z) ∈ σp(α,λ ) if and only if f (z) can be expressed in the form
f (z) =

∞

∑
n=0

λnFn(z), where λn ≥ 0 and
∞

∑
n=0

λn = 1.

PROOF. Let

f (z) =
∞

∑
n=0

λnFn(z)

=
1
z
+

∞

∑
n=1

λn(1−α)

nk[n+α−αλ (1+n)]
zn.

Then
∞

∑
n=1

λn(1−α)

nk[n+α−αλ (1+n)]
nk[n+α−αλ (1+n)]

(1−α)

=
∞

∑
n=1

λn = 1−λ0 ≤ 1.

By Theorem 2.1, we have H(z) ∈ σp(α,λ ).

Conversely, let f (z) ∈ σp(α,λ ). From Theorem 2.1, we have

an ≤
1−α

nk[n+α−αλ (1+n)]
f or n = 1,2, · · · .

We may take λn =
nk [n+α−αλ (1+n)]

1−α
an f or n = 1,2, · · · and λ0 = 1−

∞

∑
n=1

λn.

Then f (z) =
∞

∑
n=0

λnFn(z).

5. RADIUS OF MEROMORPHIC STARLIKENESS AND MEROMORPHIC
CONVEXITY

THEOREM 5.1. Let the function f be in the class σp(α,λ ). Then f is
meromorphically starlike of order ρ (0≤ ρ < 1) in |z|< r1(α,λ ,ρ), where

r1(α,λ ,ρ) = inf
n≥1

[ (1−ρ)(1−α)

nk(n+2−ρ)[n+α−αλ (1+n)]

] 1
n+1

. (10)

PROOF. Let f (z) is in σp(α,λ ). Then by Theorem 2.1, we have

nk[n+α−αλ (1+n)] an ≤ (1−α). (11)

It is sufficient to show that ∣∣∣∣1+ z f ′(z)
f (z

∣∣∣∣≤ 1−ρ. (12)
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Or equivalently

∣∣∣∣1+ z f ′(z)
f (z)

∣∣∣∣=
∣∣∣∣∣

∞

∑
n=1

(n+1)anzn

1
z −

∞

∑
n=1

anzn

∣∣∣∣∣≤ 1−ρ.

or
∞

∑
n=1

(n+2−ρ)

1−ρ
an|z|n+1 ≤ 1, for 0≤ ρ < 1 and |z|< r1(α,λ ,ρ).

By theorem 2.1, (12) will be true if(n+2−ρ

1−ρ

)
|z|n+1 ≤ 1−α

nk[n+α−αλ (1+n)]

or if

|z| ≤
[ 1−α

(n+2−ρ){nk[n+α−αλ (1+n)]}

] 1
n+1

, n≥ 1.

This completes the proof of Theorem.

THEOREM 5.2. Let the function f (z) be in the class σp(α,λ ). Then f is
meromorphically convex of order ρ(0≤ ρ < 1) in |z|< r2(α,λ ,ρ), where

r2(α,λ ,ρ) = inf
n≥1

[ (1−ρ){nk[n+α−αλ (n+1)]}
n(n+2−ρ)(1−α)

] 1
n+1

, n≥ 1. (13)

PROOF. Let f (z) be in σρ(α,λ ). Then by Theorem 2.1, we have
∞

∑
n=1

nk[n+α−αλ (1+n)] an ≤ (1−α). (14)

It is sufficient to show that ∣∣∣∣2+ z f ′′(z)
f ′(z

∣∣∣∣≤ 1−δ .

for |z| < r2 = r2(α,λ ,ρ), where r2(α,λ ,ρ) is specified in the statement of the
Theorem. Then

∣∣∣∣2+ z f ′′(z)
f ′(z)

∣∣∣∣=
∣∣∣∣∣∣∣

∞

∑
n=1

n(n+1)anzn−1

−1
z2 +

∞

∑
n=1

nanzn−1

∣∣∣∣∣∣∣≤
∞

∑
n=1

n(n+1)an|z|n+1

1−
∞

∑
n=1

nan|z|n+1
.

This will be bounded by (1−ρ) if
∞

∑
n=1

n(n+2−δ )

1−δ
an|z|n+1 ≤ 1, (15)
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By (14), it follows that (15) is true if

n(n+2−ρ)

1−ρ
|z|n+1 ≤ nk[n+α−αλ (1+n)]

1−α
, n≥ 1

or

|z| ≤
[ (1−ρ){nk[n+α−αλ (1+n)]}

n(n+2−ρ)(1−α)

] 1
n+1

, n≥ 1. (16)

This completes the proof of Theorem.

6. INTEGRAL OPERATORS

In this section, we consider integral transform of functions in the class σp(α,λ ).

THEOREM 6.1. Let the function f (z) given by (1) be in σp(α,λ ). Then the
integral operator

F(z) = c
1∫

0

uc f (uz)du (0≤ u≤ 1,0 < c < ∞)

is in σp(δ ,λ ), where

δ =
(c+2)(1+α−2αλ )− c(1−α)

c(1−α)(1−2λ )+(1+α)(1−2λ )(c+2)
.

The result is sharp for the function

f (z) =
1
z
+

1−α

(1+α−2αλ )
z.

PROOF. Let f (z) ∈ σp(α,λ ). Then

F(z) = c
1∫

0

uc f (uz)du

=
1
z
+

∞

∑
n=1

c
c+n+1

anzn.

It is sufficient to show that
∞

∑
n=1

c{nk[n+δ −δλ (1+n)]}
(c+n+1)(1−δ )

an ≤ 1. (17)

Since f ∈ σp(α,λ ), we have
∞

∑
n=1

nk[n+α−αλ (1+n)]
(1−α)

an ≤ 1. (18)
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Note that (17) is satisfied if

c[n+δ −δλ (1+n)]
(c+n+1)(1−δ )

≤ [n+α−αλ (1+n)]
(1−α)

.

Solving for δ , we have

δ ≤ (c+n+1)[n+α−αλ (1+n)]− cn(1−α)

c(1−α)[1−λ (1+n)]+ [n+α−αλ (1+n)](c+n+1)
= G(n).

A simple computation will show that G(n) is increasing and G(n)≥ G(1). Using this,
the result follows.

For the choice of λ = 0, we have the following result of Uralegaddi and Gangi [8].

Remark 6.2. Let the function f (z) defined by (1) be in Σ∗p(α). Then integral
operator

F(z) = c
1∫

0

uc f (uz)du (0 < u≤ 1,0 < c < ∞)

is in Σ∗p(α), where δ = 1+α+cα

1+α+c .

The result is sharp for the function

f (z) =
1
z
+

1−α

1+α
z.

7. NEIGHBOURHOODS FOR THE CLASS Σ
γ

P(α,λ )

In this section, we determine the neighbourhood for the class Σγ

p(α,λ ), which we
define as follows.

Definition 7.1. A function f ∈ Σp is said to be in the class σ γ

p(α,λ ) if there exists
a function g ∈ σ γ

p(α,λ ) such that∣∣∣∣∣ f (z)
g(z)
−1

∣∣∣∣∣< 1− γ, (z ∈ E,0≤ γ < 1). (19)

Following the earlier works on neighbourhoods of analytic functions by Goodman [3]
and Ruscheweyh [7], we define the δ−neighbourhood of function f ∈ Σp by

Nδ ( f ) =
{

g ∈ Σp : g(z) =
1
z
+

∞

∑
n=1

bnzn and
∞

∑
n=1

n|an−bn| ≤ δ

}
. (20)
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THEOREM 7.2. If g ∈ σp(α,λ ) and

γ = 1− δ (1+α−2αλ )

2α−2αλ
(21)

then Nδ (g)⊂ σ γ

p(α,λ ).

PROOF. Let f ∈ Nδ (g). Then we find from (20) that
∞

∑
n=1

n|an−bn| ≤ δ , (22)

which implies the coefficient inequality
∞

∑
n=1

|an−bn| ≥ δ (n ∈ N). (23)

Since g ∈ σp(α,λ ), we have
∞

∑
n=1

bn ≤
1−α

1+α−2αλ
. (24)

So that ∣∣∣∣∣ f (z)
g(z)
−1

∣∣∣∣∣ <
∞

∑
n=1
|an−bn|

1−
∞

∑
n=1

bn

=
δ (1+α−2αλ )

2α−2αλ

= 1− γ

provided γ is given by (21). Hence by definition, f ∈ σ γ

p(α,λ ).
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Abstract 

 
In this paper, we introduce a new generalization of Aradhana distribution called as Weighted Aradhana 

Distribution (WID). The statistical properties of this distribution are derived and the model parameters are 

estimated by maximum likelihood estimation. Simulation study of ML estimates of the parameters is carried 
out in R software.  Finally, an application to real data set is presented to examine the significance of newly 

introduced model. 
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1. INTRODUCTION 

Aradhana distribution is a newly proposed lifetime model formulated by Rama 

Shanker (2016) for several engineering applications and calculated its various 

characteristics including stochastic ordering, moments, order statistics, Renyi entropy, 

Stress-Strength reliability and ML estimation. 

Probability density function (pdf) of Aradhana Distribution (AD) is given by 

xexxf 




 −+

++
= 2

2

3

)1(
22

);( 0,0  x                 (1.1) 

The corresponding cdf of (1.1) is given by 

0,0,
22

)22(
11);(

2










++

++
+−= − 




  xe

xx
xF x             (1.2) 

 

2. WEIGHTED ARADHANA  DISTRIBUTION (WAD) 

Often scientists cannot select sampling units in observational studies with equal 

probability. Well defined sampling frames often do not exist for human, wildlife, 

insect, plant, or fish populations. Recorded observations on individuals in these 
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populations are biased and will not have the original distribution unless every 

observation is given an equal chance of being recorded. Weighted distribution theory 

gives a unified approach for modeling these biased data. The concept of weighted 

distributions can be traced to the study of the effect of methods of ascertainment upon 

estimation of frequencies by Fisher (1934). Rao (1965) pointed out that in many 

situations the recorded observations cannot be considered as a random sample from 

the original distribution due to one or the other reason. Various weighted distributions 

have been discussed in Blumenthal (1963), Patil and Rao (1977,1978), Para and Jan 

(2018), Mahfoud and Patil (1982), Gupta and Kirmani (1990) and Hassan, Wani and 

Para (2018) among others. 

Assume X is a non negative random variable with probability density function 

(pdf) ( ).xf Let ( )xW  be the weight function which is a non negative function, then 

the probability density function of the weighted random variable 
wX is given by: 

( )
( ) ( )

( )( )
0, = x

xwE

xfxW
xfw

, 

 where )(xw  be a non-negative weight function and ( )( ) ( ) ( ) = dxxfxwxwE .  

In this paper, we have considered the weight function as ( ) cxxw =  to obtain the 

weighted Aradhana  model. The probability density of weighted Aradhana distribution 

is given as: 

( )
( )
 c

c

w
xE

xfx
cxf




,
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( )    ,
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where  ( )
)22(

))2)(1()1(2(!
2

2

++

+++++
=




c

c cccc
xE . 

The corresponding cdf of weighted Aradhana Distribution (AID) is obtained as 

=
x

ww dxcxfcxF
0

),;(),;(   
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, put tx = ,  

dtdx = ,  

xtxxandtxas →→→→ ,0,0 , after simplification  
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1

),1((
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22
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cccc

cxFw 









 +++++

+++++
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,0,0,0  cx                                                                                                     (2.2)

                                                                                                                   

                                     

where  and c are positive parameters and ( ) 
−−=

x ts dtetxs
0

1, is a lower incomplete 

gamma function. 

The graphs of probability density function and cumulative distribution function 

are plotted for different values of parameters  and c given in fig.1 and fig. 2 

respectively.  

 

Fig. 1: Probability density function plot of Weighted Aradhana Distribution 
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Fig. 1 gives the description of some of the possible shapes of weighed Aradhana 

distribution for different values of the parameters  andc . It illustrates that the density 

function of weighted Aradhana distribution is positively skewed. For fixed  it 

becomes more and more flatter as the value of c is increased. Fig. 2 shows the graph 

of distribution function which is an increasing function. 

 

3. SPECIAL CASES 

Case 1: If we put 0=c , then weighted Aradhana distribution (2.1) reduces to 

Aradhana distribution with probability density function as:  

xexxf 




 −+

++
= 2

2

3

)1(
32

);( ,0,0  x   

 

Fig.2: CDF plot of weighted Aradhana Distribution 

  

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

c=0.5, θ=0.2
c=1.5, θ=0.2

c=2.3, θ=0.2
c=0.5, θ=0.1

c=0.5, θ=0.3

Fig.2: CDF plot of weighted Aradhana Distribution
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4. RELIABILITY ANALYSIS 

In this section, we have obtained the reliability, hazard rate, reverse hazard rate 

of the proposed weighted Aradhana Distribution. 

 

4.1. Reliability function R(x) 

The reliability function is defined as the probability that a system survives 

beyond a specified time. It is also referred to as survival or survivor function of the 

distribution. It can be computed as complement of the cumulative distribution 

function of the model. The reliability function or the survival function of weighted 

Aradhana distribution is calculated as: 

( ) )),2(
2

),3(
1
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(4.1) 

 The graphical representation of the reliability function for the weighted 

Aradhana distribution is shown in fig. 3. 

 

Fig. 3: Reliability function plot of weighted Aradhana Distribution 
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Fig.3: Reliability function plot of weighted Aradhana Distribution
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4.2. Hazard Function 

The hazard function is also known as hazard rate, instantaneous failure rate or 

force of mortality and is given as: 
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4.3. Reverse Hazard Rate 

The reverse hazard rate of the weighted Aradhana distribution are respectively 

given as:  
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5. STATISTICAL PROPERTIES 

In this section, the different structural properties of the proposed weighted 

Aradhana model have been evaluated. These include moments, harmonic mean, 

moment generating function and characteristic function  

 

5.1. Moments 

Suppose X is a random variable following weighted Aradhana distribution with 

parameter , and then the rth moment for a given probability distribution is given by 
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5.2. Harmonic mean 

The harmonic mean for the proposed model is computed as: 

        ( )


=







=

0

,;
11

. dxcxf
xX

EMH w   

= dx
cccc

exx

x

xcc


 +

+++++

+

0

2

_23

))2)(1()1(2(!

)1(1



 

 

,
)2)1((

))2)(1()1(2(
.

2

2





ccc

cccc
MH

+++

+++++
=

       

,0,0  c  

 

5.3. Moment generating function and Characteristic function of Weighted 

Aradhana Distribution (WAD) 

We will derive moment generating function and characteristic function of WAD 

in this section. 

THEOREM 1.1. If X has the WAD ( ),c , then the moment generating function 

)(tM X  
and the characteristic function ( )tX  has the following form 
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respectively. 
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PROOF. We begin with the well known definition of the moment generating 

function given by 
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Also we know that  ( ) ( )itMt XX =      
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6. ORDER STATISTICS  

Let 
( ) ( ) ( ) ( )nXXXX ....,,, 321

 be the ordered statistics of the random sample 

nXXXX ,....,, 321
 drawn from the continuous distribution with cumulative 

distribution function ( )xFX
 and probability density function ( )xf X

, then the 

probability density function of rth order statistics 
( )rX  is given by: 
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Using the equations (2.1) and (2.2), the probability density function of rth order 

statistics of weighted Aradhana distribution is given by: 
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Then, the pdf of first order 
( )1X  weighted Aradhana distribution is given by: 
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and the pdf of nth order 
( )nX weighted Aradhana model is given as: 
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7. METHOD OF MAXIMUM LIKELIHOOD ESTIMATION OF WEIGHTED 
ARADHANA DISTRIBUTION 

This is one of the most useful method for estimating the different parameters of 

the distribution. Let 
nXXXX .....,, 321

be the random sample of size n drawn from 

weighted Aradhana distribution, then the likelihood function of weighted Aradhana 

distribution is given as: 
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The log likelihood function becomes: 
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Differentiating the log-likelihood function with respect to θ and c .This is done 

by partially differentiate (7.1) with respect to θ and c   and equating the result to zero, 

we obtain the following normal equations,  
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(7.3)  

By solving equations (7.2) and (7.3), the maximum likelihood estimators of the 

parameters of the weighted Aradhana distribution are obtained using the numerical 

methods like Newton Raphson method. 

We can compute the maximized unrestricted and restricted log likelihoods to 

construct the likelihood ratio (LR) statistics for testing the significance of weighted 

parameter of the proposed model. For example, we can use LR test to check whether 

the fitted weighted Aradhana  distribution for a given data set is statistically “superior” 

to the fitted Aradhana  distribution. In any case, hypothesis tests of the type 

  : 00  =H versus 
01  :  H  can be performed using LR statistics. In this case, 

the LR statistic for testing H0 versus H1 is ))ˆ()ˆ((2 0 LL −= wherê and
0̂ are the 

MLEs under H1 and H0. The statistic   is asymptotically →nas ( ) distributed as 

2

k
, with k degrees of freedom which is equal to the difference in dimensionality of 

̂ and
0̂ . H0 will be rejected if the LR-test p-value is <0.05 at 95% confidence level. 

 

7.1. Simulation Study of ML estimators of Weighted Aradhana Distribution 

Using R statistical software for simulation study of Maximum Likelihood (ML) 

estimates, we study the performance of ML estimators for different sample sizes 

(n=25, 75, 100, 200, 400). Using inverse CDF technique for data generation from 

WAD, the process was repeated 500 times for calculation of bias, variance and Mean 

Square Error (MSE). For six random parameter combinations of WAD, decreasing 
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trend is being observed in average bias, variance and MSE as we increase the sample 

size (see table 1). Hence, performance of ML estimators is quite well and consistent 

in case of WAD. 

 

Table I:  Average bias, variance and MSE of ML  

estimates of WAD for different sample sizes 

Parameter n c=0.5, 𝜃 =0.3 c=0.9, 𝜃 =0.7 

    Bias Variance MSE Bias Variance MSE 

c 25 0.316084 0.106875 0.206784 0.314656 0.398373 0.497381 

𝜃   0.054112 0.004628 0.007556 0.14309 0.058252 0.078726 

c 75 0.072541 0.04108 0.046343 0.010907 0.063456 0.063575 

𝜃   0.026196 0.002303 0.002989 0.036994 0.017707 0.019076 

c 100 0.082578 0.028625 0.035444 0.051299 0.040644 0.043275 

𝜃   0.029879 0.002561 0.003454 0.047157 0.008902 0.011125 

c 200 0.067269 0.019194 0.023719 0.058119 0.026055 0.029433 

𝜃   0.026875 0.002309 0.003031 0.064354 0.004743 0.008885 

c 400 0.039515 0.013038 0.014599 0.083429 0.020617 0.027578 

𝜃   0.025358 0.002233 0.002876 0.029984 0.00469 0.005589 

Parameter n c=1.2, 𝜃 =0.9 c=1.8, 𝜃 =1.5 

    Bias Variance MSE Bias Variance MSE 

c 25 0.20579 0.293873 0.336222 0.312345 0.295641 0.393201 

𝜃   0.181872 0.111975 0.145052 0.211940 0.181030 0.225949 

c 75 0.17945 0.15103 0.183232 0.203705 0.264116 0.305612 

𝜃   0.112415 0.035996 0.048633 0.161424 0.108448 0.134506 

c 100 0.109011 0.088331 0.100214 0.151620 0.147000 0.169988 

𝜃   0.084267 0.034166 0.041267 0.125316 0.049200 0.064904 

c 200 0.011496 0.020992 0.021125 0.089401 0.077759 0.085752 

𝜃   0.017037 0.014832 0.015123 0.078205 0.044283 0.050398 

c 400 0.001589 0.016442 0.016445 0.082926 0.044597 0.051474 

𝜃   0.019839 0.006001 0.006394 0.047921 0.022859 0.025155 
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Parameter n c=2.5, 𝜃 =1.7 c=2.8, 𝜃 =2.5 

    Bias Variance MSE Bias Variance MSE 

c 25 0.342660 0.567742 0.685158 0.325616 1.161363 1.267389 

𝜃   0.327808 0.383191 0.490649 0.295561 0.544709 0.632065 

c 75 0.131818 0.210193 0.227569 0.425697 0.452776 0.633994 

𝜃   0.092191 0.111219 0.119718 0.328474 0.239748 0.347643 

c 100 -0.028951 0.094912 0.095750 0.286518 0.190818 0.272910 

𝜃   0.058024 0.046838 0.050205 0.259910 0.143187 0.210740 

c 200 -0.023804 0.104879 0.105446 0.137308 0.125422 0.144275 

𝜃   0.003426 0.073616 0.073628 0.101188 0.068870 0.079109 

c 400 0.042858 0.065325 0.067162 0.039300 0.068572 0.070116 

𝜃   0.057663 0.028284 0.031608 0.030030 0.032064 0.032966 

 

 

8. LIKELIHOOD RATIO TEST 

Let  
nxxx ,...,, 21
 be a random sample drawn from Aradhana distribution or 

weighted Aradhana distribution. We test the hypothesis  

),()(:/),()(: 10  xfxfHsvxfxfH w==  

In order to test whether the random sample come from Aradhana distribution or 

weighted Aradhana distribution, we use the following test statistic 
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We reject the null hypothesis if  
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For a large sample of size n, log2 is distributed as chi-squared distribution with 

one degree of freedom. Also we reject the null hypothesis when probability value is 

given by 
=

=
n

i

ixwherep
1

*** ),(   is less than a specified level of significance, 

where 
=

n

i

ix
1

is the observed value of the statistic .*  

9. APPLICATIONS OF WEIGHTED ARADHANA DISTRIBUTIONS 

To illustrate the significance of the suggested model, a real life example is 

presented. The goodness of fit result of the suggested model (Weighted Aradhana 

Distribution) is compared with the base model (Aradhana Distribution). In this case, 

we analyze the strength data, which was originally reported by Badar and Priest (1982) 

and it represents the strength measured in GPA for single carbon fibers and 

impregnated 1000-carbon fiber tows. Single fibers were tested under tension at gauge 

lengths of 10mm with sample sizes n =63. Surles and Padgett (2001) also studied this 

data set. The data is given in table 2. 

 

Table II: Strength data set (gauge lengths of 10 mm). 

1.901 2.132 2.203 2.228 2.257 2.35 2.361 2.396 2.397 2.445 2.454 

2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659 

2.675 2.738 2.74 2.856 2.917 2.928 2.937 2.937 2.977 2.996 3.03 

3.125 3.139 3.145 3.22 3.223 3.235 3.243 3.264 3.272 3.294 3.332 

3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628 3.852 

3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.02       
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By fitting Aradhana distribution and weighted Aradhana distribution to this data 

set, we observed that weighted Aradhana distribution fits statistically well as 

compared to Aradhana distribution. For comparison of the two distributions, we 

consider the criteria like AIC (Akaike information criterion), AICC (corrected Akaike 

information criterion) and BIC (Bayesian information criterion). The better 

distribution corresponds to lesser AIC, AICC and BIC values.   

        AIC = 2k-2logL         AICC = AIC+
1

)1(2

−−

+

kn

kk  and BIC = k logn-2logL 

where k is the number of parameters in the statistical model, n is the sample size and 

-logL is the maximized value of the log-likelihood function under the considered 

model. From Table 3, it has been observed that Weighted Aradhana distribution have 

the lesser AIC, AICC, -logL and BIC values as compared to Aradhana Distribution. 

Hence we can conclude that the Weighted Aradhana distribution leads to a better fit 

than the Aradhana distribution. Also likelihood ratio test reveals that weighted 

parameter c plays statistically significant role for data set given in table 2.  

 

Table III: ML estimates, AIC, AICC, BIC, -logL Criterion and Likelihood Ratio 

Test values for strength data set (gauge lengths of 10 mm). 

Criteria �̂� �̂� -logL AIC AICC BIC 

Likelihood 

Ratio 

Statistic 

Aradhana 

Distribution 

0.766 

(0.05) 

- 

112.075 226.150 226.216 228.293 

110.36 Weighted 

Aradhana 

Distribution 

8.49 

(1.49) 

23.4 

(4.52) 

56.894 117.787 117.987 122.074 
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10. CONCLUSION 

          In the present study, we have introduced a new generalization of the Aradhana 

distribution called as Weighted Aradhana distribution. The subject distribution is 

generated by using the weighting technique and taking the one parameter Aradhana 

distribution as the base distribution. Some mathematical properties along with 

reliability measures are discussed. Model is fitted to real life data for examining its 

significance. 
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Abstract 

 
This paper introduces a stochastic approach to case numbers of a pandemic disease. By defining the 

stochastic process random walk process is used. Some stochastic aspects for this disease are argued before 
stochastic study is started. During random walk process modeling new patients, recovering patients and 

dead conclusions are modelled and probabilities changes in some stages. Let the structure of this study 

includes vanishing process as a walk step, some wave happenings like big differences about spread speed 
as a big step in treatment- an effective vaccine or an influential chemical usage- a second corona virus 

pumping with virus mutation, a second global happening which bumping virus spread are defined as stages. 

This study only simulates a stochastic process of corona virus effects.  

 
Mathematics Subject Classification: 60J74 

Keywords: Random walk; vanishing probability; stochastic process; stationary probability; Markov chain. 
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1. INTRODUCTION 

In industrial engineering, studying in reliability and stochastic processes of 

systems is very popular. In many situations this issue has vital importance. Besides 

there are many studies with random walks and many of them include independent 

increases. In a study a new class is determined by phase type distribution and in [1] 

bivariate geometric distribution was chosen as a discrete phase type.  

Let 𝑋1, 𝑋2, . . . , 𝑋𝑁 be a sequence of independent and identically distributed (iid) 

random variables independent of the discrete random variable 𝑁. Commonly, the 

main issue is to determine the distribution of the compound random variable 

𝑆(𝑋1, 𝑋2, . . . , 𝑋𝑁) for popular choices of S, to illustrate 𝑆(𝑥1, 𝑥2, . . . , 𝑥𝑁) = ∑ 𝑥𝑖
𝑛
𝑖=1 , 

𝑆(𝑥1, 𝑥2, . . . , 𝑥𝑁) = 𝑚𝑖𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑁),, 𝑆(𝑥1, 𝑥2, . . . , 𝑥𝑁) = 𝑚𝑖𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑁). 

Some studies in this area are in [2]-[5] . 

The discrete phase type distributions are quite rich in modeling waiting time 

distributions like geometric, negative binomial, and bivariate geometric distribution. 
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In a Markov process a definition for discrete phase type distribution can be defined 

with 𝑑 transient states and an absorbing state may be defined as ”0”.  

In [6] extreme shock models in phase type was studied and by this optimal 

component changes determined. At first rules in shock models assumed and later 

optimization calculated with phase type distribution.  

In [7], multivariate Poisson process combined with Markov process by usability 

of phase type in shock models. 

In this study a stochastic approach is introduced and the process of this system 

is studied. This random walk system includes vanishing process for dead and 

recovered patients, new patients and the probabilities in probability transition are 

changing with some stages that define big differences about spread speed as a big step 

in treatment- an effective vaccine or an influential chemical usage- a second corona 

virus wave with virus mutation and a second global happening which bumps virus 

spread.  

 

2. MATERIAL AND METHODS 

2.1. Multivariate geometric distribution 

The univariate geometric distribution is famous to be the sole discrete 

distribution which has memoryless property. Multivariate geometric distribution has 

been studied in many articles [8]-[12]. Especially in shock models this memoryless 

specialty is studied commonly.  

Every multivariate extension in geometric distribution have the same 

memoryless specialty and there can be widespread seen on studies about Marshall–

Olkin multivariate exponential distribution via multivariate geometric compounding 

of exponentially distributed random variables.  

Bivariate geometric distribution was examined in a study and the formulation is 

as follow [13]. 

𝑃𝑟(𝑁 = 𝑛, 𝑀 = 𝑚) = ∑ ∑(𝑚+𝑛
𝑛

)𝑝1
𝑛𝑝2

𝑚𝑝0            𝑝0 +  𝑝1 + 𝑝2 =  1   n, m= 0,1,2,… 

𝑝0 : probability of no adding,  

𝑝1 : probability of adding to upper part, 
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𝑝2 : probability of adding to lower part. 

To decide the number of new components in system marginal distribution 

functions are needed. We reach marginal distributions as follow.  

𝑃𝑟(𝑁 = 𝑛) = ∑
(𝑚 + 𝑛)!

𝑚! 𝑛!
𝑝1

𝑛𝑝2
𝑚𝑝0 =

𝑝1
𝑛𝑝0

(1 − 𝑝2)𝑛+1
∑

(𝑚 + 𝑛)!

𝑚! 𝑛!
𝑝2

𝑚(1 − 𝑝2)𝑛+1

∞

𝑚=0

∞

𝑚=0

 

With using negative binomial distribution the sum is 1. So the first marginal 

distribution is in equation (1).  

𝑃𝑟(𝑁 = 𝑛) =
𝑝1

𝑛𝑝0

(1 − 𝑝2)𝑛+1
                                         (1)    

Geometric distribution with success rate 
𝑝0

𝑝0+𝑝1
 is gained. Second marginal 

distribution can be obtained with the same way in equation (2).  

𝑃𝑟(𝑀 = 𝑚) =
𝑝2

𝑚𝑝0

(1 − 𝑝1)𝑚+1
                                         (2)   

Therefore geometric distribution with 
𝑝0

𝑝0+𝑝2
 success rate is gained.  

In [14] applications of reliabilities in bivariate geometric distribution was 

assessed and gained characteristics of this valuable distribution.  

In that study moment generating function and characteristics obtained as below. 

                               𝐸(𝑒𝑡1𝑛+𝑡2𝑚) = ∑ ∑ 𝑒𝑡1𝑛+𝑡2𝑚 (
𝑚 + 𝑛

𝑛
) (𝑝1)𝑛(𝑝2)𝑚𝑝3

∞

𝑚=1

∞

𝑛=1

 

           =
𝑝3

1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2
∑ ∑ (

𝑚 + 𝑛

𝑛
) (𝑒𝑡1𝑝1)𝑛(𝑒𝑡2𝑝2)𝑚(1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2)

∞

𝑚=1

∞

𝑛=1

 

                                                      =
𝑝3

1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2
 

                  𝐸(𝑁) =
𝑑

𝑑𝑡1

(
𝑝3

1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2
)|

𝑡1=0,𝑡2=0

=
𝑝3𝑝1

(1 − 𝑝1 − 𝑝2)2
=

𝑝1

𝑝3

 

                                                             𝐸(𝑀) =
𝑝2

𝑝3

 

                                 𝐸(𝑁𝑀) =
𝑑2

𝑑𝑡1𝑑𝑡2

(
𝑝3

1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2
)|

𝑡1=0,𝑡2=0

=
2𝑝1𝑝3

𝑝3
2

 

                      𝐸(𝑁2) =
𝑑2

𝑑𝑡1
2 (

𝑝3

1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2
)|

𝑡1=0,𝑡2=0

=
𝑝1

𝑝3

(1 +
2𝑝1

𝑝3

) 
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                     𝐸(𝑀2) =
𝑑2

𝑑𝑡2
2 (

𝑝3

1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2
)|

𝑡1=0,𝑡2=0

=
𝑝2

𝑝3

(1 +
2𝑝2

𝑝3

) 

 

2.2. Markov chain 

When the next position of a system rely solely on its current position and not on 

its prior positions, the system mostly be assumed to be a Markovian process. A kind 

of this model is suggested in [15]. In that process, Markov model was used for 

describing deterioration.  

We pay attention to Markov process by defining a finite state space with either 

a discrete or continuous time parameter [16]. In literature there have been many 

studies  in which a more general process called a "semi-Markov process" was 

discussed. This process includes discrete time parameter Markov chain. Some 

processes in semi-Markov process may be used to describe some classes of systems 

related to inspection, replacement, and repair. 

When we try to find a definite form of steps with using bivariate geometric 

transition probabilities; 

𝑃𝑖𝑗
𝑛 = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) 

We may assume transition probabilities are independent. 

When the comings are independent, then there are two different marginal 

geometric distributions which are available for comings. Their probability values are 

𝑝0

𝑝0+𝑝1
 and 

𝑝0

𝑝0+𝑝2
 . 

When the arrivals are dependent, then first marginal distribution is geometric 

distribution with probability value  
𝑝0

𝑝0+𝑝1
 and the other marginal distribution is  

negative binomial distribution with unsuccessful try number 𝑚, success number is 𝑛. 
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2.3. Vanishing process 

Assume that the time till vanishing of a Markov sequence which has finite state 

space is shown with random variable 𝑇. 

Random variable 𝑇 has a discrete phase type distribution and probability 

function is as below, 

𝑃(𝑇 = 𝑛) = 𝑎𝑄𝑛−1𝑡′ 

𝑄 is a matrix which includes transition probabilities between transition states, 

𝑡 is a vector which includes transition probabilities between transition states to 

vanishing state  

𝑎 is a sub vector of starting probabilities. 

 

Example (Geometric Distribution) 

Describing trial numbers till first success. 𝑋𝑛 shows the value in 𝑛𝑡ℎ try. So 𝑋𝑛 ∈

{0,1}, 1 is vanishing state. The probability transition matrix is as follows, 

𝑝 =
0
1

0 1

‖
1 − 𝑝 𝑝

0 1
‖

 

𝑄 = 1 − 𝑝, 𝑡′ = 𝑝, 𝑎 = 1 

𝑃(𝑇 = 𝑛) = (1 − 𝑝)𝑛−1𝑝 

Thus we may say discrete phase type distributions is a generalized version of 

geometric distribution. 

 

2.4. Random walk process 

Assume {𝑌𝑛 , 𝑛 = 1,2, … } is a sequence of random variables with d-dimensional 

and it is independently identical distributed. 𝑋0 is a constant vector in ℝ𝑑. 

{𝑋𝑛 , 𝑛 = 1,2, … } process which is defined with 𝑋𝑛 = 𝑋0 + 𝑌1 + ⋯ + 𝑌𝑛, 𝑛 = 1,2, … 

is called  

d-dimensional random walk. If 𝑋0 and 𝑌𝑛 valued in ℤ𝑑 space than {𝑋𝑛, 𝑛 = 1,2, … } 

process is called d-dimensional cage random walk. In cage random walk when 𝜀𝑘 =

−1 or 1, 𝑘 = 1.2 … . , 𝑑 and 𝑌𝑛 jumps only from 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑) to 𝑦 =

(𝑥1 + 𝜀1, 𝑥2 + 𝜀2, … , 𝑥𝑑 + 𝜀𝑑) than this is called simple random walk. 
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For a simple random walk for any given jump each jumps from 2𝑑 moves 

happens with probability 𝑝 =
1

2𝑑
 thereby this process is called symmetrical random 

walk process. 

In all these situations when  𝑌𝑛 jumps are only independent but not with identical 

distribution than {𝑋𝑛, 𝑛 = 1,2, … } process is called non-homogenous random walk. 

𝑋1 = 𝑋0 + 𝑌1 

𝑋2 = 𝑋1 + 𝑌2 

. 

. 

. 

𝑋𝑛 = 𝑋𝑛−1 + 𝑌𝑛 , 𝑛 = 1,2, … 

Thus a random walk is independently incremental and stationary incremental. 

 

3. RESULTS AND DISCUSSIONS 

The structure of our approach includes two different options which are 

increasing and vanishing processes. When the next step goes to increasing the number 

of patients increases with new additions, on the other hand when the next step goes to 

vanishing process the number of patients decreases with dead or recover. Our 

approach assumes some steps which define the rules of this complex structure.  

- The process starts after 100000 patients determined. 

- The increasing probability in transition is 𝑝, and vanishing probability in 

transition is 𝑞. 

- 𝑋𝑛 shows the conclusion of corona disease after 𝑛 step. 

- In the first 15 days we assume 𝑝 = 3𝑞. 

- In the second 15 days we assume 𝑝 = 𝑞. Because some precautions may take 

into account. 

- In the third 15 days with more strict precautions 𝑝 =
1

3
𝑞.  

- In the fourth 15 days people may be pay less attention to disease 𝑝 = 𝑞. 

- After 60 days we assume the probabilities as 𝑝 =
1

3
𝑞 till the disease is over. 
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- 𝑝0 represents no change in both ways - increasing patient number and 

vanishing patients. 𝑝0 = 0.001 in every step. 

- When no change in both ways occurs, the system halts. 

- When a walk goes to increases jump it adds %5 of patient number in the 

starting point of step adding to the patient number and when a walk goes to decreases 

jump it goes %5 of patient number in the starting point to reduce down with recover 

or dead patients. 

 

4. APPLICATION 

In every step there are formed many equations that they create path of the 

process. Some examples are as follows; 

𝑃(𝑋2 = 0, 𝑋4 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋4 − 𝑋2 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋2 = 0) 

𝑃(𝑋4 = 2, 𝑋10 = 6) = 𝑃(𝑋4 = 2)𝑃(𝑋10 − 𝑋4 = 4) = 𝑃(𝑋4 = 2)𝑃(𝑋6 = 4) 

𝑃(𝑋4 = 2, 𝑋10 = 6, 𝑋14 = 8) = 𝑃(𝑋4 = 2)𝑃(𝑋10 − 𝑋4 = 4)𝑃(𝑋14 − 𝑋10 = 2) 

= 𝑃(𝑋4 = 2)𝑃(𝑋6 = 4)𝑃(𝑋4 = 2) 

 

Expectation numbers of increases and decreases in the path of the first step process 

may be find as below; 

𝐸(𝑁) =
𝑑

𝑑𝑡1

(
𝑝3

1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2
)|

𝑡1=0,𝑡2=0

=
𝑝3𝑝1

(1 − 𝑝1 − 𝑝2)2
=

𝑝1

𝑝3

 

After gaining this expectation we consider that whether this walk does not stop 

in 15 step, we expect that this walk includes 𝐸(𝑁) increases and we will find the other 

expectation for decreases with 

𝐸(𝑀) =
𝑑

𝑑𝑡2

(
𝑝3

1 − 𝑝1𝑒𝑡1 − 𝑝2𝑒𝑡2
)|

𝑡1=0,𝑡2=0

=
𝑝3𝑝2

(1 − 𝑝1 − 𝑝2)2
=

𝑝2

𝑝3

 

And we portion the expectations for gaining 15 step expectations. 

𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 = 15
𝐸(𝑁)

𝐸(𝑀) + 𝐸(𝑁)
 

𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 = 15
𝐸(𝑀)

𝐸(𝑀) + 𝐸(𝑁)
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Every jump position in random walk only relates to previous one not the others 

so every jump has basic Markov process specialty. Some of the transition probability 

matrices of the first step of this system are as below. These matrices tell us the jumps’ 

position probability from the beginning. 

𝑃 = [
1 0 0

0.001 0.74925 0.24975
0.001 0.74925 0.24975

] 

𝑃2 = [
1 0 0

0.002 0.7485 0.2495
0.002 0.7485 0.2495

] 

𝑃3 = [
1 0 0

0.004 0.747 0.249
0.004 0.747 0.249

] 

 

There may be many different paths of the same position in the same step. So 

each path must be included in the calculation of the expectation.  

𝐸(𝑋𝑛) = ∑ 𝑃(𝑋𝑖 = 𝑥𝑖)

𝑛

𝑖=1

𝑥𝑖 

To illustrate, a graph of a path is in figure 1. 

 

 

Fig. 1. One path of step 1 
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Step 1  

Some of probability transition matrices are as below; 

𝑃 = [
1 0 0

0.001 0.74925 0.24975
0.001 0.74925 0.24975

] 

𝑃2 = [
1 0 0

0.002 0.7485 0.2495
0.002 0.7485 0.2495

] 

𝑃3 = [
1 0 0

0.004 0.747 0.249
0.004 0.747 0.249

] 

Some of paths and probability calculations are as follow; 

𝑃(𝑋2 = 0, 𝑋4 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋4 − 𝑋2 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋2 = 0) 

= 𝑃(𝑋2 = 0)2 =  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1)𝑃(𝑋1 = 1) + 𝑃(𝑋1 = 1)𝑃(𝑋1 = −1))
2
 

=  (0.74925 ∗ 0.24975 + 0.24975 ∗ 0.74925)2 = 0.14 

 

𝑃(𝑋4 = 2, 𝑋10 = 6) = 𝑃(𝑋4 = 2)𝑃(𝑋10 − 𝑋4 = 4) = 𝑃(𝑋4 = 2)𝑃(𝑋6 = 4) 

=  4𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)36𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)5 = 0.42 ∗ 0.3538 = 0.1486 

The probabilities of each situation with including every path is in Table 1. 

𝐸(𝑋𝑛) = ∑ 𝑃(𝑋𝑖 = 𝑥𝑖)

𝑛

𝑖=1

𝑥𝑖 

𝐸(𝑋15) = 𝑃(𝑋1 = 1)15𝑃(𝑋1 = −1)0 ∗ (100000 ∗ (1 + 15 ∗ 0.05 − 0 ∗ 0.005)) 

+𝑃(𝑋1 = 1)14𝑃(𝑋1 = −1)1 ∗ (100000 ∗ (1 + 14 ∗ 0.05 − 1 ∗ 0.005)) 

. 

. 

. 

+𝑃(𝑋1 = 1)0𝑃(𝑋1 = −1)15 ∗ (100000 ∗ (1 + 0 ∗ 0.05 − 15 ∗ 0.005)) 

= 135451 
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Step 2  

Some of probability transition matrices in the second 15 days are as below; 

𝑃 = [
1 0 0

0.001 0.4995 0.4995
0.001 0.4995 0.4995

] 

𝑃2 = [
1 0 0

0.002 0.499 0.499
0.002 0.499 0.499

] 

𝑃3 = [
1 0 0

0.004 0.498 0.498
0.004 0.498 0.498

] 

Some of paths and probability calculations are as follow; 

𝑃(𝑋2 = 0, 𝑋4 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋4 − 𝑋2 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋2 = 0) 

= 𝑃(𝑋2 = 0)2 =  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1)𝑃(𝑋1 = 1) + 𝑃(𝑋1 = 1)𝑃(𝑋1 = −1))
2
 

=  (0.4995 ∗ 0.4995 + 0.4995 ∗ 0.4995)2 = 0.249 

 

𝑃(𝑋4 = 2, 𝑋10 = 6) = 𝑃(𝑋4 = 2)𝑃(𝑋10 − 𝑋4 = 4) = 𝑃(𝑋4 = 2)𝑃(𝑋6 = 4) 

=  4𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)36𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)5 = 0.249 ∗ 0.0931

= 0.3421 

The probabilities of each situation with including every path is in Table 1. 

𝐸(𝑋𝑛) = ∑ 𝑃(𝑋𝑖 = 𝑥𝑖)

𝑛

𝑖=1

𝑥𝑖 

𝐸(𝑋15) = 𝑃(𝑋1 = 1)15𝑃(𝑋1 = −1)0 ∗ (135451 ∗ (1 + 15 ∗ 0.05 − 0 ∗ 0.005)) 

+𝑃(𝑋1 = 1)14𝑃(𝑋1 = −1)1 ∗ (135451 ∗ (1 + 14 ∗ 0.05 − 1 ∗ 0.005)) 

. 

. 

. 

+𝑃(𝑋1 = 1)0𝑃(𝑋1 = −1)15 ∗ (135451 ∗ (1 + 0 ∗ 0.05 − 15 ∗ 0.005)) 

= 133433 
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Step 3 

Some of probability transition matrices are as below; 

𝑃 = [
1 0 0

0.001 0.24975 0.74925
0.001 0.24975 0.74925

] 

𝑃2 = [
1 0 0

0.002 0.2495 0.7485
0.002 0.2495 0.7485

] 

𝑃3 = [
1 0 0

0.004 0.249 0.747
0.004 0.249 0.747

] 

Some of paths and probability calculations are as follow; 

𝑃(𝑋2 = 0, 𝑋4 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋4 − 𝑋2 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋2 = 0) 

= 𝑃(𝑋2 = 0)2 =  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1)𝑃(𝑋1 = 1) + 𝑃(𝑋1 = 1)𝑃(𝑋1 = −1))
2
 

=  (0.74925 ∗ 0.24975 + 0.24975 ∗ 0.74925)2 = 0.14 

 

𝑃(𝑋4 = 2, 𝑋10 = 6) = 𝑃(𝑋4 = 2)𝑃(𝑋10 − 𝑋4 = 4) = 𝑃(𝑋4 = 2)𝑃(𝑋6 = 4) 

=  4𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)36𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)5 = 0.0155 ∗ 0.0043

= 0.0198 

The probabilities of each situation with including every path is in Table 1. 

𝐸(𝑋𝑛) = ∑ 𝑃(𝑋𝑖 = 𝑥𝑖)

𝑛

𝑖=1

𝑥𝑖 

𝐸(𝑋15) = 𝑃(𝑋1 = 1)15𝑃(𝑋1 = −1)0 ∗ (133433 ∗ (1 + 15 ∗ 0.05 − 0 ∗ 0.005)) 

+𝑃(𝑋1 = 1)14𝑃(𝑋1 = −1)1 ∗ (133433 ∗ (1 + 14 ∗ 0.05 − 1 ∗ 0.005)) 

. 

. 

. 

+𝑃(𝑋1 = 1)0𝑃(𝑋1 = −1)15 ∗ (133433 ∗ (1 + 0 ∗ 0.05 − 15 ∗ 0.005)) 

= 82153 
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Step 4 

Some of probability transition matrices in the fourth 15 days are as below; 

𝑃 = [
1 0 0

0.001 0.4995 0.4995
0.001 0.4995 0.4995

] 

𝑃2 = [
1 0 0

0.002 0.499 0.499
0.002 0.499 0.499

] 

𝑃3 = [
1 0 0

0.004 0.498 0.498
0.004 0.498 0.498

] 

Some of paths and probability calculations are as follow; 

𝑃(𝑋2 = 0, 𝑋4 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋4 − 𝑋2 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋2 = 0) 

= 𝑃(𝑋2 = 0)2 =  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1)𝑃(𝑋1 = 1) + 𝑃(𝑋1 = 1)𝑃(𝑋1 = −1))
2
 

=  (0.4995 ∗ 0.4995 + 0.4995 ∗ 0.4995)2 = 0.249 

 

𝑃(𝑋4 = 2, 𝑋10 = 6) = 𝑃(𝑋4 = 2)𝑃(𝑋10 − 𝑋4 = 4) = 𝑃(𝑋4 = 2)𝑃(𝑋6 = 4) 

=  4𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)36𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)5 = 0.249 ∗ 0.0931

= 0.3421 

The probabilities of each situations with including every path is in Table 1. 

𝐸(𝑋𝑛) = ∑ 𝑃(𝑋𝑖 = 𝑥𝑖)

𝑛

𝑖=1

𝑥𝑖 

𝐸(𝑋15) = 𝑃(𝑋1 = 1)15𝑃(𝑋1 = −1)0 ∗ (82153 ∗ (1 + 15 ∗ 0.05 − 0 ∗ 0.005)) 

+𝑃(𝑋1 = 1)14𝑃(𝑋1 = −1)1 ∗ (82153 ∗ (1 + 14 ∗ 0.05 − 1 ∗ 0.005)) 

. 

. 

. 

+𝑃(𝑋1 = 1)0𝑃(𝑋1 = −1)15 ∗ (82153 ∗ (1 + 0 ∗ 0.05 − 15 ∗ 0.005)) 

= 80929 
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Step 5 

Some of probability transition matrices are as below; 

𝑃 = [
1 0 0

0.001 0.24975 0.74925
0.001 0.24975 0.74925

] 

𝑃2 = [
1 0 0

0.002 0.2495 0.7485
0.002 0.2495 0.7485

] 

𝑃3 = [
1 0 0

0.004 0.249 0.747
0.004 0.249 0.747

] 

Some of paths and probability calculations are as follow; 

𝑃(𝑋2 = 0, 𝑋4 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋4 − 𝑋2 = 0) = 𝑃(𝑋2 = 0)𝑃(𝑋2 = 0) 

= 𝑃(𝑋2 = 0)2 =  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1), 𝑃(𝑋2 = 0) + 𝑃(𝑋1 = 1), 𝑃(𝑋2 = 0))
2
 

=  (𝑃(𝑋1 = −1)𝑃(𝑋1 = 1) + 𝑃(𝑋1 = 1)𝑃(𝑋1 = −1))
2
 

=  (0.74925 ∗ 0.24975 + 0.24975 ∗ 0.74925)2 = 0.14 

 

𝑃(𝑋4 = 2, 𝑋10 = 6) = 𝑃(𝑋4 = 2)𝑃(𝑋10 − 𝑋4 = 4) = 𝑃(𝑋4 = 2)𝑃(𝑋6 = 4) 

=  4𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)36𝑃(𝑋1 = −1)𝑃(𝑋1 = 1)5 = 0.0155 ∗ 0.0043

= 0.0198 

The probabilities of each situation with including every path is in Table 1. 

𝐸(𝑋𝑛) = ∑ 𝑃(𝑋𝑖 = 𝑥𝑖)

𝑛

𝑖=1

𝑥𝑖 

𝐸(𝑋15) = 𝑃(𝑋1 = 1)15𝑃(𝑋1 = −1)0 ∗ (80929 ∗ (1 + 15 ∗ 0.05 − 0 ∗ 0.005)) 

+𝑃(𝑋1 = 1)14𝑃(𝑋1 = −1)1 ∗ (80929 ∗ (1 + 14 ∗ 0.05 − 1 ∗ 0.005)) 

. 

. 

. 

+𝑃(𝑋1 = 1)0𝑃(𝑋1 = −1)15 ∗ (80929 ∗ (1 + 0 ∗ 0.05 − 15 ∗ 0.005)) 

= 49827 
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But in this step we try to predict the conclusion of this pandemic disease. When we 

continue with the same transition probabilities, we reach a conclusion that this 

pandemic disease starts to decrease sharply after 23 days in step 5. After 25 days the 

expectation is 29598, after 32 days the expectation is 15675. According to expectation 

of this stochastic process this pandemic is totally wipe out after 36 days.  

 

5. CONCLUSION 

Related with corona virus we introduce a stochastic approach to this disease. At 

first we defined the rules of this pandemics’ spread. Later we make a study to 

recognize the spread of this disease step by step. In the end we try to define the 

approximate time of vanishing for pandemic according to rules of our stochastic 

process. And according to stochastic process for this system, we conclude that 

obeying rules is very important to strict spreading of this pandemic. We conclude that 

if reliable data sets use in the process for defining probabilities in transition matrices, 

more exact and reliable conclusions will be reached. 
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APPENDIX 

 

number of 

increase 

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 

0 0,013164 3,01E-05 9,17E-10 3,01E-05 9,17E-10 

1 0,065822 0,000451 4,13E-08 0,000451 4,13E-08 

2 0,153585 0,003157 8,67E-07 0,003157 8,67E-07 

3 0,221845 0,013679 1,13E-05 0,013679 1,13E-05 

4 0,221845 0,041036 0,000101 0,041036 0,000101 

5 0,162686 0,090279 0,000669 0,090279 0,000669 

6 0,090381 0,150465 0,003347 0,150465 0,003347 

7 0,038735 0,193455 0,012912 0,193455 0,012912 

8 0,012912 0,193455 0,038735 0,193455 0,038735 

9 0,003347 0,150465 0,090381 0,150465 0,090381 

10 0,000669 0,090279 0,162686 0,090279 0,162686 

11 0,000101 0,041036 0,221845 0,041036 0,221845 

12 1,13E-05 0,013679 0,221845 0,013679 0,221845 

13 8,67E-07 0,003157 0,153585 0,003157 0,153585 

14 4,13E-08 0,000451 0,065822 0,000451 0,065822 

15 9,17E-10 3,01E-05 0,013164 3,01E-05 0,013164 

 

Fig. 2. Probabilities of situations included path combinations. 
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Exponentiated quasi power Lindley power 
series distribution with applications in medical 

science 
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Abstract 

 
The present paper introduces an advanced five parameter lifetime model which is obtained by compounding 
exponentiated quasi power Lindley distribution with power series family of distributions. The EQPLPS 

family of distributions contains several lifetime sub-classes such as quasi power Lindley power series, 

power Lindley power series, quasi Lindley power series and Lindley power series. The proposed 
distribution exhibits decreasing, increasing and bathtub shaped hazard rate functions depending on its 

parameters. It is more flexible as it can generate new lifetime distributions as well as some existing 

distributions. Various statistical properties including closed form expressions for density function, 
cumulative function, limiting behaviour, moment generating function and moments of order statistics are 

brought forefront. The capability of the quantile measures in terms of Lambert W function is also discussed. 

Ultimately, the potentiality and the flexibility of the new class of distributions has been demonstrated by 
taking three real life data sets by comparing its sub-models. 

 
Mathematics Subject Classification 2010: 62E15, 60E05. 

Keywords: Exponentiated Quasi Power Lindley distribution, Lambert W function, order statistics, MLE.  

____________________________________________________________________ 

 

 

1. INTRODUCTION 

The modeling of lifetime data has received prominent attention from researchers 

for the last decade. To predict the ambiguous behaviour of random events as death, 

appearance of some disease and system failure is a major concern for statisticians. 

There are diverse lifetime models available for researchers to predict this uncertain 

behaviour but at times due to complex pattern of data sets, these models do not provide 

a suitable fit. In order to prevail from this difficulty, researchers have focussed their 

 
* Correction of the paper Hassan, A., A. Rashid, and N. Akhtar, Exponentiated quasi power 
Lindley power series distribution with applications in medical science. Journal of Applied 
Mathematics, Statistics and Informatics 16 (1), 37-60, 2020.  

DOI: https://doi.org/10.2478/jamsi-2020-0004 
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attention on compounding mechanism which is a sound way to develop an appropriate 

and flexible models to fit the lifetime data of different types. 

Keeping this in mind, Adamidis and Loukas (1998), Kus (2007), Tahmasbi 

(2008) constructed several lifetime distributions through this mechanism that proved 

to be operative in modeling of lifetime data having different features. Researchers 

developed many lifetime distributions by this technique which are very flexible and 

can accommodate different types of data sets. For instance, Chahkandi and Ganjali 

(2009) obtained a compound class of exponential power series distributions. As 

Weibull distribution contains the exponential distribution as a special case, Morais 

and Baretto-Souza (2011) substituted the exponential distribution with a Weibull 

distribution in this mechanism and obtained a compound class of Weibull power series 

distributions which contains EPS distribution as a special case. Adil and Jan (2016) 

introduced a new family of lifetime distributions by compounding a Lindley 

distribution with power series distribution that contains Lindley Geometric as special 

case due to Zakerzadeh and Mahmoudi (2012). Moreover, many authors discussed 

some special cases of the LPS family that are very flexible in terms of density and 

hazard rate functions. Adil and Jan (2018a, 2018b) obtained a lifetime distribution for 

series system and generalized version of complementary Lindley power series family 

of compound lifetime distributions related to parallel system which generalizes most 

of the lifetime distributions and have versatile properties. Arsalan et al. (2019) 

introduced the exponential Burr XII power series.   

   

2. EXPONENTIATED QUASI POWER LINDLEY DISTRIBUTION 

Manuela Ghica et al. (2017) introduced an Exponentiated Quasi Power Lindley 

Distribution (EQPLD) defined by its pdf as 
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This new distribution reduces to the quasi Lindley distribution, the exponential 

distribution and gamma distribution. In terms of reliability, the various shapes of the 

EQPL distribution give it a benefit, being more flexible to model many real systems 
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which generally exhibit bath-tub shaped failure rate. The corresponding cdf of the 

above equation becomes 
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2.1. Special cases 

Case 1:  At 1=b , EQPLD reduces to Quasi Power Lindley distribution. 

Case 2: At 1= , EQPLD reduces to the Power Lindley distribution introduced by 

ME Ghitany (2013). 

Case 3: At 1,1 == b , EQPLD reduces to the Quasi Lindley distribution introduced 

by Shanker and Mishra (2013). 

Case 4: At 1,1,1 === b , EQPLD reduces to the Lindley distribution. 

 

3. THE EQPLPS FAMILY 

In this section, we derive the family of EQPLPS distributions by compounding 

the EQPL class of distributions with the power series distributions. 

 

Let N be a discrete random variable following the power series distribution (truncated 

at zero) with probability mass function given by 

( )
,...2,1,)( === n

C

a
nNP

n

n





 

Where 0na be reliant on n, ( ) 



=

=
1n

n

naC  and ( )s,0 is chosen in such a way 

that ( )C  is finite. The power series family of distributions, contains Poisson, 

logarithmic, geometric and binomial distributions as special cases. Valuable extents 

of above distributions truncated at zero are given in table 1. 

 

           Table1: Useful Extents Of Zero Truncated Power Series Distribution 

Distribution     
na     ( )C  ( )'C  ( )''C  ( )1−C        

Poisson   1!−n    1−e     e     e  ( )1log +  ( ) ,0  
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Logarithmic   1−n  ( )−− 1log  ( ) 1

1
−

−    ( ) 2
1

−
−     −− e1  ( )0,1   

Geometric    1  ( ) 1
1
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−   ( ) 2
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 ( )312 −−   
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−
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Given N, let ( )NXXXX ,...,max 21= , where NiX i ,...2,1, =  are independent and 

identically distributed (iid) random variables with cdf ().Then the cdf of nNX =|  is 

given by 
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The EQPLPS is then defined by the marginal cdf of X, which is given by 
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Here, a random variable X following Exponentiated Quasi Power Lindley power 

series distribution with parameters  ,,,, b  will be denoted by

( ) ,,,,~ bEQPLPSX . This new class of distributions contains several lifetime 

distributions as special cases which will be discussed in section (9). 

 

4. DENSITY, SURVIVAL AND HAZARD RATE FUNCTIONS 

The pdf, survival and hazard functions are respectively given by 
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And the hazard function is given as 
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THEOREM 4.1. The Exponentiated Quasi Power Lindley distribution is a 

limiting case of EQPLPS distribution when  +→ 0 . 

PROOF. From the cdf of EQPLPS distribution , we have 
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Using L’ Hospital’s rule, it follows that 
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Which is the cdf of exponentiated quasi power Lindley distribution. 

THEOREM 4.2. The densities of the EQPLPS distribution can be expressed as 

an infinite linear combination of densities of nth order statistics of the exponentiated 

quasi power Lindley distribution 
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Where ( ) ( )nn XXXnxg ,...,max, 21=  is the nth order statistics of exponentiated quasi 

power Lindley distribution. 

PROOF. As we know that 
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Therefore, the pdf of EQPLPS distribution reduces to the expression after using 

the above argument as follows 
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is the nth order statistics of exponentiated quasi power Lindley distribution.  

Therefore the densities of EQPLPS distribution can be expressed as an infinite 

linear combination of the nth order statistics of exponentiated quasi power Lindley 

distribution. 

 

  

(3) 
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5. MOMENT GENERATING FUNCTION 

The moment generating function of EQPLPS distribution can be obtained from 

(3) 
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Where 
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nX
 is the moment generating function of nth order statistics of 

exponentiated quasi power Lindley distribution. 
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The rth moment of the EQPLPS distribution about origin is 
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6. QUANTILE FUNCTION 

THEOREM 6.1. If ( ) ,,,,~ bEQPLPSX , then the quantile function of X 

is 
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Where ( )1,0v  and W(.) denotes the Lambert W function (see Corless et al.(1996)) 

PROOF. The quantile function denoted by Q(p) is the root of the equation 
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Solving the equation  
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Using above equation the quartiles of the EQPLPS distribution can be 

determined. Median of the exponentiated quasi power Lindley power series 

distribution is given by 
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7. ORDER STATISTICS AND THEIR MOMENTS 

Let 
nXXX ,..., 21
 be a random sample of size n having EQPLPS distribution. The 

pdf and cdf of ith order statistics say 
niX ::  can be obtained as 
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The associated cdf of ( )xf ni:
 denoted by ( )xF ni:

 becomes 
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Expression for rth moment of ith order statistics with cdf (3.1) can be obtained by 

using a well- known result given by Barakat et al. (2004) as follows 
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8. PARAMETER ESTIMATION 

Let 
nXXX ,..., 21
 be a random sample with observed value ( )nxxxx ,..., 21=  

obtained from EQPLPS distribution with parameters  andb,,, . Let 

( )Tb  ,,,,=  be the parameter vector. The log likelihood function is given by 
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The corresponding score functions are 

(7) 
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MLEs of  &,,, b cannot be obtained by solving above complex equations as 

these equations are not in closed form. So we solve the above equations by using 

iteration method through R software. 

 

9. SPECIAL SUB-MODELS OF THE EQPLPS MODEL 

9.1. Exponentiated Quasi Power Lindley Poisson Distribution (EQPLPD) 

The corresponding cdf, pdf, survival function and hazard function of EQPLPD 

can be obtained respectively by using ( ) 1−=  eC  and ( )  eC ='  in (1) & (2). 
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For   0,0,,,, andbx . The expression for rth moment of a 

random variable following EQPLPS distribution becomes by substituting 1!−= nan
 

and ( ) 1−=  eC  in (4). 

( )
( )( )

( )

( )

( )


















+









++−++








++−



−








+






 −+







 −

−+
=

++−

+



=

−

=



=



=

−

 

2

1

1

0 0 0

2

21

1
1

11

!11


















rik

kj

n

n

j k i

ikn
r

k

r
ikk

r
ik

k

bbj

j

n

ne

bn
XE

 

 



JAMSI, 16 (2020), No. 2 97 

 

 
The pdf and cdf of order statistics of EQPLPD can be obtained by using the cdf 

and pdf of EQPLPD in (6) and (7). 
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The quantile function can be obtained by substituting ( ) 1−=  eC  and 

( ) ( )1log1 +=− C  in (5), we have 
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9.2. Exponentiated Quasi Power Lindley Logarithmic Distribution (EQPLLD) 

The cdf, pdf, survival function and hazard function of EQPLLD is obtained by 

using ( ) ( ) −−= 1logC  and ( ) ( ) 1' 1
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−= C  in (1) and (2). 
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For 10,0,,,,   andbx .The rth moment of EQPLLD can be obtained 

by substituting ( ) ( ) −−== − 1log1 Candnan
 in (4) 

The pdf and cdf of EQPLLD can be obtained by substituting its pdf and cdf in 

(6) and (7). 
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By substituting ( ) ( ) −−= 1logC  and ( )  −− −= eC 11  in (5), the quantile 

function of EQPLL distribution is obtained as 
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9.3. Exponentiated Quasi Power Lindley Geometric Distribution (EQPLGD) 

The cdf, pdf, survival function and hazard function of EQPLGD can be obtained 

by using ( ) ( ) 1
1

−
−= C   &  ( ) ( ) 2' 1

−
−= C in (1) & (2). 
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For 100,,,,   andbx . The rth moment of EQPLGD can be obtained 

by substituting 1=na  and ( ) ( ) 1
1

−
−= C  in (4). 

The pdf and cdf of order statistics of EQPLGD can be obtained by using the cdf 

and pdf of EQPLGD in (6) and (7) ,we have 
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By substituting ( ) ( ) 1
1

−
−= C  and  ( ) ( ) 11 1

−− += C in (5), the quantile function 

of EQPLG distribution is obtained as 

( ) ( ) ( )

( )







 

1

1

11
11

11 1




















































+−
−+−−−−= +−

b

v

v
eWvQ  

 

9.4. Exponentiated Quasi Power Lindley Binomial Distribution (EQPLBD) 

The cdf , pdf, survival function and hazard function of EQPLBD can be obtained 

respectively by taking ( ) ( ) 11 −+=
m

C   and ( ) ( ) 1' 1
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m

mC    in (1) and (2). 
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For .00,,,,   andbx The rth moment of a random variable 

following EQPLBD becomes by taking ( ) ( ) 11 −+=
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m
a   in (4). 

The pdf and cdf of order statistics of EQPLBD can be obtained respectively by 

using the pdf and cdf of EQPLBD in (6) and (7). 
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10. APPLICATION 

To show the superiority of the proposed distribution, we compare its sub–models 

by taking four real life data sets. 

 

Data set 1. The first data set represents the Lifetime of fatigue of Kevlar 

373/epoxy, that are subject to constant pressure at the 90% stress level until all had 

failed. The data set is 

0.0251 0.886 0.0891 0.2501 0.3113 0.3451 0.4763 0.565 0.5671 0.6566 0.6748 

0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 0.8851 0.9113 0.912 0.9836 

1.0483 1.0596 1.0773 1.1733 1.257 1.2766 1.2985 1.3211 1.3503 1.3551 1.4595 

1.488 1.5728 1.5733 1.7083 1.7263 1.746 1.763 1.7746 1.8275 1.8375 1.8503 

1.8808 1.8878 1.8881 1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.133 2.21 

2.246 2.2878 2.3203 2.347 2.3513 2.4951 2.526 2.9911 3.0256 3.2678 3.4045 

3.4846 3.7433 3.7455 3.9143 4.8073 5.4005 5.4435 5.5295 6.5541 9.096  

                                    

                                            Table 10.1: Analysis of model fitting 

MODEL                                 MLE  AIC         BIC          

EQPLP 233.0ˆ,254.1ˆ,110.1ˆ,000000122.0ˆ,924.0ˆ =====  b  253.13 260.76 

EQPLG 525.0ˆ,092.1ˆ,837.0ˆ,00000145.0ˆ,060.1ˆ =====  b  253.86 261.49 

EQPLL 483.0ˆ,159.1ˆ,914.0ˆ,0000000980.0ˆ,036.1ˆ =====  b  253.62 261.25 
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Fig 1: Fitting of EQPLP, EQPLG, EQPLL to the fatigue lifetime data. 

Data Set 2. The data set reported by E fron B (1988) and was used by Rama 

Shanker (2016) represent the  survival times of a group of patients suffering from 

Head and Neck cancer disease and treated using radiotherapy (RT). The data set is 

6.53 7 10.42 14.48 16.10 22.70 34 41.55 42 45.28 49.40 53.62 

63 64 83 84 91 108 112 129 133 133 139 140 

140 146 149 154 157 160 160 165 146 149 154 157 

160 160 165 173 176 218 225 241 248 273 277 297 

405 417 420 440 523 583 594 1101 1146 1417   

      

Table.10.2: Analysis of model fitting 

MODEL                                          MLE AIC BIC 

EQPLP 570.2ˆ,945.4ˆ,605.0ˆ,625.2ˆ,372.0ˆ =====  b  750.37 758.00 

EQPLG 390.0ˆ,749.1ˆ,152.0ˆ,000000839.0ˆ,542.0ˆ =====  b  751.59 759.22 

EQPLL 384.0ˆ,789.1ˆ,160.0ˆ,00000152.0ˆ,535.0ˆ =====  b  751.58 6759.21 
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Fig 2: Fitting of EQPLP, EQPLG, EQPLL to the survival data. 

Data Set 3.  The data set reported by Efron B (1988) and was used by Rama 

Shanker (2016) represent the survival times of a group of patients suffering from Head 

and Neck cancer disease and treated using a combination of radiotherapy and 

chemotherapy (RT+CT). 

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 63.47 

68.46 78.26 74.47 81.43 84 92 94 110 112 119 127 

130 133 140 146 155 159 173 179 194 195 209 

249 281 319 339 432 469 519 633 725 817 1776 

                     

Table 10.3: Analysis of model fitting 

MODEL                                 MLE AIC BIC 

EQPLP 381.0ˆ,75.1ˆ,125.0ˆ,00000132.0ˆ,576.0ˆ =====  b  568.43 576.06 

EQPLG 451.0ˆ,480.1ˆ,126.0ˆ,0000000653.0ˆ,578.0ˆ =====  b  569.03 576.67 

EQPLL 411.0ˆ,640.1ˆ,108.0ˆ,00000328.0ˆ,597.0ˆ =====  b  568.83 576.47 
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 Fig 3: Fitting of EQPLP, EQPLG, EQPLL to the survival data. 

Data Set 4. The data set represents remission times (in months) of a random 

sample of 128 bladder cancer patients reported in Lee & Wang (2003) and was used 

by Rama Shanker (2016) in modeling of lifetime data .      

                          

                                   Table.10.4: Analysis of model fitting 

MODEL                                          MLE AIC BIC 

EQPLP 406.0ˆ,415.1ˆ,552.0ˆ,00000279.0ˆ,673.0ˆ =====  b  827.63 835.26 

EQPLG 429.0ˆ,384.1ˆ,458.0ˆ,00000172.0ˆ,727.0ˆ =====  b  828.34 835.98 

EQPLL 403.0ˆ,403.1ˆ,472.0ˆ,000000556.0ˆ,713.0ˆ =====  b  828.21 835.85 
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 Fig 4: Fitting of EQPLP, EQPLG, EQPLL to the cancer data 

All the sub-models fit well but among them EQPLP class of distributions 

performs excellently well as it possesses the lowest values of AIC and BIC values.  

 

11. CONCLUSION 

We have proposed a new five parameter lifetime distribution for parallel system 

by compounding Exponentiated Quasi Power Lindley distribution with power series 

distribution. The mathematical properties including density function, moment 

generating function, order statistics, quantile function have been obtained. The 

parameters have been estimated by the method of maximum likelihood estimation. 

The proposed model contains some lifetime sub-classes and has the competency to 

yield many beneficial and flexible distributions for modelling lifetime data. 

Ultimately, the sub-models have been compared by applying them to four real life 

data sets to show the flexibility of the proposed model.  
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