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Abstract

In recent years, a lot of effort has been put into finding suitable mathematical models that fit historical data
set. Such models often include coefficients and the accuracy of data approximation depends on them. So
the goal is to choose the unknown coefficients to achieve the best possible approximation of data by the
corresponding solution of the model. One of the standard methods for coefficient estimation is the least
square method. This can provide us data approximation but it can also serve as a starting method for
further minimizations such as Matlab function fminsearch.
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1. INTRODUCTION

The general goal of modelling is to find a simple model that fits a historical data
set of some property and indicates how could this property evolve in future. In this
paper using given data set, we estimate parameter values in a classic Lotka-Volterra
model. These parameter values describe various interactions between populations, for
example, growth, competition, mutualism or predation. The model is fully determined
by its parameters so that they need to be determined to apply the model in practice.
Therefore the problem is to compute the parameter values of a model as accurately as
possible in order to fit the raw data as closely as possible.

To achieve this goal, various methods have been discussed, for example Shatalov
et al. in [1], and Fedatov and Shatalov in [2] started an approach of using direct
integration of equations in Lotka-Volterra system and apply quadrature rules to obtain
the unknown parameters. Michalakelis et al. in [3] use artificial intelligence methods
to solve a non-linear system. Our work is connected with results of Kloppers and
Greef in [4] who compare the integral method, the log integral method and advanced
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method from [3].

In this work, we use Matlab to approximate historical data by solutions of a Lotka-
Volterra model

dxi

dt
= xi(pi1 +

m

∑
j=1

pi, j+1x j), i = 1, . . . ,m. (1)

We use two historical data sets to estimate parameter values in the system (1). First,
we compute coefficients pi j, i = 1, . . . ,m, j = 1, . . . ,m+1 in the system (1) by using
numerical integration along with least squares method. Unlikely in [4], we use these
pi j as an initial point for fminsearch - Matlab function for finding minima of
functions. We use this Matlab function to find the coefficients Pi j such that the
corresponding numerical solution of (1) is discreetly closest to historical data in
terms of least squares. Similar approach - minimization of some error functional -
was previously used in e.g. [3] where a genetic algorithm was applied. Finally, we
compare this optimal numerical solution of (1) with Pi j with the solution of (1) with
initial coefficients pi j (i.e. without using fminsearch).

2. DESCRIPTION OF METHODS

Assume m = 3 in the Lotka Volterra model (1). The system is then represented by

dx
dt = x(p11 + p12x+ p13y+ p14z),

dy
dt = y(p21 + p22x+ p23y+ p24z),

dy
dt = z(p31 + p32x+ p33y+ p34z).

(2)

The unknown functions x,y,z are three species that compete for available resources in
a system.

Denote D = Di j, i = 1, . . . ,n, j = 1,2,3 the historical data set (Figure 1). In our
case, we consider prices of three crypto currencies during n−day period.

Now, we will in short explain the integral method for obtaining unknown initial
coefficients pi j using historical data D; see [4] for details. We choose the first
differential equation in (2) and integrate both sides with respect to t over the interval
[k,k + 1] for k = 1,2, . . . ,n − 1. We approximate every integral by applying the
Trapezium rule. For example, the integral

∫ k+1
k x(t) dt is approximated by

(x(k+1)− x(k))/2 what is equal to (Dk1 +Dk+1,1)/2. The system (2) then turns into
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M. Fečkan and J. Pačuta
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Fig. 1. Price data in dollars

a system of linear equations
b1

b2
...

bn−1

=


a11 a12 a13 a14

a21 a22 a23 a24
...

an−1,1 an−1,2 an−1,2 an−1,2

 .


p11

p12

p13

p14

 (3)

or B = A.p1 where B = bk = Dk+1,1 − Dk1, p1 = p1 j ( j = 1,2,3,4), A = ak j and
ak1 = (Dk1 +Dk+1,1)/2, ak j = (Dk1Dk j +Dk+1,1Dk+1, j)/2, j = 2,3,4. The matrix
p1 contains the unknown coefficients. If, in addition, the matrix AᵀA is regular (Aᵀ

denotes the transpose of A) then p1 is given by

p1 = (AᵀA)−1AᵀB.

3. EXAMPLES

3.1. Example 1

In this example, we use historical price data of crypto currencies Ethereum, Dash
and Monero that are competitors x,y,z respectively. The data are downloaded from
https://coinmetrics.io and the date range of the data is from 15th March 2018 till 3rd
April 2018; see Figure 1. As can be seen in Figure 2, our data are volatile and not very
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Fig. 2. From left to right: approximation of Ethereum, Dash and Monero currency prices. The asterisks
represent real data, dashed lines are solutions of (1) optimized by fminsearch and dotted lines are solutions
of (1) computed only by least square method.

suitable for approximation by solutions of model (1). Our choice is due to the problem
that suitable data are usually not freely available. Despite of this, it is also seen that
the approximation of such bad data using Matlab function fminsearch is better than
the approximation by least square method without using fminsearch.

Applying least square method along with fminsearch, we obtained coefficients Pi j

and the resulting system is given by

dx
dt = x(−0.3844+0.0000x−0.0014y+0.0044z),

dy
dt = y(−0.6470−0.0001x−0.0025y+0.0079z),

dy
dt = z(−0.3419+0.0002x−0.0020y+0.0049z).

(4)

To determine mutual interactions between competitors, we can look at coefficients of
mixed terms xy,yz and xz; see [5]. The equal signs of coefficients P41,P23 indicate
that x is cooperating with z and when the population of x decreases rapidly then also
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Fig. 3. Share data

z decreases. Signs of coefficients P42 and P33 indicate that y is predating on z. The
population of y strongly reflects the population of z. Of course in reality, the system
of interactions between competitors is not isolated, since the prices of our three crypto
currencies coincide with prices of hundreds of others, with economical and political
changes etc.

3.2. Example 2

In this example, we use historical data originally used in [3] and also used in [4]. The
data represent shares of three telephone service providers (competitors) (see Figure 3)
and the sum of these shares in each row is equal to 1. We can look at any of these
competitors from two different points of view:

(1) The competitor competes with each of two species and both them compete to
each other, i.e. three mutual competitors in one system - the same approach as in
Example 1.

(2) The competitor competes with the rest of the species (the two other species form
one competitor), i.e. only two competitors in one system - we sum the values of
the shares of same date in columns for competitors y, z and then find the
coefficients of model (1) with m = 2 using fminsearch.

In Figure 4, we see that the second approach still provides us a good
approximation of historical data values, especially in case of competitors x and y.
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Fig. 4. From left to right: approximation of telephone service providers x,y,z. The asterisks represent real
data, dashed lines are solutions of (1) with m = 3 (i.e. first point of view), full lines are solutions of (1) with
m = 2 (i.e. second point of view) and dotted lines are initial solutions of (1) without using fminsearch.

The case z, however, is not so clear. Comparing the values of error function (i.e. sum
of squares of differences of data and solutions of system 1 with optimized
coefficients Pi j) we come to conclusion: second approach did slightly better than first
one: In the first approach, the minimum of the error function is 0.0079 and
fminsearch found it in 10.806295 seconds, in the second approach, the minimum of
the error function is 0.0056 and fminsearch found it in 4.166628 seconds.

4. CONCLUSIONS

(1) As illustrated in Example 1, Matlab function fminsearch provides us better
approximations than only the least square method. fminsearch is a robust
however relatively slow function and one can consider using a different function
for finding minima especially for large data set.

(2) For volatile data set such as prices, it may be better to use this method along
stochastic calculus to achieve better approximations.
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(3) Example 2 shows us that competition of one species with the rest of species (the
second approach in Example 2) may lead to similar results as mutual competition
of three species (the first approach). The second one can be even better for small
data set, since only minimization of a function of six variables is required instead
of twelve. Obviously, this costs less counting time (more than twice less in our
case).

APPENDIX

In the Appendix, we provide the Matlab source code we use in our paper. Function
”est” is the main function that calculates initial coefficients pi j by using least squares
method (function ”Param”) then calculates optimized Pi j with fminsearch and
compares corresponding solutions of Lotka - Volterra models with both pi j and Pi j.

function [ ] = est

data = xlsread(’crypto.xls’);

T=size(data,1);

m=size(data,2)-1;

D=data(1:T,(2:m+1));

E=data(1:T,1)+693960*ones(T,1);

% The Param function chooses initial p_ij for system

% x’ = x ( p_11 + p_21 x + p_31 y + p_41 z ),

% y’ = y ( p_12 + p_22 x + p_32 y + p_42 z ),

% z’ = z ( p_13 + p_23 x + p_33 y + p_43 z )

% and we calculate initial solution.

p = Param(D);

[~,init]=ode15s(@(t,y) y.*(p(:,1)+p(:,2:m+1)*y),(1:T)’,D(1,:));

[P,~]=fminsearch(@(p) err(p,D,T,m),p);

[~,opt1]=ode15s(@(t,y) y.*(P(:,1)+P(:,2:m+1)*y),(1:T)’,D(1,:));

i=3;
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opt2=est2(i,D);

plot(E,D(:,i),’*’);

hold on

plot(E,init(:,i),’:k’,’LineWidth’,0.2);

hold on

plot(E,opt2,’k’,’LineWidth’,0.5);

hold on

plot(E,opt1(:,i),’--k’,’LineWidth’,0.8);

hold off

datetick(’x’,6,’keepticks’,’keeplimits’);

end

Function ”Param” uses least squares method to obtain initial values pi j and contains
fix for the case of badly conditioned matrix AᵀA.

function [ P ] = Param(D)

n=size(D,1);

m=size(D,2);

A = zeros(n-1,m+1);

B = zeros(n-1,1);

P = zeros(m,m+1);

for k = 1:m

A(:,1) = (D(1:(n-1),k)+D(2:n,k))/2;

for j = 1:m

A(:,1+j) = (D(1:(n-1),k).* D(1:(n-1),j)+D(2:n,k).* D(2:n,j))/2;

end

B(:,1) = D(2:n,k)-D(1:(n-1),k);

C = A’ * A;

E = A’ * B;

if rcond(C)<10^(-10)

l=1;

C1 = C(setdiff(1:(m+1),1),setdiff(1:(m+1),1));
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Bereitgestellt von  University Library Bratislava | Heruntergeladen  07.02.20 09:16   UTC



for i = 1:(m+1)

v=setdiff(1:(m+1),i);

if rcond(C(v,v))>rcond(C1)

C1 = C(v,v);

l=i;

end

end

E = E(setdiff(1:(m+1),l));

P(k,setdiff(1:(m+1),l)) = C1\E;

P(k,l) = 0;

else

P(k,:) = C\E;

end

end

Function ”est2” is similar to ”est”, however is based on the second approach from
Example 2.

function [ opt ] = est2(i,data)

T=size(data,1);

m=size(data,2);

D=zeros(T,2);

D(:,1)=sum(data(1:T,setdiff(1:m,i)),2);

D(:,2)=sum(data(1:T,i),2);

p = Param(D);

[P,~]=fminsearch(@(p) err(p,D,T,2),p);

[~,opt0]=ode15s(@(t,y) y.*(P(:,1)+P(:,2:3)*y),(1:T)’,D(1,:));

opt=opt0(:,2);

end

Function ”err” represents the error functional that is minimized by fminsearch.

function [ value ] = err(p,data,T,m)

[~,y] = ode15s(@(t,y) y.*(p(:,1)+p(:,2:m+1)*y),(1:T)’,data(1,:));

n=size(y,1);
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value = sum(sum ((y-data(1:n,:)).^2));

end
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Best predictors in logarithmic distance
between positive random variables

H. GZYL

Abstract

The metric properties of the set in which random variables take their values lead to relevant probabilistic
concepts. For example, the mean of a random variable is a best predictor in that it minimizes the L2
distance between a point and a random variable. Similarly, the median is the same concept but when the
distance is measured by the L1 norm.
Also, a geodesic distance can be defined on the cone of strictly positive vectors in Rn in such a way that,
the minimizer of the distance between a point and a collection of points is their geometric mean.
That geodesic distance induces a distance on the class of strictly positive random variables, which in turn
leads to an interesting notions of conditional expectation (or best predictors) and their estimators. It also
leads to different versions of the Law of Large Numbers and the Central Limit Theorem. For example, the
lognormal variables appear as the analogue of the Gaussian variables for version of the Central Limit
Theorem in the logarithmic distance.

Mathematics Subject Classification 2010: 60B99, 60B12, 60A99.
Keywords: Prediction in logarithmic distance, Law of large numbers in logarithmic distance, Central
Limit Theorem in logarithmic distance, Logarithmic geometry for positive random variables.

1. INTRODUCTION AND PRELIMINARIES

The study of random variables and processes taking values in spaces with geometries
other than Euclidean in not new. Consider the textbooks by Kunita and Watanabe [5]
or by Hsu [3] to mention just two. In this line of work, the distance between points
in the base manifold is replaced by a geodesic distance derived from a Riemannian
metric placed. Such distance is inherited by random variables taking values in the
manifold.

It should not then be surprising that the notion of best predictor of a random variable
by variables of a given class, should depend on the metric of the manifold. In this
note we shall consider the manifold to be M = (0,∞)n, which is an open set in Rn,

which is also a commutative group with respect to component wise multiplication. We
postpone the study of the geometry of this group to the appendix. Here we mention
that what we do is the commutative version of a more elaborate geometry in the space
of symmetric matrices. The reader can check with Lang [6] in which a relation of this
geometry to Bruhat-Tits spaces is explained, or in Lawson and Lim [7] or Mohaker [9]
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and references therein, where the geometric mean property in the class of symmetric
matrices is established. More recently Resigny et al. [1] and Schwartzman [10] used
the same geometric setting to study the role of such geometry in a large variety of
applications. The applications of the geometric ideas in these references concern the
non-commutative case, but the simplest commutative case and its potential usefulness
for positive random variables seems not to have been explored.

As mentioned in the abstract, it is the purpose of this note to explore the possible
usefulness of measuring distances between positive numbers by a logarithmic distance
resulting from an interesting group invariant metric.

In the appendix we establish that the distance between any two points xi,x2 ∈M is
given by

d(x1,x2)
2 =

n

∑
i=1

(lnx1(i)− lnx2(i))
2 . (1.1)

This makes M a Tits-Bruhat space in which the distance satisfies a
semi-parallelogram law. This is contained in Theorem 8.1. We shall use this property
to establish the uniqueness of conditional expectations. And the group structure in
M will be inherited in a curious way by the conditional expectations (or by the best
predictors) in the logarithmic distance (8.1).

Starting from the logarithmic distance on M , and from the fact that it satisfies
the semi-parallelogram law, we come to the main objective of the paper, which is
to consider the notion of best predictor (conditional expectations) in that distance.
These matters will be taken up in Sections 2 and 3, where we shall introduce the
notion of `−expected value and `−conditional expectation, which will denote the best
predictors in the logarithmic distance (hence the `−prefix). We examine there some
of the basic properties of these constructs.

In Section 4 we present the two most basic estimators, namely, that of the `−mean
and that of the `−variance, and explain how the law of large numbers and the central
limit theorem for these estimators relates to the standard law of large numbers and the
central limit theorems.

In section 5 we examine how the notion of martingale related to the `−conditional
expectation relates to the standard notion of martingale. We shall do it in discrete
time, but the extension to continuous time is quite direct. In Section 6 we examine
Markowitz portfolio theory when the distance between (gross) returns is the
logarithmic distance.
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As said, we leave the study of the geometry on M to the appendix. There we
explain how the logarithmic distance between strictly positive vectors is actually a
geodesic distance in that manifold. For that we shall present some results from Lang’s
[6], but in a simpler, commutative setup. The basic idea behind our constructions has
been very much studied in geometry. The idea is to put a group action upon M and
construct a scalar product on the tangent bundle T M that is invariant under the group
action. That scalar product determines the logarithmic (geodesic) distance on M that
interests us. That appendix can be read independently of the previous sections dealing
with probabilistic aspects.

2. BEST PREDICTORS IN LOGARITHMIC DISTANCE

Our set up here consists of a probability space (Ω,F ,P) and we shall be concerned
with the cone C of P−almost everywhere (a.e. for short) finite and strictly positive
(M -valued) random variables. As usual, we identify variables that are P−a.e. equal.
Since the operations among vectors are component wise, to reduce to the case n = 1
only takes a simple notational change. To shorten the description of the random
variables used in the statements coming up below, let us introduce the following
notations. For p > 1 (we shall be concerned with p = 1,2 only) define:

Lp = {X ∈F |E[|Xi|p]< ∞, i = 1, ...,n}

Lnp = {X ∈ C | lnX ∈ Lp}, LLnp = Lp
⋂

Lnp.

Let X1 and X2 be two strictly positive random variables in Ln2. The (logarithmic)
distance between them is defined to be

d`(X1,X2)
2 ≡ E

[
n

∑
i=1

(lnX1(i)− lnX2(i))2

]
(2.1)

Since we are identifying variables that are a.e equal, d`(X1,X2) is a distance on C .

Similarly to m = E[X ] being the constant that minimizes the Euclidean (squared)
distance to X , we have

PROPOSITION 2.1. With the notations introduced above, let X ∈ Ln2. The vector
m` that minimizes the logarithmic distance to X is given by

m`(X) = exp(E[lnX ]).

The proof of the first assertion is computational, and the second results from an
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application of Jensen’s inequality. When there is no risk of confusion, we shall write
m`(X) = m`. Keep in mind that the operations are componentwise, and that m`(X) j =

exp(E[lnX j]) for j = 1, ...,n. If X ∈ LLn1, we also have m` ≤ E[X ].

COMMENT. To define m`(X) it suffices that X ∈ Ln1, but if we want it to be a
best predictor in the logarithmic distance, we require X ∈ Ln2.

And the analogue of the notions of covariance and centering are contained in the
following definition.

DEFINITION 2.1. Let now X ,Y ∈ Ln2. We define the logarithmic covariance
matrix of the non-negative random variables X and Y by

Cov`(X ,Y )≡ E[(lnX− lnm`(X))(lnY − lnm`(Y ))
t ] =Cov(lnX , lnY ).

Let Σ be the matrix with components E[(lnXi− lnm`(Xi))(lnYj− lnm`(Yj))]. If the
matrix Σ is invertible, we define the “centered” (in logarithmic distance) version of X

by

Xc ≡ exp
(

Σ
−1/2 (lnX− lnm`(X))

)
The need for the exponentiation is clear: First we have to “undo” the taking of the

logarithms and second, the argument of the exponential function is a vector in Rn

which yields a positive vector after exponentiation. It takes a simple computation to
verify that

m`(Xc) = 1, Σ`(Xc) = I.

A variation on the previous theme consists of predicting a variable Y by a variable
X in logarithmic distance. The extension of the previous result is contained in the
following statement.

PROPOSITION 2.2. Let Y and X be in Ln2. Then the σ(X)−measurable random
variable that minimizes the logarithmic distance (2.1) to Y is given by

E`[Y |X ] = exp(E[lnY |X ]) .

And we also have E`[Y |X ]≤ E[Y |X ].

The proof of Proposition 2.2 follows the same pattern as the standard proof. Just
notice that φ(X) = exp(E[lnY |X ]) is a bounded, σ(X)−measurable random variable,
such that lnφ(X) = E[lnY |X ] minimizes the Euclidean square distance to lnY .
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COMMENT. As above, we remark that E`[Y |X ] can be defined for Y ∈ Ln1, but
if we want it to be a best predictor in logarithmic distance, we need Y ∈ Ln2.

Note that the last inequality mentioned in the statement does not mean that one of
the estimators is better than the other in any sense. They are minimizers in different
metrics. Also, since linear combinations in an exponent are transported as scaling
and powers, we have the following analogue to linear prediction for positive random
variables.

PROPOSITION 2.3. Let Y and X be positive real variables with square integrable
logarithms. The values of a > 0 and b ∈ R that make Y # ≡ aXb the best predictor of
Y in the logarithmic metric, are given by

a = exp(E[(lnY )]−bE[(lnX)])

b = 1
D (E[lnX lnY ]−E[lnX ]E[lnY ])

D = E[(lnX)2]− (E[lnX ])2 = σ2(lnX).

The proof follows the standard computation starting from the definition of
d(Y ,aXb)`. Certainly the result is natural as the linear structure of R is transferred
multiplicatively onto (0,∞) by the exponential mapping. Also, the extension to
random variables taking values in higher dimensional M is direct, but notationally
more cumbersome.
A simple computation leads to

m`(Y #) = E`[Y #] = eE[lnY ], σ`(Y #) = b2
σ

2(lnX).

3. LOGARITHMIC CONDITIONAL EXPECTATION AND SOME OF ITS
PROPERTIES

Here we extend the semi-parallelogram property mentioned in Theorem (8.1) to
strictly positive random variables.

LEMMA 3.1. All random variables mentioned are supposed to be in Ln2. Let X1

and X2 be as mentioned. Then there exits Z ∈ Ln2 such that for any Y we have

d(X1,X2)
2
` +4d(Z,Y )2

` ≤ 2d(Y ,X1)
2
` +2d(Y ,X2)

2
` .

To prove this, use the second comment after Theorem (8.1) at every ω ∈ Ω to
obtain the pointwise version of the semi-parallelogram property, and then integrate
with respect to P. Clearly Z = (X1X2)

1/2 ∈ LLn2. Below we apply this to obtain the
uniqueness of the extension of the standard notion of conditional expectation.
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THEOREM 3.1. Let G ⊂ F be a σ−algebra, and let Y be non-negative with
square integrable logarithm. Then, the unique -up to a set of P measure 0-, positive
X∗ ∈ G that makes d(Y ,X)2

` minimum over {X ∈ G , X > 0,E[(lnX)2]< ∞}, is given
by X∗ = exp(E[lnY |G ]) . To be consistent with the notations introduced above, we
shall write X∗ = E`[Y |G ].

PROOF. The existence follows the same pattern of proof as the propositions in
the previous section, that is E[lnY |G ] minimizes the ordinary square distance to lnY ,

and it is the unique (up to sets of P measure 0). We shall use the semi-parallelogram
property to verify the uniqueness. For that, let X some other possible minimizer of the
logarithmic distance. Now set Z =

√
XX∗ (keep in mind the second comment after

Theorem (8.1)), and observe that according to the semi-parallelogram property

d(X∗,X)2
` +4d(Y ,Z)2

` ≤ 2d(Y ,X∗)2
` +2d(Y ,X)2

` .

Since by definition, d(Y ,Z)2
` is larger than any of the two distances in the right hand

side of the inequality, it follows that necessarily d(X∗,X)2
` = 0.

Notice that in the group structure on M described in the Appendix, the analogue
to the multiplication by scalars is replaced by the exponentiation. This is used to
verify the analogue of the standard definition of conditional expectation in logarithmic
distance. For the heuristics see the comment in the Appendix.

THEOREM 3.2. Let Y be a M valued random variable such that Y ∈ Ln1. Then
E`[Y |G ] = exp

(
E[lnY |G ]

)
is the unique G -measurable, M -valued random variable,

such that for any bounded G -measurable real valued H the following holds:

E`[Y H ] = E`[E`[Y |G ]H ].

PROOF. It follows the standard pattern. Notice that Y H ∈ Ln1, therefore

E`[Y H ] = eE[H lnY ] = eE[HE[lnY |G ]] = eE[ln
(

exp(E[lnY |G ]
)H

] = E`[E`[Y |G ]H ].

The intermediate steps consist of an application of the standard conditional
expectation rules.

Let us now verify some standard and non standard properties of the notion of
conditional expectation introduced above. Keep in mind that the arithmetic
operations with positive vectors are componentwise.

THEOREM 3.3. Let Y ∈ LLn2 and let H ⊂ G be two sub-σ -algebras of F .

Then, up to a set of measure 0, the following hold:
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1) E`[Y |{ /0,Ω}] = E`[Y ].

2)E`[E`[Y |G ] |H ] = E`[Y |H ].

3)Let Y 1, ...,Y k be in LLn2, and wi ∈ R. The analogue of the linearity property of the
standard conditional expectation is the following multiplicative property:

E`[
k

∏
i=1

Y wi
i |G ] =

k

∏
i=1

(
E`[Y |G ]

)wi

4) If Y is independent of G in the standard sense, then E`[Y |G ] = E`[Y ].

PROOF. The first assertion is simple consequence of the definition . To verify
the second we start from the definition and carry on:.

E`[E`[Y |G ] |H ] = exp
(

E
[

lnexpE[lnY |G |H
])

= exp
(

E[E[lnY |G |H ]
)
,

and now apply the standard tower property of conditional expectations to finish the
proof of the assertion.
It is in the proof of (3) where the logarithmic distance plays a curious role. The proof
of the assertion is a simple computation starting from the definition:

E`[
k

∏
i=1

Y wi
i |G ] = exp

(
E
[
∑wi lnY i |G

])
=

k

∏
i=1

(
E`[Y |G ]

)wi
.

The fourth property is also simple to establish using the definition and the standard
notion of independence.

4. ESTIMATORS AND LIMIT THEOREMS

In this section we shall consider the case n = 1. The notation is a bit simpler in this
case. That is, we shall forget about the symbols in boldface for a while.

Making use of Proposition (8.1) the following definition is clear:

DEFINITION 4.1. Let X1, ...,XK be positive random variables. We define their
empirical logarithmic mean by

m̂`,K(X) =

(
K

∏
j=1

X j

)1/K

.

And a the standard law of large numbers becomes:

THEOREM 4.1. Let X j, j ≥ 1 be a collection of i.i.d. positive random variables
defined on (Ω,F ,P) having finite logarithmic variance σ2

` and mean m`. Then
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m̂`,K(X) is an unbiased estimator of the logarithmic mean m`(X) and

m̂`,K(X) =

(
K

∏
j=1

X j

)1/K

→ m`(X)

almost surely w.r.t. P as K→ ∞.

The proof is clear. Since

m̂`(X),K = exp

(
1
K

K

∑
j=1

lnX j

)
,

we can invoke the strong law of large numbers, see Borkhar [2] or Jacod and Protter
[4], plus the continuity of the exponential function to obtain our assertion. That
m̂`,K(X) has logarithmic mean m`(X) is clear.

In analogy with the standard notion of empirical variance, we can introduce

DEFINITION 4.2. With the notations introduced above and under the
assumptions in Theorem 4.1, the empirical estimator of the logarithmic variance is
defined by

σ̂
2
`,K(X) =

1
K−1

K

∑
j=1

(lnX j− ln m̂`(X))2 .

And, as in basic statistics, we have

THEOREM 4.2. With the notations introduced above, and under the assumptions
of Theorem (4.1), σ̂2

` (X) is an unbiased estimator of the logarithmic variance and

σ̂
2
`,K(X)→ σ

2
` (X)

almost surely w.r.t. P as K→ ∞.

But perhaps more interesting is the following version of the central limit theorem.
It brings to the fore the role of lognormal variables as the analogue to the Gaussian
random variables in the class of positive variables.

THEOREM 4.3. Suppose that X j, j≥ 1 are a collection of i.i.d. random variables
defined on a probability space (Ω,F ,P) with logarithmic mean m` = E[lnX j] and
E[(lnXi)

2]< ∞. Then ( K

∏
j=1

X j

m`

)1/
√

K
→ eX
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in law as K→ ∞, where X ∼ N(0,σ2
` ).

PROOF. Observe that( K

∏
j=1

X j

m`

)1/
√

K
= exp

( 1√
K

K

∑
j=1

(lnX j− lnm`)
)
.

From the standard proof of the central limit theorem we know that 1√
K ∑

K
j=1(lnX j−

lnm`) converges in probability to an N(0,σ2
` ) random variable and therefore, since the

exponential function is continuous, the same convergence holds for
(

∏
K
j=1

X j
m`

)1/
√

K
.

Thus concludes the proof of our assertion.

5. `−MARTINGALES IN DISCRETE TIME

As there is a notion of `−conditional expectation, there must be a corresponding
notion of `−martingale. In this section we examine some of its very simple
properties. As usual, the basic setup consists of the probability space (Ω,F ,P) and a
filtration {Fn, n≥ 0}.

THEOREM 5.1. Let the M−valued process {Xn;n ≥ 0} be such that Xn ∈Fn

and the ξ n = lnXn are integrable. Then Xn is an `-martingale (resp. sub-martingale,
super-martingale) if and only if {ξ n}is an ordinary martingale (resp. sub-martingale,
super-martingale).

Also, if Xn is an `−martingale, it is an ordinary sub-martingale.

PROOF. For n≥ 0 and k ≥ 1

E`[Xn+k|Fn] = eE[ξ n+k|Fn]

from which the assertion of the theorem drops out. For the second assertion note that

E`[Xn+k|Fn] = Xn = eξ n = eE[ξ n+k|Fn] ≤ E[eξ n+k |Fn] = E[Xn+k|Fn]

The middle step drops out from Jensen’s inequality.
The corresponding version of the Doob decomposition theorem, say for

sub-martingales, goes as follows.

THEOREM 5.2. With the notations introduced above, let {Xn} be an
M−valued `−sub-martingale. Then there exist an M−valued `−martingale {Y n}
and an increasing M−valued process An, such that Xn = Y nAn.

PROOF. Just apply the Doob decomposition theorem to ξ n = lnXn and use
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Xn = eξ n .

6. LOGARITHMIC GEOMETRY AND PORTFOLIO THEORY

Let us introduce a slight change of notation to conform with the notation in financial
modeling. By the generic R we shall denote the (gross) return of any asset of portfolio,
which means the quotient of its current value divided by its initial value.

To begin with, we proved in the Appendix, see (8.3), that the curve Rw
1 R1−w

2 is a
geodesic in the logarithmic distance between the points R1 and R2. That curve can be
thought of as a weighted geometric mean of R1 and R2. This remark leads to
variation on the theme of “return” of a portfolio. In our setup, a generic portfolio w,

characterized by the weights w1, ...,wK , of assets with gross returns R1, ...,Rk, has a
weighted return given by the geometric mean: ∏

K
i=1 Rwi

i . To push the geodesic
interpretation a bit further, that geometric mean can be thought of as a sequence of
geodesic walks joining say R1 to RK . Anyway, note that the logarithm of the `−mean
m` given by,

lnml =
K

∑
i=1

wiE[lnRi] (6.1)

is clearly the logarithmic rate of growth of the portfolio w. Recall as well that the
square of the logarithmic distance of m` to ∏

K
i=1 Rwi

i is given by

d(
K

∏
i=1

Rwi
i ,m`)

2 =Var(
K

∑
i=1

wi lnRi) = (w,Σw) (6.2)

where Σ is the covariance matrix of the logarithmic returns. Imitating Markowitz’s
portfolio theory, we assign to any portfolio w its logarithmic mean m`(w) and its
logarithmic variance σ2

` (w). According to Markowitz’s proposal a portfolio is optimal
when it minimizes the variance for a given expected value of its (rate of) return. The
following result contains the analogue of the classical Markowitz result, but for the
case of the logarithmic results.

PROPOSITION 6.1. With the notations introduced above, the weights
w∗i , ....,w

∗
K that make the logarithmic variance, σ2

` (w) = d(∏K
i=1 Rwi

i ,m`)
2 minimal

subject to the constraints ∑wi = 1 and m`(w) = eµ , are the same as the weights that
minimize Var

(
∑

k
i=1 wi lnRi

)
subject to E[∑k

i=1 wi lnRi] = µ and ∑wi = 1.

This is a standard quadratic optimization problem, whose solution is simple starting
from (6.2). We refer the interested reader to Luenberger [8] or to Shiryaev [11] for
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more details about the classical Markowitz portfolio optimization theory.

7. CONCLUDING COMMENTS

In this note we proposed an alternative metric in the set of positive vectors, such that
when distance between random variables is measured in this metric, the standard
notions of best predictors, their estimation, and the classical convergence results,
acquire a different but intuitively related form.

Also, as a simple application to finance, when assets are characterized by their gross
returns (which by definition are positive random variables), the concept of return of
a portfolio becomes a weighted geometric average, and the standard portfolio choice
methodology appears in a slightly different guise. Readers familiar with the basics of
the methodology will find it clear that the analogue of the efficient frontier, market
portfolio, market line and CAPM have a counterpart within the formalism developed
above, but this is not the place to pursue the matters.

8. APPENDIX: THE LOGARITHMIC DISTANCE BETWEEN POSITIVE
VECTORS

We shall think of the vectors in Rn as functions ξ : {1, ...,n} → R, and all standard
arithmetical operations either as component wise operations among vectors or point
wise operations among functions. Let us denote by M = {x ∈Rn |x(i)> 0, i = 1, ...n}
the set of all positive vectors. M is an open set in Rn which is trivially a manifold
over Rn, having Rn itself as tangent space at each point. We shall use the standard
notation T Mx to stress this point.

COMMENT. As a collateral detail we mention that M is a vector space, in which
the (commutative) group operation is given by the componentwise multiplication, and
the standard multiplication by scalars is given by (a,x) ∈ (R,M )→ xa. This detail
helps to intuitively understand Theorem 3.2.

Here M plays the role that the positive definite matrices play in the works by Lang,
Lawson-Lim and Mohaker mentioned in the Introduction. The role of the group of
invertible matrices in those references is to be played here by G = {g ∈ Rn |g(i) 6=
0, i = 1, ...,n}, which clearly is an Abelian group respect to the standard product, in
which the identity, denoted by e, is the vector with all components equal to 1. We shall
make use the action G : M →M of G on M defined by τg(x) = g−1xg−1. This action
is clearly transitive on M , and can be defined in the obvious way as an action on Rn.
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The transitivity of the action allows us to transport the scalar product on T Me to
any T Mx as follows. The scalar product between ξ and η at T Me is defined to be the
standard Euclidean product (ξ ,η) = ∑ξiηi, where we shall switch between ξ (i) and
ξi as typographical convenience dictates. Since x = τg(e) with g = x−1/2. We define
the scalar product transported to T Mx by

(ξ ,η)x ≡ (x−1
ξ ,x−1

η) = (x−2
ξ ,η).

This scalar product allows us to define the length of a differentiable curve as follows:

Let x(t) be a differentiable curve in M , its length is given by∫ 1

0

√
(ẋ, ẋ)xdt.

With this definition, the distance between x1,x2 ∈M is defined by the expected

d(x1,x2) = inf{
∫ 1

0

√
(ẋ, ẋ)x)dt |x(t) differentiable such that x1 = x(0) x2 = x(1)}

(8.1)
It takes an application of the Euler-Lagrange formula to see that the equation of the
geodesics in this metric is

ẍ(t) = x−1ẋ2, x(0) = x1, x(1) = x2, (8.2)

the solution to which is

x(t) = x1et ln(x2/x1) = xt
2x(1−t)

1 . (8.3)

This allows us to compute the distance between x1 and x2 as

d(x1,x2)
2 =

n

∑
i=1

(lnx1(i)− lnx2(i))
2 . (8.4)

Similarly, the solution to (8.2) subject to x(0) = x, and ẋ(0) = ξ is the (exponential)
mapping xetξ . With this notations we recall some results (in this simpler setup) from
Chapter 5 of Lang (1995) under

THEOREM 8.1. With the notations introduced above we have:
1) The exponential mapping is metric preserving through the origin.
2) The derivative of the exponential mapping is measure preserving, that is,
exp′(ξ )ν = νeξ as a mapping T Mx→ T Mxexpξ , satisfies

(ν ,ν) = (exp′(ξ )ν ,exp′(ξ )ν)exp(ξ )
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3) With the metric given by (1.1), M is a Bruhat-Tits space, that is, it is a complete
metric space in which the semi-parallelogram law holds. This means that, given any
x1, x2 ∈M , there exists a unique z ∈M such that for ant y ∈M the following holds

d(x1,x2)
2 +4d(z,y)2 ≤ 2d(y,x1)

2 +2d(y,x2)
2.

COMMENT.
1) The action τg defined a few paragraphs above coincides with parallel transport
along geodesics.
2)The proofs take some space but are systematic and computational. In our case,
commutativity makes things considerably simpler. The completeness of M is
transferred from Rn via the exponential mapping.
3) The point z mentioned in item (3) is given by z =

√
x1x2. Actually, a simple

calculation provides the proof of the following slightly more general statement.

LEMMA 8.1. Let x1, ...,xK be K points in M . The point x̄` that minimizes the
sum of logarithmic distances (1.1) to the given points is given by their geometric mean,
that is

x̄` =

(
K

∏
j=1

x j

)1/K
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Towards the non-stretchable and non-elongating
string with stress-strain handling

R. ĎURIKOVIČ AND E. SIEBENSTICH

Abstract

We propose an approach for real-time physically semi-realistic animation of strings which directly
manipulates the string positions by position based dynamics. The main advantage of a position based
dynamics is its controllability. Instability problems of explicit integration schemes can be avoided.
Specifically, we offer the following three contributions. We introduce the non-elongating and
non-stretchable mass spring dynamics model based on Position Based Dynamics to simulate 1D string.
We introduce a method for propagating the twisting angle along the chain of segments. In addition, we
solve collision constraints by regularly distributing the spheres along the chain segments followed by
particle projection to validate the positions. Proposed strain limiting constraint can handle the strings fixed
in multiple locations contrary to single fixed side as is common for hair models. The use of multiple
constraints provides an efficient treatment for stiff twisting and non-stretchable mass spring dynamics
model.

Mathematics Subject Classification 2010: 78A05, 68P01, 68U05
Keywords: non-elongating strings, twisting, tearing, flicking, string animation

1. INTRODUCTION

In this paper we present a method for real-time physically semi-realistic animation
of strings with emphasis on believable behavior during twisting, tearing and flicking.
The last result is the physically-based model that is visually plausible and stable, yet
simple to implement.

The contribution of this paper: 1. We propose the non-elongating and
non-stretchable properties of mass spring dynamics model based on Position Based
Dynamics (PBD) [Müller et al. 2007] to simulate 1D string. 2. We propose a method
for propagating the twisting angle increments associated with each segment, which
can handle both uniform and nonuniform torsional rigidity. 3. We propose a method
for tension calculation resulting from twisting, tearing and flicking.

We describe details of implementation and stumbling blocks we’ve encountered due
to hardware limitation, design choices and other reasons. Finally, we evaluate results
of our system compared to real world samples. We analyze system’s performance

©IEEE CS, 2018. This is a revision of the work published in 2018 Sixth International Symposium on
Computing and Networking Workshops (CANDARW), ISBN: 978-1-5386-9184-7, Takayama, Japan
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both from perspective of visual fidelity and responsiveness and give examples of our
system’s output.

2. RELATED WORK

The modeling nonlinear dynamics, and simulation of elastic rods is an active field from
numerical and topological point of view in mathematical analysis [van der Heijden and
Thompson 2000; Goyal et al. 2008]. It is impossible to survey the many works in this
area, so for the state of the art in strand and hair simulation, refer to the survey by
Ward et al. [Ward et al. 2007].

In graphics, Pai [K. 2002] applied a discretization of the Cosserat rod model to
simulate a strand. Bertails et al. [Bertails et al. 2006] used a piecewise helical
discretization to produce compelling animations of curly hair using few elements per
strand.

In order to simulate a string, several traditional methods have been proposed, such
as mass-spring systems [Hair 1991; Selle et al. 2008], rigid multibody serial
chains [Hadap 2006], geometric approaches [Rivers and James 2007], and elastic
energy-based models [Bertails et al. 2006; Spillmann and Teschner 2007; Bergou
et al. 2008]. However, effects such as twisting, tearing, and flicking of a string are not
considered all together in a single dynamic system.

In order to handle inextensible objects simulated by deformation models, different
methods for stretch resistance have been proposed Provot [Institut and Provot 1996]
and Bridson et al. [Bridson et al. 2005] proposed to constrain the length of springs to
not stretch or compress beyond a given limit in the context of mass spring
simulations. Some alternative ways of stabilizing stiff simulation using a global
solver of a regular quad mesh were also proposed [Baraff and Witkin 1998; Müller
et al. 2014; Goldenthal et al. 2007], including a constraint method based on
impulse [Irving et al. 2007].

In the Finite Element Method (FEM) research area, Picinbono et al. [Picinbono
et al. 2003] limit strain by adding an energy term to penalize strain in certain
directions. Perez et al. [Perez et al. 2013] used Lagrange multipliers to constrain
strain components isotropically. Hernandez at el. [Hernandez et al. 2013] improve
this method to support anisotropic material. The linear system resulting from these
methods becomes over-constrained and has to be solved as a least squares problem.
In contrast, in the PBD framework, vertices are simply fixed by setting their inverse
mass to zero.
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These methods and many of their sequels are problematic in the case of excessive
stretch or when discontinuous events such as rupture should occur.

3. PROPOSED STRING MODEL

Before we describe the methodology of our model, we would like to clarify few terms
we often use in reference to out string model that might seem contradictory to how
our model actually behaves.

Non-elongating - we regard elongation as permanent deformation of string
represented by increased length of segments. What we truly mean when we use a
term non-elongating is that this deformation does not happen arbitrarily but only as
an exact deformation defined by stress-strain curve. As such it is also possible to
create an instance of our string that never elongates.

Non-stretchable - similarly to non-elongation, we use it to define any stretching
of our string as systematic and dependent on stress-strain curve. Only exception is
created by parameter used in strain limiting that can allow for some stretching to
decrease amount of necessary cycles needed when string is fixed in 2 or more particles.

Proposed model based on Position Based Dynamics approach (PBD) in this paper
is a modification of [Selle et al. 2008; Rungjiratananon et al. 2012; Rungjiratananon
et al. 2010] method used to simulate elastic objects and proven itself to be fast, stable
and simple. It was newly modified to take advantage of the fact that string as
structure is ultimately 1-dimensional object which allowed for further simplification.
Proposed modifications are in collision constraint module that can be handled easily,
by resolving the penetrations with regularly spreading the spheres along the segment
followed by projection of particles to valid locations. We also propose a modification
of strain limiting constraint that can handle the strings fixed in multiple locations
contrary to single fixed side as is common for hair models [Rungjiratananon et al.
2012; Rungjiratananon et al. 2010]. We also propose the use of constraints and
constraint forces, providing an efficient treatment for stiff twisting and
non-stretchable mass spring dynamics model.

3.1. String

Underlying structure of the string model consists of regions, n segments and N =

(n+1) particles, where segment consists of two neighbouring particles and manages
torsion, twist by an angle θi and non-elongating distance between the two particles.
Segment is unique and every particle belongs to at most 2 segments. We can think
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of it as a very rigid link. Region encompass several consecutive segments with their
particles and is used for bending and stiffness simulation, whether in terms of twisting
or bending. The bigger the region the faster the torsion propagates along the string
and in addition to that the string is harder to bend.

To encapsulate entire functionality of our model we use a string element, see
Fig. 1. It can contain multiple instances of itself to represent individual torn of pieces
of string from the original. This recursive structure allows for easier handling of
multiple instances and free user from micromanaging newly created strings. As such
it is possible to efficiently change parameters or check for interactions with
environment.

ParticleRegion

Segment

Fig. 1: String structure, Particle, Segment and Region. Region can undergo global transformations
translation and rotation depended on wCSM vector.

3.2. Particle

As smallest element we use particles to store information about position, velocity and
forces that are applied on string. We made it as only element we allow user to directly
interact with, as it is easiest to select through interface and offers way to find unique
fit for other elements. User can apply twist and exert force. It is always center for
sphere for collision detection.

3.3. Segment

Segments consist of two adjacent particles. They are used to handle twist, stress and
strain in given part of string. Length of segment define the distance between particle
and can change according to stress-strain curve. During collision detection, depending
on pre-set parameter, multiple (even overlapping) spheres can be positions between its
particles in regular intervals.
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3.4. Region

Region is centered on the particle and several of its neighbours to both sides. It is
defined by positive half-width and as such consists at least of 3 particles and 2
segments. It is mainly used to regulate stiffness of string. Wider it is, faster changes
in twist spread and string bends less.

4. SIMULATION

We will now derive the new strain-based position constraints such as the traditional
distance constraints or positional constraints. Let us assume we have system of N

particles with positions xi, velocities vi and inverse masses wi. For the sake of
completeness, we briefly show the basic concepts of our simulation loop based on
PBD:

Result: Update of xi,vi
initialize xi,vi;
while simulation step do

vi← vi +∆tfi;
pi← xi +∆tvi;
pi← solve(C(p1, . . . ,pN) = 0);
pi← solve(CollisionConstraint(p1, . . . ,pN));
vi← (pi−xi)xi +/∆t;
vi← Damping(v1, . . . ,vN);
xi← pi;

end

To achieve plausible behaviour of string we calculate forces, fi, affecting
individual particles. Firstly, external forces are taken into account, such as gravity
applied directly on string or any interacting object. Secondly, any direct effect caused
by user through interface and lastly, inner forces caused by shape matching, twisting
and flicking.

The positions are modified by a solver to meet a set of constraints C(p1, . . . ,pN) = 0
that is zero when the constraint is satisfied. The solver iterate multiple times over all
constraints solving the system of non-linear equations. Local linearization of a single
constraint function C by Taylor series results in the positional corrections ∆pi for point
pi computed as

∆pi =−skwi
∂

∂pi
C(p1, . . . ,pN), (1)
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where k is the Lagrange multiplier

k =
C(p1, . . . ,pN)

∑ j w j| ∂

∂pi
C(p1, . . . ,pN)|2

(2)

and k ∈ [0,1] is the stiffness parameter.

4.1. Damping

For damping, we use a general approach that specifically damps the relative velocities
with respect to a constraint C as

vi← vi− k

(
N

∑
j=1

vT
j n j

)
ni, (3)

where ni = ∆pi/|∆pi|. Note that the summation term cancels out when the mode itself
does not change.

Fig. 2: Region translation and rotation. x0
i is the original position, xi is the position updated by external

and constraint forces and gi is the goal position of particle i

4.2. Positional Constraint within Region

The particles are independently moved by external forces and constraints and then an
optimal rigid transformation (i.e., rotation and translation) of each region is
computed, refer Fig. 2. The rigid transformation of a particle position is called a goal
position. Position of each particle is calculated as multiple goal positions weighted in
the overlapping regions by particle per-region mass m̃i =

mi
Nr

, where mi is the mass of
particle i and Nr is the total number of regions that the particle belongs to.

For the given set of original points xi
0 and the set of deformed points xi, at every

step of simulation, for every region, rotational and translational matrix is calculated,
which is than used to decide the goal positions, gi, of particles of that region. Final
goal position of particle is a weighted sum of goal positions in regions it belongs to, as
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described in Eq. 4. Finally, each particle position is updated toward the goal position.

gi = ∑
r∈Ri

[Rr(xi
0− xcm,r

0)+ xcm,r]. (4)

Change of region is defined by three variables: xcm,r
0 is center of mass for region

at the beginning of animation step from original points, xcm,r is center of mass for
region after particles were moved, Rr is rotational matrix describing by what degree
has region rotated.

Translational matrix can be calculated as simply as a difference between centers
of mass, which are average of masses of particles. Approach for calculating rotation
matrix can be found in [Müller et al. 2005]. Unlike in [Müller et al. 2005] our shape
is 1-D string, therefore we can use Singular Value Decomposition (SVD) of weighted
covariance matrix

A =

(
∑

i
m̃ipiqT

i

)(
∑

i
m̃iqiqT

i

)−1

, (5)

where

qi = xi
0− x0

cm,r,

pi = xi− xcm,r, (6)

to obtain the rotation matrix Rr. That computes optimal rigid transformation between
two sets of 3D points.

[U,S,V ] = SV D(A), (7)

two of the output matrices are used to calculate the rotation matrix

R =VUT . (8)

4.2.1. Goal position calculation. In order to implement the positional changes
of particles, regions play the primary role. For every region we compute optimal rigid
transformation (i.e. rotation and translation). These are represented by rotation and
translation matrix Eq. 8. We keep two sets of particles:

—First set are particles in stable state that are result of last iteration of model and has
been most likely displayed to user.

—Second set consists of particles affected by external forces and moved to new
position without any constraint.
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for all particles i do
initialize original position x0

i ,xi← x0
i

end for
loop

for all particles i do
fi,ext ←ComputeCollisionForce()+ fgravity

end for
for all particles i do

vi← vi +dt fi
mi

xi← xi +dtvi
end for
for all chain region Ri do

xcm← ComputeOptimalTranslation()
R← ComputeOptimalRotation()

end for
for all particles i do

gi← ComputeGoalPosition()
end for
for all particles i do

gi← StrainLimiting()
xi← gi
vi← vi +

gi−xi
dt

end for
end loop

Algorithm 1: Chain shape matching algorithm.

After we compute new goal positions for every region, we calculate goal position for
each particle which is an average of per region goal positions of given particle, see
Eq. 4. At this point we can calculate force necessary to move particles of second set
to goal position:

fi(t +dt) =
gi(t)− xi(t)

dt
. (9)

Because of possible collision it is might be necessary to run adjust position several
times, so any changes are stored in second set. Only when everything finishes without
collision, particles of first set are updated. It is also good practice of not discarding last
stable state, in case a new frame of animation would need to be produced before we
are finished. Following Alg. 1 should clarify the process and the order of calculations.
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4.3. Twisting Constrain

According to the shape of the string, in the initial state, an initial twisting angle, θ 0
i ,

is assigned to each segment, ei, see Fig. 3. However, the point of twisting is always a
particle and as such, the incurred twist is transferred to one or two adjacent segment
without change in magnitude.

𝐭𝑖+1 𝐱𝑖+2𝐱𝑖+1

𝐱𝑖−1

𝐱𝑖

𝐞𝑖+1

𝐞𝑖−1

𝐞𝑖

𝐭𝑖

𝐛𝑖

𝐛𝑖+1

𝐭𝑖−1
𝐧𝑖

𝐧𝑖+1

∆𝜃𝑖

∆𝜃𝑖

∆𝜃𝑖+1
∆𝜃𝑖+1

Region k

Region k+1

Fig. 3: Material frame the curvature binormal bi, the heading direction ei and the normal vector ni. Twist
propagation along the string depends on the size of region k while the amount of propagated twist depends

on twisting stiffness β .

Model allows for a segment to be locked in, to simulate it being fixed and
maintaining constant degree of twist. In such case, twisting effect can propagate to its
neighbouring segments but the locked segments twist would remain constant until
released and twist can’t propagate past it.

Segments twisted by an external force, attempt to propagate twist towards the
neighbouring segments in effort to even out. Size of neighbourhood influenced in
every iteration depends on the size of region while the amount of propagated twist
depends on predetermined twisting stiffness β .

The increment of the twisting angle of the segment is propagated to the next
segments to minimize the elastic energy in the string. In other words, the string tries
to minimize the twisting angles between each connected segment. Similarly, to
position calculation, twist of a region, ∆Θ

region
k , is an weighted average of the

twisting angle increment [Rungjiratananon et al. 2012], ∆θi = θi − θ 0
i , of the

segments in the region k weighted by mass mi, see Eq. 10. Where Sk is a set of
segments within region k. Finally, the twist of segment, θi = ∆Θ

segment
i , is a weighted

sum of regional twists, containing the segment, see Eq. 11. Where R is the set of
regions to which segment i belongs to.
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∆Θ
region
k =

∑ j∈Sk
[m j∆θ j]

∑ j∈Sk
[m j]

, (10)

∆Θ
segment
i = ∑

k∈R
[∆Θ

region
k ]. (11)

Relative twist of the segment exerts a force on a particle that is treated as external
force and scales with twisting stiffness and relative twist of segment compared to its
neighbours derived from elastic energy equation [Bergou et al. 2008] as follows:

ftwist
i =

β

L
(θi+1−2θi +θi−1)

(
−κbi+1−κbi−1

2l

)
,

κbi = 2
ei−1× ei

|ei−1| |ei|+ ei−1 · ei
, (12)

where κbi is the curvature binormal, ei is the segment vector, l is the length of the
segment, β is the twisting stiffness of the string, and L is the total length of the string.

Heading of segments is used to find the curvature binormal, which describes the
correct heading of twisting force. Its heading does change with direction of twisting.
Twisting force, ftwist

i , is created when there is a difference in twist between 3
neighbouring segments. Afterwards, the calculated force is distributed among two
particles of central segment. As the entire equation is build around the difference of
twist and the heading of neighbouring segments, in case of reaching the end of string
or fixed point, we create temporary segment with identical heading and twist as the
segment with fixed point. User control of constant β allows a user define how much
should the string knot.

4.4. Strain Limiting Constrain

To make sure the simulated string remains non-elongating, strain limiting
algorithm [Selle et al. 2008] needs to be used. Instead of using the large Young’s
modulus, which can lead to numerical instability, position based constraints are often
imposed so that the length of each segment does not exceed a certain threshold Lmax

[Baraff and Witkin 1998; Ďurikovič 2002; Goldenthal et al. 2007]. There are several
heuristics approaches possible: Shrink each segment after shape matching; Adjust
near tip particle in the propagation direction.

The basic idea is to change the particle position based on last moved direction to
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keep the maximal length of segment, see Fig. 4. Although it works for a single fixed
side and as such can finish iteratively in single pass of all particles within the string,
this can be extended to 2 fixed ends or multiple fixed ends by subdividing the string
and simulating the parts independently. Our strain limiting with 2 fixed ends can reach
stable state in several iterations while switching between starting and ending points.
Unfortunately, string with 2 fixed points can iterate without stable result, when string
is too short to avoid the obstacle. In this case the only option is to allow the string to
tear itself at point of deepest conflict.

Fig. 4: Vectors of strain limiting. Blue dots are original particle positions and the green dots are new
positions after strain limiting.

There can be a special case of string having no fixed particle. It could occur during
tearing when free part of string would simply fall off. In such a situation, strain
limiting automatically behaves as if the central particle is fixed so in such case strain
limiting would be individually enacted on left and right part of string to limit
movement of string from its center of mass.

We believe, that by adding collision detection directly into strain limiting we can
significantly reduce number of iterations necessary. Important advantage is the
cascading approach of strain limiting that moves onto next particle only after the
previous was stabilized, see Fig. 5.

4.5. Collision Handling Constrain

To simulate collisions of structure with 1-D string, sphere-sphere collisions are ideal
because of simplicity of calculation and easy implementation on GPU. Every particle
is a center for collision sphere. Multiple spheres can be regularly spread out over the
length of segment, their number and size is adjustable while spheres on the segment
can overlap.
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Fig. 5: Vectors of strain limiting with obstacle. Blue dots are original particle positions and the green dots
are new positions after collision detection followed by strain limiting .

5. STRESS AND STRAIN HANDLING

In term of managing stress and strain of string we approach it as follows:

(1) After the position of string is calculated, we estimate stress applied on each
segment between affected particle and nearest neighbor particles.

(2) Secondly, when every segment has calculated its strain value, we use
stress-strain curves to calculate the stretching and elongation that given segment
can be exposed to. It is also possible that strain would reach too high value (also
defined by stress-strain curve) and it would tear itself into two parts.

(3) When new length of segments is finally calculated, Eq. 13, strain limiting
algorithm is used to shift all particles that aren’t affixed in such way to keep up
the reasonable shape and correct heading of string.

Lsegment = L0 +Lelongation +Lstretch. (13)

5.1. Stress-Strain curve

To get a proper idea of what stress-strain curves actually are, it is important to
understand our perception of terms stress and strain.

—Stress is representative of amount of force exerted on given segment. Whether it
is stretching force along the main axis of string or torsional forces from change in
twist. Regardless of attributes of strings, if the same force is applied or relative twist
of neighbouring segments is the same, stress will also be the same.

—Strain is the physical representation, or effect, of strain. It describes the stretching
of segment and is dependant on specific attributes of string, mainly material.

Stress-strain curve is than our way of transforming abstract value of stress,
independent of actual properties of string, into a specific effect. It describes how

40 
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much of the stretching is only temporary and will disappear the moment strain
lessens and how big stretching will result in permanent elongation. The point
between them is referred to as yield point and reaching it means segment can no
longer stretch and any additional changes are part of permanent elongation.

Perhaps, for us the most important point of stress-strain curve is rupture point

signalling greatest stress and strain the segment can sustain without breaking. Tensile
stress-strain curve is measured by linear elongation and the torsional stress-strain
curve is measured by torsion move. Data can be freely downloaded for common
materials.

5.2. Stress estimation

Estimation of stress is processed after all forces, both external and internal are
calculated but before strain limiting is applied. To avoid accidental tearing a delay is
used and the excessive external force is distributed as stress only after it is verified
that particle can no longer move in the direction of force. We estimate stress as
proportional to distance between segment particles beyond the original length of
segment. Because direction of the flicking force is calculated from vector of
supplementary particle describing applied force and selected particle of string that is
affected. As such we only need to store the magnitude of flicking force.

Strain is transformed into force and applied to particles only if:

—string tears,

—string is released.

In both cases, direction of force is determined by last particle in string (or particle
that was held by user) is head or tail. Function initializing this force iterate over all
particles until it reaches a fixed particle and always spreads from particle (or 2 in case
of tearing).

5.3. Tearing and Flicking

As the model simulates strings that are unstretchable, at most times some of the force
that is being applied to model should not be visually present. This excessive force is
being distributed among the segments and if at any point exceeds the yield point, it
permanently elongates the segments and decreases rupture point. If strain reaches
rupture point, segment ceases to exist and strings separates. Because after every
iteration the strain is applied as inverted force to particles, if the external force no
longer influences the string (or it ruptures), it causes a flicking effect, see Fig. 6.
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Tensile stress and strain values can be computed by estimating the tensions in the
string. To derive the tensions, we also consider the particle positions computed
without strain limiting.

We can handle the behaviour of flicking by using the tension. When an inextensible
string is pulled and released or torn apart, the applied stress vanishes, but the tensile
strain of the segment from the elongated length remains. The bouncing back force
could be computed from an internal tensile stress translated from the tensile strain by
referencing the stress-strain curve. However, with our tension estimation technique,
we can directly use the tension as the bouncing back force.

Fig. 6: Flicking of string with both ends fixed.

6. RESULTS

We tested our application on Alienware desktop X51 equipped with Intel Core4 i7-
4770 with processor clock speed at 3,40GHz. It is fitted with NVidia GeForce GTX
960Ti OEM graphics card with 32 unified stream-processors (run both vertex and
fragment shaders) and runs Windows Vista Service Pack 2 operating system. Any
timing measurements performed relate to this setup.

6.1. Speed performance

Table I shows results of speed experiments with different number of particles and
region widths. As a control sample, we use frames 20-50, because time of step also
depends on size of the portion of string in relative motion. As at the begging sizable
part of string is falling without restriction and after 50th frame some parts of string
with narrow regions are already static.

As can be seen our from Tab. I, our expectation of region half-width on speed of
our algorithm is significantly smaller than the effect of number of particles and could
be limited even further with more efficient calls and data storage and retrieval.
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Table I: Performance of our implementation.

Half-width Number of Particles
of Regions 11 21 41

1 0.68a 0.184 0.615
4 0.042a 0.219 0.686
8 0.001a 0.238 0.872

aMeasured as [ms] per frame.

From our test we can infer that the only parameter definitely affecting speed of
computation is number of particles and segment spheres used in collision detection.
From practical perspective, because particles also act as spheres for collision
detection, decreasing number of particles and increasing number of segment spheres
would positively increase speed as segments spheres are used solely for collision
detection. And therefore number of particles is main identifier of algorithmic speed.

6.2. Evaluation

We have created a model that simulates behavior of string with adjustable levels of
stretching and elongation. It is capable of propagating twist and computing forces
resulting from twisting and can lead to knotting.

When force is applied on particle to which particle can’t respond because of
constraints, stress-strain curve is used to calculate stretching and elongation. In case
stress surpasses given threshold string ruptures. Afterwards flicking comes into effect
where stress is converted to force and applied. Flicking effect may be also initiated if
affecting force disappears.

Behaviour and movement of string is adjustable trough several parameters. Chief
of all are:

—number of particles,

—half-width of regions,

—length of segments,

—stress-strain curve,

—number of segment spheres.

With exception of number of particles which influences general precision of model,
each of these parameters influences specific behaviour of string.

Half-width of regions is used to define stiffness of string. It should however be
always set with respect to number of particles as too narrow or wide regions are
harmful to stable model.
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Fig. 7: Flicking of string with one end fixed. String stiffness is determined by half-width of regions as 12,
8, 4, and 1 from left in columns. The columns show the simulation frames at time 20, 40, and 60.

Segment length is fairly self-explanatory and determines total length of string. It
is linked with stress-strain curve because stretch and elongation are represented as
fraction of original segment length.

Finally, number of segment spheres is used to fine-tune precision of collision
detection. Fewer spheres result in bumpier shape used for collision detection but
increase speed of calculations.

7. CONCLUSION

This paper described a method for animation of string-like objects, being able to
reproduce realistically effects like twisting, tearing and flicking. Ultimately, as our
string is semi-realistic model, we will need to tune the attributes and we hope to be as
closely with reality as we can. We have chosen several criteria to validate correctness
of our model. Correctness of our model is measured by: Fidelity of motion, Reaction
to outside forces, Twisting and forces generated by it, Tearing from twisting or
straining, Flicking effect cause by release of strain.
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R. Ďurikovič and E. Siebenstich

Bereitgestellt von  University Library Bratislava | Heruntergeladen  07.02.20 09:17   UTC



REFERENCES

BARAFF, D. AND WITKIN, A. 1998. Large steps in cloth simulation. In Proceedings of the 25th Annual

Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’98. ACM, New York, NY,

USA, 43–54.

BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B., AND GRINSPUN, E. 2008. Discrete elastic

rods. ACM Trans. Graph. 27, 3 (aug), 63:1–63:12.

BERTAILS, F., AUDOLY, B., CANI, M.-P., QUERLEUX, B., LEROY, F., AND LÉVÊQUE, J.-L. 2006.
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Roman Ďurikovič
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Statistical learning for recommending (robust)
nonlinear regression methods

J. KALINA AND J. TICHAVSKÝ

Abstract

We are interested in comparing the performance of various nonlinear estimators of parameters of the
standard nonlinear regression model. While the standard nonlinear least squares estimator is vulnerable to
the presence of outlying measurements in the data, there exist several robust alternatives. However, it is
not clear which estimator should be used for a given dataset and this question remains extremely difficult
(or perhaps infeasible) to be answered theoretically. Metalearning represents a computationally intensive
methodology for optimal selection of algorithms (or methods) and is used here to predict the most suitable
nonlinear estimator for a particular dataset. The classification rule is learned over a training database of 24
publicly available datasets. The results of the primary learning give an interesting argument in favor of the
nonlinear least weighted squares estimator, which turns out to be the most suitable one for the majority of
datasets. The subsequent metalearning reveals that tests of normality and heteroscedasticity play a crucial
role in finding the most suitable nonlinear estimator.

Mathematics Subject Classification 2010: 68T05, 62G35, 62J02, 68-04
General Terms: Statistical learning, Nonlinear regression, Robustness, Heteroscedasticity
Keywords: nonlinear least weighted squares, optimal method selection, optimization, computations

1. INTRODUCTION

The aim of regression modeling is to explain a continuous response variable based on
one or more independent variables (regressors), where the latter may be continuous
and/or discrete. This also allows to predict values of the response for individual
values of regressors. The nonlinear regression model can be described as an
important category of parametric regression models and will be considered in this
paper.

The most traditional estimation tool for nonlinear regression, i.e. the nonlinear
least squares estimator, is well known to be too vulnerable to the presence of outlying
measurements (outliers) in the data [Seber and Wild 2003]. Therefore, robust
estimation techniques for the nonlinear regression have been proposed and have
become established e.g.in econometric applications [Riazoshams et al. 2010; Baldauf
and Silva 2012]. The concept of breakdown point has become a fundamental
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measure of (global) robustness suitable for nonlinear regression estimators
[Stromberg and Ruppert 1992]. Nevertheless, it remains unknown to answer the
question, which estimator should be used for a given dataset; this is perhaps
impossible to be found theoretically across all possible datasets.

Metalearning is a methodology allowing to recommend the most suitable
algorithm (or method) for a given dataset, based on information learned over a
training database of datasets. It extracts (prior) knowledge from datasets applicable
to a new dataset and therefore has become quite popular in recent computer science,
optimization or data mining. Metalearning also starts to penetrate to economic
applications. To give specific examples of metalearning in computational economics,
metalearning was performed to compare economic genetic algorithms (especially
with a modified mutation operator suitable for consumption models) [Riechmann
2001] or to compare various optimization tools (mainly hybrid algorithms) for
business, economics and finance [Vasant 2012].

Metalearning has been recommended in the seminal paper [Smith-Miles et al.
2014] especially for those domains, in which a theoretical knowledge is too difficult
to acquire. Finding the best nonlinear regression estimator is exactly a task, for
which it remains very tedious (or perhaps infeasible) to derive any practical solution
rigorously [Stromberg and Ruppert 1992]. Thus, metalearning represents a
computational (however computationally intensive) approach able to offer some
practical advice in this respect. For a discussion of advantages and limitations of
metalearning, we refer to [Smith-Miles et al. 2014], but we hold the opinion that
aconscientiously critical evaluation of metalearning is still missing. Based on our
experience, metalearning in a habitual form is vulnerable to instability and sensitivity
to data contamination by noise, outlying values (outliers), or presence of redundant
variables.

In this paper, metalearning will be used in the context of nonlinear regression with
the aim to predict the best method for particular datasets not contained in the training
database. Section 2 recalls various estimators for the nonlinear regression model.
Sections 3 presents a numerical example revealing the severe bias of the nonlinear
least trimmed squares under heteroscedasticity. Section 4 describes our metalearning
study, the results of which are presented in Section 5. Finally, Section 6 concludes the
paper.
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2. ROBUST ESTIMATION IN NONLINEAR REGRESSION

Let us consider the standard nonlinear regression model

Yi = f (β1Xi1, . . . ,βpXip)+ ei, i = 1, . . . ,n, (1)

where f is a given continuous nonlinear function, Y1, . . . ,Yn is a continuous response
and (X1 j, . . . ,Xn j)

T is the j-th regressor for j = 1, . . . , p. We use the notation e1, . . . ,en

for random errors and X for the matrix with elements Xi j, where i = 1, . . . ,n and j =

1, . . . , p. The classical estimator, which is the nonlinear least squares (NLS) estimator
of β , is vulnerable to the presence of outliers in the data [Maronna et al. 2006; Fasano
et al. 2012]. Therefore, we recall several of its potential robust alternatives in this
section. All of them will be also used later in our computations.

2.1. Nonlinear least trimmed squares

The nonlinear least trimmed squares (NLTS) estimator represents one of robust
methods with a (possibly) high breakdown point [Stromberg and Ruppert 1992] and
also an extension of the popular least trimmed squares from linear regression
[Rousseeuw 1983; Hampel et al. 1986; Mount et al. 2014]. We denote byR the set of
real numbers and the residual corresponding to the i-th observation will be denoted as

ui(b) = Yi− f (b1Xi1, . . . ,bpXip), i = 1, . . . ,n, (2)

for any (fixed) b = (b1, . . . ,bp)
T ∈ Rp. Let us arrange squared values in ascending

order as

u2
(1)(b)≤ ·· · ≤ u2

(n)(b). (3)

The user must specify a suitable value of the trimming constant h (n/2≤ h≤ n). Then,
the NLTS estimator bNLT S of β is obtained as

bNLT S = argmin
b∈Rp

h

∑
i=1

u2
(i)(b). (4)

While the choice of h should reflect the percentage of contaminated data, one usually
takes 25 % of outliers in applications and thus h is commonly chosen as the integer
part of 3n/4. An alternative approach is to select h by repeating the evaluation of the
NLTS with an increasing h (starting with n/2) up to the moment when the estimates of
the model (especially the corresponding estimate of σ2) abruptly and greatly change.
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The computation of the NLTS estimator requires minimization over all

(
n

h

)
h-subsets of {1,2, . . . ,n}, thus has combinatorial complexity and, depending on the
relation between n and h, can become infeasible already for rather small numbers of
observations n. Therefore, it is more convenient to use the FAST-LTS algorithm
[Rousseeuw and van Driessen 2006], which approximates the LTS estimator in
a computationally attractive way; it has become a standard tool for the LTS allowing
very large sample sizes n.

2.2. Nonlinear least weighted squares

The nonlinear least weighted squares (NLWS) estimator represents an extension of
the least weighted squares estimator from the linear regression and at the same time a
weighted analogy of the NLTS estimator [Vı́šek 2011; Kalina 2014]. Let us assume
the magnitudes w1, . . . ,wn of nonnegative weights to be given. The NLWS estimator
of the parameters in (1) is defined as

bNLWS = argmin
b∈Rp

n

∑
i=1

wiu2
(i)(b), (5)

where the argument of the minimum is computed over all possible values of b =

(b1, . . . ,bp)
T and squared residuals are arranged as in (3).

The choice of weights clearly has a determining influence on properties of the
estimator; if namely one assigns zero weights to outlying observations, then the
estimator is ensured to be highly robust in terms of the breakdown point. The main
reason for such robustness of the NLWS estimator is the construction of the estimator
itself, just like for the LWS estimator in the linear regression. Various weighting
schemes will be described in Section 2.4.

An approximate algorithm for the optimization task (5) can be obtained as
a (weighted) adaptation of the NLTS algorithm [Rousseeuw and van Driessen 2006],
which is presented here as Algorithm 1. To avoid any confusion, we denote
coordinates of some vectors with the upper index there, e.g. the weights are denoted
as w = (w1, . . . ,wn)T . It also exploits the weighted NLS estimator, which is a well
described weighted analogue of the NLS [Seber and Wild 2003]. Concerning the
choice of parameters, we use J = 10000 and ε = 0.0001 in all computations in this
paper.
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Algorithm 1 Nonlinear least weighted squares (NLWS) estimator of β in (1)
Input: X1, . . . ,Xn, where Xi ∈Rp for each i = 1, . . . , p
Input: Y1, . . . ,Yn
Input: Nonlinear function f
Input: J > 0
Input: ε > 0
Input: Magnitudes of weights w1 ≥ ·· · ≥ wn

Output: Optimal permutation of w1, . . . ,wn denoted as w̃
for j = 1 to J do

m j0 :=+∞

Select randomly p points
Estimate β by b j1 = (b1

j1, . . . ,b
p
j1)

T obtained as a NLS estimator using only the
selected p points
k := 1
repeat

ui(b jk) := Yi− f (b1
ikXi1, . . . ,b

p
ikXip), i = 1, . . . ,n

Assign weights w j,k+1 = (w1
j,k+1, . . . ,w

n
j,k+1)

T to individual observations
based on (3)
Estimate β by b j,k+1 = (b1

i,k+1, . . . ,b
p
i,k+1)

T obtained as a weighted NLS with
weights w j,k+1
m j,k+1 := ∑

n
i=1 wi

j,k+1u2
i (b j,k+1)

k := k+1
until m jk > m j,k−1 + ε

w̃ j = (w̃1
j , . . . , w̃

n
j)

T := w j,k−1

b̃ j = (b̃1
j , . . . , b̃

n
j)

T := b j,k−1
end for

j∗ := argmin
j=1,...,J

n

∑
i=1

w̃i
ju

2
i (b̃ j) (6)

bNLWS := weighted NLS estimate with weights

w̃ = (w̃1, . . . , w̃n)T := (w̃1
j∗ , . . . , w̃

n
j∗)

T

2.3. Nonlinear regression median

Regression quantiles represent a natural generalization of sample quantiles to the
linear regression model. The estimator depends on a parameter α in the interval
(0,1), which corresponds to dividing the disturbances to α · 100 % values below the
regression quantile and the remaining (1−α) · 100 % values above the regression
quantile. In general, regression quantiles represent an important tool of regression
methodology, which is popular in economic applications. A natural extension of
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Table I. Results of various nonlinear estimators in the example of Section 3.
Estimates of

Estimator β1 β2 β3

1 (NLS) −4.5 1.1 −1.0
2 (NRM) −4.7 1.5 −1.0
3 (NLTS) −4.5 0.9 −1.0
4 (NLWS) −4.6 1.1 −0.9
5 (NLWS) −4.5 1.0 −1.0
6 (NLWS) −4.6 0.9 −1.0
7 (NLWS) −4.5 1.0 −0.9

regression quantiles to nonlinear regression is also available [Koenker and Park
1996], while the most important special case remains to be the nonlinear regression
median (NRM) with α = 1/2.

2.4. Estimators used in the computation

In the example of Section 3 as well as in the metalearning study (see Section 4), we use
the following seven available estimators, which will be denoted as estimators 1, . . . ,7:

(1) Nonlinear least squares (NLS).

(2) Nonlinear regression median (NRM).

(3) NLTS with h equal to b 3n
4 c, where bxc denotes the integer part of x ∈R.

(4) NLWS with data-dependent adaptive weights of [Čı́žek 2011].

(5) NLWS with linear weights

wi =
2(n+1− i)

n(n+1)
, i = 1, . . . ,n. (7)

(6) NLWS with trimmed linear weights

wi =
h− i+1

h
I[i≤ h], i = 1, . . . ,n, (8)

where I[.] denotes an indicator function and h equals again to b 3n
4 c.

(7) NLWS with weights generated by the (strictly decreasing) logistic function

wi =

(
1+ exp

{
i−n−1

n

})−1

, i = 1, . . . ,n. (9)

The habitual standardization of weights to ∑
n
i=1 wi = 1 is required in all cases.
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Fig. 1. Heteroscedastic data from the example of Section 3.

3. EXAMPLE: HETEROSCEDASTIC DATA

The effect of heteroscedasticity of errors on classical regression estimation,
i.e. deterioration of the estimates or even their complete malfunction, seems to be
still underestimated in statistical and econometric literature [Wooldridge 2001;
Kalina et al. 2019]. The following example illustrates the performance various
nonlinear estimators on artificial (randomly generated) heteroscedastic data shown in
Figure 1. We generate the data from the model

Yi = β1 +β2(Xi−β3)
2 + ei, i = 1, . . . ,n, (10)

with β1 = −4.6, β2 = 1 and β3 = −1. Estimates of β in this nonlinear model, i.e. a
nonlinear function of a single regressor X1, . . . ,Xn, are shown in Table I. The NLTS
ignores the heteroscedastic character of the data completely and chooses an unsuitable
subset of data to play the role of the reliable majority of the data points. The NLS as
well as NLWS estimates are able to find a more suitable regression estimate also for
observations with a value of the regressors exceeding 2. Their residuals are much
more symmetric around 0 compared to NLTS residuals.

It is mainly β2 which may be affected by heteroscedasticity. The NLTS is a clear
loser here as it ignores data generated with smallest (i.e. negative) residuals and
considers them to by outlying. On the other hand, the NLWS estimator seems to
yield a reasonable result independently on the choice of weights so the particular
choice of weights for the NLWS seems to be rather unimportant.
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4. DESCRIPTION OF THE METALEARNING STUDY

Metalearning is a computational (machine learning) approach allowing to exploit
information from previously observed datasets and to extend them to new datasets
[Brazdil et al. 2009; Smith-Miles et al. 2014]. While it has become popular in
optimization and to some extent in machine learning, it can be exploited for
recommending the optimal method also in the context of statistical estimation. In this
paper, we describe our metalearning study with the aim to compare various nonlinear
regression estimators. The study allows us also to detect the most relevant criteria for
determining the most suitable weights for the NLWS.

The primary learning task is to fit various nonlinear regression estimators for each
of the given datasets. The best estimator is found using a specified characteristic of a
goodness of fit. The subsequent metalearning part has the aim to learn a classification
rule allowing to predict the best regression method for a new dataset not present in
the training database. Its input data are only selected features of individual datasets
together with the result of the primary learning, which typically has the form of the
index of the best method for each of the training datasets. In general, the user of
metalearning must specify a list of essential components (parameters). We will now
describe our choices for the primary learning as well as the subsequent metalearning
part of the task.

4.1. Primary learning

We use 24 real datasets previously used in [Kalina and Peštová 2017]. In each of them,
we consider the model

Yi = β0 +
p

∑
j=1

β jXi j +
p

∑
j=1

βp+ j(Xi j− X̄ j)
2 + ei, i = 1, . . . ,n, (11)

which is a nonlinear model with the total number of 2p+1 regressors (i.e. nonlinear
as a function of the original p regressors) and the variables are centered using the
mean of the j-th variable X̄ j (for j = 1, . . . , p) for the sake of numerical stability.

We use the most standard choice of the prediction measure, which is the (prediction)
mean square error (MSE). We find the best method for each dataset using MSE in a
standard leave-one-out cross validation, which represents a popular attempt for an
independent validation [Hastie et al. 2008].
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4.2. Metalearning

The output of Section 4.1 is used in the form of the factor variable (index, indicator)
of the best method for each of the datasets together with a list of features computed
for each dataset. In contrary to the linear case of [Kalina and Peštová 2017], we need
to consider features for the metalearning more carefully now in the nonlinear model.
For example, there is no analogue of the coefficient of determination in the nonlinear
model. Other features must be evaluated for the NLS fit. Thus we came to selecting
the following set of 9 features.

(1) The number of observations n.

(2) The number of regressors p (excluding the intercept).

(3) The ratio n/p.

(4) Condition number of the matrix (XT X)−1.

(5) Normality of residuals of the NLS, evaluated as the p-value of the Shapiro-Wilk
test.

(6) Skewness of residuals of the NLS.

(7) Kurtosis of residuals of the NLS.

(8) Heteroscedasticity of residuals of the NLS evaluated as the p-value of the White’s
test.

(9) Test of linearity evaluated as the p-value of the test of H0 : βp+1 = · · ·= β2p = 0
in (11) based on the NLS estimates.

For the subsequent metalearning task, which is a task of classification to 7 groups
(i.e. finding the best among the 7 estimators of Section 2.4), we exploit various
classification methods including support vector machines (SVM), k-nearest
neighbors, or a classification tree. We use also several other less known methods
including a regularized version of linear discriminant analysis (LDA) denoted as
SCRDA of [Guo et al. 2007] or a robust version of LDA denoted as linear MWCD
classification [Kalina 2012].

5. RESULTS

We used the R software for all the computations including necessary libraries
(robustbase, quantreg, rda) for specific tasks (robust estimation, classification). Using
MSE as a measure of prediction performance, a leave-one-out cross validation is
used as a standard attempt for an independent validation. Table II shows the best
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method of the primary learning for each of the datasets. There, the notation 1, . . . ,7
according to list of methods in Section 2.4 is used. The ranks are presented here, so
that method 4 (NLWS with data-dependent weights) is the best method for the
Aircraft dataset, method 3 (NLTS) performs as the second best on this dataset etc. On
the whole, the NLWS is the best estimator based on Table II, but no weighting
scheme seems to be superior to the remaining choices.

Within the subsequent metalearning task, we computed various classifiers, while
default settings of parameters was used for those computed using the R software. As
the results presented in Table III indicate, the SVM classifier turns out to have the best
performance. Because there are as many as 7 classes, the overall prediction ability
is not very high (although not much lower compared to e.g. [Kalina and Peštová
2017]. The most useful criteria for the choice of weights for the NLWS turn out to
be heteroscedasticity and normality of the NLS residuals, which correspond to our
intuition, because their heavy violation requires a robust approach, i.e. a highly robust
estimation in terms of the breakdown point.

6. CONCLUSIONS

In this paper, we work with various estimators of parameters in the standard
nonlinear regression model. We are especially interested in the NLWS estimator,
which is a natural extension of the LWS estimator [Vı́šek 2011] to the nonlinear
regression model. A novel algorithm for the NLWS is proposed in this paper. At the
same time, an example with heteroscedastic data is presented in Section 3, which
brings an argument in favor of the novel NLWS estimator compared to the previously
investigated NLTS estimator. There, the NLWS estimator (basically with any
weighting scheme) seems more suitable but at the cost of higher computational
demands.

A metalearning study presented in this paper has the aim to construct a
classification rule allowing to predict the most suitable nonlinear regression estimator
for a particular dataset. For this purpose, we work with 24 real datasets with an
economic background and performed a standard metalearning procedure. The NLWS
seems to yield the best result for the majority of the datasets, while no weighting
scheme is uniformly optimal over all datasets. The NLTS and the nonlinear
regression median have a weaker performance due to a low efficiency. Thus, the
concept of efficiency (and not only the robustness) seems to play a prominent role in
the analysis of real data and it is the newly investigated NLWS estimator, which
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Table II. Results of primary learning in a leave-one-out cross-validation study. Ranks corresponding to the
mean prediction errors of various nonlinear regression estimators for each of the 24 datasets.

1 2 3 4 5 6 7
Dataset NLS NRM NLTS NLWS NLWS NLWS NLWS

1 Aircraft 7 6 2 1 5 4 3
2 Ammonia 6 4 2 3 5 6 1
3 Auto MPG 3 5 1 4 7 6 2
4 Cirrhosis 2 1 5 6 3 7 4
5 Coleman 1 2 3 7 6 5 4
6 Delivery 7 3 6 1 2 4 5
7 Education 1 2 3 4 7 6 5
8 Electricity 2 1 4 5 3 7 6
9 Employment 4 2 3 7 1 5 6

10 Furniture 1 3 1 5 7 2 4 6
11 Furniture 2 7 4 3 6 1 2 5
12 GDP growth 2 1 7 4 5 6 3
13 Houseprices 6 4 1 3 5 7 2
14 Housing 3 1 2 6 7 4 5
15 Imports 5 2 4 6 7 1 3
16 Kootenay 1 2 5 3 7 6 4
17 Livestock 7 6 2 3 5 1 4
18 Machine 2 7 5 4 3 6 1
19 Murders 3 2 7 4 6 5 1
20 NOx 4 5 1 3 7 6 2
21 Octane 2 1 5 4 6 7 3
22 Pasture 7 2 6 3 5 1 4
23 Pension 7 4 3 1 2 5 6
24 Petrol 2 3 7 1 5 6 4

Table III. Results of metalearning evaluated as the ratio of correctly classified cases in a leave-one-out cross
validation study.

Classification method Prediction accuracy
Classification tree 0.33

k-nearest neighbor (k = 3) 0.46
LDA 0.54

SCRDA 0.54
Linear MWCD-classification 0.54

Multilayer perceptron 0.50
Logistic regression 0.50

SVM (linear) 0.54
SVM (Gaussian kernel) 0.58

seems able to combine robustness with efficiency very well.

ACKNOWLEDGEMENTS

The authors would like to thank Barbora Peštová for acquiring the datasets and the
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Fractional calculus pertaining to multivariable
I-function defined by Prathima

D. KUMAR AND F. Y. AYANT

Abstract

In this paper, we study a pair of unified and extended fractional integral operator involving the
multivariable I-functions and general class of multivariable polynomials. Here, we use Mellin transforms
to obtain our main results. Certain properties of these operators concerning to their Mellin-transforms have
been investigated. On account of the general nature of the functions involved herein, a large number of
known (may be new also) fractional integral operators involved simpler functions can be obtained . We
will also quote the particular case of the multivariable H-function.

Mathematics Subject Classification 2010: Primary 33C45, 33C60; Secondary 26D20.
Keywords: Multivariable I-function; I-function; Fractional integral operators; General class of
multivariable polynomials; Mellin transform; Multivariable H-function.

1. INTRODUCTION AND PRELIMINARIES

Fractional calculus is a field of applied mathematics that deals with derivatives and
integrals of arbitrary orders. Recently, it has turned out many phenomena in physics,
mechanics, chemistry, biology and other sciences can be described very successfully
by models using mathematical tools by models using mathematical tools from
fractional calculus. Chaurasia and Srivastava [4], Choi et al. [5], Daiya et al. [6],
Kumar and Daiya [10], Kumar et al. [12], and others have studied the fractional
calculus pertaining to multivariable H-function defined by Srivastava and Panda [24].

The Ī- function, introduced by Rathie [16], however the notation and complete
definition is presented here in the following manner in terms of the Mellin-Barnes
type integral:

Ī(z) = Īm,n
p,q

[
z

∣∣∣∣∣ (a j,αi;A j)n,n+1 ,(a j,αi;A j)p

(b j,β j;B j)m,m+1 ,(b j,β j;B j)q

]
=

1
2πω

∫
L

Ω
m,n
p,q (s)z−sds, (1)

for all z 6= 0, and

Ω
m,n
p,q (s) =

∏
m
j=1 ΓBi (b j +β js) ∏

n
j=1 ΓA j (1−a j−α js)

∏
p
j=n+1 ΓAi (a j +α js) ∏

q
j=m+1 ΓB j (1−b j−β js)

. (2)

JAMSI, 15 (2019), No. 2 61 

 

10.2478/jamsi-2019-0009 
©University of SS. Cyril and Methodius in Trnava 

Bereitgestellt von  University Library Bratislava | Heruntergeladen  07.02.20 09:17   UTC



If ∆ > 0, the integral (1) converges when |argz|< 1
2 ∆; where

∆ =
m

∑
j=1

B jβ j−
q

∑
j=m+1

B jβ j +
n

∑
j=1

A jα j−
p

∑
j=n+1

A jα j. (3)

The generalized polynomials defined by Srivastava [23], is given in the following
manner:

SM1 ,··· ,Ms
N1 ,··· ,Ns

[y1, · · · ,ys] =
[N1/M1 ]

∑
K1=0

· · ·
[Ns/Ms ]

∑
Ks=0

(−N1)M1K1

K1!
· · ·

(−Ns)MsKs

Ks!

× A [N1,K1; · · · ;Ns,Ks] yK1
1 · · ·yKs

s , (4)

where M1, · · · ,Ms are arbitrary positive integers; and the coefficients
A[N1,K1; · · · ;Ns,Ks] are arbitrary constants (real or complex).

The multivariable I-function defined by Prathima et al. [14] (see also, [8]) is a
extension of the multivariable H-function [5; 6; 22; 24]. It is defined in term of
multiple Mellin-Barnes type integral, given by

I (z1, · · · ,zr) = I0,n:m1 ,n1;··· ;mr ,nr
p,q:p1 ,q1;··· ;pr ,qr



z1

.

.

.

zr

∣∣∣∣∣∣∣∣∣

(
a j;α

(1)
j , · · · ,α (r)

j ;A j

)
1,p

:

(
b j;β

(1)
j , · · · ,β (r)

j ;B j

)
1,q

:

(
c(1)j ,γ

(1)
j ;C(1)

j

)
1,p1

; · · · ;
(

c(r)j ,γ
(r)
j ;C(r)

j

)
1,pr(

d(1)
j ,δ

(1)
j ;D(1)

j

)
1,q1

; · · · ;
(

d(r)
j ,δ

(r)
j ;D(r)

j

)
1,qr

 (5)

=
1

(2πω)r

∫
L1

· · ·
∫

Lr

φ (s1, · · · ,sr)

{ r

∏
i=1

θi (si) zsi
i

}
ds1 · · ·dsr, (6)

where ω =
√
−1; φ (s1, · · · ,sr) and θi (si) for i = 1, · · · ,r are given as follows

φ (s1, · · · ,sr) =
∏

n
j=1 ΓA j

(
1−a j+∑

r
i=1 α

(i)
j s j

)
∏

p
j=n+1 ΓA j

(
a j−∑

r
i=1 α

(i)
j s j

)
∏

q
j=1 ΓB j

(
1−b j+∑

r
i=1 β

(i)
j s j

) , (7)

θi (si) =
∏

ni
j=1 Γ

C(i)
j

(
1− c(i)j + γ

(i)
j si

)
∏

mi
j=1 Γ

D(i)
j

(
d(i)

j −δ
(i)
j si

)
∏

pi
j=ni+1 Γ

C(i)
j

(
c(i)j − γ

(i)
j si

)
∏

qi
j=mi+1 Γ

D(i)
j

(
1−d(i)

j +δ
(i)
j si

) , (8)
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for more details, reader can refer to recent work given by Prathima et al. [14].
Following the result of Braaksma [3], the I-function of r variables is analytic if

Ui =
p

∑
j=1

A jα
(i)
j −

q

∑
j=1

B jβ
(i)
j +

pi

∑
j=1

C(i)
j γ

(i)
j −

qi

∑
j=1

D(i)
j δ

(i)
j 6 0 (i = 1, . . . ,r) . (9)

The integral (6) converges absolutely if

|arg(zk)|<
1
2

∆kπ (k = 1, . . . ,r) , where

∆k =−
p

∑
j=n+1

A jα
(k)
j −

q

∑
j=1

B jβ
(k)
j +

mk

∑
j=1

D(k)
j δ

(k)
j

−
qk

∑
j=mk+1

D(k)
j δ

(k)
j +

nk

∑
j=1

C(k)
j γ

(k)
j −

pk

∑
j=nk+1

C(k)
j γ

(k)
j > 0. (10)

The complex numbers zi are not zero. Throughout this paper, we assume the existence
and absolute convergence conditions of the multivariable I-function.
We will note

A =
(

a j;α
(1)
j , . . . ,α

(r)
j ;A j

)
1,p

. (11)

B =
(

b j;β
(1)
j , . . . ,β

(r)
j ;B j

)
1,q
. (12)

C =
(

c(1)j ,γ
(1)
j ;C(1)

j

)
1,p1

; . . . ;
(

c(r)j ,γ
(r)
j ;C(r)

j

)
1,pr

. (13)

D =
(

d(1)
j ,δ

(1)
j ;D(1)

j

)
1,q1

; . . . ;
(

d(r)
j ,δ

(r)
j ;D(r)

j

)
1,qr

. (14)

The Mellin transform of f (x) will be denoted by M [ f (x)] or F(s). If p and y are real,
we write s = p−1 + iy. If p > 1, f (x) ∈ Lp (0,∞), then for p = 1 we have

M [ f (x)] = F(s) =
∫

∞

0
xs−1 f (x)dx and f (x) =

1
2iπ

∫
L

F(s)x−sds. (15)

For p > 0, M [ f (x)] = F(s) = l.i.m.
∫ x

1/x
xs−1 f (x)dx, (16)

where, l.i.m. denotes the usual limit in the mean for Lp– spaces.
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2. DEFINITIONS

The pair of new extended fractional integral operators are defined by the following
equations:

Qα,β
γn

[ f (x)]

= tx−α−tβ−1
∫ x

0
yα (xt − yt)

β I



γ1υ1

.

.

.

γnυn

∣∣∣∣∣∣∣∣∣∣
A : C

.

.

B : D


k

∏
j=1

Ī
M′j ,N

′
j

M′′j ,N
′′
j

[
z j

(
yt

xt

)a j
(

1− yt

xt

)b j
]

×
r

∏
j=1

SM( j)
1 ,...,M( j)

s

N( j)
1 ,...,N( j)

s



z( j)
1

(
yt

xt

)g( j)
1
(

1− yt

xt

)h( j)
1

.

.

.

z( j)
s

(
yt

xt

)g( j)
s
(

1− yt

xt

)h( j)
s


ψ

(
yt

xt

)
f (y)dy. (17)

Rρ,β
γn

[ f (x)]

= txρ

∫
∞

x
y−ρ−tβ−1 (yt − xt)

β I



γ1µ1

.

.

.

γnµn

∣∣∣∣∣∣∣∣∣∣
A : C

.

.

B : D


k

∏
j=1

Ī
M′j ,N

′
j

M′′j ,N
′′
j

[
z j

(
xt

yt

)a j
(

1− xt

yt

)b j
]

×
r

∏
j=1

SM( j)
1 ,··· ,M( j)

s

N( j)
1 ,··· ,N( j)

s



z( j)
1

(
xt

yt

)g( j)
1
(

1− xt

yt

)h( j)
1

.

.

.

z( j)
s

(
xt

yt

)g( j)
s
(

1− xt

yt

)h( j)
s


ψ

(
xt

yt

)
f (y)dy, (18)

where, υi =
(

yt

xt

)ui
(

1− yt

xt

)vi
, µi =

(
xt

yt

)ui
(

1− xt

yt

)vi
and t,ui,vi, g( j)

i ,h( j)
i , a j, b j are

positive numbers.
The kernels ψ

(
yt

xt

)
and ψ

(
xt

yt

)
appearing in (17) and (18) respectively, are assumed

to be continuous functions such the integrals make sense for wide classes of function
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f (x).
The conditions for existence of these operators are as follows:

(a) f (x)∈Lp (0,∞) , (b) 16 p,q<∞, p−1+q−1 = 1.

(c) ℜ

(
α + ta j

b j′ j

β j′ j

)
+t

n

∑
i=1

ui min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−q−1.

(d) ℜ

(
β + tb j

b j′ j

β j′ j

)
+t

n

∑
i=1

vi min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−q−1.

(e) ℜ

(
ρ + ta j

b j′ j

β j′ j

)
+ t

n

∑
i=1

ui min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−p−1 where j = 1 . . . ,k; j′ = 1, . . . ,M′

j.

Condition (a) ensures that both operators defined in (17) and (18) exist and belong to.
These operators are extensions of fractional integral operators defined and studied by
several authors like Erdélyi [7], Love [13], Saigo et al. [17], Saxena and Kiryakova
[18], Saxena and Kumbhat [20; 21], and etc.

3. MAIN RESULTS

THEOREM 1. If f (x) ∈ Lp (0,∞) , 1 6 p 6 2; or f (x) ∈ Lp (0,∞) , p > 2, also
following conditions satisfied:

p−1+q−1 = 1,

ℜ

(
α + ta j

b j′ j

β j′ j

)
+ t

n

∑
i=1

ui min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−q−1,

ℜ

(
β + tb j

b j′ j

β j′ j

)
+ t

n

∑
i=1

vi min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−q−1,

and the integrals present are absolutely convergent, then

M
{

Qα,β
γn

[ f (x)]
}
= M { f (x)}Rα−s+1,β

γn
[1], (19)

where Mp (0,∞) stands for the class of all functions f (x) of Lp (0,∞) with p > 2, which
are inverse Mellin-transforms of the function of Lp (−∞,∞).
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PROOF. By making Mellin transform of (17), we get

M
{

Qα,β
γn

[ f (x)]
}
=
∫

∞

0
xs−1


tx−α−tβ−1

∫ x

0
yα (xt − yt)

β I



γ1υ1

.

.

.

γnυn

∣∣∣∣∣∣∣∣∣∣
A : C

.

.

B : D



k

∏
j=1

Ī
M′j ,N

′
j

M′′j ,N
′′
j

[
z j

(
yt

xt

)a j
(

1− yt

xt

)b j
]

SM( j)
1 ,...,M( j)

s

N( j)
1 ,...,N( j)

s



z( j)
1

(
yt

xt

)g( j)
1
(

1− yt

xt

)h( j)
1

.

.

.

z( j)
s

(
yt

xt

)g( j)
s
(

1− yt

xt

)h( j)
s


f (y)dy


dx.

(20)

On interchanging the order of integration, which is permissible under the conditions,
the result (19) follows in view of (18).

THEOREM 2. If f (x) ∈ Lp (0,∞) , 1 6 p 6 2; or f (x) ∈ Lp (0,∞) , p > 2, also
satisfied following conditions:

p−1+q−1 = 1,

ℜ

(
β + tb j

b j′ j

β j′ j

)
+t

n

∑
i=1

vi min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−q−1,

ℜ

(
ρ + ta j

b j′ j

β j′ j

)
+t

n

∑
i=1

ui min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−p−1,

and the integrals present are absolutely convergent, then

M
{

Rρ,β
γn

[ f (x)]
}
= M { f (x)}Qρ+s−1,β

γn
[1], (21)

where Mp (0,∞) stands for the class of all functions f (x) of Lp (0,∞) with p > 2, which
are inverse Mellin-transforms of the function of Lp (−∞,∞).
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PROOF. By making Mellin transform of (18), we get

M
{

Rρ,β
γn

[ f (x)]
}
=
∫

∞

0
xs−1


txρ

∫
∞

x
y−ρ−tβ−1 (yt − xt)

β I



γ1µ1

.

.

.

γnµn

∣∣∣∣∣∣∣∣∣∣
A : C

.

.

B : D


×

k

∏
j=1

Ī
M′j ,N

′
j

M′′j ,N
′′
j

[
z j

(
xt

yt

)a j
(

1− xt

yt

)b j
]

×
r

∏
j=1

SM( j)
1 ,...,M( j)

s

N( j)
1 ,...,N( j)

s



z( j)
1

(
xt

yt

)g( j)
1
(

1− xt

yt

)h( j)
1

.

.

.

z( j)
s

(
xt

yt

)g( j)
s
(

1− xt

yt

)h( j)
s


ψ

(
xt

yt

)
f (y)dy


dx. (22)

THEOREM 3. If f (x) ∈ Lp (0,∞) , v(x) ∈ Lp (0,∞), also satisfied following
conditions:

p−1+q−1 = 1,

ℜ

(
α + ta j

b j′ j

β j′ j

)
+t

n

∑
i=1

ui min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>max{p−1,q−1},

ℜ

(
β + tb j

b j′ j

β j′ j

)
+t

n

∑
i=1

vi min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
> 0,

and the integrals present are absolutely convergent, then∫
∞

0
v(x)Qα,β

γn
[ f (x)] dx =

∫
∞

0
f (x)Rα,β

γn
[v(x)] dx. (23)

PROOF. The result of (23) can be obtained in view of (17) and (18).
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4. INVERSION FORMULAS

THEOREM 4. If f (x) ∈ Lp (0,∞) , 1 6 p 6 2; or f (x) ∈ Lp (0,∞) , p > 2, also
following conditions satisfied:

p−1+q−1 = 1,

ℜ

(
α + ta j

b j′ j

β j′ j

)
+t

n

∑
i=1

ui min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−q−1,

ℜ

(
β + tb j

b j′ j

β j′ j

)
+t

n

∑
i=1

vi min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−q−1,

and the integrals present are absolutely convergent, also we have

Qα,β
γn

[ f (x)] = v(x), (24)

then

f (x) =
∫

∞

0
y−1 [v(y)]

[
h
(

x
y

)]
dy, (25)

where

h(x) =
1

2iπ

∫ c+i∞

c−i∞
y−1 x−s

R(s)
ds, (26)

R(s) = Rα−s+1,β
γn

[1]. (27)

PROOF. On taking Mellin transform of (24) and then applying Theorem 1, we
get

M { f (x)}= M {v(x)}
R(s)

,

which on inverting leads to

f (x) =
1

2iπ

∫ c+i∞

c−i∞
x−s M {v(x)}

R(s)
ds =

1
2iπ

∫ c+i∞

c−i∞

x−s

R(s)

{∫
∞

0
[v(y)] dy

}
ds.

Interchanging the order of integration, we obtain

f (x) =
∫

∞

0

v(y)
y

{
1

2iπ

∫ c+i∞

c−i∞

(
x
y

)s 1
R(s)

ds
}

dy.

Now in view of (26), we obtain the desired result (25).
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THEOREM 5. If f (x) ∈ Lp (0,∞) , 1 6 p 6 2; or f (x) ∈ Lp (0,∞) , p > 2, also
satisfied following conditions:

p−1+q−1 = 1,

ℜ

(
β + tb j

b j′ j

β j′ j

)
+t

n

∑
i=1

vi min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−q−1,

ℜ

(
ρ + ta j

b j′ j

β j′ j

)
+t

n

∑
i=1

ui min
16 j6mi

ℜ

(
d(i)

j

δ̄
(i)
j

)
>−p−1,

and the integrals present are absolutely convergent, also we have

Rρ,β
γn

[ f (x)] = w(x), (28)

then

f (x) =
∫

∞

0
y−1 [w(y)]

[
g
(

x
y

)]
dy, (29)

where

g(x) =
1

2iπ

∫ c+i∞

c−i∞
y−1 x−s

T (s)
ds, (30)

T (s) = Qρ+s−1,β
γn

[1]. (31)

PROOF. On taking Mellin transform of (28) and then applying Theorem 2, we
get

M { f (x)}= M {w(x)}
T (s)

,

which on inverting leads to

f (x) =
1

2iπ

∫ c+i∞

c−i∞
x−s M {w(x)}

T (s)
ds =

1
2iπ

∫ c+i∞

c−i∞

x−s

T (s)

{∫
∞

0
[w(y)] dy

}
ds.

Interchanging the order of integration, we obtain

f (x) =
∫

∞

0

w(y)
y

{
1

2iπ

∫ c+i∞

c−i∞

(
x
y

)s 1
T (s)

ds
}

dy.

Now in view of (30), we obtain the desired result (29).
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5. GENERAL PROPERTIES

The properties given below are consequences of the definitions (17) and (18).

x−1 Qα,β
γn

[
1
x

f
(

1
x

)]
= Rα,β

γn
[ f (x)] , (32)

x−1 Rρ,β
γn

[
1
x

f
(

1
x

)]
= Qρ,β

γn
[ f (x)] , (33)

xµ Qα,β
γn

[ f (x)] = Qα−µ,β
γn

[xµ f (x)] , (34)

xµ Rρ,β
γn

[ f (x)] = Rρ+µ,β
γn

[xµ f (x)] . (35)

The properties given below express the homogeneity of operator Q and R respectively.

If Qα,β
γn

[ f (x)] = v(x) then Qα,β
γn

[ f (cx)] = v(cx), (36)

If Rρ,β
γn

[ f (x)] = w(x) then Rρ,β
γn

[ f (cx)] = w(cx). (37)

6. MULTIVARIABLE H-FUNCTION

If A j = B j =C(i)
j = D(i)

j = 1, the multivariable I-function defined by Prathima et al. [14]
reduces to multivariable H-function. We obtain the two following operators:

Qα,β
γn

[ f (x)]

= tx−α−tβ−1
∫ x

0
yα (xt − yt)

β H



γ1υ1

.

.

.

γnυn

∣∣∣∣∣∣∣∣∣∣
A : C

.

.

B : D


k

∏
j=1

Ī
M′j ,N

′
j

M′′j ,N
′′
j

[
z j

(
yt

xt

)a j
(

1− yt

xt

)b j
]

×
r

∏
j=1

SM( j)
1 ,...,M( j)

s

N( j)
1 ,...,N( j)

s



z( j)
1

(
yt

xt

)g( j)
1
(

1− yt

xt

)h( j)
1

.

.

.

z( j)
s

(
yt

xt

)g( j)
s
(

1− yt

xt

)h( j)
s


ψ

(
yt

xt

)
f (y)dy, (38)

under the same notations and conditions that (17) with A j = B j =C(i)
j = D(i)

j = 1.
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Rρ,β
γn

[ f (x)]

= txρ

∫
∞

x
y−ρ−tβ−1 (yt − xt)

β H



γ1µ1

.

.

.

γnµn

∣∣∣∣∣∣∣∣∣∣
A : C

.

.

B : D


k

∏
j=1

Ī
M′j ,N

′
j

M′′j ,N
′′
j

[
z j

(
xt

yt

)a j
(

1− xt

yt

)b j
]

×
r

∏
j=1

SM( j)
1 ,...,M( j)

s

N( j)
1 ,...,N( j)

s



z( j)
1

(
xt

yt

)g( j)
1
(

1− xt

yt

)h( j)
1

.

.

.

z( j)
s

(
xt

yt

)g( j)
s
(

1− xt

yt

)h( j)
s


ψ

(
xt

yt

)
f (y)dy, (39)

under the same notations and conditions that (18) with A j = B j =C(i)
j = D(i)

j = 1.
We obtain the same theorems and properties concerning these operators.

7. CONCLUSION

The functions involved in the results established in this paper are unified and general
nature, hence a large number of known results lying in the literature follows as special
cases. Further, on suitable specifications of the parameters involved, numerous new
results involving simpler functions may also be obtained.
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