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Abstract

Fisher information is of key importance in estimation theory. It is used as a tool for characterizing complex
signals or systems, with applications, e.g. in biology, geophysics and signal processing. The problem of
minimizing Fisher information in a set of distributions has been studied by many researchers. In this paper,
based on some rather simple statistical reasoning, we provide an alternative proof for the fact that
Gaussian distribution with finite variance minimizes the Fisher information over all distributions with the
same variance.
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1. INTRODUCTION

The role of Fisher information as a way of measuring information in a distribution is
well established in the literature. Fisher information is used in estimation theory for
constructing a basic bound, known as Cramer-Rao lower bound (CRLB), on the
variance of an estimator ([Khoolenjani and Alamatsaz (2016)]). Applications of
Fisher information in geophysics ([Balasco et al. (2008)]), biology ([Frank (2009)]),
analysing complex signals or systems ([Martin et al. (2009)], [Nagy (2003)]), signal
processing ([Vignat and Bercher (2003)], [Zivojnovic and Noll (1997)]), computing
the asymptotic covariance matrix of the models ([Hussin et al. (2010)] and [Mamun
et al. (2013)]) and obtaining performance bounds ([Xu et al. (2008)]) are discussed
in the literature. It is also used in statistical physics and biology as a way of inference
and understanding ([Frieden (2009)]). Recently, [Dulek and Gezici (2014)] studied
the maximization of Fisher information in presence of a constraint on the cost of
measurements. [Neri et al. (2013)] studied the theoretical evaluation of the
achievable performance using Fisher information.

Gaussian distribution is one of the most well-known and widely applied
distributions in many fields such as statistics, engineering and physics. One of the
major reasons why Gaussian distribution has become so prominent is because of the
Central Limit Theorem (CLT) and the fact that the distribution of noise in numerous
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engineering systems is well fitted by Gaussian distribution. It is well known that
Gaussian distribution minimizes the Fisher information, which equals to the inverse
of Cramer-Rao lower bound, (see [Shao (1999)]). This fact is established in [Park et
al. (2013)]. Especially, when there is no information about the distribution of
observations, Gaussian assumption appears as the most traditional choice. Therefore,
optimization of estimation methods based on the CRLB that holds under Gaussian
distribution yields the best CRLB-related performance. [Stoica and Babu (2011)]
provided a general proof of result that the largest CRLB is achievable by the
Gaussian distribution. In this note, we provide a simple alternative proof for the fact
that Gaussian distribution yields the minimum Fisher information. Using certain
standard statistical reasoning, we believe that there is a value – in general, and also
here – in presenting alternative proofs for fundamental theorems. Such alternative
proofs can shed new light on the statement being proven, introduce new arguments
that can be useful elsewhere, or yield different generalizations and applications.

2. MAIN RESULT

Let us first review the fundamental notions and basic definitions used in the paper.

Suppose that X is a random observable taking on values in a sample space X

according to a probability distribution from the family F = { f (x;θ) : θ ∈ Θ}, in
which θ is a deterministic parameter.

DEFINITION 1. The Fisher information I(F) of a distribution F on the real line
is defined as

I(F) =

∞∫
−∞

(
d ln f (x;θ)

dx

)2

f (x;θ)dx, (1)

where f denotes the density of F .

DEFINITION 2. An estimator is a real-valued function δ defined over the sample
space X . It is used to estimate an estimand, g(θ), a real-valued function of the
parameter.

Quite generally, suppose that the consequences of estimating g(θ) by a value d are
measured by L(θ ,d). Of the loss function L, we shall assume that L(θ ,d) ≥ 0 for
all θ ,d and L[θ ,g(θ)] = 0 for all θ , so that the loss is zero when the correct value is
estimated. The accuracy, or rather inaccuracy, of an estimator θ is then measured by
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the risk function

R(θ ,δ ) = Eθ{L[θ ,δ (X)]}. (2)

DEFINITION 3. A set of functions {g(x) :g∈G } from the sample space X onto
X is called a group of transformations of X if

i. (Inverse) For every g∈G there is a g′∈G such that g′(g(x)) = x for all x ∈X .

ii. (Composition) For every g∈G and g′∈G there exists g′′∈G such that g′(g(x)) =

g′′(x) for all x ∈X .

iii. (Identity) The identity, e(x), defined by e(x) = x is an element of G .

DEFINITION 4. Let G be a group of transformations of the sample space X .
Then, the family F = { f (x;θ) : θ ∈ Θ} is invariant under the group G if for every
θ ∈ Θ there exists a unique θ ′ ∈ Θ such that Y = g(X) has the distribution f (y;θ ′) if
X has the distribution f (x;θ).

The θ ′ uniquely determined by θ is denoted by ḡ(θ).

DEFINITION 5. An estimation problem (Θ,δ ,L) is said to be invariant under

the group G if the family F = { f (x;θ) : θ ∈ Θ} of distributions is invariant under G

and if the loss function is invariant under G in the sense that for every g∈ G and every
δ in the class of estimators D, there exists a unique δ ∗ ∈ D such that

L(θ ,δ ) = L(ḡ(θ),δ ∗) ∀θ ∈Θ. (3)

The δ ∗ uniquely determined by g and δ is denoted by g̃(δ ).

In an invariant estimation problem, an estimator δ is said to be equivariant if for all
g ∈ G

δ (g(x)) = g̃(δ (x)). (4)

If an equivariant estimator exists and minimizes the risk function, it is called the
minimum risk equivariant (MRE) estimator.

THEOREM 1. Let Y = (Y1, ...,Yn) be distributed as

f (y−θ) = f (y1−θ , ...,yn−θ),

Xi = Yi −Yn and X = (X1, ...,Xn−1). Suppose that the loss function is given by
L(θ ,W ) = (W −θ)2 and that there exists a location invariant estimator δ0 of θ with
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finite risk. Then, the minimum risk equivariant estimator of θ exists and is given by

δ
∗(Y) = δ0(Y)−E0[δ0(Y) | x]

PROOF. See [Lehmann and Casella (1998)].

THEOREM 2. (Cramer-Rao Inequality) Let Y1, ...,Yn be independent random
variables with a common probability density fθ (y) and W (Y1, ...,Yn) be an unbiased
estimator of θ . Then, under the regularity conditions we have

Var(W )≥ 1
nI(F)

. (5)

PROOF. See [Lehmann and Casella (1998)].

THEOREM 3. Among all densities with mean θ and finite variance σ2, Fisher
information is minimized by Gaussian density.

PROOF. Let F be a univariate distribution with density f and fixed finite
variance σ2 and Y1, ...,Yn be independently identically distributed random variables
with density fθ (y), where θ = E(Yi) is a location parameter. Assume that sn(F) is
the risk of the minimum risk equivariant estimator of θ under squared error loss
L(θ ,W ) = (W −θ)2. For Gaussian distribution with mean θ and finite variance σ2,
if we let δ0 = Ȳ in Theorem 1, it follows that δ0 is independent of X and hence
E0[Ȳ | x] = 0. Thus, the minimum risk equivariant estimator of θ becomes Ȳ with
risk Eθ (Ȳ − θ)2 = σ2

n . On the other hand, we obtain Fisher information in the
Gaussian case as

I(N) =

∞∫
−∞

(
d ln f (y;θ)

dy

)2

f (y;θ)dy

=

∞∫
−∞

(
d
dy

ln
1

σ
√

2π
e−

1
2σ2 (y−θ)2

)2 1
σ
√

2π
e−

1
2σ2 (y−θ)2

dy

=
1

σ4

∞∫
−∞

(y−θ)2

σ
√

2π
e−

1
2σ2 (y−θ)2

dy

=
1

σ2 . (6)

Therefore, we have

Eθ (Ȳ −θ)2 =
1

nI(N)
. (7)
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We know that for any distribution F , Ȳ is an unbiased estimator of θ with risk given
in (7). So, the risk of the minimum risk equivariant estimator for any distribution F

must be less than 1/(nI(N)). Now, let b be the constant bias of the MRE estimator δ ∗.
Then, δ1(y) = δ ∗(y)−b is a location invariant estimator of θ and the risk of δ1 under
squared error loss becomes

Rδ1 = E[δ ∗(y)−b−θ ]2 =Var(δ ∗)≤Var(δ ∗)+b2 = Rδ ∗ .

Since δ ∗ is the MRE estimator, b = 0, i.e., δ ∗ is unbiased (see [Shao (1999)], p. 215).
Therefore, by using Theorem 2, we have

sn(F)≥ 1
nI(F)

.

Thus, I(N)≤ I(F) and the proof is complete.

3. CONCLUSION

This paper focuses on deriving an alternative proof for the fact that the Fisher
information is minimized by Gaussian distribution. The risk of the sample mean in
Gaussian density is used to obtain an upper bound for the risk of the minimum risk
equivariant estimator for any other distribution F . Then, applying Cramer-Rao
inequality, a lower bound is obtained for the risk of the minimum risk equivariant
estimator, regardless of F . Combining these two bounds, the result is concluded.
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Study of Incomplete Elliptic Integrals Pertaining
to pψq Function

R. SHANKER DUBEY, A. SHARMA AND M. JAIN

Abstract

Elliptic-type integral plays a major role in the study of different problems of physics and technology
including fracture mechanics. Many papers have been written for various families of elliptic-type
integrals. Due to their applications here, we are presenting an organized study of certain generalized
family of incomplete elliptic integral. The obtained results are basic in nature have various generalizations.
While using the fractional integral operator of Riemann-Liouville type, we found several obvious hyper
geometric representations. Which are further used to originate many definite integrals relating to their
modules and amplitude of elliptic type generalized incomplete integrals.

Mathematics Subject Classification 2000: Primary 26A33, 33C65, 33E05; Secondary 33C75,78A40,
78A45
Keywords: Incomplete elliptic integrals, complete elliptic integrals, fractional Riemann-Liouville differ
integral operator, function.

1. INTRODUCTION AND DEFINITIONS

The incomplete elliptic integrals having a keen interest of mathematician form a long
time. In this way Legendre’s normal form of incomplete elliptic integrals of the first
and second kind are given [1-6]:

F (φ ,k) =

φ∫
0

dθ√
1 − k2 sin2 θ

=

sinφ∫
0

dt√(
1 − t2

) (
1 − k2t2

) ,(∣∣∣k2
∣∣∣ < 1; 0 ≤ φ ≤ π

2

)
(1)

and

E (φ ,k) =
∫

φ

0

√
1 − k2 sin2 θ dθ =

∫ sinφ

0

√(
1 − k2t2

)√(
1 − t2

) dt,
(∣∣∣k2

∣∣∣ < 1; 0 ≤ φ ≤ π

2

)
,

(2)

with |k| modulus and amplitude φ .
In this paper, we take necessary constraint

∣∣k2
∣∣ < 1 rather than 0 ≤ k<1. Here the

amplitude φ may attend complex values. Specially, when φ = π

2 , the equations (1)
and (2) provides the corresponding complete elliptic integrals. It is very useful in
radiation physics, nuclear technology fracture mechanics etc. (see [7-17]).
We have generalized elliptic function of third kind [6]
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R (φ ,k,ξ ;α ,γ) =
∫

φ

0

1(
1 + ξ sin2

θ
)α (

1 − k2 sin2
θ
)1/2−γ

dθ , (3)

R (φ ,k,ξ ;α ,γ) =

sin φ∫
0

1

(1 + ξ v2)
α
√
(1 − v2)(1 − k2 v2)

1/2−γ
dv,

( ∣∣k2
∣∣ < 1; 0 ≤ φ ≤ π

2 ;

γ ∈ C, α ≥ 0

)
(4)

where ξ is elliptic characteristic and ξ > −1.
Also we have elliptic function

I (φ ,k,ξ ;γ) =

φ∫
0

1(
1 + ξ sin2

θ
) (

1 − k2 sin2
θ
)1/2−γ

dθ , (5)

I (φ ,k,ξ ;γ) =
sin φ∫

0

1
(1+ξ v2)

√
(1−v2)(1−k2 v2)1/2−γ

dv ,(∣∣k2
∣∣ < 1; 0 ≤ φ ≤ π

2 ; γ ≥ 0
) (6)

It is seen that by assigning some particular values of α , γ and φ , the above defined
results reduce into known elliptic integral (see [2,6-17]).

The multivariable hyper geometric function defined by Srivastava & Daoust ([16-17])

Fp:q1 ; ... ;qr
l :m1 ; ... ;mr


(

aj ;α ′j, ...α
(r)
j

)
1,p

:
(

c′j,γ ′j
)

1,q1
; ... ;

(
c(r)j ,γ

(r)
j

)
1,qr

;(
bj ;β ′j, ...β

(r)
j

)
1,l

:
(
d′j,δ ′j

)
1,m1

; ... ;
(

d(r)j ,δ
(r)
j

)
1,mr

;
z1, ...,zr


=

∞

∑
n1, ...,nr = 0

p
∏

j = 1
(aj)

n1α ′ j + ...+nrα
(r)
j

q1
∏

j = 1
(c′ j)n1γ ′

j
...

qr
∏

j = 1

(
c(r)j

)
nrγ

(r)
j

l
∏

j = 1
(bj)

n1β ′ j + ...+nrβ
(r)
j

m1
∏

j = 1
(d′ j)n1δ ′ j

...
mr
∏

j = 1

(
d(r)j

)
nrγ

(r)
j

zn1
1

n1! ...
znr

r
nr! ,

(7)

With variable and parametric constraints the above mentioned series is absolutely
convergent.

We have by the definition of well-known Riemann-Liouville operator Dµ
z f (z) of

fractional calculus (see [6,17]):

Dλ −µ
z

{
zλ −1

r
∏

j = 1

{(
1 − aj zµj

)−αj
}}

=
Γ(λ )
Γ(µ)

zµ−1 F1:1 ; ... ;1
1 :0 ; ... ;0

[
(λ ; µ1, ...µr) :(α1,1) ; ... ;(αr,1) ;
(µ ; µ1, ...µr) :−−− ; ... ;−−− ; a1zµ1 , ...,arzµr

]
,[

R (λ ) > 0; µj > 0 (j = 1, ..., r) ; max {|a1zµ1 | , ..., |arzµr |} < 1
]
,

(8)

where the Dυ
z is the Riemann-Liouville fractional differintegral operator (see [3,18-

20])

Dυ
z { f (z)} =

{ 1
Γ(−υ)

∫ z
0 (z−ζ )−υ−1 f (ζ )dζ , [R(υ)<0]

dn
dzn Dυ−n

z { f (z)} , [0≤R(υ)<n :n∈N0]
(9)
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which shows the defining integral in (9) exists.

Equation (3) reduces the following result by using the definition (8) applying r = 3
with, λ = µ− 1 = 1 and z = sin φ , we find that

R (φ ,k,ξ ;α,γ) = sin φ F1:1 ;1 ;1
1:0 ;0 ;0

[
(1:2,2,2) :(1/2−γ,1) ;(1/2,1) ;(α,1) ;
(2:2,2,2) : ; ; ; k2 sin2

φ , sin2
φ ,−ξ sin2

φ

]
,

(10)

conditions are already defined in the (3) and (4).

In the same manner

I (φ ,k,ξ ;γ) = sin φ F1:1 ;1 ;1
1:0 ;0 ;0

[
(1;2,2,2) :(1/2−γ,1) ;(1/2,1) ;(1,1) ;
(2;2,2,2) : ; ; ; k2 sin2

φ , sin2
φ ,−ξ sin2

φ

]
,

(11)

for details see [6].

By using the definition of Pochhammer symbol, we have

(1)2l+2m+2n
(2)2l+2m+2n

=
Γ(2l+2m+2n+1)
Γ(2l+2m+2n+2)

=
Γ
( 1

2
)

2Γ
( 3

2
) ( 1

2
)

l+m+n( 3
2
)

l+m+n

=

( 1
2
)

l+m+n( 3
2
)

l+m+n

, (12)

where we used the duplication formula defined bellow:

Γ(2z) =
22z−1
√

π
Γ(z) Γ

(
z+

1
2

)
, (13)

with the help of above relation defined by equation (10), we can write the relation as

R (φ ,k,ξ ;α,γ) = sin φ .F1

[
1
2

:
1
2
− γ,

1
2
, α ;

3
2

; k2 sin2
φ , sin2

φ ,−ξ sin2
φ

]
, (14)

(∣∣∣k2
∣∣∣ < 1; 0 ≤ φ ≤ π

2
; γ ∈ C, α ≥ 0

)
,

and similarly I (φ ,k,ξ ;γ) can be defined in the similar manner, where F1 denotes
the particular case of the multivariable hypergeometric function given by Srivastava-
Daoust for three variables defined in (7).

We know the definition of binomial expansion:

(1 − z)−λ =
∞

∑
n = 0

(λ )n
n!

zn, (|z| < 1; λ ∈ C) (15)

and

(1 + z)−λ =
∞

∑
n = 0

(λ )n
n!

(−z)n , (|z| < 1; λ ∈ C) . (16)

By the help of the binomial expansion, we can say that
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(
1 − k2 sin2

θ
)γ− 1

2 =
∞

∑
n = 0

( 1
2 − γ

)
n

n!
k2n sin2n

θ , (17)

and (
1 + ξ sin2

θ
)−α

=
∞

∑
n = 0

(α)n
n!

(
−ξ sin2

θ
)n

. (18)

We have by the definition of Beta function B (α , β ):∫
π/2

0
sin2α−1

θ cos2β −1
θ dθ =

1
2

B (α,β ) ,

(
min {R (α) .R (β )} > 0 : B (α,β ) =

Γ(α) Γ(β )

Γ(α +β )

)
(19)

with help of these formulas and relations, we can easily establish Theorem 1.

2. THEOREMS AND COROLLARIES.

THEOREM 1. If pψq is a Wright function [21], whose series representation is
given by

pψq

[
(a1,α1) ,...,(ap ,αp) ;

(b1,β1) ,...,(bq ,βq) ;
x
]

=
∞

∑
r=0

∏
p
j=1 Γ(a j +α jr)

∏
q
j=1 Γ(b j +β jr)

xr

r !
, (20)

where α i and β j (i = 1, . . ., p; j = 1, . . .,q) are real and positive, and 1+ ∑
q
j=1 β j −

∑
p
j=1 α j > 0.

Also consider that {τ, η , λ , µ} ≥ 0,(τ + η > 0; λ +µ >0) and
∞

∑
n = 1

∣∣∣ an

n1/2(1+ρ)

∣∣∣ < ∞, [τ = 0; R (ρ) > −1] (21)

∞

∑
n = 1

∣∣∣ an

n1+σ/2

∣∣∣ < ∞, [η = 0;R (σ) > −2] (22)

then
1∫
0

kρ

(√
(1−k2)

)σ

pψq

[
(a1 ,α1) ,...,(ap ,αp) ;

(b1 ,β1) ,...,(bq ,βq) ;
zkτ

(√
(1−k2)

)η]
R
(

φ , ζ kλ

(√
(1−k2)

)µ

,ξ ;α ,γ
)

dk

=

∞

∏
n=1

Γ(an)

∞

∏
n=1

Γ(bn)

sin φ

2 B
(

ρ +1
2 , σ +2

2

)
.F3 : n ;1; 1;1

2 : n;0;0;0

[
( 1

2 :0,1,1,1),
(

ρ +1
2 : τ

2 ,λ ,0,0
)
,( σ +2

2 : η

2 ,µ,0,0):

( 3
2 :0,1,1,1),

(
ρ+σ +3

2 : η+τ

2 ,λ +µ,0,0
)

:

(a1,α1),...,(an,αn);( 1
2−γ,1);( 1

2 ,1);(α,1);
(b1 ,β1),...,(bn ,βn);−;−; z,ζ 2sin2

φ , sin2
φ ,−ξ sin2

φ

]
,

(23)

where R(ρ) > −1and |ζ | < 1 [or |ζ | = 1 and R(ρ + 2λ ) > −1] .
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PROOF. To establish the result defined in Theorem 1, we use the values of
R
(

φ , ζ kλ
κµ ,ξ ;α ,γ

)
and pψq

[
(a1 ,α1) ,...,(ap ,αp) ;

(b1 ,β1) ,...,(bq ,βq) ;
x
]

from equations (3) and (18)
respectively, we get the required result after simplification by using the formulas
which are defined above.

COROLLARY 1. With the help of definition new elliptic function defined in
equation (5), we can establish the following result

1∫
0

kρ

(√(
1−k2

))σ

p
ψq

[
(a1 ,α1) ,...,(ap ,αp) ;

(b1 ,β1) ,...,(bq ,βq) ;
zkτ

(√(
1−k2

))η
]

I
(

φ , ζ kλ

(√(
1−k2

))µ

,ξ ;γ

)
dk

=

∞

∏
n=1

Γ(an)

∞

∏
n=1

Γ(bn)

sin φ

2 B
(

ρ +1
2 , σ +2

2

)
.F3 : n ;1; 1;1

2 : n;0;0;0

[
( 1

2 :0,1,1,1) ,( ρ +1
2 : τ

2 ,λ ,0,0),(
σ +2

2 : η

2 ,µ,0,0):

( 3
2 :0,1,1,1) , ( ρ+σ +3

2 : η+τ

2 ,λ +µ,0,0) :

(a1,α1),...,(an,αn);( 1
2 −γ,1) ;( 1

2 ,1);(1,1);
(b1,β1),...,(bn,βn);−;−; z, ζ 2 sin2

φ , sin2
φ ,−ξ sin2

φ

]
,

(24)

with help of Theorem 1 we can determine the above Corollary 1, by putting α = 1.

COROLLARY 2. With the help of elliptic integral of third kind (see [6]), we can
establish the following result

1∫
0

kρ

(√(
1−k2

))σ

p
ψq

[
(a1 ,α1) ,...,(ap ,αp) ;

(b1 ,β1) ,...,(bq ,βq) ;
zkτ

(√(
1−k2

))η
]

Π

(
φ , ζ kλ

(√(
1−k2

))µ

,ξ

)
dk

=

∞

∏
n=1

Γ(an)

∞

∏
n=1

Γ(bn)

sin φ

2 B
(

ρ +1
2 , σ +2

2

)
.F3 : n ;1; 1;1

2 : n;0;0;0

[
( 1

2 :0,1,1,1) ,( ρ +1
2 : τ

2 ,λ ,0,0),(
σ +2

2 : η

2 ,µ,0,0):

( 3
2 :0,1,1,1) , ( ρ+σ +3

2 : η+τ

2 ,λ +µ,0,0) :

(a1,α1),...,(an,αn);( 1
2 ,1) ;( 1

2 ,1);(1,1);
(b1,β1),...,(bn,βn);−;−; z, ζ 2 sin2

φ , sin2
φ ,−ξ sin2

φ

]
,

(25)

with help of Theorem 1 we can determine the above Corollary 2, by putting α = 1 and
γ = 0.

THEOREM 2. The following families of integrals hold true∫ π/2
0 sin2(a−1)

φ cos2b−1 φ pψq

[
(a1 ,α1) ,...,(ap ,αp) ;

(b1 ,β1) ,...,(bq ,βq) ;
zk
]

R (φ , k,ξ ;α,γ) dφ = 1
2

∏
∞
n=1 Γ(an)

∏
∞
n=1 Γ(bn)

B (a,b)

F2:1 ;1 ;1
2:0 ;0 ;0

[
( 1

2 :1,1,1),(a :1,1,1) : (a1,α1),...,(an,αn); ( 1
2 −γ,1) ; ( 1

2 ,1) ; (α,1) ;

( 3
2 :1,1,1), (a+b :1,1,1): (b1,β1),...,(bn,βn);−;− ;−;

zk, k2, 1,−ξ

]
,

(26)[∣∣k2∣∣ < 1 : min {R (a) ,R (b) , R(ai),R(bi)} > 0 , i = 1,2, ...; γ ∈ C
]
.

and
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∫ w
0 x2(a−1)

(
w2 − x2

)b−1
pψq

[
(a1 ,α1) ,...,(ap ,αp) ;

(b1 ,β1) ,...,(bq ,βq) ;
zk
]

R
(
arcsin x

w , k,ξ ;α,γ
)

dx

= 1
2 w2a+2b−3 ∏

∞
n=1 Γ(an)

∏
∞
n=1 Γ(bn)

B (a,b)

F2:1 ;1 ;1
2:0 ;0 ;0

[
( 1

2 :1,1,1),(a :1,1,1) : (a1,α1),...,(an,αn); ( 1
2 −γ,1) ; ( 1

2 ,1) ; (α,1) ;

( 3
2 :1,1,1), (a+b :1,1,1): (b1,β1),...,(bn,βn);−;− ;−;

zk, k2, 1,−ξ

]
,

(27)
only if the second member of each of the integral formulas defined in equations (26)
and (27) occurs.

PROOF. After replacing the R (φ , k,ξ ;α,λ ) from equation (10) and the value
of Wright function from equation (20) in to the integral of the affirmation equation
(26) of Theorem 2, if we use the trigonometric integral (19) as it is, we can find the
integral formula (26) as given above.

COROLLARY 1. With help of definition of new elliptical function defined in
equation (5), we can establish the following result

∫ π/2
0 sin2(a−1)

φ cos2b−1 φ pψq

[
(a1 ,α1) ,...,(ap ,αp) ;

(b1 ,β1) ,...,(bq ,βq) ;
zk
]

I (φ , k,ξ ; γ) dφ = 1
2

∏
∞
n=1 Γ(an)

∏
∞
n=1 Γ(bn)

B (a,b)

F2:1 ;1 ;1
2:0 ;0 ;0

[
( 1

2 :1,1,1),(a :1,1,1) : (a1,α1),...,(an,αn); ( 1
2 −γ,1) ; ( 1

2 ,1) ; (1,1) ;

( 3
2 :1,1,1), (a+b :1,1,1): (b1,β1),...,(bn,βn);−;− ;−;

zk, k2, 1,−ξ

]
,

(28)

or

π/2∫
0

sin2(a−1) (φ)cos2b−1 (φ) I (φ ,k,ξ ;γ)dφ

= 1
2 B(a,b) F2;1;1;1

2;0;0;0

[
( 1

2 :1,1,1),(a:1,1,1):( 1
2−γ,1);( 1

2 ,1);(1,1);

( 3
2 :1,1,1),(a+b:1,1,1):−;−;−;

k2,1,−ξ

]
.

(29)

This Corollary can be found with help of Theorem 2 by putting α = 1.

COROLLARY 2. With help of elliptical integral of third kind (see[6]), we can
establish the following result

π/2∫
0

sin2(a−1) (φ)cos2b−1 (φ) Π(φ ,k,ξ )dφ

= 1
2 B(a,b) F2;1;1;1

2;0;0;0

[
( 1

2 :1,1,1),(a:1,1,1):( 1
2 ,1);( 1

2 ,1);(1,1);

( 3
2 :1,1,1),(a+b:1,1,1):−;−;−;

k2,1,−ξ

]
.

(30)

This Corollary can be find with the help of Theorem 2 by putting α = 1 and γ = 0.
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REMARK 2. On changing the following variables

φ = arcsinx and dφ =
dx√

1 − x2
with x ∈ (0, 1) (31)

equation (26) can be rewritten as∫ 1
0 x2(a−1)

(
1 − x2

)b−1 R (arcsinx, k,ξ ;α,γ) dx

= 1
2 B (a,b) F2:1 ;1 ;1

2:0 ;0 ;0

[
( 1

2 :1,1,1),(a :1,1,1) : ( 1
2 −γ,1) ; ( 1

2 ,1) ; (α,1) ;

( 3
2 :1,1,1), (a+b :1,1,1):−;− ;−;

k2, 1,−ξ

]
,

(32)

[∣∣k2∣∣ < 1 : min {R (α) ,R (β )} > 0; γ ∈ C
]

Here equation (32) can be equated with equation (27) stated by Theorem 2.
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hypergeometric series. Mathematische Nachrichten. 53, 151–157.

Lin, S. D., Chang., Li-Fen and Srivastava, H. M. (2009). A certain class of incomplete elliptic integrals and
associated definite integrals. Applied Mathematics and Computation. doi:10.1016/j.amc.2009.06.059.

Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2004). Theory and Applications of Fractional Differential
Equations. North-Holland Mathematical Studies. Vol. 204, Elsevier (North-Holland) Science Publishers,
Amsterdam, London and New York.

Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential
Equations. A Wiley-Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane,
Toronto and Singapore.

Podlubny, I. (1999). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional
Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in
Science and Engineering. Vol. 198, Academic Press, New York, London, Tokyo and Toronto.

Wright, E. M. (1935). The asymptotic expansion of generalized hypergeometric function. Journal of the
London Mathematical Society. 10, 286–293.

Ravi Shanker Dubey
Department of Mathematics,
Amity University of Rajasthan, Jaipur, India
email: ravimath13@gmail.com

Anil Sharma
Department of Engineering,
Amity University Dubai, Dubai

Monika Jain
Department of Mathematics,
JECRC University, Jaipur, Rajasthan, India

18 

 

R. Shanker Dubey, A. Sharma and M. Jain 



On Some New Classes of Bi-univalent
Functions

M. DARUS AND S. SINGH

Abstract

In the present paper, we introduce and investigate two new subclasses QΣ(n,γ,k) and BΣ(n,β ,k) of
bi-valent functions in the unit disk U. For functions belonging to the classes QΣ(n,γ,k) and BΣ(n,β ,k),
we obtain estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|.

Mathematics Subject Classification 2010: 30C45, 30C50
Keywords: Univalent, starlike and convex functions, subordination and integral transform

1. INTRODUCTION AND PRELIMINARIES

Let A be the class of analytic functions defined on the unit disc U = {z ∈C : |z|< 1}
with the normalized condition f (0)= 0= f ′(0)−1. Let S be the class of all functions
f ∈A which are univalent in ∆. So f (z) ∈S has the form

f (z) = z+
∞

∑
k=2

anzn, z ∈U. (1)

Let f−1(z) be inverse of the function f (z) and it is well known that every function
f ∈S has an inverse f−1(z), defined by

f−1( f (z)) = z, z ∈U

and

f ( f−1(w)) = w, f or |w|< r0( f );r0( f )≥ 1
4
,

where

f−1(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · . (2)

A function f ∈A is said to be bi-univalent in U if both f (z) and f−1(w) are univalent
in U .
Let Σ denote the class of bi-univalent functions in U given by (1).
Many interesting examples of the functions of the class Σ, together with various other
properties and characteristics associated with bi-univalent functions (including also
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several open problems and conjectures involving bounds of the coefficients of the
functions in Σ), can be found in the earlier work studied by Lewin[17], Brannan and
Clunie [16], Netanyahu[18] and others. They introduced subclasses of Σ, like class
of bi-starlike and convex functions, bi-strongly starlike and convex functions similar
to the well-known subclasses S ∗(α) and K ∗(α) of starlike and convex functions of
order α (0 < α < 1), respectively (see [15]) and obtained non-sharp estimates on the
initial coefficients in the Taylor-Maclaurin series expansion (1) see[16; 9; 10]. More
recently, Srivastava et al. [8; 12; 13], Frasin and Aouf [11], R.M. Ali et al. [14] and
Porwal and Darus [6] introduced some new subclasses of Σ and obtained bounds for
the initial coefficients of the function given by (1).

Motivated by the work of Porwal and Darus [6], we introduce a new subclass
QΣ(k,n,α,γ).

DEFINITION 1.1. A function f given by (1) is said to be in the class QΣ(n,γ,k)

if the following conditions are satisfied:
For n ∈ Z, 0 ≤ γ < 1, α ≥ 1,λ ≥ 0 we introduce the subclass QΣ(n,γ,k) of S of
functions of the form (1) satisfying the condition

f ∈ Σ and

∣∣∣∣∣arg

(
(1−α)In

λ
f (z)+αIn+1

λ
f (z)

z

)∣∣∣∣∣< γπ

2
z ∈U, (3)

f ∈ Σ and

∣∣∣∣∣arg

(
(1−α)In

λ
g(w)+αIn+1

λ
g(w)

w

)∣∣∣∣∣< γπ

2
z ∈U, (4)

where

g(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · .

And

In
λ

f (z) = z+
∞

∑
k=2

(1+λ (k−1))nakzk, z ∈ ∆, λ ≥ 0, n ∈ Z.

is generalized Sǎlǎgean derivative defined by [2].

This generalized operator is studied by many and mentioned again by [3]. For k =

1, this class is introduced and investigated in [6]. For n = 0 and λ = 1 the class
QΣ(n,γ,k) reduces to Hα

Σ
introduced and studied by Srivastava et al. [8] and for n = 0

the class QΣ(n,γ,k) reduces to BΣ(α,λ ) introduced and studied by Frasin and Aouf
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[11]. In this paper, we investigate the estimates for the initial coefficients a2 and a3

of bi-univalent functions belonging to the class QΣ(n,γ,k). Our results generalize
several well-known results in [1; 4; 5; 10] and these are pointed out. In order to prove
our main result we need the following lemma:

LEMMA 1.1. [3] If p ∈P , then |ck| ≤ 2 for each k, where P is the family of
all functions p(z) analytic in U for which Re p(z)> 0, p(z) = 1+ c1z+ c2z2 + · · · for
z ∈U .

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS QΣ(N,γ,K)

THEOREM 2.1. Let f (z) given by (1) be in the class QΣ(n,γ,k), k ∈ N, n ∈ Z,
0≤ γ < 1, α ≥ 1,λ ≥ 0. Then

|a2| ≤
2α√

(1+λ )2n(1+λα)2 + γ[2(1+2λ )n(1+2λα)− (1+λ )2n(1+λα)2]
, (5)

and

|a3| ≤
2γ

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
+

4γ2

2[(1−α)(1+λ )n +α(1+λ )n+1]
.

(6)

PROOF. It follows from (3) and (4) that

(1−α)In
λ

f (z)++αIn+1
λ

f (z)
z

= (p(z))γ (7)

(1−α)In
λ

g(w)++αIn+1
λ

g(w)
w

= (q(w))γ (8)

where p(z) = 1+ p1z+ p2z2 + · · · and q(w) = 1+ q1w+ q2w2 + · · · in P . Now on
equating the coefficients in (7) and (8), we have

[(1−α)(1+λ )n +α(1+λ )n+1]a2 = γ p1 (9)

[(1−α)(1+2λ )n +α(1+2λ )n+1]a3 = γ p2 +
γ(γ−1)

2
p2

1 (10)

−[(1−α)(1+λ )n +α(1+λ )n+1]a2 = γq1 (11)
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and

[(1−α)(1+2λ )n +α(1+2λ )n+1](2a2
2−a3) = γq2 +

γ(γ−1)
2

q2
1. (12)

From (9) and (11) we get

p1 =−q1 (13)

and

2[(1−α)(1+λ )n +α(1+λ )n+1]a2
2 = γ

2(p2
1 +q2

1) (14)

From (10), (12) and (14), we get

2[(1−α)(1+2λ )n +α(1+2λ )n+1]a2
2

= (p2 +q2)γ +
γ(γ−1)

2
(p2

1 +q2
1)

= (p2 +q2)γ +
γ(γ−1)

2
2[(1−α)(1+λ )n +α(1+λ )n+1]

α2 a2
2.

Therefore, we have

a2
2 =

γ2(p2 +q2)

(1+λ )2n(1+λα)2 + γ[2(1+2λ )n(1+2λα)− (1+λ )2n(1+λα)2]
(15)

Applying Lemma 1.1 for (15), we get

|a2| ≤
2α√

(1+λ )2n(1+λα)2 + γ[2(1+2λ )n(1+2λα)− (1+λ )2n(1+λα)2]
.

which gives us desired estimate on |a2| as asserted in (5).

Next in order to find the bound on |a3|, by subtracting (12) from (10), we get

2[(1−α)(1+2λ )n+α(1+2λ )n+1](a3−a2
2) = γ(p2−q2)+

γ(γ−1)
2

(p2
1−q2

1) (16)

It follows from (13), (14) and (16)

a3 =
γ(p2−q2)

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
+

γ2(p2
1 +q2

1)

2[(1−α)(1+λ )n +α(1+λ )n+1]
(17)
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Applying Lemma 1.1 for (17), we get

|a3| ≤
2γ

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
+

4γ2

2[(1−α)(1+λ )n +α(1+λ )n+1]
.

This completes the proof of Theorem 2.1.

3. COEFFICIENT BOUNDS FOR THE FUNCTION BΣ(N,β ,K)

DEFINITION 3.1. A function f given by (1) is said to be in the class BΣ(n,β ,k)

if the following conditions are satisfied:
For n ∈ Z, 0 ≤ β < 1, α ≥ 1,λ ≥ 0, we introduce the subclass BΣ(n,β ,k) of S of
functions of the form (1) satisfying the condition

f ∈ Σ and Re

(
(1−α)In

λ
f (z)+αIn+1

λ
f (z)

z

)
> β z ∈U, (18)

f ∈ Σ and Re

(
(1−α)In

λ
g(w)+αIn+1

λ
g(w)

w

)
> β z ∈U, (19)

where

g(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · .

And In
λ

f (z) is generalized Sǎlǎgean derivative defined by [2].

For k = 1 and n = 0, the class BΣ(n,β ,k) reduces the class HΣ(n,β ,λ ) and HΣ(β ,λ )

studied by Porwal and Darus [6] and Frasin and Aouf [11], respectively. For n = 0,
λ = 1, this class reduces to HΣ(λ ) studied by Srivastava et al. [8].

THEOREM 3.1. Let f (z) given by (1) be in the class BΣ(n,β ,k), n∈ Z, 0≤ β <

1, α ≥ 1, λ ≥ 0. Then

|a2| ≤

√
2(1−β ))

2[(1−α)(1+2λ )n +α(1+2λ )n+1]2
(20)

and

|a3| ≤
4(1−β )2

[(1−α)(1+λ )n +α(1+λ )n+1]2
+

2(1−β )

[(1−α)(1+2λ )n +α(1+2λ )n+1]
.

(21)
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PROOF. It follows from (18) and (19) that there exists p(z) ∈ P and q(z) ∈ P

(1−α)In
λ

f (z)++αIn+1
λ

f (z)
z

= β +(1−β )p(z) (22)

(1−α)In
λ

g(w)++αIn+1
λ

g(w)
w

= β +(1−β )q(w) (23)

where p(z) = 1+ p1z+ p2z2 + · · · and q(w) = 1+ q1w+ q2w2 + · · · in P . Now on
equating the coefficients in (22) and (23), we have

[(1−α)(1+λ )n +α(1+λ )n+1]a2 = (1−β )p1 (24)

([(1−α)(1+2λ )n +α(1+2λ )n+1]a3 = (1−β )p2 (25)

−[(1−α)(1+λ )n +α(1+λ )n+1]a2 = (1−β )q1 (26)

and

[(1−α)(1+2λ )n +α(1+2λ )n+1](2a2
2−a3) = (1−β )q2 (27)

From (24) and (26) we get

p1 =−q1 (28)

and

2[(1−α)(1+λ )n +α(1+λ )n+1]a2
2 = (1−β )2(p2

1 +q2
1) (29)

From (25) and (27), we get

2[(1−α)(1+2λ )n +α(1+2λ )n+1]2a2
2 = (p2 +q2)(1−β ) (30)

From (29) and (30), we get

|a2|2 ≤
(1−β )(|p2|2 + |q2|2)

2[(1−α)(1+2λ )n +α(1+2λ )n+1]2
(31)

and

|a2
2| ≤

2(1−β ))

2[(1−α)(1+2λ )n +α(1+2λ )n+1]2
. (32)

Which is the bound on |a2| as given in (20).
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Next, in order to find the bound on |a3| by subtracting (29) from (25), we obtain

2[(1−α)(1+2λ )n +α(1+2λ )n+1](a3−2a2
2) = (1−β )(p2−q2) (33)

a3 = a2
2 +

(1−β )(p2−q2)

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
(34)

On substituting the value |a2
2| from (31), we have

a3 =
(1−β )2(|p2|2 + |q2|2)

2[(1−α)(1+λ )n +α(1+λ )n+1]2
+

(1−β )(p2−q2)

2[(1−α)(1+2λ )n +α(1+2λ )n+1]
(35)

On applying Lemma 1.1 for the coefficients p1, q1, p2 and q2, we obtain

|a3| ≤
4(1−β )2

[(1−α)(1+λ )n +α(1+λ )n+1]2
+

2(1−β )

[(1−α)(1+2λ )n +α(1+2λ )n+1]
.

(36)
This completes the proof of Theorem 3.1.
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Some Cubic Rank Transmuted Distributions
N. CELIK

Abstract

In this article, we introduce some examples of cubic rank transmuted distributions proposed by Granzatto
et al. (2017). The statistical aspects of the introduced distributions such as probability density functions,
hazard rate functions and reliability functions are studied. The maximum likelihood estimation method is
used in order to estimate the parameters of interest. Finally, real data examples are applied for the
illustration of these distributions.

Mathematics Subject Classification 2010: 62E10; 62E15
Keywords: Cubic Rank Transmution, Frechet Distribution, Gumbel Distribution, Gombertz Distribution,
Maximum Likelihood.

1. INTRODUCTION

In order to obtain more flexible statistical models, generalization of the well-known
distributions have been widely used. Firstly, Amoroso (1925) introduced the
generalized gamma distribution in order to model the distribution of income rate.
Since then various authors have discussed the generalizations of the distributions.
Good (1953), for example, proposed the inverse Gaussian distribution. Ljubo (1965),
Pickands (1975) and Hoskings and Wallis (1987) made generalization of Pareto
distribution. The generalized beta of the first and second kind was introduced by
McDonald (1984) to study the distribution of income.

Shaw and Buckley (2007) proposed a new generalization method called transmution
mapping. According to them a ranking quadratic transmutation (QRT) map is

F(x) = (1+λ )G(x)−λ [G(x)]2, |λ |< 1 (1)

where G(x) is the cumulative distribution function (cdf) of the base distribution. It
should be noted that, when λ = 0, the new distribution becomes the original
distribution.

This method have been used by many researchers to obtain new distributions, see
Aryal and Tsokos (2011), Aryal (2013), Elbatal and Aryal (2013) and Merovci (2013).
Recently, Granzatto et al. (2017) introduced a new family of transmuted distributions,
the cubic rank transmutation (CRT) map distribution and to demonstrate the usefulness
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of this method CRT Weibull and log-logistic distribution are used in their article. This
new method enables to fit complex data sets with bimodal hazard rates. The cdf and
the probability density function (pdf) of a CRT distribution are given

F(x) = λ1G(x)+(λ2−λ1)[G(x)]2 +(1−λ2)[G(x)]3 (2)

f (x) = g(x)[λ1 +2(λ2−λ1)G(x)+3(1−λ2)[G(x)]2] (3)

respectively. Here , λ1 ∈ [0,1] λ2 ∈ [−1,1] and g(x) is the pdf of the base distribution.
The proofs and the further details can be found in Granzatto et al. (2017).

In this paper, we are motivated to generate a new family of the distributions in
order to get more flexible fitting. For this reason further examples of CRT
distributions are introduced. The rest of the paper organizes as follows, in Section
2-4, we offer Frechet, Gumbel and Gombertz distributions which are commonly used
as life-time distributions in survival analysis. The cubic rank transmutation method is
applied to these distributions and some mathematical and statistical properties of
these new distributions are derived. The maximum likelihood estimations of the
parameters of interest are obtained. In Section 5, real data examples, which were
previously studied with Frechet, Gumbel and Gombertz distribution are fitted into the
cubic rank transmuted version of the base distributions. A conclusion is given at the
end of this paper.

2. CUBIC RANK TRANSMUTED FRECHET DISTRIBUTION

Generalized extreme value (GEV) distribution covers the well known probability
distributions developed within extreme value theory and it combines Gumbel,
Frechet and Weibull families. It is proposed by Jenkinson (1955) in order to model
extreme values based on Fisher-Tippet theorem. The class of GEV distributions is
very flexible, since it can be represented by single shape parameter (ξ ) which
controls the tail behaviour with three different distribution families. If ξ = 0, then the
distribution has thin tail behaviour and is called Gumbel type distribution. When
ξ > 0, then the distribution has fat tail and is called Frechet type distribution which
includes well known fat tailed distribution such as Pareto, Student-t and Cauchy.
Finally, if ξ < 0, the distribution class converts to Weibull which has short tail
behaviour and includes uniform and beta distribution.
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A random variable X is said to have a Frechet distribution with parameters µ > 0
and σ > 0 if its pdf is given by

g(x) =
α

σ

( x
σ

)−1−α

e

(
−
(

x
σ

)−α
)

(4)

The cdf of Frechet distribution is

G(x) = e

(
−
(

x
σ

)−α
)

(5)

Mahmoud and Mandouh (2013) introduced the QRT Frechet distribution and
studied its statistical properties. Now using (2) the cdf of cubic rank transmuted
Frechet (CRTF) distribution with parameters µ , σ , λ1 and λ2 takes the form

F(x) = λ1e

(
−
(

x
σ

)−α
)
+(λ2−λ1)

[
e

(
−
(

x
σ

)−α
)]2

+(1−λ2)
[
e

(
−
(

x
σ

)−α
)]3

(6)

and the pdf of CRT Frechet distribution becomes

f (x) =
α

σ

( x
σ

)−1−α

e

(
−
(

x
σ

)−α
)(

λ1 +2(λ2−λ1)e

(
−
(

x
σ

)−α
)
+3(1−λ2)

[
e

(
−
(

x
σ

)−α
)]2)

(7)

Figure 1 shows the pdfs of the CRT Frechet distributions for different λ1 and λ2

values.

It can be seen from the Figure 1, for some special λ1 and λ2 values the distribution
become the bimodal distribution.

The hazard rate function for the CRT Frechet distribution is given by

h(x) =
α

σ

(
x
σ

)−1−α

e

(
−
(

x
σ

)−α
)(

λ1 +2(λ2−λ1)e

(
−
(

x
σ

)−α
)
+3(1−λ2)

[
e

(
−
(

x
σ

)−α
)]2)

1−λ1e

(
−
(

x
σ

)−α
)
+(λ2−λ1)

[
e

(
−
(

x
σ

)−α
)]2

+(1−λ2)
[
e

(
−
(

x
σ

)−α
)]3

(8)

Figure 2 illustrates some of the possible shapes of the hazard function of a CRT
Frechet distribution for selected values of the parameters λ1 and λ2.
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Fig. 1. The pdfs of CRT Frechet distribution, α = 2, σ = 1.

The moments of the proposed distribution can be found easily by using the
following integration

E(Xk) =
∫

xk α

σ

( x
σ

)−1−α

e

(
−
(

x
σ

)−α
)(

λ1 +2(λ2−λ1)e

(
−
(

x
σ

)−α
)
+3(1−λ2)

[
e

(
−
(

x
σ

)−α
)]2)

dx (9)

Taking t =
( x

σ

)−α , we can obtain the general formula of the moments of the
distribution as

E(Xk) = Γ

(
1− k

α

)[
λ1 +(λ2−λ1)21/α +(1−λ2)31/α

]
σ (10)
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Fig. 2. The hazard rate functions of CRT Frechet distribution, α = 2, σ = 1.

For generating random numbers from the distribution, one can use the method of
inversion. After simple calculation this yields

x = σ

{
− ln

[(
q+
(
q2 +(r− p2)3)1/2

)1/3
+
(

q−
(
q2 +(r− p2)3)1/2

)1/3
+ p
]}−1/α

(11)

where p = − λ2−λ1
3(1−λ2)

, q = p3 + λ1(λ2−λ1)+3u(1−λ2)
6(1−λ2)2 , r = λ1

3(1−λ2)
and u is uniformly

distributed random variable.

Suppose X1,X2, ...,Xn are random samples from a CRT Frechet distribution defined
in (7), then the likelihood function is given by

L =
(

α

σ

)n
e

(
−∑

n
i=1

(
xi
σ

)−α
)

n

∏
i=1

(xi

σ

)−1−α n

∏
i=1

(
λ1 +2(λ2−λ1)e

(
−
(

xi
σ

)−α
)

(12)

+3(1−λ2)
[
e

(
−
(

xi
σ

)−α
)]2)
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and the log-likelihood function is

lnL = nln(α)−nln(σ)−
n

∑
i=1

(σ

xi

)α − (1+α)
n

∑
i=1

ln
(xi

σ

)
(13)

+
n

∑
i=1

ln
(

λ1 +2(λ2−λ1)e

(
−
(

σ

xi

)α
)
+3(1−λ2)

[
e

(
−
(

σ

xi

)α
)]2)

By differentiating the log-likelihood function with respect to the unknown
parameters and equating them to zero, we obtain the following likelihood equations.

∂ lnL
∂α

=
n
α
−

n

∑
i=1

(σ

xi

)α ln
(σ

xi

)
+

n

∑
i=1

(σ

xi

)
(14)

+
n

∑
i=1

2(λ2−λ1)e

(
−
(

σ

xi

)α
)(

σ

xi

)α ln
(

σ

xi

)
+3(1−λ2)

[
e

(
−
(

σ

xi

)α
)]2(

σ

xi

)α ln
(

σ

xi

)
(

λ1 +2(λ2−λ1)e

(
−
(

σ

xi

)α
)
+3(1−λ2)

[
e

(
−
(

σ

xi

)α
)]2)

∂ lnL
∂σ

= − n
σ
−

n

∑
i=1

σ

xi

(
σ

xi

)α

+(α +1)
n
σ

+
n

∑
i=1

2(λ2−λ1)e

(
−
(

σ

xi

)α
)

α

(
σ

xi

)α−1 1
xi
+6(1−λ2)[e

(
−
(

σ

xi

)α
)]2

α

(
σ

xi

)α−1 1
xi(

λ1 +2(λ2−λ1)e

(
−
(

σ

xi

)α
)
+3(1−λ2)

[
e

(
−
(

σ

xi

)α
)]2)

∂ lnL
∂λ1

=
n

∑
i=1

1−2e

(
−
(

σ

xi

)α
)

(
λ1 +2(λ2−λ1)e

(
−
(

σ

xi

)α
)
+3(1−λ2)

[
e

(
−
(

σ

xi

)α
)]2)

∂ lnL
∂λ2

=
n

∑
i=1

2e

(
−
(

σ

xi

)α
)
−3[e

(
−
(

σ

xi

)α
)]2

(
λ1 +2(λ2−λ1)e

(
−
(

σ

xi

)α
)
+3(1−λ2)

[
e

(
−
(

σ

xi

)α
)]2)

Solutions of these equations are called ML estimates. However, the equations must
be solved with numerical methods such as Newton Raphson or iteratively reweighting
algorithm.
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3. CUBIC RANK TRANSMUTED GUMBEL DISTRIBUTION

A random variable X is said to have a Gumbel distribution with parameters if its pdf
and cdf is given by

g(x) =
1
σ

e
−
(

x−µ

σ
+e

(
− x−µ

σ

))
(15)

and

G(x) = e

(
−e

(
− x−µ

σ

))
(16)

respectively.

Now using (2) the cdf of cubic rank transmuted Gumbel (CRT Gumble) distribution
with parameters is

F(x) = λ1e

(
−e

(
− x−µ

σ

))
+(λ2−λ1)

[
e

(
−e

(
− x−µ

σ

))]2
+(1−λ2)

[
e

(
−e

(
− x−µ

σ

))]3
(17)

and the pdf of CRT Gumbel distribution takes the form

f (x) =
1
σ

e
−
(

x−µ

σ
+e

(
− x−µ

σ

)){
λ1 +2(λ2−λ1)e

(
−e

(
− x−µ

σ

))
+3(1−λ2)

[
e

(
−e

(
− x−µ

σ

))]2}
(18)

Figure 3 and Figure 4 show the pdfs and the hazard rate functions of the CRT
Gumbel distribution for representative λ values respectively.

The hazard rate function for the distribution is

h(x) =
1
σ

e
−
(

x−µ

σ
+e

(
− x−µ

σ

)){
λ1 +2(λ2−λ1)e

(
−e

(
− x−µ

σ

))
+3(1−λ2)

[
e

(
−e

(
− x−µ

σ

))]2}
1−
{

λ1e

(
−e

(
− x−µ

σ

))
+(λ2−λ1)

[
e

(
−e

(
− x−µ

σ

))]2
+(1−λ2)

[
e

(
−e

(
− x−µ

σ

))]3}
(19)

The moments of CRT Gumbel distribution can be found as
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Fig. 3. The pdfs of CRT Gumbel distribution, µ = 0, σ = 1.

E(Xk) =
∫

∞

0
xk 1

σ
e
−
(

x−µ

σ
+e

(
− x−µ

σ

)){
λ1 +2(λ2−λ1)e

(
−e

(
− x−µ

σ

))
(20)

+3(1−λ2)
[
e

(
−e

(
− x−µ

σ

))]2}
dx

By taking y = exp
(
− x−µ

σ

)
the moments can be obtained like

E(Xk) =
n

∑
i=0

(−1)n
(

n
i

)
σ

i
µ

n−i
[
λ1

∂ i
∂ν i Γ(ν)+2(λ2−λ1)

∂ i
∂ν i (2

−ν
Γ(ν)) (21)

+3(1−λ2)
∂ i

∂ν i (3
−ν

Γ(ν))
]
|ν=1

For generation random numbers the following formula can be used.
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Fig. 4. The hazard rate functions of CRT Gumbel distribution, µ = 0, σ = 1.

x = µ−σ

(
ln
{
− ln

[(
q+
(
q2 +(r− p2)3)1/2

)1/3
+
(

q−
(
q2 +(r− p2)3)1/2

)1/3
+ p
]})

(22)

where p = − λ2−λ1
3(1−λ2)

, q = p3 + λ1(λ2−λ1)+3u(1−λ2)
6(1−λ2)2 , r = λ1

3(1−λ2)
and u is uniformly

distributed random variable.

Now, in order to obtain the ML estimators of the parameters, the likelihood function

L = σ
−ne
−∑

n
i=1

(
xi−µ

σ
+e

(
− xi−µ

σ

))
n

∏
i=1

{
λ1 +2(λ2−λ1)e

(
−e

(
− xi−µ

σ

))
(23)

+3(1−λ2)
[
e

(
−e

(
− xi−µ

σ

))]2}
and the log-likelihood function
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lnL =−nln(σ)−
n

∑
i=1

(xi−µ

σ
+ e
(
− xi−µ

σ

))
+

n

∑
i=1

ln
{

λ1 +2(λ2−λ1)e

(
−e

(
− xi−µ

σ

))
(24)

+3(1−λ2)
[
e

(
−e

(
− xi−µ

σ

))]2}

can be obtained respectively. And the likelihood equations are

∂ lnL
∂ µ

= nµ−
n

∑
i=1

e
−
(

xi−µ

σ

)
(25)

+
n

∑
i=1

2(λ2−λ1)e

(
−e

(
− x−µ

σ

))
e
(
− x−µ

σ

)
+6(1−λ2)

(
e

(
−e

(
− x−µ

σ

)))2
e
(
− x−µ

σ

)
λ1 +2(λ2−λ1)e

(
−e

(
− xi−µ

σ

))
+3(1−λ2)

[
e

(
−e

(
− xi−µ

σ

))]2

∂ lnL
∂σ

= −n+
n

∑
i=1

xi−µ

σ
−

n

∑
i=1

e
−
(

xi−µ

σ

)
xi−µ

σ

+
n

∑
i=1

2(λ2−λ1)e

(
−e

(
− x−µ

σ

))
e
(
− x−µ

σ

)
xi−µ

σ
+6(1−λ2)

(
e

(
−e

(
− x−µ

σ

)))2
e
(
− x−µ

σ

)
xi−µ

σ

λ1 +2(λ2−λ1)e

(
−e

(
− xi−µ

σ

))
+3(1−λ2)

[
e

(
−e

(
− xi−µ

σ

))]2

∂ lnL
∂λ1

=
n

∑
i=1

1−2e

(
−e

(
− x−µ

σ

))
λ1 +2(λ2−λ1)e

(
−e

(
− xi−µ

σ

))
+3(1−λ2)

[
e

(
−e

(
− xi−µ

σ

))]2

∂ lnL
∂λ2

=
n

∑
i=1

2e

(
−e

(
− x−µ

σ

))
−3
[
e

(
−e

(
− x−µ

σ

))]2

λ1 +2(λ2−λ1)e

(
−e

(
− xi−µ

σ

))
+3(1−λ2)

[
e

(
−e

(
− xi−µ

σ

))]2

By equating them to zero and solving the equations the ML estimators of the
unknown parameters can be obtained.

4. CUBIC RANK TRANSMUTED GOMPERTZ DISTRIBUTION

The Gompertz distribution has been widely used in actuarial sciences especially in
calculation of adult deaths. The pdf and the cdf of Gompetz distribution are given

g(x) = αβeαxeβ exp
(
−βeαx

)
(26)
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G(x) = 1− exp
(
−β

(
eαx−1

))
(27)

respectively.

Following the idea of (2), the CRT Gompertz distribution is obtained as follows,

F(x) = λ1

(
1− exp

(
−β

(
eαx−1

)))
+(λ2−λ1)

[
1− exp

(
−β

(
eαx−1

))]2
(28)

+3(1−λ2)
[
1− exp

(
−β

(
eαx−1

))]3

and the corresponding pdf is defined

f (x) = αβeαxeβ exp
(
−βeαx

)[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαx−1

)))
(29)

+3(1−λ2)
[
1− exp

(
−β

(
eαx−1

))]2]
Figure 5 shows different pdfs of CRT Gompertz distribution for plausible

alternatives of λ1 and λ2.

The hazard rate function for the CRT Gombertz distribution is given by

h(x) =
αβeαxeβ e(−βeαx)

[
λ1 +2(λ2−λ1)

(
1− e

(
−β (eαx−1)

))
+3(1−λ2)

[
1− e

(
−β (eαx−1)

)]2]
1−λ1

(
1− e

(
−β (eαx−1)

))
+(λ2−λ1)

[
1− e

(
−β (eαx−1)

)]2
+3(1−λ2)

[
1− e

(
−β (eαx−1)

)]3 (30)

The possible shapes of hazard rate functions can be seen from Figure 6.

The moment generating function of CRT Gombertz distribution is

MX (t) =
∫

∞

0
etx

αβeαxeβ exp
(
−βeαx

)[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαx−1

)))
(31)

+3(1−λ2)
[
1− exp

(
−β

(
eαx−1

))]2]
dx

By taking y = β (eαx−1) and z = y+β

β
then, the mgf of CRT Gombertz distribution

becomes

JAMSI, 14 (2018), No. 2 

 

37 



Fig. 5. The pdfs of CRT Gompertz distribution, α = 1, β = 1.

MX (t) = β
−t/α

λ1eβ
[
Γ

( t
β
+1
)
−

∞

∑
i=0

(−1)iβ t/α+1+i

i!(t/α +1+ i

]
+(2β )−t/α (λ2−λ1)e2β (32)

[
Γ

( t
β
+1
)
−

∞

∑
i=0

(−1)i(2β )t/α+1+i

i!(t/α +1+ i

]
+(3β )−t/α (1−λ2)e3β

[
Γ

( t
β
+1
)
−

∞

∑
i=0

(−1)i(3β )t/α+1+i

i!(t/α +1+ i

]

For generation random numbers from the distribution, one can use the method of
inversion. After simple calculation this yields

x =
1
α

ln
{−ln

[
1+
(

q+
(
q2 +(r− p2)3)1/2

)1/3
+
(

q−
(
q2 +(r− p2)3)1/2

)1/3
+ p
]

β
+1
}

(33)
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Fig. 6. The hazard rate functions of CRT Gompertz distribution, α = 1, β = 1.

where p = − λ2−λ1
3(1−λ2)

, q = p3 + λ1(λ2−λ1)+3u(1−λ2)
6(1−λ2)2 , r = λ1

3(1−λ2)
and u is uniformly

distributed random variable.

Suppose X1,X2, ...,Xn are random samples from a CRT Gompertz distribution
defined in (27), then the likelihood function is given by

L = α
n
β

neα ∑
n
i=1 xi eβne−β ∑

n
i=1 eαxi

n

∏
i=1

[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
(34)

+3(1−λ2)
[
1− exp

(
−β

(
eαxi −1

))]2]
and the log-likelihood function is

lnL = nln(α)+nln(β )+α

n

∑
i=1

xi +βn−β

n

∑
i=1

eαxi +3(1−λ2)
[
1− exp

(
−β

(
eαxi −1

))]2]
(35)

+
n

∑
i=1

ln
[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
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By differentiating the log-likelihood function with respect to the unknown
parameters and equating them to zero, we obtain the following likelihood equations.

∂ lnL
∂α

=
n
α

+
n

∑
i=1

xi−β

n

∑
i=1

xieαxi (36)

+
2(λ2−λ1)βxieαxi

(
e
(
−β (eαxi−1)

))
+6(1−λ2)βxieαxi

(
e
(
−β (eαxi−1)

))(
1− e

(
−β (eαxi−1)

))
[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
+3(1−λ2)

[
1− exp

(
−β

(
eαxi −1

))]2]
∂ lnL
∂β

=
n
β
+n−

n

∑
i=1

eαxi

+
2(λ2−λ1)eαxi

(
e
(
−β (eαxi−1)

))
+6(1−λ2)βxieαxi

(
e
(
−β (eαxi−1)

))(
1− e

(
−β (eαxi−1)

))
[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
+3(1−λ2)

[
1− exp

(
−β

(
eαxi −1

))]2]
∂ lnL
∂λ1

=
n

∑
i=1

1−2
(

1− exp
(
−β

(
eαxi −1

)))
[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
+3(1−λ2)

[
1− exp

(
−β

(
eαxi −1

))]2]
∂ lnL
∂λ2

=
n

∑
i=1

2
(

1− exp
(
−β

(
eαxi −1

)))
−3
[
1− exp

(
−β

(
eαx−1

))]2

[
λ1 +2(λ2−λ1)

(
1− exp

(
−β

(
eαxi −1

)))
+3(1−λ2)

[
1− exp

(
−β

(
eαxi −1

))]2]
Solutions of these equations are called ML estimates. However, the equations must

be solved with numerical methods such as Newton Raphson or iteratively reweighting
algorithm.

5. APPLICATION

In this section, we applied each of the new distribution families to the real data for
demonstrating the behaviour of the distributions. Determining an appropriate model
from a population problem has been widely discussed by several authors. However,
Nelson (1982) suggested that after fitting the general model to the data, then one seeks

to find which special case is suitable. For this reason, we used the data sets taken from
the literature which has been fitted by the original distributions.

5.1. Wind speed data

The data used for the present study were obtained from a yearly published book at
Permerhatian Cuaca Harian Pusat Pengajian Sosial, Pembangunan and Persekitaran
(PPSPP), Fakulti Sains Sosial, Kemanusiaan (FSSK), Universiti Kebangsaan
Malaysia (UKM) during the year 2004 to 2006, Zaharim et al. (2009). This data was
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collected from Malaysia and wind speeds were observed every 10 seconds and
averaged over 5 minutes period. The 5-minutes averaged data were further averaged
over one hour. At the end of each hour, the hourly mean wind speed was calculated
and stored sequentially in a permanent memory.

Elbatal et al. (2014) fit the data into the Frechet (F), Transmuted Frechet (TF) and
Transmuted Exponentiated Frechet (TEF) distributions. We also propose CRT Frechet
(CRTF) distribution and Table (1) shows the comparison results based on the estimated
parameter values.

Table I. Estimated Parameters of Frechet, Transmuted Frechet, Transmuted Exponentiated Frechet and
Cubic Rank Transmuted Frechet Distributions.

Distribution ParameterEstimates Log−Likelihood
β θ α λ1 λ2

F 1.922 1.024 − − − −19.43
T F 2.014 2.581 − 0.746 − −11.44

T EF 1.913 3.481 9.88 0.380 − −6.65
CRT F 1.887 3.041 − 0.591 0.115 −5.97

5.2. Water Quality Data

This water quality data were obtained from the Department of Chemistry, Gauhati
University. Various water quality parameters were estimated for the project entitled
Assessment of Toxic Element in Water of Semi-Under Area of Assam and
Investigation of the Disease Related Contaminants during 2009 for three
administration sub-divisions of Nogaon district of Assam, India. Deka et al (2017)
proposed Transmuted Exponentiated Gumbel (TEG) for this data set and compared
the results with Gumbel (G) and Transmuted Gumbel (TG) distributions. We fit the
data into the CRT Gumbel (CRTG) distribution and the results are given in Table (2).

Table II. Estimated Parameters of Gumbel, Transmuted Gumbel, Transmuted Exponentiated Gumbel and
Cubic Rank Transmuted Gumbel Distributions.

Distribution ParameterEstimates Log−Likelihood
β θ α λ1 λ2

G 1.063 0.769 − − − −40.80
T G 1.001 0.855 − 0.711 − −40.14

T EG 0.259 0.185 0.181 0.530 − −39.70
CRT G 0.715 0.625 − 0.856 0.211 −38.95
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5.3. Failure Data

Abdul-Maniem and Seham (2015) used the data set of the life of fatigue fracture of
Kevlar 373/epoxy that are subject to constant pressure at the 90% stress level until
all had failed. For this data set Gombertz (Go) and Transmuted Gombertz (TGo)
distributions were proposed in this paper. We, now propose CRT Gombertz (CRTGo)
distribution for the failure rate data and the results are shown in Table (3).

Table III. Estimated Parameters of Gombertz, Transmuted Gombertz, Transmuted Exponentiated Gombertz
and Cubic Rank Transmuted Gombertz Distributions.

Distribution ParameterEstimates Log−Likelihood
β θ α λ1 λ2

Go 0.121 3.385 − − − −87.20
T Go 0.187 1.148 − 0.819 − −64.25

T EGo 0.895 3.128 0.521 0.985 − −63.25
CRT Go 0.135 1.568 − 0.851 0.119 −61.13

6. CONCLUSION

In this paper, we introduce some examples of cubic rank transmutation mapping.
Frechet, Gumbel and Gombertz distributions are used as the base distribution. The
properties of these distributions such as the density functions, the medians, hazard
rate functions and the quantile functions are examined. Also, maximum likelihood
estimations are obtained. In the application section of the paper, real data set
examples are used to illustrate better fit than the distributions which have been used
before. For all real data sets introduced distributions provides better fittings than the
corresponding distributions.
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Abstract 

 
There are diverse lifetime models available to the researchers to predict the uncertain behavior of random 

events but at times they fail to provide adequate fit for some complex and new data sets.  New probability 
distributions are emerging as lifetime models to meet this ever growing demand of modeling complex real 

world phenomena from different sciences with better efficiency.  Here, in this manuscript we shall 

compose Ailamujia distribution with that of power series distribution.  This newly developed distribution 
called Ailamujia power series distribution reduces to four new special lifetime models on simple specific 

function parametric setting. Apart from this some important mathematical properties in the form of 

propositions will also be discussed. Furthermore, characterization and some statistical properties that 
include mgf, moments, and parameter estimation have also been discussed.  Finally, the potency of newly 

proposed model has been analyzed statistically and graphically and it has been established from the 
statistical analysis that newly proposed model offers a better fit when it comes to model some lifetime 

data set. 
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1. INTRODUCTION 

Lifetime distributions play an important role in almost every field of science be 

it engineering, industrial, medical or similar biological science. The events of 

interest such as death, appearance of some disease and system failure are of major 

concern for statisticians because of their uncertain behavior. And there are so many 

probability distributions such as exponential, Weibull, gamma and log normal that 

can be used as lifetime models to predict this uncertain behavior of random events 

but due to varying pattern of different data sets, these probability models can not be 

used adequately because of some serious limitations. To overcome these limitations 

researchers have developed many lifetime distributions by using different techniques 

such as compounding, transmutation etc. For instance, Adamidis and Loukas [1], 

Tahmasbi [10] and Morais and Baretto Souza [9] developed several lifetime 

distributions through compounding mechanisms that proved to be very effective in 

modeling the lifetime data having different characteristics. The efforts of Adil and 
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Jan ([2], [3] [4], [5], [6]) got materialized when they obtained many compound 

distributions that exhibited with clinical precision to be superior in comparison to 

existing lifetime models. 

Let us take a series system with N components, where N, the number of 

components is itself a discrete random variable with support N =1,2,…, The lifetime 

of ith component in this set up can be portrayed by any suitable lifetime distribution 

like viz; exponential, gamma, Weibull, Lindley, Ailamujia etc. And N, the discrete 

random variable may have any of the ascribed distribution such as geometric, zero 

truncated Poisson or power series distribution in general. The lifetime for this kind 

of system in series combination will be denoted by  
1

min
N

i

Y
iX

=

= . In this paper we 

will consider the lifetime of ith component to be distributed as Ailamujia distribution 

and the index N itself as powers series distribution. The new lifetime distribution 

that is obtained  by compounding Ailamujia distribution with that of powers series 

distribution will be known as Ailamujia power series distribution. The present paper 

is organized as follows: In section (2) we present the construction of the proposed 

lifetime distribution. Density, survival, hazard rate functions and some of the 

properties of the proposed family are given in section (3). Moment generating 

function of proposed distribution is given in section (4). Order statistics, their 

moments and parameter estimation are discussed in detail respectively in section (5) 

and (6). Special cases that include new lifetime distributions have been given in 

section (7). Finally, real application and conclusion about new findings are 

respectively given in section (8) and (9). 

2. CONSTRUCTION OF THE CLASS 

 Let , 1,2,...,iX i N= be independent and identically distributed (iid) random 

variables following Ailamujia distribution with CDF 

 

( ) )( 2; 1 1 2 (1)xG x x e   −= − +  

Here, the index N is itself a discrete random variable following power series 

distribution that have been truncated at zero with probability function given by 
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where
na depends only on n , ( )

1

n

n

n

C a 


=

= and 0  is such that ( )C  is finite. Table 

1 is very informative and it will be helpful for obtaining the special cases of the 

proposed model on specific function setting. 

 

Table 1: Useful quantities of Some Power Series Distribution 

Distribution na  ( )C   ( )'C   ( )''C   ( )1C −    
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min .
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X X

=
=  The conditional cumulative distribution function of  ( )1

|X N n=  

is given by 
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1 | 1 ( )

n

X N nG x G x=
 = −  

, where ( )G x  is the cdf of Ailamujia distribution 
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The joint probability function is 
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By using the compounding technique, the CDF of newly proposed lifetime 

distribution is 

         ( )
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1 1 2
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The newly proposed distribution will be called Ailamujia power series distribution 

and will be symbolically represented as  APSD ( ); ,X   . 

3. DENSITY, SURVIVAL AND HAZARD RATE FUNCTION 

 Since PDF is essentially a derivative of CDF, therefore probability density 

function of APSD ( ); ,X    can be obtained as 

                 ( )
( )dF x

f x
dx

=  

                           )(
( )

21 2
1

xC x ed

dx C
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and the hazard function is  
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Next, we will explore some important properties of APSD ( ); ,X   through the 

following propositions. 

PROPOSITION 1. The Ailamujia distribution is the limiting case of the APSD

( ); ,X    whenever 0 . +→  

PROOF.  The cumulative distribution function of APSD ( ); ,X    

  
( )

)(
( )

2

0 0

1 2
lim 1 lim , 0
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 + = −   

In view of the fact 
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which is the distribution function of Ailamujia distribution. 

PROPOSITION 2. The densities of APSD ( ); ,X   can be expressed as an 

infinite linear combination of densities of 1st order statistics of Ailamujia distribution
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Where )(
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2 2 2

1( , ) 4 1 2
n

x xg x n n xe x e  
−

− − = +  is the Ist order statistics of Ailamujia 

distribution. Therefore the densities of proposed distribution can be expressed as an 

infinite linear combination of the Ist order statistics of Ailamujia distribution. Hence 

it is obvious that properties of APSD ( ); ,X   can be obtained from the Ist order 

statistics of Ailamujia distribution. 
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4. MOMENT GENERATING FUNCTION 

 In view of the proposition 2, the mgf APSD ( ); ,X   can be obtained as 
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distribution 
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In order to obtain the moments of proposed distribution we again use proposition 2 
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Thus we have 
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5. ORDER STATISTICS AND THEIR MOMENTS 

 We have developed a new lifetime distribution that can be used to model the 

lifetime data where order statistics plays a vital role. In this section we derive 

expressions for pdf and CDF of ith order statistics of proposed distribution. 

   Let 
1 2, ,..., nX X X  be a random sample from APSD and 

1: 2: 1:, ,...,n n nX X X denote the 

corresponding order statistics. The pdf of ith order statistics say 
:i nX  is given by 
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Expression (6) can be equivalently written as        
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In view of the fact   
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The associated CDF of :i nf ( )x denoted by 
:: ( )i nF x becomes 
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The expression for thr moment of thi  order statistics  
1: ,.... :n n nX X  with CDF (7) can be 

obtained by exploiting a well-known result due to Barakat and Abdelkadir [7] as 

follows 
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where ( )S x  is the survival  function of Ailamujia distribution. Therefore we have 
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where 1,2,3...r = and 1,2,...,i n= . 

 

6. PARAMETER ESTIMATIONS 

 The log-likelihood function of the proposed model with unknown parameter 

vector ( , )T  =  is given by 
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The maximum likelihood estimate of   say ̂  is obtained by solving the non-linear 

system of equations ( ) , 0

T

n n
n

l l
U

 

   
 = = 

  
. The solution of this non-linear system of 

equations can be found numerically by using software such as R.  

 

7. CONSEQUENCES OF PROPOSED MODEL 

 In this section we will study some important consequences of proposed model 

in the form of some special cases. The graphical behavior these sub models will also 

be discussed to show the flexibility in terms of hazard and density function. 

7.1. Ailamujia Poisson Distribution (APD) 

 Here, we frequently exploit the use of table 1, in which it is clear that classical 

distributions are embodied in PSD on specific function setting. For instance, Poisson 
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distribution is a special case of power series distribution for ( ) 1C e = − and

( ) .C e =  Therefore, cdf and pdf of a compound of APD  is                            
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for , 0, 0x      respectively.  

7.2. Ailamujia Logarithmic Distribution (ALD): 

 Again from table 1, Logarithmic distribution is a special case of PSD when 

( ) log (1 )C  =− − and 1( ) (1 )C   − = − . The cdf of ALD is 
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The associated pdf, survival and hazard rate function   is
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for , 0x   and 0 1  respectively.  

7.3. Ailamujia Geometric Distribution (AGD) 

 We observe from the table 1 that Geometric distribution is a particular case of 

PSD when 1( ) (1 )C    −= − and 2( ) (1 )C   − = − . Therefore, cdf of AGD is  
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The associated pdf, survival and hazard rate function   is
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for , ,0 1x    respectively.  

7.4. Ailamujia Binomial Distribution (ABD) 

 Binomial distribution is a particular case of PSD for ( ) ( 1) 1mC  = + − and a 

compound of Ailamujia binomial distribution (ABD) is followed from (2) by using

( ) ( 1) 1mC  = + − . This may be noted here that these sub models are new lifetime 

distributions that have been obtained on specific parameter setting in ALPSD. 

 

 

 

 

 

 

 

Fig. 1-3. These graphs show the flexibility of APD, ALD and AGD models  

for randomly selected values of parameters 

 

8. APPLICATION 

In this section, we will expose and compare the potentiality of proposed model 

on a real life data set based on Lifetime of fatigue fracture of Kevlar 373/epoxy [8], 

that are subject to constant pressure at the 90% stress level until all had failed. The 

data set is 
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0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.565 0.5671 0.6566 0.6748 

0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 0.8851 0.9113 0.912 0.9836 

1.0483 1.0596 1.0773 1.1733 1.257 1.2766 1.2985 1.3211 1.3503 1.3551 1.4595 

1.488 1.5728 1.5733 1.7083 1.7263 1.746 1.763 1.7746 1.8275 1.8375 1.8503 

1.8808 1.8878 1.8881 1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.133 2.21 

2.246 2.2878 2.3203 2.347 2.3513 2.4951 2.526 2.9911 3.0256 3.2678 3.4045 

3.4846 3.7433 3.7455 3.9143 4.8073 5.4005 5.4435 5.5295 6.5541 9.096  

 

 

Table 2: Analysis of model fitting 

 

MODEL 

 

MLE 

 

AIC 

 

BIC 

LG ˆ ˆ 0.41, 0.38 = =  249.52 252.58 

LP ˆ ˆ0.25, 3.58 = =  248.68 251.73 

LL ˆ ˆ 0.44, 0.51 = =  249.70 252.75 
 

 

 
Fig 4. Fitting of AGD, APD, ALD to the fatigue lifetime data 
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9. CONCLUSION 

 We have developed  a new class of compound lifetime distributions that has 

been named as Ailamujia power series distribution. Furthermore, we also discussed 

some special cases of this class of distributions that are very flexible in terms of 

density and hazard rate functions. Mathematical properties such as moments, order 

statistics and parameter estimation through MLE of the proposed class has also been 

discussed. Finally the potentiality of proposed model has been explored in lifetime 

data analysis. It is very clear from statistical analysis that proposed model performs 

well which is also corroborated by graphical analysis. So, we strongly recommend 

practitioners to use one of our models in order to get effective results when it comes 

to fit lifetime data.   

 The future course of work will be on a generalized version of Ailamujia power 

series distribution. 
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