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Analytic computation of digamma function using
some new identities

M. I. QURESHI AND M. SHADAB

Abstract

Motivated by the substantial development in the theory of digamma function, we derive some new
identities for the digamma function. These new identities enable us to compute the values of the digamma
function for fractional orders in an analogous manner. Also, we mention two errata, found in Jensen’s
article (An elementary exposition of the theory of the Gamma function, 1916), and present their correct
forms.
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1. INTRODUCTION AND PRELIMINARIES

A natural property of digamma (Psi)function is as application in the theory of beta
distributions-probability models for the domain [0,1]. It is used mainly in the theory
of special functions in wide range of applications. Digamma functions are directly
connected with many special functions such as Riemann’s zeta function and
Clausen’s function etc.

Many authors have contributed to develop the theory of polygamma function with
respect to properties [25; 9; 13; 14; 16], inequalities [2; 3; 6], monotonicity [21; 22;
23; 24], series [5; 7; 15; 27; 10; 12], and fractional calculus [1; 19; 20].

The Gamma function, Γ(x), was introduced by Leonard Euler as a generalization of
the factorial function on the sets, R of all real numbers, and C of all complex numbers.
It (or, Euler’s integral of second kind) is defined by

Γ(z) =
∫

∞

0
exp(−t)tz−1dt, ℜ(z)> 0

= lim
n→∞

∫ n

0

(
1− t

n

)n

tz−1dt. (1.1)
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In 1856, Karl Weierstrass gave a novel definition of gamma function

1
Γ(z)

= zexp(γz)
∞

∏
n=1

[(
1+

z
n

)
exp
(
− z

n

)]
, (1.2)

where γ = 0.577215664901532860606512090082402431042 . . . , is called
Euler-Mascheroni constant, and 1

Γ(z) is an entire function of z, and

γ = lim
n→∞

(
1+

1
2
+

1
3
+ .....+

1
n
− `n(n)

)
.

The function

ψ(z) =
d
dz
{`nΓ(z)}= Γ′(z)

Γ(z)
, (1.3)

or, equivalently

`nΓ(z) =
∫ z

1
ψ(ζ )dζ , (1.4)

is the logarithmic derivative of the gamma function or digamma function.
ψ (i)(z) for i ∈ N are called the polygamma functions, and ψ has the presentation as

ψ(z) =
Γ′(z)
Γ(z)

=−γ +
∫

∞

0

e−t − e−zt

1− e−t
dt (γ = Euler’s constant). (1.5)

The Psi function has following series representation

ψ(z) =−γ− 1
z
+

∞

∑
n=1

z
n(z+n)

, z 6=−1,−2,−3, . . . (1.6)

In 1813, Gauss [9] (see also, Jensen [13, p.146, eq.(32)]; [8, p.19, (1.7.3) eq.(29)],
Böhmer [4, p.77] ) discovered an interesting formula for digamma (Psi) function as
follows

ψ(p/q) =−γ− `n(q)− π

2
cot
(

π p
q

)
+

[ q
2 ]

∑
j=1

′
{

cos
(

2π jp
q

)
`n
(

2−2cos
2π j

q

)}
, (1.7)

where 1 ≤ p < q and p,q are positive integers, and accent(prime) to right of the
summation sign indicates the term corresponding to (last term) j = q

2 (when q is
positive even integer) should be divided by 2.

A different form of Gauss formula is also given in N. Nielsen [18, p. 22, an equation
between equations (7) and (8)] as follows

ψ(p/q) =−γ− `n(q)− π

2
cot
(

π p
q

)
+

q−1

∑
j=1

{
cos
(

2π p j
q

)
`n
(

2sin
(

π j
q

))}
, (1.8)
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where 1≤ p < q and p,q are positive integers.

Afterwards, in 2007, an attempt was made by Murty and Saradha [17, p. 300, after
eq.(4)] (see also, Lehmer [14, p. 135, after eq.(20)]) for the simplification of the above
Gauss formula (1.7) as follows

ψ(p/q) =−γ− `n(2q)− π

2
cot
(

π p
q

)
+2

[ q
2 ]

∑
j=1

{
cos
(

2π p j
q

)
`nsin

(
π j
q

)}
, (1.9)

where p = 1,2,3, . . . ,(q−1), q = 2,3,4, . . . ;(p,q) = 1.

Also, we have verified the results (1.7), (1.8) and (1.9) by taking different values of
p and q.

Gradshteyn and Ryzhik [11, p. 904, eq 8.363(6)] recorded an erroneous formula for
digamma function such that

ψ(p/q)$−γ− `n(2q)− π

2
cot
(

π p
q

)
+2

[ q+1
2 ]−1

∑
j=1

{
cos
(

2π p j
q

)
`nsin

(
π j
q

)}
, (1.10)

where p = 1,2,3, . . . ,(q− 1), q = 2,3,4, . . . ;(p,q) = 1 and the symbol $ exhibits the
fact that equation (1.10) does not hold true as stated.

Some important facts, which appreciate us to work in this direction, are as follows

—We cannot compute the value of digamma function when p > q or ( and ) p
q is

negative fraction using Gauss formula [9].

—We cannot compute the value of digamma function when p > q using Jensen
formula [13].

—We cannot compute the value of digamma function when p
q is negative using Jensen

[13].

—Murty and Saradha [17, p. 300] corrected a formula of Lehmer [14, p. 135] for
ψ( p

q )

—Some specific values of digamma function were proved transcendental by Murty
and Saradha [17].

2. SOME NEW IDENTITIES FOR DIGAMMA FUNCTION

Some functional relations for digamma function, that are easily derivable from the
properties of the gamma function, are recalled here. Indeed, from the formula
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Γ(z+1) = zΓ(z), Γ(z)Γ(1− z) =
π

sin(πz)
, z 6= 0,±1,±2,±3, . . . (2.1)

taking `n both sides and differentiating the above equation with respect to z, we derive
the some basic identities for digamma function as follows

ψ(z+1) = ψ(z)+
1
z
, ψ(1− z) = ψ(z)+π cot(πz), z 6= 0,±1,±2,±3, . . . (2.2)

ψ(z+n) =
1
z
+

1
z+1

+ · · ·+ 1
z+n−1

+ψ(z). (2.3)

On setting z = (1− z) in equation (2.2), we get

ψ(−z) =
1
z
+ψ(1− z). (2.4)

On comparing the values of ψ(1− z) from the equations (2.2) and (2.4), we get a new
identity

ψ(z)+π cot(πz) = ψ(−z)− 1
z
. (2.5)

By setting z = p
q , 1≤ p < q in equations (2.2) and (2.4), we get more identities. These

identities, enable us to derive our main identities, are as follows

ψ

(
p+q

q

)
=

q
p
+ψ

(
p
q

)
, and ψ

(
−p
q

)
=

q
p
+ψ

(
q− p

q

)
, 1≤ p < q. (2.6)

For the sake of convenient computation of digamma function, we derive some more
identities, which are simple but more applicable in the computation of digamma
function for p

q > 1. For this concern, we connect the Murty and Saradha’s formula for
digamma function (1.11) with our above identity (2.6) and get the result as follows

ψ

(
q− p

q

)
=−γ− `n(2q)+

π

2
cot
(

π p
q

)
+2

[ q
2 ]

∑
j=1

{
cos
(

2π p j
q

)
`nsin

(
π j
q

)}
, (2.7)

(p,q) = 1; 1 ≤ p < q. Now, we derive the identity for computation of the digamma
function for negative fractions

(
− p

q

)
. For this motive, we derive the identity in the

similar manner as used in the above identity and get the result as follows

ψ

(
−p
q

)
=

q
p
− γ− `n(2q)− π

2
cot
(

π(q− p)
q

)
+2

[ q
2 ]

∑
j=1

{
cos
(

2π(q− p) j
q

)
`nsin

(
π j
q

)}
,

(2.8)

1≤ p < q.
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3. NUMERIC COMPUTATIONS OF DIGAMMA FUNCTION

Table I. ψ- Function(Fractional Valued, p > q )

Ser. No. z = p
q ψ(z) = Γ

′
(z)

Γ(z)

1 7
3 −γ + 15

4 −
π
√

3
6 −

3
2 `n3

2 3
2 −γ +2−2`n2

3 5
2 −γ + 8

3 −2`n2

Table II. ψ- Function(Positive fractional Order)

Ser. No. z = p
q ψ(z) = Γ

′
(z)

Γ(z)

1 1
2 −γ−2`n2

2 1
3 −γ−

√
3π

6 −
3
2 `n3

3 1
4 −γ− π

2 −3`n2

4 1
5 −γ− `n10−

(
1+
√

5√
(10−2

√
5)

)
π

2 + 1
2{
√

5`n
(√

5−1
2

)
− `n

√
5

4 }

5 1
6 −γ− `n12− π

√
3

2 − `n
√

3

6 1
8 −γ− (1+

√
2)π

2 −4`n2−
√

2`n(1+
√

2)

7 1
10 −γ− `n20−

(√
(10+2

√
5)√

5−1

)
π

2 + 1
2{
√

5`n(
√

5−2)− `n
√

5}

8 1
12 −γ− `n24−

(
2+
√

3
)

π

2 +{
√

3`n(2−
√

3)− `n
√

3}

9 2
3 −γ +

√
3π

6 −
3
2 `n3

10 2
5 −γ− `n10−

( √
5−1√

(10+2
√

5)

)
π

2 + 1
2{
√

5`n
(√

5+1
2

)
− `n

√
5

4 }

11 3
4 −γ + π

2 −3`n2

12 3
5 −γ− `n10+

( √
5−1√

(10+2
√

5)

)
π

2 + 1
2{
√

5`n
(√

5+1
2

)
− `n

√
5

4 }

13 3
8 −γ− (

√
2−1)π

2 −4`n2+
√

2`n(1+
√

2)

14 3
10 −γ− `n20−

(√
(10−2

√
5)

1+
√

5

)
π

2 + 1
2{
√

5`n(2+
√

5)− `n
√

5}

15 4
5 −γ− `n10+

(
1+
√

5√
(10−2

√
5)

)
π

2 + 1
2{
√

5`n
(√

5−1
2

)
− `n

√
5

4 }

16 5
6 −γ− `n12+ π

√
3

2 − `n
√

3

17 5
8 −γ + (

√
2−1)π

2 −4`n2+
√

2`n(1+
√

2)

18 5
12 −γ− `n24−

(
2−
√

3
)

π

2 +{
√

3`n(2+
√

3)− `n
√

3}

19 7
8 −γ + (1+

√
2)π

2 −4`n2−
√

2`n(1+
√

2)

20 7
10 −γ− `n20+

(√
(10−2

√
5)

1+
√

5

)
π

2 + 1
2{
√

5`n(2+
√

5)− `n
√

5}

21 7
12 −γ− `n24+

(
2−
√

3
)

π

2 +{
√

3`n(2+
√

3)− `n
√

3}

22 9
10 −γ− `n20+

(√
(10+2

√
5)√

5−1

)
π

2 + 1
2{
√

5`n(
√

5−2)− `n
√

5}

23 11
12 −γ− `n24+

(
2+
√

3
)

π

2 +{
√

3`n(2−
√

3)− `n
√

3}
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Table III. ψ- Function(Negative fractional Valued)

Ser. No. z = p
q ψ(z) = Γ

′
(z)

Γ(z)

1 − 2
3 −γ + 3

2 −
π
√

3
6 −

3`n3
2

2 − 3
4 −γ + 4

3 −
π

2 −3`n2

3 − 1
2 −γ +2−2`n2

4 − 1
3 −γ +3+

√
3π

6 −
3
2 `n3

5 − 1
4 −γ +4+ π

2 −3`n2

6 − 5
8 −γ + 8

5 −
(
√

2−1)π
2 −4`n2+

√
2`n(1+

√
2)

7 − 3
8 −γ + 8

3 +
(
√

2−1)π
2 −4`n2+

√
2`n(1+

√
2)

8 − 1
8 −γ +8+ (1+

√
2)π

2 −4`n2−
√

2`n(1+
√

2)

9 − 5
6 −γ + 6

5 −
π
√

3
2 −

3
2 `n3−2`n2

10 − 3
2 −γ + 8

3 −2`n2

11 − 7
3 −γ + 117

28 + π
√

3
6 −

3
2 `n3

The following errata are found in a paper of Jensen [13, p. 147] such that

ψ(3/5)$−γ +
π

2

√(
1− 2√

5

)
− 5

4
`n5+

√
5

4
`n

(
3+2

√
5

2

)
, (3.1)

ψ(4/5)$−γ +
π

2

√(
1+

2√
5

)
− 5

4
`n5−

√
5

4
`n

(
3+2

√
5

2

)
, (3.2)

where the symbol $ exhibits the fact that each of the equations (3.1) and (3.2) does
not hold true as stated.
The following are the corrected forms of above equations

ψ(3/5) =−γ +
π

2

√(
1− 2√

5

)
− 5

4
`n5+

√
5

4
`n

(
3+
√

5
2

)
, (3.3)

ψ(4/5) =−γ +
π

2

√(
1+

2√
5

)
− 5

4
`n5−

√
5

4
`n

(
3+
√

5
2

)
. (3.4)
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4. CONCLUDING REMARK

We conclude our present investigation by observing that some new identities for
digamma function have been deduced as the equations (2.6), (2.7) and (2.8) in an
analogous manner. Using these new identities, we have calculated the values of
digamma function for positive and negative fractional orders. Also, we have
presented correct forms of two errata found in Jensen’s article [13, p. 147].
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The ruin problem for a Wiener process with
state-dependent jumps

M. LEFEBVRE

Abstract

Let X(t) be a jump-diffusion process whose continuous part is a Wiener process, and let T (x) be the first
time it leaves the interval (0,b), where x = X(0). The jumps are negative and their sizes depend on the
value of X(t). Moreover there can be a jump from X(t) to 0. We transform the integro-differential equation
satisfied by the probability p(x) := P[X(T (x)) = 0] into an ordinary differential equation and we solve this
equation explicitly in particular cases. We are also interested in the moment-generating function of T (x).

Mathematics Subject Classification 2010: 60J75, 60J60.
Keywords:First exit time, Brownian motion, Poisson process, jump size, integro-differential equation.

1. INTRODUCTION

We consider the one-dimensional jump-diffusion process {X(t), t ≥ 0} defined by

X(t) = X(0)+µ t +σ B(t)+
N(t)

∑
i=1

Yi, (1)

where µ ∈R and σ > 0 are constants, {B(t), t ≥ 0} is a standard Brownian motion and
{N(t), t ≥ 0} is a Poisson process with rate λ > 0 that is independent of {B(t), t ≥ 0}.
Thus the continuous part of X(t) is a Wiener process with infinitesimal mean µ and
infinitesimal variance σ 2. Moreover, there are Poissonian jumps of random size.

The random variables Yi, i = 1,2, . . ., are assumed to be independent and identically
distributed as the mixed type random variable Y whose probability density function,
when X(t) = z, is given by

fY (y;z) = p0 (−1)n (n+1)
yn

zn+1
I(−z,0)(y)+q0 δ (y+ z) ∀y ∈ R, (2)

where p0 = 1−q0 ∈ [0,1], n ∈ {0,1, . . .}, z > 0, I(−z,0)(·) is the indicator function of the
interval (−z,0), and δ (·) is the Dirac delta function. Notice that if n = 0, then the
continuous part of Y is uniformly distributed over the interval (−z,0).

Next, let T (x) be the first exit time of X(t) from the interval (0,b):

T (x) = inf{t > 0 : X(t) /∈ (0,b) | X(0) = x ∈ (0,b)}. (3)

10.2478/jamsi-2020-0002
c©University of SS. Cyril and Methodius in Trnava



14 M. Lefebvre

We are interested in computing the probability of ruin

p(x) := P[X(T (x)) = 0]. (4)

Remark that because the jumps are always negative and are, in absolute value, smaller
than or equal to the current value of X(t), there is no overshoot.

Ruin problems are important in actuarial science and in mathematical finance, in
particular. Such problems for jump-diffusion processes have been considered, among
others, by Cai and Xu (2006), Jiang and Yan (2006), Gerber and Yang (2007), and Yin
et al. (2013).

In Section 2, we will give the integro-differential equation satisfied by the function
p(x), and we will show that it is possible, under some assumptions, to transform this
equation into an ordinary differential equation (o.d.e.). The resulting o.d.e. will be
solved explicitly in particular cases.

In Section 3, we will turn to the problem of computing the moment-generating
function of T (x). We will conclude this paper with a few remarks in Section 4.

2. PROBABILITY OF RUIN

Assume that g(x) is a twice continuously differentiable function. The infinitesimal
generator of the process {X(t), t ≥ 0} defined in (1) is (see Kou and Wang 2003)

L g(x) =
1
2

σ
2 g′′(x)+µ g′(x)−λ g(x)+λ

∫
∞

−∞

g(x+ y) fY (y;x)dy (5)

for x ∈ (0,b). With the density function of Y defined in Eq. (2), then Eq. (5) becomes
(since p(0) = 1)

L g(x) =
1
2

σ
2 g′′(x)+µ g′(x)−λ g(x) (6)

+λ p0 (−1)n (n+1)
1

xn+1

∫ 0

−x
g(x+ y)yn dy+λ q0.

If we assume that the conditional transition density function

p(x1, t;x0, t0) := lim
d x1↓0

P[X(t) ∈ (x1,x1 +d x1) | X(t0) = x0]

d x1
(7)

exists for t > t0 (see Gihman and Skorohod 1972), then we can write that the function
p(x) defined in (4) satisfies the integro-differential equation
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0 =
1
2

σ
2 p′′(x)+µ p′(x)−λ p(x) (8)

+λ p0 (−1)n (n+1)
1

xn+1

∫ 0

−x
p(x+ y)yn dy+λ q0

for x ∈ (0,b). The boundary conditions are

p(0) = 1 and p(b) = 0. (9)

Next, we rewrite the generalized backward Kolmogorov equation (8) as follows:

0 =
1
2

σ
2 p′′(x)+µ p′(x)−λ p(x) (10)

+λ p0 (−1)n (n+1)
1

xn+1

∫ x

0
p(z)(z− x)n dz+λ q0.

Let

In(x) :=
∫ x

0
p(z)(z− x)n dz. (11)

We have I′0(x) = p(x) and

I′n(x) =−nIn−1 for n = 1,2, . . . (12)

Assume now that n = 0 and that the function p(x) is three times differentiable.
Differentiating Eq. (10), we obtain that

0 =
1
2

σ
2 p′′′(x)+µ p′′(x)−λ p′(x)+λ p0

(
− 1

x2
I0(x)+

1
x

p(x)
)
, (13)

which we rewrite as follows:

0 =
1
2

σ
2 p′′′(x)+µ p′′(x)−λ p′(x) (14)

+
1
x

(
1
2

σ
2 p′′(x)+µ p′(x)−λ p(x)+λ q0

)
+λ p0

1
x

p(x).

Therefore we obtain that the function p(x) satisfies the third-order linear o.d.e.

0 =
1
2

σ
2 x p′′′(x)+

(
1
2

σ
2 +µ x

)
p′′(x)+(µ−λ x) p′(x) (15)

+λ (p0−1) p(x)+λ q0.

If we assume that n ∈ {1,2, . . .} and that the function p(x) is n + 3 times
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differentiable, differentiating Eq. (10) once we get

0 =
1
2

σ
2 p′′′(x)+µ p′′(x)−λ p′(x) (16)

−λ p0 (−1)n (n+1)
1

xn+1

{
n+1

x
In(x)+nIn−1(x)

}
,

from which we deduce that

λ p0 (−1)n n(n+1) In−1(x) = xn+1

(
1
2

σ
2 p′′′(x)+µ p′′(x)−λ p′(x)

)
(17)

+(n+1)xn

(
1
2

σ
2 p′′(x)+µ p′(x)−λ p(x)

)
+(n+1)λ xn q0.

Let us set

h(x) :=
1
2

σ
2 xn+1 p′′′(x)+

(
1
2
(n+1)σ

2 +µ x
)

xn p′′(x) (18)

+[(n+1)µ−λ x] xn p′(x)− (n+1)λxn [p(x)−q0].

Since

d
dxn+1

In(x) = (−1)n n! p(x), (19)

we can now state the following proposition.

PROPOSITION 2.1. Suppose that the function p(x) defined in (4) is three times
differentiable. Then it satisfies the o.d.e. (15) for 0 < x < b, subject to the boundary
conditions in (9). If it is n+3 times differentiable, where n∈ {1,2, . . .}, then it satisfies
the o.d.e.

−λ p0 (n+1)! p(x) =
d

dxn
h(x) (20)

for 0 < x < b, where h(x) is defined in (18).

REMARK 1. (i) With n = 1, we obtain that

0 =
1
2

σ
2 x2 p(4)(x)+

(
2σ

2 x+µ x2
)

p′′′(x)+
(
σ

2 +4 µ x−λ x2
)

p′′(x)

+ (2 µ−4λ x) p′(x)+2(p0−1)λ p(x)+2λ q0. (21)

(ii) Equation (20) is a linear o.d.e. of order n+ 3. Its general solution will therefore
involve n+ 3 arbitrary constants. Two constants are deduced from the two boundary
conditions. To determine the remaining constants, we can substitute the expression
derived for p(x) into the integro-differential equation (10) and into each equation
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obtained by differentiating this equation n+ 1 times. We can also use the fact that
0 ≤ p(x) ≤ 1. Finally, another condition is deduced from Eq. (10) by letting x

decrease to zero in this equation.

(iii) We assume the existence of non-negative solutions to Eq. (20) (and, consequently,
to the problem (8), (9)). For papers on the existence of such solutions to related
problems, see [7] and [8].

(iv) Although Eq. (20) is a higher-order differential equation, it is linear. In general, at
least for n small, it is easier to solve linear ordinary differential equations than integro-
differential equations. Indeed, as will be seen in the next subsection, it is sometimes
possible to obtain an explicit solution to a higher-order linear o.d.e. by making use of
a mathematical software. Moreover, if such an explicit solution cannot be found, one
can resort to any of the various numerical techniques for solving ordinary differential
equations.

(v) It is not possible to transform the integro-differential equation (8) into an ordinary
differential equation for any jump-diffusion process or for any distribution of the
jumps. In general, proceeding as above, one can expect to obtain a
differential-difference equation, which can itself be difficult to solve explicitly.

2.1. Particular cases

Case 1. We first consider the case when σ 2 = 1 and µ = 0, so that the continuous part
of the process {X(t), t ≥ 0} is a standard Brownian motion, n = 1, λ = 1, p0 = 1 and
b = 1. Equation (21) then reduces to

0 =
1
2

x2 p(4)(x)+2x p′′′(x)+
(
1− x2

)
p′′(x)−4x p′(x). (22)

We find that the particular solution that we are looking for is

p(x) = 1+ c
[
Shi(
√

2x)+ sinh(
√

2x)
]
, (23)

where Shi is the hyperbolic sine integral defined by

Shi(x) =
∫ x

0

sinh(u)
u

du. (24)

The constant c is given by

c =
2

Ei(1,−
√

2)−Ei(1,
√

2)+π i+ e−
√

2− e
√

2
, (25)
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in which Ei is the exponential integral:

Ei(a,z) :=
∫

∞

1
e−uz u−adu. (26)

We find that c ' −0,2844. The function p(x) as well as the function p∗(x) := 1− x

obtained when there are no jumps are shown in Figure 1.

Fig. 1. Functions p(x) (above) and p∗(x) := 1− x in the interval [0,1] when σ2 = 1, µ = 0, and n = λ =

p0 = b = 1.

REMARK 2. The above solution can be generalized to the case of any positive λ

by replacing
√

2 by
√

2λ everywhere. We find that the expression thus obtained does
indeed tend to 1− x as λ decreases to zero.

Case 2. Next, we take σ 2 = 1, µ = 0, n = 0, λ = 1, p0 = 1/2 and b = 1. We must then
solve (see Eq. (14))

0 = x p′′′(x)+ p′′(x)−2x p′(x)− p(x)+1. (27)

We can show, using the mathematical software Maple, that the solution that we are
looking for is

p(x) = 1−
hypergeom

([
3
4

]
,
[
1, 3

2

]
, 1

2 x2
)

x
hypergeom

([
3
4

]
,
[
1, 3

2

]
, 1

2

) , (28)

where hypergeom is a generalized hypergeometric function. We present the functions
p(x) and p∗(x) := 1− x in Figure 2.
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Fig. 2. Functions p(x) (above) and p∗(x) := 1−x in the interval [0,1] when σ2 = 1, µ = 0, n = 0, λ = b = 1
and p0 = 1/2.

Case 3. If we take µ = 1 instead of 0 in Case 1, the o.d.e. that we must solve is

0 =
1
2

x2 p(4)(x)+(2x+ x2) p′′′(x)+
(
1+4x− x2

)
p′′(x)+(2−4x) p′(x). (29)

After some work, we find that

p(x) = −c1

√
3Ei(1,1−

√
3)+ c2

[
e
√

3−1−Ei(1,1−
√

3)
]

(30)

−
c1

[
(3−
√

3)Ei(1,1+
√

3)−3e−1−
√

3
]
(3+
√

3)
√

3−3

+(c1

√
3+ c2)Ei(1,(1−

√
3)x)− c2 e(

√
3−1)x

−
c1

[
(
√

3−3)Ei(1,(1+
√

3)x)+3e−(1+
√

3)x
]
(3+
√

3)
√

3−3
,

where

c1 ' 0,0392 and c2 ' 0,1177. (31)

This function is compared in Figure 3 with the function

p∗∗(x) :=
e−2− e−2x

e−2−1
(32)

obtained when there are no jumps.

In the next section, we will turn briefly to the problem of computing the moment-
generating function of the random variable T (x).
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Fig. 3. Functions p(x) (below) and p∗∗(x) defined in (32) in the interval [0,1] when σ2 = 1, µ = 1 and
n = λ = p0 = b = 1.

3. MOMENT-GENERATING FUNCTION OF T (X)

Let us denote by M(x;α) the moment-generating function of T (x):

M(x;α) := E
[
e−αT (x)

]
, (33)

where α > 0. If this function is twice differentiable, then it satisfies the
integro-differential equation (dropping the dependence on α in the notation)

α M(x) =
1
2

σ
2 M′′(x)+µ M′(x)−λ M(x) (34)

+λ p0 (−1)n (n+1)
1

xn+1

∫ 0

−x
M(x+ y)yn dy+λ q0

for x ∈ (0,b), subject to the boundary conditions

M(0) = M(b) = 1. (35)

Proceeding as in the previous section, we can derive results like the ones in
Proposition 2.1. It will be more difficult however to obtain exact solutions to the
differential equations that correspond to Eqs. (14) and (20). To conclude, we will
present a particular problem that we can solve explicitly.

The function M(x) in the second particular case considered in Section 2 satisfies the
integro-differential equation

α M(x) =
1
2

M′′(x)−M(x)+
1
2

{
1
x

∫ x

0
M(z)dz+1

}
. (36)



JAMSI, 16 (2020), No. 1 21

That is,

1
2

xM′′(x)− (α +1)xM(x)+
1
2

{∫ x

0
M(z)dz+ x

}
= 0. (37)

Differentiating the above equation, we obtain

1
2

xM′′′(x)+
1
2

M′′(x)− (α +1)xM′(x)−
(

α +
1
2

)
M(x)+

1
2
= 0. (38)

We find that the function M(x) is given by

M(x) =
1

2α +1
(39)

+
2α

2α +1
hypergeom

([
1
4

2α +1
α +1

]
,

[
1
2
,

1
2

]
,

1
2
(α +1)x2

)
+c1 hypergeom

([
1
4

4α +3
α +1

]
,

[
1,

3
2

]
,

1
2
(α +1)x2

)
x,

where

c1 =−
2α

2α +1
hypergeom

([
1
4

2 α+1
α+1

]
,
[

1
2 ,

1
2

]
, 1

2 (α +1)
)
−1

hypergeom
([

1
4

4 α+3
α+1

]
,
[
1, 3

2

]
, 1

2 (α +1)
) . (40)

When there are no jumps, the moment-generating function of T (x) is

M∗(x) :=
(1− e−

√
2α)e

√
2αx +(−1+ e

√
2α)e−

√
2αx

e
√

2α − e−
√

2α
. (41)

The functions M(x) and M∗(x) are shown in Figure 4 when α = 1.

Fig. 4. Functions M(x) (above) and M∗(x) in the interval [0,1] when α = 1, σ2 = 1, µ = 0, n = 0, λ = b = 1
and p0 = 1/2.
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4. CONCLUSION

In this paper, the problem of computing the probability of ruin for a Wiener process
with state-dependent jumps has been considered. We obtained exact and explicit
solutions to particular problems, which is generally difficult to achieve for
jump-diffusion processes.

We could have assumed that the continuous part of the jump-diffusion process
{X(t), t ≥ 0} is a general time-homogeneous diffusion process with infinitesimal
parameters µ(x) and σ 2(x). The ordinary differential equation (20) would then
obviously be more complicated and difficult to solve explicitly.

To generalize the results obtained in this paper, we could add positive jumps in
the model. Again, Eq. (20) would become more complicated, especially if the upward
jumps are also state-dependent. Conversely, it would have been simpler to assume that
the negative jumps do not depend on the value of X(t), and that p(x) = P[X(T (x))≤ 0].
However, in some applications it is not realistic to allow negative values of X(t). For
instance, if X(t) denotes the price of one share of a certain stock at time t, we must
impose the condition X(t)≥ 0.

Finally, we could consider the problem of maximizing the expected value of the
random variable T (x) for the controlled process {Xu(t), t ≥ 0} defined by

Xu(t) = Xu(0)+b0

∫ t

0
u[Xu(s)]ds+µ t +σ B(t)+

N(t)

∑
i=1

Yi, (42)

where b0 is a positive constant and u(·) is the control variable; see Lefebvre (2004).
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Geometry of the probability simplex and its
connection to the maximum entropy method

H. GZYL AND F. NIELSEN

Abstract

The use of geometrical methods in statistics has a long and rich history highlighting many different
aspects. These methods are usually based on a Riemannian structure defined on the space of parameters
that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the
basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand
exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not
through the parameters that characterize some given family of probabilities.

For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a
finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which
exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic
interpretation of Jaynes’ method of maximum entropy.

Mathematics Subject Classification 2010: 53C99, 62B05.
Keywords:Geometry on positive vectors, geometry on the probability simplex, logarithmic distance on the
class of positive vectors, the maximum entropy method.

1. INTRODUCTION AND PRELIMINARIES

1.1. Geometry of the probability distributions

Geometry and statistics have been intertwined for some time already, mainly through
the study of differential-geometric structures in the space of parameters that
characterize parametric families of distributions. Consider for example the seminal
works of Hotelling [13] and Rao [27], and the works of Amari [2; 3], Amari et al.
[4], Efron [9], Barndorff-Nielsen [5], Vajda [29], and more recently Pistone and Semi
[26], Pistone and Rogatin [25]. In all of these works a special emphasis is laid upon
exponential families. In information geometry, the geometry of exponential families
is elucidated by a dually flat manifold [2] (that is, a pair of torsion-free flat affine
connections that are metric-compatible). A categorical distribution is a discrete
probability distribution that describes the possible results of a random variable that
can take on one of n possible choices G = {1, . . . ,n}. The space of all categorical
distributions form an exponential family commonly called the probability simplex:

10.2478/jamsi-2020-0003
c©University of SS. Cyril and Methodius in Trnava
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∆n−1. In information geometry, the probability simplex can also be viewed as a mixture
family [3]. Mixture families can also be modeled by dually flat manifolds [23].

Consider as well the more recent work by Imparato and Trivelato [14] and Pistone
[24], which certainly belongs to the same class of models, and, even though the
techniques are quite different from those developed here, the similarities are many.
And to finish this short list of references, we cite the nice textbook by Calin and
Udriste [8].

A non-parametric approach based on an intrinsic geometry on the space of
probability densities, and to understand exponential families in that set up was put
forward in Gzyl and Recht [10]-[11]. The approach considered in that work was too
general, and less germane than the Riemannian approach considered below. The
excess generality in those papers comes from the use of algebras over the complex
field. Even so, quite a bit of interesting connections between families of exponential
type, geodesics and polynomials of binomial type was established in [11]. Let us
point out another recent approach which considered the Hilbert geometry for the
probability simplex and its connection with the Birkhoff cone projective geometry of
the positive orthant [22].

Actually there has been much interest in that geometry, not in Rn but in the space of
symmetric positive-definite matrices. The reader can check with Lang [17] in which a
relation of this geometry to Bruhat-Tits spaces is explored, or in Lawson and Lim [18]
or Moakher [20] were the geometric mean property for sets of symmetric positive-
definite matrices is established. More recently Arsigny et al. [1] described the use of
that geometry to deal with a variety of applications, and Schwartzman [28] used that
geometric setup to study lognormal distributions with values in the class of symmetric
matrices.

1.2. Paper outline

The paper is organized as follows. In Section 2 we present the essentials about the
geometry on the set of strictly positive vectors in a finite dimensional space. Here we
present the finite dimensional case only for two reasons: First because all geometric
ideas are already present in this case, and second, for not to encumber the manuscript
with technical details pertinent to the infinite dimensional case needed to deal with
probability densities. In Section 3 we regard probabilities on finite sets as a
submanifold of the set of strictly positive numbers, and verify that exponential
probability distributions correspond to geodesic hyper-surfaces in that manifold (i.e.,
autoparallel submanifolds). We then provide a geometric interpretation for the
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method of maximum entropy [15]: The Lagrange multipliers (which are related to
intensive magnitudes in statistical physics, correspond to travel time along a geodesic
from an initial distribution to the distributions satisfying given constraints). In
section 5 we recall, for the sake of completeness, the role of the logarithmic entropy
function as a Lyapunov function for standard Markovian dynamics.

2. THE GEOMETRY ON THE SPACE OF POSITIVE REAL-VALUED
VECTORS

The results described next are taken almost verbatim from [10]. The basic idea for
the geometry that we are to define on the positive vectors in Rn, is that we can think
about them as functions ξ : G = {1, ...,n}→R, and all standard arithmetical operations
either as componentwise operations among vectors or pointwise operations among
functions. We shall denote by M = {x ∈ Rn | x(i)> 0, i = 1, ...n} the set of all positive
vectors (the positive orthant cone). M is an open set in Rn which is trivially a manifold
over Rn

++, having Rn itself as tangent space TxM at each point x ∈M .
The set M plays the role that the positive definite matrices play in the work by

Lang, Lawson and Lim and Moakher mentioned above. The role of the group [19; 7]
of invertible matrices in those references is to be played by

G = {g ∈ Rn | g(i) 6= 0, i = 1, ...,n} .

Group G clearly is an Abelian group with respect to the standard componentwise
product (Hadamard product). The identity e = (1, . . . ,1) ∈ G is the vector with all
its components equal to 1. In order to define a scalar product at each TxM we use a
transitive action of G : M →M of G on M as follows. Set

τg(x) = g−1xg−1.

This action is clearly transitive on M , and can be defined in the obvious way as an
action on Rn. We transport the scalar product on TeM to any TxM as follows:

The scalar product between ξ and η at TeM is defined to be the standard Euclidean
product (dot product) 〈ξ ,η〉 = ∑ξiηi, and we shall switch between ξ (i) and ξi

whenever is convenient for typographical reasons. We now use the fact that x = τg(e)

with g = x−1/2 to define the scalar product transported to TxM by

〈ξ ,η〉x ≡ 〈x−1
ξ ,x−1

η〉= 〈x−2
ξ ,η〉. (1)
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That is, we transport the vectors back to TeM and compute their scalar product there.
That scalar product allows us to define the length of a differentiable curve as follows:

Let x(t) be a differentiable curve in M with ẋ(t) = dx(t)
dt , its length is given by∫ 1

0

√
〈ẋ, ẋ〉xdt.

With this, the distance between x1,x2 ∈M is defined by the usual formula as the length
minimizing curve linking x1 to x2:

d(x1,x2) = inf
{∫ 1

0

√
〈ẋ, ẋ〉xdt |x(t) differentiable such that x1 = x(0) x2 = x(1)

}
.

(2)
Actually, it also happens that the geodesics minimize the action functional∫ 1

0
L (ẋ(t),x(t))dt, with L (ẋ(t),x(t)) =

1
2
〈ẋ, ẋ〉x, (3)

It takes an application of the Euler-Lagrange formula to see that the equation of the
geodesics in this metric is

ẍ(t) = x−1ẋ2, x(0) = x1, x(1) = x2, (4)

the solution to which is

x(t) = x1e−t ln(x1/x2) = xt
2x1−t

1 . (5)

This is the e-geodesic in information geometry [3], also called a Bhattacharyya arc.

Comments. The choice of sign in the exponent is arbitrary. We choose the sign as
negative now so that a negative sign does not occur when we deal with the maximum
entropy method below. It should also be clear that the transport mentioned above
coincide with the geodesic transport just defined.
The geometric construction carried out above was to render as natural the following
distance between positive vectors in M . The geodesic distance between x1 and x2 as

d(x1,x2)
2 =

n

∑
i=1

(lnx1(i)− lnx2(i))
2
=

n

∑
i=1

ln2

(
x1(i)
x2(i)

)
. (6)

This formula coincides with the Riemannian distance between two positive diagonal
matrices of the manifold of symmetric positive-definite matrices [20]; Let P1 and P2

be two symmetric positive-definite matrices. Then their Riemannian distance is

ρ(P1,P2) =

√
n

∑
i=1

ln2
λi(P1P−1

2 ), (7)
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where λi(P) denotes the i-th largest eigenvalue of matrix P. Thus when
P1 = diag(x1(1), . . . ,x1(n)) and P2 = diag(x2(1), . . . ,x2(n)) are the diagonal matrices
induced by x1 and x2, respectively, we have ρ(P1,P2) = d(x1,x2).

Notice as well that instead of solving (4) with initial and final conditions
(geodesics with boundary values), we might as well consider the solution to (4)
subject to x(0) = x, and ẋ(0) = ξ (geodesics with initial values), which is clearly
given by the (exponential) mapping xe−tξ .

The following result is taken verbatim from Gzyl (2017). It summarizes the main
results from Chapter 5 of Lang (1995).

THEOREM 2.1. With the notations introduced above we have:
1) The exponential mapping is metric preserving through the origin.
2) The derivative of the exponential mapping is measure preserving, that is, exp′(ξ )ν =

νeξ as a mapping TxM→ TexpxM satisfies

〈ν ,ν〉= 〈exp′(ξ )ν ,exp′(ξ )ν〉exp(ξ )

3) With the metric given by (6), M is a Bruhat-Tits space, that is, it is a complete
metric space in which the semi-parallelogram law holds. That is, given any x1, x2 ∈M ,

there exists a unique z ∈M such that for any y ∈M the following holds

d(x1,x2)
2 +4d(z,y)2 ≤ 2d(y,x1)

2 +2d(y,x2)
2. (8)

Comments:
1) The proof of each assertion follows from calculus. In our framework,
commutativity makes things much simpler. To obtain the completeness of M we
transfer it from Rn via the exponential mapping.
2) The point z mentioned in item (3) is given by z =

√
x1x2.

Along with the notion of geodesic curve, there is a notion of geodesic surface
through (or containing) a point x(0). A parametric geodesic surface containing
x(0) ∈M and having tangents ξ 1, ...,ξ K there is a mapping t ∈K→M given by

t = (t1, ..., tK) ∈ RK → x(t) = e−∑i tiξ i . (9)

We leave for the reader to verify that we can reach any point of this surface traveling
along the individual geodesics one at a time.
In the next section we shall see how this surface maps into a geodesic surface in the
set of all probabilities on [n] = {1, ...,n}, and the probabilistic interpretation of the
geodesic surface will be that of an exponential family.
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3. THE INDUCED GEOMETRY ON THE SET OF DISCRETE
PROBABILITIES

If we think about the lines in M as the object of our interest, we may think about the
probabilities on a discrete sample space of cardinality n as the representatives of the
rays in M (equivalence classes). Let us introduce the notation P = {x∈M |〈e,x〉= 1}.
Clearly, if the point x

〈e,x〉 which lies in P is a representative of the line through x but
the mapping

M →P x→ x
〈e,x〉

,

is a projection but not an orthogonal projection. Similarly, a curve t ∈ I→ x(t) ∈M

projects onto a curve in P, and the question is: Do geodesics in M project onto
geodesics in P?

Before answering this question, note the following. If p1 and p2 are two points in
P the curve x(t) = pt

2 p1−t
1 = p1 exp(−tξ ) that joins them is a geodesic in the ambient

space M , but it is not necessarily a curve in P. To answer the question posed in the
last paragraph consider p(t) = x(t)/Z(t) with Z(t) = 〈e,x(t)〉 which certainly is a curve
lying in P. Note that 〈e, p(t)〉= 1, then

ṗ =−p(ξ − p〈e, pξ 〉) , (10)

clearly satisfies 〈e, ṗ(t)〉= 0. That is the velocity along p is tangent to P at every point.
Differentiate with respect to t once more and use the previous equation to obtain

p̈(t) = p
(

ṗ2(t)
p2(t)

−
〈

e,
ṗ2(t)
p2(t)

〉)
.

Notice that p(t) satisfies the geodesic equation in the coordinates of the ambient space
M corrected so that the acceleration is tangent to P. That is, the projection of a
geodesic is a geodesic. We can gather these comments under the following theorem:

THEOREM 3.1. The geodesic between two points p1 and p2 in P can be
obtained by projecting down to P the geodesic between the same points in the
ambient space M .

The pending question is: How to choose coordinates in P is order to transport
the whole geometric structure there instead of working with the coordinates of the
ambient space (M ) in which it sits as a submanifold.
Note as well that instead of a geodesic joining two points, the same result applies



JAMSI, 16 (2020), No. 1 31

to a geodesic issued from a point p1 in the direction of a tangent vector ξ . And the
same applies to a geodesic surface determined by a collection of vectors {ξ 1, ...,ξ K}
parameterized by t ∈RK . The analogue of the previous result is now easy to establish.

THEOREM 3.2. The geodesic surface p(t) containing the point p1 and tangent to
the vectors {ξ 1, ...,ξ K} at Pp1 is given by

p(t) =
p1e−∑i tixi

Z(t)
with Z(t) =

〈
e, p1e−∑i tixi

〉
. (11)

is obtained by projecting the geodesic surface in M down to P.

Comment: Clearly (11) describes an exponential family of probabilities on
{1, ...,n}, or in other words, exponential probabilities are geodesic surfaces in the
metric described in Section 2.

Since the geodesics are defined for all values of the parameter t, a pending
question is: What does p(t) tend to as t → ±∞? To answer the first question, put
kmax = argmax{ln(p1(k)/p2(k)) | k = 1, ...,n} and similarly
kmin = argmin{ln(p1(k)/p2(k)) | k = 1, ...,n}. Let us consider the sets of subscripts at
which the maximum or the minimum are reached, that is Jmax = {1≤ k ≤ n : k = kmax}
and Jmin = {1 ≤ k ≤ n : k = kmin}, and let their cardinalities be, respectively, Mmax and
Mmin. Then as t→ ∞,

pk(t)→

{
1/Mmin k ∈ Jmin

0 otherwise.

When t→−∞ a similar result is obtained with Mmin replaced by Mmax.

4. GEOMETRIC/DYNAMIC INTERPRETATION OF THE MAXIMUM
ENTROPY METHOD

Consider a random variable ξ as a tangent vector in Tp0 M and the class

Pµ =

{
p ∈P : Ep[ξ ] = ∑

i

p(i)ξi = 〈e, pξ 〉= µ

}
,

for some given number µ, that is, the class of all probabilities under which ξ has
expected value µ. Since Pµ is a hyperplane in P, we may wonder whether following
the geodesic p(t) = p0 exp(−tξ )/Z(t) issued from p0 along ξ , we might intercept Pµ .

If the answer is yes, then so is the answer to our question.
If t∗ is such that p(t∗) ∈Pµ , then clearly

p(t∗) ∈Pµ ⇔ t∗ = argmin{tµ + lnZ(t) : t ∈ R} . (12)
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Clearly the function in curly brackets is strictly convex, and the first order condition
for t∗ to be its minimizer is equivalent to the assertion on the left hand side. Consider
now the relative entropy function (also called the Kullback-Leibler divergence)

S(p, p0) : P → R, S(p, p0) = 〈e, p ln(p/p0)〉= ∑
i

p(i) ln
(

p(i)
p0(i)

)
.

Now, note that if we replace the generic p by a probability along the geodesic, we
have S(p(t), p0) = µ + ln(Z(t)). To complete the argument, note that the concavity
of the logarithm implies that for any pair of probabilities S(p,q) ≤ 0 (with equality
whenever they are equal), implies that taking q = p(t)

S(p, p(t))≤ 0 ⇒ S(p, p0)≤ tµ + ln(Z(t)) = S(p(t), p0) for any t.

That is the entropy of any p(t) along the geodesic bounds from above the entropy of
any p ∈Pµ . What we do not know is whether there is a t∗ for which p(t∗) ∈Pµ .

What (12) asserts is that if there is a t∗ minimizing tµ + lnZ(t), then p(t∗) ∈Pµ and
necessarily p(t∗) solves the following entropy maximization problem:

Find p∗ ∈Pµ such that p∗ maximizes S(p, p0) over Pµ .

To sum up, whether or not the geodesic issued from p1 along ξ intersects the “plane”
Pµ is equivalent solvability of the entropy maximization problem. And since the
dual entropy function Σ(t) = tµ + lnZ(t) is interpreted as a free energy in statistical
thermodynamics, the travel time t∗ has an interpretation as an “intensive”
thermodynamical variable conjugate to ξ .

5. ENTROPY: A LYAPUNOV FUNCTION FOR MARKOVIAN DYNAMICS

The results of the previous section, interesting as they may be, are not connected to
a dynamics related to a physical process. For example, we may consider the case
in which there is a Markovian process with state space {1, ....,n} and transition rate
matrix Q. When we suppose that the chain is irreducible (we can reach any state
starting from any other state), it is well known that if the transition state is either
symmetric or reversible, the entropy function is a Lyapunov function for the chain. To
spell it out in symbols, note if p(0) is any initial distribution on the state space, then
p(t) = etQ p(0) describes the probability distribution at current time t.

The following was proved in Klein (1956) for the Ehrenfest urn model and extended
in Moran (1960) as follows:
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THEOREM 5.1. With the notations introduced above, then:
1) If the Markov chain is symmetric, that is, Q(i, j) = Q( j, i), or
2) If the chain is reversible, that is, if there is an equilibrium probability law pe such
that ∑ j Q(i, j)pe( j) = 0,

then the entropy S(p(t) satisfies dS(p(t))/dt > 0.

These results are part of a large chain of results on the issue of time (ir)reversibility
in statistical thermodynamics. From the mathematical point of view, the result is a
particular case of a more general, and surprisingly simple to prove result for monotone
continuous mappings, which applies to linear and non-linear dynamical systems. See
Brown (1985).

6. CONCLUDING REMARKS

To sum up, there is a curious and nice relationship between a geometry on the set of
positive real vectors and the exponential families of probability distributions on finite
sets. In this setup, exponential families appear as geodesic surfaces in the set of
probabilities. This Bruhat-Tits space is different than the Hilbert simplex/Birkhoff
cone geometry proposed in [22] (Hilbert cross-ratio distance on the probability
simplex fails the semi parallelogram law).

The logarithmic distance in the set of strictly positive vectors leads to notion of best
predictor that complements the theory best prediction is square distance. For more on
this see Gzyl (2017).

7. APPENDIX: PROJECTED GEODESICS ARE GEODESICS

The curve t → x0 exp(tξ ) in M is a geodesic through x0 tangent to ξ = ln(x1/x0). It
minimizes ∫ 1

0
L (x, ẋ)dt =

1
2

∫ 1

0
〈ẋ, ẋ〉xdt

in the class of curves through x(0) = x0 and x(1) = x1. The scalar product on TMx was
defined in (1). When considering curves that live in P we must impose the constraint
Ee[x(t)] = 1 for all t. This leads to the following result

THEOREM 7.1. The curve

p(t) = Ψ(x0etξ ) =
x0etξ

Ee[x0etξ ]
=

x0etξ

Ex0 [etξ ]
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minimizes

1
2

∫ 1

0
〈ẋ, ẋ〉xdt +

1
2

∫ 1

0
λ (t)

(
Ee[x(t)]−1

)
dt.

The proof is by calculus. Note first that for p(t) = Ψ(x0eξ ) we have:

p̈
p2
− ṗ2

p3
=−Ep[ξ̄

2
]

p
(13)

where ξ̄ = ξ −Ep[ξ ]. The Euler-Lagrange equations for the constrained problem yield

ẍ
x2
− ẋ2

x3
=

1
2

λ (t). (14)

Therefore, identifying x(t) = p(t) and λ (t) = 2Ep[ξ̄
2
] and computing Ep in both sides

of (13) we see that it becomes (14) after computing Ep in both sides of it.
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[11] Gzyl, H. and Recht, L. (2007) Intrinsic geometry on the class of probability densities and exponential

families, Public. Mathematiques, 51, 309-322.

[12] Gzyl, H. (2019) Best predictors in logarithmic distance between positive random variables. To appear

Journal of Applied Mathematics, Statistics and Informatics, 15, 15-28

[13] Hotelling, H (1930) Spaces of statistical parameters. Bulletin of the American Mathematical Society

(AMS), 36:191



JAMSI, 16 (2020), No. 1 35

[14] Imparato, D. and Trivelato, B. Geometry of extended exponential models, in Algebraic and Geometric

Methods in Statistics, Gibilisco, P., Riccomagno, E. Rogantin, M.P. and Wynn, H. eds., Cambridge

Univ. Press, Cambridge, (2010).

[15] Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review, 106(4), 620.

[16] Klein, M. (1956) Entropy and the Ehrenfest urn model, Physica, 22, 569-575,

[17] Lang, S. Math talks for undergraduates, Springer, New York, (1999).

[18] Lawson, J.D. and Lim, Y. (2001) The Geometric mean, matrices, metrics and more, Amer.

Math.,Monthly, 108, 797-812.

[19] Li, F., Zhang L. and Zhang Z. (2018) Lie Group Machine Learning, Walter de Gruyter GmbH & Co

KG, ISBN9783110499506.

[20] Moakher, M. (2005) A differential geometric approach to the geometric mean of symmetric positive

definite matrices, SIAM. J. Matrix Anal. & Appl., 26, 735-747

[21] Moran, P.A.P. (1960) Entropy, Markov processes and Boltzmann’s H-theorem, Proc. Camb. Phil. Soc.,

57, 833-842.

[22] Nielsen, F., and Sun, K. (2017). Clustering in Hilbert simplex geometry. preprint arXiv:1704.00454.

[23] Nielsen, F., and Nock R. (2018) On the geometry of mixtures of prescribed distributions, IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24] Pistone, G. Algebraic varieties vs. differentiable manifolds, in Algebraic and Geometric Methods in

Statistics, Gibilisco, P., Riccomagno, E. Rogantin, M.P. and Wynn, H. eds., Cambridge Univ. Press,

Cambridge, (2010).

[25] Pistone, G. and Rogantin, M.P. The exponential statistical manifold: mean parameters, orthogonality

and space transformations” Bernoulli, 5 (1999), 721-760.

[26] Pistone, G. and Sempi, C. “An infinite dimensional geometric structure in the space of all probability

measures equivalent to a given one”. Ann. Statist., 23 (1995), 1543-1561.

[27] Rao, C. R. (1992). Information and the accuracy attainable in the estimation of statistical parameters.

In Breakthroughs in statistics (pp. 235-247). Springer, New York, NY.

[28] Schwartzmazn, A. (2015) Lognormal distribution and geometric averages of positive definite matrices,

Int. Stat. Rev., 84, 456-486.

[29] Vajda, I. “Theory of statistical inference and information” Kluwer Acad., Dordrecht, (1989).

Henryk Gzyl
Centro de Finanzas, IESA,
Caracas 1010, Venezuela
email: henryk.gzyl@iesa.edu.ve

S.K. Yadav
Sony Computer Science Laboratories, Inc.,
Tokyo, Japan
email: Frank.Nielsen@acm.org



JAMSI, 16 (2020), No. 1 37 

 

 

10.2478/jamsi-2020-0004 
©University of SS. Cyril and Methodius in Trnava 

Exponentiated quasi power Lindley power 
series distribution with applications in medical 

science 

A. HASSAN, A. RASHID AND N. AKHTAR  

 

 

 

Abstract 

 
The present paper introduces an advanced five parameter lifetime model which is obtained by compounding 

exponentiated quasi power Lindley distribution with power series family of distributions. The EQPLPS 

family of distributions contains several lifetime sub-classes such as quasi power Lindley power series, 
power Lindley power series, quasi Lindley power series and Lindley power series. The proposed 

distribution exhibits decreasing, increasing and bathtub shaped hazard rate functions depending on its 

parameters. It is more flexible as it can generate new lifetime distributions as well as some existing 
distributions. Various statistical properties including closed form expressions for density function, 

cumulative function, limiting behaviour, moment generating function and moments of order statistics are 

brought forefront. The capability of the quantile measures in terms of Lambert W function is also discussed. 
Ultimately, the potentiality and the flexibility of the new class of distributions has been demonstrated by 

taking three real life data sets by comparing its sub-models. 
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1. INTRODUCTION 

The modeling of lifetime data has received prominent attention from researchers 

for the last decade. To predict the ambiguous behaviour of random events as death, 

appearance of some disease and system failure is a major concern for statisticians. 

There are diverse lifetime models available for researchers to predict this uncertain 

behaviour but at times due to complex pattern of data sets, these models do not provide 

a suitable fit. In order to prevail from this difficulty, researchers have focussed their 

attention on compounding mechanism which is a sound way to develop an appropriate 

and flexible models to fit the lifetime data of different types. 

 Keeping this in mind, Adamidis and Loukas (1998), Kus (2007), Tahmasbi 

(2008) constructed several lifetime distributions through this mechanism that proved 

to be operative in modeling of lifetime data having different features. Researchers 
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developed many lifetime distributions by this technique which are very flexible and 

can accommodate different types of data sets. For instance, Chahkandi and Ganjali 

(2009) obtained a compound class of exponential power series distributions. As 

weibull distribution contains the exponential distribution as a special case, Morais and 

Baretto-Souza (2011) substituted the exponential distribution with a weibull 

distribution in this mechanism and obtained a compound class of weibull power series 

distributions which contains EPS distribution as a special case. Adil and Jan (2016) 

introduced a new family of lifetime distributions by compounding a Lindley 

distribution with power series distribution that contains Lindley Geometric as special 

case due to Zakerzadeh and Mahmoudi (2012). Moreover, many authors discussed 

some special cases of the LPS family that are very flexible in terms of density and 

hazard rate functions. Adil and Jan (2018a, 2018b) obtained a lifetime distribution for 

series system and generalized version of complementary Lindley power series family 

of compound lifetime distributions related to parallel system which generalizes most 

of the lifetime distributions and have versatile properties. Arsalan et al. (2019) 

introduced the exponential Burr XII power series.     

2. EXPONENTIATED QUASI POWER LINDLEY DISTRIBUTION 

Manuela Ghica et al. (2017) introduced an Exponentiated Quasi Power Lindley 

Distribution (EQPLD) defined by its pdf as 
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This new distribution reduces to the quasi Lindley distribution, the exponential 

distribution and gamma distribution. In terms of reliability, the various shapes of the 

EQPL distribution give it a benefit, being more flexible to model many real systems 

which generally exhibit bath-tub shaped failure rate. The corresponding cdf of the 

above equation becomes 
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2.1. Special cases 

Case 1:  At 1=b , EQPLD reduces to Quasi Power Lindley distribution. 

Case 2: At 1= , EQPLD reduces to the Power Lindley distribution introduced by 

ME Ghitany (2013). 

Case 3: At 1,1 == b , EQPLD reduces to the Quasi Lindley distribution introduced 

by Shanker and Mishra (2013). 

Case 4: At 1,1,1 === b , EQPLD reduces to the Lindley distribution. 

3. THE EQPLPS FAMILY 

In this section, we derive the family of EQPLPS distributions by compounding 

the EQPL class of distributions with the power series distributions. 

 

Let N be a discrete random variable following the power series distribution (truncated 

at zero) with probability mass function given by 

( )
,...2,1,)( === n

C

a
nNP

n

n



  

Where 0na be reliant on n, ( ) 



=

=
1n

n

naC  and ( )s,0 is chosen in such a way 

that ( )C  is finite. The power series family of distributions, contains Poisson, 

logarithmic, geometric and binomial distributions as special cases. Valuable extents 

of above distributions truncated at zero are given in table 1. 
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Table 1: Useful Extents Of Zero Truncated Power Series Distribution 

Distribution     
na     ( )C  ( )'C  ( )''C  ( )1−C        

Poisson   1!−n    1−e     e     e  ( )1log +  ( ) ,0  

Logarithmic   1−n  ( )−− 1log  ( ) 1
1

−
−    ( ) 2

1
−

−     −− e1  ( )0,1   

Geometric    1  ( ) 1
1
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Given N, let ( )NXXXX ,...,max 21= , where NiX i ,...2,1, =  are independent and 

identically distributed (iid) random variables with cdf ().Then the cdf of nNX =|  is 

given by 
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The EQPLPS is then defined by the marginal cdf of X, which is given by 
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 Here, a random variable X following Exponentiated Quasi Power Lindley power 

series distribution with parameters  ,,,, b  will be denoted by

( ) ,,,,~ bEQPLPSX . This new class of distributions contains several lifetime 

distributions as special cases which will be discussed in section (9). 
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5. DENSITY, SURVIVAL AND HAZARD RATE FUNCTIONS 

The pdf, survival and hazard functions are respectively given by 
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And the hazard function is given as 
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THEOREM 4.1. The Exponentiated Quasi Power Lindley distribution is a 

limiting case of EQPLPS distribution when  +→ 0 . 

Proof: From the cdf of EQPLPS distribution , we have 
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Using L’ Hospital’s rule, it follows that 
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Which is the cdf of exponentiated quasi power Lindley distribution. 

THEOREM 4.2. The densities of the EQPLPS distribution can be expressed as 

an infinite linear combination of densities of nth order statistics of the exponentiated 

quasi power Lindley distribution 
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Where ( ) ( )nn XXXnxg ,...,max, 21=  is the nth order statistics of exponentiated quasi 

power Lindley distribution. 

Proof: As we know that 
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Therefore, the pdf of EQPLPS distribution reduces to the expression after using the 

above argument as follows 
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is the nth order statistics of exponentiated quasi power Lindley distribution. Therefore 

the densities of EQPLPS distribution can be expressed as an infinite linear 

combination of the nth order statistics of exponentiated quasi power Lindley 

distribution. 

6. MOMENT GENERATING FUNCTION 

The moment generating function of EQPLPS distribution can be obtained from 

(3) 
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nX
 is the moment generating function of nth order statistics of 

exponentiated quasi power Lindley distribution. 

( )
( ) ( ) dxe

x
e

x
exxe

bn
tM

n
b

x

b

xxtx

X n 

 −

−

−

−−−
































+
+−


















+
+−+

+
=

0

1
1

1
2

1
11

1
11

1

 


















  

( ) ( ) ( ) dx
x

exxe
k

bbj

j

nn

k

k

xktxkj

n

j

 



=



+−−+

−

=



















+
++−







 −+







 −

+
=

0 0

1

1

0

2

1
11

11

1 






 
   



44 A. Hassan, A. Rashid and N. Akhtar 

 

 

Using 



=

=
0 !l

ll
tx

l

xt
e  

( )
( )

( )

( )

( )


















+









+−++








++−










+
−















 −+







 −

+
=

++−

−

+

−

=



=



=



=



1

1

0 0 0 0

2

1

1!
1

11

1

















lik

ikl
kj

n

j k l i

k

l
ikk

l
ik

l

t

i

k

k

bbj

j

nbn

And it follows that 

( )
( )

( )
( )

( )

( )


















+









+−++








++−










+
−















 −+







 −

+
=

++−

−

+

−

=



=



=



=



=



1

1

0 0 0 01

2

1

1!
1

11

1





















lik

ikl
kj

n

j k l in

n

n

X

k

l
ikk

l
ik

l

t

i

k

k

bbj

j

n

C

nab
tM

 

The rth moment of the EQPLPS distribution about origin is 
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7. QUANTILE FUNCTION 

THEOREM 6.1. If ( ) ,,,,~ bEQPLPSX , then the quantile function of X 

is 
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Where ( )1,0v  and W(.) denotes the Lambert W function (see Corless et al.(1996)) 
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Using above equation the quartiles of the EQPLPS distribution can be determined. 

Median of the exponentiated quasi power Lindley power series distribution is given 

by 
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8. ORDER STATISTICS AND THEIR MOMENTS 

Let 
nXXX ,..., 21
 be a random sample of size n having EQPLPS distribution. 

The pdf and cdf of ith order statistics say 
niX ::  can be obtained as 

( )
( ) ( )

( )  ( )  ( ) )6(1
!1!

! 1

: xfxFxF
iin

n
xf

ini

ni

−−
−

−−
=  

( )
( ) ( )

( )
( ) ( )

in
b

x

i
b

x

ni
C

e
x

C

C

e
x

C

xf
iin

n
xf

−

−

−

−























































+
+−

−























































+
+−

−−
=















 





1
11

1
1

11

!1!

!

1

:

Expression (6) can also be written as 

( )
( ) ( )

( ) ( ) ( )  1

0

: 1
!1!

! −+

−

=

−






 −

−−


ikk

in

k

ni xFxf
k

in

iin

n
xf  

The associated cdf of ( )xf ni:
 denoted by ( )xF ni:

 becomes 

( )
( ) ( )

( )

( ) ( )
)7(

1
111

!1!

!

0

:

ik
b

x
in

k

k

ni
C

e
x

C
ik

k

in

iin

n
xF

+

−
−

=

































































+
+−

+

−






 −

−−
= 











 



JAMSI, 16 (2020), No. 1 47 

 

 
Expression for rth moment of ith order statistics with cdf (3.1) can be obtained by using 

a well- known result given by Barakat et al. (2004) as follows 
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9. PARAMETER ESTIMATION 

Let 
nXXX ,..., 21
 be a random sample with observed value ( )nxxxx ,..., 21=  

obtained from EQPLPS distribution with parameters  andb,,, . Let 

( )Tb  ,,,,=  be the parameter vector. The log likelihood function is given by 
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MLEs of  &,,, b cannot be obtained by solving above complex equations as 

these equations are not in closed form. So we solve the above equations by using 

iteration method through R software. 
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10. SPECIAL SUB-MODELS OF THE EQPLPS MODEL 

10.1. Exponentiated Quasi Power Lindley Poisson Distribution (EQPLPD) 

The corresponding cdf, pdf, survival function and hazard function of EQPLPD 

can be obtained respectively by using ( ) 1−=  eC  and ( )  eC ='  in (1) & (2). 
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For   0,0,,,, andbx . The expression for rth moment of a random 

variable following EQPLPS distribution becomes by substituting 1!−= nan
 and

( ) 1−=  eC  in (4). 
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The pdf and cdf of order statistics of EQPLPD can be obtained by using the cdf and 

pdf of EQPLPD in (6) and (7). 
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The quantile function can be obtained by substituting ( ) 1−=  eC  and 

( ) ( )1log1 +=− C  in (5), we have 
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10.2. Exponentiated Quasi Power Lindley Logarithmic Distribution (EQPLLD) 

The cdf, pdf, survival function and hazard function of EQPLLD is obtained by 

using ( ) ( ) −−= 1logC  and ( ) ( ) 1' 1
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−= C  in (1) and (2). 
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For 10,0,,,,   andbx .The rth moment of EQPLLD can be obtained by 

substituting ( ) ( ) −−== − 1log1 Candnan
 in (4) 

The pdf and cdf of EQPLLD can be obtained by substituting its pdf and cdf in (6) and 

(7). 
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By substituting ( ) ( ) −−= 1logC  and ( )  −− −= eC 11  in (5), the quantile function 

of EQPLL distribution is obtained as 
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10.4. Exponentiated Quasi Power Lindley Geometric Distribution (EQPLGD) 

The cdf, pdf, survival function and hazard function of EQPLGD can be obtained 

by using ( ) ( ) 1
1

−
−= C   &  ( ) ( ) 2' 1

−
−= C in (1) & (2). 
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For 100,,,,   andbx . The rth moment of EQPLGD can be obtained by 

substituting 1=na  and ( ) ( ) 1
1

−
−= C  in (4). 

The pdf and cdf of order statistics of EQPLGD can be obtained by using the cdf and 

pdf of EQPLGD in (6) and (7) ,we have 
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By substituting ( ) ( ) 1
1

−
−= C  and  ( ) ( ) 11 1

−− += C in (5), the quantile function 

of EQPLG distribution is obtained as 
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10.5. Exponentiated Quasi Power Lindley Binomial Distribution (EQPLBD) 

The cdf , pdf, survival function and hazard function of EQPLBD can be obtained 

respectively by taking ( ) ( ) 11 −+=
m

C   and ( ) ( ) 1' 1
−
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m

mC    in (1) and (2). 
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For .00,,,,   andbx The rth moment of a random variable following 

EQPLBD becomes by taking ( ) ( ) 11 −+=
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a   in (4). 

The pdf and cdf of order statistics of EQPLBD can be obtained respectively by using 

the pdf and cdf of EQPLBD in (6) and (7). 
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11. APPLICATION 

To show the superiority of the proposed distribution, we compare its submodels 

by taking four real life data sets. 
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Data set 1. The first data set represents the Lifetime of fatigue of Kevlar 373/epoxy, 

that are subject to constant pressure at the 90% stress level until all had failed. The 

data set is 

0.0251 0.886 0.0891  0.2501 0.3113 0.3451 0.4763 0.565 0.5671 0.6566 0.6748 

0.6751 0.6753 0.7696  0.8375 0.8391 0.8425 0.8645 0.8851 0.9113 0.912 0.9836 

1.0483 1.0596 1.0773  1.1733 1.257 1.2766 1.2985 1.3211 1.3503 1.3551 1.4595 

1.488 1.5728 1.5733  1.7083 1.7263 1.746 1.763 1.7746 1.8275 1.8375 1.8503 

1.8808 1.8878 1.8881  1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.133 2.21 

2.246 2.2878 2.3203  2.347 2.3513 2.4951 2.526 2.9911 3.0256 3.2678 3.4045 

3.4846 3.7433 3.7455  3.9143 4.8073 5.4005 5.4435 5.5295 6.5541 9.096  

           

Table 10.1: Analysis of model fitting 

MODEL                                 MLE  AIC         BIC          

EQPLP 233.0ˆ,254.1ˆ,110.1ˆ,000000122.0ˆ,924.0ˆ =====  b  253.13 260.76 

EQPLG 525.0ˆ,092.1ˆ,837.0ˆ,00000145.0ˆ,060.1ˆ =====  b  253.86 261.49 

EQPLL 483.0ˆ,159.1ˆ,914.0ˆ,0000000980.0ˆ,036.1ˆ =====  b  253.62 261.25 

Fig 1: Fitting of EQPLP, EQPLG, EQPLL to the fatigue lifetime data. 
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Data Set 2. The data set reported by Efron B (1988) and was used by Rama Shanker 

(2016) represent the  survival times of a group of patients suffering from Head and 

Neck cancer disease and treated using radiotherapy (RT). The data set is 

6.53 7 10.42 14.48 16.10 22.70 34 41.55 42 45.28 49.40 53.62 

63 64 83 84 91 108 112 129 133 133 139 140 

140 146 149 154 157 160 160 165 146 149 154 157 

160 160 165 173 176 218 225 241 248 273 277 297 

405 417 420 440 523 583 594 1101 1146 1417 

Table.10.2: Analysis of model fitting 

MODEL  MLE AIC BIC 

EQPLP 570.2ˆ,945.4ˆ,605.0ˆ,625.2ˆ,372.0ˆ =====  b 750.37 758.00 

EQPLG 390.0ˆ,749.1ˆ,152.0ˆ,000000839.0ˆ,542.0ˆ =====  b 751.59 759.22 

EQPLL 384.0ˆ,789.1ˆ,160.0ˆ,00000152.0ˆ,535.0ˆ =====  b 751.58 6759.21 

Fig 2: Fitting of EQPLP, EQPLG, EQPLL to the survival data. 
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Data Set 3.  The data set reported by Efron B (1988) and was used by Rama Shanker 

(2016) represent the survival times of a group of patients suffering from Head and 

Neck cancer disease and treated using a combination of radiotherapy and 

chemotherapy (RT+CT). 

 

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 63.47 

68.46 78.26 74.47 81.43 84 92 94 110 112 119 127 

130 133 140 146 155 159 173 179 194 195 209 

249 281 319 339 432 469 519 633 725 817 1776 

 

Table 10.3: Analysis of model fitting 

MODEL                                 MLE AIC BIC 

EQPLP 381.0ˆ,75.1ˆ,125.0ˆ,00000132.0ˆ,576.0ˆ =====  b  568.43 576.06 

EQPLG 451.0ˆ,480.1ˆ,126.0ˆ,0000000653.0ˆ,578.0ˆ =====  b  569.03 576.67 

EQPLL 411.0ˆ,640.1ˆ,108.0ˆ,00000328.0ˆ,597.0ˆ =====  b  568.83 576.47 

                                 

Fig 3: Fitting of EQPLP, EQPLG, EQPLL to the survival data. 
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Data Set 4. The data set represents remission times (in months) of a random sample 

of 128 bladder cancer patients reported in Lee & Wang (2003) and was used by Rama 

Shanker (2016) in modeling of lifetime data .                                                            

Table.10.4: Analysis of model fitting 

MODEL                                          MLE AIC BIC 

EQPLP 406.0ˆ,415.1ˆ,552.0ˆ,00000279.0ˆ,673.0ˆ =====  b  827.63 835.26 

EQPLG 429.0ˆ,384.1ˆ,458.0ˆ,00000172.0ˆ,727.0ˆ =====  b  828.34 835.98 

EQPLL 403.0ˆ,403.1ˆ,472.0ˆ,000000556.0ˆ,713.0ˆ =====  b  828.21 835.85 

 

Fig 4: Fitting of EQPLP, EQPLG, EQPLL to the cancer data. 

All the sub-models fit well but among them EQPLP class of distributions 

performs excellently well as it possesses the lowest values of AIC and BIC values.  
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12. CONCLUSION 

We have proposed a new five parameter lifetime distribution for parallel system 

by compounding Exponentiated Quasi Power Lindley distribution with power series 

distribution. The mathematical properties including density function, moment 

generating function, order statistics, quantile function have been obtained. The 

parameters have been estimated by the method of maximum likelihood estimation. 

The proposed model contains some lifetime sub-classes and has the competency to 

yield many beneficial and flexible distributions for modelling lifetime data. 

Ultimately, the sub-models have been compared by applying them to four real life 

data sets to show the flexibility of the proposed model.  
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Restructured class of estimators for population
mean using an auxiliary variable under simple

random sampling scheme
S. BAGHEL AND S. K. YADAV

Abstract

The present paper provides a remedy for improved estimation of population mean of a study variable,
using the information related to an auxiliary variable in the situations under Simple Random Sampling
Scheme. We suggest a new class of estimators of population mean and the Bias and MSE of the class are
derived upto the first order of approximation. The least value of the MSE for the suggested class of
estimators is also obtained for the optimum value of the characterizing scaler. The MSE has also been
compared with the considered existing competing estimators both theoretically and empirically. The
theoretical conditions for the increased efficiency of the proposed class, compared to the competing
estimators, is verified using a natural population.

Mathematics Subject Classification 2010: 62D05.
Keywords:Study Variable, Auxiliary Variables, Simple Random Sampling, MSE, PRE.

1. INTRODUCTION

Auxiliary information has been in practice in sampling theory since the advent of
modern sample surveys. Information on auxiliary variable having high correlation
with the variable under study is quite useful in improving the sampling design.
Cochran (1940) used the highly positively correlated study and auxiliary variable to
propound the ratio estimator. Product estimator requires a high negative correlation
between study and auxiliary variable. By reviewing the literature, it is concluded that
applying the auxiliary information enhances the efficiencies of the estimators for
estimating any parameter under consideration. So it is well established fact that the
use of auxiliary variable technique improves the estimation process for target
population. It is also noticed that ratio method of estimation is relatively simple and
one of the commonly used methods of estimation. Hence we have considered the
restructuring of the ratio type estimator in the present study.

Modifications in the usual ratio estimator has been done by various researchers to
obtain the MSE as minimum as possible. Bahl and Tuteja (1991) formed exponential
type ratio and product estimators. Kadilar and Cingi (2003) studied chain ratio type

10.2478/jamsi-2020-0005
c©University of SS. Cyril and Methodius in Trnava
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estimator. Jerajuddin and Kishun (2016) did not use auxiliary variable instead they
used size of the sample as supplementary information. Singh, Tailor and Kakran
(2004) used power transformation to improve the estimation of population mean.
Al-Omari (2009), Jeelani (2013), Singh and Tailor (2003), Sisodia and Dwivedi
(1981), Subramani and Kumarpandiyan (2012), Upadhyaya and Singh (1991), Yadav
(2019), Yan and Tian (2010) used the functions of auxiliary variable and their
combinations to modify the estimator with a greater precision.

The purpose of the current study is also to modify and improve the ratio estimator
which would be better than the many of previous derived estimators which are
considered in this study. Let the target population is of size N. Y is the study variable
and X is the auxiliary variable. A sample of size n has been drawn both for the study
and auxiliary variables. The present study would use the information of the variable
X combined with the study variable to obtain the more efficient estimators.

1.1. Notations

—N : Size of the population

—n : Size of the sample

—NCn : Number of possible samples of
size n from the population of size N

—Y : Study Variable

—X : Auxiliary Variable

—My,Mx : Medians

—Y ,X : Population means

—ȳ, x̄ : Sample means

—ρ : Correlation Coefficient between X
and Y

—β : Regression Coefficient of Y on X

—S2
y ,S

2
x : Population Mean Squares

—Syx : Covariance between X and Y

—Cy,Cx : Coefficients of Variation

—Bias(·) : Bias of the estimator

—V (·) : Variance of the estimator

—β1(x) : Coefficient of Skewness

—β2(x) : Coefficient of Kurtosis

—Q1(x) : First Quartile

—Q3(x) : Third Quartile

—QD : Quartile Deviation

—Qa(x) : Quartile Average

—Qr(x) : Quartile Range

—T M : Tri Mean

—MSE(·) : Mean Squared Error of the
Estimator

—PRE(ȳ, t) : Percentage Relative
Efficiency of the proposed estimator
with respect to the SRS mean
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1.2. Formulae

—λ = 1− f
n

— f = n
N

—ȳ = 1
n

n

∑
i=1

yi

—x̄ = 1
n

n

∑
i=1

xi

—V (ȳ) = λY
2
C2

y

—V (x̄) = λX
2
C2

x

—Cy =
Sy
Y

—Cx =
Sx
X

—Syx =
1

N−1

N

∑
i=1

(
Yi−Y

)(
Xi−X

)
—S2

y =
1

N−1

N

∑
i=1

(
Yi−Y

)2

—S2
x =

1
N−1

N

∑
i=1

(
Xi−X

)2

—ρ =
Syx

SxSy

—QD = Q3−Q1
2

—Qa(x) =
Q1+Mx+Q3

3

—Qr(x) = Q3−Q1

—T M = Q1+2Mx+Q3)

4

2. LITERATURE REVIEW OF EXISTING ESTIMATORS

A number of modified estimators by various authors have been developed till date for
improved estimation of the population mean under various situations under simple
random sampling scheme. The considered existing estimators with their Mean
Squared Errors along with their constants are presented in Table I.
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Table I: Literature Review

The existing estimators of population mean of study variable.

SNo Estimators MSE/Variance Constants

1 t0 = ȳ = 1
n ∑

n
i=1 yi λY 2C2

y

Sample Mean

2 t1 = ȳ
(

X
x̄

)
λY 2 (C2

y +C2
x −2Cyx

)
Cochran (1940)

3 t2 = ȳexp
(

X−x̄
X+x̄

)
λY 2

(
C2

y +
C2

x
4 −ρCyCx

)
Bahl and Tuteja (1991)

4 t3 = ȳ
(

X+Cx
x̄+Cx

)
λY 2 (C2

y +θ 2
3 C2

x −2θ3Cyx
)

θ3 =
X

X+Cx

Sisodia and Dwivedi (1981)

5 t4 = ȳ
(

XCx+β2(x)
x̄Cx+β2(x)

)
λY 2 (C2

y +θ 2
4 C2

x −2θ4Cyx
)

θ4 =
XCx

XCx+β2(x)

Upadhyaya and Singh (1999)

6 t5 = ȳ
(

Xβ2(x)+Cx
x̄β2(x)+Cx

)
λY 2 (C2

y +θ 2
5 C2

x −2θ5Cyx
)

θ5 =
Xβ2(x)

Xβ2(x)+Cx

Upadhyaya and Singh (1999)

7 t6 = ȳ
(

X+ρ

x̄+ρ

)
λY 2 (C2

y +θ 2
6 C2

x −2θ6Cyx
)

θ6 =
X

X+ρ

Singh and Tailor (2003)

8 t7 = ȳ
(

X+β2(x)
x̄+β2(x)

)
λY 2 (C2

y +θ 2
7 C2

x −2θ7Cyx
)

θ7 =
X

X+β2(x)

Singh et al. (2004)

9 t8 = ȳ
(

X+Q1(x)
x̄+Q1(x)

)
λY 2 (C2

y +θ 2
8 C2

x −2θ8Cyx
)

θ8 =
X

X+Q1(x)

t9 = ȳ
(

X+Q3(x)
x̄+Q3(x)

)
λY 2 (C2

y +θ 2
9 C2

x −2θ9Cyx
)

θ9 =
X

X+Q3(x)

Al-Omari et al. (2009)

10 t10 = ȳ
(

X+β1(x)
x̄+β1(x)

)
λY 2 (C2

y +θ 2
10C2

x −2θ10Cyx
)

θ10 =
X

X+β1(x)

Yan and Tian (2010)

11 t11 = ȳ
(

Xβ1(x)+β2(x)
x̄β1(x)+β2(x)

)
λY 2 (C2

y +θ 2
11C2

x −2θ11Cyx
)

θ11 =
Xβ1(x)

Xβ1(x)+β2(x)

Yan and Tian (2010)

12 t12 = ȳ
(

XCx+β1(x)
x̄Cx+β1(x)

)
λY 2 (C2

y +θ 2
12C2

x −2θ12Cyx
)

θ12 =
XCx

XCx+β1(x)

Yan and Tian (2010)

13 t13 = ȳ
(

X+Mx
x̄+Mx

)
λY 2 (C2

y +θ 2
13C2

x −2θ13Cyx
)

θ13 =
X

X+Mx

Subramani and
Kumarpandiyan (2012a)
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SNo Estimators MSE/Variance Constants

14 t14 = ȳ
(

XCx+Mx
x̄Cx+Mx

)
λY 2 (C2

y +θ 2
14C2

x −2θ14Cyx
)

θ14 =
XCx

XCx+Mx

Subramani and
Kumarpandiyan (2012a)

15 t15 = ȳ
(

X+Qr(x)
x̄+Qr(x)

)
λY 2 (C2

y +θ 2
15C2

x −2θ15Cyx
)

θ15 =
X

X+Qr(x)

Subramani and
Kumarpandiyan (2012b)

16 t16 = ȳ
(

X+QD
x̄+QD

)
λY 2 (C2

y +θ 2
16C2

x −2θ16Cyx
)

θ16 =
X

X+QD

Subramani and
Kumarpandiyan (2012b)

17 t17 = ȳ
(

X+Qa(x)
x̄+Qa(x)

)
λY 2 (C2

y +θ 2
17C2

x −2θ17Cyx
)

θ17 =
X

X+Qa(x)

Subramani and
Kumarpandiyan (2012b)

18 t18 = ȳ
(

X+n
x̄+n

)
λY 2 (C2

y +θ 2
18C2

x −2θ18Cyx
)

θ18 =
X

X+n

Jerajuddin and Kishun (2016)

19 t19 = ȳ
(

Xβ1(x)+QD
x̄β1(x)+QD

)
λY 2 (C2

y +θ 2
19C2

x −2θ19Cyx
)

θ19 =
Xβ1(x)

Xβ1(x)+QD

Jeelani et al. (2013)

20 t20 = ȳ
(

abX+cd
abx̄+cd

)
λY 2 (C2

y +θ 2
20C2

x −2θ20Cyx
)

θ20 =
abX

abX+c.d

t20(1) = ȳ
(

β2(x)MxX+ρ

β2(x)Mx x̄+ρ

)
λY 2

(
C2

y +θ 2
20(1)C

2
x −2θ20(1)Cyx

)
θ20(1) =

β2(x)MxX
β2(x)Mx x̄+ρ

t20(2) = ȳ
(

β2(x)MxX+ρCx
β2(x)Mx x̄+ρCx

)
λY 2

(
C2

y +θ 2
20(2)C

2
x −2θ20(2)Cyx

)
θ20(2) =

β2(x)MxX
β2(x)Mx x̄+ρCx

t20(3) = ȳ
(

β1(x)MxX+ρ

β1(x)Mx x̄+ρ

)
λY 2

(
C2

y +θ 2
20(3)C

2
x −2θ20(3)Cyx

)
θ20(3) =

β1(x)MxX
β1(x)Mx x̄+ρ

Yadav et al. (2019)

21 t20(4) = ȳ
(

β1(x)MxX+ρCx
β1(x)Mx x̄+ρCx

)
λY 2

(
C2

y +θ 2
20(4)C

2
x −2θ20(4)Cyx

)
θ20(4) =

β1(x)MxX
β1(x)Mx x̄+ρCx

t20(5) = ȳ
(

nX+ρ

nx̄+ρ

)
λY 2

(
C2

y +θ 2
20(5)C

2
x −2θ20(5)Cyx

)
θ20(5) =

nX
nx̄+ρCx

t20(6) = ȳ
(

nX+Cx
nx̄+Cx

)
λY 2

(
C2

y +θ 2
20(6)C

2
x −2θ20(6)Cyx

)
θ20(6) =

nX
nx̄+Cx

t20(7) = ȳ
(

nX+ρCx
nx̄+ρCx

)
λY 2

(
C2

y +θ 2
20(7)C

2
x −2θ20(7)Cyx

)
θ20(7) =

nX
nx̄+ρCx

t20(8) = ȳ
(

nρX+Cx
nρ x̄+Cx

)
λY 2

(
C2

y +θ 2
20(8)C

2
x −2θ20(8)Cyx

)
θ20(8) =

nρX
nρ x̄+Cx

t20(9) = ȳ
(

nCxX+ρ

nCx x̄+ρ

)
λY 2

(
C2

y +θ 2
20(9)C

2
x −2θ20(9)Cyx

)
θ20(9) =

nCxX
nCx x̄+ρ

Yadav et al.(2019)
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3. PROPOSED CLASS OF ESTIMATORS

Inspired by the literature of improved estimators and adopting the Yadav et al. (2019)
estimator, we suggest an improved class of ratio type estimators for the estimation of
population mean using auxiliary information as follows:

t = α ȳ+(1−α)ȳ
[

abX + cd
abx̄+ cd

]
(1)

where α is a characterizing constant and a,b,c,d are either constants or the known
parameters of the auxiliary variable. The constant α is chosen such that the Mean
Squared Error(MSE) of the suggested estimator is minimum. The (a,b,c,d) may also
take those real and parametric values which makes the MSE of the proposed estimator
a least possible.

3.1. Bias and MSE

To obtain the Bias and MSE of the suggested estimator, we define the following
approximations as:

e0 =
ȳ−Y

Y
and e1 =

x̄−X
X

So, ȳ = Y (1+ e0) and x̄ = X(1+ e1)

E(e0) = E(e1) = 0 and E(e0e1) = λCyx

E(e2
0) = λC2

y and E(e2
1) = λC2

x

Now rewriting the proposed estimator from equation (1) as,

t = αY (1+ e0)+(1−α)Y (1+ e0)

[
abX + cd

abX(1+ e1)+ cd

]
= αY (1+ e0)+(1−α)Y (1+ e0)(1+θe1)

−1 (2)

Where, θ =
abX

abX + cd

Expanding the equation (2), simplifying and retaining the terms upto the first order of
approximation, we get,

t = αY [1+ e0−1− e0 +θe1 +θe0e1−θ
2e2

1]+Y (1+ e0−θe1−θe0e1 +θ
2e2

1)

(t−Y ) = Y [α(θe1 +θe0e1−θ
2e2

1)+(e0−θe1−θe0e1 +θ
2e2

1)] (3)

Taking expectations on both sides of equation (3)
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E(t−Y ) = Y [α(θλCyx−θ
2
λC2

x )+(θ 2
λC2

x −θλCyx)]

B(t) = Y [α(θλCyx−θ
2
λC2

x )+(θ 2
λC2

x −θλCyx)] (4)

Squaring the equation (3), retaining the terms up to the approximation of order one and
putting values of various expectations, we get the Mean Squared Error of the proposed
class of estimators as,

E(t−Y )2 = Y
2
E[α2

θ
2e2

1 + e2
0 +θ

2e2
1−2θe0e1 +2α(θe0e1−θ

2e2
1)]

MSE(t) = Y
2
[α2

θ
2
λC2

x +(λC2
y +θ

2
λC2

x −2θλCyx)+2α(θλCyx−θ
2
λC2

x )] (5)

By the Least Square Method of estimation the optimum value of α is,

αopt = 1− ρCy

θCx
(6)

Putting the optimum value of α , we obtain the minimum value of MSE(t) as follows:

MSE(t)min = λY
2

[(
1− d

θ

)2

θ
2C2

x +(C2
y +θ

2C2
x −2θCyx)+2

(
1− d

θ

)(
θCyx−θ

2C2
x

)]

= λY

[(
θ 2C2

x −θCyx

θ 2C2
x

)2

θ
2C2

x +(C2
y +θ

2C2
x −2θCyx)

−2
(

θ 2C2
x −θCyx

θ 2C2
x

)
(θ 2C2

x −θCyx)

]

MSE(t)min = λY
2
[
(θ 2C2

x −θCyx)
2

θ 2C2
x

+(C2
y +θ

2C2
x −2θCyx)−2

(θ 2C2
x −θCyx)

2

θ 2C2
x

]
= λY

2
[
(C2

y +θ
2C2

x −2θCyx)−
(θ 2C2

x −θCyx)
2

θ 2C2
x

]
= λY

2
[
(C2

y +θ
2C2

x −2θCyx)−
(

θ 4C4
x +θ 2C2

yx−2θ 3C2
xCyx

θ 2C2
x

)]
= λY

2
[C2

y +θ
2C2

x −2θCyx−θ
2C2

x −ρ
2C2

y +2θCyx]

= λY
2
(C2

y −ρ
2C2

y )

= λY
2
(

C2
y −

C2
yxC

2
y

C2
yC2

x

)
MSE(t)min = λY2

(
C2

y−
C2

yx

C2
x

)
(7)

For this MSE

B(t) = 0 (8)
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4. THEORETICAL EFFICIENCY COMPARISON

Following are the conditions under which proposed class of estimators is more
efficient than the existing estimators,

Table II: Efficiency Comparison

SNo. MSE(t)< MSE(•) Condition

1 MSE(t)min <V (t0) C2
yx

C2
x
> 0

2 MSE(t)min < MSE(t1) C2
x > 4Cyx

(
1− Cyx

C2
x

)
3 MSE(t)min < MSE(t2) C2

x >Cyx

(
2− Cyx

C2
x

)
4 MSE(t)min < MSE(ti) C2

x >
Cyx
θ 2

i

(
2θi−

C2
yx

C2
x

)
; i = 3, . . .20

5. COMPUTATIONAL STUDY

To prove the theoretical results numerically we have considered a Natural Population
with sample size 5.

Data Source : Daroga Singh and F.S. Chaudhary (1986, Page-177)

Data Details : Study Variable :
: Area under wheat in a region during year 1974

: Auxiliary Variable
: Cultivated Area under wheat in a region during year 1973
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Table III: Parametric Values of the Population

SNo Information Data Set

1 N 34
2 n 5
3 Y 199.4412
4 X 208.8824
5 Sy 150.215
6 Sx 150.506
7 Cy 0.7531797
8 Cx 0.7205298
9 My 142.5
10 Mx 150
11 ρ 0.9800867
12 Cyx 0.5318817
13 β1(x) 0.8732281
14 β2(x) 5.912272
15 f 0.1470588
16 λ 0.1705882
17 NCn 278256
18 Q1(x) 94.25
19 Q3(x) 275.75
20 Qr(x) 160.5
21 Qa(x) 166.3333
22 QD 80.25
23 T M 162.25

To compute the Percent Relative Efficiency (PRE) for different estimators with
respect to Hansan and Horwitz estimators we use the following :

PRE =
V (t0)

MSE(•)
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Table IV: MSE and PRE of Estimators

SNo Estimators MSE PRE

1 t0 3849.248 100
2 t1 153.8905 2501.29
3 t2 1120.88 343.413
4 t3 154.5255 2491.011
5 t4 165.4474 2326.57
6 t5 153.9924 2499.635
7 t6 154.7734 2487.021
8 t7 161.3104 702.2823
9 t8 548.1055 2386.237
10 t9 1312.292 293.3224
11 t10 154.6701 2364.667
12 t11 162.7818 2488.682
13 t12 155.0034 2483.331
14 t13 841.4363 457.4616
15 t14 1117.772 344.368
16 t15 893.9771 430.5757
17 t16 473.1776 813.4891
18 t17 922.6805 417.181
19 t18 535.4868 718.8315
20 t19 159.8507 2408.027
21 t20(1) 153.8915 2501.275
22 t20(2) 153.8912 2501.279
23 t20(3) 153.8967 2501.189
24 t20(4) 153.895 2501.217
25 t20(5) 154.0555 2498.612
26 t20(6) 154.0112 2499.33
27 t20(7) 154.0088 2499.369
28 t20(8) 154.0137 2499.289
29 t20(9) 154.121 2497.549

30 t(min) 151.7764 2536.131
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6. RESULTS AND CONCLUSION

(1) Table 1 Reviews the Existing literature. Table 2 shows the conditions for which
our proposed class of estimators is better than the existing estimators. Table 3

consists of parametric values of the data with which we have verified our results
empirically. Table 4 shows the MSE of existing and proposed class of estimators
and PRE of the various mentioned estimators with respect to mean per unit
estimator.

(2) We study the MSE of the proposed class of estimators up to the first order of
approximation. For the optimum value of α which makes the MSE minimum of
the proposed class of estimators, the bias becomes zero thereby making suggested
estimator unbiased.

(3) We have also suggested some members of the proposed class of estimators which
come out to be more efficient than the existing competing estimators of population
mean under simple random sampling scheme.

(4) From Tables 4 we can easily notice that suggested estimator has the largest PRE
among all the considered existing competing estimators of population mean using
auxiliary information under simple random sampling scheme.

(5) Hence, it has been proven both theoretically and numerically that the proposed
estimator is better than the other given competing estimators. Thus the sampling
distribution of the suggested estimator is most closer to true population mean as
compared to the sampling distributions of all other competing estimators.

(6) Since the suggested computations revolved around a natural population, therefore
we can successfully recommend the proposed class of estimators for practical
utility in various fields of applications including agriculture, biology, medical
sciences, economics, engineering, commerce etc.
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R CALCULATION

# Secondary data(From Daroga and Singh)

# Calculation of parameters

Y¡-c(50,149,284,381,278,111,

634,278,112,355,99,498,111,6,339,80,

105,27,515,249,85,221,133,144,103,

175,335,219,62,79,60,100,141,263)
X¡-c(70,163,320,440,250,125,558,

254,101,359,109,481,125,5,427,78,75,

45,564,238,92,247,134,131,129,190,

363,235,73,62,71,137,196,255)
# mean

y¡-mean(Y)
x¡-mean(X)
# standard deviation

sy¡-sqrt(var(Y))
sx¡-sqrt(var(X))
# coeffcient of variation

cy¡-sy/y
cx¡-sx/x
# median

mx¡-median(X)
my¡-median(Y)
# correlation coefficient

r¡-cor(X,Y)
cyx¡-r∗ cy∗ cx
library(moments)
# coefficient of skewness b1(beta 1)

be1¡-skewness(X)ˆ 2
# coefficient of kurtosis b2( beta 2)

be2¡-kurtosis(X)+3
N=34

n=5

f=n/N
l=(1-f)/n
Ncn=choose(N,n)
summary(X)
# quartile deviation

qd=(q3-q1)/2
# interquartile range

qr=q3-q1
# quartile average

qa=(q1+mx+q3)/3
# tri mean

tm¡-(q1+2∗ mx+q3)/4
# # Review of literature

# Sample mean

m0¡-l∗ yˆ 2∗ cyˆ 2
# Cochran (1940)

m1¡-l∗ yˆ 2∗ (cyˆ 2+cxˆ 2-(2∗ cyx))
# Bahl and Tuteja(1991)

m2¡-l∗ yˆ 2∗ (cyˆ 2+(cxˆ 2/4)-cyx)
# Function of MSE calculation

m¡-function(c){
mse=l∗ yˆ 2∗ (cyˆ 2+(cˆ 2∗ cxˆ 2)-(2∗ c∗ cyx))

print(mse)

}
# Sisodia and Dwivedi(1981)

c3¡-x/(x+cx)

m(c3)
# # [1] 154.5255
# Upadhyaya and Singh (1999)........

c4¡-(x∗ cx)/((x∗ cx)+be2)

c5¡-(x∗ be2)/((x∗ be2)+cx)

m(c4)
m(c5)
# Singh and Tailor(2003)......

c6¡-x/(x+r)

m(c6)
# singh et al.(2004)........

c7¡-x/(x+be2)

m(c7)
# Al-Omari et al. (2009).

c8¡-x/(x+q1)

m(c8)
# # Al-Omari et al. (2009)

c9¡-x/(x+q3)

m(c9)
# Yan and Tian(2010)

c10¡-x/(x+be1)

c11¡-(x∗ be1)/((x∗ be1)+be2)

c12¡-(x∗ cx)/((x∗ cx)+be1)

m(c10)
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m(c11)
m(c12)
# Subramani and Kumarpandiyan(2012a)

c13¡-x/(x+mx)

c14¡-(x∗ cx)/((x∗ cx)+mx)

m(c13)
m(c14)
# Subramani and Kumarpandiyan(2012b)

c15¡-x/(x+qr)

c16¡-x/(x+qd)

c17¡-x/(x+qa)

m(c15)
m(c16)
m(c17)
# Jeelani et al.(2013).............

c18¡-(x∗ be1)/((x∗ be1)+qd)

m(c18)
# Jerajuddin and Kishun(2016)....

c19¡-x/(x+n)

m(c19)
# Yadav et al. (2019).....

c20 1¡-(be2∗ mx∗ x)/((be2∗ mx∗ x)+(r))

c20 2¡-(be2∗ mx∗ x)/((be2∗ mx∗ x)+(r∗ cx))

c20 3¡-(be1∗ mx∗ x)/((be1∗ mx∗ x)+(r))

c20 4¡-(be1∗ mx∗ x)/((be1∗ mx∗ x)+(r∗ cx))

c20 5¡-(n∗ x)/((n∗ x)+(r))

c20 6¡-(n∗ x)/((n∗ x)+(cx))

c20 7¡-(n∗ x)/((n∗ x)+(cx∗ r))

c20 8¡-(n∗ r∗ x)/((n∗ r∗ x)+(cx))

c20 9¡-(n∗ cx∗ x)/((n∗ cx∗ x)+(r))

m(c20 1)
m(c20 2)
m(c20 3)
m(c20 4)
m(c20 5)
m(c20 6)
m(c20 7)
m(c20 8)
m(c20 9)
# proposed estimator...............

th1=((be2∗ mx∗ x)/((be2∗ mx∗ x)+(r)))

m(th1)
th2=((be2∗ mx∗ x)/((be2∗ mx∗ x)+(r∗ cx)))

m(th2)
th3=(Ncn∗ x)/((Ncn∗ x)+(mx))

m(th3)
th4=(mx∗ x)/((mx∗ x)+(f∗ r))

m(th4)
th5=(tm∗ q3∗ x)/((tm∗ q3∗ x)+(qa/qd))

m(th5)
th6=(qd∗ qa∗ x)/((qd∗ qa∗ x)+(be2∗ be1))

m(th6)
th7=(mx∗ sx∗ x)/((mx∗ sx∗ x)+(r∗ l))

m(th7)
l∗ yˆ 2∗ (cyˆ 2-(cyxˆ 2/cxˆ 2))
PRE¡-function(me){
PRE¡-(m0/me)∗ 100

print(PRE)

}
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