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Abstract

In this paper, an effectual and new modification in Laplace Adomian decomposition method based on
Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and
integro-differential equations. The performance and capability of the proposed idea is endorsed by
comparing the exact and approximate solutions for three different examples on Volterra integral,
integro-differential equations of the first and second kinds. The results shown through tables and figures
demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also
be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified
technique is also presented.
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1. INTRODUCTION

Substantial interest is devoted to solve nonlinear Volterra integral and
integro-differential equations by many researchers and scientists due to its
applications in science such as the population dynamics, spread of epidemics,
semi-conductor devices [Wazwaz 2011], biological species coexisting together with
increasing and decreasing rates of generating and in engineering such as heat transfer
and neutron diffusion process [Bahuguna et al. 2009].
The nonlinear Volterra integral equation of the second kind is defined as [Wazwaz
2011]

u(x) = f (x)+
∫ x

0
k(x, t)F(u(t))dt (1)

where f (x) is known as source term and F is a nonlinear operator, F(u(x)) is a
nonlinear function.
The nonlinear Volterra integro-differential equation of the first kind is given by
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[Wazwaz 2011; 2010]∫ x

0
K1(x, t)F(u(t))dt +

∫ x

0
K2(x, t)u(i)(t)dt = f (x) (2)

However, the nonlinear Volterra integro-differential equation of the second kind is
defined as [Wazwaz 2011; 2010]

u(i)(x) = f (x)+
∫ x

0
k(x, t)F(u(t))dt (3)

where u(i)(x) denotes the ith order derivative of u(x). The kernel k(x, t) and the
function f (x) of these equations are given real-valued functions and F(u(x)) is a
nonlinear function.
Earlier many numerical and analytical methods have been presented to solve these
kinds of equations [Wazwaz 2011; 2010; Maleknejad and Najafi 2011; Maleknejad
et al. 2011].

1.1. Laplace Adomian decomposition method and modifications

In recent years, several researchers have adapted Adomian decomposition method
(ADM) to solve many kinds of functional equations, which was developed by
Adomian in 1980. In [Adomian 1988; 1990], Adomian provided a review of
decomposition method in applied mathematics. The solution in this method is
considered as the summation of an infinite convergent series without using any
restrictive assumptions. A theoretical foundation of Adomian method was developed
in [Gabet 1994], Venkatarangan and Rajalakshmi [Venkatarangan and Rajalakshmi
1995] used modified ADM to solve equations containing radical signs. Adomian
polynomials are modified by Adomian and Rach in [Adomian and Rach 1996], Luo
et. al [Luo et al. 2006] studied the partial solutions on ADM for solving heat and
wave equations, Hashim [Hashim 2006] applied ADM to solve linear and nonlinear
boundary value problems for fourth order integro-differential equations. In [Hosseini
2006], Hosseini modified the Adomian decomposition method by expressing the
source function f (x) in Chebyshev polynomials and solved the nonlinear differential
algebraic equations. The ADM is used to solve nonlinear Sturm-Liouville problems
in [Somali and Gokmen 2007], Marwat and Asghar [Marwat and Asghar 2008]
suggested a two step Adomian decomposition method for solving heat equation with
variable coefficients, Liu [Liu 2009] employed Legendre polynomials to improve the
Adomian decomposition method and concluded that Chebyshev and Legendre
polynomials can be successfully used for ADM and comparatively Chebyshev
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expansion provides the better estimation . The interested reader can see the other
applications and modifications of this method in [Ghazanfari and Sepahvandzadeh
2014; Evans et al. 2004; Singh and Kumar 2011; Biazar et al. 2004; Zhang and Lu
2011; Li and Wang 2009; Biazar et al. 2010; Abassy 2010; Bildik and Deniz 2015;
Babolian and Biazar 2002].

Further, Khuri [Khuri 2001] developed Laplace Adomian decomposition method
and applied to find the solutions of nonlinear differential equations. This method is
the combination of two powerful tools, Laplace transform and Adomian
decomposition method, which is used to solve extinct functional equations [Wazwaz
2010; Doan 2012]. Hence, there are numerous applications where Laplace Adomian
decomposition method is used. The method is also improved and modified from
different aspects by some authors [Manafianheris 2012; Kumar et al. 2014].

In this work, our aim is to modify Laplace Adomian decomposition method based
on Bernstein polynomials. At the beginning of our technique, we expand the source
function, i.e. f (x) as Bernstein polynomials which approximate the function
uniformly and then Laplace Adomian decomposition method is applied to solve
Volterra integral and integro-differential equations, that gives the tremendous
improved results as shown in examples. To the best of our knowledge, Bernstein
polynomials is not combined with the LADM. Therefore, this is the new idea which
we have used.

1.2. Bernstein polynomials

The Berstein basis polynomials which are named after Russian mathematician Sergei
Bernstein, is used to approximate the functions and curves. Following are some basic
definitions [Quain et al. 2011]:

DEFINITION 1.1 (Bernstein basis polynomials). The Bernstein basis

polynomials of degree n form a complete basis over the interval [0,1] and are defined

by

Bk,n(x) =
(

n
k

)
xk(1− x)n−k,k = 0,1,2 . . .n.

DEFINITION 1.2 (Bernstein polynomials). A linear combination of Bernstein

basis polynomials
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Bn(x) =
n

∑
k=0

βkBk,n(x) (4)

is called the Bernstein polynomial of degree n where βk are Bernstein coefficients.

DEFINITION 1.3. With f a real valued function defined and bounded on [0,1] ,

let Bn( f ) be the polynomial on [0,1] ,that assigns to f (x) the value

Bn( f ) =
n

∑
k=0

(
n
k

)
xk(1− x)n−k f

(
k
n

)
(5)

where Bn( f ) is the nth Bernstein polynomial for f (x).

The utilizations and properties of Bernstein polynomials have gained much
importance in the domain of applied mathematics, physics and computer
aided-geometric designs [Farouki 2012; Farouki and Rajan 1998; Bohm et al. 1984;
Bhatti and Bracken 2007]. Bernstein polynomials are the basis of approximation
theory, with the help of these polynomials Weierstrass approximation theorem
[Quain et al. 2011] is proved, which is given as follows:

THEOREM 1.4. For all functions f in C[0, 1], the sequence of Bn( f ) converges

uniformly to f, where Bn( f ) is defined by (5).

Using Taylors series, if we approximate a function, curve or surface, it seems that
it converges slowly and does not converge to original function. Comparatively,
Bernstein polynomials are better approximation to a function. It also has some
applications in optimal control theory, stochastic dynamics and in the modelling of
chemical reactions [Yousefi and Behroozifar 2010]. Problems like, elliptic and
hyperbolic partial differential equations have been solved using Bernstein
polynomials by implementation of Galerkin and collocation approaches to determine
the coefficients.

The contents of this paper are as follows: in Section 2, we will give analysis of
modified LADM; Section 3 gives the convergence analysis of the method; in Section 4
we will give three examples to demonstrate the applicability of the proposed approach.
In the last section, conclusions are drawn.
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2. MODIFIED LAPLACE ADOMIAN DECOMPOSITION METHOD BASED
ON BERNSTEIN POLYNOMIALS

In this section, we are analyzing the method developed in [Rani and Mishra 2017] for
nonlinear Volterra integral equation with the difference kernel, i.e k(x, t) = k(x− t)

given by (1).
Adopting the standard Laplace Adomian decomposition method, firstly applying
Laplace transform on both sides of (1) and with the use of linear property and
convolution theorem of Laplace transform, we get

L[u(x)] = L[ f (x)]+L[k(x− t)]L[F(u(x))] (6)

According to the LADM technique u(x) can be written as an infinite series given by

u(x) =
∞

∑
n=0

un(x) (7)

Then writing the nonlinear term F(u(x)) as

F(u(x)) =
∞

∑
n=0

An(x) (8)

where An’s are the Adomian polynomials, given by the formula

An =
1
n!

dn

dλ n

[
f

(
n

∑
i=0

λ
iui

)]
λ=0

(9)

Substituting (7) and (8) into (6), we get

L

[
∞

∑
n=0

un(x)

]
= L[ f (x)]+L[k(x− t)]L

[
∞

∑
n=0

An(x)

]
The linearity property of Laplace transform implies

∞

∑
n=0

L[un(x)] = L[ f (x)]+L[k(x− t)]
∞

∑
n=0

L[An(x)] (10)

Now we are modifying the standard LADM, where the source term is expanded or
written in the form of Bernstein polynomials with degree m given by (5). Therefore,
we attain

∞

∑
n=0

L[un(x)] = L[Bm f (x)]+L[k(x− t)]
∞

∑
n=0

L[An(x)] (11)
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u(x) can be found by defining the following iterative scheme:

L[u0(x)] = L[Bm( f (x))] (12)

Taking inverse Laplace transform on both sides of (12), we obtain

u0(x) = L−1[L(Bm( f (x)))]

Therefore, the initial approximation depends on the Bernstein polynomials of source
function, which plays a significant role in the next approximations, hence in the
approximate solution of the given problem.
Similarly, we have the general relation as

L[un+1(x)] = L[k(x− t)]L[An(x)] (13)

For determining the terms u1, u2, u3 . . . of infinite series we use the inverse Laplace
transform to above recursive relation and u(x), the approximate solution to given
nonlinear Volterra integral equation can be calculated. The same process is used to
solve nonlinear Volterra integro-differential equations of the first and second kinds.
The efficacy of technique is demonstrated by convergence analysis and following
numerical examples.

3. CONVERGENCE ANALYSIS

The convergence analysis is presented here which demonstrate the efficiency of the
above-modified technique. Considering E = (C[J],‖.‖) the Banach space of all
continuous functions on J, suppose that there exist a constant N such that
|k(x, t)| ≤ N, for all (x, t)ε[0,T ]2.
Also, we suppose that the nonlinear term satisfy the Lipschitz condition, the
approximate solution of (1) by using Bernstein polynomials based MLADM,
converges to the exact one if 0 < α < 1, where α = NLx.
Let U be the exact solution and U∗ be the approximate solution of (1) by taking n

terms, then

||U−U∗||= max
xεJ
| f (x)+

∫ x

0
k(x, t)F(U(t))dt−Bm( f (x))−

∫ x

0
k(x, t)F(U∗(t))dt|

= | f (x)−Bm( f (x))|+
∣∣∣∣∫ x

0
k(x, t)(F(U(t))−F(U∗(t)))dt

∣∣∣∣ (14)
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Now using the convergence theorem of Bernstein polynomials (1.4) and above given
conditions in the statement, we get

||U−U∗|| ≤ ε +
∫ x

0
|k(x, t)||F(U(t))−F(U∗(t))|dt

≤ ε +
∫ x

0
NL|(U(t))− (U∗(t))|dt

≤ ε +NLxmax
xεJ
|U(t)−U∗(t)|

≤ α||U−U∗||

(15)

Therefore, if 0 < α < 1, α = NLx, the approximate solution converges to exact
solution as n→ ∞.

4. NUMERICAL EXAMPLES

EXAMPLE 4.1. Consider the following nonlinear Volterra integro-differential

equation of the second kind [Wazwaz 2010]

u′(x) =−2sinx− 1
3

cosx− 2
3

cos2x+
∫ x

0
cos(x− t)u2(t)dt, (16)

with initial condition u(0) = 1, having the exact solution as u(x) = cosx− sinx.

In this example, the source term, i.e. f (x) =−2sinx− 1
3 cosx− 2

3 cos2x. Now using
the above technique, we expand f (x) in the terms of Bernstein polynomials of order
m = 6

f (x)≈ 0.000507191x6 +0.010605381x5−0.10640906x4−0.06228815x3+

1.314840965x2−1.742867841x−1 (17)

By applying Laplace transform to both sides of (16), we get

L[u(x)] =
1
s
+

1
s

L[ f (x)]+
1

s2 +1
L[u2(x)] (18)

The methodology consisting of letting the solution as an infinite series as mentioned
above, we have

L

[
∞

∑
n=0

un(x)

]
=

1
s
+

1
s

L[ f (x)]+
1

s2 +1
L

[
∞

∑
n=0

An(x)

]
(19)
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Fig. 1. Comparison of solutions in [0,0.5] and [0.6,1]

where the nonlinear term F(u(x)) = u2(x) is decomposed in Adomian polynomials,
few terms are as follows:

A0 = u2
0

A1 = 2u0u1

A2 = 2u0u2 +u2
1

A3 = 2u0u3 +2u1u2

The recursive relation is obtained by comparing the terms in (19), which gives

L[u0(x)] =
1
s
+

1
s

L[ f (x)] (20)

In general

L[un+1(x)] =
1

s2 +1
L[An(x)] (21)

Employing the inverse Laplace transform on both sides of (20) and using (17), we get
the value of u0(x).
Similarly (21) gives the values of u1(x), u2(x) and so on. Subsequently, one can
compare the results from Figure 1, which shows that the approximate solutions are
very much close to exact in the interval [0,0.5] than in the interval [0.6,1].
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EXAMPLE 4.2. The following nonlinear Volterra integro-differential equation of

the first kind [Wazwaz 2010]∫ x

0
(x− t)u2(t)dt +

∫ x

0
(x− t)u′′(t)dt =−15

32
+

3x2

4
+

1
2

cos2x− 1
32

cos4x, (22)

with initial condition u(0) = 2, u′(0) = 0 which has the exact solution as

u(x) = 1+ cos2x.

Apply Laplace transform to both sides of (22) and using the derivative property and
convolution theorem, we get

L
[∫ x

0
(x− t)u2(t)dt

]
+L

[∫ x

0
(x− t)u′′(t)dt

]
= L[ f (x)] (23)

By solving, we get

1
s2 L[u2(x)]+L[u(x)]− 2

s
= L[ f (x)]

L[u(x)] =
2
s
+L[ f (x)]− 1

s2 L[u2(x)]

where the nonlinear term F(u) = u2 is decomposed as in the previous example
Now proceeding as before, following iterative scheme is obtained:

L[u0(x)] =
2
s
+L[ f (x)] (24)

In general

L[un+1(x)] =−
1
s2 L[An(x)] (25)

Here f (x) = −15
32 + 3x2

4 + 1
2 cos2x− 1

32 cos4x is the source term.
By adopting the above method, we expand f (x) as the Bernstein polynomials:

f (x)≈−0.001381627x6 +0.013467998x5 +0.051210391x4 +0.02773726x3+

0.002551943x2 +0.00001698x (26)

Applying inverse Laplace transform on both sides of (24), (25) and using the Bernstein
polynomials given by (26), we get the values of u0(x), u1(x), u2(x). . . . Therefore, we
find the approximate solution. The approximate solution provides the accurate result
or close to the exact solution in very few iterations that is shown in Figure 2.
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Fig. 2. Comparison of solutions in [0,0.5] and [0.6,1]

EXAMPLE 4.3. The nonlinear Volterra integral equation is given by

u(x) =
1
4
+

x
2
+ ex− e2x

4
+
∫ x

0
(x− t)u2(t)dt, (27)

having the exact solution as u(x) = ex.

The source term in (27) is f (x) = 1
4 +

x
2 + ex− e2x

4 which can be expanded in the
Bernstein polynomials, here taking m = 10.

f (x)≈−0.000000056x10−0.00000332x9−0.00006387x8−0.00076576x7−0.00589954x6

−0.03027348x5−0.1004593x4−0.18599482x3−0.05372434x2 +0.99820229x+1 (28)

Taking Laplace transform on both sides of (27), gives

L[u(x)] = L[ f (x)]+
1
s2 L[u2(x)] (29)

Now u(x) can be evaluated based on Bernstein polynomials of f (x) and with decomposing the

nonlinear term in Adomian polynomials, which implies the relation

L[u0(x)] = L[ f (x)] (30)

In general

L[un+1(x)] =
1
s2 L[An(x)] (31)

Substituting the approximated value of f (x) from (28) in (30) and having inverse Laplace

transform on both sides of (30), (31) give the values of u0(x), u1(x), u2(x),. . . un(x). The sum

of these terms will yield the value of truncated sum of u(x). It is found that the error between

exact and approximate solution is very less as shown in Figure 3 and reveals that the Bernstein

polynomials based modification of LADM gives the solution in good agreement.

D. Rani and V. Mishra14   

 



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

u(
x)

 

 
Exact solution
Approximate solution

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

u(
x)

 

 
Exact solution
Approximate solution

Fig. 3. Comparison of solutions in [0,0.5] and [0.6,1]

Table I. Comparison of approximate solution by proposed method with exact solution of examples
Example1 Example2 Example3

x Exact Approximate Exact Approximate Exact Approximate
0 1 1 2 2 1 1

0.1 0.8952 0.8964 1.9801 1.9801 1.1052 1.1044
0.2 0.7814 0.7858 1.9211 1.9212 1.2214 1.2188
0.3 0.6598 0.6687 1.8253 1.8259 1.3499 1.3441
0.4 0.5316 0.5455 1.6967 1.6982 1.4918 1.4819
0.5 0.3982 0.4166 1.5403 1.5431 1.6487 1.6338
0.6 0.2607 0.2828 1.3624 1.3663 1.8221 1.8018
0.7 0.1206 0.1451 1.1700 1.1734 2.0138 1.9887
0.8 -0.0206 0.0049 0.9708 0.9687 2.2255 2.1978
0.9 -0.1617 -0.1361 0.7728 0.7550 2.4596 2.4335
1 -0.3012 -0.2758 0.5839 0.5314 2.7183 2.7014

The numerical results by using modified LADM based on Bernstein polynomials are also

presented in Table I, which shows the performance of proposed technique.

5. CONCLUSIONS

For solving nonlinear Volterra integral and integro-differential equations a modification in

standard Laplace Adomian decomposition method based on Bernstein polynomials is used

here. Comparisons and analyses conclude that not only the orthogonal polynomials like

Legendre, Chebyshev or Jacobi polynomials can improve the ADM, the Bernstein polynomials

can also improve the source term as it is the better approximation to a function and hence the

approximate solution converges to exact one as shown in the examples.
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Fractional Hermite-Hadamard type inequalities
for co-ordinated prequasiinvex functions

B. MEFTAH AND A. SOUAHI

Abstract

Some new Ostrowski’s inequalities for functions whose n-th derivatives are h-convex are established.

Mathematics Subject Classification 2010: 26A51
Keywords: In this paper, the concept of co-ordinated prequasiinvex is introduced, some fractional
Hermite-Hadamard type inequalities for functions whose modulus of the mixed derivatives lies in this
novel class of functions are established.

1. INTRODUCTION

One of the most well-known inequalities in mathematics for convex functions is the
so called Hermite-Hadamard integral inequality, which can be stated as follows: for
every convex function f on the finite interval [a,b] we have

f
( a+b

2

)
≤ 1

b−a

b∫
a

f (x)dx≤ f (a)+ f (b)
2 . (1)

If the function f is concave, then (1) holds in the reverse direction (see [Pečarić et al.
1992]).

In recent years, lot of efforts have been made by mathematicians and researchers to
generalize the classical convexity. Hanson [Hanson 1981], introduced a new class of
generalized convex functions, called invex functions, In [Ben-Israel and Mond 1986]
the authors gave the concept of preinvex function which is special case of invexity.
Pini [Pini 1991] introduced the concept of prequasiinvexity which generalize that of
preinvex function, Noor [Noor 1994; 2005], Yang and Li [Yang and Li 2001] and Weir
[Weir and Mond 1988], have studied the basic properties of the preinvex functions and
their role in optimization, variational inequalities and equilibrium problems.

Dragomir [Dragomir 2001] introduced the concept of the convexity on the
co-ordinates as follows:
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A function f : ∆→ R is said to be convex on the co-ordinates on ∆, where ∆ :=
[a,b]× [c,d] is a bidimensional interval in R2 with a < b and c < d, if

f (tx+(1− t)u,λy+(1−λ )v) ≤ tλ f (x,y)+ t (1−λ ) f (x,v)

+(1− t)λ f (u,y)+(1− t)(1−λ ) f (u,v)

holds for all t,λ ∈ [0,1] and (x,y),(u,v) ∈ ∆.
Also, he proved the two-dimensional analog of (1), which can be stated as follows:
For all co-ordinated convex function f on [a,b] × [c,d], we have

f
( a+b

2 , c+d
2

)
≤ 1

2

 1
b−a

b∫
a

f (x, c+d
2 )dx+ 1

d−c

d∫
c

f ( a+b
2 ,y)dy


≤ 1

(b−a)(d−c)

b∫
a

d∫
c

f (x,y)dydx

≤ 1
4

 1
b−a

 b∫
a

f (x,c)dx+
b∫
a

f (x,d)dx

+ 1
d−c

 d∫
c

f (a,y)dy+
d∫
c

f (b,y)dy


≤ f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)

4
. (2)

Özdemir et al. [Özdemir et al. 2012] introduced the concept of co-ordinated
quasi-convex functions which generalize the notion of co-ordinated convex functions
as follows:

A function f : ∆→ R is said to be co-ordinated quasi-convex on ∆, if

f (tx+(1− t)u,λy+(1−λ )v)≤max{ f (x,y), f (u,v)}

holds for all t,λ ∈ [0,1] and (x,y),(u,v) ∈ ∆.
A formal definition of co-ordinated quasi-convex functions is

f (tx+(1− t)u,λy+(1−λ )v)≤max{ f (x,y), f (x,v), f (u,y), f (u,v)}

for all t,λ ∈ [0,1] and (x,y),(u,v) ∈ ∆.
In [Özdemir et al. 2012] Özdemir et al. established the following

Hermite-Hadamard’s inequalities for differentiable co-ordinated quasi-convex
functions
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THEOREM 1.1. Let f : ∆⊂ R2→ R be a partial differentiable mapping on ∆ =

[a,b]× [c,d] in R2 with a < b, c < d. If
∣∣∣ ∂ 2 f

∂λ∂ t

∣∣∣ is quasi-convex on the co-ordinates on

∆, then one has the inequalities∣∣∣∣∣∣ f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)
4 + 1

(b−a)(d−c)

b∫
a

d∫
c

f (x,y)dxdy−A

∣∣∣∣∣∣
≤ (b−a)(d−c)

16 max
{∣∣∣ ∂ 2 f

∂λ∂ t (a,b)
∣∣∣ , ∣∣∣ ∂ 2 f

∂λ∂ t (c,d)
∣∣∣} ,

where

A = 1
2(b−a)

b∫
a

[ f (x,c)+ f (x,d)]dx+ 1
2(d−c)

d∫
c

[ f (a,y)+ f (b,y)]dy. (3)

THEOREM 1.2. Let f : ∆⊂ R2→ R be a partial differentiable mapping on ∆ =

[a,b]× [c,d] in R2 with a < b, c < d. If
∣∣∣ ∂ 2 f

∂λ∂ t

∣∣∣q , q > 1, is quasi-convex on the co-

ordinates on ∆, then one has the inequalities∣∣∣∣∣∣ f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)
4 + 1

(b−a)(d−c)

b∫
a

d∫
c

f (x,y)dxdy−A

∣∣∣∣∣∣
≤ (b−a)(d−c)

4(p+1)
2
p

(
max

{∣∣∣ ∂ 2 f
∂λ∂ t (a,b)

∣∣∣q , ∣∣∣ ∂ 2 f
∂λ∂ t (c,d)

∣∣∣q}) 1
q
,

where A is as defined by (3), and 1
p +

1
q = 1.

THEOREM 1.3. Let f : ∆⊂ R2→ R be a partial differentiable mapping on ∆ =

[a,b]× [c,d] in R2 with a < b, c < d. If
∣∣∣ ∂ 2 f

∂λ∂ t

∣∣∣q , q ≥ 1, is quasi-convex on the co-

ordinates on ∆, then one has the inequalities∣∣∣∣∣∣ f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)
4 + 1

(b−a)(d−c)

b∫
a

d∫
c

f (x,y)dxdy−A

∣∣∣∣∣∣
≤ (b−a)(d−c)

16

(
max

{∣∣∣ ∂ 2 f
∂λ∂ t (a,b)

∣∣∣q , ∣∣∣ ∂ 2 f
∂λ∂ t (c,d)

∣∣∣q}) 1
q
,

where A is as defined by (3).

In this paper we first introduce the concept of co-ordinated prequasiinvex, and then
we derive some fractional Hermite-Hadamard type integral inequalities for functions
whose modulus of the mixed derivatives lies in this new class of functions.

JAMSI, 15 (2019), No. 1 21 

 



2. PRELIMINARIES

In this section we recall some concepts of generalized convexity and fractional
calculus

DEFINITION 2.1. [Matł oka 2013] Let K1,K2 be nonempty subsets of Rn,

(u,v) ∈ K1×K2. We say K1×K2 is invex at (u,v) with respect to η1 and η2, if

(u+ tη1 (x,u) ,v+ sη2 (y,v)) ∈ K1×K2

holds for each (x,y) ∈ K1×K2 and t,s ∈ [0,1].

K1×K2 is said to be an invex set with respect to η1 and η2 if K1×K2 is invex at
each (u,v) ∈ K1×K2.

In what follows we assume that K1×K2 be an invex set with respect to η1 : K1×
K1→ R and η2 : K2×K2→ R.

DEFINITION 2.2. [Latif and Dragomir 2013] A function f : K1×K2→R is said

to be preinvex on the co-ordinates, if the following inequality

f (u+λη1 (x,u) ,v+ tη2 (y,v)) ≤ (1−λ )(1− t) f (u,v)+(1−λ )t f (u,y)

+(1− t)λ f (x,v)+λ t f (x,y)

holds for all t,λ ∈ [0,1] and (x,y),(x,v),(u,y),(u,v) ∈ K1×K2.

DEFINITION 2.3. [Kilbas et al. 2006] Let f ∈ L[a,b]. The Riemann-Liouville

integrals Jα

a+ f and Jα

b− f of order α > 0 with a≥ 0 are defined by

Jα

a+ f (x) =
1

Γ(α)

x∫
a

(x− t)α−1 f (t)dt, x > a

Jα

b− f (x) =
1

Γ(α)

b∫
x

(t− x)α−1 f (t)dt, b > x

respectively. Where Γ(α) =
∞∫
0

e−ttα−1dt, is the Gamma function and

J0
a+ f (x) = J0

b− f (x) = f (x).

DEFINITION 2.4. [Latif and Dragomir 2013] Let f ∈ L([a,b]× [c,d]). The

Riemann–Liouville integrals Jα,β
a+,c+ , Jα,β

a+,d− , Jα,β
b−,c+ , and Jα,β

b−,d−of order α,β > 0 with
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a,c≥ 0, a < b and < d are defined by

Jα,β
a+,c+ f (b,d) =

1
Γ(α)Γ(β )

b∫
a

d∫
c

(b− x)α−1 (d− y)β−1 f (x,y)dydx, (4)

Jα,β
a+,d− f (b,c) =

1
Γ(α)Γ(β )

b∫
a

d∫
c

(b− x)α−1 (y− c)β−1 f (x,y)dydx, (5)

Jα,β
b−,c+ f (a,d) =

1
Γ(α)Γ(β )

b∫
a

d∫
c

(x−a)α−1 (d− y)β−1 f (x,y)dydx, (6)

and

Jα,β
b−,d− f (a,c) =

1
Γ(α)Γ(β )

b∫
a

d∫
c

(x−a)α−1 (y− c)β−1 f (x,y)dydx, (7)

where Γ is the Gamma function, and

J0,0
a+,c+ f (b,d) = J0,0

a+,d− f (b,c) = J0,0
b−,c+ f (a,d) = J0,0

b−,d− f (a,c) = f (x,y) .

DEFINITION 2.5. [Sarı kaya 2014] Let f ∈ L([a,b]× [c,d]). The Riemann–

Liouville integrals Jα

b− f (a,c), Jα

a+ f (b,c), Jβ

d− f (a,c), and Jα

c+ f (a,d) of order α,β > 0
with a,c≥ 0, a < b, and < d are defined by

Jα

b− f (a,c) =
1

Γ(α)

b∫
a

(x−a)α−1 f (x,c)dx, (8)

Jα

a+ f (b,c) =
1

Γ(α)

b∫
a

(b− x)α−1 f (x,c)dx, (9)

Jβ

d− f (a,c) =
1

Γ(β )

d∫
c

(y− c)β−1 f (a,y)dy, (10)

and

Jα

c+ f (a,d) =
1

Γ(β )

d∫
c

(d− y)β−1 f (a,y)dy, (11)

JAMSI, 15 (2019), No. 1 23 

 



where Γ is the Gamma function.

LEMMA 2.6. [Meftah 2019] Let f : K→R be a partially differentiable function

on K, if ∂ 2 f
∂ t∂ s ∈ L(K), then the following equality holds

f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))
4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))

+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)
= η1(b,a)η2(d,c)

4

1∫
0

1∫
0

(
tα − (1− t)α

)(
sβ − (1− s)β

)
× ∂ 2 f

∂ t∂ s (a+ tη1 (b,a) ,c+ sη2 (d,c))dsdt, (12)

where

A = Γ(α+1)
4(η1(b,a))

α

(
Jα

(a+η1(b,a))
− f (a,c+η2 (d,c))+ Jα

(a+η1(b,a))
− f (a,c)

+ Jα

a+ f (a+η1 (b,a) ,c+η2 (d,c))+ Jα

a+ f (a+η1 (b,a) ,c)
)

+ Γ(β+1)
4(η2(d,c))

β

(
Jβ

(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jβ

(c+η2(d,c))
− f (a,c)

+ Jα

c+ f (a+η1 (b,a) ,c+η2 (d,c))+ Jα

c+ f (a,c+η2 (d,c))
)
. (13)

3. MAIN RESULTS

In what follows we assume that K = [a,a+η1 (b,a)]× [c,c+η2 (d,c)] be an invex
subset of R2 with respect to η1,η2 where η1,η2 : R2 → R are two bifunctions such
that η1 (b,a)> 0 and η2 (d,c)> 0.

We will start with the following definitions, and the lemma

DEFINITION 3.1. A function f : K → R is said to be prequasiinvex on the co-

ordinates, if the following inequality

f (u+λη1 (x,u) ,v+ tη2 (y,v))≤max{ f (u,v), f (u+η1 (x,u) ,v+η2 (y,v))}

holds for all t,λ ∈ [0,1] and (u,v),(x,y) ∈ K.

A formal definition of co-ordinated prequasiinvex functions is given by the
following definition
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DEFINITION 3.2. A function f : K → R is said to be prequasiinvex on the co-

ordinates, if the following inequality

f (u+λη1 (x,u) ,v+ tη2 (y,v))

≤ max{ f (u,v), f (u,v+η2 (y,v)), f (u+η1 (x,u) ,v), f (u+η1 (x,u) ,v+η2 (y,v))}

holds for all t,λ ∈ [0,1] and (x,y),(x,v),(u,y),(u,v) ∈ K.

THEOREM 3.3. Let f : K → R be a partially differentiable function on K. If∣∣∣ ∂ 2 f
∂ t∂λ

∣∣∣ is co-ordinated prequasiinvex function on K with respect to η1 and η2, then the

following fractional inequality holds∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))
4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))

+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
≤ η1(b,a)η2(d,c)

(α+1)(β+1) max
{∣∣∣ ∂ 2 f

∂ t∂λ
(a,c)

∣∣∣ , ∣∣∣ ∂ 2 f
∂ t∂λ

(a,c+η2 (d,c))
∣∣∣ ,∣∣∣ ∂ 2 f

∂ t∂λ
(a+η1 (b,a) ,c)

∣∣∣ , ∣∣∣ ∂ 2 f
∂ t∂λ

(a+η1 (b,a) ,c+η2 (d,c))
∣∣∣} ,

where A is defined as in (13).

PROOF. From Lemma 2.6, and properties of modulus we have∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))
4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))

+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
≤ η1(b,a)η2(d,c)

4

1∫
0

1∫
0

∣∣tα − (1− t)α
∣∣ ∣∣∣λ β − (1−λ )β

∣∣∣
×
∣∣∣ ∂ 2 f

∂ t∂λ
(a+ tη1 (b,a) ,c+λη2 (d,c))

∣∣∣dλdt

≤ η1(b,a)η2(d,c)
4

1∫
0

1∫
0

(
tα +(1− t)α

)(
λ

β +(1−λ )β
)
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×
∣∣∣ ∂ 2 f

∂ t∂λ
(a+ tη1 (b,a) ,c+λη2 (d,c))

∣∣∣dλdt. (14)

Using prequasiinvexity on the co-ordinates of
∣∣∣ ∂ 2 f

∂ t∂λ

∣∣∣, (14) gives∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))
4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))

+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
≤ η1(b,a)η2(d,c)

4 max
{∣∣∣ ∂ 2 f

∂ t∂λ
(a,c)

∣∣∣ , ∣∣∣ ∂ 2 f
∂ t∂λ

(a,c+η2 (d,c))
∣∣∣ ,∣∣∣ ∂ 2 f

∂ t∂λ
(a+η1 (b,a) ,c)

∣∣∣ , ∣∣∣ ∂ 2 f
∂ t∂λ

(a+η1 (b,a) ,c+η2 (d,c))
∣∣∣}

×

 1∫
0

1∫
0

(
tα +(1− t)α

)(
λ

β +(1−λ )β
)

dλdt


= η1(b,a)η2(d,c)

(α+1)(β+1) max
{∣∣∣ ∂ 2 f

∂ t∂λ
(a,c)

∣∣∣ , ∣∣∣ ∂ 2 f
∂ t∂λ

(a,c+η2 (d,c))
∣∣∣ ,∣∣∣ ∂ 2 f

∂ t∂λ
(a+η1 (b,a) ,c)

∣∣∣ , ∣∣∣ ∂ 2 f
∂ t∂λ

(a+η1 (b,a) ,c+η2 (d,c))
∣∣∣} .

The proof is achieved.

COROLLARY 3.4. In Theorem 3.3 if we choose η1 (b,a) = η2 (b,a) = b−a, we

obtain the following fractional inequality∣∣∣∣ f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)
4 −A+ Γ(α+1)Γ(β+1)

4(b−a)α (d−c)β

×
(

Jα,β
b−,d− f (a,c)+ Jα,β

a+,d− f (b,c)+ Jα,β
b−,c+ f (a,d)+ Jα,β

a+,c+ f (b,d)
)∣∣∣

≤ (b−a)(d−c)
(α+1)(β+1) max

{∣∣∣ ∂ 2 f
∂ t∂λ

(a,c)
∣∣∣ , ∣∣∣ ∂ 2 f

∂ t∂λ
(a,d)

∣∣∣ , ∣∣∣ ∂ 2 f
∂ t∂λ

(b,c)
∣∣∣ , ∣∣∣ ∂ 2 f

∂ t∂λ
(b,d)

∣∣∣} .
THEOREM 3.5. Let f : K → R be a partially differentiable function on K. If∣∣∣ ∂ 2 f

∂ t∂λ

∣∣∣q is co-ordinated prequasiinvex function on K with respect to η1 and η2, where

q > 1 with and 1
p +

1
q = 1, then the following fractional inequality holds∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))

4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))
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+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
≤ η1(b,a)η2(d,c)

(α p+1)
1
p (β p+1)

1
p

(
max

{∣∣∣ ∂ 2 f
∂ t∂λ

(a,c)
∣∣∣q , ∣∣∣ ∂ 2 f

∂ t∂λ
(a,c+η2 (d,c))

∣∣∣q ,∣∣∣ ∂ 2 f
∂ t∂λ

(a+η1 (b,a) ,c)
∣∣∣q , ∣∣∣ ∂ 2 f

∂ t∂λ
(a+η1 (b,a) ,c+η2 (d,c))

∣∣∣q}) 1
q
,

where A is defined as in (13).

PROOF. From Lemma 2.6, properties of modulus, and Hölder inequality, we
have ∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))

4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))

+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
≤ η1(b,a)η2(d,c)

4


 1∫

0

1∫
0

tα p
λ

β pdλdt

 1
p

+

 1∫
0

1∫
0

tα p (1−λ )β p dλdt

 1
p

+

 1∫
0

1∫
0

(1− t)pα
λ

pβ dλdt

 1
p

+

 1∫
0

1∫
0

(1− t)pα (1−λ )pβ dλdt

 1
p


×

 1∫
0

1∫
0

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q

= η1(b,a)η2(d,c)

(α p+1)
1
p (β p+1)

1
p

 1∫
0

1∫
0

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q

.

Since
∣∣∣ ∂ 2 f

∂ t∂λ

∣∣∣q is co-ordinated prequasiinvex function, we deduce∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))
4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))

+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
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≤ η1(b,a)η2(d,c)

(α p+1)
1
p (β p+1)

1
p

(
max

{∣∣∣ ∂ 2 f
∂ t∂λ

(a,c)
∣∣∣q , ∣∣∣ ∂ 2 f

∂ t∂λ
(a,c+η2 (d,c))

∣∣∣q ,∣∣∣ ∂ 2 f
∂ t∂λ

(a+η1 (b,a) ,c)
∣∣∣q , ∣∣∣ ∂ 2 f

∂ t∂λ
(a+η1 (b,a) ,c+η2 (d,c))

∣∣∣q}) 1
q
,

which is the desired result.

COROLLARY 3.6. In Theorem 3.5 if we choose η1 (b,a) = η2 (b,a) = b−a, we

obtain the following fractional inequality∣∣∣∣ f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)
4 −A+ Γ(α+1)Γ(β+1)

4(b−a)α (d−c)β

×
(

Jα,β
b−,d− f (a,c)+ Jα,β

a+,d− f (b,c)+ Jα,β
b−,c+ f (a,d)+ Jα,β

a+,c+ f (b,d)
)∣∣∣

≤ (b−a)(d−c)

(α p+1)
1
p (β p+1)

1
p

×
(

max
{∣∣∣ ∂ 2 f

∂ t∂λ
(a,c)

∣∣∣q , ∣∣∣ ∂ 2 f
∂ t∂λ

(a,d)
∣∣∣q , ∣∣∣ ∂ 2 f

∂ t∂λ
(b,c)

∣∣∣q , ∣∣∣ ∂ 2 f
∂ t∂λ

(b,d)
∣∣∣q}) 1

q
.

THEOREM 3.7. Let f : K → R be a partially differentiable function on K. If∣∣∣ ∂ 2 f
∂ t∂λ

∣∣∣q is co-ordinated prequasiinvex function on K with respect to η1 and η2, and

p > 1 then the following inequality holds∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))
4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))

+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
≤ η1(b,a)η2(d,c)

(1+α)(1+β )

(
max

{∣∣∣ ∂ 2 f
∂ t∂λ

(a,c)
∣∣∣q , ∣∣∣ ∂ 2 f

∂ t∂λ
(a,c+η2 (d,c))

∣∣∣q ,∣∣∣ ∂ 2 f
∂ t∂λ

(a+η1 (b,a) ,c)
∣∣∣ , ∣∣∣ ∂ 2 f

∂ t∂λ
(a+η1 (b,a) ,c+η2 (d,c))

∣∣∣}) 1
q
,

where A is defined as in (13).

PROOF. From Lemma 2.6, properties of modulus, and power mean inequality,
we have∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))

4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))
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+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
≤ η1(b,a)η2(d,c)

4


 1∫

0

1∫
0

tα
λ

β dλdt

1− 1
q

×

 1∫
0

1∫
0

tα
λ

β

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q

+

 1∫
0

1∫
0

tα (1−λ )β dλdt

1− 1
q

×

 1∫
0

1∫
0

tα (1−λ )β

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q

+

 1∫
0

1∫
0

(1− t)α
λ

β dλdt

1− 1
q

×

 1∫
0

1∫
0

(1− t)α
λ

β

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q

+

 1∫
0

1∫
0

(1− t)α (1−λ )β dλdt

1− 1
q

×

 1∫
0

1∫
0

(1− t)α (1−λ )β

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q


= η1(b,a)η2(d,c)

4(1+α)
1− 1

q (1+β )
1− 1

q


 1∫

0

1∫
0

tα
λ

β

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q

+

 1∫
0

1∫
0

tα (1−λ )β

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q

+

 1∫
0

1∫
0

(1− t)α
λ

β

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q

JAMSI, 15 (2019), No. 1 29 

 



+

 1∫
0

1∫
0

(1− t)α (1−λ )β

∣∣∣ ∂ 2 f
∂ t∂λ

(a+ tη1 (b,a) ,c+λη2 (d,c))
∣∣∣q dλdt

 1
q
 .

Since
∣∣∣ ∂ 2 f

∂ t∂λ

∣∣∣q is co-ordinated prequasiinvex, we get∣∣∣ f (a,c)+ f (a,c+η2(d,c))+ f (a+η1(b,a),c)+ f (a+η1(b,a),c+η2(d,c))
4 −A

+ Γ(α+1)Γ(β+1)
4(η1(b,a))

α (η2(d,c))
β

(
Jα,β

(a+η1(b,a))
−,(c+η2(d,c))

− f (a,c)

+Jα,β

a+,(c+η2(d,c))
− f (a+η1 (b,a) ,c)+ Jα,β

(a+η1(b,a))
−,c+

f (a,c+η2 (d,c))

+ Jα,β
a+,c+ f (a+η1 (b,a) ,c+η2 (d,c))

)∣∣∣
≤ η1(b,a)η2(d,c)

4(1+α)
1− 1

q (1+β )
1− 1

q


 1∫

0

1∫
0

tα
λ

β dλdt

 1
q

+

 1∫
0

1∫
0

tα (1−λ )β dλdt

 1
q

+

 1∫
0

1∫
0

(1− t)α
λ

β dλdt

 1
q

+

 1∫
0

1∫
0

(1− t)α (1−λ )β dλdt

 1
q


×
(

max
{∣∣∣ ∂ 2 f

∂ t∂λ
(a,c)

∣∣∣q , ∣∣∣ ∂ 2 f
∂ t∂λ

(a,c+η2 (d,c))
∣∣∣q ,∣∣∣ ∂ 2 f

∂ t∂λ
(a+η1 (b,a) ,c)

∣∣∣ , ∣∣∣ ∂ 2 f
∂ t∂λ

(a+η1 (b,a) ,c+η2 (d,c))
∣∣∣}) 1

q

= η1(b,a)η2(d,c)
(1+α)(1+β )

(
max

{∣∣∣ ∂ 2 f
∂ t∂λ

(a,c)
∣∣∣q , ∣∣∣ ∂ 2 f

∂ t∂λ
(a,c+η2 (d,c))

∣∣∣q ,∣∣∣ ∂ 2 f
∂ t∂λ

(a+η1 (b,a) ,c)
∣∣∣ , ∣∣∣ ∂ 2 f

∂ t∂λ
(a+η1 (b,a) ,c+η2 (d,c))

∣∣∣}) 1
q
,

which is the desired result.

COROLLARY 3.8. In Theorem 3.7 if we choose η1 (b,a) = η2 (b,a) = b−a, we

obtain the following fractional inequality∣∣∣∣ f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)
4 −A+ Γ(α+1)Γ(β+1)

4(b−a)α (d−c)β

×
(

Jα,β
b−,d− f (a,c)+ Jα,β

a+,d− f (b,c)+ Jα,β
b−,c+ f (a,d)+ Jα,β

a+,c+ f (b,d)
)∣∣∣

≤ (b−a)(d− c)
(1+α)(1+β )

×
(

max
{∣∣∣ ∂ 2 f

∂ t∂λ
(a,c)

∣∣∣q , ∣∣∣ ∂ 2 f
∂ t∂λ

(a,d)
∣∣∣q , ∣∣∣ ∂ 2 f

∂ t∂λ
(b,c)

∣∣∣q , ∣∣∣ ∂ 2 f
∂ t∂λ

(b,d)
∣∣∣q}) 1

q
.
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ÖZDEMIR, M. E., YI LDIZ, C., AND AKDEMIR, A. O. 2012. On some new Hadamard-type inequalities

for co-ordinated quasi-convex functions. Hacet. J. Math. Stat. 41, 5, 697–707.
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A remark on eigen values of signed graph
B.PRASHANTH, K. NAGENDRA NAIK AND K. R. RAJANNA

Abstract

In this paper we present some results using eigen values of signed graph. This precipitate to find the
determinant of signed graph using the number of vertices.

Mathematics Subject Classification 2010: 05C22, 05C50, 15A18
Keywords: signed graphs, Marked graphs, balance, Switching, Antipodal graph.

1. INTRODUCTION

For all expressions and notation in graph theory the reader has to refer [4]. We
consider only finite, simple graphs without self-loops.

A signed graph Γ = (G,σ) is a graph whose edges are assigned by positive sign or
negative sign. Where G = (V,E) is called basic graph (underlined graph) of Γ and σ

is a bijective mapping between the set of edges to the set of signs (positive and
negative sign).

Cartwright and Harary [5] deliberates that vertices and edges of a sign graph
represent persons and their relationship respectively, each of it fixes itself as positive
or negative based on its nature. If two persons are friendly to each other then their
relationship is positive. In a similar manner if two persons dislike each other, their
relationship is negative. This signed graph network was discussed by Chartand [6];
Harary et. al. [7].

Katai and Iwai [8], Roberts [9] and Roberts and Xu [10] presented applications of
signed graphs in literature, because of their extended use in modeling a multiple
socio-psychological process and also because of their connections with many
classical mathematical systems [3].
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The notation of balanced signed graph introduced by Hary and he has given
characterization, asserting that, a signed graph is said to be balanced if and only if
each cycle contains even number of negative edges.

A positive cycle in a signed graph is the product of signs of edges in a cycle is
positive. If every cycle in a signed graph is positive then that signed graph is called
balanced signed graph (see Harary [11]) otherwise it is called unbalanced signed
graph. A balance of a signed graph can be detected by simple algorithm, which is
developed by Harary and Kabell [16]

A marked graph of a signed graph Γ is denoted as Γµ whose vertices are assigned
by sign + or −, where µ is the canonical marking, therefore, Γµ can be defined as
follows: For any vertex v ∈V (Γ),

µ(v) = ∏
uv∈E(S)

σ(uv),

In a signed graph Γ = (G,σ), for any A ⊆ E(G) the sign σ(A) is the product of the
signs on the edges of A.

Switching of signed graph Γ is an operation with the help of marking µ , in which
sign of each edge of Γ is changed to opposite sign, whenever sign of two end vertices
of edge are opposite and such a signed graph is known as switching signed graph

denoted as Γµ(Γ) and it is called Γµ -switched signed graph or switched signed

graph.

R.P Abelson and Rosenberg introduced switching Sign graph for social behavioral
analysis in [1] and its significance and mathematical connections may be found in
[3].

If two underlying graphs G1 and G2 are isomorphic ( f : G1 → G2) then there
signed graphs Γ1 = (G1,σ) and Γ2 = (G2,σ

′) are also isomorphic. For the
underlying graphs G1 and G2, any edge l belongs to G1, σ(l) = σ ′( f (l)). Therefore
Γ1 and Γ2 are switching equivalent which is represent as Γ1 ∼ Γ2. Precisely for any
marking µ , Γµ(Γ1) ∼ Γ2. But note that their underlying graphs G1 and G2 does not
involve in any change in their adjacency.
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If two signed graphs are cycle isomorphic then there corresponding cycles are
having same sign.

T. Zaslavasky has given characterization of switching Singed graph through the
following proposition.

PROPOSITION 1. [2] Two signed graphs Γ1 and Γ2 with the same underlying

graph are switching equivalent if, and only if, they are cycle isomorphic.

The difference between positive edges and negative edges incident to a vertex v in
a signed graph Γ is known as sdeg(v) that is d+

v −d−v = sdeg(v), therefore, degree of a
vertex in a signed graph is defined as d = d+

v −d−v wherefore signed graph and there
underlying graph has the same degree.

2. DEFINITIONS

2.1. Adjacency matrix of a Signed graph

The adjacency matrix of Γ is the n× n matrix A = A(Γ) whose entries ai j are given
by

ai j =


1, if vi and v j are adjacent and σ(viv j) = +

−1, if vi and v j are adjacent and σ(viv j) =−

0, otherwise.

2.2. Laplacian matrix of a Signed graph

The Laplacian matrix of signed graph Γ is the n× n matrix L(Γ) = D(Γ)− A(Γ)

whose entries ai j are given by

ai j =



1, if vi and v j are adjacent and σ(viv j) =−

−1, if vi and v j are adjacent and σ(viv j) = +

d(vi) if i = j

0, otherwise.
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Let λ1 ≥ λ2 ≥ λ3 ....≥ λn are the eigenvalues of Laplacian matrix of signed
graph Γ = (G,σ), having n vertices.

LEMMA 2. [17] Two signed graphs Γ1 = (G,σ1) and Γ2 = (G,σ2) with their

same underlying graphs are switching equivalent if and only if L(Γ1) and L(Γ2) are

has the same signature.

2.3. Antipodal signed graphs

The concept of Antipodal graph introduced by R.R. Singleton in 1968 defined it as
Antipodal graph Θ(G) is a graph which has the same vertices of a graph G with the
distance between the adjacent vertices are of diameter of G.

P.S.K Reddy et.al. devoloped the concept of Antipodal signed graph and gave the
following characterization.

PROPOSITION 3. [13] For any signed graph Γ = (G,σ), Γ∼ Θ(Γ) if, and only

if, G = Kp and Γ is balanced signed graph, where Kp is a complete graph with p

vertices.

The Laplacian matrices L(Γ,+) and L(Γ,−) are all positive and all negative
labeling respectively, and also L(Γ,+) is the sign less Laplacian matrix of Γ which
is the sum of the diagonal matrix and the adjacency(L(Γ) = D(Γ)+A(Γ)).

Yaoping Hou et. al. has given the new bounds of eigen values of signed graph by
the following theorem:

THEOREM 4. [14] Let Γ = (G,σ) be a signed graph with n vertices. Then

λ1 ≤ 2(n−1),

equality holds if and only if Γ ∼ (Kn,−), where Kn is the complete graph with n

vertices.

By the motivation of the above theorem we present some new results in this article.

PROPOSITION 5. For any signed graph Γ,

n

∑
i=1

λi = n(n−1) i f Γ∼ (Kn,−)
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PROOF. Since Γ∼ (Kn,−), From Theorem 4 we have, λ1 = 2(n−1)

therefore,

∑
n
i=1 λi = λ1 +λ2 +λ3 + ...+λn

= 2(n−1)+λ2 +λ3 + ...+λn

= 2(n−1)+(n−1)(n−2)
= (n−1)(2+n−2)

= n(n−1)

COROLLARY 6. if Γ∼ (Θ(Γ),−), then ∑
n
i=1 λi = n(n−1)

PROOF. Since, Antipodal graph Θ(G)∼= Kn so, proof is same as Proposition 5.

LEMMA 7. [15] If Q is the Incident matrix of a connected signed graph Γ =

(G,σ) then

rank(Q) =

n−1, if Γ is balanced

n, if Γ is unbalanced.

from the above we can prove that.

LEMMA 8. If L(Γ) is the Laplacian matrix of a connected signed graph Γ =

(G,σ) then

rank(L(Γ)) =

n−1, if Γ is balanced

n, if Γ is unbalanced.

PROOF. Since, L(Γ) = QQT

rank(L(Γ)) = rank(QQT ) = rank(Q) by Lemma 7 we proved.

PROPOSITION 9. For any signed graph, Γ ∼ (Γ,−), whose underline graph is

Kn is Unbalanced

PROOF. we can prove by using Proposition 1

PROPOSITION 10. For any signed graph Γ, and if Γ∼ (Kn,−),

rank(Γ) = ∑
n
i=1 λi
n−1
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PROOF. Since, Γ∼ (Γ,−) and Γ is unbalanced, by Lemma 8,

rank(Γ) = n,

but by Proposition 5,

∑
n
i=1 λi = n(n−1)

∑
n
i=1 λi = rank(Γ)(n−1)

rank(Γ) = ∑
n
i=1 λi
n−1

PROPOSITION 11. A unicyclic signed graph Γ with even vertices and Γ∼ (Γ,−)
is balanced.

PROOF. Since Unicyclic graph having even number of vertices so it should
have even number of edges,

hence, Γ and (Γ,−) are cycle isomorphic and (Γ,−) is balanced,

by Proposition 1, Γ is balanced.

COROLLARY 12. If Γ is unicyclic signed graph with even vertices and Γ ∼
(Γ,−) then det(Γ) = 0

PROPOSITION 13. A Unicyclic signed graph Γ = (G,σ) with even vertices.

Then

λ1 ≤ 2(n−2),

with equality if and only if Γ∼ (Γ,−)

PROOF. Since

L(Γ) = D(Γ)−A(Γ)

λ1(Γ)≤ λ1(D(Γ))+λ1(−A(Γ))

≤ (n−2)+(n−2)
λ1(Γ)≤ 2(n−2)

If λ1 ∼ (Γ,−) then clearly, λ1(Γ) = 2(n−2)

conversely, I f λ1(Γ) = 2(n−2) then λ1(D(Γ)) = λ1(−A(Γ)) = (n−2)
and Signature of Γ and (Γ,−) are equal, hence λ1 ∼ (Γ,−).
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PROPOSITION 14. For any unicyclic signed graph Γ with even number of

vertices,

n

∑
i=1

λi = n(n−2) i f Γ∼ (Γ,−)

PROOF. Since Γ∼ (Γ,−), From the Proposition 13 we have, λ1 = 2(n−2)
therefore,

∑
n
i=1 λi = λ1 +λ2 +λ3 + ...+λn

= 2(n−2)+λ2 +λ3 + ...+λn

= 2(n−2)+(n−2)(n−2)

= (n−2)(2+n−2)

= n(n−2)

PROPOSITION 15. For any Unicyclic signed graph with even number of

vertices and Γ∼ (Γ,−),

rank(Γ) = ∑
n
i=1 λi
di
−1

PROOF. Since, Γ∼ (Γ,−) and Γ is balanced by Proposition 12,

but by Proposition 14 , ∑
n
i=1 λi = n(n−2)

∑
n
i=1 λi = ndi

by lemma 8 , rank(Γ) = n−1

therefore, ∑
n
i=1 λi = [1+ rank(Γ)]di

rank(Γ) = ∑
n
i=1 λi
di
−1
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PROPOSITION 16. A unicyclic signed graph Γ with odd vertices and Γ∼ (Γ,−)

is unbalanced.

PROOF. Unicyclic graph having odd number of vertices so it has odd number of
edges, so Γ and (Γ,−) are not cycle isomorphic and (Γ,−) is unbalanced,

by Proposition 1, Γ is unbalanced.
By using the Proposition 5 we can find the determinant of signed graph having n

vertices.

THEOREM 17. For any signed graph Γ, if Γ∼ (Kn,−) then,

det(Γ) = 2(n−1)(n−2)n−1

PROOF.
We know,

det(Γ) = ∏
n
i=1 λi

= λ1 . λ2 . λ3 .... λn

= 2(n−1) . (n−2) . (n−2) .... (n−2)

= 2(n−1)(n−2)n−1

Hence the proof.
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Abstract 

 
Gupta et al (2002) suggested an optional randomized response model under the assumption that the mean 

of the scrambling variable S is ‘unity’ [i.e. µs = 1]. This assumption limits the use of Gupta et al’s (2002) 

randomized response model. Keeping this in view we have suggested a modified optional randomized 
response model which can be used in practice without any supposition and restriction over the mean (µs) of 

the scrambling variables S. It has been shown that the estimator of the mean of the stigmatized variable 

based on the proposed optional randomized response sampling is more efficient than the Eicchorn and 
Hayre (1983) procedure and Gupta et al’s (2002) optional randomized technique when the mean of the 

scrambling S is larger than unity [i.e. µs > 1]. A numerical illustration is given in support of the present 

study. 

 
Mathematics Subject Classification 2010: 62D05. 
Keywords: Empirical study, Mean, Optional randomization response technique, Sensitivity level, 

Variance. 

____________________________________________________________________ 

 

 
 

1. INTRODUCTION 

The problem of estimating the population mean of a sensitive quantitative 

variable is well recognized in survey sampling. It is easier to get responses to non-

sensitive questions than to personal sensitive questions. It may happen due to the 

involvement of controversial assertions, stigmatizing and/or incriminating matters 

which people like to hide, for reasons of modesty, fear of being thought bigoted, or 

merely a reluctance to confide secretly to a stranger. Warner (1965) was the first to 

introduce an ingenuous procedure to estimate the incidence of attributes of sensitive 

nature such as induced abortions, a drug used etc. through a randomization device. A 

rich growth of literature on randomized response techniques can be found in Tracy 

and Mangat (1996), Zou(1997), Singh and Joarder (1997),  Bhargava and Singh 

(2001,2002), Singh and Mathur (2003), Gjestvang and Singh (2006), Singh and 

Tarray (2014), Tarray et al (2015), Tarray and Singh (2017). 
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 Eichhorn and Hayre (1983) proposed a scrambled randomized response 

method for estimating the mean  µx  and the variance 2
x  of the sensitive quantitative 

variable, say X. Following them, each respondent selected in the sample is instructed 

to use a randomization device and generate a random number, say S, from some pre-

assigned distribution. The distribution of the scrambling variable S is assumed to be 

known. The mean µs and variance 2
s  of the scrambling variable S are known. The ith 

respondent selected in the sample of size n, drawn by using simple random sampling 

with replacement (SRSWR), is requested to report the value 


iSX
Z =  as a scrambled 

response on the sensitive variable X. Eichhorn and Hayre (1983) suggested an 

unbiased estimator of the population mean µx of X, as  

( ) =
=

n

1i
iEHx Z

n

1
̂                                                                                                  (1.1) 

with variance 

 ( )( ) ( ) ( ) 2
x

2
x

22
xEHx Cn1ˆVar   ++=                                               (1.2)  

where  Cγ = γs / µs  denotes the known coefficient of variation of the scrambling 

variable S.  

• Gupta et al (2002) Optional Randomization Procedure 

 In Gupta et al (2002) optional randomized response technique, each 

respondent selected in the SRSWR sample is instructed to use a randomization device 

and generate a positive-valued random number S from a given probability distribution 

with known 1s   and have known 2
s . Then he or she is requested to report one of 

the following questions: 

(a) the correct response X, or  

(b) the scrambled response SX, which is determined by the respondent himself. 
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The optional randomized response model can then be written as  

 XSZ Y=                                                                                                             (1.3) 

where Y  is a random variable defined as  

 





=
otherwise,0

scrambledisresponsetheif,1
Y   

It is to be noted that Y is a Bernoulli variable with E(Y) = w, where w is the probability 

that a person will report the scrambled response rather than the actual response X. 

Here w is known as sensitivity level. If a question in the survey is more sensitive than 

more people will report scrambled responses and the value of w will be close to 1. If 

the question is not very sensitive, then the value of w will be close to ‘0’. Thus w is a 

measure of the level of sensitivity of the question in the personal interview surveys.  

 Following this device, Gupta et al (2002) suggested an unbiased estimator 

for population mean µx of the sensitive characteristics X as  

 ( ) =
=

n

1i
iGx Z

n

1
̂                                                                                                    (1.4) 

whose variance is given by  

 ( )( ) ( ) 2
x

2
x

2
s

2
xGx w

n

1
ˆV  ++=                                                      (1.5) 

Gupta et al (2002) have further suggested an estimator of the sensitivity level w as 

 

( )

 SlogE

Z
n

1
logZlog

n

1

ŵ

n

1i

n

1i
ii

G









 








−

=
= =

                                                     (1.6) 
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• Logical Reason Behind Assumption of µs = 1  in Gupta et al (2002) 

Optional Randomized Response Model  

 In Gupta et al (2002) procedure it is assumed that the value of the mean µs  

of the scrambled variable S is unity (i.e. µs = 1). Thereby meaning is that the optional 

randomized response model due to Gupta et al (2002) will work for µs = 1. 

 In Gupta et al (2002) model, the expected value of the observed response Z 

is given by  

 ( )  XSEZE Y=  

            ( )   ( )0YP0Y|XSE1YP1Y|XSE YY ==+===  

          ( ) ( ) ( ) ( )0YPXE1YPSXE =+==  

          ( ) ( ) ( ) ( ) ( )0YPXE1YPXESE =+==  

          ( )w1w xxs −+= 
 

                       ( ) w1wsx −+=   

          ( ) 11w sx +−=                                                                                      (1.7) 

It is obvious from (1.7) that  E(Z) = µx  only when µs = 1. Unless µs = 1, the estimator 

µx(G) proposed by Gupta et al (2002) cannot be unbiased. So to obtain the unbiased 

estimator of the mean µx through their randomized response technique Gupta et al 

(2002) assumed that µs  = 1. 

Now a question arises that what will happen if µs ≠ 1? So the optional randomized 

response model due to Gupta et al (2002) needs modification so that the modified 

randomized response model holds in the situation, where µs ≠ 1. Keeping this in view 

we have suggested a modified optional randomized response model and studied its 

properties. 
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2. PROPOSED OPTIONAL RANDOMIZED RESPONSE MODEL 

It is known that the distribution of the scrambling variable S is known (i.e. the 

mean µs and variance 2
s  

of the scrambling variable S are known). Thus, using the 

known value of mean µs, we have suggested a modified optional randomized 

procedure, each respondent selected in the SRSWR sample chosen one of the 

following two options: 

(i) the respondent can report the correct response, or 

(ii) the respondent can report the scrambled response 

s

SX


. 

Here we have assumed that both S and X are positive valued random variables. Thus 

the proposed optional randomized response model can be written as  

 X
S

Z

Y

s










=


                                                                                                     (2.1) 

where Y = 1 or 0  according to as the response is scrambled or not. 

 Following the proposed optional randomized response device we state the 

following theorems. 

THEOREM 1. An unbiased estimator of the population mean µx is given by 

 ( ) =
=

n

1i
iSGx Z

n

1
̂                                                                                                   (2.2) 

PROOF.  Taking expectation of both sides of (2.2) we have  

 ( )( ) ( )=
=

n

1i
iSGx ZE

n

1
ˆE   

                 ( )






=














=










=

=

n

1i
i

Y

s

1YP1Y|X
S

E
n

1
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( ) ( ) ( )

( )
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=










+













=+=










=

=

0YP0Y|X
S

E

0YPXE1YP
SX

E
n

1

i

Y

s

n

1i
i

s

i




 

      
( ) ( )

( ) ( ) ( ) 







=+==

=

n

1i
i

s

i 0YPXE1YP
XESE

n

1


 

                ( ) 







−+=

=

n

1i
x

s

xs w1w
n

1





 

     ( )  −+=
=

n

1i
xx w1w

n

1
  

     ==
=

n

1i
xx

n

1
  

which proves the theorem. 

THEOREM 2. The variance of the proposed estimator ( )SGx̂  is given by  

 
( )( ) ( )












+














+= 2

x
2
x2

s

2
s2

xSGx w
n

1
ˆV 




                                               (2.3) 

PROOF. We have  

 
( )( )

2
n

1i
iSGx Z

n

1
VˆV 








=
=

  

                 
( )
n

ZV i=                                                                                               (2.4) 
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Now, 

  ( ) ( ) ( )( )2i
2
ii ZEZEZV −=  

            ( ) 2
x

2
iZE −=                                                                                            (2.5) 

Here  

 

( ) ( )

( )0YP0Y|X
S

E

1YP1Y|X
S

EZE

2

i

Y

s

2

i

Y

s

2
i

=

















=
























+

=

















=
























=




 

             ( ) ( ) ( )0YPXE1YP
XS

E 2
i2

s

2
i

2

=+=













=


 

             
( ) ( ) ( )( )w1XEw

XESE 2
i2

s

2
i

2

−+=


 

            
( )( ) ( )( )w1w 2

x
2
x2

s

2
x

2
x

2
s

2
s −++

++
= 




 

            ( ) ( )( )w1w1 2
x

2
x

2
x

2
x2

s

2
s −+++













+= 



 

             ( )2
x

2
x2

s

2
s2

x
2
x w 




 +














++= .                                                (2.6) 

From (2.5) and (2.6) we have  

 ( ) ( )2
x

2
x2

s

2
s2

xi
2
z wZV 




 +














+== .                                                   (2.7) 
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Thus from (2.4) and (2.7) we get 

 
( )( ) ( )












+














+= 2

x
2
x2

s

2
s2

xSGx w
n

1
ˆV 




  

which proves the theorem.  

 The variance 2
x  of the sensitive variable x under the proposed 

randomization response procedure is obtained as follows: 

 ( )( ) ( ) ( )( ) 2
x

2
x

2
s

2
s

2
x

2
z

SGx wn1
n

ˆV 


 ++==  

       ( ) 2
x

222
x

2
z wCwC1   ++=  

      
( )
( )2

2
x

22
z2

x
wC1

wC



 


+

−
=  ,                                                                                         (2.8) 

where 2
z  is defined in (2.7). 

 An estimator for ( )( )SGx
ˆV   is given by 

 ( )( ) ( ) ( ) ( )( ) 2
SGx

2
x

2
s

2
s

2
xSGx

ˆsŵsn1ˆV̂  ++=  

where  

 ( )( )
( )2

2
SGx

22
z2

x
Cŵ1

ˆCŵs
s



 

+

−
=                                                                                        (2.9) 

with ( ) −
−

=
=

n

1i

2

i
2
x ZZ

1n

1
s  is an estimator of 2

z . 

 The next section has been devoted to estimating w based on the information 

gathered through proposed randomized response procedure. 

 



JAMSI, 15 (2019), No. 1 51 

 

 

 

 

3. ESTIMATION OF w 

Taking logarithm on both sides of (2.1) we have  

( ) ( ) ( )XlogSlogYZlog +=  .                                                                                (3.1) 

Taking expectation of both sides of (3.1) we have  

( )  ( ) ( ) ( )  ( ) XlogElogslogEYEZlogE +−=  .                                          (3.2) 

Replacing X by ( )SGx̂  in (3.2), we get 

( )  ( ) ( )  ( )( ) SGx
ˆlogElogSlogwEZlogE  +−  

                ( ) ( )  ( ) ZlogElogSlogwE +−=                                                  (3.3) 

Estimating ( )ZlogE  by 
=

n

1i
iZlog

n

1
 and ( ) ZlogE  by ( ) ( ) =

=

n

1i

ZlogZlog
n

1
 

in (3.3) leads to the estimator of w given by 

( )

( ) s

s

n

1i

n

1i
ii

,

Z
n

1
logZlog

n

1

ŵ 



−

 







−

=
= =                                                       (3.4) 

where δ = E[log (S)] denotes the known expected value of the logarithm of the 

scrambling variable S.  

 An estimator of the variance of ŵ  is given by 

 ( )
( )
( )1n

ŵ1ŵ
ŵV̂

−

−
=                                                                                                  (3.5) 

It follows by noting that =
=

−
n

1i
i

1 Ynŵ  and ( )
=

n

1i
i .w,nBinomial~Y  



52 H. P. Singh and S. M. Gorey 

 

 
4. EFFICIENCY COMPARISON 

From (1.2) and (1.5) we have  

( )( ) ( )( ) ( ) ( )( )w1n1ˆVˆV 2
x

2
x

2
sGxEHx −+=−                                         (4.1) 

which is always positive as  0 ≤ w ≤ 1. 

 Thus we have the inequality: 

 ( )( ) ( )( )EHxGx
ˆVˆV                                                                                             (4.2) 

which shows that Gupta et al’s (2002) estimator ( )Gx̂  is more efficient than the 

Eichhorn and Hayre’s (1983) estimator ( )EHx̂ . 

 From (1.2) and (2.3) we have  

 ( )( ) ( )( ) ( ) ( )( )w1Cn1ˆVˆV 2
x

2
x

2
SGxEHx −+=−                                    (4.3) 

which is always positive as 0 ≤ w ≤ 1  

 Thus we have the inequality: 

 ( )( ) ( )( )EHxSGx
ˆVˆV                                                                                            (4.4) 

which follows that the proposed estimator  ( )SGx̂  is more efficient than the Eichhorn 

and Hayre’s (1983) estimator ( )EHx̂ . 

 Further, from (1.5) and (2.3) we have  

 
( )( ) ( )( ) ( )














−

+
=−

2
s

2
s

2
x

2
x

SGxGx

1
1

n

w
ˆVˆV




                                   (4.5) 
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which is positive if  

 0
1

1
2
s

−


  

i.e. if   12
s   

i.e. if   µs > 1                                                                                                                 (4.6) 

Thus we have the inequality: 

( )( ) ( )( )GxSGx
ˆVˆV        ̧µs > 1                                                                         (4.7) 

 It follows that the suggested randomization response procedure is always 

superior to Gupta et al.’s (2002) randomized response procedure as long as the 

condition µs > 1 (i.e. the mean µs of the scrambling variable S is larger than the 

‘unity’). 

 Further, from (4.4) and (4.7), we have the inequality: 

 ( )( ) ( )( ) ( )( )EHxGxSGx
ˆVˆVˆV   , µs > 1                                              (4.8) 

It follows that when the mean µs of the scrambling variable S is greater than the ‘unity’ 

(i.e. µs > 1)  the proposed estimator ( )SGx̂  would be always better than the Eichhorn 

and Hayre (1983) estimator ( )EHx̂  and Gupta et al.’s (2002) estimator ( )Gx̂ . 

However, we note that the proposed randomized response model can be used in 

practice without imposing condition over the mean µs of the scrambling variables S. 
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5. EMPIRICAL STUDY 

To see the performance of the suggested estimator ( )SGx̂  over Eichhorn and 

Hayre’s estimator ( )EHx̂  and Gupta et al.’s (2002) estimator ( )Gx̂ , we have 

computed the percent relative efficiency (PRE) of ( )SGx̂  with respect to ( )EHx̂  and 

( )Gx̂  respectively by using the following formulae:  

( ) ( )( )
( )( ) 
( )( ) 

100
C1wC

C1C
ˆ,ˆPRE

22
s

2
s

2

22
s

2
s

2

EHxSGx 
++

++
=








                                (5.1) 

( ) ( )( )
( ) 

( )( ) 
100

C1wC

C1wC
ˆ,ˆPRE

22
s

2
s

2

22
s

2

GxSGx 
++

++
=








                                 (5.2) 

for w = 0.2(0.2)0.8,  
C  = 0.1(0.2)1.5,  2

s  = 5,10,15,20  and µs  = 0.5(0.5)3. Findings 

are shown in Table 5.1 
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Table 5.1 Value of ( ) ( )( )EHxSGx
ˆ,ˆPRE   and ( ) ( )( )GxSGx

ˆ,ˆPRE    

C  = 0.1 

2
s  µs w ( ) ( )( )EHxSGx

ˆ,ˆPRE   
( ) ( )( )GxSGx

ˆ,ˆPRE   

5 0.5 

0.2 995.57 25.37 

0.4 249.81 25.09 

0.6 166.61 25.06 

0.8 124.98 25.05 

5 
1 

 

0.2 496.08 100.00 

0.4 249.26 100.00 

0.6 166.45 100.00 

0.8 124.94 100.00 

5 1.5 

0.2 491.28 222.28 

0.4 248.35 223.62 

0.6 166.18 224.08 

0.8 124.86 224.31 

5 2 

0.2 484.76 388.57 

0.4 247.09 394.17 

0.6 165.80 396.09 

0.8 124.75 397.06 

5 2.5 

0.2 476.69 594.41 

0.4 245.50 609.24 

0.6 165.32 614.39 

0.8 124.62 617.00 

5 3 

0.2 467.27 834.55 

0.4 243.60 865.88 

0.6 164.74 876.92 

0.8 124.46 882.57 

10 0.5 

0.2 499.51 25.09 

0.4 249.91 25.05 

0.6 166.64 25.03 

0.8 124.99 25.02 

10 1 

0.2 498.03 100.00 

0.4 249.63 100.00 

0.6 166.56 100.00 

0.8 124.97 100.00 

10 1.5 

0.2 495.59 223.62 

0.4 249.17 224.31 

0.6 166.42 224.54 

0.8 124.93 224.65 

10 2 

0.2 492.23 394.17 

0.4 248.53 397.06 

0.6 166.23 398.03 

0.8 124.88 398.52 

10 2.5 

0.2 488.00 609.24 

0.4 247.71 617.00 

0.6 165.99 619.64 

0.8 124.81 620.97 

10 3 

0.2 482.94 865.88 

0.4 246.73 882.57 

0.6 165.69 888.29 

0.8 124.72 891.19 

15 0.5 
0.2 499.67 25.06 

0.4 249.94 25.03 
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C  = 0.1 

2
s  µs w ( ) ( )( )EHxSGx

ˆ,ˆPRE   
( ) ( )( )GxSGx

ˆ,ˆPRE   

0.6 166.65 25.02 

0.8 124.99 25.02 

15 
1 

 

0.2 498.68 100.00 

0.4 249.75 100.00 

0.6 166.59 100.00 

0.8 124.98 100.00 

15 1.5 

0.2 497.05 224.08 

0.4 249.45 224.54 

0.6 166.50 224.69 

0.8 124.95 224.77 

15 2 

0.2 494.79 396.09 

0.4 249.02 398.03 

0.6 166.37 398.69 

0.8 124.92 399.01 

15 2.5 

0.2 491.92 614.39 

0.4 248.47 619.64 

0.6 166.21 621.41 

0.8 124.87 622.31 

15 3 

0.2 488.46 876.92 

0.4 247.80 888.29 

0.6 166.01 892.16 

0.8 124.82 894.10 

20 0.5 

0.2 499.75 25.05 

0.4 249.95 25.02 

0.6 166.65 25.02 

0.8 125.00 25.01 

20 1 

0.2 499.01 100.00 

0.4 249.81 100.00 

0.6 166.61 100.00 

0.8 124.98 100.00 

20 1.5 

0.2 497.78 224.31 

0.4 249.58 224.65 

0.6 166.54 224.77 

0.8 124.97 224.83 

20 2 

0.2 496.08 397.06 

0.4 249.26 398.52 

0.6 166.45 399.01 

0.8 124.94 399.26 

20 2.5 

0.2 493.91 617.00 

0.4 248.85 620.97 

0.6 166.32 622.31 

0.8 124.90 622.98 

20 3 

0.2 491.28 882.57 

0.4 248.35 891.19 

0.6 166.18 894.10 

0.8 124.86 895.57 
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C  = 0.3 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

5 0.5 

0.2 491.91 26.52 

0.4 248.47 25.77 

0.6 166.21 25.51 

0.8 124.87 25.39 

5 
1 

 

0.2 469.49 100.00 

0.4 244.05 100.00 

0.6 164.88 100.00 

0.8 124.49 100.00 

5 1.5 

0.2 437.33 205.42 

0.4 237.25 214.38 

0.6 162.78 217.71 

0.8 123.89 219.45 

5 2 

0.2 400.69 325.52 

0.4 228.74 357.48 

0.6 160.06 370.25 

0.8 123.09 377.12 

5 2.5 

0.2 363.84 446.29 

0.4 219.23 517.32 

0.6 156.88 547.95 

0.8 122.14 565.01 

5 3 

0.2 329.47 558.95 

0.4 209.36 683.28 

0.6 153.43 741.18 

0.8 121.08 774.66 

10 0.5 

0.2 495.91 25.77 

0.4 249.23 25.39 

0.6 166.44 25.26 

0.8 124.94 25.19 

10 1 

0.2 484.14 100.00 

0.4 246.97 100.00 

0.6 165.76 100.00 

0.8 124.74 100.00 

10 1.5 

0.2 466.00 214.38 

0.4 243.34 219.45 

0.6 164.66 221.25 

0.8 124.43 222.16 

10 2 

0.2 443.31 357.48 

0.4 238.56 377.12 

0.6 163.19 384.35 

0.8 124.01 388.11 

10 2.5 

0.2 417.96 517.32 

0.4 232.86 565.01 

0.6 161.39 583.42 

0.8 123.49 593.19 

10 3 

0.2 391.64 683.28 

0.4 226.50 774.66 

0.6 159.32 811.84 

0.8 122.88 832.00 

15 0.5 

0.2 497.27 25.51 

0.4 249.49 25.26 

0.6 166.51 25.17 

0.8 124.96 25.13 
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C  = 0.3 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

15 
1 

 

0.2 489.29 100.00 

0.4 247.96 100.00 

0.6 166.06 100.00 

0.8 124.83 100.00 

15 1.5 

0.2 476.67 217.71 

0.4 245.49 221.25 

0.6 165.32 222.47 

0.8 124.62 223.09 

15 2 

0.2 460.33 370.25 

0.4 242.17 384.35 

0.6 164.31 389.38 

0.8 124.33 391.96 

15 2.5 

0.2 441.29 547.95 

0.4 238.12 583.42 

0.6 163.05 596.53 

0.8 123.97 603.35 

15 3 

0.2 420.59 741.18 

0.4 233.47 811.84 

0.6 161.58 838.98 

0.8 123.54 853.35 

20 0.5 

0.2 497.95 25.39 

0.4 249.61 25.19 

0.6 166.55 25.13 

0.8 124.97 25.10 

20 1 

0.2 491.91 100.00 

0.4 248.47 100.00 

0.6 166.21 100.00 

0.8 124.87 100.00 

20 1.5 

0.2 482.25 219.45 

0.4 246.60 222.16 

0.6 165.65 223.09 

0.8 124.71 223.57 

20 2 

0.2 469.49 377.12 

0.4 244.05 388.11 

0.6 164.88 391.96 

0.8 124.49 393.93 

20 2.5 

0.2 454.29 565.01 

0.4 240.91 593.19 

0.6 163.92 603.35 

0.8 124.22 608.60 

20 3 

0.2 437.33 774.66 

0.4 237.25 832.00 

0.6 162.78 853.35 

0.8 123.89 864.49 
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C  = 0.5 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

5 0.5 

0.2 480.95 28.57 

0.4 246.34 26.83 

0.6 165.57 26.23 

0.8 124.69 25.93 

5 
1 

 

0.2 433.33 100.00 

0.4 236.36 100.00 

0.6 162.50 100.00 

0.8 123.81 100.00 

5 1.5 

0.2 375.86 186.21 

0.4 222.45 202.04 

0.6 157.97 208.70 

0.8 122.47 212.36 

5 2 

0.2 322.22 266.67 

0.4 207.14 314.29 

0.6 152.63 336.84 

0.8 120.83 350.00 

5 2.5 

0.2 277.78 333.33 

0.4 192.31 423.08 

0.6 147.06 470.59 

0.8 119.05 500.00 

5 3 

0.2 242.86 385.71 

0.4 178.95 521.05 

0.6 141.67 600.00 

0.8 117.24 651.72 

10 0.5 

0.2 490.24 26.83 

0.4 248.15 25.93 

0.6 166.12 25.62 

0.8 124.84 25.47 

10 1 

0.2 463.64 100.00 

0.4 242.86 100.00 

0.6 164.52 100.00 

0.8 124.39 100.00 

10 1.5 

0.2 426.53 202.04 

0.4 234.83 212.36 

0.6 162.02 216.28 

0.8 123.67 218.34 

10 2 

0.2 385.71 314.29 

0.4 225.00 350.00 

0.6 158.82 364.71 

0.8 122.73 372.73 

10 2.5 

0.2 346.15 423.08 

0.4 214.29 500.00 

0.6 155.17 534.48 

0.8 121.62 554.05 

10 3 

0.2 310.53 521.05 

0.4 203.45 651.72 

0.6 151.28 715.38 

0.8 120.41 753.06 

15 0.5 

0.2 493.44 26.23 

0.4 248.76 25.62 

0.6 166.30 25.41 

0.8 124.90 25.31 
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C  = 0.5 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

15 
1 

 

0.2 475.00 100.00 

0.4 245.16 100.00 

0.6 165.22 100.00 

0.8 124.59 100.00 

15 1.5 

0.2 447.83 208.70 

0.4 239.53 216.28 

0.6 163.49 219.05 

0.8 124.10 220.48 

15 2 

0.2 415.79 336.84 

0.4 232.35 364.71 

0.6 161.22 375.51 

0.8 123.44 381.25 

15 2.5 

0.2 382.35 470.59 

0.4 224.14 534.48 

0.6 158.54 560.98 

0.8 122.64 575.47 

15 3 

0.2 350.00 600.00 

0.4 215.38 715.38 

0.6 155.56 766.67 

0.8 121.74 795.65 

20 0.5 

0.2 495.06 25.93 

0.4 249.07 25.47 

0.6 166.39 25.31 

0.8 124.92 25.23 

20 1 

0.2 480.95 100.00 

0.4 246.34 100.00 

0.6 165.57 100.00 

0.8 124.69 100.00 

20 1.5 

0.2 459.55 212.36 

0.4 242.01 218.34 

0.6 164.26 220.48 

0.8 124.32 221.58 

20 2 

0.2 433.33 350.00 

0.4 236.36 372.73 

0.6 162.50 381.25 

0.8 123.81 385.71 

20 2.5 

0.2 404.76 500.00 

0.4 229.73 554.05 

0.6 160.38 575.47 

0.8 123.19 586.96 

20 3 

0.2 375.86 651.72 

0.4 222.45 753.06 

0.6 157.97 795.65 

0.8 122.47 819.10 
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C  = 0.7 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

5 0.5 

0.2 469.61 30.70 

0.4 244.08 27.96 

0.6 164.89 27.00 

0.8 124.50 26.51 

5 
1 

 

0.2 401.01 100.00 

0.4 228.82 100.00 

0.6 160.08 100.00 

0.8 123.10 100.00 

5 1.5 

0.2 329.89 171.84 

0.4 209.49 191.24 

0.6 153.48 200.27 

0.8 121.10 205.49 

5 2 

0.2 272.75 229.57 

0.4 190.49 280.97 

0.6 146.35 308.55 

0.8 118.81 325.76 

5 2.5 

0.2 230.92 271.83 

0.4 173.98 358.92 

0.6 139.56 411.55 

0.8 116.51 446.80 

5 3 

0.2 201.02 302.03 

0.4 160.49 422.60 

0.6 133.56 502.70 

0.8 114.37 559.79 

10 0.5 

0.2 484.21 27.96 

0.4 246.98 26.51 

0.6 165.77 26.01 

0.8 124.75 25.76 

10 1 

0.2 443.52 100.00 

0.4 238.60 100.00 

0.6 163.20 100.00 

0.8 124.01 100.00 

10 1.5 

0.2 391.98 191.24 

0.4 226.58 205.49 

0.6 159.35 211.28 

0.8 122.88 214.42 

10 2 

0.2 341.30 280.97 

0.4 212.88 325.76 

0.6 154.68 346.06 

0.8 121.47 357.64 

10 2.5 

0.2 297.27 358.92 

0.4 199.09 446.80 

0.6 149.66 491.04 

0.8 119.89 517.69 

10 3 

0.2 261.30 422.60 

0.4 186.21 559.79 

0.6 144.64 635.73 

0.8 118.25 683.96 

15 0.5 

0.2 489.33 27.00 

0.4 247.97 26.01 

0.6 166.06 25.68 

0.8 124.83 25.51 
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C  = 0.7 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

15 
1 

 

0.2 460.48 100.00 

0.4 242.21 100.00 

0.6 164.32 100.00 

0.8 124.33 100.00 

15 1.5 

0.2 420.86 200.27 

0.4 233.53 211.28 

0.6 161.60 215.50 

0.8 123.55 217.74 

15 2 

0.2 378.07 308.55 

0.4 223.03 346.06 

0.6 158.17 361.74 

0.8 122.53 370.36 

15 2.5 

0.2 337.37 411.55 

0.4 211.73 491.04 

0.6 154.27 527.39 

0.8 121.34 548.23 

15 3 

0.2 301.35 502.70 

0.4 200.45 635.73 

0.6 150.17 702.02 

0.8 120.05 741.72 

20 0.5 

0.2 491.94 26.51 

0.4 248.47 25.76 

0.6 166.21 25.51 

0.8 124.87 25.38 

20 1 

0.2 469.61 100.00 

0.4 244.08 100.00 

0.6 164.89 100.00 

0.8 124.50 100.00 

20 1.5 

0.2 437.56 205.49 

0.4 237.30 214.42 

0.6 162.79 217.74 

0.8 123.89 219.47 

20 2 

0.2 401.01 325.76 

0.4 228.82 357.64 

0.6 160.08 370.36 

0.8 123.10 377.21 

20 2.5 

0.2 364.23 446.80 

0.4 219.34 517.69 

0.6 156.92 548.23 

0.8 122.15 565.24 

20 3 

0.2 329.89 559.79 

0.4 209.49 683.96 

0.6 153.48 741.72 

0.8 121.10 775.12 
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C  = 0.9 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

5 0.5 

0.2 459.75 32.55 

0.4 242.05 28.97 

0.6 164.27 27.70 

0.8 124.32 27.04 

5 
1 

 

0.2 376.34 100.00 

0.4 222.57 100.00 

0.6 158.01 100.00 

0.8 122.48 100.00 

5 1.5 

0.2 299.31 162.28 

0.4 199.77 183.14 

0.6 149.91 193.59 

0.8 119.97 199.86 

5 2 

0.2 243.37 207.52 

0.4 179.15 258.31 

0.6 141.75 287.89 

0.8 117.27 307.25 

5 2.5 

0.2 205.35 238.27 

0.4 162.54 318.89 

0.6 134.50 371.69 

0.8 114.71 408.96 

5 3 

0.2 179.56 259.12 

0.4 149.77 365.44 

0.6 128.46 441.51 

0.8 112.46 498.62 

10 0.5 

0.2 478.81 28.97 

0.4 245.92 27.04 

0.6 165.45 26.37 

0.8 124.66 26.03 

10 1 

0.2 426.86 100.00 

0.4 234.91 100.00 

0.6 162.04 100.00 

0.8 123.68 100.00 

10 1.5 

0.2 366.05 183.14 

0.4 219.83 199.86 

0.6 157.09 207.04 

0.8 122.21 211.03 

10 2 

0.2 311.08 258.31 

0.4 203.63 307.25 

0.6 151.35 331.06 

0.8 120.43 345.15 

10 2.5 

0.2 266.77 318.89 

0.4 188.27 408.96 

0.6 145.47 458.08 

0.8 118.52 489.00 

10 3 

0.2 232.72 365.44 

0.4 174.74 498.62 

0.6 139.89 578.68 

0.8 116.63 632.11 

15 0.5 

0.2 485.62 27.70 

0.4 247.25 26.37 

0.6 165.85 25.92 

0.8 124.77 25.69 
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C  = 0.9 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

15 
1 

 

0.2 448.08 100.00 

0.4 239.59 100.00 

0.6 163.51 100.00 

0.8 124.10 100.00 

15 1.5 

0.2 399.48 193.59 

0.4 228.44 207.04 

0.6 159.96 212.42 

0.8 123.06 215.32 

15 2 

0.2 350.52 287.89 

0.4 215.53 331.06 

0.6 155.61 350.23 

0.8 121.75 361.06 

15 2.5 

0.2 307.01 371.69 

0.4 202.31 458.08 

0.6 150.86 500.53 

0.8 120.27 525.76 

15 3 

0.2 270.75 441.51 

0.4 189.75 578.68 

0.6 146.06 652.67 

0.8 118.72 698.97 

20 0.5 

0.2 489.12 27.04 

0.4 247.93 26.03 

0.6 166.05 25.69 

0.8 124.83 25.52 

20 1 

0.2 459.75 100.00 

0.4 242.05 100.00 

0.6 164.27 100.00 

0.8 124.32 100.00 

20 1.5 

0.2 419.56 199.86 

0.4 233.23 211.03 

0.6 161.51 215.32 

0.8 123.52 217.60 

20 2 

0.2 376.34 307.25 

0.4 222.57 345.15 

0.6 158.01 361.06 

0.8 122.48 369.81 

20 2.5 

0.2 335.40 408.96 

0.4 211.14 489.00 

0.6 154.07 525.76 

0.8 121.28 546.88 

20 3 

0.2 299.31 498.62 

0.4 199.77 632.11 

0.6 149.91 698.97 

0.8 119.97 739.12 
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C  = 1.1 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

5 0.5 

0.2 451.84 34.03 

0.4 240.39 29.80 

0.6 163.76 28.27 

0.8 124.17 27.48 

5 
1 

 

0.2 358.48 100.00 

0.4 217.76 100.00 

0.6 156.38 100.00 

0.8 121.99 100.00 

5 1.5 

0.2 279.22 156.01 

0.4 192.82 177.35 

0.6 147.26 188.61 

0.8 119.11 195.57 

5 2 

0.2 225.39 194.04 

0.4 171.60 243.20 

0.6 138.54 273.41 

0.8 116.15 293.86 

5 2.5 

0.2 190.46 218.73 

0.4 155.33 293.66 

0.6 131.14 345.25 

0.8 113.47 382.94 

5 3 

0.2 167.48 234.96 

0.4 143.31 330.96 

0.6 125.23 402.74 

0.8 111.20 458.44 

10 0.5 

0.2 474.38 29.80 

0.4 245.04 27.48 

0.6 165.18 26.67 

0.8 124.58 26.26 

10 1 

0.2 414.03 100.00 

0.4 231.94 100.00 

0.6 161.09 100.00 

0.8 123.40 100.00 

10 1.5 

0.2 347.53 177.35 

0.4 214.68 195.57 

0.6 155.31 203.71 

0.8 121.66 208.32 

10 2 

0.2 290.93 243.20 

0.4 196.93 293.86 

0.6 148.84 319.78 

0.8 119.63 335.52 

10 2.5 

0.2 247.55 293.66 

0.4 180.84 382.94 

0.6 142.45 434.33 

0.8 117.51 467.71 

10 3 

0.2 215.48 330.96 

0.4 167.21 458.44 

0.6 136.60 539.25 

0.8 115.47 595.06 

15 0.5 

0.2 482.55 28.27 

0.4 246.65 26.67 

0.6 165.67 26.12 

0.8 124.72 25.85 
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C  = 1.1 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

15 
1 

 

0.2 438.27 100.00 

0.4 237.46 100.00 

0.6 162.84 100.00 

0.8 123.91 100.00 

15 1.5 

0.2 383.56 188.61 

0.4 224.45 203.71 

0.6 158.64 209.95 

0.8 122.67 213.36 

15 2 

0.2 331.21 273.41 

0.4 209.89 319.78 

0.6 153.62 341.29 

0.8 121.14 353.70 

15 2.5 

0.2 286.86 345.25 

0.4 195.52 434.33 

0.6 148.30 480.38 

0.8 119.45 508.51 

15 3 

0.2 251.37 402.74 

0.4 182.36 539.25 

0.6 143.08 616.96 

0.8 117.72 667.12 

20 0.5 

0.2 486.77 27.48 

0.4 247.48 26.26 

0.6 165.91 25.85 

0.8 124.79 25.64 

20 1 

0.2 451.84 100.00 

0.4 240.39 100.00 

0.6 163.76 100.00 

0.8 124.17 100.00 

20 1.5 

0.2 405.82 195.57 

0.4 229.98 208.32 

0.6 160.46 213.36 

0.8 123.21 216.06 

20 2 

0.2 358.48 293.86 

0.4 217.76 335.52 

0.6 156.38 353.70 

0.8 121.99 363.88 

20 2.5 

0.2 315.58 382.94 

0.4 205.06 467.71 

0.6 151.87 508.51 

0.8 120.60 532.50 

20 3 

0.2 279.22 458.44 

0.4 192.82 595.06 

0.6 147.26 667.12 

0.8 119.11 711.63 
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C  = 1.3 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

5 0.5 

0.2 445.70 35.18 

0.4 239.08 30.46 

0.6 163.35 28.73 

0.8 124.06 27.83 

5 
1 

 

0.2 345.66 100.00 

0.4 214.14 100.00 

0.6 155.12 100.00 

0.8 121.61 100.00 

5 1.5 

0.2 265.73 151.79 

0.4 187.88 173.24 

0.6 145.31 184.97 

0.8 118.47 192.36 

5 2 

0.2 213.86 185.40 

0.4 166.47 232.95 

0.6 136.28 263.25 

0.8 115.35 284.25 

5 2.5 

0.2 181.19 206.56 

0.4 150.62 277.17 

0.6 128.87 327.38 

0.8 112.62 364.93 

5 3 

0.2 160.11 220.22 

0.4 139.19 309.03 

0.6 123.11 377.32 

0.8 110.36 431.46 

10 0.5 

0.2 470.87 30.46 

0.4 244.33 27.83 

0.6 164.97 26.91 

0.8 124.52 26.44 

10 1 

0.2 404.38 100.00 

0.4 229.64 100.00 

0.6 160.35 100.00 

0.8 123.18 100.00 

10 1.5 

0.2 334.36 173.24 

0.4 210.83 192.36 

0.6 153.96 201.17 

0.8 121.25 206.23 

10 2 

0.2 277.27 232.95 

0.4 192.12 284.25 

0.6 146.99 311.44 

0.8 119.02 328.29 

10 2.5 

0.2 234.99 277.17 

0.4 175.69 364.93 

0.6 140.30 417.33 

0.8 116.77 452.15 

10 3 

0.2 204.52 309.03 

0.4 162.15 431.46 

0.6 134.32 511.87 

0.8 114.65 568.72 

15 0.5 

0.2 480.10 28.73 

0.4 246.17 26.91 

0.6 165.52 26.29 

0.8 124.68 25.97 
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C  = 1.3 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

15 
1 

 

0.2 430.74 100.00 

0.4 235.78 100.00 

0.6 162.32 100.00 

0.8 123.76 100.00 

15 1.5 

0.2 371.89 184.97 

0.4 221.40 201.17 

0.6 157.62 208.03 

0.8 122.37 211.83 

15 2 

0.2 317.67 263.25 

0.4 205.72 311.44 

0.6 152.11 334.52 

0.8 120.67 348.05 

15 2.5 

0.2 273.25 327.38 

0.4 190.67 417.33 

0.6 146.42 465.53 

0.8 118.84 495.57 

15 3 

0.2 238.66 377.32 

0.4 177.22 511.87 

0.6 140.94 591.32 

0.8 116.99 643.78 

20 0.5 

0.2 484.89 27.83 

0.4 247.11 26.44 

0.6 165.81 25.97 

0.8 124.76 25.73 

20 1 

0.2 445.70 100.00 

0.4 239.08 100.00 

0.6 163.35 100.00 

0.8 124.06 100.00 

20 1.5 

0.2 395.55 192.36 

0.4 227.48 206.23 

0.6 159.64 211.83 

0.8 122.97 214.85 

20 2 

0.2 345.66 284.25 

0.4 214.14 328.29 

0.6 155.12 348.05 

0.8 121.61 359.28 

20 2.5 

0.2 301.85 364.93 

0.4 200.62 452.15 

0.6 150.23 495.57 

0.8 120.07 521.55 

20 3 

0.2 265.73 431.46 

0.4 187.88 568.72 

0.6 145.31 643.78 

0.8 118.47 691.11 

Table 5.1 Continued 
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C  = 1.5 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

5 0.5 

0.2 440.98 36.07 

0.4 238.05 30.97 

0.6 163.03 29.09 

0.8 123.96 28.11 

5 
1 

 

0.2 336.36 100.00 

0.4 211.43 100.00 

0.6 154.17 100.00 

0.8 121.31 100.00 

5 1.5 

0.2 256.39 148.87 

0.4 184.32 170.27 

0.6 143.88 182.28 

0.8 117.99 189.97 

5 2 

0.2 206.12 179.59 

0.4 162.90 225.81 

0.6 134.67 256.00 

0.8 114.77 277.27 

5 2.5 

0.2 175.09 198.56 

0.4 147.42 265.96 

0.6 127.30 314.96 

0.8 112.01 352.19 

5 3 

0.2 155.32 210.64 

0.4 136.45 294.39 

0.6 121.67 360.00 

0.8 109.77 412.78 

10 0.5 

0.2 468.14 30.97 

0.4 243.78 28.11 

0.6 164.80 27.10 

0.8 124.47 26.59 

10 1 

0.2 397.14 100.00 

0.4 227.87 100.00 

0.6 159.77 100.00 

0.8 123.01 100.00 

10 1.5 

0.2 324.86 170.27 

0.4 207.96 189.97 

0.6 152.93 199.24 

0.8 120.93 204.63 

10 2 

0.2 267.74 225.81 

0.4 188.64 277.27 

0.6 145.61 305.26 

0.8 118.57 322.86 

10 2.5 

0.2 226.44 265.96 

0.4 172.06 352.19 

0.6 138.73 405.03 

0.8 116.22 440.72 

10 3 

0.2 197.20 294.39 

0.4 158.65 412.78 

0.6 132.70 492.45 

0.8 114.05 549.73 

15 0.5 

0.2 478.18 29.09 

0.4 245.79 27.10 

0.6 165.41 26.42 

0.8 124.64 26.07 
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C  = 1.5 

2
s  

s  w ( ) ( )( )EHxSGx
ˆ,ˆPRE   

( ) ( )( )GxSGx
ˆ,ˆPRE   

15 
1 

 

0.2 425.00 100.00 

0.4 234.48 100.00 

0.6 161.90 100.00 

0.8 123.64 100.00 

15 1.5 

0.2 363.29 182.28 

0.4 219.08 199.24 

0.6 156.83 206.56 

0.8 122.13 210.64 

15 2 

0.2 308.00 256.00 

0.4 202.63 305.26 

0.6 150.98 329.41 

0.8 120.31 343.75 

15 2.5 

0.2 263.78 314.96 

0.4 187.15 405.03 

0.6 145.02 454.55 

0.8 118.37 485.87 

15 3 

0.2 230.00 360.00 

0.4 173.58 492.45 

0.6 139.39 572.73 

0.8 116.46 626.58 

20 0.5 

0.2 483.41 28.11 

0.4 246.82 26.59 

0.6 165.72 26.07 

0.8 124.73 25.80 

20 1 

0.2 440.98 100.00 

0.4 238.05 100.00 

0.6 163.03 100.00 

0.8 123.96 100.00 

20 1.5 

0.2 387.89 189.97 

0.4 225.55 204.63 

0.6 159.01 210.64 

0.8 122.78 213.91 

20 2 

0.2 336.36 277.27 

0.4 211.43 322.86 

0.6 154.17 343.75 

0.8 121.31 355.74 

20 2.5 

0.2 292.15 352.19 

0.4 197.35 440.72 

0.6 149.00 485.87 

0.8 119.68 513.25 

20 3 

0.2 256.39 412.78 

0.4 184.32 549.73 

0.6 143.88 626.58 

0.8 117.99 675.78 
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We discuss  Table 5.1 as follows:  

(i) In general, the percent relative efficiency of the proposed estimator 

( )SGx̂  with respect to Eichhorn and Hayre’s (1983) estimator ( )EHx̂  

is larger than 100%. It follows that the proposed estimator ( )SGx̂  is 

always better than the Eicchorn and Hayre’s (1983) estimator ( )EHx̂ .  

Thus the proposed randomized response model is always superior to the 

Eichhorn and Hayre’s (1983) randomized response model. 

(ii) The proposed estimator ( )SGx̂  is: (a) inferior (b) equally efficient, and 

(c) always superior; to the Gupta et al’s (2002) estimator ( )Gx̂  when 

µs  < 1, µs  = 1 and µs > 1 respectively. 

(iii) For different values of ( )s
2
s , , the percent relative efficiency of ( )SGx̂  

with respect to ( )EHx̂  decreases as the value of w increases, whereas 

the percent relative efficiency of ( )SGx̂  with respect to ( )Gx̂  increases 

with the increase in the value of w. Thus the proposed randomized 

response model works better than Gupta et al’s (2002) randomized 

response model for higher values of sensitivity level w and µs > 1. 

(iv)  It is also observed that the values of ( ) ( )( )EHxSGx
ˆ,ˆPRE   and 

( ) ( )( )GxSGx
ˆ,ˆPRE 

 
decrease with increasing values of the coefficient 

of variation C
.
 

(v) A larger gain in efficiency is observed by using the proposed estimator 

( )SGx̂   over Gupta et al’s (2002) estimator
 ( )Gx̂  is observed for the 

values (µs > 1). We can also perceive a loss in efficiency for the values 

(µs  < 1). 

It is further observed from Table 5.1 that the percent relative efficiency of the 

suggested estimator ( )SGx̂  with respect to Eichhorn and Hayre’s (1983) estimator 
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( )EHx̂  and Gupta et al’s (2002) estimator ( )Gx̂  are larger than 100% for the selected 

parametric values [i.e ( 2
s , Cx, w) and (µs ≥ 1) ] as given in Table 5.1. It follows that 

the proposed randomized response model is superior to the Eichhorn and Hayre’s and 

Gupta et al’s (2002) randomized response model for µs > 1. 

 

6. CONCLUDING REMARK 

The proposed method has the advantage of being able to simultaneously estimate both 

the average response and the sensitivity level of sensitive survey questions. While 

comparing this method with other methods, one should keep in mind that the proposed 

estimator estimates for all values of µs but have a smaller variance than Gupta et al’s 

(2002) estimator ( )Gx̂  for µs > 1. We have also developed the procedure for 

estimating the sensitivity level w. 
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