
Computing and Informatics, Vol. 40, 2021, 469–488, doi: 10.31577/cai 2021 3 469

CONCEPT SIMILARITY IN FORMAL CONCEPT
ANALYSIS WITH MANY-VALUED CONTEXTS

Anna Formica

Istituto di Analisi dei Sistemi ed Informatica (IASI)
National Research Council
Via dei Taurini 19, I-00185, Rome, Italy
e-mail: anna.formica@iasi.cnr.it

Abstract. Formal Concept Analysis (FCA) is a mathematical framework which
can also support critical activities for the development of the Semantic Web. One
of them is represented by Similarity Reasoning, i.e., the identification of different
concepts that are semantically close, that allows users to retrieve information on the
Web more efficiently. In order to model uncertainty information, in this paper FCA
with many-valued contexts is addressed, where attribute values are intervals, which
is referred to as FCA with Interordinal scaling (IFCA). In particular, a method for
evaluating concept similarity in IFCA is proposed, which is a problem that has not
been adequately investigated, although the increasing interest in the literature in
this topic.

Keywords: Formal concept analysis, similarity reasoning, many-valued contexts,
FCA with interordinal scaling

1 INTRODUCTION

Formal Concept Analysis (FCA) is a formal framework based on lattice theory which
is commonly used for data analysis [15, 28]. In the basic setting, FCA attributes
are crisp, i.e., any object either has or does not have an attribute of a given context.
This is the case of the so-called one-valued contexts. However, in real life most of at-
tributes are fuzzy rather than crisp, i.e., “it is a matter of degree to which an object
has a (fuzzy) attribute” [2]. In other words, an object may have different attributes
with different values, and an attribute may apply to different objects with differ-
ent values. This is the case of many-valued contexts [15]. Fuzzy Formal Concept

https://doi.org/10.31577/cai_2021_3_469

470 A. Formica

Analysis (FFCA) is a generalization of FCA which provides a formal framework for
structuring, analyzing and visualizing data in the presence of uncertainty informa-
tion [32]. In particular, in FFCA contexts are many-valued, and the attribute values
are real numbers in the range [0, 1]. In this paper, this kind of FCA is referred to
as OFCA, in line with the notion of FCA with Ordinal scaling defined in [15].

Regarding the notion of fuzzy sets [7], Type-1 Fuzzy Sets (T1 FSs) and Type-2
Fuzzy Sets (T2 FSs) were both introduced by Zadeh, the former in 1965 in the semi-
nal paper [36], and the latter in 1975 in [37]. T2 FSs provide a way to overcome one
of the early objections made about T1 FSs, i.e., that “it sounds contradictory for
something that is fuzzy to have a perfectly defined membership function” [26]. In
this paper we focus on Interval Type-2 FSs (IT2 FSs) [22], which represent a simpli-
fication about T2 FSs that is receiving much attention in the literature in different
research areas, with different purposes, as for instance in [1, 8] just to mention
a couple of examples.

Similarity Reasoning, i.e., the identification of syntactically different concepts
that are semantically close, is fundamental in several research areas such as Cognitive
Science, Artificial Intelligence, Software Engineering, and in the Semantic Web [4,
17]. Concept similarity in the framework of FCA with Interordinal scaling (IFCA),
i.e., in many-valued contexts where attribute values are intervals, is a problem that
has been marginally investigated in the literature, despite of an increasing interest
in this topic.

In this paper, a concept similarity measure for IFCA is proposed which is novel
because it combines the IT2 FS framework, with regard to concept extents, and the
information content approach [23], with regard to concept intents. The latter has
been extensively investigated and experimented in the literature, and has a higher
correlation with human judgment with respect to the traditional approaches. In
particular, this paper is a short and revised version of the results presented in [14].
Furthermore, in this work both the basic notions and the overall approach are pre-
sented informally, by providing simple examples, in order to reach a broad audience
of readers, and not only specialists working in the area.

The paper is organized as follows. In the next section, the Related Work is
given, and in Section 3 the basic notions related to FCA and IFCA are recalled.
In Section 4 the notion of IFCA concept similarity is presented. In particular, first
the similarity between IT2 FSs is recalled and, successively, the information content
similarity is addressed. Then, they are combined in order to define the similarity
between IFCA concepts. Finally, in Section 5 an evaluation of the method is given,
and Section 6 concludes.

2 RELATED WORK

FCA techniques and tools have been employed in different research fields, such as,
Information Retrieval, e-Learning, Expert Systems, etc., and in the development of
the Semantic Web [32]. Similarity reasoning is fundamental in several research areas

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 471

such as Cognitive Science, Artificial Intelligence, Software Engineering and, recently,
also in the Semantic Web [13]. In the development of the Semantic Web, similarity
reasoning supports all the activities that, in general, require human interaction
(which are time-consuming and error-prone), such as web service discovery, query
refinement techniques for search engines, extractions of patterns and trends in web
users behaviors, etc. Therefore, the similarity method proposed in this paper can
be employed in all the research fields that can benefit from the combination of FCA
techniques and similarity reasoning.

Some research challenges about the contribution of FCA in the Semantic Web
development are illustrated in [18], and concern the automatic or semi-automatic
generation of ontologies (ontology engineering), and the critical problem of identi-
fying the overlapping knowledge in a common domain (also referred to as ontology
mapping, merging, integration, or alignment). In particular, due to the presence in
the web of large and specialized ontologies, FCA has been employed for more than
one decade for reusing and combining independently developed domain ontologies,
see for instance [31].

FCA concept similarity has been addressed in [10], by relying on human domain
expertise, and in [11, 33], according to the information content approach, but in
both cases within one-valued contexts. Many-valued contexts have been addressed
in [13], but in the case of FCA with Ordinal scaling (OFCA). Therefore, in both
the mentioned papers, IT2 FSs have not been addressed and a similarity measure
has been proposed, based on T1 FSs, which has been experimented and compared
with the relevant similarity measures proposed in the literature. It has been used
as a basis for the definition of the similarity measure proposed in this paper for
FCA with Interordinal scaling (IFCA), as illustrated in the next sections. Note that
in [3] and [12] different problems related to OFCA have been addressed, by relying
on Rough Set Theory.

With regard to IFCA, a formal framework, referred to as L-Fuzzy concept theory,
has been defined in [5] which is probably the first research paper providing a theo-
retical foundation about it. Successively, some interesting works have been defined
in the literature which have investigated and deepened the mathematics underlying
specific aspects of IFCA, as for instance [6].

In [30] the need for IT2 fuzzy analytical systems for the development of the
Semantic Web is emphasized, and a similarity measure for IFCA is proposed. It is
based on the similarity measure for IT2 FSs defined in [35], the approach presented
in [11], and relies on the experimental results given in [13]. In Section 5, a discussion
about the evaluation of the proposed method is given.

As mentioned, the proposed T2ConSim combines the similarity of the con-
cept extents and the concept intents. Concept extents are evaluated according to
IT2FSim, which is the widely accepted crisp similarity measure for IT2 FSs defined
in [35]. It is used in most applications of general T2 FSs due to the simpler underly-
ing mathematics. Such a notion has been adopted here because it allows a relevant
simplification about the definition of similarity between general T2 FSs, in line with
the scope of this paper which is intended for non-specialist readers.

472 A. Formica

3 FCA WITH MANY-VALUED CONTEXTS

In this section the basic notions related to Formal Concept Analysis (FCA) are
briefly recalled. In order to illustrate them, the context named Sardinia Hotels
presented in [14] is used, which also allows us to introduce, in the next section, the
notions underlying IFCA in an intuitive way.

In FCA [15], a one-valued context (context for short) is a triple (O,A,R), where
O is a set of objects, A is a set of attributes, and R is a binary relation between O
and A. In the Sardinia Hotels context mentioned below, the set O is defined by the
following six objects representing six different hotels:

O = {H1, H2, H3, H4, H5, H6},

and the set A is defined by the three following attributes:

A = {SwPool , Sea,Meal}

where SwPool stands for swimming pool. Furthermore, the relation R among hotels
and attributes is defined by Table 1.

A concept of the Sardinia Hotels context is, for instance, the pair (E, I) where
E is a set of objects, referred to as concept extent, and I is a set of attributes,
referred to as concept intent, defined as follows:

((H1, H3, H5), (Sea,Meal))

since the objects H1, H3, and H5 have both the attributes Sea and Meal, and vice
versa, both these attributes apply to the objects H1, H3, and H5.

Intuitively, we can say that concepts correspond to maximal rectangles of crosses
in the context, after appropriate permutations of rows and columns. It is possible
to establish an inheritance relation (≤) between concepts of a context, say (E1, I1),
(E2, I2), as follows:

(E1, I1) ≤ (E2, I2) iff E1 ⊆ E2(iff I2 ⊆ I1).

In particular, (E1, I1) is called subconcept of (E2, I2) and (E2, I2) is called supercon-
cept of (E1, I1). For instance, the concept ((H1, H2, H3, H5), (Meal)) is a super-
concept of the previous one, i.e.:

((H1, H3, H5), (Sea,Meal)) ≤ ((H1, H2, H3, H5), (Meal))

and, vice versa, the former concept is a subconcept of the latter.
Given a context (O,A,R), consider the set of all the concepts of this context,

indicated as L(O,A,R). Then:

(L(O,A,R),≤)

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 473

SwPool Sea Meal

H1 × ×
H2 × ×
H3 × ×
H4 × ×
H5 × ×
H6 × ×

Table 1. The FCA Sardinia Hotels context

Figure 1. Concept Lattice of the Sardinia Hotels context [14]

is a complete lattice called Formal Concept Lattice (Concept Lattice for short),
i.e., for each subset of concepts, the greatest lower bound (the greatest common
subconcept) and the least upper bound (the least common superconcept) exist. For
instance, the Concept Lattice constructed from the context of Table 1 is shown
in Figure 1. Note that the Concept Lattice has two special nodes, the maximum
and minimum nodes, grouping all the objects and the attributes of the context,
respectively. The number of objects in the concept extent (the cardinality) is also
referred to as the support the concept [19], therefore the concept corresponding to
the maximum node has maximum support.

3.1 From One- to Many-Valued Contexts

In a one-valued context an attribute is a property that an object may have or may
not have. For instance, according to the one-valued context Sardinia Hotels above,
each of the attributes SwPool , Sea, and Meal applies or does not apply to each of the
hotel objects. However, in real world, an attribute may apply to different objects
with different values, i.e., it can be many-valued.

474 A. Formica

In FCA, a many-valued context is a quadruple (O,A, V,R), where O is a set of
objects, A is a set of many-valued attributes, V is a set of attribute values, and R is
a ternary relation among O, A, and V such that:

(o, a, v) ∈ R and (o, a, w) ∈ R ⇒ v = w

where (o, a, v) ∈ R can be read as “the attribute a has the value v for the object o”.
Note that (O,A, V,R) is referred to as one-valued context if V has one element [15].

Analogously to one-valued contexts, many-valued contexts can be represented
by tables, where rows are labeled by objects and columns are labeled by attributes.
Many-valued contexts can be transformed into one-valued contexts according to
a conceptual scaling process [15]. In particular, in this process, each attribute of
a many-valued context is interpreted by means of a context, referred to as conceptual
scale (for details about the transformation process of a many-valued context into
a one-valued context see [15]). Typical conceptual scales are Nominal, Ordinal, and
Interordinal scales. Nominal scales are used for attribute values which mutually
exclude each other, for instance in the case of the attribute values {human, animal,
plant}. Ordinal scales are suitable when attribute values are ordered, and each value
implies the weaker ones, e.g., {extremely active, very active, active}. Interordinal
scales are used for attributes which have a range of possible values (intervals), e.g.,
{fully, very much, very few, not at all}. In the next subsection we focus on FCA
with Interordinal scaling.

3.1.1 FCA with Interordinal Scaling

As mentioned above, in many-valued contexts attributes do not describe objects
in a uniform way, i.e., a given attribute applies to different objects in different
ways. For instance, in the Sardinia Hotels context above, consider the attribute
Meal. In general, when reserving an hotel, we would like to know whether the hotel
provides both lunch and dinner, or half-board. Without the introduction of fuzzy
information, we have no way to specify how appropriate is an attribute to a given
object.

In order to deal with fuzzy contexts, we need to recall the following defini-
tions.

A Type-1 Fuzzy Set (T1 FS) A (also called fuzzy set) in a space of points X is
characterized by a membership function µA(x) which associates each point x in X
with a real number in the interval [0, 1] representing the grade of membership of x
in A [36]. Note that for an ordinary set, the membership function can take only the
values 1 and 0, depending on x does or does not belong to A, respectively.

For instance, the following set A:

A = ((H1, 1.0), (H2, 0.5), (H3, 0.5), (H5, 1.0))

is a T1 FS in the space of point X = {H1, H2, H3, H5}.

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 475

An Interval Type-2 Fuzzy Sets (IT2 FS) Ã in a space of points X is character-
ized by two membership functions, an upper membership function µ̄Ã and a lower
membership function µ

Ã
which are both T1 FSs, such that each point x in X is

associated with an interval [µ
Ã
(x), µ̄Ã(x)] representing the grade of membership of

x in Ã [34].

For instance, the following set Ã:

Ã = ((H2, [0.6, 0.7]), (H4, [0.6, 0.8]), (H5, [0.4, 0.9]))

is a IT2 FS in the space of point X = {H2, H4, H5}.
In this subsection we address FCA contexts where grades of memberships are

intervals, and in particular words. Indeed, words are closer to human judgment
when we need to quantify “how much” an object is described by an attribute or,
vice versa, an attribute applies to an object [5, 30]. Possible words representing
grades of membership are:

{Fully ,Very Much,Very ,Few ,Very Few ,Not at all}.

For instance, consider the many-valued context Sardinia Hotels which is specified
by the fuzzy relation given in Table 2 where crosses in Table 1 have been replaced
by words, each allowing us to specify “how much” an object has, or is described by,
an attribute, and vice versa an attribute applies to an object.

Consider for instance the hotel H2 in Table 2. It has the attribute SwPool
with grade of membership Fully, which means that such an attribute fully applies
to the hotel H2 (and vice versa the hotel H2 can be properly described by the
attribute SwPool). Instead, the object H2 has the attribute Meal with a member-
ship value Very, which means that such an attribute partially applies to this hotel
(for instance it could provide meals just for lunch). In order to address only ob-
jects related to attributes with relevant grades of membership, a threshold is fixed
such that the pairs with membership values under the threshold are ignored. For
instance, assume that in the Sardinia Hotels context the intervals Very Few and
Not at all are below the threshold. With this assumption, the pair (H5, Sea) is
ignored.

For instance, consider the IFCA context for the Sardinia Hotels shown in Table 2.

SwPool Sea Meal

H1 Fully Fully

H2 Fully Very

H3 Very much Very

H4 Fully Fully

H5 Very Few Fully

H6 Fully Very much

Table 2. The IFCA Sardinia Hotels context, by using words

476 A. Formica

In order to elaborate such grades of membership, words are replaced by intervals
(IT2 FS grades of membership). The association of words with intervals is a problem
which has been extensively investigated in the literature and is still attracting a lot
of attention [25], [27]. A simple association of words with intervals is shown in
Table 3. Therefore, the context of Table 2 becomes the IFCA context shown in
Table 4.

Not at all [0.0, 0.1]

Very few [0.1, 0.3]

Few [0.3, 0.5]

Very [0.5, 0.7]

Very much [0.7, 0.9]

Fully [0.9, 1.0]

Table 3. Mapping words to intervals

SwPool Sea Meal

H1 [0.9, 1.0] [0.9, 1.0]

H2 [0.9, 1.0] [0.5, 0.7]

H3 [0.7, 0.9] [0.5, 0.7]

H4 [0.9, 1.0] [0.9, 1.0]

H5 [0.1, 0.3] [0.9, 1.0]

H6 [0.9, 1.0] [0.7, 0.9]

Table 4. The IFCA Sardinia Hotels context

In IFCA, Concept Lattices are defined similarly to FCA Concept Lattices. For
instance, the IFCA Concept Lattice constructed from the context of Table 4 is
shown in Figure 2. In IFCA an object of a concept is associated with an interval,
standing for the related grade of membership. In the case two or more attributes
apply to an object with different grades of membership (i.e., different intervals) the
object is associated with the interval having, as lower bound and upper bound,
the minimum between the lower bounds and the upper bounds, respectively. For
instance, consider again the concept involving the attributes Sea and Meal, which
in this case is defined as follows:

(((H1, [0.9, 1.0]), (H3, [0.5, 0.7])), (Sea,Meal))

since, as mentioned above, the pair ((H5,[0.1,0.3]), Sea) is not considered because
under the threshold. According to the context shown in Table 4, Sea andMeal apply
to H3 with different intervals, that are [0.7, 0.9] and [0.5, 0.7], respectively. Since
0.5 is the minimum between their lower bounds, and 0.7 is the minimum between
their upper bounds, in the concept above the object H3 has been associated with
the interval [0.5, 0.7]. Indeed this interval represents the highest common grade of

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 477

membership that allows H3 to be described by both the attributes Sea and Meal
(and, vice versa, both the attributes Sea and Meal to be applied to H3).

In the following section, the similarity between concepts in IFCA is addressed.

TOP

BOTTOM

SwPool
H2,[0.9,1.0] H4,[0.9,1.0]
H6,[0.9,1.0]

Sea, SwPool
H4,[0.9,1.0], H6,[0.7,0.9]

Meal, SwPool
H2,[0.5,0.7]

Sea
H1,[0.9,1.0], H3,[0.7,0.9],
H4,[0.9,1.0], H6,[0.7,0.9]

Meal
H1,[0.9,1.0], H2,[0.5,0.7],
H3,[0.5,0.7], H5,[0.9,1.0]

Meal, Sea
H1,[0.9,1.0], H3,[0.5,0.7]

Figure 2. Concept Lattice of the IFCA Sardinia Hotels context [14]

4 IFCA CONCEPT SIMILARITY

In this section IFCA concept similarity is computed by combining the similarity of
concept extents, i.e., the IT2 FSs of objects, and the similarity of concept intents,
i.e., the sets of attributes.

4.1 Concept Extent Similarity

With regard to the similarity of concept extents, we need to recall a few basic notions
about IT2 FSs. Note that in the literature, the notions of similarity between T2
FSs have been proposed by several authors, and are based on different underlying
definitions (as for instance the notion of cardinality) [16, 34]. Below we focus on
the definitions that are the most frequently used in the literature, which require
a simpler mathematics with respect to the others.

4.1.1 Similarity Between IT2 FSs

In this subsection, the notions of cardinality and average cardinality of an IT2 FS
are recalled [16]. To this end, we first need to remind that the cardinality of a T1
FS A in a space of points X, also referred to as power of the T1 FS A, and denoted

478 A. Formica

as p(A), is given by the sum of all membership grades, i.e.:

p(A) = p(µA(x)) =
N∑
i=1

µA(xi). (1)

For instance, the cardinality of the set A:

A = ((H1, 1.0), (H2, 0.5), (H3, 0.5), (H5, 1.0))

is:
p(A) = 1.0 + 0.5 + 0.5 + 1.0 = 3.0.

Given an IT2 FS Ã, the cardinality of Ã, denoted as P (Ã), is an interval defined
as follows:

P (Ã) = [p(µ
Ã
(x)), p(µ̄Ã(x))] (2)

where p(µ
Ã
), and p(µ̄Ã) are the cardinalities of the lower and upper membership

functions, respectively, which are T1 FSs. The average cardinality of an IT2 FS
Ã, indicated as AC(Ã), is defined as the average of its minimum and maximum
cardinalities, i.e.:

AC(Ã) =
p(µ

Ã
(x)) + p(µ̄Ã(x))

2
. (3)

For instance, consider the IT2 FS Ã:

Ã = ((H2, [0.6, 0.7]), (H4, [0.6, 0.8]), (H5, [0.4, 0.9])).

The cardinality of Ã, P (Ã), is the interval having as lower and upper bounds the
sums of the grades of the lower and upper membership functions, respectively, there-
fore:

P (Ã) = [1.6, 2.4]

because:
p(µ

Ã
) = 0.6 + 0.6 + 0.4 = 1.6

and:
p(µ̄Ã) = 0.7 + 0.8 + 0.9 = 2.4.

Then, the average cardinality AC(Ã) is the following:

AC(Ã) = (1.6 + 2.4)/2 = 2.

Let us now address the intersection and union of IT2 FSs. The intersection,
Ã ∩ B̃, and union, Ã ∪ B̃, of the IT2 FSs Ã and B̃ are both IT2 FSs. In particular,
the membership grades of an element x are intervals defined, respectively, according
to the lower and upper membership functions as follows:

Ã ∩ B̃(x) = [min(µ
Ã
(xi), (µB̃

(xi)),min(µ̄Ã(xi), (µ̄B̃(xi))], (4)

Ã ∪ B̃(x) = [max(µ
Ã
(xi), (µB̃

(xi)),max(µ̄Ã(xi), (µ̄B̃(xi))]. (5)

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 479

On the basis of these notions, we are now able to recall the similarity between
IT2 FSs. In particular, we follow the crisp similarity measure proposed by [35], here
referred to as IT2FSim, which is defined below:

IT2FSim(Ã, B̃) =
AC(Ã ∩ B̃)

AC(Ã ∪ B̃)
(6)

and, therefore:

IT2FSim(Ã, B̃) =

∑N
i=1min(µ̄Ã(xi), (µ̄B̃(xi)) +

∑N
i=1min(µ

Ã
(xi), (µB̃

(xi))∑N
i=1 max(µ̄Ã(xi), (µ̄B̃(xi)) +

∑N
i=1max(µ

Ã
(xi), (µB̃

(xi))
. (7)

For instance, consider the previous set Ã, and the set B̃ below:

B̃ = ((H1, [0.4, 0.9]), (H2, [0.7, 0.8]), (H5, [0.3, 1.0])).

Then:

Ã ∩ B̃ = ((H2, [0.6, 0.7]), (H5, [0.3, 0.9])),

AC(Ã ∩ B̃) = ((0.6 + 0.3) + (0.7 + 0.9))/2 = 1.25.

and:

Ã ∪ B̃ = ((H1, [0.4, 0.9]), (H2, [0.7, 0.8]), (H4, [0.6, 0.8]), (H5, [0.4, 1.0])),

AC(Ã ∪ B̃) = ((0.4 + 0.7 + 0.6 + 0.4) + (0.9 + 0.8 + 0.8 + 1))/2 = 2.8.

Therefore:

IT2FSim(Ã, B̃) =
AC(Ã ∩ B̃)

AC(Ã ∪ B̃)
=

1.25

2.8
= 0.45,

which is a crisp measure of the similarity between the IT2 FSs Ã, and B̃. Such
a measure is used in order to evaluate the similarity of concept extents in IT2 Fuzzy
Concept Lattices.

4.2 Concept Intent Similarity

In order to address the similarity of concept intents, we need to briefly recall the
notion of information content similarity. It is based on the well-known notion of
information content, which has been extensively investigated in the literature [23].

4.2.1 Information Content Similarity

Let us consider a lexical database for the English language as, for instance, Word-
Net [9]. Besides English concept nouns, WordNet contains verbs, adjectives and

480 A. Formica

adverbs, each associated with the related natural language definition and frequency.
Frequencies are estimated using noun frequencies from large text corpora, as for
instance the Brown Corpus of American English. Concept nouns are organized ac-
cording to the ISA and PartOf relationships, and for each concept noun, a set of
synonyms is given. In order to deal with the information content approach, below
we focus on (fragments of) WordNet ISA hierarchies and, for the sake of simplicity,
without addressing sets of synonyms. The probability of a concept noun c, p(c), is
defined as:

p(c) =
freq(c)

M
(8)

where freq(c) is the frequency of c from a text corpus, and M is the total number
of observed instances of nouns in the corpus. In this paper probabilities have been
assigned according to the SemCor project, which labels subsections of the Brown
Corpus to senses in the WordNet lexicon. In Figure 3, the simple fragment of ISA
hierarchy presented in [13] is recalled, where each concept is associated with the
related probability.

Top (1)

.....

...

Water (0.00248)

Lake (0.00003) Stream (0.00023)

Beach (0.00016)

Sea (0.00043)

Figure 3. A fragment of ISA hierarchy from WordNet [13]

The information content of a concept noun c is defined as − log p(c), that is, as
the probability of a concept noun increases, the informativeness decreases, therefore
the more abstract a concept noun, the lower its information content. The similarity
between hierarchically organized concept nouns is given by the maximum informa-
tion content shared by the concepts, that is, the more information two concepts
share, the more similar they are. Given a hierarchy of concept nouns organized
according to a tree (also referred to as taxonomy), consider two concept nouns
of this hierarchy, say c1, c2. Then, the maximum information content shared by
c1, c2 in the taxonomy is provided by the superconcept of c1, c2 whose informa-
tion content is maximum, i.e., the least common superconcept (lcs). In this paper
we focus on concept hierarchies which are trees, therefore the lcs of two concept
nouns always exists. Starting from these assumptions, the information content sim-
ilarity (ics) of two concept nouns is defined by the maximum information content
shared by the concepts divided by the information contents of the comparing con-
cepts [23].

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 481

For instance, in the case of Lake and Sea, Water is their lcs in the hierarchy,
and therefore:

ics(Lake, Sea) =
2 log p(Water)

log p(Lake) + log p(Sea)
=

2 · 8.66
14.85 + 11.18

= 0.67.

Below, the ics is used in order to compute the similarity between sets of concept
nouns, i.e., between concept intents.

4.2.2 Similarity Between Sets of Attributes

In the following, since concept intents are defined by sets of attributes, we refer to
attributes rather than concept nouns. The comparison between concept intents is
performed according to the Hungarian algorithm in polynomial time [21]. Informally,
given a lexical database for the English language, consider two sets of attributes,
say I1, I2, defined in the lexical database. Let a candidate set of pairs be a subset
of I1 × I2 such that there are no two pairs in the set sharing an element. For
instance, assume that I1 and I2 represent a set of boys and a set of girls, respectively,
a candidate set of pairs defines a possible set of marriages (when polygamy is not
allowed). Within all possible candidate sets of pairs, consider (one of) the set(s)
such that the sum of the information content similarity (ics) of the pairs is maximal
(maximum weighted matching problem in bipartite graphs [11]). Such a sum is
indicated asM(I1, I2). Then, the similarity between the sets of attributes I1, and I2,
ASim(I1, I2) is defined as follows:

ASim(I1, I2) =
M(I1, I2)

n
(9)

where n is the greatest between the cardinalities of I1, and I2.
For instance in our running example, assume I1 = {SwPool , Sea}, and I2 =

{SwPool ,Lake}. In this simple case, within the two possible sets of pairs of attributes
that can be formed with I1 and I2 as described above, the set of pairs with maximal
sum is the following:

{(SwPool , SwPool), (Sea,Lake)},

because, of course, ics(SwPool , SwPool) = 1, and ics(Sea,Lake) = 0.67. Therefore:

M((SwPool , Sea), (SwPool ,Lake)) = 1.67,

whereas the other possible set of pairs:

{(SwPool ,Lake), (Sea, SwPool)}

leads to a null value (the ics of both the pairs are null because, according to the
ISA hierarchy of Figure 3, SwPool does not share any information content neither

482 A. Formica

with Lake, nor with Sea). As a result:

ASim(I1, I2) =
M(I1, I2)

2
= 0.84.

Now we are able to evaluate the similarity between IFCA concepts, on the basis
of the similarity of concept extents and the similarity of concept intents defined
above.

4.3 Similarity Between IFCA Concepts

In this section, the notion of similarity between IFCA concepts, referred to as
T2ConSim, is presented. It is essentially given by the weighted average between
the similarity of the concept extents and the similarity of concept intents above.
Formally, given two concepts of an IFCA Concept Lattice, namely C1 = (Ẽ1, I1),
and C2 = (Ẽ2, I2), their similarity T2ConSim(C1, C2) is defined as follows:

T2ConSim(C1, C2) = IT2FSim(Ẽ1, Ẽ2) · w + ASim(I1, I2) · (1− w) (10)

where IT2FSim is the similarity between the IT2 FSs Ẽ1, Ẽ2, ASim(I1, I2) is the
similarity between the sets of attributes I1, and I2, and w is a weight, 0 ≤ w ≤ 1,
defined by domain experts depending on the characteristics of the application do-
main. In the case of very small values of w, concept similarity is evaluated by
taking into account mainly the concept intents, i.e., the sets of attributes associated
with the objects of the application domain whereas, in the opposite case, values of
w very close to 1 mean that the computation of similarity is performed by focus-
ing on the specific objects of the application domain, rather than their intensional
descriptions.

For instance, in our running example assume w = 1
2
, and consider the concept:

C1 = (((H4, [0.9, 1.0]), (H6, [0.7, 0.9])), (SwPool , Sea))

of the Concept Lattice of Figure 2. Furthermore, consider the concept C2 below,
defined as follows:

C2 = (((H2, [0.8, 1.0]), (H4, [0.7, 0.9]), (H7, [0.6, 0.8])), (SwPool ,Lake))

and suppose C2 belongs to a different context (it contains the object H7 and the
attribute Lake which do not belong to the context Sardinia Hotels). The similarity
between C1 and C2 is computed as follows:

IT2FSim(Ẽ1, Ẽ2) =
AC(Ẽ1 ∩ Ẽ2)

AC(Ẽ1 ∪ Ẽ2)
=

0.8

3.35
= 0.24

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 483

because:

Ẽ1 ∩ Ẽ2 = (H4, [0.7, 0.9]),

AC(Ẽ1 ∩ Ẽ2) = (0.7 + 0.9)/2 = 0.8,

Ẽ1 ∪ Ẽ2 = ((H2, [0.8, 1.0])(H4, [0.9, 1.0]), (H6, [0.7, 0.9]), (H7, [0.6, 0.8])),

AC(Ẽ1 ∪ Ẽ2) = ((0.8 + 0.9 + 0.7 + 0.6) + (1.0 + 1.0 + 0.9 + 0.8))/2 = 3.35.

We have seen that:

ASim(I1, I2) = M((SwPool , Sea), (SwPool ,Lake))/2 = 0.84.

Therefore:

T2ConSim(C1, C2) =
1

2
· 0.24 + 1

2
· 0.84 = 0.54.

5 EVALUATION AND DISCUSSION

In line with the work for non-fuzzy concepts presented in [11], the information con-
tent approach and the use of a lexical database for the English language lead to
a fundamental difference with respect to other proposals. In fact, in the absence
of them, the evaluation of the attribute similarity (independently of the related
objects), such as Sea and Lake in the example of the previous section, requires “ad-
ditional knowledge” which, in general, is provided by a panel of experts in the given
application domain [10]. Furthermore, note that T2ConSim is not a distance-based
similarity measure and, in line with the notion of information content similarity on
which it relies, the triangle inequality does not hold [23].

Finally, it is important to note that setting the parameter w in T2ConSim is
a complex problem whose definition is, in general, left to the domain expert accord-
ing to the context, which plays a crucial role when measuring concept similarity [20].
Within similarity measures, this topic has been addressed by several authors in dif-
ferent research areas as, for instance, in [29] where the problem of determining
features’ relevance in the context of Geographical Information Systems has been
analyzed. However, the definition of (semi-)automatic criteria to evaluate context-
dependent parameters is still a challenging topic which requires human expertise
(and goes beyond the scope of this paper).

With regard to concept intents, which are non-fuzzy sets, it is important to recall
that their similarity can also be evaluated by following several different approaches
defined in the literature, as for instance Dice, Jaccard , Cosine [24], etc. Here we
only recall the Jaccard measure since it is the one on which the similarity between
IT2 FSs is based (of course reformulated for crisp sets), and we show the reason why
it is not indicated in order to evaluate the similarity of concept intents.

484 A. Formica

Let I1, and I2 be two concept intents, the Jaccard similarity, Jaccard(I1, I2),
is defined on the basis of the cardinalities of their intersection and union sets as
follows:

Jaccard(I1, I2) =
| I1 ∩ I2 |
| I1 ∪ I2 |

. (11)

For instance, in our running example, consider the intents:

I1 = (SwPool , Sea),

I2 = (SwPool ,Lake),

then, according to their intersection and union sets:

Jaccard((SwPool , Sea), (SwPool ,Lake)) = 1/3 = 0.33.

Note that Sea and Lake do not contribute to the intersection since they are evaluated
as different strings, independently of their semantics. Vice versa, in Subsection 4.2.2
we have seen that, according to the information content approach, the ics between
Sea and Lake is:

ics(Sea,Lake) = 0.67

and:
ASim((SwPool , Sea), (SwPool ,Lake)) = 0.84,

which is closer to human judgment. Indeed, Lin’s approach has been extensively
experimented in the literature and shows a higher correlation with human judgment
than other methods such as Resnik, Wu and Palmer, etc., and the traditional edge-
counting approach [23].

The impact about the use of the information content approach within OFCA has
been experimented in [13]. In the mentioned paper, the experimental results show
that the correlation with human judgment has an average increment of about 0.3,
with respect to the compared proposals. Besides the use of the information content
approach, this significant increment is due to the combination of the concept extent
and the concept intent similarities.

This strong imbalance in favor of the measure proposed within OFCA, on which
this approach is based, makes us optimistic for future possible experimentations and
comparisons with forthcoming proposals within IFCA.

6 CONCLUSION AND FUTURE WORK

In this paper a similarity measure for IFCA concepts has been proposed. It essen-
tially combines the similarity of concept extents, that are IT2 FSs, and the similarity
of concept intents, that are sets of concept nouns. In particular, concept extents
are compared according to the IT2FSim, that is the widely accepted crisp similarity
measure for IT2 FSs, that allows a relevant simplification about the definition of
similarity between general T2 FSs. Concept intents are evaluated according to the

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 485

information content approach, which has been extensively experimented in the liter-
ature and has a higher correlation with human judgment. This combination makes
us confident about future comparisons with forthcoming proposals. In addition, in
this paper both IT2 FS theory and IFCA have been recalled, by providing simple
examples which allow to reach a broad audience of non-specialist readers.

As future work, we are arranging a wide experiment involving the students of our
Institute in order to quantify the correlation of the proposed measure with human
judgment that, unfortunately, is not an easy job due to the complexity of Concept
Lattices.

REFERENCES

[1] Ashrafi, M.—Prasad, D.K.—Quek, C.: IT2-GSETSK: An Evolving Interval
Type-II TSK Fuzzy Neural System for Online Modeling of Noisy Data. Neurocom-
puting, Vol. 407, 2020, pp. 1–11, doi: 10.1016/j.neucom.2020.03.065.

[2] Belohlávek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O. et al.
(Eds.): Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC
2011). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6743,
2011, pp. 19–26, doi: 10.1007/978-3-642-21881-1 4.

[3] Beńıtez-Caballero, M. J.—Medina, J.—Raḿırez-Poussa, E.—Ślȩzak, D.:
Rough-Set-Driven Approach for Attribute Reduction in Fuzzy Formal Con-
cept Analysis. Fuzzy Sets and Systems, Vol. 391, 2020, pp. 117–138, doi:
10.1016/j.fss.2019.11.009.

[4] Berners-Lee, T.—Hendler, J.—Lassila, O.: The Semantic Web. Scientific
American, Feature Article, May 2001.

[5] Burusco, A.—Fuentes-González, R.: The Study of the Interval-Valued
Contexts. Fuzzy Sets and Systems, Vol. 121, 2001, No. 3, pp. 439–452, doi:
10.1016/S0165-0114(00)00059-2.

[6] Djouadi, Y.—Prade, H.: Interval-Valued Fuzzy Formal Concept Analysis. In:
Rauch, J. et al. (Eds.): Foundations of Intelligent Systems, International Symposium
on Methodologies for Intelligent Systems (ISMIS 2009). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 5722, 2009, pp. 592–601, doi: 10.1007/978-
3-642-04125-9 62.

[7] Dubois, D.—Prade, H.: Fundamentals of Fuzzy Sets. Springer Science and Busi-
ness Media, 2012.

[8] Fateminia, S.H.—Sumati, V.—Fayek, A.R.: An Interval Type-2 Fuzzy
Risk Analysis Model (IT2FRAM) for Determining Construction Project Contin-
gency Reserve. Algorithms, Vol. 13, 2020, No. 7, Art. No. 163, pp. 1–22, doi:
10.3390/a13070163.

[9] Fellbaum, C.: WordNet: An Electronic Lexical Database. The MIT Press, Cam-
bridge, MA, 1998.

https://doi.org/10.1016/j.neucom.2020.03.065
https://doi.org/10.1007/978-3-642-21881-1_4
https://doi.org/10.1016/j.fss.2019.11.009
https://doi.org/10.1016/S0165-0114(00)00059-2
https://doi.org/10.1007/978-3-642-04125-9_62
https://doi.org/10.1007/978-3-642-04125-9_62
https://doi.org/10.3390/a13070163

486 A. Formica

[10] Formica, A.: Ontology-Based Concept Similarity in Formal Concept Anal-
ysis. Information Sciences, Vol. 176, 2006, No. 18, pp. 2624–2641, doi:
10.1016/j.ins.2005.11.014.

[11] Formica, A.: Concept Similarity in Formal Concept Analysis: An Information
Content Approach. Knowledge-Based Systems, Vol. 21, 2008, No. 1, pp. 80–87, doi:
10.1016/j.knosys.2007.02.001.

[12] Formica, A.: Semantic Web Search Based on Rough Sets and Fuzzy For-
mal Concept Analysis. Knowledge-Based Systems, Vol. 26, 2012, pp. 40–47, doi:
10.1016/j.knosys.2011.06.018.

[13] Formica, A.: Similarity Reasoning for the Semantic Web Based on Fuzzy Concept
Lattices: An Informal Approach. Information Systems Frontiers, Vol. 15, 2013, No. 3,
pp. 511–520, doi: 10.1007/s10796-011-9340-y.

[14] Formica, A.: Similarity Reasoning in Formal Concept Analysis: From One- to
Many-Valued Contexts. Knowledge and Information Systems, Vol. 60, 2019, No. 2,
pp. 715–739, doi: 10.1007/s10115-018-1252-4.

[15] Ganter, B.—Wille, R.: Formal Concept Analysis – Mathematical Foundations.
Springer, 1999.

[16] Hao, M.—Mendel, J.M.: Similarity Measures for General Type-2 Fuzzy Sets
Based on the α-Plane Representation. Information Sciences, Vol. 277, 2014,
pp. 197–215, doi: 10.1016/j.ins.2014.01.050.

[17] Hitzler, P.—Krötzsch, M.—Rudolph, S.: Foundations of Semantic Web
Technologies. Chapman and Hall/CRC, Taylor and Francis Group, 2009, doi:
10.1201/9781420090512.

[18] Hitzler, P.: What’s Happening in Semantic Web . . . and What FCA Could Have
to Do with It. In: Valtchev, P., Jäschke, R. (Eds.): Formal Concept Analysis (ICFCA
2011). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6628,
2011, pp. 18–23, doi: 10.1007/978-3-642-20514-9 2.

[19] Jay, N.—Nuemi, G.—Gadreau, M.—Quantin, C.: A Data Mining Approach
for Grouping and Analyzing Trajectories of Care Using Claim Data: The Example
of Breast Cancer. BMC Medical Informatics and Decision Making, Vol. 13, 2013,
Art. No. 130, pp. 1–9, doi: 10.1186/1472-6947-13-130.

[20] Kessler, C.: Similarity Measurement in Context. In: Kokinov, B. et al. (Eds.):
Modeling and Using Context (CONTEXT 2007). Springer, Berlin, Heidelberg, Lec-
ture Notes in Computer Science, Vol. 4635, 2007, pp. 277–290, doi: 10.1007/978-3-
540-74255-5 21.

[21] Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Research
Logistics Quarterly, Vol. 2, 1955, No. 1-2, pp. 83–97, doi: 10.1002/nav.3800020109.

[22] Liang, Q.—Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and
Design. IEEE Transactions on Fuzzy Systems, Vol. 8, 2000, No. 5, pp. 535–550, doi:
10.1109/91.873577.

[23] Lin, D.: An Information-Theoretic Definition of Similarity. Proceedings of the Fif-
teenth International Conference on Machine Learning (ICML ’98), Madison, Wiscon-
sin, USA, Morgan Kaufmann, 1998, pp. 296–304.

https://doi.org/10.1016/j.ins.2005.11.014
https://doi.org/10.1016/j.knosys.2007.02.001
https://doi.org/10.1016/j.knosys.2011.06.018
https://doi.org/10.1007/s10796-011-9340-y
https://doi.org/10.1007/s10115-018-1252-4
https://doi.org/10.1016/j.ins.2014.01.050
https://doi.org/10.1201/9781420090512
https://doi.org/10.1007/978-3-642-20514-9_2
https://doi.org/10.1186/1472-6947-13-130
https://doi.org/10.1007/978-3-540-74255-5_21
https://doi.org/10.1007/978-3-540-74255-5_21
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/91.873577

Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 487

[24] Maarek, Y. S.—Berry, D.M.—Kaiser, G. E.: An Information Retrieval Ap-
proach for Automatically Constructing Software Libraries. IEEE Transactions on
Software Engineering, Vol. 17, 1991, No. 8, pp. 800–813, doi: 10.1109/32.83915.

[25] Mendel, J.M.: Computing with Words and Its Relationship with Fuzzistics. Infor-
mation Sciences, Vol. 177, 2007, No. 4, pp. 988–1006, doi: 10.1016/j.ins.2006.06.008.

[26] Mendel, J.M.: Type-2 Fuzzy Sets and Systems: A Retrospective. Informatik-
Spektrum, Vol. 38, 2015, No. 6, pp. 523–532, doi: 10.1007/s00287-015-0927-4.

[27] Mendel, J.M.—Wu, D.: Perceptual Reasoning for Perceptual Computing.
IEEE Transactions on Fuzzy Systems, Vol. 16, 2008, No. 6, 1550–1564, doi:
10.1109/TFUZZ.2008.2005691.

[28] Rocco, C.M.—Hernandez-Perdomo, E.—Mun, J.: Introduction to For-
mal Concept Analysis and Its Applications in Reliability Engineering. Relia-
bility Engineering and System Safety, Vol. 202, 2020, Art. No. 107002, doi:
10.1016/j.ress.2020.107002.

[29] Rodŕıguez, A.—Egenhofer, M. J.: Comparing Geospatial Entity Classes:
An Asymmetric and Context-Dependent Similarity Measure. International Jour-
nal of Geographical Information Science, Vol. 18, 2004, No. 3, pp. 229–256, doi:
10.1080/13658810310001629592.

[30] Safaeipour, H.—Fazel Zarandi, M.H.—Turksen, I. B.: Developing Type-2
Fuzzy FCA for Similarity Reasoning in the Semantic Web. Joint IFSAWorld Congress
and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, 2013, pp. 1477–1482, doi:
10.1109/IFSA-NAFIPS.2013.6608620.

[31] Stumme, G.—Maedche, A.: FCA-MERGE: Bottom-Up Merging of Ontologies.
Proceedings of 17th International Joint Conference on Artificial Intelligence (IJ-
CAI ’01), Seattle, Washington, USA, Vol. 1, 2001, pp. 225–230. ISBN: 1-55860-777-3.

[32] Tho, Q.T.—Hui, S. C.—Fong, A.C.M.—Cao, T.H.: Automatic Fuzzy On-
tology Generation for Semantic Web. IEEE Transactions on Knowledge and Data
Engineering, Vol. 18, 2006, No. 6, pp. 842–856, doi: 10.1109/TKDE.2006.87.

[33] Wang, F.—Wang, N.—Cai, S.—Zhang, W.: A Similarity Measure in For-
mal Concept Analysis Containing General Semantic Information and Domain
Information. IEEE Access, Vol. 8, 2020, pp. 75303–75312, doi: 10.1109/AC-
CESS.2020.2988689.

[34] Wu, D.—Mendel, J.M.: Uncertainty Measures for Interval Type-2 Fuzzy
Sets. Information Sciences, Vol. 177, 2007, No. 23, pp. 5378–5393, doi:
10.1016/j.ins.2007.07.012.

[35] Wu, D.—Mendel, J.M.: A Comparative Study of Ranking Methods, Similar-
ity Measures and Uncertainty Measures for Interval Type-2 Fuzzy Sets. Information
Sciences, Vol. 179, 2009, No. 8, pp. 1169–1192, doi: 10.1016/j.ins.2008.12.010.

[36] Zadeh, L.A.: Fuzzy Sets. Information and Control, Vol. 8, 1965, No. 3, pp. 338–353,
doi: 10.1016/S0019-9958(65)90241-X.

[37] Zadeh, L.A.: The Concept of a Linguistic Variable and Its Application to Approx-
imate Reasoning – I. Information Sciences, Vol. 8, 1975, No. 3, pp. 199–249, doi:
10.1016/0020-0255(75)90036-5.

https://doi.org/10.1109/32.83915
https://doi.org/10.1016/j.ins.2006.06.008
https://doi.org/10.1007/s00287-015-0927-4
https://doi.org/10.1109/TFUZZ.2008.2005691
https://doi.org/10.1016/j.ress.2020.107002
https://doi.org/10.1080/13658810310001629592
https://doi.org/10.1109/IFSA-NAFIPS.2013.6608620
https://doi.org/10.1109/TKDE.2006.87
https://doi.org/10.1109/ACCESS.2020.2988689
https://doi.org/10.1109/ACCESS.2020.2988689
https://doi.org/10.1016/j.ins.2007.07.012
https://doi.org/10.1016/j.ins.2008.12.010
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/0020-0255(75)90036-5

488 A. Formica

Anna Formica received her degree (Hons.) in mathematics
from the University of Rome “La Sapienza”, in 1989. She is
currently Senior Researcher with the “Istituto di Analisi dei
Sistemi ed Informatica” (IASI) “Antonio Ruberti”, Italian Na-
tional Research Council (Consiglio Nazionale delle Ricerche –
CNR), Rome, where she manages the “Software and Knowledge-
Based Systems” (SaKS) Group. She tooks part in various re-
search projects of the European framework programs and bi-
lateral projects with international institutions. Her current re-
search interests include semantic web, similarity reasoning, for-

mal specification and validation of domain ontologies, fuzzy formal concept analysis, geo-
graphical information systems, and e-learning. She serves as a referee for several interna-
tional journals and conferences.

Computing and Informatics, Vol. 40, 2021, 489–521, doi: 10.31577/cai 2021 3 489

BIG DATA STORAGE TOOLS USING NOSQL
DATABASES AND THEIR APPLICATIONS
IN VARIOUS DOMAINS: A SYSTEMATIC REVIEW

Amen Faridoon

University College Dublin, Dublin, Ireland
e-mail: amen.faridoon@ucdconnect.ie

Muhammad Imran

National Centre for Physics, Islamabad, Pakistan
&
CERN, Geneva, Switzerland
e-mail: muhammad.imran@cern.ch

Abstract. Over the past few years, data has been growing significantly due to the
advent of new connected devices, availability of bandwidth, and the emergence of
new applications which utilize cloud computing infrastructure in the data centers.
This increased amount of data faces many problems in terms of storage, transmis-
sion, management, and processing, etc. Therefore, the term big data has gained
significant attention from researchers in recent years. The rapidly growing quantity,
velocity, and variety of data require more probable and logical tools for its storage.
For this purpose, the industry is highly emphasizing the development of more viable
tools for the storage of big data. The traditional big data storage tools are unsuc-
cessful in storing an enormous amount of data. Hence, the structural modifications
of management mechanisms of conventional storage systems such as SQL databases
to NoSQL databases technology are necessary to cope up with drastically increasing
requirements of big data storage. The primary objective of this paper is to concen-
trate exclusively on designing a road map for NoSQL big data storage technologies,
evaluate current evidence, research progresses in NoSQL data storage systems and
their applications in various domains. We conducted a systematic literature review
(SLR) of various studies published in recent years. We propose a framework to
classify selected articles on the basis of various factors such as motivations behind
big data storage, NoSQL techniques used for storing big data, and significant ap-

https://doi.org/10.31577/cai_2021_3_489

490 A. Faridoon, M. Imran

plications of big data in different domains. Furthermore, we also discuss research
issues and define an outline for future research in the big data storage domain for
NoSQL databases.

Keywords: Big data, storage tools, NoSQL databases, systematic literature review

1 INTRODUCTION

Over the past few years, big data has gained significant attention of the researchers
and industrial experts as world has faced challenges related to big data storage,
transmission, management, processing, analysis, visualization, integration, architec-
ture, security, quality and privacy. Big data is an abstract concept. People still have
different opinions on the term “big data” but data scientists and experts explain it
by five main characteristics which are called 5Vs [58]. These are volume, variety,
velocity, veracity and value. The volume represents the quantity of data [45]. Many
organizations already have tremendous quantity of archive data but they are not
able to efficiently store and process it. Processing of a large amount of data is the
main attraction of the big data analytics [36]. The variety refers to the format of the
data [45]. The dataset format is divided into three main categories, i.e. structured,
semi-structured and unstructured data. Various sources generate data in multiple
formats, e.g. videos, audios, documents, comments, logs, tabular form and others.
The velocity defines the increase in speed of data generation and processing [45].
Social media platforms and real time applications are some good examples that il-
lustrate data generation with fast speed. The veracity covers the quality or accuracy
of the data [5]. While dealing with the large quantity, velocity and diversity of the
data, it is impossible that all of the data is 100% correct rather there will be noisy
data. The value is the very necessary aspect of the big data. The value basically
states the worth of the data being extracted or extracting meaningful insight from
the data. Having access to the big data is good but at the same time it would be
useless if we are not able to turn it into the value. [5]

1.1 Challenges of Traditional Systems with Big Data

Traditional systems are not capable to store and process big data efficiently. This
is because the traditional storage systems were not designed for such data. Society
faces many problems with the traditional storage systems, some of them are

1. schema-on-write,

2. cost of storage,

3. cost of proprietary hardware,

4. complexity,

Big Data Storage Tools Using NoSQL Databases and Their Applications 491

5. heterogeneous data,

6. causation and

7. bringing data to the programs.

Moreover, in order to reduce the fraction of the cost for traditional shared storage,
we have to reduce the size of the data. As a result, after large volumes of the data
thrown out causes reduction in the data to be analyzed which ultimately decreases
accuracy and confidence of the results. Hence, most of the world has learned that the
traditional storage systems are not upright for storing and analyzing huge amount
of data.

1.2 Big Data Storage Technologies and Their Features

As the traditional storage systems fail in the era of the big data, the scientists have
been looking up for modern systems to overcome this problem [53]. Big data storage
is a storage infrastructure that is specifically designed for massive amount of data
for storage, processing and retrieval. Big data storage tools are the basic driver
for advance analysis and have the capacity to transmute the society. Some of the
storage tools are:

1. BigTable,

2. HBase,

3. Cassandra,

4. MongoDB,

5. Neo4j, etc.

These tools meet the demand of storage and allow us to store heterogeneous data.
These tools also have certain properties like scalability, access control, fault toler-
ance, failover recovery, real time query, SQL supported queries, distributed nature
and much more [10]. Big data storage infrastructures provide the solutions for the
problems that are faced in traditional systems. Solutions of the challenges discussed
above in Section 1.1 are:

1. schema-on-read,

2. reducing the storage cost,

3. commodity hardware which overcomes the cost of proprietary hardware,

4. simplicity,

5. allow unstructured and semi-structured data to be stored and processed,

6. correlation and

7. bringing programs to the data.

492 A. Faridoon, M. Imran

1.3 Applications Using Big Data Storage Technologies

Many sources that include business applications, public web, social media, machine
log data, transactions, sensor data and some real time applications generate big
volume of the data continuously [13, 1]. Big data storage technologies cross the
barriers and are used to handle the problems of big data. These technologies are
not only important in IT-based sector but also have particular importance in non-
IT-based sector like energy, health and finance etc. International data corporation
(IDC) predicts that total amount of digital data created worldwide will grow from
approximately 44 zettabytes in 2020 to 180 zettabytes in 2025 [55] due to the growing
number of smart devices, sensors and availability of bandwidth [18]. Moreover, in
one day, internet of things (IoT) and the use of connected devices generate huge
amount of data. Approximately 500 million tweets and 294 billion emails are sent
in a day. Facebook creates 4 petabytes of data. The 5 billion searches are made
and 65 billion messages are sent on WhatsApp. The 4 petabytes of data are created
from each connected car. In addition, weather channels receive 18 055 556 forecast
requests. Venmo processed 51 892 peer-to-peer transactions. Uber riders take 45 788
trips and there are 600 new page edits to Wikipedia. These all happens in one day.
The aggregate of space need to save one second video of a high quality is two
thousand (2 000) times more than the space needed to save a plain text of page.
Some of the predictions made by IDC regarding 2025 termed as IDC Data Age 2025
predictions are shown in Table 1.

Year Numbers Predictions Organization

2025 > 150 billion More than 150 billion devices
will be connected across the
globe.

IDC Data Age 2025

2025 > 6 billion Consumers will interact with
data every day.

IDC Data Age 2025

2025 90 zettabytes In 2025 IoT devices will
generate more than 90
zettabytes of data.

IDC Data Age 2025

2025 30% Comparing to 15% in 2017
nearly 30% of all data cre-
ated will be real-time.

IDC Data Age 2025

2020 90% Large enterprises will gen-
erate revenue from data as
a service.

IDC FutureScape: World-
wide IT Industry 2018 Pre-
dictions

Table 1. IDC Data Age 2025 predictions

Big Data Storage Tools Using NoSQL Databases and Their Applications 493

1.4 Existing Issues of Big Data Storage Tools

Although NoSQL data tools have sorted out the issues of big data comprehensively
but the velocity is the one area that still requires improvements. This is because of
the ever increasing number of big data sources and heterogeneous data created from
these sources [13]. Security and privacy are also the well-recognized challenges in the
big data storage as the data is stored in the clusters of the data centers not in the
users’ personal devices. The compatibility and updating data are the requirements
that big data storage tools must also fulfill [42]. Scalability is also a major challege
which arises due to rapid change in the growth of data and this is handled by adding
more storage to an existing node. Furthermore, the data consistency, single server
storing of data and partitioning are the most imperative research challenges.

1.5 Our Contributions

Systematic literature review (SLR) uses systematic methods to collect secondary
data, critically appraise research studies, and synthesize findings qualitatively or
quantitatively. In this paper, we perform SLR on NoSQL big data storage tools
and their applications in various domains. The primary objective of this SLR is to
concentrate exclusively on designing a road map for NoSQL big data storage tech-
nologies, evaluate current evidences, research progresses in big data storage systems
and their applications in various domains. We selected various publications from
2015 to 2020 on the basis of this SLR and classify these chosen articles on the basis
of factors involved in the movement of SQL-to-NoSQL, frameworks used for storing
massive data and significant applications in different industries. Furthermore, we
also highlight research gaps and define outline for future research.

In summary, the main objectives of this SLR are following:

• To assist data scientist and researchers to understand and choose the storage
framework that effectively suits to their requirements,

• To present the significance and applications of the NoSQL big data storage
technologies to particular domain,

• To highlight issues or challenges of the NoSQL database systems,

• To discuss directions for future research in the big data storage.

This SLR entirely depends on framed questions, related studies, analyzing their
findings, and gives a brief evidence through clear methodology. In this paper, we
categorize the storage tools according to data model such as key-value, columnar,
document oriented and graph stores. For evaluation, features or properties of the
storage systems are being used. In this paper, we also highlight the use cases of
these tools in different domains.

494 A. Faridoon, M. Imran

1.6 Needs for Conducting SLR

The need for an SLR entails to create a technology roadmap, analyzing current
publications and the research progression in the NoSQL big data storage systems.
It exclusively focuses on classification of storage technologies and their applications
in different domains. To demonstrate that a similar review has not been already
reported, we search the Compendex, IEEE Xplore, ACM, ScienceDirect, Springer-
Link and Google Scholar digital libraries with the help of search string shown in
Figure 1.

Big data storage [AND]
Tools <OR> Techniques <OR> Methods <OR> Frameworks <OR> Systems <OR>

Platforms <OR> Applications <OR> Implementation <OR> Utilization <OR> Advantages

[AND]
Systematic Literature Review <OR> Literature Review <OR> Systematic Review <OR>

SLR <OR> Systematic Mapping <OR> Literature Survey <OR> Research Review <OR>

Research Synthesis <OR> Secondary Study

Big data storage [AND]
Tools <OR> Techniques <OR> Methods <OR> Frameworks <OR> Systems <OR>

Platforms <OR> Applications <OR> Implementation <OR> Utilization <OR> Advantages

[AND]
Systematic Literature Review <OR> Literature Review <OR> Systematic Review <OR>

SLR <OR> Systematic Mapping <OR> Literature Survey <OR> Research Review <OR>

Research Synthesis <OR> Secondary Study

Figure 1. Search string for searching the similar SLRs

After searching the digital libraries of above mentioned databases by means of
search string, we come across that none of the subsidiary studies was related to any
of the research questions discussed in Section 2.

The remainder of the paper is organized as follows: Section 2 describes the
investigation methodology, research questions and the extent to which we stretched
our search for the studies. Section 3 provides answer to our research questions that
we raised and focus on the results of our research methodology. Finally, we conclude
in Section 4.

2 RESEARCH METHODOLOGY

SLR eliminates bias as compared to unstructured review process and also follows an
extremely thorough and accurate sequence of steps to search literature. The primary
aim of this SLR is to structure the existing literature in the domain of NoSQL big
data storage systems and their applications. To conduct this SLR we adopted the
guidelines presented in the study [8] with a three-step review process which includes
planning, conducting and documenting, as shown in Figure 2. For the SLR to be
effective – we obtain, analyze and document the outcome and evaluate our review
protocols. The planning and conducting phases of the systematic literature review
procedure are described below.

Big Data Storage Tools Using NoSQL Databases and Their Applications 495

• Identify needs

for conducting

SLR.

• Describe RQs.

• Define Review

Protocol.

Review

Protocol

Plan Review Conduct Review

• Select Primary

Studies.

• Extract Data.

• Synthesize Data.

Data

Document Review

• Analyze Studies.

• Performance

Comparison.

• Report Results.

Study

Report

• Identify needs

for conducting

SLR.

• Describe RQs.

• Define Review

Protocol.

Review

Protocol

Plan Review Conduct Review

• Select Primary

Studies.

• Extract Data.

• Synthesize Data.

Data

Document Review

• Analyze Studies.

• Performance

Comparison.

• Report Results.

Study

Report

Figure 2. Outline of our research methodology

2.1 Review Plan

An essential element in conducting a systematic literature review is to establish
a protocol for the study during the planning phase. Planning phase focuses the
underlying principles for the recognition of the needs for a methodical review and
results in a review protocol as follows.

Step 1: Characterization of review demands. We specify the research ques-
tions in Table 2 that provide the foundations for defining and assessing the
review protocol. The research questions depend on our motivation to identify
evidence about the distinct storage frameworks and their implementations used
by the authors in the big data storage.

We describe the overall objectives and scope of our investigative study by show-
ing them in Figure 3. We consider PICOC (population, intervention, compari-
son, outcome and context) criteria for this purpose [38].

Step 2: Analyze and specify review protocol. Based on the goals, we define
the research questions and the scope of the review that lead us to design the
search string for the extraction of the literature. Before the execution of the
review protocol, we evaluated it by external experts. Therefore, we invited
specialists/professionals to provide feedback who have capabilities for conducting
and designing the SLRs in our area of investigation. Their assessment is reflected
in the refined protocol.

496 A. Faridoon, M. Imran

Research Questions Objectives

RQ1 What are the main motivations
behind big data storage?

We are interested to know what are main
reasons that traditional storage systems
failed in the era of big data.

RQ2 What are the existing NoSQL
technologies and their key fea-
tures used in big data storage?

The aim is to investigate and categorize the
storage technologies according to database
structure.

RQ3 What are the applications of
NoSQL big data storage models
in various domains?

The aim is to investigate the socio-economic
influences of large scale storage systems of
data.

RQ4 What are the current research
problems and what should be
the future research agenda in big
data storage?

The main objective is to disclose the re-
search flaws which need to be addressed and
potential future directions in this area.

Table 2. Research questions mapped by objectives

Criteria RQ1 RQ2 RQ3 RQ4

Population or

problem

Practical

motivation.

Storage technologies

and their key

features.

Application of

storage technologies

in various domain.

Research issues

and future

direction.

Intervention

or Exposure

Internal/External validation; Extracting data and synthesis.

Comparison Perform comparison between applications of storage tools and evaluate the

storage tools on the basic of their key features.

Outcome Categorize big data storage technologies. Grouping their applications.

Hypotheses for future research.

Context A systematic investigation with an exclusive focus on storage technologies

and their implementation in different areas.

Figure 3. Define objective and scope of SLR via PICOC criteria

2.2 Review Conduction

The second phase of research methodology is the review conduction which is initiated
by choosing the literature and its outcome is the extraction of data and synthesized
information. This phase is further divided into three steps that are:

1. selection of primary research articles,

2. data extraction, and

3. synthesis of the results.

Step 1: Selection of primary research articles. By considering the research
questions described in Table 2 and taking the guidelines from study [8] we developed
a search string. After applying the search string to the digital libraries of five
databases, i.e. IEEE Xplore, ScienceDirect, SpringerLink, ACM and Google Scholar,

Big Data Storage Tools Using NoSQL Databases and Their Applications 497

we obtained 1 900 articles from 2015 to 2020. The search string and the results from
various databases are shown in Figure 4.

S
to

ra
g
e

B
ig

 D
a
ta

Migration <OR> Evaluation <OR> Switching <OR>

Traditional Systems <OR> Transformation <OR>

Modernization <OR> Relational Systems <OR> SQL-to-

NoSQL <OR> Technologies <OR> Techniques <OR> Tools

<OR> Platforms <OR> Frameworks <OR> Methods <OR>

Approaches <OR> NoSQL Stores <OR> Applications <OR>

Implementation <OR> Utilization <OR> Advantages <OR>

Employment <OR> Issues <OR> Problems <OR>

Difficulties <OR> Challenges

[AND]

Large Data <OR> Massive Data <OR> Macro Data <OR>

Large Volume of Data <OR> Large Amount of Data <OR>

Lots of Data

NAME RESULTS

IEEE 552

Springer 448

Science
Direct

138

ACM 220

Google
Scholar

542

Total 1900

Figure 4. Composition of search strings and search results

Initial Selection. This step comprises of inspecting the titles and abstracts of
primary articles. In initial selection stage, we came across 136 papers. However
further screening of these 136 papers was done against the inclusion/exclusion
criteria which is presented in Table 3.

Inclusion Exclusion

I1 Scientific peer-reviewed papers are
included.

E1 Studies that do not explicitly dis-
cuss storage technologies and their
features.

I2 Studies that discuss technologies
and their key features used in data
storage.

E2 Studies that conduct survey on stor-
age technologies.

I3 Studies that conduct experiment on
storage technologies.

E3 Editorials, abstracts, courses and
papers less than 5 pages.

I4 Studies that mention the issues or
problems of big data storage tech-
nologies.

E4 Non-peer-reviewed articles.

E5 Non-English manuscripts.

E6 Thesis and book chapters.

Table 3. Inclusion/exclusion criteria

Final Selection. Final selection depends on our objectives and goals for big data
storage areas which consist of storage systems and their key features, employ-
ment of storage systems in various domains, issues or challenges related to stor-
age systems and reasons behind the failure of traditional storage systems for big
data. After the completion of final selection process, we selected 33 studies.

498 A. Faridoon, M. Imran

We only considered articles for which full text is available and the studies having
abstract only are discarded. We also exclude the publications related to text
books, editorials, courses, non-peer-reviews, articles not written in English and
the papers less than five pages.

Qualitative Assessment of Included Studies. After applying the above men-
tioned criteria, 33 research articles are filtered out from the database contained
136 papers. Then the screening of these 33 articles have been done through
the quality assessment criteria presented in Figure 5. We categorize our qual-
ity assessment criteria into two portions that are “General characteristics for
quality assessment” and “Specific characteristics for quality assessment”. Ac-
cording to the general assessment criteria, we comprehensively reviewed the
selected research papers, examined their purpose of the research, and observed
that the study effectively described their proposed methodology according to
their problem statement and presented results are inline with the contribu-
tions of the study. However, through the specific quality assessment criteria,
we have to examine: do the research papers define the limitations of traditional
storage systems over the dimensions of the big data?, do they clearly investi-
gate the NoSQL big data storage technologies and their use cases in various
domains?, and does the study mention the research problems of the storage
systems?

General characteristics for quality assessment

Score
Yes=2 Partially

=1

No=0

G1 Is problem statement and research motivation clearly

defined?

G2 Are methodology of the research and its organization

comprehensively described?

G3 Is the research environment of the study clearly

explained?

G4 Are the presented results of the research inline with the

contributions of the study?

 Specific characteristics for quality assessment

S1 Is the research successfully described the drawbacks of

traditional data storage in the dimensions of the big

data?

S2 Are the research effectively investigate the existing big

data storage technologies?

S3 Are the study productively employed the big data

storage systems in a particular domain?

S4 Are the limitations of present research clearly

indicated?

Figure 5. Quality assessment criteria

Big Data Storage Tools Using NoSQL Databases and Their Applications 499

3 DISCUSSION AND RESULTS

The Table 4 shows the detailed summary of selected 33 research articles. In this
section, we present the discussion and findings on these selected papers on the basis
of our research questions.

ID Title Year Journal/ Conf. RQs Cs.

S1
[63]

Application and research of massive big
data storage system based on HBase

2018 IEEE Xplore RQ2 –

S2
[27]

Distributed storage system for electric
power data based on HBase

2018 Big Data Mining and
Analytics

RQ3 –

S3
[54]

A new method for time-series big data
effective storage

2017 IEEE Access RQ1,
RQ2

12

S4
[28]

MongoDB-Based Repository Design for
IoT-Generated RFID/Sensor Big Data

2015 IEEE Sensors Journal RQ3 74

S5
[11]

An OAIS-based hospital information sys-
tem on the cloud: Analysis of a NoSQL
column-oriented approach

2017 IEEE Journal of
Biomedical and Health
Informatics

RQ3 16

S6
[62]

Big data storage and management in
SaaS applications

2017 Journal of Communica-
tions and Information
Networks

RQ1,
RQ2

4

S7
[22]

Optimization strategy of Hadoop small
file storage for big data in healthcare

2016 The Journal of Super-
computing

RQ2,
RQ3

24

S8
[26]

An Approach to Security for Unstruc-
tured Big Data

2016 The Review of Socionet-
work Strategies

RQ4 1

S9
[43]

Privacy preserving data publishing based
on sensitivity in context of Big Data us-
ing Hive

2018 Journal of Big Data RQ3,
RQ4

–

S10
[59]

A Big Data platform for smart meter
data analytics

2019 Computers in Industry RQ3 2

S11
[16]

HB-File: An efficient and effective high-
dimensional big data storage structure
based on US-ELM

2017 Neurocomputing RQ4 3

S12
[46]

Dynamic Preclusion of Encroachment in
Hadoop Distributed File System

2015 Procedia Computer
Science

RQ4 5

S13
[57]

A new reliability model in replication-
based big data storage systems

2017 Journal of Parallel and
Distributed Computing

RQ4 9

S14
[3]

Dynamic Merging based Small File
Storage (DM-SFS) Architecture for Ef-
ficiently Storing Small Size Files in
Hadoop

2018 Procedia Computer
Science

RQ2,
RQ4

1

S15
[35]

BigDimETL with NoSQL Database 2018 Procedia Computer
Science

RQ2,
RQ3

–

S16
[21]

Compression and Security in MongoDB
without affecting Efficiency

2016 ICTCS RQ2,
RQ4

1

500 A. Faridoon, M. Imran

S17
[61]

RDBMS, NoSQL, Hadoop:
A Performance-Based Empirical Analy-
sis

2016 AMECSE RQ1,
RQ2,
RQ3

5

S18
[20]

Performing OLAP over Graph Data:
Query Language, Implementation, and
a Case Study

2017 BIRTE RQ2,
RQ3

1

S19
[7]

Enabling Scientific Data Storage and
Processing on Big-data Systems

2015 IEEE RQ3 4

S20
[14]

Using the column oriented NoSQL model
for implementing big data warehouses

2015 Semantic Scholar RQ3 28

S21
[56]

Query-oriented Adaptive Indexing Tech-
nique for Smart Grid Big Data Analytics

2017 Journal of Signal Pro-
cessing Systems

RQ3 2

S22
[60]

A Performance-improved and Storage-
efficient Secondary Index for Big Data
Processing

2017 2017 IEEE Inte. Conf.
Smart Cloud

RQ3,
RQ4

–

S23
[34]

A Versatile Event-Driven Data Model in
HBase Database for Multi-Source Data
of Power Grid

2016 2017 IEEE Inte. Conf.
Smart Cloud

RQ3,
RQ4

2

S24
[44]

A Framework for Migrating Relational
Datasets to NoSQL

2015 Procedia Computer
Science

RQ1 26

S25
[41]

Comparative Study of SQL and NoSQL
Databases

2015 Inte. J. Adv. Res.
Comp. Engi. Tech

RQ1,
RQ2

9

S26
[49]

SQL Versus NoSQL Movement with Big
Data Analytics

2016 Inte. J. Info. Tech.
Comp.Sci

RQ1,
RQ2

11

S27
[6]

Handling Big Data using NoSQL 2015 29th Inte. Conf. Adv.
Info. Net. Appl.

RQ1,
RQ2

37

S28
[51]

Aerospike: architecture of a real-time op-
erational DBMS

2016 Proc.VLDB Endow-
ment

RQ2 18

S29
[15]

A scalable generic transaction model sce-
nario for distributed NoSQL databases

2015 Journal of Systems and
Software

RQ2 12

S30
[52]

Analysis of various NoSql database 2015 ICGCIoT RQ2 14

S31
[33]

Statistical analysis of tourist flow in
tourist sports based on big data platform
and DA-HKRVM algorithms

2020 Personal and Ubiqui-
tous Computing

RQ2,
RQ3

1

S32
[39]

Distributed Data Platform for Auto-
motive Industry: A Robust Solution
for Tackling Challenges of Big Data in
Transportation Science

2019 ConTEL RQ2,
RQ3

1

S33
[30]

Multilevel Object Tracking in Wireless
Multimedia Sensor Networks for Surveil-
lance Applications Using Graph-Based
Big Data

2019 IEEE Access RQ2,
RQ3

3

Table 4. List of selected studies

Big Data Storage Tools Using NoSQL Databases and Their Applications 501

3.1 What Are the Main Motivations Behind Big Data Storage? (RQ1)

Our classification of research articles has allowed to counter our first research ques-
tion (RQ1). We identify main reasons behind big data storage focused by the re-
searchers in their studies. On the ground of literature, we note that relational
databases have lost their popularity because of well-structured nature. The motiva-
tion and need behind using the big data storage technologies is that the relational,
well-structured, well-schema [S3, S6, S17] databases could not develop as rapid as
big data. The large volume of data comes with their own challenges [50] such as
real-time processing, fast recovery, fault tolerance and complex structure of data is
not fulfilling expectations and needs for heterogeneous data [S3, S17, S26]. In addi-
tion, the schema of relational and structured databases does not assist the recurrent
changes. Some of the well-known network data repositories are Google, Twitter,
Amazon and Facebook. There, management and dynamic scalability requirements
exceed the capabilities of relational databases [40]. Thus, frequently growing and de-
veloping data needs a better and satisfactory solution. In order to fulfill the needs of
big data, NoSQL databases have emerged which not only overcome the problems of
relational datasets, rather the also have become mainly adopted frameworks for stor-
ing large scale data. Unlike the traditional databases, these frameworks have capac-
ity and ability to deal with multiple users interacting with big data simultaneously.
They also provide assurance for some distinctive characters over relational datasets
like distributed scalability, availability, fault tolerance, consistency, data replication,
parallel data processing, flexibility, multiple servers, non-relational distributed data
models, efficient, high performance, cost saving and secondary indexing.

Based on data synthesis, we identify four primary factors which are scalability
(32%), availability (21%), schema less (21%) and data replication (16%) of the
studies [S3, S6, S17, S24, S25, S26], that clearly mentioned the SQL verses NoSQL
movement, as shown in Figure 6. We also perform comparison between relational
database systems and NoSQL big data storage models and this is shown in Table 5.
This analysis clearly demonstrates that big data storage technologies have more
worth than relational database systems.

3.2 What Are the Existing NoSQL Technologies and Their Key Features
Used in Big Data Storage? (RQ2)

We answer RQ2 by considering the NoSQL storage technologies from selected re-
search articles. The remaining part regarding this question involves remarkable
features of these storage technologies. Big data storage tools are referred to as the
storage tools that in measure particularly address the quantity, speed, or verity of
challenges and do not drop under the heading of traditional storage systems. This
does not specify that traditional storage systems do not solve these problems but
other storage tools like NoSQL databases (column oriented store, Key-value store,
document oriented store and graph oriented store) [S17, S25, S26] are often more
methodical and less expansive. These technologies offer scalable storage solutions

502 A. Faridoon, M. Imran

Scalability (6)
[S3][S6][S17][S24]

[S25][S26]
32%

Availability (4)
[S17][S24][S25]

[S26]
21%

Schema less (4)
[S3][S6][S25][S26]

21%

Data replication
(3) [S3][S6][S24]

16%

Partitioning, flexibility, multiple
servers, non-relational

distributed data models, fault
recovery, efficient, high

performance and cost saving
[S3][S6][S17][S24][S25][S26]

10%

Figure 6. Percentage of studies with respect to various drivers behind big data storage

Traditional Database Systems NoSQL Storage Systems

Strengths Store structured data. Verti-
cal scalability. Extendable pro-
cessing on a server. Particular
schema. Particular DML (Data
Manipulation Languages).

Store un-structured, semi-
structured and structured
data. Scalability. Extendable
commodity servers. Parallel
computing applications. High
availability and fault tolerance.
Reliability. Simultaneous acces-
sibility and consistency.

Weaknesses Bottleneck performance and de-
lays in processing. With the
growth of data, chances of occur-
ring deadlock increases. Limited
storage capacity. Difficulty in
join operations for multidimen-
sional data.

Due to scalability and per-
formance not compliance with
ACID (atomicity, consistency,
isolation, durability).

Opportunities Traditional data storage systems
support complex queries. Built-
in deployment. Atomicity in
complex database transactions.

Simplicity in complex storage
structures. Enhance response
time for query.

Threats With the dynamic growth of the
data large volume for storage is
required. Complex and Schema
less data structures. Real-time
processing and maintaining con-
sistency for large number of stor-
age servers are the main threats
for relational storage systems.

Deployment of big data storage
systems. Small files in large num-
bers is one more threat.

Table 5. SWOT analysis of traditional and big data storage architectures

Big Data Storage Tools Using NoSQL Databases and Their Applications 503

for continuously growing big data with further improved data structures quality wise
and support fault tolerance. After the keen survey of literature we categorize big
data storage tools according to the classification of NoSQL data models. A brief
summary and comparison of these tools are also presented in Table 6.

NoSQL databases. NoSQL database management systems are the most impera-
tive family of big data storage technologies. When the storing and processing of
large data is a primary requirement then the NoSQL is the preferred choice.
NoSQL databases introduce data models from outside the relational world.
These models are flexible in nature, provide horizontal scalability, schema-less
and aim to manage large amount of data. NoSQL databases can be divided into
four major categories based on their data model. [S25, S27, S30]

3.2.1 Key-Value Stores

This is the simplest NoSQL data store model. Key-value data models allow data
to store in a schema-less way [S17, S25, S26, S27, S30]. Because of no schema,
it is not compulsory that the data objects share the same structure. It may be
completely structure or un-structure and can be assessed by a single key. In key-
value store model, “Key” represents unique value to access row and value contain
the information which corresponds to that key. Key-value model shows flexibility
to add more records easily and to consume less memory storage because of different
representations of values in records. Aerospike, Riak and Redis and many others
are the examples of key-value database model.

Aerospike. Aerospike is the name of eponymous company that produces it. It is
the open-source, in-memory, first flash-optimized key-value data storage software
and is more suitable for storing real-time data[51]. It is written in C language
and operates in three layers namely flash optimize data layer, distribution layer
and cluster aware client layer. To ensure the consistency, the distribution layer
is replicated across data centers. Whereas, client layer is responsible for man-
aging communication in the server node and it is also used to track the cluster
configuration in the database. The highlighted goals behind the development of
Aerospike are to design a scalable and flexible framework for web applications
and support reliability and consistency like a traditional database. [S27, S28,
S29]

Riak. Riak [48] is also a NoSQL database storage system that provides high avail-
ability, fault tolerance, operational simplicity and scalability in a very low cast.
In addition, it can be used to store data in memory, disk or both. It uses the
term bucket and key for interaction with objects. The key is utilized to store the
values whereas the bucket is for setting the bucket’s properties. The Riak dis-
tributes the data throughout the cluster by computing the binary hash of each
bucket/key pair and maps the calculated value to a location on an ordered ring
of all such values. In multi-datacenters replication, one cluster acts as a primary

504 A. Faridoon, M. Imran

cluster and is responsible for handling requests from one or more secondary clus-
ters. If the primary cluster goes down, then secondary cluster can take place of
it. Moreover, the objective of Riak developers is to provide high availability of
diverse data to applications. [S25, S26, S27, S30]

Redis. Original developer of the Redis is Salvatore Sanfilippo. Linux platform is
selected for the development and testing of Redis [17]. It can provide powerful
properties such as fast access to whole data resides in the memory, built-in
persistency. Its distinctive feature is to support multiple datatypes. Thus,
Redis is the most suitable option for heterogeneity in servers and application, and
where in-memory data is the requirement. It is designed for efficiently supporting
query operations and replication in a master-slave environment. [S17, S30]

3.2.2 Columnar Stores

Google’s BigTable is the motivation behind the column family stores. The basic
architecture of columnar store data model is rows and columns, and any number of
key-value pairs can be stored within rows. Rows and columns both are split over
multiple nodes to achieve scalability. Columns can be grouped to column families
while rows are fragmented over nodes according to primary key. Columnar store
systems provide efficient data compression and partition, and particularly perform
well with aggregation queries such as sum, count, average, etc. The most important
advantage of columnar store models is the scalability. They are well suited for
parallel processing where data is distributed over thousands of clusters and are
extremely fast in data loading. HBase, Cassandra, Hypertable, BigTable etc. are
the examples of columnar stores. [S17, S25, S26, S27, S29, S30]

BigTable. BigTable is a compressed, high performance and proprietary data stor-
age system developed by Google Inc [12]. The prominent properties of BigTable
are flexibility, adoptability, reliability, high performance storage for a structured
large-scaled data distributed over the commodity servers, and applicable stor-
age and manage petabyte of data on thousands of machines. It is design for
the distribution of highly scalable and structured data. BigTable is applicable
to store large amount of structure data at google, web pages and many other
google products. [S17, S26, S30]

HBase. HBase [29] is a column oriented, non-relational and distributed database
model written in Java which is capable of managing structure and un-structure
data. It was developed by Apache. The objective behind its designing is to
handle big data storage needs in Apache project [19]. HBase runs on the top
of Hadoop distributed file system (HDFS). It provides scalability, distribution,
fault recovery and random read/write access to stored data. HBase architecture
is composed of at least one master server responsible for management and assign
regions to region servers and several slave servers to store data. The most
prominent feature of HBase is support to read-intensive transactions. Motivation
behind the development of HBase is to provide random, consistent and real-time

Big Data Storage Tools Using NoSQL Databases and Their Applications 505

access to scalable BigTable with intensive read and write operations. LinkedIn
is the use case of HBase. [S1, S17, S25, S26, S30, S31]

Hypertable. Hypertable [29] is an open source software inspired by the design
of Google BigTable. It is written in C++ and runs on the top of distributed
file system such as HDFS, GFS and CloudStore. It provides good support to
consistency of stored data in terms of tables, and divides these tables to acquire
scalability and distribution. The importance of Hypertable is that when the
master becomes fail to respond for a brief time period and it has no effect on
client data transfer. It is designed to provide parallel, scalable databases and
better query performance for large size data. [S26, S30]

Cassandra. Initially, Cassandra was developed at Facebook to power the inbox
search feature. Now it has become an Apache incubator project. Cassan-
dra [23, 32] is a distributed, wide columnar store NoSQL database management
system designed to handle large amount of data across many data centers or
commodity servers. It has multiple features like scalability, instants storage,
improved frequent read and write operation requests, achieve data consistency
through periodic updates on replicating sites, and reliability achieves over large-
scale systems [2]. However, the most prominent is high availability with no
single point of failure, and fault tolerance and reduce latency which are achieved
through clustering, partitioning and replication. [S6, S25, S26, S30]

3.2.3 Document Stores

Document oriented stores are one of the main categories of NoSQL database storage
systems designed for storing, retrieving and managing document oriented informa-
tion which is also called semi-structured data. Document stores are schema less and
support secondary indexes. They are inherently a sub-class of key-value store but
they support more complex data then key-value stores. In contrast with relational
database, they store all information for a given object in a single instance in the
database while relational databases store information in separate tables define by
the programmer. MongoDB, SimpleDB, CouchDB and others are the examples of
document oriented databases. [S3, S6, S16, S17, S25, S26, S27, S29, S30]

MongoDB. MongoDB [37] is an open-source, cross-platform document oriented
database developed by Mongo Inc. MongoDB uses JSON like documents with
the characteristics of MySQL. MongoDB stores documents in the form of binary
representation known as BSON. When the primary server is failed, multiple
replicas are considered to achieve the availability of data. Main features pro-
vided by MongoDB are adhoc queries (support field, range query and regular
expression searches), indexing (primary and secondary indices are used to in-
dexing the document), through the replica sets. Some of the MySQL properties
acquired by MongoDB with slight modifications are high availability, load bal-
ancing, file storage, aggregation, dynamic updates etc. Aim of the MongoDB is

506 A. Faridoon, M. Imran

to provide relational data model facilities to document-oriented databases. [S3,
S6, S16, S17, S25, S26, S27, S30, S32]

SimpleDB. SimpleDB is an open-source, distributed, document oriented database
which is written in Erlang programming language. It is developed by Amazon
Inc [47]. High availability, durability, data model flexibility and automatic index-
ing are most noticeable features of SimpleDB. Along with features, SimpleDB
also have some limitations as compared to the consistency of other database
management systems. SimpleDB provide eventual consistency also known as
optimistic replication. To overcome the problem of eventual consistency, two
new operations are introduced in 2010 that are conditional put and delete, and
consistent read. Developers goal is to offer geographic replication for data avail-
ability and durability. It is used for complex queries, logs and online games. [S27,
S29, S30]

CouchDB. CouchDB is an open source, NoSQL database software having a scal-
able architecture [4]. It is implemented in a concurrent oriented language Er-
lang. The main goals of developing CouchDB is to perform data operations
and management on the web. CouchDB store any kind of data as documents,
and each document has its own self-contained schema. Bi-directional replication
and off-line operation were the two goals in the developer’s mind at the time
of designing the CouchDB. ACID properties of database, built for offline, doc-
ument storage, eventual consistency, map/reduce views and indexes are the key
features of CouchDB. [S17, S25, S26, S30]

3.2.4 Graph-Oriented Stores

Graph database stores are the part of the NoSQL databases, created to overcome the
limitations of relational databases and are superlative choice to store data along with
relations. The key concept behind the system is graph, that narrates the data items
to a collection of nodes and edges. However, nodes represent the data items and
edges represent the relationship between the nodes. Relationships between the data
items allow stored data to linked together directly and most of the time data is re-
trieved with one operation. Graph search specific portion according to the execution
of query, it does not search irrelevant data. Therefore, it improves the performance
of the graph databases systems. Neo4j, InfiniteGraph, HyperGraphDB [31] and
many more are the example of graph oriented stores. [S18, S25, S26, S27, S30]

Neo4j. Neo4j is an open source [9], graph database management system introduced
by Neo4j, Inc. Neo4j is the effective replacement of relational databases. Scala-
bility, concurrency, transaction load and read request loads are the highlighted
properties of Neo4j system. It not only performs improvement on its older ver-
sion but also competes other graph databases. With the help of buffering and
without blocking, Neo4j supports to write-intensive transactions. [S18, S25, S26,
S30, S33]

Big Data Storage Tools Using NoSQL Databases and Their Applications 507

InfiniteGraph. Infinite [24] is a commercial, distributed graph database which is
implemented in Java. InfiniteGraph is useful to find hidden relationships in
highly connected big data sets. It can store growing data with some schema
to further perform normalization and other presentation operations. To achieve
scalability, InfiniteGraph implements graph model (Labeled directed multi-
graph) technique. While, other key features of InfiniteGraph are concurrency,
distribution, multi-threaded, cloud enabled, parallel query support, fully ACID,
and having some schema. Easy traversal of complex relationships and provision
of support for complex queries over high value data are the main goals for the
development of InfiniteGraph. [S27, S30]

HyperGraphDB. HyperGraphDB [25] is an open source data storage mechanism
designed for the knowledge management, artificial intelligence and semantic web
projects. This graph database provides storage mechanism for random data and
also support data mapping between host language and storage. By providing
the customizable indexing feature, efficient graph traversal and data retrieval are
achieved. However, for storing the graph information Key-value mechanism is
used like nodes and edges of a graph are used as a key. In distinction to master-
slave storage systems like HBase, Hypertable, Redis HyperGraphDB implements
a peer-to-peer data distribution mechanism. [S26, S27, S30]

Summary of Storage Tools. The summary of storage tools is described in Ta-
ble 6. The table highlights summary with respect to the preferred and non preferred
areas, systems, vendors, licence, goals and applications of NoSQL databases for big
data storage technologies.

The preferred area of key-value storage is user profile maintenance having no
specific schema. It is also suitable for managing a large amount of small-sized data
records of web applications like managing session information for online shopping
and online games, etc. Moreover, searching for more attributes rather than one from
records is the appropriate use case for key-value storage. However, frequent updates,
query specific data values, and establish relationships of data values with each other
are not suitable areas for key-value data models. Perform analysis to aggregate
homogeneous data items is the most common application area for columnar stores.
Furthermore, e-library, patient record management, customer data analysis, online
attractive applications, write-intensive processing applications, and others are the
use cases for column-oriented databases. Despite that, we should avoid column-store
systems where the applications need complex queries. The most common applica-
tions of the document-oriented data model are maintaining social data, analyzing
websites, content management, and e-commerce systems. However, this NoSQL
model is not preferred where transactions with multiple operations are required.
Recommendation systems, social networks, bioinformatics, pattern mining, and se-
mantic web projects are the applications of the graph-oriented data model. More-
over, it is also preferred for location-based networks and real-time search. However,
the use of such a store must be avoided where data cannot be modeled as a graph.

508 A. Faridoon, M. Imran
D
a
ta

M
o
d
el Preferred

Areas
Not
Preferred
Areas

S
y
st
em

s

V
en

d
o
r

L
ic
en

se Goals Applications

K
ey

-v
a
lu
e
st
o
re

User profile
maintenance
having no
specific
schema.
Section data
for users.
Shopping
cart’s data
storage.

Need to be
queried
specific data
value.
Frequent
updates.
Establish
relationships
of data
values with
each other.

A
er
o
sp

ik
e

A
er
o
sp

ik
e,

In
c.

O
p
en

S
o
u
rc
e

Designing a scalable and flexible
framework for web applications. Sup-
port reliability and consistency like a
traditional database.

Web applications

R
ia
k

B
a
sh

o
T
ec
h
n
o
lo
g
ie
s

O
p
en

S
o
u
rc
e

Objective of Riak is to provide high
availability to applications.

Diverse data
R
ed

is

S
a
lv
a
to
re

S
a
n
fi
li
p
p
o

O
p
en

S
o
u
rc
e

Redis is designed for master-slave
environment to efficiently support
query operations and replication.

Used for small struc-
tured data.

W
id
e-
co

lu
m
n

Blogging
platforms
are the use
case of wide
column.
Counter-
based and
content
manage-
ment
systems.
Write
intensive
processing
applications

Applications
needed
complex
querying
and has
varying
patterns
queries.
Avoid
column
stores
systems
where the
database
requirement
is not
established

H
B
a
se

A
p
a
ch

e

O
p
en

S
o
u
rc
e

Motivation behind the development
of HBase is to provide random, con-
sistent and real-time access to scal-
able BigTable with read and write
operations.

Latency tolerant ap-
plications, sparse and
versioned data are the
main areas of HBase.
LinkedIn also use
HBase.

C
a
ss
a
n
d
ra

A
p
a
ch

e

O
p
en

S
o
u
rc
e

Aim behind the development of Cas-
sandra is to provide distributed, fault
tolerance and highly available storage
for data and improved access perfor-
mance through replication and row
distribution of data.

Online interactive ap-
plications like Face-
book, twitter etc.

H
y
p
er
ta
b
le

Z
v
en

ts

O
p
en

S
o
u
rc
e

Designed to provide parallel, high-
performance, scalable databases, and
better querying performance for large
size data.

Store and maintain
both structured and
un-structured data

B
ig
T
a
b
le

G
o
o
g
le

P
ro
p
ri
et
a
ry

Design for the distribution of highly
scalable, structured data.

Used to store structure
large volume data at
google, web pages, and
many google products.

D
o
cu

m
en

t
o
ri
en

te
d

Content
manage-
ment and
e-commerce
systems.
Blogging
and
analytics
platforms.

Applications
needed
complex
search
queries and
transactions
with
multiples
operations

M
o
n
g
o
D
B

M
o
n
g
o
D
B
,

In
c.

O
p
en

S
o
u
rc
e

Developed to provide fast and con-
sistent data access from different ap-
plications across multiple interfaces.
Another goal is to provide relational
data models facilities to document
oriented databases.

Real-time applications.

S
im

p
le
D
B

A
m
a
zo

n

O
p
en

S
o
u
rc
e

Offer geographic replication for data
availability and durability.

Used for complex
queries, logs and
online games.

C
o
u
ch

D
B

A
p
a
ch

e

O
p
en

S
o
u
rc
e

For web documents, make available a
dynamic and self-contained schema.

Web applications and
social data are the fo-
cusing areas.

Big Data Storage Tools Using NoSQL Databases and Their Applications 509
G
ra
p
h
st
o
re
s

Graph
based
searches and
IT
operations
are the use
cases of
graph
oriented
stores.
Fraud
detection.
Social
networks.

Use of such
a store must
be avoided
where data
cannot be
modeled as
a graph

N
eo

4
j

N
eo

T
ec
h
n
o
lo
g
y

O
p
en

S
o
u
rc
e

To provide relation-like graph, data
relationship manipulation and deci-
sion making.

Social networks and
recommendations sys-
tems.

H
y
p
er

G
ra
p
h
D
B

K
o
b
ri
x

S
o
ft
w
a
re
,
In
c.

O
p
en

S
o
u
rc
e

Relational and object oriented data
management and memory model for
artificial intelligence and semantic
web projects are the reasons behind
HyperGraphDB.

Bioinformatics, pat-
tern mining and
semantic web projects
are the applications of
HyperGraphDB.

In
fi
n
it
e

G
ra
p
h

O
b
je
ct
iv
it
y,

In
c.

C
o
m
m
er
ci
a
l

Easy traversal of complex relation-
ships and provide complex queries
over high value data are the main
goals.

Preference domains are
Social and location-
based networks, and
real-time search.

Table 6. Summary of storage tools

According to the selected studies, we conclude that document and columnar
stores are the most frequently used NoSQL databases having the percentage of
31% and 32%, respectively, as shown in Figure 7 a). Whereas the graph-oriented
and key-value stores are less used database in terms of percentage, i.e. 21% and
16%, as compared to document and columnar stores. Many of the researchers used
MongoDB and CouchDB document stores with the number of 7 and 3, respectively,
in their studies. In columnar stores HBase, Cassandra and BigTable storage tools
gain the attention of the researchers for storing big data, as shown in Figure 7 b).

Most Repeated Features of NoSQL Models. Above mentioned big data stor-
age technologies have storage structures to assist scalable resource configuration of
big data. Most of the storage systems are developed to ensure availability, consis-
tency, fault tolerance, flexibility, reliability and the durability in general. It can be
deduced from Figure 8 that scalability, schema less, calculated performance, low
cost, partitioning, data replication, accessibility and sharding are the most repeated
features according to the selected studies.

Specific Features of NoSQL Models. NoSQL storage models have specific
properties such as scalability, shared-nothing architecture, persistence, partitioning,
in-memory, on disk or both memory and disk storage, and rigorous read and write.
Figure 9 highlights the specific features of above mentioned NoSQL storage tech-
nologies. We can observe that all of the Key-value data models are in-memory,
shared-nothing architecture, and scalable rather than the Redis. The Redis pro-
vides automatically data partitioning through horizontal scaling whereas, vertical
scaling is difficult in it. The Aerospike does not provide a persistence feature while
data is stored in memory, however we can persist the data by using persistence
memory like disk or device storage. Databases included in the category of wide-
column and document-oriented stores support maximum features presented in the

510 A. Faridoon, M. Imran

Document Stores
(7)

[S3][S6][S16][S17]
[S25][S26][S32]

31%

Columnar Stores (7)
[S1][S6][S15][S17][S

25][S26][S31]
32%

Key-Value
Stores (3)

[S17][S25][S26]
16%

Graph-oriented
Stores (5)

[S17][S18][S25]
[S26][S33]

21%

a) Number of studies mentioned NoSQL databases

0 1 2 3 4 5 6 7 8

MongoDB
CouchDB

DocumentDB
DynamoDB

Hbase
Cassandra

BigTable
HyperTable

Neo4j
db40

OrientDB
Apache Graph

Redis
Riak

AmazonDynamoDB
Oracle BerkeleyDB

HDFS

Number of Studies

St
o

ra
ge

 T
o

o
ls

b) Usage of storage tools in selected publications

Figure 7. NoSQL storage technologies

0 2 4 6 8 10 12

Scalability

Reliability

Schema Less

Accessibility

Replication

Low cost

Sharding

Flexibility

Partitioning

Calculated Performance

Fault-tolerance

Number of Studies

Fe
at

u
re

s

Figure 8. Most repeated features of storage tools

Big Data Storage Tools Using NoSQL Databases and Their Applications 511

Figure 9. However, SimpleDB only allows persistence data and scalable systems.
While, graph-oriented databases like Neo4j, HyperGraphDB, and InfiniteGraph do
not back the partitioning and data persistence features.

Storage

Systems

Memory

Storage

Disk

Storage

Intensive

Read/Write

Persistence Partitioning Shared

nothing

Architecture

Scalability

Aerospike x x

Riak x x

Redis x x

HBase x x x

Cassandra. x x

Hypertable

BigTable

MongoDB x

SimpleDB x x x x x

CouchDB x

Neo4j x

HyperGraphDB - x -

InfiniteGraph - - x

Figure 9. Specific features of storage tools

3.3 What Are the Applications of NoSQL Big Data Storage Models
in Various Domains? (RQ3)

Big data storage technologies have very significant applications in various domains
like real-time big data, time-series data, content management, customer 360 view,
mobile applications, fraud detection and others. Many industries are now adopting
big data storage technologies like NoSQL databases technologies for critical business
applications. These technologies are gradually taking place of relational database
technologies to acquire better features like scalability, flexibility, replication, parti-
tioning etc. Some of the applications of big data storage technologies mentioned in
under studied articles are discussed below.

Internet of Things (IoT). IoT (the internet of things) states that the control
of automated intelligent and inter linked devices command over wide regions
through sensors and other computing capabilities. The data produced by IoT
is characterized by its continuous growth, unstructured and huge amount. Tra-
ditional database technologies are not capable enough to handle such a huge
amount of IoT generated data and if you cannot store this heterogeneous data
streaming in every second, you would not be able to accomplish any tasks on
it. Thus big data storage technologies such as HBase, MongoDB, Cassandra
etc. are normally based on distributed file system, database management and
data processing technologies, have emerged as a fundamental technology to im-
plement IoT generated data. Selected study [S4] uses MongoDB for storing the

512 A. Faridoon, M. Imran

multi-source IoT data sources such as RFID (Radio frequency identification),
sensor and GPS (Global positioning systems). In addition, they also devise an
effective shared key to maximizing the query speed and horizontally distribute
data over data servers.

Healthcare. There is a huge amount of data associated with health sector and it
has to be processed and stored. With the progress in health systems, they are
continuously moving towards the effective digital solutions. The main objective
behind this is to efficiently manage data resources and information associated
with health processes. The study [S5] implements OAIS healthcare architec-
ture based on NoSQL column-oriented Cassandra database management system
and provides a way to handle such a big amount of HL7 clinical documents in
a scalable manner. Moreover authors conduct case study for finding the blood
glucose level and assembled results are stored in OAIS system to monitor health
condition of patients and to halt deaths. In study [S7], the aim of the authors
is to devise a method for the short files storage of genomic and clinical data
that will help researchers to execute analytics in healthcare. The given method
incorporates the small files of data block and after merging stores these big files
so that to reduce the data blocks of HDFS.

Decision Making. We have experienced an immense amount of data on the web.
This is because of speedy technological advances with the accessibility of smart
devices and social networks like Instagram, Twitter, Facebook, etc. These social
sites enable us to make effective decisions. The authors in study [S15] perform
ETL (Extract-Transform-Load) operations with HBase to store tweets by using
join algorithms. Results highlight the ETL operation execute well with join op-
eration to make effective business decisions. Similarly, the authors in study [S20]
perform decision queries on star schema benchmark (SSB) data warehouse and
considered HBase columnar NoSQL database for storing purpose.

Electric Power Data. One of the big data storage application is managing enor-
mous electric power data. Electric power systems consist of billions of devices
nowadays. These devices generate hundred and thousand of records in a sin-
gle day. For ensuring the security and maintenance of these power systems,
huge amount of data from large number of data sources required to be properly
processed and inspected so that a rapid decision could be made in real time. Ac-
cording to study [S2], authors proposed a system through which electric power
data can be stored effectively by using HBase. Proposed system is used to
monitors a status, and also to perform data migration and fragmentation. The
proposed system of study [S10] is capable for storing, quering, visualizing and
analyzing large scale smart grid power data sets. Results obtained from this are
compared with IBM, MongoDB, Google Cloud and AmpLab provides compar-
atively easy platform to handle such a big electric power data, with ability of
decision making. In studies [S21, S22, S23] researchers devised a unique method
to store enormous amount of data by gaining the advantage of HBase. The pro-
posed [S21, S22] systems not only increase the query process but also prevent

Big Data Storage Tools Using NoSQL Databases and Their Applications 513

space for storage. While authors in study [S23] proposed a data model in which
join operation is integrated by using virtual column family.

The number and percentage of selected studies with respect for various domains
using NoSQL big data storage models is shown in Figure 10.

Electric Power
Data (5)

[S2][S10][S22]
[S23][S24]

26%

Internet of
Things (2)
[S4][S21]

10%

HealthCare
(3)

[S5][S7][S9]
16%

Decision Making
(3)

[S15][S18][S20]
16%

Online
interactive

applications (2)
[S15][S17]

11%

Others
21%

Figure 10. Number of studies contain big data storage applications

3.4 What Are Existing Research Issues and What Should Be the Future
Research Agenda in Big Data Storage? (RQ4)

There are many advanced data storage technologies which help us a lot in storing
big data but they are not yet perfect platforms. Undoubtedly, the new data storage
technologies offer a lot of benefits over conventional data storage technologies, but
these technologies are not better enough. There is no ideal platform to be used as
a better storage solution. Information extracted from the selected articles help us
to answer our research question four (RQ4). Here is a brief look at the existing
research issues and distinctions in NoSQL big data storage technologies.

3.4.1 Future Research Challenges

Security. Top level existing research issues include providing security to a stored
data. Security of a data is considering as a big challenge on any platform. Big
data storage technologies are facing a fairly handsome list of issues regarding
security. Many security issues will likely be solved as data storage technologies
continue to grow. But for now, security is a distinction in big data storage
technologies. Authors in study [S8] provide security suit which contains various
algorithms. Providing security to unstructured data, authors take data from
Wikipedia and Google search API by taking various data types into account
and their sensitivity level. Providing security to Hadoop complex distributed

514 A. Faridoon, M. Imran

file system is a challenging task. The main focus of study [S12] is to provide
a security model to ensure the variety of secure data operations like insertion,
deletion and replication of data over clusters. Likewise, for storing files of small
size in HDFS, authors in study [S14] implement the encryption technique known
as Twofish to ensure the security of content present in files.

Advantages of MongoDB are that it provides replication, schema-less, supports
indexing and many more but it also has some limitations related to security of
a data stored in it. So authors in study [S16] played a part in resolving the
problem by introducing a middleware encryption before storing the data into
database.

Issues relating to security in big data storage systems need to be further inves-
tigated into with respect to different tools.

Read Performance. Authors in study [S22, S23] highlighted the issues (join op-
eration, effective indexing and random read) related to HBase. To overcome the
limitation of indexing schema authors in study [S22] implement secondary in-
dexing technique to speed up query processing and save the huge storage space.
A virtual column family is introduced to resolve the problems of random read
and join operation in HBase [S23].

Similar issues relating to performance during fetching data from big data stor-
age systems with respect to different bid data storage tools need to be evalu-
ated.

Data Management. With the escalation of big data, the related data storage
industries emphasize more on data management instead of computational man-
agement. In recent time, managing a data is a big task. Many data storage
technologies have been proposed which help us a lot in storing a growing data
and processing resources. However, still more efficient technologies are required
for data acquisition, processing, pre-processing, storage and management of big
data. The continuing development on big data management focuses mainly on
bringing effective solutions that support big data efficiently. Management of
growing volume of data is also very significant in this regard beside process-
ing, pre-processing and storage. The main concerns of ongoing development
include methods of data clustering, replication and indexing for effective storage
exploitation and data retrieving.

Data Consistency. Data consistency is considered as a design goal for big data
storage technologies. In distributed systems, consistency and availability have
greater impact on each other and one of them is compromised. Data consistency
remains a basic task for big data storage technologies. Like, NoSQL databases
do not perform ACID transaction, a technique used for ensuring data consis-
tency. In general, data consistency is a major issue in big data storage that
needs to be addressed.

Scalability. The term scalability refers to handle and support increasing volume
of data in such a way that a prominent optimization in the storage resources

Big Data Storage Tools Using NoSQL Databases and Their Applications 515

is possible. Scalability is considered as one of the significant design goal for
data storage technologies. Existing technologies have better scalability stan-
dards over traditional data storage technologies but in many respects, scala-
bility is still a challenge. For instance, some NoSQL databases are not bet-
ter enough at automating the process of sharding (spreading a database across
multiple nodes). Other databases like SQL are also facing the same type of
problem.

Single Server Storing of Data. Storing a big data under a single server is not
a better decision while considering a nature of data. It is wise to config-
ure a cluster of multiple hardware elements as the distributed storage sys-
tem.

Frequent Data Update and Schema Change. With the rapidly growing vol-
ume of data, the need for increasing the update rate for data is also very
high. Changes made in schema is also very communal in case of unstructured
data. However, existing storage technologies are better in scalability but re-
quirement to be efficient in data updates and schema is still under considera-
tion.

Partitioning Method. Maintaining acceptable performance in growing size of the
database become more complex. So the partitioning is the method to manage
busy and large amount of data. Two types of partitioning are offered by the
data models that are horizontal and vertical partitioning applied on data based
on access patterns. However, during the execution access patterns might be
wrong. Thus existing data models identified for big data storage solutions show
that partitioning is a critical research challenge.

4 CONCLUSION

Big data is an abstract concept. Experts categorized big data by 5Vs referred to as
volume, variety, velocity, veracity and value. As the data is growing continuously
and rapidly, so this increased quantity, speed and diverse nature of data require
more reliable and logical tools for its storage. The main objective of this survey
is to refocus, probe and analyze the futuristic NoSQL big data storage models.
We conducted SLR by selecting 33 publications from year 2015 to 2020 on the
basis of our defined criteria. The primary and major objective of this SLR is to re-
concentrate on the storage tools, mentioned the applications and spot the challenges
of storage systems. We categorize our selected publications on the basis of four major
questions.

The main concern of our first research question is to highlight the factors that
are scalability, availability, schema less, data replication etc. involved in the mi-
gration of traditional tools to big data storage systems. According to the selected
studies, most of the researchers frequently used document and columnar store 31%
and 32%, respectively, NoSQL databases. The results clearly show that 14 out of 33

516 A. Faridoon, M. Imran

publications mostly used MongoDB, HBase, CouchDB, Cassandra and Neo4J stor-
age tools. Scalability, schema less, calculated performance, partitioning, low cost
and accessibility are among the most repeated features of storage tools. Big data
storage tools play a consequential role in many fields. But the results gather from
our selected publications tells us that smart power grid, healthcare, decision-making,
online interactive applications and internet of things are the major domains where
their applications are extensively used.

We have recognized that there has been an extraordinary research work done over
the years by researchers. However, there are many flaws that still need to be fixed
in terms of security, privacy, read performance, data management, data consistency,
scalability, single server data storage, frequent update and data partitioning.

REFERENCES

[1] Abouzeid, A.—Bajda-Pawlikowski, K.—Abadi, D.—Silberschatz, A.—
Rasin, A.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Tech-
nologies for Analytical Workloads. Proceedings of the VLDB Endowment, Vol. 2,
2009, No. 1, pp. 922–933, doi: 10.14778/1687627.1687731.

[2] Abramova, V.—Bernardino, J.: NoSQL Databases: MongoDB vs Cassandra.
Proceedings of the International C* Conference on Computer Science and Software
Engineering (C3S2E ’13), ACM, 2013, pp. 14–22, doi: 10.1145/2494444.2494447.

[3] Ahad, M.A.—Biswas, R.: Dynamic Merging Based Small File Storage (DM-SFS)
Architecture for Efficiently Storing Small Size Files in Hadoop. Procedia Computer
Science, Vol. 132, 2018, pp. 1626–1635, doi: 10.1016/j.procs.2018.05.128.

[4] Anderson, J. C.—Lehnardt, J.—Slater, N.: CouchDB: The Definitive Guide:
Time to Relax. O’Reilly Media, Inc., 2010.

[5] Ishwarappa—Anuradha, J.: A Brief Introduction on Big Data 5VS Characteris-
tics and Hadoop Technology. Procedia Computer Science, Vol. 48, 2015, pp. 319–324,
doi: 10.1016/j.procs.2015.04.188.

[6] Bhogal, J.—Choksi, I.: Handling Big Data Using NoSQL. 2015 IEEE 29th Interna-
tional Conference on Advanced Information Networking and Applications Workshops,
2015, pp. 393–398, doi: 10.1109/waina.2015.19.

[7] Biookaghazadeh, S.—Xu, Y.—Zhou, S.—Zhao, M.: Enabling Scientific Data
Storage and Processing on Big-Data Systems. 2015 IEEE International Conference
on Big Data (Big Data), 2015, pp. 1978–1984, doi: 10.1109/BigData.2015.7363978.

[8] Brereton, P.—Kitchenham, B.A.—Budgen, D.—Turner, M.—Khalil, M.:
Lessons from Applying the Systematic Literature Review Process within the Soft-
ware Engineering Domain. Journal of Systems and Software, Vol. 80, 2007, No. 4,
pp. 571–583, doi: 10.1016/j.jss.2006.07.009.

[9] Buerli, M.: The Current State of Graph Databases. Department of Computer Scien-
ce, California Polytechnic State University, San Luis Obispo, December 2012.

[10] Cattell, R.: Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record,
Vol. 39, 2011, No. 4, pp. 12–27, doi: 10.1145/1978915.1978919.

https://doi.org/10.14778/1687627.1687731
https://doi.org/10.1145/2494444.2494447
https://doi.org/10.1016/j.procs.2018.05.128
https://doi.org/10.1016/j.procs.2015.04.188
https://doi.org/10.1109/waina.2015.19
https://doi.org/10.1109/BigData.2015.7363978
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1145/1978915.1978919

Big Data Storage Tools Using NoSQL Databases and Their Applications 517

[11] Celesti, A.—Fazio, M.—Romano, A.—Bramanti, A.—Bramanti, P.—
Villari, M.: An OAIS-Based Hospital Information System on the Cloud: Analysis
of a NoSQL Column-Oriented Approach. IEEE Journal of Biomedical and Health
Informatics, Vol. 22, 2018, No. 3, pp. 912–918, doi: 10.1109/jbhi.2017.2681126.

[12] Chang, F.—Dean, J.—Ghemawat, S.—Hsieh, W.C.—Wallach, D.A.—
Burrows, M.—Chandra, T.—Fikes, A.—Gruber, R. E.: Bigtable: A Dis-
tributed Storage System for Structured Data. ACM Transactions on Computer Sys-
tems, Vol. 26, 2008, No. 2, Art. No. 4, 26 pp., doi: 10.1145/1365815.1365816.

[13] Chen, C. L. P.—Zhang, C.-Y.: Data-Intensive Applications, Challenges, Tech-
niques and Technologies: A Survey on Big Data. Information Sciences, Vol. 275,
2014, pp. 314–347, doi: 10.1016/j.ins.2014.01.015.

[14] Dehdouh, K.—Bentayeb, F.—Boussaid, O.—Kabachi, N.: Using the Column
Oriented NoSQL Model for Implementing Big Data Warehouses. Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA), 2015, pp. 469–475.

[15] Dharavath, R.—Kumar, C.: A Scalable Generic Transaction Model Scenario for
Distributed NoSQL Databases. Journal of Systems and Software, Vol. 101, 2015,
pp. 43–58, doi: 10.1016/j.jss.2014.11.037.

[16] Ding, L.—Liu, Y.—Han, B.—Zhang, S.—Song, B.: HB-File: An Efficient and
Effective High-Dimensional Big Data Storage Structure Based on US-ELM. Neuro-
computing, Vol. 261, 2017, pp. 184–192, doi: 10.1016/j.neucom.2016.06.080.

[17] Excoffier, L.—Lischer, H. E. L.: Arlequin Suite Ver 3.5: A New Series of Pro-
grams to Perform Population Genetics Analyses under Linux and Windows. Molec-
ular Ecology Resources, Vol. 10, 2010, No. 3, pp. 564–567, doi: 10.1111/j.1755-
0998.2010.02847.x.

[18] Gantz, J.—Reinsel, D.: The Digital Universe in 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East. IDC iView: IDC Analyze the Future,
December 2012, pp. 1–16.

[19] George, L.: HBase: The Definitive Guide: Random Access to Your Planet-Size
Data. O’Reilly Media, Inc., 2011.

[20] Gómez, L.—Kuijpers, B.—Vaisman, A.: Performing OLAP over Graph Data:
Query Language, Implementation, and a Case Study. Proceedings of the International
Workshop on Real-Time Business Intelligence and Analytics (BIRTE ’17), ACM,
2017, Art. No. 6, doi: 10.1145/3129292.3129293.

[21] Hasija, H.—Kumar, D.: Compression and Security in MongoDB Without Affect-
ing Efficiency. Proceedings of the Second International Conference on Information
and Communication Technology for Competitive Strategies (ICTCS ’16), ACM, 2016,
Art. No. 96, doi: 10.1145/2905055.2905155.

[22] He, H.—Du, Z.—Zhang, W.—Chen, A.: Optimization Strategy of Hadoop Small
File Storage for Big Data in Healthcare. The Journal of Supercomputing, Vol. 72,
2016, No. 10, pp. 3696–3707, doi: 10.1007/s11227-015-1462-4.

[23] Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media, Inc., 2010.

[24] InfiniteGraph. Infinitegraph – Distributed Graph Database. 2014.

https://doi.org/10.1109/jbhi.2017.2681126
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1016/j.jss.2014.11.037
https://doi.org/10.1016/j.neucom.2016.06.080
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1145/3129292.3129293
https://doi.org/10.1145/2905055.2905155
https://doi.org/10.1007/s11227-015-1462-4

518 A. Faridoon, M. Imran

[25] Iordanov, B.: HyperGraphDB: A Generalized Graph Database. In: Shen, H.T.
et al. (Eds.): Web-Age Information Management (WAIM 2010). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 6185, 2010, pp. 25–36, doi:
10.1007/978-3-642-16720-1 3.

[26] Islam, M.E.—Islam, M.R.—Ali, A.B.M. S.: An Approach to Security for Un-
structured Big Data. The Review of Socionetwork Strategies, Vol. 10, 2016, No. 2,
pp. 105–123, doi: 10.1007/s12626-016-0067-6.

[27] Jin, J.—Song, A.—Gong, H.—Xue, Y.—Du, M.—Dong, F.—Luo, J.: Dis-
tributed Storage System for Electric Power Data Based on HBase. Big Data Mining
and Analytics, Vol. 1, 2018, No. 4, pp. 324–334, doi: 10.26599/BDMA.2018.9020026.

[28] Kang, Y.-S.—Park, I.-H.—Rhee, J.—Lee, Y.-H.: MongoDB-Based Repository
Design for IoT-Generated RFID/Sensor Big Data. IEEE Sensors Journal, Vol. 16,
2016, No. 2, pp. 485–497, doi: 10.1109/jsen.2015.2483499.

[29] Khetrapal, A.—Ganesh, V.: HBase and Hypertable for Large Scale Distributed
Storage Systems. Department of Computer Science, Purdue University, 2006.

[30] Küçükkeçeci, C.—Yazici, A.: Multilevel Object Tracking in Wireless Multimedia
Sensor Networks for Surveillance Applications Using Graph-Based Big Data. IEEE
Access, Vol. 7, 2019, pp. 67818–67832, doi: 10.1109/access.2019.2918765.

[31] Kaliyar, R.K.: Graph Databases: A Survey. International Conference on
Computing, Communication and Automation, IEEE, 2015, pp. 785–790, doi:
10.1109/ccaa.2015.7148480.

[32] Lakshman, A.—Malik, P.: Cassandra: A Decentralized Structured Storage Sys-
tem. ACM SIGOPS Operating Systems Review, Vol. 44, 2010, No. 2, pp. 35–40, doi:
10.1145/1773912.1773922.

[33] Li, D.—Deng, L.—Cai, Z.: Statistical Analysis of Tourist Flow in Tourist Spots
Based on Big Data Platform and DA-HKRVM Algorithms. Personal and Ubiquitous
Computing, Vol. 24, 2020, No. 1, pp. 87–101, doi: 10.1007/s00779-019-01341-x.

[34] Liu, B.—Zhu, Y.—Wang, C.—Chen, Y.—Huang, T.—Shi, W.—Li, M.—
Mao, Y.: A Versatile Event-Driven Data Model in HBase Database for Multi-Source
Data of Power Grid. 2016 IEEE International Conference on Smart Cloud (Smart-
Cloud), IEEE, 2016, pp. 208–213, doi: 10.1109/smartcloud.2016.28.

[35] Mallek, H.—Ghozzi, F.—Teste, O.—Gargouri, F.: BigDimETL with
NoSQL Database. Procedia Computer Science, Vol. 126, 2018, pp. 798–807, doi:
10.1016/j.procs.2018.08.014.

[36] Manyika, J. et al.: Big Data: The Next Frontier for Innovation, Competition, and
Productivity. Report, McKinsey Global Institute, 2011.

[37] MongoDB. MongoDB Architecture Guide (White Paper), 2015.

[38] Petticrew, M.—Roberts, H.: Systematic Reviews in the Social Sciences: A Prac-
tical Guide. John Wiley and Sons, 2008, doi: 10.1002/9780470754887.

[39] Pevec, D.—Vdovic, H.—Gace, I.—Sabolic, M.—Babic, J.—Podobnik, V.:
Distributed Data Platform for Automotive Industry: A Robust Solution for Tackling
Big Challenges of Big Data in Transportation Science. 2019 15th International Con-
ference on Telecommunications (ConTEL), IEEE, 2019, pp. 1–8, doi: 10.1109/con-
tel.2019.8848542.

https://doi.org/10.1007/978-3-642-16720-1_3
https://doi.org/10.1007/s12626-016-0067-6
https://doi.org/10.26599/BDMA.2018.9020026
https://doi.org/10.1109/jsen.2015.2483499
https://doi.org/10.1109/access.2019.2918765
https://doi.org/10.1109/ccaa.2015.7148480
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1007/s00779-019-01341-x
https://doi.org/10.1109/smartcloud.2016.28
https://doi.org/10.1016/j.procs.2018.08.014
https://doi.org/10.1002/9780470754887
https://doi.org/10.1109/contel.2019.8848542
https://doi.org/10.1109/contel.2019.8848542

Big Data Storage Tools Using NoSQL Databases and Their Applications 519

[40] Pokorny, J.: NoSQL Databases: A Step to Database Scalability in Web Envi-
ronment. International Journal of Web Information Systems, Vol. 9, 2013, No. 1,
pp. 69–82, doi: 10.1108/17440081311316398.

[41] Pore, S. S.—Pawar, S. B.: Comparative Study of SQL and NoSQL Databases. In-
ternational Journal of Advanced Research in Computer Engineering and Technology,
Vol. 4, 2015, No. 5, pp. 1747–1753.

[42] Putnik, G.—Sluga, A.—ElMaraghy, H.—Teti, R.—Koren, Y.—
Tolio, T.—Hon, B.: Scalability in Manufacturing Systems Design and Operation:
State-of-the-Art and Future Developments Roadmap. CIRP Annals, Vol. 62, 2013,
No. 2, pp. 751–774, doi: 10.1016/j.cirp.2013.05.002.

[43] Rao, P. S.—Satyanarayana, S.: Privacy Preserving Data Publishing Based on
Sensitivity in Context of Big Data Using Hive. Journal of Big Data, Vol. 5, 2018,
No. 1, Art. No. 20, doi: 10.1186/s40537-018-0130-y.

[44] Rocha, L.—Vale, F.—Cirilo, E.—Barbosa, D.—Mourão, F.: A Framework
for Migrating Relational Datasets to NoSQL. Procedia Computer Science, Vol. 51,
2015, pp. 2593–2602, doi: 10.1016/j.procs.2015.05.367.

[45] Russom, P.: Big Data Analytics. TDWI Best Practices Report, Fourth Quarter,
Vol. 19, 2011, No. 4, pp. 1–34.

[46] Saranya, S.—Sarumathi, M.—Swathi, B.—Victer Paul, P.—Sampath Ku-
mar, S.—Vengattaraman, T.: Dynamic Preclusion of Encroachment in Hadoop
Distributed File System. Procedia Computer Science, Vol. 50, 2015, pp. 531–536, doi:
10.1016/j.procs.2015.04.027.

[47] Sciore, E.: SimpleDB: A Simple Java-Based Multiuser Syst for Teaching Database
Internals. ACM SIGCSE Bulletin, Vol. 39, 2007, No. 1, pp. 561–565, doi:
10.1145/1227504.1227498.

[48] Sheehy, J.: Riak 0.10 Is Full of Great Stuff. 2010.

[49] Venkatraman, S.—Fahd, K.—Kaspi, S.—Venkatraman, R.: SQL Versus
NoSQL Movement with Big Data Analytics. International Journal of Informa-
tion Technology and Computer Science, Vol. 8, 2016, No. 12, pp. 59–66, doi:
10.5815/ijitcs.2016.12.07.

[50] Skoulis, I.—Vassiliadis, P.—Zarras, A.V.: Growing Up with Stability: How
Open-Source Relational Databases Evolve. Information Systems, Vol. 53, 2015,
pp. 363–385, doi: 10.1016/j.is.2015.03.009.

[51] Srinivasan, V.—Bulkowski, B.—Chu, W.-L.—Sayyaparaju, S.—
Gooding, A.—Iyer, R.—Shinde, A.—Lopatic, T.: Aerospike: Architecture
of a Real-Time Operational DBMS. Proceedings of the VLDB Endowment, Vol. 9,
2016, No. 13, pp. 1389–1400, doi: 10.14778/3007263.3007276.

[52] Srivastava, P. P.—Goyal, S.—Kumar, A.: Analysis of Various NoSQL
Database. 2015 International Conference on Green Computing and Internet of Things
(ICGCIoT), IEEE, 2015, pp. 539–544, doi: 10.1109/icgciot.2015.7380523.

[53] Subramaniyaswamy, V.—Vijayakumar, V.—Logesh, R.—Indragandhi, V.:
Unstructured Data Analysis on Big Data Using Map Reduce. Procedia Computer
Science, Vol. 50, 2015, pp. 456–465, doi: 10.1016/j.procs.2015.04.015.

https://doi.org/10.1108/17440081311316398
https://doi.org/10.1016/j.cirp.2013.05.002
https://doi.org/10.1186/s40537-018-0130-y
https://doi.org/10.1016/j.procs.2015.05.367
https://doi.org/10.1016/j.procs.2015.04.027
https://doi.org/10.1145/1227504.1227498
https://doi.org/10.5815/ijitcs.2016.12.07
https://doi.org/10.1016/j.is.2015.03.009
https://doi.org/10.14778/3007263.3007276
https://doi.org/10.1109/icgciot.2015.7380523
https://doi.org/10.1016/j.procs.2015.04.015

520 A. Faridoon, M. Imran

[54] Tahmassebpour, M.: A New Method for Time-Series Big Data Effective Storage.
IEEE Access, Vol. 5, 2017, pp. 10694–10699, doi: 10.1109/access.2017.2708080.

[55] Tulchinsky, I.: The Age of Prediction. WorldQuant Journal, 2017.

[56] Wang, C.—Zhu, Y.—Ma, Y.—Qiu, M.—Liu, B.—Hou, J.—Shen, Y.—
Shi, W.: A Query-Oriented Adaptive Indexing Technique for Smart Grid Big
Data Analytics. Journal of Signal Processing Systems, Vol. 90, 2018, No. 8-9,
pp. 1091–1103, doi: 10.1007/s11265-017-1269-z.

[57] Wang, J.—Wu, H.—Wang, R.: A New Reliability Model in Replication-Based
Big Data Storage Systems. Journal of Parallel and Distributed Computing, Vol. 108,
2017, pp. 14–27, doi: 10.1016/j.jpdc.2017.02.001.

[58] White, M.: Digital Workplaces: Vision and Reality. Business Information Review,
Vol. 29, 2012, No. 4, pp. 205–214, doi: 10.1177/0266382112470412.

[59] Wilcox, T.—Jin, N.—Flach, P.—Thumim, J.: A Big Data Platform for Smart
Meter Data Analytics. Computers in Industry, Vol. 105, 2019, pp. 250–259, doi:
10.1016/j.compind.2018.12.010.

[60] Wu, H.—Zhu, Y.—Wang, C.—Hou, J.—Li, M.—Xue, Q.—Mao, K.:
A Performance-Improved and Storage-Efficient Secondary Index for Big Data Pro-
cessing. 2017 IEEE International Conference on Smart Cloud (SmartCloud), 2017,
pp. 161–167, doi: 10.1109/smartcloud.2017.32.

[61] Yassien, A.W.—Desouky, A. F.: RDBMS, NoSQL, Hadoop: A Performance-
Based Empirical Analysis. Proceedings of the 2nd Africa and Middle East Con-
ference on Software Engineering (AMECSE ’16), ACM, 2016, pp. 52–59, doi:
10.1145/2944165.2944174.

[62] Zheng, X.—Fu, M.—Chugh, M.: Big Data Storage and Management in SaaS
Applications. Journal of Communications and Information Networks, Vol. 2, 2017,
No. 3, pp. 18–29, doi: 10.1007/s41650-017-0031-9.

[63] Pan, Z.—Zhao, L.: Application and Research of Massive Big Data Storage Sys-
tem Based on HBase. 2018 IEEE 3rd International Conference on Cloud Com-
puting and Big Data Analysis (ICCCBDA), 2018, pp. 219–223, doi: 10.1109/icc-
cbda.2018.8386515.

https://doi.org/10.1109/access.2017.2708080
https://doi.org/10.1007/s11265-017-1269-z
https://doi.org/10.1016/j.jpdc.2017.02.001
https://doi.org/10.1177/0266382112470412
https://doi.org/10.1016/j.compind.2018.12.010
https://doi.org/10.1109/smartcloud.2017.32
https://doi.org/10.1145/2944165.2944174
https://doi.org/10.1007/s41650-017-0031-9
https://doi.org/10.1109/icccbda.2018.8386515
https://doi.org/10.1109/icccbda.2018.8386515

Big Data Storage Tools Using NoSQL Databases and Their Applications 521

Amen Faridoon is currently Ph.D. student in computer scien-
ce at the University College Dublin in Ireland. She received
her Bachelor’s degree in computer science from the Govt. Girls
Post Graduate College No. 1, Abbottabad, Pakistan in 2018.
She then worked as Research Assistant at National Centre for
Physics, Islamabad, Pakistan in 2019. Her research interests
include machine learning, big data, data mining and cloud com-
puting.

Muhammad Imran received his Ph.D. degree in electronic en-
gineering from the Dublin City University, Ireland, in 2017. He is
currently working in CMS Offline Computing Group at CERN,
Geneva, Switzerland since October 2019. In addition, he holds
a permanent position as Senior Scientific Officer in the National
Centre for Physics, Pakistan since July 2008. His research inter-
ests include cloud computing, cluster computing, big data, data
science, software engineering, SDN, and optical networks.

Computing and Informatics, Vol. 40, 2021, 522–542, doi: 10.31577/cai 2021 3 522

A DECENTRALIZED AUTHORITATIVE
MULTIPLAYER ARCHITECTURE FOR GAMES
ON THE EDGE

Aleksandar Tošić

University of Primorska, The Andrej Marušič Institute
Muzejski Trg 2, 6000 Koper, Slovenia
&
Innorenew CoE
e-mail: aleksandar.tosic@upr.si

Jernej Vičič

University of Primorska, The Andrej Marušič Institute
Muzejski Trg 2, 6000 Koper, Slovenia
&
Research Centre of the Slovenian Academy of Sciences and Arts
The Fran Ramovš Institute
e-mail: jernej.vicic@upr.si

Abstract. With the ever growing number of edge devices, the idea of resource
sharing systems is becoming more appealing. Multiplayer games are a growing
area of interest due to the scalability issues of current client-server architectures.
A paradigm shift from centralized to decentralized architectures that would allow
greater scalability has gained a lot of interest within the industry and academic
community. Research on peer to peer network protocols for multiplayer games was
mainly focused on cheat detection. Previously proposed solutions address the cheat
detection issues on a protocol level but do not provide a holistic solution for the
architecture. Additionally, existing solutions introduce some level of centralization,
which inherently introduces single point of failures. We propose a blockchain-based,
completely decentralized architecture for edge devices with no single point of failure.
Our solution relies on an innovative consensus mechanism based on verifiable de-
lay functions that additionally allows the network to derive verifiable randomness.

https://doi.org/10.31577/cai_2021_3_522

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 523

We present simulation results that show the assignment of players and referees to
instances is pseudo-random, which inherently prevents collusion-based cheats and
vulnerabilities.

Keywords: Edge computing, consensus, peer to peer, network protocol, multi-
player games, blockchain

Mathematics Subject Classification 2010: 68T50

1 INTRODUCTION

The gaming industry is worth almost 135 billion at the time of writing [7]. The same
source predicts a steady 10% growth in the next 2 years, reaching 180 billion by the
end of 2021. The recent trends toward multiplayer games have been very successful
with games like Fortnight earning more than 2.4 billion in revenue in 2018 alone [26].
Steam, the biggest game distribution platform reported it serves as much as 18.5
million clients concurrently. Cloud computing enabled servers need to be migrated
real time in order to meet the demand of clients. Additionally, network latency was
reduced due to localisation approaches where servers are spawned geographically
close to clients if possible. However, maintaining a player base of thousands or
even millions together with the hardware and software infrastructure is both very
expensive and difficult to maintain [29]. The recent idea of a “sharing economy” can
be applied in tandem with the paradigm shift to edge computing. More specifically,
clients on the edge of the system can profit from sharing resources, such as bandwidth
and computing power, thereby releasing the burden on centralized servers.

This can be achieved by using a peer to peer (P2P) architecture. P2P gaming
architectures have been studied extensively but have not been widely adopted [29].
The main issues are closely related to the lack of authority and trust. Centralized
architectures solve these issues with authoritative servers. The server’s tasks are to
simulate game play, validate and resolve conflict in the simulation, and store the
game state. P2P multiplayer architectures were previously able to address some of
the cheating vectors but required some level of centralization.

More recently, blockchain technology has gained a significantly large interest.
Research in cryptography and fault tolerant consensus mechanisms has been driving
the evolution of decentralized P2P systems.

The already available schemes that, at least theoretically, address most of the
identified cheats in distributed gaming architectures RACS [28] and Goodman [12]
still retain a central authority either to store the game state or as a refereeing
authority and, thus, still retain the Single Point Of Failure – (SPOF) [8] property.
Our research presented in this paper mostly focuses in the elimination of the SPOF
but still being able to successfully address the same set of cheats. We were able to

524 A. Tošić, J. Vičič

achieve the set goals and were even able to partially address the Collusion cheat, as
described in Section 5.7.

2 STATE OF THE ART

Baughman et al. [3] propose an improvement of their lock-step protocol [2] Asyn-
chronous Synchronization (AS), the first protocol for providing cheat-proof and fair
play-out of centralized and distributed network games. The protocol also provides
implicit robustness in the face of packet loss. At proving the correctness of their ap-
proach, they make a number of assumptions: there exists a reliable channel between
all players; all players know of all other players; players are able to authenticate
messages from each other player; and all players wait only a finite time before mak-
ing decisions and revealing commitments. Their approach can be implemented in a
true peer-to-peer fashion, thus eliminating the SPOF, but, as it can be seen from
Table 1, the approach is not immune to Replay/Spoof cheat [28].

GauthierDickey et al. [11] present a protocol designed to improve on lock-step
protocol [2] by reducing latency while continuing to prevent cheating. They achieve
this by adding a voting mechanism to compensate for packet loss in the environment.
They call this protocol New Event Ordering (NEO).

Corman et al. [6] present SEA protocol and argue that it outperforms NEO
algorithm in all cheat prevention properties; further, they present three possible
cheats that the NEO protocol fails to address: Attacker can replay updates for
another player. Attacker can construct messages with any previously seen votes
attached. Since the votes are signed, the messages will appear to come from another
player. Attacker can send different updates to different opponents.

Cronin et al. [14] present SP protocol which addresses the late-commit cheat
and presents a performance improvement on the existing protocols (lock-step).

Goodman [12] proposes IRS hybrid C/S – P2P design; it operates by routing
request messages through a centralized server and relaying them to proxy clients,
a secure method by which it is certain that the requesting and proxy clients received
the same message. The proxy clients perform calculations for others, relieving the
server of the calculation burden. The code of the IRS approach relies on identifying
malicious clients. This can be done with a certain probability and can still lead to
cheat exploits.

Pellegrino and Dovrolis [20] propose a change from Client-Server architecture to
Peer-to-Peer with Central Arbiter architecture (PP-CA) that contains server band-
width requirements when increasing number of players, effectively solving the biggest
scalability problem. The system still retains the SPOF in the form of the centralized
arbiter. The paper focuses entirely on the elimination of the bandwidth problem
and does not deal with any cheats; actually, it introduces a new form of cheating
(e.g., blind opponent – BO, discussed in Section 3).

Webb et al. [28] compare all algorithms and show that all the previous dis-
tributed protocols and schemes are vulnerable to several cheats. Their proposed

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 525

scheme (RACS), which extends PP-CA [20], solves most of the problems but still
has the SPOF in the form of the Identity server and Referee: a process running on
a trusted host that has authority over the game state.

Most of the presented protocols are SPOF-free as they address only the P2P
communication protocol but are vulnerable to cheats, as can be seen on Table 1.
The RACS and IRS address most of the cheats but reintroduce the SPOF. Our
scheme eliminates the SPOF problem and still retains all the properties described
in RACS [28] and at least partially deals with the Collusion cheat that, at least in
our opinion, cannot be eliminated by means of protocols and technology.

3 CHEAT TAXONOMY

In this article, we use the definition of Yan and Randel [30] for online game cheating:
“Any behaviour that a player uses to gain an advantage over his peer players or
achieve a target in an online game is cheating if, according to the game rules or
at the discretion of the game operator (i.e., the game service provider, who is not
necessarily the developer of the game), the advantage or the target is one that he is
not supposed to have achieved.” Cheaters try to gain unfair advantage over other
players. This can totally destroy the in-game economics of an online game or simply
ruin the gaming experience. Grievers, as the name implies, are players with the
sole intention of hurting other players’ experience as much as possible. When this
behaviour adheres to game rules, it is technically not a form of cheating and is out
of scope of this paper. Both groups exploit the same set of cheats.

The taxonomy presented in Table 1 and accompanying text and later used in this
paper follows the taxonomy presented in Web et al. [28] and Yahyavi et al. [29], we
added 3 additional entities, 2 were not addressed by the previous research (Robust-
ness and User data privacy), the last one (Lack of Devices Situation) is a consequence
of our approach and not applicable to other architectures. It is addressed later in this
section. Multiple authors addressed the issue of systematic classification of cheating
in online games, such as Yan and Randel [30] who present a taxonomy of 15 types
of cheats and just by comparing the number of entries we could assume that the
later introduces additional forms. We argue that the set of cheats presented in our
paper fully covers the whole set presented in Yan and Randel [30] with the addition
of two new entries that are discussed separately. The translations are presented in
Table 1 in the second column. The “Cheating by compromising passwords” can be
classified as “Social engineering” class and as such omitted. We argue that these
two entries cannot be successfully addressed by the game architecture, they must
be addressed mostly by informing the players.

1. Bug – bugs in games can lead to potential misuse by the players. No scheme
directly addresses this problem, it is assumed that the bugs will be fixed by
software developers.

2. IE, IC – the goal of IE (Information Exposure) is to obtain secret information to
which the cheater is not entitled, thus gaining an unfair advantage in selecting

526 A. Tošić, J. Vičič

Yan Problem/Cheat RACS IRS C/S AS NEO Damage

1 L Bug
√ √ √ √ √ √

2 A, F, H IE, IC
√ √ √

× ×
√

3 Bots × × × × × ×
4 A, C, F Supp. update, TS, FD

√ √ √ √ √ √

5 A, F, H Replay, Spoofing
√ √ √

×
√ √

6 A, D, F, H Undo n/a n/a n/a
√

× n/a

7 A, C, F, H BO
√ √

n/a n/a n/a
√

8 G DDoS
√ √ √ √ √ √

9 B Collusion × × × × ×
√1

10 M, Robustness × × × × ×
√

11 J User data privacy
√ √ √

× ×
√

12 Lack of Devices Situation n/a n/a n/a n/a n/a
√

13 E Exploiting AI n/a n/a n/a n/a n/a n/a

14 I, O Social Engineering n/a n/a n/a n/a n/a n/a∗

Table 1. Chart presenting all identified cheats and schemes for detection and removal.
The n/a is given to a scheme that does not have to deal with the observed cheat for
implicit reasons (mostly architectural).

the optimal action. The IC (Invalid Command) cheat occurs when an applica-
tion or data files are modified to issue commands or command parameters that
originally could not be generated.

3. Bots – programs that act as players can be introduced to the game. The pro-
grams can exercise number of cheats including Collusion.

4. Supp. update, TS, FD – A cheater can suppress sending the state update, send
the updates at a slower rate (FD) to gain advantage or incorrectly timestamp
messages to gain advantage.

5. Replay, Spoofing – a player can obtain advantage by replicating messages by
means of local software instead of using the tools provided by the game (example:
sending impossibly fast series of missiles).

6. Undo – a player succeeds to undo a previously sent message after already re-
ceiving the opponents message and realizing that the original message was not
optimal.

7. BO – in distributed schemes that use a Central Arbiter (CA), such as PP-
CA [20], cheater may purposely withhold updates to his peers (but not to the
CA), effectively covering own actions.

8. DDoS – a (cheating) player may use DDoS [17] attack to temporally disable the
opponent to send messages and thus get advantage.

9. Collusion – unfavorable situation may occur whereby certain clients cooperate
with one another in order to gain unfair advantage over others. Collusion via
the use of external communication is difficult to eliminate due to the use of
non-monitored means of communication [12].

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 527

10. Robustness – The robustness metric shows how much is the system or scheme
or protocol fault tolerant (how much it is tolerant to node failure, at the worst
to server node failure). The basic Client-Server architecture is the least robust
and totally decentralized system is the most robust.

11. User Data Privacy – user profiles with scoring and possibly in-game funds and
purchases are stored for future use. Client Server architectures use the server as
a means for reliable storage, distributed systems have to deal with security risks
as the data is spread on the network or stored locally at clients an thus easily
available for tempering.

12. Lack of Devices Situation – all schemes that rely on an outer referee (an external
entity that is not part of the game) rely on the availability of the referee. In
decentralised architectures where refereeing is done by other players, the scheme
relies on availability of adequate number of players.

13. Exploiting AI – Exploiting artificial intelligence (AI) cannot be handled within
the protocol or the architecture. The idea that a player can use an AI to improve
its decision making in a game is not possible to detect on the protocol level.

14. Social Engineering∗ – social engineering is a very broad term. Generally, it in-
volves using social information about a player to trick the person into revealing
sensitive information pertaining to a game, i.e. passwords. Our protocol uses
ECDSA public cryptography, and does not require passwords. The authentica-
tion is not necessary as messages exchanged between players are all signed and
verified.

4 DECENTRALIZED ARCHITECTURE FOR THE EDGE

Previously proposed P2P architectures rely on some level of centralization. We pro-
pose a completely decentralized architecture for edge devices that would inherently
circumvent the single point of failure (SPOF). In contrast to client-server (C/S)
architectures, where the server is authoritative, P2P networks are arguably more
exposed to cheats and vulnerabilities. To address the issues Web et al. propose
RACS [28], a referee node that takes the authoritative role in case of conflicting or
inconsistent states between players.

However, RACS does not address issues of node selection. In completely decen-
tralized networks, deriving secure randomness is an open question. From a security
point of view, a decentralized random generator must not be known in advance to
avoid attacks and vulnerabilities based on information exposure (IE). At the time of
writing, most networks rely on oracle networks secured with game theoretical incen-
tive schemes [21, 10]. However, the security models for such systems require strong
incentives, which are mostly based on staking mechanisms that introduce penalties
for bad actors and rewards for good actors [13]. A recent paper proposed a mathe-
matical construction for verifiable random functions (VDF) [4], an extension of time
lock puzzles [22] that produce verifiable proofs of computation. More specifically,

528 A. Tošić, J. Vičič

VDFs are similar to time lock puzzles but require a trusted setup where the verifier
prepares each puzzle using its private key. Additionally, a difficulty parameter can
be adjusted to increase the amount of sequential work, thereby increasing the delay.
The proof can be used as an entropy pool for a seeded random to derive randomness
within a decentralized system while preventing attacks based in IE. We solve the
requirement for a trusted set up (private key of the VDF) by using a blockchain
structure. Blocks have a configurable block time parameter, which is used to adjust
the difficulty parameter of the VDF, to target the block time. The consensus algo-
rithm is a novel lottery draw scheme, where nodes draw lottery tickets in order to
be voted as block producers.

Suppose the current block is H at height (canonical id) h. The block hash of
blockH is used to compute the VDF and obtaining proofHp. Each node n ∈ N then
draws its own lottery ticket Ht, which is defined as the distance between the node’s
public key, andHp. Since all nodes share the sameHp, and all nodes (asymptotically)
computed Hp at the “same” time, the lottery draw is not predictable. A node is
elected to be part of the validator set if Ht is within the v closest tickets, where v is
a configurable parameter usually set to P

PPI
, where P is the total number of players,

and PPI is the number of players per instance. Nodes that belong to the validator
set are considered referees, and block producers for block H + 1. The structure of
the block is shown in Figure 1.

Previous block
hash

Current block
hash VDF_proof Validator

signatures

Scores for games
ended

Players assigned to
instances

Players waiting to join Cheaters detected

i1(key,score)
i2(key,score)

.

.
in(key,score)

i1:(key1,...key n)
i2:(key2,...key n)

.

.
in:(keyn,...key n)

pub_key1

pub_key2

.

.
pub_keyn

(i1,b_key)1
(i2,b_key)2

.

.
(in,b_key)n

Figure 1. The Header of a block contains the previous block hash, current block hash,
VDF proof, and signatures of all validators that signed the block. The body of the block
contains a list of game instances that completed (combination of players public addresses),
and their scores, a list of players waiting to join the next round (block), and a list of
instances with assigned players that were in the waiting queue of the previous block.

Players are uniquely identified by their public key. Each player generates a pub-
lic-private key pair before connecting to the P2P network. Upon joining the network,

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 529

players synchronize the last block to find the validator set. Querying the Distributed
Hash Table – DHT [25], a node connects to the one or more validators to broadcast
their intent to join a game. Once consensus is reached amongst the validators, a new
blockH will be forged that will include the player’s public key in the players awaiting
list. Players will receive block H, learn about their inclusion to the awaiting list,
and wait for block H + 1. Note that the target block time is configurable with
the VDF difficulty and should be set by the game operator. Upon receiving block
H + 1, the players’ public key will be assigned to an instance. Each instance has
a unique ID, which is obtained by concatenating the public keys of players assigned
to the instance. Each player parses the instance ID to obtain the public keys of
opponents and connects to them by querying the DHT (with the public key) for
their address. The last address of the instance ID is the assigned validator that will
assume the role of the referee. Once the instance is resolved (game finished), the
referee (also a validator) will inform all other validators and propose the inclusion of
the decision/score in the next block. Validators will vote on the proposed block by
signing it with their public key. Clients can verify their signature using their public
key. In case a referee of an instance detected a cheater, a proof can be sent to the
set of validators for confirmation. The details of how this is achieved are explained
in detail in Section 5.

A candidate block H+1 is then transmitted (using gossip protocol) [15] through
the P2P network. Each client accepts the block if and only if the block references the
local block hash at height h, the provided proof Hp is valid, and the candidate block
contains signatures of all validators whose public keys can be computed by each
node using Hp. The nodes that are part of the validator set execute a matchmaking
algorithm that must be deterministic (but can rely on randomness derived from
Hp) and can use the previous block as input (list of players wanting to join). The
matchmaking algorithm assigns player to game instances, and referees from the
validator are set to act as authoritative nodes. The deterministic nature of the
matchmaking algorithm is used to reach consensus amongst the validator nodes.
The consensus is reached as all honest nodes will construct the same candidate block
and will sign all candidate blocks equal to theirs. The result will be a candidate
block signed by the majority of validators.

The construction assumes validators, referees, and players to be players. How-
ever, a set T of trusted nodes is required and assumed to be maintained by the
game maintainers. These nodes are called full-nodes and are necessary to guaran-
tee liveliness of the system even in extreme cases where there are no players in the
network. Full-nodes are also responsible for permanently storing the blockchain and
maintaining a DHT-based structure other nodes can query to discover other peers.
Players are assumed to be lite clients that do not need to store the entire blockchain
history in order to participate in the consensus [27]. Additionally, referees are as-
sumed to be players as well. The matchmaking algorithm should avoid assigning
players to be referees to their own game instance.

Each game can have one referee, which arguably decreases the robustness. All
decisions about conflicts proposed by a referee must be presented to the validator

530 A. Tošić, J. Vičič

set in order to reach consensus and gather enough signatures to make the block
valid. However, the referee can unexpectedly disconnect or even worse, be attacked
by a player during the game. To circumvent this issue, any number of validators
can be assigned as backups in case the referee is unresponsive.

Referees in DAMAGE are running the same protocol as RACS. However, in
case a referee detects a cheating player, the proof (usually a set of states that allow
validators to recreate/simulate the game) must be presented to the set of validators
(also RACS referees). Consensus is reached if and only if 2

3
validators agree [5].

Decisions about the proposed cheat detected is done by voting for the block. Each
block contains a list of (public key, instance key) pairs and the type of cheat detected.
Assuming the validator is honest, and the referee proposing the detected cheat is
as well, both validators will reach the same conclusion and thus sign the block. In
any other case, the block will only be signed by the malicious validator. Proposals
that do not reach consensus are considered invalid blocks and will be rejected by
the client protocol. A subset of nodes (without the majority vote) running modified
clients may choose to accept the invalid block, thereby forking the chain [1]. In such
cases, the next block would either resolve the fork if it is accidental or disconnect
(network level) the subset of nodes with the modified protocol due to an invalid
VDF proof on the forked chain.

5 SECURITY MODEL

All communication between peers provides the same level of security to that of
C/S architectures by using public key (ECDSA) cryptography. DAMAGE provides
a secure and completely decentralized protocol for selecting referees, and match
players to game instances. However, the player and referee protocols are based on
RACS [28] and therefore DAMAGE inherits cheat detection properties of RACS,
and extends them with efficient and secure peer selection, peer synchronization,
robustness, and some aspects of collusion.

5.1 Referee Selection

We address the issue of Referee selection by using VDF to derive randomness with
which a lottery-based consensus is reached. The sequential nature of VDFs prevents
IE attacks where a player would compute the VDF and, using the proof, obtain
information about which nodes are part of the validator set and which node is
assigned as the main referee to each game. Game operators should set the difficulty
parameter according to their desired performance/security ratio. A more difficult
VDF will result in players waiting to be matched to an instance longer (i.e., a few
seconds), while a lower difficulty will potentially allow malicious players to discover
the nodes that will be within the set of validators before others. We argue that
knowing the set of validators and, consequently, the referee node for a game does
not give the player a competitive advantage. This is further explained in the case
of collusion.

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 531

5.2 Referee Trust

In RACS scheme referee nodes are assumed trustworthy (the authors acknowledge
this to be an open issue). We solve this issue with the validator set. Even if a RACS-
based referee is compromised, any player can dispute the referee and seek a decision
by consensus within the set of validators. The player would then have to compromise
2
3
nodes in the validator set, which is not known in advance and changed every block.
Instead of using only one referee per game, we propose to establish a Referee set

(validator set of referees) that. Additionally, the cardinality of the validator set is
a configurable parameter analogous to the trust level required by the game (higher
trust requires bigger cardinality).

5.3 Synchronization

On the data layer, nodes synchronize through the blockchain. Blocks store the
current state of the system on lite clients and the entire history on full-nodes main-
tained by the game operators. Blocks are gossiped across the network efficiently by
maintaining a DHT that maps nodes (public keys) to their network addresses. Ad-
ditionally, referees in the validator set must synchronize and reach consensus about
the detected cheats and results of the games played. Due to the deterministic nature
of the cheat detection algorithms, honest nodes will reach the same decision as the
referee that reported the cheat. Consensus is reached if the majority of the validators
sign the proposed block (which includes the decision about reported cheats).

5.4 Robustness

DAMAGE uses redundancy to increase fault tolerance. There are two main types of
faults that can occur. A peer can fail (disconnect or violate protocol) before, after
or during playing the game, and a peer acting as a referee (and also as a player in
a different game) fails at the same time.

Player faults after entering matchmaking: A peer that faults after it an-
nounced inclusion to the validator set will cause the validators to match its pub-
lic address to an instance. Other peers attempting to connect will fail and/or
result in protocol violation. It is up to the client protocol to decide if the game
instance can continue to run without the faulty peer or not. In case the instance
must be destroyed, this can be trivially solved by extending the referee’s proto-
col to label this as a “cheat”. The referee will announce the instance destruction
to the validator set.

Player faults during the game: If possible, the game instance should keep run-
ning. If not possible, the referee should notify the validator set about the de-
struction.

Player faults after the game: No effect on the system.

532 A. Tošić, J. Vičič

Faulty validators (referees) are arguably a bigger security issue. Even without the
ability for players to know which referee will be assigned to their instance there
is still a possibility of DDoS attacks on referees during the game. To combat this
issue, validators form a randomly shuffled priority queue using the VDF proof. The
priority queue is a backup queue of referees that will take over an instance in case
the referee assigned faults. The fault tolerance can be increased on demand by
increasing the size of the validator set. However, detecting a faulty referee must be
done by peers playing in the instance. If messages from peer to referee are either
latent or connection is dropped, client protocol will take the following steps:

1. Set up a seeded random with the latest block (local) of the VDF proof.

2. Compute the lottery draw results to find the public keys of the validator set.

3. Shuffle the validator set list with the same seed.

4. Contact the next validator (backup referee for its game).

5.5 User Profile Management

Previous research relied on a central authority for authenticating users and manag-
ing their profiles such as avatars, variables, and metadata. Our architecture can be
extended with a completely decentralized storage and authentication service, a cen-
tralized authoritative server as well as inter-operability between both. A blockchain-
based authentication service can be built in by extending the block structure [18].
Additionally, blocks can be used for persistent immutable storage. However, storing
data in blocks raises scalability issues [31, 24] as the blockchain becomes hard to
maintain even for full nodes. Hybrid approaches have been proposed where data
is stored centrally whereas the signatures are stored on-chain [31]. This creates
a tamper-proof system where data can be verified and trusted as any attempt to
tamper with the data would invalidate the signature (hash) [24].

5.6 Lack of Devices Situation

The refereeing process relies on a set of validators that are randomly chosen for
each block time-cycle. The randomness of selection ensures that a player cannot
know who is refereeing the next game. Player’s devices are used to act as validators.
The pool of validators cannot be constructed if there are not enough players. It
is developers’ or game operator’s task to supply enough (a fixed number that does
not grow with player-base) resident secure services (servers) that act as starting
validators. These actors also maintain the blockchain (full nodes).

5.7 Collusion

Assuming the game runs multiple instances, we argue collusion between players is
not possible. We assume colluding players know and, hence, trust each other.

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 533

Figure 5 shows a graph of a simulation of 200 players as nodes. The edges
represent the number of games (weight) a player was assigned another player as
the referee for the instance the player was matched to. Simulating 1 000 blocks,
the average degree was 200, and the graph density was 1. We observe that the
assignment of a referee and opponents derived using the VDF proof are thereby
random. Hence, players cannot know in advance which instance the set of validators
will assign them to nor the referee that will observe the game. Section 6.2 and
Figure 5 present an empirical evaluation of the “fairness” of the selection method
based on VDF. Suppose the colluding players are able to compute the VDF proof
faster then other players, and, hence, learn about the game instance assignment in
advance. However, since the seed for the next VDF is the block hash, the colluding
players can see at most one block time into the future. Every player must announce
the desire to be matched to a game in the current block (players awaiting list).
Matching awaiting players will be executed in the next block. Despite the ability to
see one block in the future, colluding players seek assignment to the same instance
since they must announce their willingness to play before they learn about the
instance assignment even in the worst case scenario.

6 EVALUATION

The paper presents a scheme to eliminate all known cheats in a fully distributed game
setting. The scheme eliminates the SPOF problem in previously presented hybrid
P2P – Referee settings for solving game cheats. We base our solution on already
presented solutions, mostly RACS [28]. We present simulation results leading to the
following conclusions:

• The VDF based selection of referees and players is fair.

• The block propagation scales well.

• Block propagation times are acceptable for fast match making, and conflict
resolution.

• Dynamic block size does not impact performance of the system.

• Players do not need to maintain a large number of outgoing connections.

• Latency and bandwidth do not substantially slow down information propagation
through the network.

The scalability of the solution is addressed in two ways. The first is the scalability
of the consensus mechanism and the ability to propagate state and state transition
depending on the block size. In this test we show that the solution can scale to
hundreds of thousands of nodes and achieve consensus.

The second scalability test is performed by introducing variance in latency and
bandwidth to mimic the instability of home internet connections under standard
TCP/IP parameters.

534 A. Tošić, J. Vičič

Since every player is also a node, and potentially a referee, we argue that scal-
ability in terms of number of players can be derived by the aforementioned tests.
Additionally, due to the nature of the P2P architecture, once players are matched
into a game instance, the entire communication is done solely between them, and the
referee of that instance, which is completely independent of the rest of the network,
and hence does not impact the scalability.

In order to evaluate the solution a simulation environment was developed. We
simulate a P2P network where each peer (player) has the following constraints:

• Local bandwidth constraints. Bandwidth constraints are assigned to peers join-
ing the network based on the distribution obtained from the European report
on network bandwidth [9].

• Maximal number of outgoing connections (out edge degree) is assigned to nodes
(MAE), we ran tests with different values of this parameter, they are color-coded
in Figure 3.

• Each node’s connection is single-directional taking into account upload and
download bandwidth constraints of sender and receiver.

• Each new connection is assigned a round trip time (RTT) to represent variance
in latency. RTT values are assigned randomly fitting a Gaussian distribution
on an interval [30, 250]ms, the values were taken from the European report on
network bandwidth [9].

• Actual throughput of each connection is estimated using the Mathis metric [16]
with following parameters that were taken from real-life situations: maximum
segment size (MSS) of 1460 bytes (most used in today’s communications as
shown in papers such as [23]), the connection’s RTT, and a TCP packet loss
probability of p = 1.0 ∗ 10−5 [19].

Nodes (players) join the network by connecting to one of the trusted nodes. Trusted
nodes are those operated by the game maintainer and serve only as the entry point
for new peers to discover other peers or if needed to persistent storage for player
accounts. A node proceeds to run the peer discovery protocol building the DHT.
When new nodes are discovered, the peer attempts to make new connections until
theMAE limit is reached and the node is considered to be well connected. Examples
of different architectures (presented by connected directed graph) for 20 nodes are
presented in Figure 2.

Once a new block is forged the origin nodes propagates the block using a ba-
sic flooding algorithm simulating the bandwidth, and TCP constraints. In each
simulation, multiple directed graphs are constructed following the above protocol.
Simulations were carried out with different number of nodes to observe the scalabil-
ity of the solution. We measure propagation time as the total time it takes for all
nodes to receive a newly forged block.

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 535

a) b)

c) d)

Figure 2. Examples of different architectures obtained by simulation. Number of nodes
in all examples is n = 20.

536 A. Tošić, J. Vičič

6.1 Block Propagation Times

Blocks hold the state of the match making and games being played. Lowering
the block time (VDF difficulty) would result into a more responsive experience.
However, lower block times reduce security, and can cause network congestion. To
avoid possible client synchronization issues the network must be able to reliably
propagate blocks before new ones are forged. Additionally, the propagation times
vary depending on the network topology, block sizes, and average node degree.
We evaluate the scalability of propagating blocks in order to estimate viable block
times, and show the scalability of the solution. From Figure 3 we observe that
propagation times scale logarithmic as we increase the number of clients. Addi-
tionally, increasing the number of outgoing connection a node maintains reduces
the average propagation times as it reduces the risks of unfavorable graph typolo-
gies.

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100

Node Count (1000's of nodes)

B
lo

ck
 P

ro
po

ga
tio

n
T

im
e

(m
s)

Out Degree
2

3

4

5

6

7

8

9

Group Mean Out degree

Figure 3. Simulation of block propagation on different graph configurations. Configura-
tions are obtained by increasing the node count (number of players), and out degree using
a block size of 1MB.

Block size scales lineally with the number of clients. Every block has a constant
size for the header, which is 64 bytes for previous and current block hash, 100 bytes
for the VDF proof, and at least one validator signature of 64 bytes. As more
players join the network, more games need to matched, assigned to instances, and
scores saved. Figure 4 shows how the network scales with different block sizes. We
observe that latency and bandwidth speeds of some nodes can cause considerable
propagation slowdowns indicated by some outliers. However, this can be mitigated
by having nodes maintain a dynamic number of outgoing connections increasing the

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 537

limit as blocks become larger (more players), and lowering the limit as blocks are
smaller.

10000

20000

30000

40000

0 20 40 60 80 100

Node Count (1000's of nodes)

B
lo

ck
 P

ro
po

ga
tio

n
T

im
e

(m
s)

Group Mean Block size

Block Size (MB)
2

3

4

5

6

7

8

9

Figure 4. Simulation of block propagation on different graph configurations. Configura-
tions are obtained by increasing the block size. Nodes were limited to 3 outgoing connec-
tions.

6.2 The VDF Based Selection of Referees and Players is Fair

Figure 5 shows a graph of a simulation of 200 players as nodes. The edges represent
the number of games (weight) a player was assigned another player as the referee for
the instance the player was matched to. Simulating 1 000 blocks, the average degree
was 200, and the graph density was 1. We observe that the assignment of a referee
and opponents derived using the VDF proof are thereby random. Hence, players
cannot know in advance which instance the set of validators will assign them to nor
the referee that will observe the game.

6.3 The VDF Method Scales Well

The setting presented in Section 6.2 and Figure 5 shows that the VDF based selec-
tion method is fair, the graph shows 200 players and 1 000 blocks, as this was the
maximum feasible number combination that was still manageable to visualize. The
setting was further evaluated with different parameters for the number of players,
number of players per game and number of blocks. The number n of players per
game: means a game where n players participate, Number of blocks: how much time
the matchmaking process was observed. We evaluated the setting with 200, 1 000

538 A. Tošić, J. Vičič

Figure 5. Simulation of 200 players in a 2-player game (PPI = 2) that played a total of
1 000 games. Nodes are players and edges represent instances where the destination node
was referee for the instance the player was matched to.

and 10 000 players, 1 000, 2 000 and 10 000 blocks, we also changed the number of
players per game. All results were consistent with the first test, the degree of all
players was near the number of players and the density of the graph was near 1.

7 CONCLUSION AND FURTHER WORK

The paper proposes a blockchain-based, completely decentralized architecture for
edge devices with no single point of failure that successfully addresses cheat prob-
lems. The presented solution is based on two hybrid approaches to P2P network
games anti-cheat schemes that were based of server acting as referees. We propose

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 539

a completely decentralised approach while still retaining the same cheat resistance,
actually in the case of Collusion we were able to partially address the issue. The pro-
posed solution has not been fully implemented, we implemented the newly proposed
building stones and executed empirical testing on a pilot setting. As the solution
addresses the cheating problem in all aspects, a fully functional implementation is
possible. DAMAGE is applicable to most game types. However, it is most suit-
able for turn based games, where potential latency does not impact user experience
dramatically. Additionally, it reduces the complexity of the referee implementation
due to the simple ordering of actions in the discrete time. Our results show, that
the architecture scales automatically with the number of players thereby drastically
reducing operation costs of running a multiplayer game. Every player added to the
system also becomes a node, sharing its resources and contributing to verification
as a potential referee.

Acknowledgment

The authors gratefully acknowledge the European Commission for funding the In-
noRenew CoE project (Grant Agreement No. 739574) under the Horizon2020 Wide-
spread-Teaming program and the Republic of Slovenia (Investment funding of the
Republic of Slovenia and the European Union of the European Regional Develop-
ment Fund).

REFERENCES

[1] Baliga, A.: Understanding Blockchain Consensus Models. Technical Report, Per-
sistent Systems Ltd., 2017, pp. 1–14.

[2] Baughman, N. E.—Levine, B.N.: Cheat-Proof Playout for Centralized and Dis-
tributed Online Games. Proceedings of the Twentieth Annual Joint Conference of
the IEEE Computer and Communications Society (INFOCOM 2001), Vol. 1, 2001,
pp. 104–113, doi: 10.1109/INFCOM.2001.916692.

[3] Baughman, N. E.—Liberatore, M.—Levine, B.N.: Cheat-Proof Playout for
Centralized and Peer-to-Peer Gaming. IEEE/ACM Transactions on Networking
(ToN), Vol. 15, 2007, No. 1, pp. 1–13, doi: 10.1109/TNET.2006.886289.

[4] Boneh, D.—Bonneau, J.—Bünz, B.—Fisch, B.: Verifiable Delay Functions.
In: Shacham, H., Boldyreva, A. (Eds.): Advances in Cryptology – CRYPTO 2018.
Springer, Cham, Lecture Notes in Computer Science, Vol. 10991, 2018, pp. 757–788,
doi: 10.1007/978-3-319-96884-1 25.

[5] Castro, M.—Liskov, B.: Practical Byzantine Fault Tolerance. Proceedings of the
Third Symposium on Operating Systems Design and Implementation, New Orleans,
USA, 1999, pp. 173–186.

[6] Corman, A.B.—Douglas, S.—Schachte, P.—Teague, V.: A Secure Event
Agreement (SEA) Protocol for Peer-to-Peer Games. First International Confer-

https://doi.org/10.1109/INFCOM.2001.916692
https://doi.org/10.1109/TNET.2006.886289
https://doi.org/10.1007/978-3-319-96884-1_25

540 A. Tošić, J. Vičič

ence on Availability, Reliability and Security (ARES ’06), 2006, 8 pp., doi:
10.1109/ARES.2006.15.

[7] Dobrilova, T.: How Much is the Gaming Industry Worth? Techjury, 2019.

[8] Dooley, K.: Designing Large Scale LANs: Help for Network Designers. O’Reilly
Media, Inc., 2001, 404 pp.

[9] European Court of Auditors: Broadband in the EU Member States: Despite Progress,
Not All the Europe 2020 Targets Will Be Met. Technical Report, European Court of
Auditors, 2018.

[10] Gatteschi, V.—Lamberti, F.—Demartini, C.—Pranteda, C.—
Santamaŕıa, V.: Blockchain and Smart Contracts for Insurance: Is the Technology
Mature Enough? Future Internet, Vol. 10, 2018, No. 2, Art. No. 20, 16 pp., doi:
10.3390/fi10020020.

[11] GauthierDickey, C.—Zappala, D.—Lo, V.—Marr, J.: Low Latency and
Cheat-Proof Event Ordering for Peer-to-Peer Games. Proceedings of the 14th In-
ternational Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV ’04), 2004, pp. 134–139, doi: 10.1145/1005847.1005877.

[12] Goodman, J.: A Hybrid Design for Cheat Detection in Massively Multiplayer Online
Games. M.Sc. Thesis, McGill University, Montréal, 2008.

[13] Heiss, J.—Eberhardt, J.—Tai, S.: From Oracles to Trustworthy Data On-
Chaining Systems. Proceedings of IEEE International Conference on Blockchain
(Blockchain 2019), 2019, pp. 496–503, doi: 10.1109/Blockchain.2019.00075.

[14] Jamin, S.—Cronin, E.—Filstrup, B.: Cheat-Proofing Dead Reckoned Multi-
player Games. Proceedings of 2nd International Conference on Application and De-
velopment of Computer Games, Hong Kong, 2003, pp. 1–7.

[15] Kwiatkowska, M.—Norman, G.—Parker, D.: Analysis of a Gossip Protocol in
PRISM. ACM SIGMETRICS Performance Evaluation Review, Vol. 36, 2008, No. 3,
pp. 17–22, doi: 10.1145/1481506.1481511.

[16] Mathis, M.—Semke, J.—Mahdavi, J.—Ott, T.: The Macroscopic Behavior of
the TCP Congestion Avoidance Algorithm. ACM SIGCOMM Computer Communi-
cation Review, Vol. 27, 1997, No. 3, pp. 67–82, doi: 10.1145/263932.264023.

[17] Mirkovic, J.—Reiher, P.: A Taxonomy of DDoS Attack and DDoS Defense Mech-
anisms. ACM SIGCOMM Computer Communication Review, Vol. 34, 2004, No. 2,
pp. 39–53, doi: 10.1145/997150.997156.

[18] Moinet, A.—Darties, B.—Baril, J.-L.: Blockchain Based Trust and Authen-
tication for Decentralized Sensor Networks. 2017, pp. 1–6, arXiv: 1706.01730, doi:
10.1109/wimob.2017.8115791.

[19] Moltchanov, D.: A Study of TCP Performance in Wireless Environment Using
Fixed-Point Approximation. Computer Networks, Vol. 56, 2012, No. 4, pp. 1263–1285,
doi: 10.1016/j.comnet.2011.11.012.

[20] Pellegrino, J.D.—Dovrolis, C.: Bandwidth Requirement and State Consis-
tency in Three Multiplayer Game Architectures. Proceedings of the 2nd Work-
shop on Network and System Support for Games, 2003, pp. 52–59, doi:
10.1145/963900.963905.

https://doi.org/10.1109/ARES.2006.15
https://doi.org/10.3390/fi10020020
https://doi.org/10.1145/1005847.1005877
https://doi.org/10.1109/Blockchain.2019.00075
https://doi.org/10.1145/1481506.1481511
https://doi.org/10.1145/263932.264023
https://doi.org/10.1145/997150.997156
http://arxiv.org/abs/1706.01730
https://doi.org/10.1109/wimob.2017.8115791
https://doi.org/10.1016/j.comnet.2011.11.012
https://doi.org/10.1145/963900.963905

A Decentralized Authoritative Multiplayer Architecture for Games on the Edge 541

[21] Peterson, J.—Krug, J.—Zoltu, M.—Williams, A.K.—Alexander, S.: Au-
gur: a Decentralized Oracle and Prediction Market Platform. 2015, pp. 1–16, arXiv:
1501.01042, doi: 10.13140/2.1.1431.4563.

[22] Rivest, R. L.—Shamir, A.—Wagner, D.A.: Time-Lock Puzzles and Timed-
Release Crypto. Technical Report, Massachusetts Institute of Technology, 1996,
pp. 1–9.

[23] Deering, S. R.H.: Internet Protocol, Version 6 (IPv6) Specification. RFC 2460,
RFC Editor, 1998.

[24] Shafagh, H.—Burkhalter, L.—Hithnawi, A.—Duquennoy, S.: Towards
Blockchain-Based Auditable Storage and Sharing of IoT Data. Proceedings of the
2017 on Cloud Computing Security Workshop (CCSW ’17), Dallas, Texas, USA, 2017,
pp. 45–50, doi: 10.1145/3140649.3140656.

[25] Stoica, I.—Morris, R.—Karger, D.—Kaashoek, M.F.—Balakrish-
nan, H.: Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. ACM SIGCOMM Computer Communication Review, Vol. 31, 2001, No. 4,
pp. 149–160, doi: 10.1145/964723.383071.

[26] Superdata: Market Brief – 2018 Digital Games and Interactive Entertainment Indus-
try Year in Review, 2019.

[27] Vorick, D.—Champine, L.: Sia: Simple Decentralized Storage. Nebulous, 2014,
pp. 1–8.

[28] Webb, S.—Soh, S.—Lau, W.: RACS: A Referee Anti-Cheat Scheme for P2P
Gaming. Proceedings of the 17th International Workshop on Network and Op-
erating Systems Support for Digital Audio and Video, 2007, pp. 34–42, doi:
10.1145/1542245.1542251.

[29] Yahyavi, A.—Kemme, B.: Peer-to-Peer Architectures for Massively Multiplayer
Online Games: A Survey. ACM Computing Surveys (CSUR), Vol. 46, 2013, No. 1,
Art. No. 9, 51 pp., doi: 10.1145/2522968.2522977.

[30] Yan, J.—Randell, B.: A Systematic Classification of Cheating in Online Games.
Proceedings of 4th ACM SIGCOMM Workshop on Network and System Support for
Games (NetGames ’05), 2005, pp. 1–9, doi: 10.1145/1103599.1103606.

[31] Zyskind, G.—Nathan, O.—Pentland, A. S.: Decentralizing Privacy: Using
Blockchain to Protect Personal Data. 2015 IEEE Security and Privacy Workshops,
2015, pp. 180–184, doi: 10.1109/SPW.2015.27.

http://arxiv.org/abs/1501.01042
https://doi.org/10.13140/2.1.1431.4563
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1145/964723.383071
https://doi.org/10.1145/1542245.1542251
https://doi.org/10.1145/2522968.2522977
https://doi.org/10.1145/1103599.1103606
https://doi.org/10.1109/SPW.2015.27

542 A. Tošić, J. Vičič

Aleksandar To�si�c is Teaching Assistant at the University of
Primorska, and Research Assitant at InnoRenew CoE. His main
research interests are distributed systems and distributed ledger
technologies.

Jernej Vi�ci�c is Associate Professor at the University of Pri-
morska, Primorska Institute for Natural Sciences and Technology
in Koper, Slovenia. His main research interests are distributed
systems and natural language processing.

Computing and Informatics, Vol. 40, 2021, 543–574, doi: 10.31577/cai 2021 3 543

REDUCER: ELIMINATION OF REPETITIVE CODES
FOR ACCELERATED ITERATIVE COMPILATION

Hameeza Ahmed, Muhammad Ali Ismail

Department of Computer and Information Systems Engineering
NED University of Engineering and Technology
Karachi, Pakistan
e-mail: {hameeza, maismail}@neduet.edu.pk

Abstract. Low Level Virtual Machine (LLVM) is a widely adopted open source
compiler providing numerous optimization opportunities. The discovery of the best
optimization sequence in this large space is done via iterative compilation, which
incurs substantial overheads, especially for big data applications operating on high
volume and variety datasets. The large search space is mostly comprised of identical
codes generated via different optimizations. However, no mechanism is implemented
inside the LLVM compiler to suppress the redundant testings. In this regard, this
paper proposes REDUCER for eliminating the identical code executions by per-
forming Intermediate Representation (IR) level comparisons. REDUCER has been
tested using the well-accepted MiCOMP technique in LLVM 3.8 and 9.0 compiler,
with embedded (cBench) and big data workloads. In comparison to MiCOMP 19.5 k
experiments, REDUCER lowers the experiment count up to 327, i.e. 98%, and on
average to 4 375, i.e. 77%, for cBench (LLVM-3.8). Similarly, for LLVM-9.0 the
reductions are up to 1 931, i.e. 90%, and on average 5 863, i.e. 69.9%. Due to the
significant experiment reduction, for embedded workloads, the iterative compilation
is up to 58.6× and on average 4.1× faster with REDUCER (LLVM-3.8) than Mi-
COMP, whereas, with REDUCER (LLVM-9.0) the compilation is up to 8.5× and
on average 2.9× faster. Moreover, REDUCER is found to be scalable and efficient
for big data workloads where the iterative compilation is reduced to few days, as
code is compared one time only for a single application tested on multiple datasets.

Keywords: Iterative compilation, code redundancy, LLVM, IR, big data

https://doi.org/10.31577/cai_2021_3_543

544 H. Ahmed, M.A. Ismail

1 INTRODUCTION

Low Level Virtual Machine (LLVM) [1] is an open source compiler infrastructure,
which is widely adopted due to high ease of use, flexibility, portability, and modular-
ity [1, 24, 23]. It features source and target independent Intermediate Representation
(IR) code, which allows numerous optimizations to be easily applied. Among the
millions of available optimizations inside LLVM, the suitable optimizations for the
given application, environment (architecture, OS, compiler), and dataset combina-
tion can be found by repeated execution of the program with each optimization,
commonly known as iterative compilation. The testing of this huge search space for
varying application, dataset, and environment incurs significant time and resource
overheads. These costs are especially exaggerated if the optimizations are tested for
big data applications [7], involving high volume and variety datasets [12]. In the
case of volume, each optimization sequence is executed with a large data size which
is more time-consuming than routine sizes. Similarly, in the case of variety, each
optimization is iteratively executed with multiple datasets, increasing the number
of runs.

Several techniques [14, 15, 3, 10, 11] have been proposed for reducing the search
space in LLVM. However, these techniques consider the identical codes as separate
optimization, hence increasing the overall search space due to redundant testings.
Although [20, 22, 19], emphasizes on reducing the search overhead by detecting iden-
tical codes. But, no such method has been practically adopted by LLVM compilation
techniques, for detecting identical optimization sequences. Instead, iterative compi-
lation is treated as a black box, and complex techniques are proposed for reducing
the search space.

The repeated code execution makes the process of iterative compilation infeasible
by unnecessarily increasing the number of experiments which ultimately leads to
heavy resource and time wastage. The overheads are especially inflated for big
data applications processing high volume and variety datasets [7, 12]. For instance,
an application has total 19.5 k optimized codes, with only 500 unique codes. If the
application is tested with large size data taking approx. 3 h, then 19.5 k∗3 = 58 500 h
approx. is required to find the best optimization sequence, having 19 k redundant
experiments. Whereas, if the unique 500 codes are detected at the start, then
only 500 ∗ 3 = 1 500 h + detection time is needed to search the best optimization.
Similarly, for testing the considered application with 5 varying datasets each taking
2 h, approx. 19.5 k∗2∗5 = 195 000 h is required with 19 k redundant tests. However,
if the redundant tests are suppressed, then only 500∗2∗5 = 5 000 h+detection time
is enough.

For reducing the LLVM optimization space, this paper proposes REDUCER,
which lowers the search space by detecting identical codes. It has been tested using
well-accepted Mitigates the Compiler Phase-ordering (MiCOMP) [3] technique in
Low Level Virtual Machine (LLVM) compiler [1]. LLVM makes the REDUCER
portable enough to work on any host platform as the reductions are made on the
basis of machine-independent code. REDUCER selects the executable candidates

REDUCER: Elimination of Repetitive Codes 545

after comparing the generated IR with the already existing IR codes. In case, only
if the IR does not match with existing IRs, it is selected as an executable candidate.
REDUCER testing has been performed using embedded, i.e. cBench benchmark
suite (LLVM-3.8&9.0), and big data workloads (LLVM-9.0). MiCOMP [3] was
tested in 2017 on LLVM-3.81, using agglomerative clustering, thus for LLVM-9.0
we have extended MiCOMP approach by finding the optimization clusters, but
using k-means algorithm. It has been observed that our derived k-means based
sub-sequences for LLVM-9.0 exploit greater speedup than MiCOMP’s agglomerative
based [3] sub-sequences for LLVM-3.8.

For both LLVM 3.8 and 9.0, REDUCER shows substantial reduction in ex-
periment count of embedded workloads. Also, it is discovered that the increase
in optimization sequence length, increases the redundancy fraction, which encour-
ages the testing of longer sequence lengths. In this manner, the larger optimization
space can be exploited, which has been uncovered till now. Moreover, Dynamic
Programming (DP) has been applied to estimate the unique code sequences. DP is
found to be less accurate than REDUCER, with increased experiment count. De-
spite a significant number of code comparisons, REDUCER is observed to be faster
than MiCOMP, and this speed is expected to significantly increase for longer se-
quences and big data applications. As evident via experiments, REDUCER cuts
down the iterative compilation of big data benchmarks to a few days in comparison
to months and years taken by MiCOMP. This way, the possibilities of finding the
best optimization sequence for big data applications are enlarged due to REDUCER.
Hence, REDUCER is a simple yet effective solution to be adopted by any iterative
compilation technique. Following are the main contributions of this paper:

1. To the best of our knowledge, the first work which practically accelerates the
iterative compilation process of LLVM by reducing the search space via simple
IR code comparisons.

2. Higher portability, i.e., REDUCER can work on any host platform due to ma-
chine-independent LLVM IR code.

3. Exploitation of greater speedup by extending MiCOMP for LLVM-9.0 using
k-means clustering.

4. Facilitating the iterative compilation process for big data applications, i.e., re-
peated tests are suppressed by comparing code one time for a single application
tested on multiple datasets.

5. Facilitating the exploitation of large search space via longer sequence length, be-
cause the analysis shows redundancy fraction is increased with sequence length.

Rest of the paper is organized as follows: Section 2 discusses background and
motivation, REDUCER is presented in Section 3, the experimental setup is discussed

1 LLVM-3.8 was the newer version in 2017, but at the time of experimentation of this
paper, i.e. 2020, LLVM-9.0 is the newer version.

546 H. Ahmed, M.A. Ismail

in Section 4, Section 5 analyzes the results. Section 6 discusses the related work,
followed by a conclusion in Section 7.

2 BACKGROUND AND MOTIVATION

This section discusses various terminologies and concepts. Also, the motivation
behind this work is presented.

2.1 Compiler

Compiler is a program that translates the high-level language code into architec-
ture specific assembly and enables the optimizations for exploiting the hardware
resources. This implies that despite the presence of powerful hardware design, the
performance goals are not met due to a lack of competent software solutions. In the
present era, the hardware resources (processors, caches, DRAMs, and hard disks)
show reliance on the compiler for extracting the higher performance, energy ef-
ficiency, and reduced development time. The compilation life cycle proceeds by
passing the source code through front end, middle end (optimizer), and back end.
The front end emits Intermediate Representation (IR) code, which is passed through
middle end to perform specific optimizations like inlining, unrolling, etc. In the end,
the back end generates the machine code [25, 18, 8, 9, 2, 17].

2.2 LLVM

Low Level Virtual Machine (LLVM) is an open source compiler infrastructure, con-
taining reusable and modular compiler technologies. It provides wide optimization
opportunities due to library based optimizer’s design. Besides, it allows flexibility as
the optimizations passes can be ordered to be executed in a specific order. This way,
the design enables the selection of individual optimization passes to execute. LLVM
allows working with anyone optimizer separately, without considering other modules
attached to it. Whereas, the traditional compilers are designed as tightly intercon-
nected code, which is tougher to break into small parts for better understanding
and use. The LLVM code is represented by Static Single Assignment (SSA)-based
Intermediate Representation (IR), which provides low level operations, type safety,
portability, flexibility, etc. The LLVM IR appears to be a universal IR, as all the
phases of LLVM compilation use this IR [1, 24, 23].

2.3 Iterative Compilation

For an application, dataset, and architecture, the optimal set of optimizations is
found via iterative compilation, where the best optimization combination is detected
by running a program multiple times, each time with different optimizations combi-
nations. This iterative testing involves billions of different optimizations. To avoid

REDUCER: Elimination of Repetitive Codes 547

this huge space exploration, standard optimizations, i.e., -O1, -O2, -O3, -Os, have
been provided in commercial compilers, which on average bring good performance on
a set of applications. However, there exist optimizations combinations that outper-
form the standard optimization levels for many programs by a considerable margin.
Finding the best optimizations ordering can significantly improve the performance
metrics like execution time, energy, power consumption, and code size.

Despite the great potential offered by iterative optimization, it is not widely
used in compilers, because it requires numerous recompilations and training runs
to detect the best optimization combination for a given program. This way, the
costly overhead of recompilation and training runs can eradicate the benefits of
iterative optimization, hence it is not a feasible option due to excessive compilation
time [3, 4, 12, 6].

2.4 Phase Ordering Problem

In multi-phase optimizing compilers, there exist no ideal ordering of phases which re-
sults into phase ordering problem. For instance, a transformation pass X, optimizes
the code such that the effect of some optimizations to be performed by the following
pass Y is hindered. Similarly, by switching phases order, pass Y can deprive pass
X optimizations. On the contrary, a phase can bring new optimization opportuni-
ties for the other. In this situation, it is the responsibility of compiler writers to
carefully consider the order in which each optimization phase is performed [4, 3].

Consider an application that is passed through the front end by disabling all
optimizations to emit an Intermediate Representation (IR) a. Consider a set of
optimizations o1, o2, . . . , on. For finding the suitable optimization for application,
a is required to be passed through the optimization set. The optimizations space
due to the phase-ordering problem is in the factorial as permutations are involved,
which is represented by Equation (1). Where n is the number of optimizations under
study [4, 3].

|ΩPhases| = n!. (1)

Considering the optimizations to be applied repeatedly with a variable-length se-
quence of optimizations. The problem space will be expanded as per Equation (2).
Where, m is the maximum desired length for the optimization sequence [4, 3].

|ΩPhases Repetition variableLength| =
m∑
i=0

ni. (2)

Even with reasonable n and m, the optimization search space is huge. For instance,
with n and m 10, an optimization search space consisting of more than 11 billion
different optimization sequences is formed [4, 3].

The phase-order search problem finds an optimal optimization sequence for
a program from an infinitely huge space of optimization sequence. The problem
is combinatorial in nature having no convexity or linearity properties, thus a given

548 H. Ahmed, M.A. Ismail

sequence cannot be called optimal. Only the performance of a sequence can be com-
pared relative to a default compiler optimization sequence (like -O3). The sequence
is said to be good for a program, if it is showing a noticeable improvement in per-
formance over default optimization sequences. Therefore, it is not necessary that
a good sequence is also an optimal one [33]. Similar to previous works [3, 15, 11],
this paper reports the performance speedup relative to LLVM’s highest optimization
level of -O3.

2.5 MiCOMP

Several techniques [14, 15, 11, 33] have been proposed for search space reduction
in the given scenario, but the Mitigates the Compiler Phase-ordering (MiCOMP)
has been selected in this paper, due to its systematic and reproducible approach for
reducing the optimization space of those compilers, which exhibit the phase ordering
problem. It works by clustering the LLVM’s -O3 optimization passes into different
groups (sub-sequences). The optimizations order within a group is internally fixed,
but the group ordering can be altered.

The phase-ordering is exploited by using the sub-sequences instead of individual
optimizations, which reduces the search space significantly. These sub-sequences
can be found using any automated clustering technique. MiCOMP is effective as
it exploits greater speedup by testing smaller search space as compared to other
techniques. MiCOMP reduces the search space (Equation (2)) by fixing n to be 5
and m ranges from 3 to 7 [3]. For the experimentation of MiCOMP, n and m are
fixed to 5 and 6, respectively, in [3], as shown by Equation (3):

Ω =
6∑

i=0

5i = 19.5 k. (3)

Assuming m = 6, n = 63 (LLVM-3.8), Equation (2) becomes

Ω =
6∑

i=0

63i = 62.5 b. (4)

Hence, MiCOMP achieves a speedup of 62.5 b/19.5 k = 3 201.2 k approx. over
LLVM-3.82. Amongst the given 19.5 k tests, there exists a strong likelihood of iden-
tical codes, hence such codes are not required to be executed repeatedly. However,
identical code testing has not been performed by MiCOMP. Assuming α be the
fraction of identical codes out of 1, for the given optimization space, Equation (2)
becomes

Ω =
m∑
i=0

ni ∗ (1− α). (5)

2 LLVM-3.8 -O3 has 63 internal passes.

REDUCER: Elimination of Repetitive Codes 549

Assuming α = 20% = 0.2, MiCOMP Equation (3) becomes

Ω =
6∑

i=0

5i = 19.5 k ∗ (1− 0.2) = 15.6 k. (6)

In this manner, for α = 0.2, MiCOMP search space is reduced by 20% by ignoring
redundant optimizations. Let P (α) be the probability of finding α percent repeated
codes, where 0 ≤ P (α) ≤ 1. P (α) depends on input application characteristics and
the effect of optimizations on that. It is independent of platform features for generic
codes.

Front
End

Application
(high level language)

Intermediate
Representation (IR)

MiCOMP
Optimized

IR Set
REDUCER

Back
End

Reduced
Optimized IR Set

Executable
Code

Figure 1. Compilation flow

3 REDUCER

For suppressing the identical codes in LLVM, this paper proposes REDUCER as
shown in Figure 1. As it can be observed, an application is compiled by front
end, which emits Intermediate Representation (IR), then the IR is passed through
MiCOMP’s given optimization sub-sequences and REDUCER, which emits unique
optimized IR by comparing each new IR with existing old IR. As represented via
Equation (7), the un-optimized IR (x1) is passed through optimization set (optn) to
get the new IR (yn). The new IR (yn) is only retained if it is not identical to old IRs
(yo), otherwise, the IR is discarded. The execution of REDUCER is continued until
redundancy checking is not done for all the optimized IRs. Once the REDUCER is
stopped, the found unique code IRs are added to the reduced optimized IR set. In
the end, the reduced set is passed through the backend for converting the IR codes
into target-specific executables.

yn = optn(x1), if yn ̸= yo. (7)

The overall compiler optimization space reduction is shown in Algorithm 1. The
algorithm receives unoptimized IR, -O33 optimized IR, -O3’s optimization sequence,
the desired number of clusters, and maximum sequence length as input. Firstly, Mi-
COMP procedure is invoked for constructing the required clusters using a clustering
algorithm. Then, a sequence set is constructed by inserting the appropriate opti-
mization permutations of length 1 to maximum sequence, which are generated from
the set of derived optimization clusters.

After this REDUCER is invoked for generating the optimized IR codes by sup-
pressing redundancies. Firstly, an -O3 optimized IR is added to the optimized set,

3 -O3 is a baseline to compare optimization sub-sequences performance [3].

550 H. Ahmed, M.A. Ismail

Algorithm 1: Compiler optimization space reduction

Input: Un-optimized IR (x1), O3 optimized IR (x2), Set of LLVM -O3
optimization sequence o = {o1, . . . , oN}, Desired number of clusters
(NumClust), Maximum sequence length (MaxSeqLen)

Output: Reduced Executables Set (y)
/* Finding Optimal -O3 Sub-Sequences using MiCOMP */

1 Construct an optimization dependency graph G = (V,E) using o;
2 Construct a weighted adjacency matrix M from G;
3 clusters ←M . ApplyClusteringTechnique (NumClust);
4 for SeqLen in 1 to MaxSeqLen do
5 SeqSet +=GeneratePermutations(clusters,SeqLen);
6 end
/* Reducing search space by evicting repeated codes using proposed

REDUCER */

7 IRSet .Add(x2);
8 for flag in SeqSet do
9 temp ← x1.ApplyOptimization(flag);

10 if !temp.IsEquivalent(IRSet) then
11 IRSet .Add(temp);
12 end

13 end
/* Compile IR codes to generate executables */

14 for k in IRSet do
15 y ← CompileIRtoExecutable(k);
16 end

and then a new optimized IR is generated by applying the individual optimization
subsequence obtained from the sequence set. It is followed by comparing the gener-
ated subsequence IR with existing -O3 optimized IR. In the case of different codes,
the generated IR is added to the optimized set, otherwise, it is discarded. This
process is repeated for all optimization sub-sequences. Each new IR is compared
with the ones generated in previous iterations. Finally, the reduced set of IR codes
is compiled to generate executables.

The proposed REDUCER algorithm is based on the sequential comparison,
which is time-consuming process. However, this timing overhead is justified be-
cause it eliminates redundant testing, which is highly beneficial for big data appli-
cations processing volume and variety datasets. For a single application, the IR
comparison is done one time only, irrespective of the size and format of datasets.
Consider an application, operating on 5 datasets with average execution time as d1
(5min), d2 (10min), d3 (25min), d4 (30min), d5 (65min). With MiCOMP overall
time is roughly (5 + 10 + 25 + 30 + 65min = 135min ∗ 19 531 = 2 636 685min).
However, with the inclusion of REDUCER having α = 0.8, and comparison time =
2 880min, the overall time is roughly 2 880+ (135 ∗ 3 907)min = 530 325min, which
is around 4.9× faster than MiCOMP.

REDUCER: Elimination of Repetitive Codes 551

Parameters Embedded Workloads Big Data Workloads

Total RAM 8GB 64GB

Total Swap 2GB 2GB

Disk Cache 1GB 1GB

Model Name Intel(R) Core(TM) i7-
8550U CPU@1.80GHz

Intel(R) Xeon(R) Silver 4216
CPU@2.10GHz

Page Size 4 kB 4 kB

Hard Disk 1TB SATA Harddisk 1TB SATA Harddisk

Operating System Linux Ubuntu 18.04.4 LTS Linux Ubuntu 18.04.4 LTS

L3 Cache 8 192KiB Associativity:
16-way Set-associative

8 192KiB Associativity: 16-way
Set-associative

L2 Cache 256KiB Associativity:
4-way Set-associative

256KiB Associativity: 4-way Set-
associative

L1I, D cache 32KiB Associativity:
8-way Set-associative

32KiB Associativity: 8-way Set-
associative

Compiler LLVM-3.8, LLVM-9.0 LLVM-9.0

Benchmark Ctuning cBench suite v1.1
[13, 5, 16] dataset one

Rodinia [28], Phoenix [31], Cor-
tex Suite [30], Genann [32], Grep
[29]

LLVM-9.0 k-means (5 clusters),
Python-3.8.1 scikit-learn

Same

Table 1. Experimental setup

4 EXPERIMENTAL SETUP

This section discusses the details of the setup which has been established to test
the proposed technique. Firstly, the steps behind finding the optimization clusters
for LLVM-9.0 are discussed. Then, the performance benchmarks and metrics are
mentioned. Finally, the implementation steps of REDUCER are discussed.

4.1 LLVM 9.0 Clusters

k-means clustering is a partitioning method that tries to discover the k number
of clusters. The algorithm specifies the cluster centroid as the mean of the points.
Firstly, k is selected randomly of the objects in the data set, each of which represents
a cluster mean. For each of the remaining objects, an object is allocated to the
cluster, on the basis of shortest Euclidean distance between the cluster mean and
the object. Then, the algorithm iteratively improves the within-cluster variation.
For each cluster, the new mean is computed using the objects allocated to the cluster
in the previous iteration. Finally, all the objects are reassigned using the updated
means as the new cluster centers. The iterations continue until the clusters built in
the current turn are the same as the previous turn [36, 37].

552 H. Ahmed, M.A. Ismail

-in
lin

e

-lcssa-verification

-sroa

-assumption-cache-tracker
-memoryssa

-ipsccp

-la
zy

-b
lo

ck
-fr

eq

-aa

-e
ar

ly
-c

se
-m

em
ss

a

-m
em

2r
eg

-s
lp

-v
ec

to
riz

er

-p
ro

fil
e-

su
m

m
ar

y-
in

fo

-c
al

lsi
te

-s
pl

itt
in

g

-sccp
-e

lim
-a

va
il-

ex
te

rn

-b
lo

ck
-fr

eq

-p
hi

-v
al

ue
s

-b
as

ica
a

-g
lo

ba
lo

pt

-s
co

pe
d-

no
al

ia
s

-m
ld

st
-m

ot
io

n

-gvn

-ju
m

p-
th

re
ad

in
g

-tti

-lo
op

-lo
ad

-e
lim

-aggressive-instcombine

-g
lo

ba
ld

ce

-lo
op

-u
ns

wi
tc

h

-deadargelim

-lo
op

-v
ec

to
riz

e

-argpromotion
-targetlibinfo

-attributor

-lo
op

-a
cc

es
se

s
-forceattrs

-lo
op

-id
io

m

-opt-remark-emitter

-correlated-propagation
-called-value-propagation

-alignment-from-assumptions

-loop-deletion

-loop-distribute

-in
st

co
m

bi
ne

-lc
ss

a

-scalar-evolution

-demanded-bits

-memdep

-globals-aa
-rpo-functionattrs

-branch-prob

-postdomtree

-inferattrs

-fu
nc

tio
na

ttr
s

-tr
an

sf
or

m
-w

ar
ni

ng

-tbaa

-constmerge

-lo
op

-ro
ta

te

-d
iv

-re
m

-p
ai

rs

-lazy-value-info

-b
as

icc
g

-in
st

sim
pl

ify

-re
as

so
cia

te
-indvars

-p
go

-m
em

op
-o

pt

-bdce -adce

-lo
op

-s
im

pl
ify

-loop-unroll

-s
im

pl
ify

cf
g -la

zy
-b

ra
nc

h-
pr

ob

-li
bc

al
ls-

sh
rin

kw
ra

p

-dse

-lo
op

-s
in

k

-loops

-ta
ilc

al
le

lim

-p
ru

ne
-e

h

-d
om

tre
e

-licm-s
tri

p-
de

ad
-p

ro
to

ty
pe

s

-fl
oa

t2
in

t-barrier
-memcpyopt

Figure 2. Directed graph for LLVM’s 9.0 -O3. Each node represents an optimization pass,
edge thickness depicts the strength in the connection between two nodes.

Using MiCOMP [3] approach (Algorithm 1), clusters of size 5 have been found
using well-accepted elbow method4 [36] for LLVM-9.0 -O3 optimization sequence via
k-means technique in Python, as mentioned in Table 1. The directed graph is shown
in Figure 2. The obtained clusters for LLVM-9.0 are presented in Table 2. In com-
parison to MiCOMP implementation in [3], we believe our implementation is easier,
adaptable, and reproducible as it is done using basic k-means technique via Python
based library. Whereas, in [3] MATLAB is used with a complex Graph Agglom-
erative Clustering (GAC) toolbox [26], which is not easily adaptable for producing
the results. Our k-means based clusters exploit better performance than GAC as
evident by Section 5.4.1. It is possibly because all merges are final in agglomer-
ative clustering that is once a decision is made to combine two clusters it cannot
be undone afterward, which prevents a local optimization criterion from becoming
a global optimization criterion. This creates difficulty for high-dimensional, noisy,
and complex graph data with multiple edges like Figure 2. This issue is tackled by
partitioned based k-means clustering technique. Hence, k-means appears to be the
suitable choice in a given situation [37].

4.2 Benchmark and Performance Metrics

For evaluating the proposed technique, embedded workloads belonging to automo-
tive, security, office, and telecommunication categories from Collective Benchmark

4 It chooses the optimal number of clusters by fitting the model for a range of a number
of clusters k values [36].

REDUCER: Elimination of Repetitive Codes 553

Sub- Compiler Passes Our derived Compiler Passes
seq (LLVM-3.8) [3] (LLVM-9.0)
A -ipsccp -globalopt -deadargelim -forceattrs -inferattrs -callsite-splitting

-simplifycfg -functionattrs -argpromotion -ipsccp -called-value-propagation -attributor
-sroa -jump-threading -reassociate -indvars -globalopt -mem2reg -deadargelim
-mldst-motion -lcssa -rpo-functionattrs -lazy-block-freq -prune-eh -inline -functionattrs
-bdce -dse -inferattrs -prune-eh -argpromotion -memoryssa -jump-threading
-alignment-from-assumptions -barrier -libcalls-shrinkwrap -branch-prob -reassociate
-block-freq -loop-unswitch -branch-prob -loop-simplify -lcssa-verification -loop-rotate
-demanded-bits -float2int -forceattrs -indvars -loop-idiom -loop-deletion
-loop-idiom -globals-aa -gvn -loop-accesses -mldst-motion -gvn -memcpyopt -sccp -dse
-loop-deletion -loop-unroll -loop-vectorize -barrier -float2int -loop-distribute -loop-vectorize
-sccp -strip-dead-prototypes -inline -slp-vectorizer -alignment-from-assumptions
-globaldce -constmerge -strip-dead-prototypes -constmerge -instsimplify

B -licm -mem2reg -lazy-branch-prob -block-freq -licm -loop-unroll
-demanded-bits -loop-accesses -loop-sink

C -loop-rotate -instcombine -loop-simplify -instcombine -simplifycfg -tailcallelim
-loop-unswitch -adce -div-rem-pairs

D -memcpyopt -sroa -early-cse-memssa -correlated-propagation
-aggressive-instcombine -pgo-memop-opt -lcssa
-scalar-evolution -phi-values -bdce -loop-load-
elim

E -loop-unswitch -adce -slp-vectorizer -globals-aa -elim-avail-extern -rpo-functionattrs
-tailcallelim -globaldce

Table 2. Compiler optimizations clusters using MiCOMP for LLVM-3.8 -O3 [3] and our
derived for LLVM-9.0 -O3

(cBench) programs [13, 5, 16] are used, as described in Table 3. The evaluation is
done in terms of percentage experiment reduction, percentage redundancy fraction,
speedup, and percentage time improvement metrics represented by Equations (8),
(9), (10), and (11).

Percentage Experiment Reduction =
old count− new count

old count
∗ 100, (8)

Percentage Redundancy Fraction =
Redundant Codes Count

Total Codes Count
∗ 100, (9)

Speedup =
Execution Timebase
Execution Timenew

, (10)

Percentage Time Improvement =
Execution Timebase − Execution Timenew

Execution Timebase
∗ 100.

(11)

4.3 REDUCER Implementation Details

REDUCER has been implemented using bash script in Linux with 5 optimization
clusters and a maximum sequence length of 6. The implementation is inspired
from [22] by comparing the checksum of each IR code with the ones stored in a file.
In case, if checksums are not matched, the new code checksum is stored in the file,
otherwise, it is discarded. The checksum has been computed using Linux md5sum

554 H. Ahmed, M.A. Ismail

cBench Programs Description

automotive bitcount Bit counter

automotive qsort1 Quick sort

automotive susan c Smallest Univalue Segment Assimilating Nucleus Corner

automotive susan e Smallest Univalue Segment Assimilating Nucleus Edge

automotive susan s Smallest Univalue Segment Assimilating Nucleus S

bzip2d Burrows Wheeler compression algorithm

bzip2e Burrows Wheeler compression algorithm

consumer jpeg c JPEG compression kernel

consumer jpeg d JPEG decompression kernel

consumer lame MP3 encoder

consumer mad MPEG audio decoder

consumer tiff2bw convert a color TIFF image to gray scale

consumer tiff2rgba Convert a TIFF image to RGBA space

consumer tiffdither Convert a TIFF image to dither noisespace

consumer tiffmedian Convert a color TIFF image to create a TIFF palette file

network dijkstra Dijkstra’s algorithm

network patricia Patricia Trie data structure

office ispell Spelling checker

Text to speech synthesis program

office stringsearch1 Boyer-Moore-Horspool pattern match

security blowfish d Symmetric-key block cipher Decoder

security blowfish e Symmetric-key block cipher Encoder

security pgp d Pretty Good Privacy decryption algorithm

security pgp e Pretty Good Privacy encryption algorithm

security rijndael d AES algorithm Rijndael Decoder

security rijndael e AES algorithm Rijndael Encoder

security sha NIST Secure Hash Algorithm

telecom adpcm c Intel/dvi adpcm coder/decoder Coder

telecom adpcm d Intel/dvi adpcm coder/decoder Decoder

telecom CRC32 32 BIT ANSI X3.66 crc checksum files

telecom gsm GSM for voice encoding/decoding

Table 3. cBench benchmark suite details [5, 16]

command5. REDUCER source code has been released on Github6. The embed-
ded workloads have been run on Intel Core i7 laptop machine with 8GB RAM,
while big data workloads have been run on Intel Xeon Server machine with 64GB
RAM. Both machines have used the same Linux Ubuntu operating system. Further,
experimental setup details are shown in Table 1.

5 md5sum uses the MD5 algorithm for printing a 32-character checksum of the given
file. A checksum is a string of letters and numbers used to uniquely identify a file.

6 https://github.com/hameeza/REDUCER/

https://github.com/hameeza/REDUCER/

REDUCER: Elimination of Repetitive Codes 555

5 RESULTS ANALYSIS

This section analyzes the results in four parts. Firstly, a reduction in experiment
count is reported, which is followed by studying the longer sequences exploitation
and dynamic programming (DP) analysis. Finally, REDUCER performance is ana-
lyzed for embedded and big data workloads.

5.1 Experiment Count Reduction

REDUCER experiment count has been compared with MiCOMP’s static 19.5 k7

via Figures 3 and 4. For all applications and both versions of the compiler, the
experiment count has been reduced by a significant amount.

19531 19531

4375
5863

au
to

m
o

ti
ve

_b
it

co
u

n
t

au
to

m
o

ti
ve

_q
so

rt
1

au
to

m
o

ti
ve

_s
u

sa
n

_c

au
to

m
o

ti
ve

_s
u

sa
n

_e

au
to

m
o

ti
ve

_s
u

sa
n

_s

b
zi

p
2

d

b
zi

p
2

e

co
n

su
m

e
r_

jp
eg

_c

co
n

su
m

er
_j

p
eg

_d

co
n

su
m

e
r_

la
m

e

co
n

su
m

e
r_

m
ad

co
n

su
m

e
r_

ti
ff

2
b

w

co
n

su
m

e
r_

ti
ff

2
rg

b
a

co
n

su
m

e
r_

ti
ff

d
it

h
er

co
n

su
m

e
r_

ti
ff

m
ed

ia
n

n
et

w
o

rk
_d

ijk
st

ra

n
et

w
o

rk
_p

at
ri

ci
a

o
ff

ic
e_

is
p

el
l

o
ff

ic
e_

rs
yn

th

o
ff

ic
e_

st
ri

n
gs

ea
rc

h
1

se
cu

ri
ty

_
b

lo
w

fi
sh

_d

se
cu

ri
ty

_
b

lo
w

fi
sh

_e

se
cu

ri
ty

_
p

gp
_d

se
cu

ri
ty

_
p

gp
_e

se
cu

ri
ty

_
ri

jn
d

ae
l_

d

se
cu

ri
ty

_
ri

jn
d

ae
l_

e

se
cu

ri
ty

_
sh

a

te
le

co
m

_a
d

p
cm

_c

te
le

co
m

_a
d

p
cm

_d

te
le

co
m

_C
R

C
3

2

te
le

co
m

_g
sm

A
ve

ra
ge

au
to

m
o

ti
ve

_b
it

co
u

n
t

au
to

m
o

ti
ve

_q
so

rt
1

au
to

m
o

ti
ve

_s
u

sa
n

_c

au
to

m
o

ti
ve

_s
u

sa
n

_e

au
to

m
o

ti
ve

_s
u

sa
n

_s

b
zi

p
2

d

b
zi

p
2

e

co
n

su
m

e
r_

jp
eg

_c

co
n

su
m

e
r_

jp
eg

_d

co
n

su
m

e
r_

la
m

e

co
n

su
m

e
r_

m
ad

co
n

su
m

e
r_

ti
ff

2
b

w

co
n

su
m

er
_t

if
f2

rg
b

a

co
n

su
m

e
r_

ti
ff

d
it

h
er

co
n

su
m

e
r_

ti
ff

m
ed

ia
n

n
et

w
o

rk
_d

ijk
st

ra

n
et

w
o

rk
_p

at
ri

ci
a

o
ff

ic
e_

is
p

el
l

o
ff

ic
e_

rs
yn

th

o
ff

ic
e_

st
ri

n
gs

ea
rc

h
1

se
cu

ri
ty

_
b

lo
w

fi
sh

_d

se
cu

ri
ty

_
b

lo
w

fi
sh

_e

se
cu

ri
ty

_
p

gp
_d

se
cu

ri
ty

_
p

gp
_e

se
cu

ri
ty

_
ri

jn
d

ae
l_

d

se
cu

ri
ty

_
ri

jn
d

ae
l_

e

se
cu

ri
ty

_
sh

a

te
le

co
m

_a
d

p
cm

_c

te
le

co
m

_a
d

p
cm

_d

te
le

co
m

_C
R

C
3

2

te
le

co
m

_g
sm

A
ve

ra
ge

LLVM-3.8 LLVM-9.0

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Number of Experiments for Sequence Length 1 to 6 MiCOMP REDUCER

Figure 3. Number of experiments in REDUCER vs. MiCOMP for LLVM-3.8&9.0

77.60

69.98

0

10

20

30

40

50

60

70

80

90

100

au
to

m
o

ti
ve

_b
it

co
u

n
t

au
to

m
o

ti
ve

_q
so

rt
1

au
to

m
o

ti
ve

_s
u

sa
n

_c

au
to

m
o

ti
ve

_s
u

sa
n

_e

au
to

m
o

ti
ve

_s
u

sa
n

_s

b
zi

p
2d

b
zi

p
2e

co
n

su
m

er
_j

p
eg

_c

co
n

su
m

e
r_

jp
eg

_d

co
n

su
m

er
_l

am
e

co
n

su
m

er
_m

ad

co
n

su
m

er
_t

if
f2

b
w

co
n

su
m

er
_t

if
f2

rg
b

a

co
n

su
m

er
_t

if
fd

it
h

er

co
n

su
m

er
_t

if
fm

ed
ia

n

n
et

w
o

rk
_d

ijk
st

ra

n
et

w
o

rk
_p

at
ri

ci
a

o
ff

ic
e_

is
p

el
l

o
ff

ic
e_

rs
yn

th

o
ff

ic
e_

st
ri

n
gs

ea
rc

h
1

se
cu

ri
ty

_b
lo

w
fi

sh
_d

se
cu

ri
ty

_b
lo

w
fi

sh
_e

se
cu

ri
ty

_p
gp

_d

se
cu

ri
ty

_p
gp

_e

se
cu

ri
ty

_r
ijn

d
ae

l_
d

se
cu

ri
ty

_r
ijn

d
ae

l_
e

se
cu

ri
ty

_s
h

a

te
le

co
m

_a
d

p
cm

_c

te
le

co
m

_a
d

p
cm

_d

te
le

co
m

_C
R

C
3

2

te
le

co
m

_g
sm

A
ve

ra
ge

au
to

m
o

ti
ve

_b
it

co
u

n
t

au
to

m
o

ti
ve

_q
so

rt
1

au
to

m
o

ti
ve

_s
u

sa
n

_c

au
to

m
o

ti
ve

_s
u

sa
n

_e

au
to

m
o

ti
ve

_s
u

sa
n

_s

b
zi

p
2d

b
zi

p
2e

co
n

su
m

er
_j

p
eg

_c

co
n

su
m

e
r_

jp
eg

_d

co
n

su
m

er
_l

am
e

co
n

su
m

er
_m

ad

co
n

su
m

er
_t

if
f2

b
w

co
n

su
m

er
_t

if
f2

rg
b

a

co
n

su
m

er
_t

if
fd

it
h

er

co
n

su
m

er
_t

if
fm

ed
ia

n

n
et

w
o

rk
_d

ijk
st

ra

n
et

w
o

rk
_p

at
ri

ci
a

o
ff

ic
e_

is
p

el
l

o
ff

ic
e_

rs
yn

th

o
ff

ic
e_

st
ri

n
gs

ea
rc

h
1

se
cu

ri
ty

_b
lo

w
fi

sh
_d

se
cu

ri
ty

_b
lo

w
fi

sh
_e

se
cu

ri
ty

_p
gp

_d

se
cu

ri
ty

_p
gp

_e

se
cu

ri
ty

_r
ijn

d
ae

l_
d

se
cu

ri
ty

_r
ijn

d
ae

l_
e

se
cu

ri
ty

_s
h

a

te
le

co
m

_a
d

p
cm

_c

te
le

co
m

_a
d

p
cm

_d

te
le

co
m

_C
R

C
3

2

te
le

co
m

_g
sm

A
ve

ra
ge

LLVM-3.8 LLVM-9.0

P
e

rc
e

n
ta

ge
 (

%
)

Reduction of No of experiments of REDUCER w.r.t MiCOMP

Figure 4. Percentage reduction of number of experiments in REDUCER vs MiCOMP for
LLVM-3.8&9.0

For embedded workloads (cBench) compilation in LLVM-3.8, it can be ob-
served that REDUCER narrows down the experiment count to 327 from MiCOMP’s
19.5 k for telecom adpcm c and telecom adpcm d. This large improvement of 98%

7 Computed in Equation (3), keeping optimization clusters = n = 5 and maximum
sequence length = m = 6.

556 H. Ahmed, M.A. Ismail

is achieved because REDUCER detects 98% of repeated codes produced by Mi-
COMP’s optimization sub-sequences. Despite varying optimizations, the identical
codes are generated because the majority of optimizations produce nil effect on the
considered applications.

Whereas, for consumer lame (LLVM-3.8), the experiment count is reduced to
10 503, bringing only 46% improvement, which are applied on the considered ap-
plication, thus generating the greater proportion of unique codes. On average, RE-
DUCER brings a decent reduction of 77% for LLVM-3.8. However, for the same
applications and datasets, REDUCER average experiment reduction is lowered to
69.9% for LLVM-9.0, as the newer optimization sub-sequences produce lesser iden-
tical codes. The highest reduction of 90% is observed for network dijkstra as the
experiment count is lowered to 1931. This way, REDUCER discovers the emergence
of highly redundant codes via the interaction of LLVM optimization passes.

The derived optimization sub-sequences for different compiler versions show
varying code redundancy behavior despite keeping the uniform test environment.
For telecom adpcm c, LLVM-3.8 optimization sub-sequences produce 98% redun-
dant codes, but LLVM-9.0 sub-sequences produce only 87% repeated codes. Overall,
LLVM-3.8 sub-sequences produce more redundant codes as compared to LLVM-9.0,
which is possibly due to increased transformation opportunities in LLVM-9.0 as op-
timization passes in LLVM-9.0 are greater than LLVM-3.8. By enabling a greater
number of transformations, the optimized codes are likely to differ from each other.
With the higher experiment reduction in LLVM-9.0, it is expected that REDUCER
will bring promising outcomes for future compilers as well.

Furthermore, Table 4 shows the equivalent optimal sub-sequences reported in [3]
by MiCOMP for LLVM-3.8. For most applications, it has been found that MiCOMP
optimal sub-sequences contain the identical code of the ones already generated in
previous generations. For example, for telecom adpcm c, MiCOMP sub-sequence is
ECDDCC (length 6), which is equivalent to EC (length 2), found at the second
generation. This way, EC is enough and ECDDCC is not needed.

79.55
72.3272.47

63.5562.84

52.44

49.52

38.74

32.39
22.84

0

10

20

30

40

50

60

70

80

90

100

au
to

m
o

ti
ve

_
b

it
co

u
n

t

au
to

m
o

ti
ve

_
q

so
rt

1

au
to

m
o

ti
ve

_
su

sa
n

_
c

au
to

m
o

ti
ve

_
su

sa
n

_
e

au
to

m
o

ti
ve

_
su

sa
n

_
s

b
zi

p
2

d

b
zi

p
2

e

co
n

su
m

er
_

jp
eg

_
c

co
n

su
m

er
_

jp
eg

_
d

co
n

su
m

er
_

la
m

e

co
n

su
m

er
_

m
ad

co
n

su
m

er
_

ti
ff

2
b

w

co
n

su
m

er
_

ti
ff

2
rg

b
a

co
n

su
m

er
_

ti
ff

d
it

h
e

r

co
n

su
m

er
_

ti
ff

m
e

d
ia

n

n
et

w
o

rk
_d

ijk
st

ra

n
et

w
o

rk
_p

at
ri

ci
a

o
ff

ic
e

_i
sp

el
l

o
ff

ic
e

_r
sy

n
th

o
ff

ic
e

_s
tr

in
gs

e
ar

ch
1

se
cu

ri
ty

_b
lo

w
fi

sh
_d

se
cu

ri
ty

_b
lo

w
fi

sh
_e

se
cu

ri
ty

_p
gp

_
d

se
cu

ri
ty

_p
gp

_
e

se
cu

ri
ty

_r
ijn

d
ae

l_
d

se
cu

ri
ty

_r
ijn

d
ae

l_
e

se
cu

ri
ty

_s
h

a

te
le

co
m

_a
d

p
cm

_c

te
le

co
m

_a
d

p
cm

_d

te
le

co
m

_C
R

C
3

2

te
le

co
m

_g
sm

A
ve

ra
ge

au
to

m
o

ti
ve

_
b

it
co

u
n

t

au
to

m
o

ti
ve

_
q

so
rt

1

au
to

m
o

ti
ve

_
su

sa
n

_
c

au
to

m
o

ti
ve

_
su

sa
n

_
e

au
to

m
o

ti
ve

_
su

sa
n

_
s

b
zi

p
2

d

b
zi

p
2

e

co
n

su
m

er
_

jp
eg

_
c

co
n

su
m

er
_

jp
eg

_
d

co
n

su
m

er
_

la
m

e

co
n

su
m

er
_

m
ad

co
n

su
m

er
_

ti
ff

2
b

w

co
n

su
m

er
_

ti
ff

2
rg

b
a

co
n

su
m

er
_

ti
ff

d
it

h
e

r

co
n

su
m

er
_

ti
ff

m
e

d
ia

n

n
et

w
o

rk
_d

ijk
st

ra

n
et

w
o

rk
_p

at
ri

ci
a

o
ff

ic
e

_i
sp

el
l

o
ff

ic
e

_r
sy

n
th

o
ff

ic
e

_s
tr

in
gs

e
ar

ch
1

se
cu

ri
ty

_b
lo

w
fi

sh
_d

se
cu

ri
ty

_b
lo

w
fi

sh
_e

se
cu

ri
ty

_p
gp

_
d

se
cu

ri
ty

_p
gp

_
e

se
cu

ri
ty

_r
ijn

d
ae

l_
d

se
cu

ri
ty

_r
ijn

d
ae

l_
e

se
cu

ri
ty

_s
h

a

te
le

co
m

_a
d

p
cm

_c

te
le

co
m

_a
d

p
cm

_d

te
le

co
m

_C
R

C
3

2

te
le

co
m

_g
sm

A
ve

ra
ge

LLVM-3.8 LLVM-9.0

P
er

ce
n

ta
ge

 (
%

)

Redundancy Fraction w.r.t Sequence Length

Length 6 Length 5 Length 4 Length 3 Length 2 Length 1

Figure 5. Application redundancy behavior w.r.t. sequence length for LLVM-3.8&LLVM-
9.0

REDUCER: Elimination of Repetitive Codes 557

MiCOMP Optimal Equivalent Optimal
Applications Sub-Sequence Sub-Sequence

automotive bitcount BEACCA BEACA

automotive qsort1 CBAAAC CBAAAC

automotive susan c BDBCCB BBCCB

automotive susan e AABACA AABACA

automotive susan s ECCCDE ECE

bzip2d CBDACA CBDACA

bzip2e CBADCA CBADCA

consumer jpeg c DDC C

consumer jpeg d CCED CED

consumer lame BCBACB BCBACB

consumer mad DCEDCD DCEDCD

consumer tiff2bw DDCAB CAB

consumer tiff2rgba DDCA CA

consumer tiffdither CCDCD CDC

consumer tiffmedian DEDDC EC

network dijkstra EECBBE CBE

network patricia CECBAA CECBAA

office ispell ABCBAC ABCBAC

office rsynth ABCBA ABCBA

office stringsearch1 ABCBAC ABCBAC

security blowfish d ECEACD CECAC

security blowfish e BCCEEA BCCEA

security pgp d DCAACA CAACA

security pgp e DCA CA

security rijndael d ACCACE ACCACE

security rijndael e CAEEC CAEC

security sha DACECA ACECA

telecom adpcm c ECDDCC EC

telecom adpcm d DCAACA CAACA

telecom CRC32 DCAACA CAACA

telecom gsm DCAAC CAAC

Table 4. MiCOMP equivalent optimal sub-sequence in LLVM-3.8

5.2 Exploitation of Longer Sequences

The effectiveness of REDUCER in facilitating the exploitation of longer sequences
is shown for embedded workloads (cBench), by studying the redundancy behavior
w.r.t. sequence length in Figure 5. For all applications (LLVM-3.8&9.0) sequence
length 1, the redundancy is null. The redundancy is increased as the sequence
length is increased. For automotive bitcount (LLVM-3.8), redundancies are 96%,
91%, 83%, 68%, 44%, and 0% for sequence lengths 6, 5, 4, 3, 2, and 1, re-
spectively. The average redundancies are 79%, 72%, 62%, 49%, 32%, and 0%,

558 H. Ahmed, M.A. Ismail

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

%

Sequence Length

Redundancy Fraction

automotive_bitcount-3.8
bzip2d-3.8
consumer_lame-3.8
consumer_mad-3.8
bzip2d-9.0
consumer_lame-9.0
telecom_adpcm_c-9.0

Figure 6. Redundancy fraction w.r.t. sequence length for LLVM-3.8&LLVM-9.0, dotted
lines indicate extrapolated values

respectively, for LLVM-3.8. Whereas, for LLVM-9.0, these values are 72%, 63%,
52%, 38%, 22%, and 0%, respectively. This study discovers how the redundant
codes are increased substantially when sequence length is increased. It encourages
the testing of longer sequence lengths containing optimal solutions, which are usu-
ally not exploited due to a large number of executions. With REDUCER, these
longer sequences can be exploited, by the elimination of high proportion redundant
codes.

The redundancy fraction has been extrapolated8 for sequence lengths 7, 8, 9,
and 10, which is shown in Figure 6 for few applications. It can be seen for auto-
motive bitcount-3.8 and telecom adpcm c-9.0 the expected redundancy is 100% for
length 7 and above. This way, the programmer can safely skip the longer sequences
for these applications, without feeling the guilt of missing the optimal by not testing
the higher space, as the fraction of unique codes is expected to be minimal in that re-
gion. On the contrary, for consumer lame-3.8 the predicted redundancies are 59%,
68%, 78%, and 88%, which are increased but less than 100%. A similar trend has
been observed for consumer mad-3.8, bzip2d-3.8, and bzip2d-9.0. This way, longer
sequence testing is needed for such applications. In this regard, REDUCER can
significantly speed the testing process by suppressing the increased proportion of
repeated codes in these longer sequences.

5.3 Dynamic Programming Analysis

Dynamic Programming (DP) is a recursive optimization approach that transforms
a complex problem into a sequence of simpler sub-problems, and stores the solution
to each sub-problem such that it is solved only once. Each time the same sub-

8 Extrapolation is done using the Excel TREND function.

REDUCER: Elimination of Repetitive Codes 559

A B C D ELength 1

AA, AB, AC,
AD, AE

BA, BB, BC,
BD, BE

CA, CB, CC,
CD, CE

DA, DB, DC,
DD, DE

EA, EB, EC,
ED, EE

Length 2

AAA, AAB, AAC,AAD, AAE, ABA, ABB, ABC, ABD,
ABE, ACA, ACB, ACC, ACD, ACE, ADA, ADB,
ADC, ADD, ADE, AEA, AEB, AEC, AED, AEE

Length 3

AAAA, AAAB, AAAC,AAAD, AAAE, AABA,AABB,
AABC, AABD, AABE, AACA, AACB, AACC, AACD,
AACE, AADA, AADB, AADC, AADD, AADE, AAEA,

AAEB, AAEC, AAED, AAEE…….AEEE

Length 4 …………..……………………..

AAAAA, AAAAB, AAAAC,AAAAD, AAAAE, AAABA,AAABB,
AAABC, AAABD, AAABE, AAACA, AAACB, AAACC, AAACD,
AAACE, AAADA, AAADB, AAADC, AAADD, AAADE, AAAEA,

AAAEB, AAAEC, AAAED, AAAEE…….AEEEE

Length 5

AEBDCB←AEBDC+EBDCB

AEBDC←AEBD+EBDC

AEBD←AEB+EBD

AEB←AE+EB

AE←A+E

A←A

AAAAAA, AAAAAB, AAAAAC,AAAAAD, AAAAAE, AAAABA,AAAABB,
AAAABC, AAAABD, AAAABE, AAAACA, AAAACB, AAAACC, AAAACD,

AAAACE, AAAADA, AAAADB, AAAADC, AAAADD, AAAADE,
AAAAEA, AAAAEB, AAAAEC, AAAAED, AAAAEE…….AEEEEE

Length 6

…………………………………..

..........

…………..……..

Figure 7. Composition of optimization sequences. Length 2 sequence (AE) is formed
by concatenating two length 1 (A + E) sequences. Length 3 (AEB) sequence is formed
by merging two sequences of length 2 (AE + EB), only if the first one ends and the
second one begins with the same character. Sequences of lengths 4, 5, and 6 are formed
similarly.

problem occurs, the previously calculated solutions are used instead of recomputing
it, thus computation time is saved [34, 35]. REDUCER retains the unique code se-
quences by comparing codes with each other. To estimate the unique code sequences
of length 2 to 6, we have applied Dynamic Programming (DP) technique and com-
pared it with REDUCER. The main motivation behind using DP has been taken
from Table 4, where equivalent sequences are a subset of MiCOMP sequences. It
implies that large sequences can be constructed by merging two smaller ones. This
recursive composition is represented in Figure 7. It can be observed from bottom
to top that the length 2 sequence is derived from two length 1 sequences, length
3 from two length 2, and so on. DP initially stores the unique length 1 sequences
which derive length 2, then length 2 sequences are stored which derive length 3, and
so on.

However, two sequences can be merged only if they have common characters,
which means that the second to last characters of the first sequence match with the
first to second last characters of the second sequence, as depicted in Figure 7.

The performance of DP is analyzed by means of the sequence estimation accu-
racy and experiment count increase in Figures 8 and 9. REDUCER shows 100%
accuracy of finding unique sequences for all applications, as it compares each code
with the existing ones. Additionally, REDUCER narrows down the experiment

560 H. Ahmed, M.A. Ismail

70

75

80

85

90

95

100

1 2 3 4 5

%

Base Sequence Length

Unique Code Sequence Estimation Accuracy (%)
bzip2d-3.8 consumer_lame-3.8
telecom_adpcm_c-3.8 network_dijkstra-9.0
telecom_adpcm_c-9.0 security_pgp_d-9.0

Figure 8. Accuracy of estimating unique optimization sequences via Dynamic Program-
ming (DP) for LLVM-3.8&LLVM-9.0 (the higher the better). Accuracy computed by
dividing correctly estimated DP sequence count with total unique sequence count.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

x

Base Sequence Length

Experiment Increase w.r.t REDUCER (x)

bzip2d-3.8
consumer_lame-3.8
telecom_adpcm_c-3.8
network_dijkstra-9.0
telecom_adpcm_c-9.0
security_pgp_d-9.0

Figure 9. Dynamic Programming (DP) increase in experiment count w.r.t. REDUCER
for LLVM-3.8&LLVM-9.0 (the lower the better). Increase computed by dividing DP
estimated experiment count with REDUCER experiment count.

count as it retains only the unique sequences removing all the redundant ones.
Unlike REDUCER, DP does not check the actual uniqueness by comparing with
existing codes, instead it estimates the unique codes by combining the smaller se-
quences. This way, DP is likely to be faster than REDUCER. However, with DP
there is a higher chance of skipping of unique sequences and inclusion of redundant
codes, which results in accuracy loss and experiment count increase.

This work estimates the larger sequences by considering base sequence lengths
of 1 to 5. In the case of base length 1, lengths 2 to 6 are estimated by keeping actual

REDUCER: Elimination of Repetitive Codes 561

single length unique sequences. For telecom adpcm c 3.8, A, B, C, and E are unique
codes. Hence, the larger sequences are formed from these four codes ignoring D. In
the case of base length 2, length 3 to 6 sequences are estimated by keeping actual
double length unique sequences. For telecom adpcm c 3.8, AA, AB, AC, AE, BA,
BB, BC, BE, CA, CB, CE, EB, and EC are unique codes. The same criterion
is used for base lengths 3, 4, and 5. From Figure 8, 100% estimation accuracy
can be seen for base length 1 in all cases. However, the higher accuracy is at the
cost of increased redundant codes. For all applications except telecom adpcm c-
3.8, the single length unique sequences are 5 (A, B, C, D, E), forming 52 double
length sequences, which results in 53, 54, 55, and 56 length 3 to 6 sequences, leading
to original 19.5 k experiments. It implies that due to the bottom-up approach, the
lower layer behavior is propagated to the upper layers too. As there is no redundancy
in the single length sequences, so the upper layers also keep all the sequences. On
the contrary, for telecom adpcm c-3.8, the experiment count is reduced to 5 460,
due to four single length unique codes. However, as depicted in Figure 9, still the
experiment count is 17× more than REDUCER which is the highest. Similarly, for
network dijkstra-9.0 experiment count is 10× more.

Furthermore, as per Figure 8, the accuracy starts dropping by increasing the base
length, due to missed unique sequences. These misses occur because estimation in
base 2, 3, 4, and 5 is done using correct unique sequences. It implies that the problem
of estimating larger sequences from smaller ones is not absolute, as the interaction
between multiple optimizations is indeterministic. For instance, the sequence ACCE
might be a unique one, despite its subsequences ACC and CCE are identical. This
behavior can be seen via bzip2d-3.8, where accuracy is 100% for base length 2,
but with an increase in length, the accuracy is dropped. It implies that the unique
double length combinations are able to derive all the unique higher length sequences,
however, the greater length sequences miss several unique combinations. For certain
application, a base length shows good accuracy, but for other, the accuracy is not
good with the same base. This depends on the interaction effect of optimizations
on a certain application, for one application a base covers such sequences whose
interaction produces greater unique combinations, thus increasing the accuracy. For
other, the effect can be reverse.

The base length increase also reduces the experiment count as the combinations
are derived by fixing the unique sequences, which are lesser in quantity. As per
Figure 9, for base length 5, all the applications except telecom adpcm c-3.8 show
a reduction in experiment count over REDUCER at the cost of lower accuracy.
For security pgp d-9.0, the experiments are lesser than REDUCER at 91.6% and
94.2% accuracy for base lengths 4 and 5, respectively. This way, DP is reasonable
for security pgp d-9.0 as the experiment increase is not much high for base lengths
≥ 2 and accuracy is decent as well. This behavior is due to the presence of a large
number of unique codes in security pgp d-9.0 and also because the base length ≥ 2
sequences are able to derive a higher number of unique sequences of greater lengths.
However, the accuracy of less than 100% makes DP unsuitable because the skipped
unique code might be the optimal one with the highest speedup over -O3.

562 H. Ahmed, M.A. Ismail

5.4 REDUCER Performance

REDUCER achieves the above experiments reduction (Section 4.3), at the cost of
code comparison time which is not present in conventional iterative compilation
techniques. In this regard, this section compares the overall time taken by RE-
DUCER and MiCOMP for embedded (Section 5.4.1) and big data (Section 5.4.2)
workloads.

5.4.1 Embedded Workloads

A set of embedded applications have been executed from cBench suite with dataset
one on Intel Core i7-8550U laptop machine. The details of the experimental setup
and cBench suite are mentioned in Table 1 and 3, respectively. The cBench appli-
cations have been executed using both REDUCER and MiCOMP for LLVM 3.8,
and 9.0. For each application, the execution time is measured by averaging three
executions of a loop-wrap. The total time taken by REDUCER is the sum of code
comparison, compilation, and execution time. Whereas, MiCOMP total time is the
sum of code compilation and execution time. The individual timings have been
reported in Table 5. REDUCER performance is depicted via Figure 10 in terms
of total time speedup w.r.t. MiCOMP. Additionally, each application speedup w.r.t.
-O3, and optimal sub-sequence for both LLVM-3.8 and 9.0 have been reported in
Table 6. The speedups and optimal sub-sequences are different than reported in [3],
due to different test environments.

18.45 41.92

58.36

58.65

19.20

0

2

4

6

8

10

12

14

au
to

m
o

ti
ve

_b
it

co
u

n
t

au
to

m
o

ti
ve

_q
so

rt
1

au
to

m
o

ti
ve

_s
u

sa
n

_c

au
to

m
o

ti
ve

_s
u

sa
n

_e

au
to

m
o

ti
ve

_s
u

sa
n

_s

b
zi

p
2d

b
zi

p
2e

co
n

su
m

er
_j

p
eg

_c

co
n

su
m

er
_j

p
eg

_d

co
n

su
m

er
_l

am
e

co
n

su
m

er
_m

ad

co
n

su
m

er
_t

if
f2

b
w

co
n

su
m

er
_t

if
f2

rg
b

a

co
n

su
m

er
_t

if
fd

it
h

er

co
n

su
m

er
_t

if
fm

ed
ia

n

n
et

w
o

rk
_

d
ijk

st
ra

n
et

w
o

rk
_p

at
ri

ci
a

o
ff

ic
e_

rs
yn

th

o
ff

ic
e_

st
ri

n
gs

ea
rc

h
1

se
cu

ri
ty

_b
lo

w
fi

sh
_d

se
cu

ri
ty

_b
lo

w
fi

sh
_e

se
cu

ri
ty

_p
gp

_d

se
cu

ri
ty

_p
gp

_e

se
cu

ri
ty

_r
ijn

d
ae

l_
d

se
cu

ri
ty

_r
ijn

d
ae

l_
e

se
cu

ri
ty

_s
h

a

te
le

co
m

_a
d

p
cm

_c

te
le

co
m

_a
d

p
cm

_d

te
le

co
m

_C
R

C
3

2

te
le

co
m

_g
sm

A
ve

ra
ge

au
to

m
o

ti
ve

_b
it

co
u

n
t

au
to

m
o

ti
ve

_q
so

rt
1

au
to

m
o

ti
ve

_s
u

sa
n

_c

au
to

m
o

ti
ve

_s
u

sa
n

_e

au
to

m
o

ti
ve

_s
u

sa
n

_s

b
zi

p
2d

b
zi

p
2e

co
n

su
m

er
_j

p
eg

_c

co
n

su
m

er
_j

p
eg

_d

co
n

su
m

er
_l

am
e

co
n

su
m

er
_m

ad

co
n

su
m

er
_t

if
f2

b
w

co
n

su
m

er
_t

if
f2

rg
b

a

co
n

su
m

er
_t

if
fd

it
h

er

co
n

su
m

er
_t

if
fm

ed
ia

n

n
et

w
o

rk
_

d
ijk

st
ra

n
et

w
o

rk
_p

at
ri

ci
a

o
ff

ic
e_

rs
yn

th

o
ff

ic
e_

st
ri

n
gs

ea
rc

h
1

se
cu

ri
ty

_b
lo

w
fi

sh
_d

se
cu

ri
ty

_b
lo

w
fi

sh
_e

se
cu

ri
ty

_p
gp

_d

se
cu

ri
ty

_p
gp

_e

se
cu

ri
ty

_r
ijn

d
ae

l_
d

se
cu

ri
ty

_r
ijn

d
ae

l_
e

se
cu

ri
ty

_s
h

a

te
le

co
m

_a
d

p
cm

_c

te
le

co
m

_a
d

p
cm

_d

te
le

co
m

_C
R

C
3

2

te
le

co
m

_g
sm

A
ve

ra
ge

LLVM-3.8 LLVM-9.0

Sp
ee

d
u

p
 (

x)

REDUCER Speedup over MiCOMP

Figure 10. REDUCER time speedup w.r.t. MiCOMP for LLVM-3.8&LLVM-9.0

As per Table 5, for all the applications the IR comparison time is significantly
smaller than the compilation and execution time. This way, REDUCER’s prior IR
comparison cuts down the experiment count without increasing the time and re-
source overheads. Hence, the compilation and execution times are shorter for all
applications, because these have been measured only for the unique codes which
are lesser than the original 19.5 k. Further, a larger comparison time can be seen
for applications possessing a greater number of unique codes, due to an increased
number of comparisons. Also, the comparison time is increased for larger code

REDUCER: Elimination of Repetitive Codes 563

L
L
V
M

-3
.8

L
L
V
M

-9
.0

R
E
D
U
C
E
R

M
iC

O
M

P
R
E
D
U
C
E
R

M
iC

O
M

P
A
p
p
li
c
a
ti
o
n
s

C
o
m

p
a
r
is
o
n
+

C
o
m

p
il
a
ti
o
n

E
x
e
c
u
ti
o
n

C
o
m

p
a
r
is
o
n
+

C
o
m

p
il
a
ti
o
n

E
x
e
c
u
ti
o
n

&
E
x
e
c
u
ti
o
n

T
im

e
T
im

e
&

E
x
e
c
u
ti
o
n

T
im

e
T
im

e
a
u
to
m
o
ti
v
e
b
it
co

u
n
t

2
m

7
.4
3
7
s
+

1
h
4
5
m

4
5
.0
7
2
s

3
3
h
9
m

4
8
.8
3
5
s

8
m

1
2
.0
7
3
s
+

1
2
h
3
2
m

3
6
.6
0
7
s

5
7
h
1
8
m

2
4
.9
5
9
s

h
li
n
e
a
u
to
m
o
ti
v
e
q
so
rt
1

2
m

3
.2
1
9
s
+

4
h
6
m

2
6
.1
6
3
s

5
4
h
5
m

3
2
.6
7
7
s

1
3
m

1
7
.0
5
5
s
+

1
1
h
4
8
m

3
0
.3
0
6
s

5
7
h
5
5
m

5
.4
7
3
s

h
li
n
e
a
u
to
m
o
ti
v
e
su

sa
n
c

1
9
m

1
5
.7
4
5
s
+

3
7
h
3
2
m

1
.0
8
1
s

3
0
5
h
4
2
m

1
.1
9
8
s

1
h
2
7
m

5
4
.8
8
7
s
+

9
7
h
3
1
m

3
6
.1
5
3
s

3
2
1
h
4
8
m

3
6
.4
6
8
s

h
li
n
e
a
u
to
m
o
ti
v
e
su

sa
n
e

1
9
m

0
.5
2
3
s
+

1
7
h
2
2
m

1
.4
2
2
s

1
4
1
h
2
6
m

5
8
.4
7
0
s

1
h
2
8
m

1
8
.9
3
9
s
+

4
5
h
5
1
m

5
1
.6

s
1
5
1
h
2
0
m

2
0
.8
5
9
s

h
li
n
e
a
u
to
m
o
ti
v
e
su

sa
n
s

1
9
m

0
.3
5
4
s
+

5
h
5
8
m

4
3
.4
8
3
s

4
8
h
4
1
m

4
2
.3
9
6
s

1
h
2
7
m

3
9
.4
8
3
s
+

1
7
h
1
1
m

4
2
.9
0
5
s

5
6
h
4
4
m

2
1
.8
1
0
s

h
li
n
e
b
zi
p
2
d

2
h
2
5
m

2
9
.9
9
7
s
+

2
6
h
3
6
m

1
.8
1
1
s

6
7
h
6
m

5
2
.7
0
3
s

4
h
1
8
m

4
0
.5
8
3
s
+

2
4
h
1
6
m

6
.2
5
2
s

6
2
h
3
8
m

1
8
.9
1
3
s

h
li
n
e
b
zi
p
2
e

2
h
2
7
m

4
8
.8
4
8
s
+

2
4
h
2
5
m

4
3
.1
4
0
s

6
1
h
3
8
m

5
.7
3
5
s

4
h
1
8
m

1
9
.1
8
2
s
+

2
2
h
3
4
m

2
4
.1
6
6
s

5
8
h
1
5
m

4
8
.9
6
6
s

h
li
n
e
co

n
su

m
er

jp
eg

c
4
h
2
8
m

5
.8
5
8
s
+

3
4
h
5
8
m

4
7
.5
4
6
s

8
9
h
4
0
m

1
0
.1
9
9
s

6
h
5
2
m

2
6
.9
8
7
s
+

3
2
h
3
4
m

4
0
.0
5
8
s

8
5
h
5
m

5
2
.3
9
0
s

h
li
n
e
co

n
su

m
er

jp
eg

d
4
h
6
m

4
3
.3
5
9
s
+

2
5
h
5
1
m

7
.0
5
8
s

6
6
h
3
1
m

5
6
.7
6
4
s

6
h
4
2
m

4
0
.7
7
2
s
+

2
5
h
4
8
m

3
2
.5
9
3
s

6
7
h
2
4
m

2
8
.6
0
8
s

h
li
n
e
co

n
su

m
er

la
m
e

4
h
4
0
m

1
7
.2
7
9
s
+

3
5
h
5
0
m

3
9
.6
5
5
s

6
6
h
3
9
m

1
7
.4
8
8
s

6
h
5
m

4
5
.3
4
1
s
+

2
8
h
3
m

2
0
.3
9
3
s

6
6
h
3
m

3
0
.5
7
1
s

h
li
n
e
co

n
su

m
er

m
a
d

3
h
1
6
m

2
3
.9
8
4
s
+

7
3
h
3
0
m

1
5
.0
2
4
s

1
4
3
h
4
1
m

2
5
.1
6
1
s

6
h
5
7
m

3
9
.9
0
9
s
+

5
4
h
1
2
m

1
0
.9
9
1
s

1
3
0
h
4
2
m

4
4
.6
8
6
s

h
li
n
e
co

n
su

m
er

ti
ff
2
b
w

3
h
5
4
m

2
3
.3
1
8
s
+

2
8
h
3
2
m

2
0
.2
8
6
s

8
0
h
2
3
m

5
0
.3
3
8
s

6
h
4
9
m

5
8
.1
8
0
s
+

3
2
h
1
2
m

4
5
.7
6
5
s

8
0
h
4
7
m

4
0
.0
7
0
s

h
li
n
e
co

n
su

m
er

ti
ff
2
rg
b
a

3
h
5
3
m

2
5
.4
2
9
s
+

3
9
h
4
m

2
9
.5
1
6
s

1
1
0
h
4
m

4
1
.0
2
1
s

6
h
4
8
m

4
0
.2
8
6
s
+

4
7
h
2
5
m

1
9
.9
2
0
s

1
1
5
h
2
4
m

5
2
.9
3
1
s

h
li
n
e
co

n
su

m
er

ti
ff
d
it
h
er

3
h
5
1
m

3
4
.2
9
6
s
+

1
7
h
2
9
m

2
7
.2

s
4
9
h
1
1
m

1
8
.8
1
8
s

6
h
4
6
m

2
1
.9
5
9
s
+

1
9
h
3
7
m

3
2
.7
6
8
s

4
9
h
1
3
m

2
8
.0
6
6
s

h
li
n
e
co

n
su

m
er

ti
ff
m
ed

ia
n

4
h
1
9
m

4
5
.2
4
1
s
+

2
2
h
5
3
m

2
7
.8
7
4
s

6
4
h
1
9
m

4
3
.9
1
1
s

7
h
1
7
m

1
2
.1
6
3
s
+

2
7
h
2
m

4
9
.5
4
4
s

6
7
h
4
9
m

4
6
.5
1
4
s

h
li
n
e
n
et
w
o
rk

d
ij
k
st
ra

1
m

1
8
.0
6
4
s
+

6
m

5
3
.7
8
3
s

5
h
4
3
m

3
6
.3
1
5
s

7
m

7
.4
9
9
s
+

3
8
m

1
5
.2
4
0
s

6
h
2
6
m

5
5
.0
9
2
s

h
li
n
e
n
et
w
o
rk

p
a
tr
ic
ia

1
m

5
4
.7
5
8
s
+

3
h
9
m

1
3
.6
5
1
s

3
1
h
2
m

4
8
.2
2
8
s

9
m

2
2
.5
1
4
s
+

8
h
2
0
m

4
8
.7
1
7
s

3
7
h
2
m

3
1
.8
5
4
s

h
li
n
e
o
ffi
ce

rs
y
n
th

4
3
m

5
3
.0
0
6
s
+

1
0
h
5
2
m

3
6
.4
1
7
s

4
3
h
5
0
m

1
3
.4
5
1
s

1
h
1
0
m

3
7
.9
0
6
s
+

1
3
h
4
7
m

1
6
.1
7
3
s

5
2
h
3
2
m

3
9
.8
2
4
s

h
li
n
e
o
ffi
ce

st
ri
n
g
se
a
rc
h
1

3
m

1
7
.2
2
5
s
+

3
h
9
m

2
2
.5
0
7
s

3
9
h
5
7
m

4
.4
5
8
s

1
5
m

1
9
.7
3
2
s
+

4
h
5
3
m

5
.9
2
0
s

1
6
h
1
2
m

4
3
.7
4
0
s

h
li
n
e
se
cu

ri
ty

b
lo
w
fi
sh

d
1
4
m

1
7
.7
1
9
s
+

1
6
h
6
m

4
8
.0
1
3
s

8
3
h
5
5
m

2
1
.2
0
5
s

2
2
m

5
0
.5
4
6
s
+

1
7
h
1
m

4
0
.4
3
1
s

7
5
h
5
2
m

3
9
.6
4
5
s

h
li
n
e
se
cu

ri
ty

b
lo
w
fi
sh

e
1
4
m

1
0
.4
9
7
s
+

1
6
h
2
3
m

4
6
.0
9
3
s

8
5
h
2
3
m

4
3
.6
3
6
s

2
2
m

4
3
.4
3
6
s
+

1
8
h
4
m

1
3
.9
5
8
s

8
0
h
3
1
m

2
5
.6
6
4
s

h
li
n
e
se
cu

ri
ty

p
g
p
d

4
h
1
1
m

4
2
.6
4
3
s
+

1
9
h
3
3
m

5
8
.4
4
7
s

6
0
h
8
m

0
.4
6
0
s

7
h
2
m

5
4
.5
2
9
s
+

2
7
h
1
4
m

4
0
.3
2
2
s

5
9
h
1
1
m

4
5
.6
5
9
s

h
li
n
e
se
cu

ri
ty

p
g
p
e

4
h
1
3
m

4
7
.8
4
3
s
+

1
7
h
6
m

0
.0
3
6
s

5
2
h
3
3
m

1
4
.1
8
8
s

7
h
1
m

5
4
.3
3
4
s
+

2
2
h
1
m

1
.5
5
9
s

4
7
h
5
0
m

1
6
.8
7
8
s

h
li
n
e
se
cu

ri
ty

ri
jn
d
a
el

d
7
m

4
0
.8
5
7
s
+

5
h
1
3
m

4
8
.2
7
2
s

6
0
h
5
9
m

3
.2
7
8
s

3
7
m

3
3
.9
5
0
s
+

1
4
h
2
8
m

1
0
.2
3
0
s

5
6
h
5
9
m

5
8
.5
2
4
s

h
li
n
e
se
cu

ri
ty

ri
jn
d
a
el

e
7
m

3
9
.6
0
1
s
+

5
h
9
m

9
.9
7
5
s

6
0
h
4
m

5
8
.2
5
3
s

3
7
m

3
1
.8
1
9
s
+

7
h
4
4
m

5
0
.6
7
1
s

3
0
h
3
1
m

9
.4
4
6
s

h
li
n
e
se
cu

ri
ty

sh
a

6
m

3
8
.6
0
0
s
+

1
6
h
3
m

5
9
.4
4
3
s

1
0
7
h
5
0
m

0
.0
5
7
s

1
0
m

8
.2
4
2
s
+

1
3
h
4
5
m

6
.5
7
5
s

9
2
h
4
m

3
5
.1
2
1
s

h
li
n
e
te
le
co

m
a
d
p
cm

c
1
m

1
6
.9
2
7
s
+

5
4
m

5
0
.1
6
6
s

5
4
h
3
5
m

1
4
.5
0
2
s

7
m

1
6
.4
3
0
s
+

6
h
7
m

1
9
.3
4
5
s

4
8
h
5
0
m

3
7
.6
0
1
s

h
li
n
e
te
le
co

m
a
d
p
cm

d
1
m

1
6
.7
8
5
s
+

1
h
9
m

4
0
.1
2
4
s

6
9
h
2
1
m

9
.7
5
8
s

7
m

9
.5
9
7
s
+

7
h
5
8
m

3
6
.1
9
2
s

5
7
h
9
m

3
.1
9
6
s

h
li
n
e
te
le
co

m
C
R
C
3
2

1
m

6
.0
7
6
s
+

1
h
2
3
m

2
0
.9
1
9
s

2
7
h
1
m

2
3
.8
1
3
s

6
m

2
1
.4
5
0
s
+

3
h
1
0
m

1
0
.3
7
3
s

2
7
h
5
9
m

8
.6
4
1
s

h
li
n
e
te
le
co

m
g
sm

1
6
m

4
2
.2
0
0
s
+

8
h
2
2
m

5
3
.6
1
6
s

6
8
h
3
6
m

3
1
.1
5
4
s

1
h
2
2
m

6
.5
2
5
s
+

2
0
h
3
0
m

3
1
.0
4
1
s

5
8
h
2
6
m

5
7
.9
3
0
s

h
li
n
e
M

e
a
n

1
h
3
7
m

4
4
.2
5
6
s
+

1
7
h
2
1
m

2
7
.2
6
0
s

7
4
h
2
6
m

5
1
.6
1
6
s

2
h
5
4
m

4
8
.2
1
0
s
+

2
2
h
4
8
m

5
9
.5
5
9
s

7
2
h
3
2
m

3
1
.6
7
0
s

T
ab

le
5.

C
om

p
ar
is
on

of
R
E
D
U
C
E
R

w
it
h
M
iC

O
M
P

564 H. Ahmed, M.A. Ismail

sizes. For instance, telecom adpcm c (LLVM-3.8) and network dijkstra (LLVM-
9.0) take lesser time because the identical codes are already generated by some
previous sub-sequence, stopping the comparison for a code the moment its iden-
tical is found. It can be observed that the comparison time of telecom CRC32
(LLVM-3.8&LLVM 9.0) is slightly lesser than telecom adpcm c (LLVM-3.8) and
network dijkstra (LLVM-9.0) due to the smaller IR code size of telecom CRC32.
The redundancy proportion of telecom CRC32 is higher but lesser than the max-
imum identical codes count of telecom adpcm c (LLVM-3.8) and network dijkstra
(LLVM-9.0). On the contrary, due to comparing each code with a large number
of unique codes, the consumer lame (LLVM-3.8) and security pgp d (LLVM-9.0)
exhibit the maximum comparison time.

LLVM-3.8 LLVM-9.0 Speedup
Applications Speedup Optimal Speedup Optimal Optimal LLVM

w.r.t. -O3 Sub-Sequence w.r.t. -O3 Sub-Sequence 9.0 w.r.t. 3.8
automotive bitcount 1.08× ACACA 1.21× BDADB 1.0×
automotive qsort1 1.08× AABCAB 1.04× CAAADB 0.90×
automotive susan c 1.37× AAAAAE 1.08× AAAAAA 1.03×
automotive susan e 1.23× BCCEEB 1.06× AAABCB 1.26×
automotive susan s 1.07× AAAACA 1.24× AAAAAD 1.008×
bzip2d 1.40× BDECED 1.14× DADAC 1.03×
bzip2e 1.46× BBDE 1.08× CDBAAB 1.03×
consumer jpeg c 1.17× BAD 1.56× ACDCDA 1.35×
consumer jpeg d 1.45× BADAAE 1.02× AAAAAD 1.06×
consumer lame 1.01× DBECAA 1.25× AADDBC 1.28×
consumer mad 1.23× ABAC 1.11× AACBCD 1.01×
consumer tiff2bw 1.16× BCEABC 1.05× BECCCD 1.01×
consumer tiff2rgba 1.01× ABAEDA 1.24× AAAABD 1.43×
consumer tiffdither 1.08× EABECB 1.06× BCDAA 1.01×
consumer tiffmedian 1.27× CAEAEB 1.28× CBCABA 1.02×
network dijkstra 1.19× AAAA 1.09× AAAAB 0.87×
network patricia 1.13× AAAABC 1.06× AAAABC 0.81×
office rsynth 1.05× AAAABC 1.26× BCDCCB 0.98×
office stringsearch1 1.08× CABAAE 1.12× BACCE 1.06×
security blowfish d 1.11× ABADEE 1.006× BCACAD 1.05×
security blowfish e 1.08× EBAE 1.006× BBCACA 1.01×
security pgp d 1.17× ADAACC 1.05× DDABC 1.23×
security pgp e 1.05× BCACDE 1.07× BDDCBA 1.07×
security rijndael d 1.11× BECACA 1.18× AACAAC 1.19×
security rijndael e 1.12× ABECAB 1.24× BBDCBC 1.19×
security sha 1.13× CBACAC 1.06× BABDCC 1.01×
telecom adpcm c 1.48× BB 1.79× B 1.33×
telecom adpcm d 1.15× CAE 1.24× CCACDB 1.24×
telecom CRC32 1.08× AAAABC 1.06× BCABD 1.004×
telecom gsm 1.31× EBBAAB 1.03× DCCAAB 1.02×
Mean 1.16× – 1.14× – 1.06×

Table 6. Optimal speedup for LLVM 3.8 and 9.0

Despite increased comparison time, REDUCER clearly outperforms MiCOMP
for LLVM-3.8 and 9.0, which can be observed via Table 5. For all the applications,
REDUCER takes lesser time, as compared to MiCOMP. As depicted via Figure 10,
for LLVM-3.8, the maximum speedup of 58.6× is observed for telecom adpcm d,
because a large number of repeated executions have been suppressed. The lowest
speedup observed is 1.64× for consumer lame, due to less number of repeated codes.

REDUCER: Elimination of Repetitive Codes 565

On average, for LLVM-3.8, a decent speedup of 4.13× is seen. Similarly, LLVM-9.0
shows a maximum speedup of 8.54× for telecom CRC32, lowest speedup of 1.64×
for security pgp e, and average speedup of 2.92×.

The redundancy count is not the only parameter to affect REDUCER perfor-
mance, instead it is equally affected by code size. For LLVM-9.0, network dijkstra
depicts the highest redundancy count, but its speedup is not dominating because its
comparison time is greater due to code size. Conversely, telecom CRC32 shows the
highest speedup due to both smaller code size than network dijkstra and higher re-
dundancy count than the majority of other applications. In this manner, for longer
sequence lengths (> 6) and smaller code sizes, the performance of REDUCER is ex-
pected to increase exponentially w.r.t. MiCOMP, as Figure 6 depicts the substantial
increase in redundancy proportion for longer sequence lengths.

Despite same workloads, the MiCOMP and REDUCER speed is different for
both LLVM-3.8 and 9.0, which is possibly due to wide differences in the compiler
versions resulting in varying -O3 internal passes. This way, the constructed sub-
sequences widely vary for both versions. It can be observed via Table 5, despite
a same number of experiments, the MiCOMP (LLVM-9.0) average speed is higher
than LLVM-3.8 because, for the majority of applications, LLVM-9.0 generated codes
are executed in lesser time than LLVM-3.8 due to enhanced optimizations. On the
contrary, REDUCER (LLVM-3.8) is on the average 1.35× faster than REDUCER
(LLVM-9.0). Primarily, two factors are affecting the speed of REDUCER, i.e. ex-
periment count and code execution time. For instance, REDUCER (LLVM-9.0) is
slower for telecom adpcm c, because it is required to process 2.4 k codes which are
only 327 with LLVM-3.8. Conversely, for a few applications REDUCER (LLVM-
9.0) dominates REDUCER (LLVM-3.8) but with a minor margin, for instance in
bzip2d, the processing is reduced to 7.5 k, which is 7.7 k with LLVM-3.8. The redun-
dancy count is varied by the impact caused by optimization sequences on a given
application, which is indeterministic.

Overall, the sub-sequences are able to exploit reasonable speedup for majority
applications as evident by Table 6. On average speedup9 of 1.16× and 1.14×, are
achieved for LLVM-3.8 and LLVM-9.0, respectively. Besides, the maximum speedup
is 1.48× and 1.79× for LLVM-3.8 and LLVM-9.0 telecom adpcm c, respectively.
With LLVM-9.0, -O3 has become even more powerful due to increased optimization
passes, thus it gets tougher to beat -O3 performance. This way, the speedup w.r.t.
-O3 is observed to be lesser for LLVM-9.0.

As per Table 6, LLVM-9.0 optimal sub-sequence is showing greater speedup
w.r.t. LLVM-3.8 optimal sub-sequence. The maximum speedup of 1.43× is seen
for consumer tiff2rgba, and the average speedup is 1.06×. The speedup is possibly
due to LLVM-9.0 being faster than LLVM-3.8 with an enhanced set of optimiza-
tion passes. Besides, the speedup is greater due to our efficient implementation of
MiCOMP for LLVM-9.0, which means that we have derived better LLVM-9.0 -O3
sub-sequences using k-means than the ones reported in [3].

9 Harmonic mean is used to average the speedup gains [3].

566 H. Ahmed, M.A. Ismail

5.4.2 Big Data Workloads

Several well known C/C++ based applications from Rodinia [28], Phoenix [31], Cor-
texSuite [30], genann [32], and grep-bench [29] benchmarks have been tested. Only
those applications have been selected which are part of standard big data bench-
marks, representing graph mining, classification, clustering, and statistics categories.
These include bfs, grep, k-means, word count, etc., as discussed in Table 7. These
benchmarks have been run on an Intel Xeon Server machine whose details are listed
in Table 1. Each application has been run with 3 to 4 datasets of varying sizes and
formats.

Application Description Input Dataset Format

Breadth-First
Search (BFS) [28]

Traverses a graph in a breadthward
motion.

Graph generated by
specifying the number of
nodes.

Grep [29] Searches a file for a particular pat-
tern of characters, and displays the
lines containing that pattern.

Text file containing
words.

k-means [28] Represents the data objects by the
centroids of the sub-clusters by di-
viding a cluster of data objects into
k sub-clusters.

Dataset consisted of a set
of numeric features.

Word Count
(WC) [31]

Counts the frequency of occurrence
of each unique word in a text docu-
ment.

Text files containing
words.

Gennan [32] Neural network library for using and
training feedforward artificial neural
networks (ANN).

Numeric predictive at-
tributes and the class.

Latent Dirich-
let Allocation
(LDA) [30]

Topic modeling algorithm that is
used in natural language process-
ing for discovering topics from un-
ordered documents.

Document is represented
as a sparse vector of
word counts, in the form:
[M][term 1]:[count]. . .
[term N]:[count]

Principle Com-
ponent Analysis
(PCA) [30]

It is a statistical technique for
feature extraction in multivariate
datasets.

Data numeric attributes
and the class.

Table 7. Benchmark details

The impact of REDUCER is more prominent with big data workloads which
consumes larger execution time than conventional cases. As can be observed via
Figure 11, for all the applications and datasets REDUCER makes the experimen-
tation feasible by bringing a substantial reduction in execution time. For each
application, the comparison and compilation are done only one time. This way, in
the Figure 11, only the bar corresponding to the first dataset includes the compar-
ison and compilation times along with execution time, the other bars only involve

REDUCER: Elimination of Repetitive Codes 567

0

10

20

30

40

50

60

70

80

90

100

Sy
n

th
e

ti
c

(1
.2

G
B

)

Sy
n

th
e

ti
c

(5
.2

G
B

)

Sy
n

th
e

ti
c

(1
0

.7
G

B
)

Sy
n

th
e

ti
c

(2
0

.7
G

B
)

Sy
n

th
e

ti
c

(1
0

.7
G

B
)

A
m

az
o

n
 (

9
.3

G
B

)

W
ik

ip
ed

ia
 (

2
0

G
B

)

Sy
n

th
e

ti
c

(2
.5

G
B

)

H
ig

gs
 (

8
.0

G
B

)

Su
sy

 (
2

.4
G

B
)

Sy
n

th
e

ti
c

(5
.4

G
B

)

A
m

az
o

n
 (

9
.3

G
B

)

W
ik

ip
ed

ia
 (

4
.8

G
B

)

Bfs Grep Kmeans Word Count

D
ay

s

Execution Time in Days
MiCOMP REDUCER

a)

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

P
o

ke
r-

H
an

d
 (

3
7

6
.6

M
B

)

Su
sy

 (
2

.4
G

B
)

H
ig

gs
 (

8
.0

G
B

)

K
O

S
(6

8
7

.3
M

B
)

N
IP

S
(1

.8
G

B
)

A
P

 C
o

rp
u

s
(3

.9
G

B
)

Sp
am

b
as

e
 (

2
.8

G
B

)

U
JI

n
d

o
o

rL
o

c
(2

.7
G

B
)

H
A

P
T

(5
.4

G
B

)

Genann LDA PCA

D
ay

s

Execution Time in Days
MiCOMP REDUCER

b)

Figure 11. REDUCER performance for big data applications

568 H. Ahmed, M.A. Ismail

Benchmark Experiment Avg Exe Collection
Technique Environment Suite Count Time Imp Time

per Application w.r.t. Baseline
Less is Cortex-M0, BEEBS 50, 2.4% –
More [14] LLVM-3.8

Cortex-M3, 64 optimizations 5.3%
LLVM-5.0 + (O2 baseline)

Lost in Intel i5-6300U, CK Milepost- 66, 11.5% –
translation LLVM-6.0 GCC-Codelet
[15] Arm Cortex-A53, 64 optimizations 5.1%

LLVM-6.0 +(O3 baseline)
IODC [12] Intel Xeon, AMD, & MapReduce 300 random 32.43 % 110 days

Loongson clusters, & Server optimizations 10.71 % 740 days
GCC-4.4 Applications +(O3 baseline)

FFD [27] Cortex-M0, MiBench & 2 048 optimizations – –
Cortex-M3, WCET +(O1, O2 baseline)
Cortex-A8, Applications
Epiphany,
XMOS L1,
GCC-4.7

Sensitivity Intel Core i7 BEEBS 1 728 000 – –
Analysis [10] LLVM-3.8.1
Hybrid Intel Core i7-3779, Polybench & – 8.01% –
Approach [11] LLVM 3.5 cBench +(O3 baseline) 6.07%
MiCOMP [3] Intel Xeon Ctuning 19 530 optimizations 16.66 %

LLVM-3.8 cBench +(O3 baseline)
Intel Core i7-8550U,
LLVM-3.8, 14.41% 93 days
LLVM-9.0 12.50% 91 days

REDUCER Intel Core i7-8550U, Ctuning Avg reduction w.r.t.
LLVM-3.8, cBench MiCOMP 77.60%, 14.41% 24 days
LLVM-9.0 69.98% 12.50% 33 days

Table 8. REDUCER comparison with existing works

execution time. Hence, the comparison time is spent only for the first dataset
execution, the rest datasets execution is comparison free. REDUCER removes
the redundant codes at the start, hence executes all the datasets with a reduced
number of codes. Whereas, in MiCOMP, each dataset is executed with all the
codes including both the unique and identical. It can be observed via Figure 11,
REDUCER greatly facilitates the iterative compilation of bfs (Synthetic-20.7GB)
dataset, by cutting down execution time to only 12 days from 98 days of MiCOMP.
Similarly, for iterative compilation of PCA (Spambase-2.8GB) dataset, only 32
days are required with REDUCER in comparison to 111 days of MiCOMP. Sim-
ilarly, for other workloads, it can be seen how REDUCER makes the iterative
compilation feasible for big data workloads comprising of high volume and variety
datasets.

6 RELATED WORK

Several works [13, 22, 21, 20, 19] have emphasized on code comparisons for removing
redundant executions. [22, 21, 20, 19] were based on VPO (Very Portable Optimizer)
compiler back end, which performed all the analyses and optimizations on a single
low-level representation called Register Transfer Lists (RTLs). It detected the iden-

REDUCER: Elimination of Repetitive Codes 569

tical function instances by performing three checks including instructions count,
instructions byte-sum, and the CRC (Cyclic Redundancy Code) checksum on the
bytes of the RTLs. Similarly, in [13] MD5 checksum of assembler code was obtained
to verify that no two optimizations combinations generate the same binary. The
work selected GCC 200 optimization combinations using a random search strategy.
In comparison to these, REDUCER to the best of our knowledge is the first work
that detects identical codes in LLVM by comparing the complete IR codes. The
granularity of comparison is complete IR code, not just a function or basic block
instance.

Conversely, other works [14, 15, 3, 12, 10, 27, 11] did not make the code level
comparisons and executed the same code repeatedly. The comparison of these works
with REDUCER is depicted via Table 8. In [14, 15], initially, the required perfor-
mance metrics were tested using standard optimization levels (O2, O3, etc). Then,
the metrics were measured by excluding one pass at a time from the standard op-
timization level, till all the passes were eliminated. In this way, the tested config-
uration count was lesser, because only the passes present in the standard LLVM
optimization level were considered. With this approach, the search space is re-
duced, but the performance improvement is significantly lesser than the other ap-
proaches.

In [12], iterative optimization for the data center (IODC) was proposed which
found the optimal compiler configurations for Map Reduce and server applications
involving a large collection of massive size datasets. IODC showed greater speedup
but at the cost of collection time of 850 days. Despite testing only 300 randomly
chosen combinations of compiler optimizations, the collection time was higher due
to the execution of a single application with multiple large datasets. However, if
the redundancy fraction is f % in the derived optimizations, then all the datasets
are required to be executed with these redundant f % codes, increasing the time
significantly. In this situation, the integration of REDUCER with IODC can achieve
the reported speedup in lesser runs, with a substantial reduction in data collection
time, because for an application the redundant codes are checked only one time
irrespective of the number of datasets.

The authors in [27] proposed fractional factorial design which reduced the search
space for finding optimal optimization combination in GCC. [10] performed sensi-
tivity test for analyzing the impact of 54 LLVM code optimizations on the execution
time of applications. Similarly, a design-space exploration was proposed in [11] for
searching compiler optimization sequence. The given hybrid approach found opti-
mizations and their order of application, through previously generated sequences
for training programs set. Initially, a clustering algorithm selected optimizations,
followed by a metaheuristic algorithm for discovering the sequence of optimizations.
As per results, the discovered optimized code sequences on average brought the
only improvement of 8.01% and 6.07% w.r.t. -O3, which is less in comparison to
other works. In [3] MiCOMP was proposed, which reduced the search space from
billions to few thousand. It did so by clustering LLVM -O3 optimizations into five
sub-sequences by using agglomerative clustering. The search space was reduced

570 H. Ahmed, M.A. Ismail

because phase ordering was exploited using sub-sequences, instead of individual
optimizations. Overall MiCOMP showed significant performance improvement rel-
ative to -O3, with 5 clusters and a maximum sequence length of 6 (total 19.5 k
experiments). By comparing the proposed works listed in Table 8 with MiCOMP,
it can be observed that MiCOMP searches the optimal optimization sequence (bet-
ter than -O3) in lesser runs for an application. Also, it is evident that MiCOMP
sub-sequences exploit greater speedup (w.r.t. -O3) than others. However, MiCOMP
did not exclude the identical codes present in 19.5 k sub-sequences, instead, all the
permutations were executed to find optimal sub-sequences, increasing the data col-
lection time.

This paper reduces MiCOMP search space by proposing REDUCER which is
responsible for eliminating identical codes. In this manner, the repeated execu-
tion of the same code is prevented, saving the testing time without affecting the
performance accuracy. As per Table 8, the performance improvements and data
collection time of MiCOMP reported in [3] and MiCOMP implemented in our work
are not comparable because each technique has been tested on different test envi-
ronments. It can be observed that REDUCER shortens the data collection time to
24 and 33 days (LLVM-3.8&LLVM-9.0) from MiCOMP’s 93 and 91 days without
sacrificing the performance improvement w.r.t. baseline. Further, we have extended
MiCOMP for LLVM-9.0 by constructing 5 clusters using k-means clustering. Our
derived optimization sub-sequences shows average speedup of 1.06× w.r.t. MiCOMP
(LLVM-3.8) sub-sequences given in [3].

7 CONCLUSION

The compiler search space reduction technique REDUCER has been presented in
this paper. REDUCER relies on straightforward code comparisons to inhibit iden-
tical code executions. REDUCER has been tested using well-accepted MiCOMP
iterative compilation technique with LLVM-3.8 and 9.0. As per reported results,
REDUCER substantially accelerates the iterative compilation process in compar-
ison to MiCOMP by eliminating a large number of redundant experiments. In
this regard, REDUCER completes the overall iterative compilation of embedded
workloads within 24 and 33 days (LLVM-3.8&LLVM-9.0), respectively, whereas
MiCOMP takes 93 and 91 days for the same task.

The promising results of REDUCER (LLVM-9.0) anticipate the high signifi-
cance of REDUCER for forthcoming compilers as well. Furthermore, REDUCER
is proved to be significantly faster for big data workloads. Besides, it is found to
be simple, generic, and easily adaptable in any iterative compilation technique. In
the future, we intend to reduce comparison time by implementing a parallel version
of REDUCER. Presently, REDUCER can only detect identical codes, in the future
REDUCER will be extended to detect equivalent codes as well, which is expected
to further reduce the search space.

REDUCER: Elimination of Repetitive Codes 571

REFERENCES

[1] LLVM 2019 (Accessed October 20, 2019). The LLVMCompiler Infrastructure. https:
//llvm.org/.

[2] Aho, A.: Compilers: Principles, Techniques, and Tools (for Anna University). 2/e,
2003.

[3] Ashouri, A.H.—Bignoli, A.—Palermo, G.—Silvano, C.—Kulkarni, S.—
Cavazos, J.: MiCOMP: Mitigating the Compiler Phase-Ordering Problem Using
Optimization Sub-Sequences and Machine Learning. ACM Transactions on Architec-
ture and Code Optimization (TACO), Vol. 14, 2017, No. 3, Art. No. 29, pp. 1–28,
doi: 10.1145/3124452.

[4] Ashouri, A.H.—Killian, W.—Cavazos, J.—Palermo, G.—Silvano, C.:
A Survey on Compiler Autotuning Using Machine Learning. ACM Computing Sur-
veys (CSUR), Vol. 51, 2019, No. 5, Art. No. 96, pp. 1–42, doi: 10.1145/3197978.

[5] Ashouri, A.H.—Mariani, G.—Palermo, G.—Park, E.—Cavazos, J.—
Silvano, C.: COBAYN: Compiler Autotuning Framework Using Bayesian Networks.
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 13, 2016,
No. 2, Art. No. 21, pp. 1–25, doi: 10.1145/2928270.

[6] Bodin, F.—Kisuki, T.—Knijnenburg, P.—O’Boyle, M.—Rohou, E.: Iter-
ative Compilation in a Non-Linear Optimisation Space. Workshop on Profile and
Feedback-Directed Compilation, 1998.

[7] Chen, M.—Mao, S.—Liu, Y.: Big Data: A Survey. Mobile Networks and Appli-
cations, Vol. 19, 2014, No. 2, pp. 171–209, doi: 10.1007/s11036-013-0489-0.

[8] Chong, F.T.—Franklin, D.—Martonosi, M.: Programming Languages and
Compiler Design for Realistic Quantum Hardware. Nature, Vol. 549, 2017, No. 7671,
pp. 180–187, doi: 10.1038/nature23459.

[9] Cooper, K.—Torczon, L.: Engineering a Compiler. Elsevier, 2011.

[10] de la Torre, J. C.—Ruiz, P.—Dorronsoro, B.—Galindo, P. L.: Analyzing
the Influence of LLVM Code Optimization Passes on Software Performance. In: Med-
ina, J., Ojeda-Aciego, M., Verdegay, J., Perfilieva, I., Bouchon-Meunier, B., Yager, R.
(Eds.): Information Processing and Management of Uncertainty in Knowledge-Based
Systems. Applications (IPMU 2018). Springer, Cham, Communications in Computer
and Information Science, Vol. 855, 2018, pp. 272–283, doi: 10.1007/978-3-319-91479-
4 23.

[11] de Souza Xavier, T.C.—da Silva, A. F.: Exploration of Compiler Optimization
Sequences Using a Hybrid Approach. Computing and Informatics, Vol. 37, 2018,
No. 1, pp. 165–185, doi: 10.4149/cai 2018 1 165.

[12] Fang, S.—Xu, W.—Chen, Y.—Eeckhout, L.—Temam, O.—Chen, Y.—
Wu, C.—Feng, X.: Practical Iterative Optimization for the Data Center. ACM
Transactions on Architecture and Code Optimization (TACO), Vol. 12, 2015, No. 2,
Art. No. 15, pp. 1–26, doi: 10.1145/2739048.

[13] Fursin, G.—Temam, O.: Collective Optimization: A Practical Collaborative Ap-
proach. ACM Transactions on Architecture and Code Optimization (TACO) Vol. 7,
2010, No. 4, Art. No. 20, pp. 1–29, doi: 10.1145/1880043.1880047.

https://llvm.org/
https://llvm.org/
https://doi.org/10.1145/3124452
https://doi.org/10.1145/3197978
https://doi.org/10.1145/2928270
https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1038/nature23459
https://doi.org/10.1007/978-3-319-91479-4_23
https://doi.org/10.1007/978-3-319-91479-4_23
https://doi.org/10.4149/cai_2018_1_165
https://doi.org/10.1145/2739048
https://doi.org/10.1145/1880043.1880047

572 H. Ahmed, M.A. Ismail

[14] Georgiou, K.—Blackmore, C.—Xavier-de-Souza, S.—Eder, K.: Less Is
More: Exploiting the Standard Compiler Optimization Levels for Better Performance
and Energy Consumption. 21st International Workshop on Software and Compilers for
Embedded Systems (SCOPES ’18), 2018, pp. 35–42, doi: 10.1145/3207719.3207727.

[15] Georgiou, K.—Chamski, Z.—Amaya Garcia, A.—May, D.—Eder, K.: Lost
in Translation: Exposing Hidden Compiler Optimization Opportunities. The Com-
puter Journal, 2020, doi: 10.1093/comjnl/bxaa103.

[16] Guthaus, M.R.—Ringenberg, J. S.—Ernst, D.—Austin, T.M.—
Mudge, T.—Brown, R.B.: MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. Fourth Annual IEEE International Workshop on Work-
load Characterization (WWC-4), 2001, pp. 3–14, doi: 10.1109/WWC.2001.990739.

[17] Hall, M.—Padua, D.—Pingali, K.: Compiler Research: The Next
50 Years. Communications of the ACM, Vol. 52, 2009, No. 2, pp. 60–67, doi:
10.1145/1461928.1461946.

[18] Hoste, K.—Eeckhout, L.: Cole: Compiler Optimization Level Exploration. 6th

Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO ’08), 2008, pp. 165–174, doi: 10.1145/1356058.1356080.

[19] Jantz, M.R.—Kulkarni, P.A.: Analyzing and Addressing False Interactions
During Compiler Optimization Phase Ordering. Software: Practice and Experience,
Vol. 44, 2014, No. 6, pp. 643–679, doi: 10.1002/spe.2176.

[20] Kulkarni, P.—Hines, S.—Hiser, J.—Whalley, D.—Davidson, J.—
Jones, D.: Fast Searches for Effective Optimization Phase Sequences. ACM SIG-
PLAN Notices, Vol. 39, 2004, No. 6, pp. 171–182, doi: 10.1145/996893.996863.

[21] Kulkarni, P.A.—Whalley, D.B.—Tyson, G. S.—Davidson, J.W.: Exhaus-
tive Optimization Phase Order Space Exploration. International Symposium on Code
Generation and Optimization (CGO ’06), 2006, pp. 1–13, doi: 10.1109/CGO.2006.15.

[22] Kulkarni, P.A.—Whalley, D.B.—Tyson, G. S.—Davidson, J.W.: Practical
Exhaustive Optimization Phase Order Exploration and Evaluation. ACM Transac-
tions on Architecture and Code Optimization (TACO), Vol. 6, 2009, No. 1, Art. No. 1,
pp. 1–36, doi: 10.1145/1509864.1509865.

[23] Lopes, B.C.—Auler, R.: Getting Started with LLVM Core Libraries. Packt Pub-
lishing Ltd, 2014.

[24] Sarda, S.—Pandey, M.: LLVM Cookbook. Packt Publishing Ltd, 2015.

[25] Triantafyllis, S.—Vachharajani, M.—Vachharajani, N.—August, D. I.:
Compiler Optimization-Space Exploration. International Symposium on Code Gener-
ation and Optimization: Feedback-Directed and Runtime Optimization (CGO 2003),
2003, pp. 204–215, doi: 10.1109/CGO.2003.1191546.

[26] Zhang, W.—Zhao, D.—Wang, X.: Agglomerative Clustering via Maximum In-
cremental Path Integral. Pattern Recognition, Vol. 46, 2013, No. 11, pp. 3056–3065,
doi: 10.1016/j.patcog.2013.04.013.

[27] Pallister, J.—Hollis, S. J.—Bennett, J.: Identifying Compiler Options to Min-
imize Energy Consumption for Embedded Platforms. The Computer Journal, Vol. 58,
2015, No. 1, pp. 95–109, doi: 10.1093/comjnl/bxt129.

https://doi.org/10.1145/3207719.3207727
https://doi.org/10.1093/comjnl/bxaa103
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1145/1461928.1461946
https://doi.org/10.1145/1356058.1356080
https://doi.org/10.1002/spe.2176
https://doi.org/10.1145/996893.996863
https://doi.org/10.1109/CGO.2006.15
https://doi.org/10.1145/1509864.1509865
https://doi.org/10.1109/CGO.2003.1191546
https://doi.org/10.1016/j.patcog.2013.04.013
https://doi.org/10.1093/comjnl/bxt129

REDUCER: Elimination of Repetitive Codes 573

[28] Che, S.—Boyer, M.—Meng, J.—Tarjan, D.—Sheaffer, J.W.—
Lee, S.H.—Skadron, K.: Rodinia: A Benchmark Suite for Heterogeneous
Computing. IEEE International Symposium on Workload Characterization (IISWC),
2009, pp. 44–54, doi: 10.1109/IISWC.2009.5306797.

[29] Grep-Bench, 2019 (Accessed March 18, 2019). https://github.com/pokle/

grep-bench.

[30] Thomas, S.—Gohkale, C.—Tanuwidjaja, E.—Chong, T.—Lau, D.—
Garcia, S.—Taylor, M.B.: CortexSuite: A Synthetic Brain Benchmark Suite.
IEEE International Symposium on Workload Characterization (IISWC), 2014,
pp. 76–79, doi: 10.1109/IISWC.2014.6983043.

[31] Yoo, R.M.—Romano, A.—Kozyrakis, C.: Phoenix Rebirth: Scal-
able MapReduce on a Large-Scale Shared-Memory System. IEEE International
Symposium on Workload Characterization (IISWC), 2009, pp. 198–207, doi:
10.1109/IISWC.2009.5306783.

[32] C Neural Network Library: Genann, 2019 (Accessed March 01, 2019). https://
codeplea.com/genann.

[33] Purini, S.—Jain, L.: Finding Good Optimization Sequences Covering Program
Space. ACM Transactions on Architecture and Code Optimization (TACO), Vol. 9,
2013, No. 4, Art. No. 56, pp. 1–23, doi: 10.1145/2400682.2400715.

[34] Nalbantoğlu, Ö. U.: Dynamic Programming. In: Russell, D. (Ed.): Multiple Se-
quence Alignment Methods. Humana Press, Totowa, NJ, Methods in Molecular Bi-
ology (Methods and Protocols), Vol. 1079, 2014, pp. 3–27, doi: 10.1007/978-1-62703-
646-7 1.

[35] Dasgupta, S.—Papadimitriou, C.H.—Vazirani, U.V.: Dynamic Program-
ming. In: Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V. (Eds.): Algorithms.
Chapter 6. Vol. 1, 2006, pp. 169–199.

[36] Han, J.—Pei, J.—Kamber, M.: Data Mining Concepts and Techniques. The Mor-
gan Kaufmann Series in Data Management Systems, 2011, pp. 83–124.

[37] Steinbach, M.—Kumar, V.—Tan, P.N.: Cluster Analysis: Basic Concepts and
Algorithms. Introduction to Data Mining, Pearson Addison Wesley, 2005.

https://doi.org/10.1109/IISWC.2009.5306797
https://github.com/pokle/grep-bench
https://github.com/pokle/grep-bench
https://doi.org/10.1109/IISWC.2014.6983043
https://doi.org/10.1109/IISWC.2009.5306783
https://codeplea.com/genann
https://codeplea.com/genann
https://doi.org/10.1145/2400682.2400715
https://doi.org/10.1007/978-1-62703-646-7_1
https://doi.org/10.1007/978-1-62703-646-7_1

574 H. Ahmed, M.A. Ismail

Hameeza Ahmed received her M.Eng. and B.Eng. degrees in computer and informa-
tion systems from the NED University of Engineering and Technology, Pakistan in 2015
and 2012, respectively. She is currently pursuing her Ph.D. from the same university.
Her research interests include big data computing, compiler optimizations, and computer
architecture.

Muhammad Ali Ismail is Professor and Chair at the Department of Computer and
Information Systems Engineering, NED University of Engineering and Technology. He is
also serving as Director of the High Performance Computing Center and Scientific Director
of the Exascale Open Data Analytics Lab, National Center in Big Data and Cloud Com-
puting at the same university. He has more than 16 years experience of research, teaching
and administration in both national and international universities. He received his Ph.D.
in high performance computing in 2011. Afterwards he pursued his post doctorate in
automatic design space exploration from ULBS Romania and become a HiPEAC mem-
ber. He has published over 65 scientific papers in international journals and conferences
along with a U.S. patent. He has won many of the national and international grants of
worth above Rs. 200 Million. He is also the recipient of Research Productivity Award by
Pakistan Council for Science and Technology, Ministry of Science and Technology, Gov-
ernment of Pakistan. His current research interests include computational HPC, big data
mining, cluster and cloud computing, multicore processor architecture and programming,
machine learning, heuristics and automatic design space exploration. He is also serving
IET Karachi Network as its Vice Chairman.

Computing and Informatics, Vol. 40, 2021, 575–605, doi: 10.31577/cai 2021 3 575

AUTOMATING TEST CASE IDENTIFICATION
IN JAVA OPEN SOURCE PROJECTS ON GITHUB

Matej Madeja, Jaroslav Porubän, Michaela Bač́ıková
Matúš Suĺır, Ján Juhár, Sergej Chodarev, Filip Gurbáľ

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
e-mail: {matej.madeja, jaroslav.poruban, michaela.bacikova,

matus.sulir, jan.juhar, sergej.chodarev, filip.gurbal}@tuke.sk

Abstract. Software testing is one of the very important Quality Assurance (QA)
components. A lot of researchers deal with the testing process in terms of tester
motivation and how tests should or should not be written. However, it is not
known from the recommendations how the tests are written in real projects. In
this paper, the following was investigated: (i) the denotation of the word “test”
in different natural languages; (ii) whether the number of occurrences of the word
“test” correlates with the number of test cases; and (iii) what testing frameworks
are mostly used. The analysis was performed on 38 GitHub open source repositories
thoroughly selected from the set of 4.3M GitHub projects. We analyzed 20 340 test
cases in 803 classes manually and 170 k classes using an automated approach. The
results show that: (i) there exists a weak correlation (r = 0.655) between the number
of occurrences of the word “test” and the number of test cases in a class; (ii) the
proposed algorithm using static file analysis correctly detected 97% of test cases;
(iii) 15% of the analyzed classes used main() function whose represent regular Java
programs that test the production code without using any third-party framework.
The identification of such tests is very complex due to implementation diversity.
The results may be leveraged to more quickly identify and locate test cases in
a repository, to understand practices in customized testing solutions, and to mine
tests to improve program comprehension in the future.

Keywords: Program comprehension, Java testing, testing practices, test smells,
open-source projects, GitHub

Mathematics Subject Classification 2010: 68-04

https://doi.org/10.31577/cai_2021_3_575

576 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

1 INTRODUCTION

The development of automated tests in a software project is a time-consuming and
costly process, as it represents more than half of the entire development process [1].
The main aim of testing is to maintain the quality of the product and, in addition
to that, tests describe the expected behavior of the production code being tested.
Years ago, Demeyer et al. [2] suggested that if the tests are maintained together
with the production code, their implementation is the most accurate mirror of the
product specification and can be considered as up-to-date documentation. Tests can
contain many useful production code metadata that can support program compre-
hension.

Understanding the code is one of the very first tasks a developer should cope with
before the implementation of a particular feature. When the product specification
changes (e.g., the requirements for new features are added), the developer must
first understand them, then create his/her mental model [3] and finally, the created
mental model is expressed in a specific artifact – code implementation. The problem
is that two developers are likely to create two different mental models for the same
issue because according to Mayer [4] mental model may vary with respect to its
completeness and veridicality. A comprehension gap could arise when one developer
needs to adapt another programmer’s mental model from the code.

An assumption can be made that by using the knowledge about the structure
and semantics of tests and their connection to the production code, it is possible to
increase the effectiveness of program comprehension and reduce the comprehension
gap. This would be possible, for example, by enriching the source code with meta-
data from the tests directly into the production code, e.g. data used for testing, test
scenarios, objects relations, comments, etc. To achieve this goal, it is necessary to
know in detail how the tests are actually written and what data they use.

There exist many guidelines on how tests should be created. First, naming con-
ventions may aid the readability and comprehension of the code. According to the
empirical study by Butler et al. [5], developers largely follow naming conventions.
Our previous research [6] shows that there is a relation between the naming of iden-
tifiers in the test code and the production code being tested. This indicates that
the relationship between the test and production code is not only at the level of
method calls, object instances, or identifier references, but also at the vocabulary
level, depending on the domain knowledge and mental model of a tester/devel-
oper.

Furthermore, many authors [7, 8, 9] define best practices to simplify the test
with the benefit of a faster understanding of the testing code and the identifica-
tion of test failure. Some guidelines lead to avoiding test smells [10] because as
reported by recent studies [11, 12], their presence might not only negatively affect
the comprehension of test suites but can also lead to test cases being less effective
in finding bugs in the production code. All mentioned approaches are only recom-
mendations but do not really express how the tests are written in real projects.
That means we know how tests should be written, but we do not know how they

Test Case Identification in Java OS Projects on GitHub 577

are written in practice. Many researchers have tried to clarify the motivation of
writing tests [13, 14, 15], the impact of test-driven development (TDD) on code
quality [16, 17] or the popularity of testing frameworks [18].

To reveal testing practices in real and independent projects it is necessary to find
a way to identify test cases in a project, without the time-consuming code analysis.
Much more important than the number of test cases is the information where they
are located. When a testing framework is used, the test identification is mostly
straightforward, e.g. by the presence of the framework imports. On the other hand,
to obtain a general overview of testing practices regardless of the used framework,
it is advisable to consider tests that do not use any third-party framework and can
be regarded as customized testing solutions. In most of the related works, tests
are identified by searching specific file and folder names, or some specific keywords.
Considering that these keywords usually included the word “test” and based on the
authors’ experience of Java test cases development, it can be assumed that there is
a relation between the word “test” and the number of test cases in a file. That means
searching for the “test” string could be beneficial for faster test case identification.
Based on the previous reasoning, this paper defines the following hypothesis and
research question:

H 1. There is a strong correlation (r /∈ (−0.8, 0.8)) between the number of occur-
rences of the word “test” in the file content and the number of test cases.

RQ 1. How many testing classes are implemented as customized testing solutions
without using any third party framework?

This paper is focused exclusively on unit testing and analyzes 38 projects that
have been carefully selected (see Section 3.4.2) from all GitHub projects with Java
as a primary language (most of the code written in Java). Section 2 presents the
current state and found gaps in the research. In Section 3, the research method
is described, containing an examination of whether it is appropriate to search for
tests using the word “test” due to different natural languages of developers, an
overview of known testing frameworks, and a proposed algorithm for static code
analysis to automate the identification of test cases. Section 4 summarizes the
results, threats to validity are mentioned in Section 5, and conclusions can be found
in Section 6.

2 STATE OF THE ART

Many researchers examine software testing but we still know little about the struc-
ture and semantics of test code. This chapter summarizes the related work of soft-
ware testing from various perspectives.

Learning about real testing practices is a constant research challenge. The goal
of such research is mostly to find imperfections and risks, learn, and make rec-
ommendations on how to prevent them and how to streamline their development.
Leitner and Bezemer [19] studied 111 Java-based projects from GitHub that contain

578 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

performance tests. Authors identify tests by searching for one or more terms in
the test file name or for the presence of popular framework import, solely in the
src/test project directory. Selected projects were subjected to manual analysis,
in which they monitored several metrics. The most important result for this paper
was the fact that 103 projects also included unit tests, usually following standard-
ized best practices. On the other hand, the performance testing approach of the
same projects often appears less extensive and less standardized. Another finding
was that 58 projects (52%) mix performance tests freely with their functional test
suite, i.e., performance tests are in the same package, or even the same test file,
as functional tests. Six projects implemented tests as the usage examples. Using
a similar approach [19], in our case by searching for the word “test” and searching
for imports of testing frameworks in all project’s Java files, we would like to analyze
unit tests, but with a careful selection from all GitHub projects at a specific time,
resulting in more relevant projects used for analysis.

Code coverage, also known as test coverage, is a very popular method for eval-
uating project quality. Ellims et al. [20] investigated the usage of unit testing in
practice in three projects that authors evaluated as well-tested. Statement coverage
was found to be indeed a poor measure of test adequacy. According to the findings
of Hemmati [21], basic criteria such as statement coverage are a very weak metric,
detecting only 10% of the faults. A test case may cover a piece of code but miss its
faults. According to Hilton et al. [22], coverage can be beneficial in the code review
process if a smaller part of the project is evaluated. By reducing coverage to a sin-
gle ratio of the whole project, much valuable information could be lost. Kochhar
et al. [23] performed an analysis of 100 large open-source Java projects showing that
31% of the projects have coverage greater than 50% and only 8% are greater than
75%.

Many experiments try to express the quality of tests by testing “mutants” [24],
i.e., by modifying a program in small ways to create artificial defects. According to
Gopinath et al. [25] mutants do not necessarily represent real bugs, therefore, they
are not able to relevantly evaluate the quality of the test suite nor to find relations
between the coverage and mutants’ reveal. However, there is a statistically signif-
icant correlation between code coverage and bug kill effectiveness of real software
errors (non-mutants) [26]. The quality of the test suite is influenced by the way the
mental model is expressed in the code, so examining real tests is more beneficial
instead of using mutants.

The fact that unit tests are the most common test type in a project is confirmed
by Cruz et al. [27]: 39% of 1 000 analyzed Android projects used unit tests. Another
finding was that frequently updated projects were more aware of the importance of
using automated tests than those updated several years ago. The adoption of tests
has increased over the last few years, so focusing on information mining from the
tests makes sense.

Another type of research was done by Munaiah et al. [28], who focused on the
assessment of GitHub projects. They proposed a tool that can be used to identify
repositories containing real engineered software projects. The aim was to eliminate

Test Case Identification in Java OS Projects on GitHub 579

the repository noise such as example projects, homework assignments, etc. One of
the metrics they use for assessment is unit test occurrence in the project using test
ratio (number of source lines of code in test files to the number of source lines of
code in all source files) to quantify the extent of the unit testing effort. Package
imports of JUnit and TestNG frameworks were searched to identify tests in the
project. This method could be useful when looking for the occurrence of specific
testing frameworks in the code.

3 METHOD

First of all, it is necessary to find suitable projects containing test cases. Thus,
metadata of all GitHub open-source projects was obtained via GHTorrent [29] (Sec-
tion 3.1) due to their high availability. GHTorrent collects projects’ metadata from
GitHub, one of the biggest project-sharing platform in the world. The experiment
was limited to projects with Java as the primary language. Searching for testing
frameworks’ imports [30] or files containing the word “test” in the filename [19] are
common test class identification techniques.

Because our main goal for the future is to improve production code comprehen-
sion from a particular test case, we go deeper in this study and try to identify specific
test cases (not only test classes), therefore, it is necessary to consider whether the
searching for the word “test” is appropriate. Keep in mind, that the aim is not
to count the number of test cases in a project. Otherwise, we could run tests
via an automated build tool (e.g. ant, maven, or gradle) and collect the number of
tests. In that case, the issue is that building such open-source projects often fails [31]
and we need to build every single project and run tests what is a time-consuming
task. In this paper, we try to count and especially find the location of such test
cases.

Since the testing process can also be denoted by other keywords (e.g. verify1,
examine, etc.), an in-depth analysis (Section 3.2) of testing process denotation in
various foreign languages was performed, which showed that searching for the word
“test” is suitable. Due to the limitations of the GitHub Search API, it was possible
to search only one word across all Github Java projects.

As the framework is assumed to influence developer thinking and test case im-
plementation, a list of 50 unit testing frameworks for Java (Section 3.3) has been
created. Because the goal is to detect customized testing practices compared with
framework-based ones in existing projects, it is not possible to use an automated
method, and since it is not possible to manually analyze all GitHub projects, we
need to select the most suitable ones. Based on the meaning of the word “test”
we assume that there will be a correlation between the number of occurrences
of the word “test” (in file content or filename) and the number of test cases.

1 See Mockito verify() method used for soft assertions: https://javadoc.

io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/

VerificationMode.html

https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html
https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html
https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html

580 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

Therefore, three datasets were created using the searching GitHub API for (Sec-
tion 3.4):

1. the word “test” in filename,

2. the word “test” in file content,

3. frameworks’ imports in file content (38 frameworks).

Every single project was searched as mentioned above, 4.3 million projects in
total. It is possible to expect that the more occurrences of the word “test” in the
project, the more test cases will be present in it and the more we will learn from
it in the future. Therefore, projects with the highest occurrence of the word “test”
(in file content or filename) or with the highest occurrence of a specific framework’s
import were selected for manual analysis. By searching for “test” regardless of the
framework, we were also able to analyze testing practices without using any third-
party framework. Because GitHub contains many projects that are not relevant, e.g.
testing, homework, or cloned projects, rules for searching relevant projects have been
defined (Section 3.4.2), resulting in a set of projects used for manual and automated
analysis. A script for automated analysis was created to partially automate the
identification of test cases (see Section 3.5). All methodology details are described
in the following sections.

3.1 Data Source

To provide conclusions that are as general as possible, it would be ideal to analyze
all types of projects, i.e. proprietary and open source. Because of limited access to
proprietary projects, this experiment is focused exclusively on open source projects.
GitHub2 has become one of the most popular web-based services to host both pro-
prietary and mostly open-source projects, therefore, we can consider it a suitable
source of projects. It provides an open Application Programming Interface (API)3

allowing one to work with all public projects (with small exceptions).
To avoid the latency of the official API, the GitHub Archive project4 stores

public events from the GitHub timeline and publishes them via Google BigQuery.
Downloading via Google BigQuery is charged, therefore, GHTorrent [29] was used
instead, which provides a mirror of GitHub projects’ metadata. It monitors the
GitHub public event timeline, retrieves contents and dependencies of every event,
and requests GitHub API to store project data into the database. That includes
general info about projects, commits, comments, users, etc. The study data mining
started in May 2019, therefore, the last MySQL dump5 mysql-2019-05-01 has been
used.

2 https://github.com/
3 https://docs.github.com/en/rest
4 https://www.gharchive.org/
5 https://ghtorrent.org/downloads.html

https://github.com/
https://docs.github.com/en/rest
https://www.gharchive.org/
https://ghtorrent.org/downloads.html

Test Case Identification in Java OS Projects on GitHub 581

3.2 Denotation of the Word “test”

Leitner et al. [19] searched for tests only in src/test directory and test classes
identified manually. However, the tests can be placed in any project’s directory
(e.g. Android6 uses src/androidTest). Another approach is to search for “test”
string in filenames as executed by Kochhar et al. [15] because they assumed that
the tests would be exclusively in files containing the case-insensitive “test” string. As
in the previous case, best practices lead the developer to use “test” in the file name,
but it is not mandatory. For this reason, the most accurate should be searching
for the word “test” in the file content. Of course, firstly it is necessary to consider
whether the word “test” is the right one for searching. Therefore, the meaning of
the word “test” using Google Translate7 was verified in 109 different languages (all
available by Google) as follows:

1. From English to foreign language and back to English
Using this method the most frequent8 meanings of the word “test” in a foreign
language were obtained. By translating them back to English we found out
which foreign language translations correspond to the original word “test”.

2. From foreign language to English and back to foreign language
The opposite approach was used to find whether the string “test” has a meaning
in a particular foreign language. The word was translated into English and all
its meanings were verified against the available translation alternatives in the
given language.

Multiple translations ensured that the correct meaning of the word in a particu-
lar language was understood. Using the first method it was found out that word sets
related to the testing process of different foreign languages are mostly translated as
“test” in English, see Figure 1. This means that when a foreign developer would
like to express something related to testing (e.g. to write a test case), he/she will
use mostly the word “test”. In this meaning, it is the first choice when searching
test cases by a string. Occasionally occurred meaning outside of testing area, e.g.,
essay, audition or flier. Because such meanings occurred only infrequently, they can
be omitted. There were also 14 languages which did not include the word “test” in
their reverse translation at all, but its meaning was rather denoting examination,
check or quiz.

A total of 44 languages used non-Latin charset. For these languages, the second
approach did not make sense to use. For the remaining languages, the meaning was
completely identical in 43 languages and the same or similar meaning in 20 cases.

6 https://developer.android.com/
7 https://translate.google.com/
8 Frequency determined by Google Translate service, indicates how often a translation

appears in public documents: 3 – high; 2 – middle; 1 – low frequency.

https://developer.android.com/
https://translate.google.com/

582 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

Figure 1. Sum of reverse translation frequency of the word “test” in public documents of
different languages

We found only 2 languages (Hungarian9 and Latvian10), in which the word “test”
has a completely different meaning, such as body, hew, or tool (nothing related to
testing). The analysis shows that the word “test” will refer to the testing process
in the code and the meaning can vary in very rare cases. Only the word “test”
will be searched for in this study because of the rate limitations of the GitHub API
(explained in Section 3.4).

3.3 Java Testing Frameworks

The crucial question is whether developers are motivated to use the word “test” in
their code. The developer is often influenced by a testing framework, which leads him
or her to different habits. As a part of this study, we analyzed 50 Java unit testing
frameworks, extensions, and support libraries (see Table 1) to determine whether
the use of the word “test” during test implementation is optional, recommended,
or mandatory. The list was created from different sources, such as blogs, technical
reports, research papers, etc.

Because it is sometimes difficult to find the boundary between unit and integra-
tion testing, the table lists frameworks supporting integration testing under the unit
testing category. Information about the first version and the last commit may be in-
teresting in terms of the framework lifetime and its occurrence in projects. Projects
marked as archived or test generators in Table 1 were excluded from further analysis
for the following reasons:

9 https://translate.google.com/?sl=hu&tl=en&text=test
10 https://translate.google.com/?sl=lv&tl=en&text=test

https://translate.google.com/?sl=hu&tl=en&text=test
https://translate.google.com/?sl=lv&tl=en&text=test

Test Case Identification in Java OS Projects on GitHub 583

1. archived projects usually had unavailable documentation or were never released;

2. test generators produce tests that are not based on the programmer’s mental
model but are generated automatically (semi-randomly), which is not interesting
from the code comprehension point of view.

Name Package for Import Framework
Type

First
Version

Last Com-
mit

Must
Include
”test”

SpryTest N/A U N/A N/A
(archived)

N/A

Instinct N/A B 24.01.2007 07.03.2010
(archived)

N/A

Java Server-Side
Testing framework
(JSST)

N/A U 17.11.2010 17.11.2010
(archived)

■

NUTester N/A U 05.02.2009 27.03.2012
(archived)

N/A

SureAssert N/A A 29.05.2011 04.02.2019
(archived)

N/A

Tacinga N/A U 14.02.2018 22.02.2018
(archived)

N/A

Unitils N/A U 29.09.2011
(v3.2)

08.10.2015
(archived)

N/A

Cactus org.apache.cactus U 11.2008 05.08.2011
(archived)

■

Concutest N/A U 30.04.2009 12.01.2010
(archived)

■

Jtest N/A G 1997 21.05.2019
(last release)

■

Randoop N/A G 23.08.2010 05.05.2020 ■
EvoSuite N/A G 25.12.2015

(v1.0.2)
30.04.2020 ■

JWalk N/A G 19.05.2006 14.06.2017 ■
TestNG org.testng U 31.07.2010

(v5.13)
11.04.2020 ■

Artos com.artos U 22.09.2018 19.04.2020 ■
JUnit 5 org.junit U 10.09.2017 02.05.2020 ■
JUnit 4 org.junit U 16.02.2006 10.04.2020 ■
JUnit 3 junit.framework U N/A N/A ■
BeanTest info.novatec.bean-test U 23.04.2014 02.05.2015 ■
GrandTestAuto org.GrandTestAuto U 21.11.2009 22.01.2014 ■
Arquillian org.jboss.arquillian U 10.04.2012 21.04.2020 ■
EtlUnit org.bitbucket.

bradleysmithllc.etlunit
U 02.12.2013

(v2.0.25)
04.04.2014 ■

HavaRunner com.github.havarunner U 16.12.2013 08.06.2017 ■
JExample ch.unibe.jexample U 2008 N/A ■
Cuppa org.forgerock.cuppa U 22.03.2016 01.10.2019 ■
DbUnit org.dbunit U 27.02.2002 24.02.2020 ■
GroboUtils net.sourceforge.groboutils U 20.12.2002 05.11.2004 ■
JUnitEE org.junitee U 23.07.2001

(v1.2)
11.12.2004 ■

Needle de.akquinet.jbosscc.needle U N/A 16.11.2016 ■
OpenPojo com.openpojo U 13.10.2010 20.03.2020 ■
Jukito org.jukito U/M 25.01.2011 17.04.2017 ■
Spring testing org.springframework.test M/U 01.10.2002 06.05.2020 ■
Concordion org.concordion U/SbE 23.11.2014

(v1.4.4)
27.04.2020 □

Jnario org.jnario B 23.07.2014 □
Cucumber-JVM io.cucumber B 27.03.2012 04.05.2020 □
Spock spock.lang B 05.03.2009 01.05.2020 □
JBehave org.jbehave B 2003 23.04.2020 □
JGiven com.tngtech.jgiven B 05.04.2014 10.04.2020 ■

584 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

JDave org.jdave B 18.02.2008 17.01.2013 □
beanSpec org.beanSpec B 15.09.2007 27.06.2014

(alpha)
□

EasyMock org.easymock.EasyMock M 2001 10.04.2020 ■
JMock org.jmock M 10.04.2007 23.04.2020 ■
JMockit org.jmockit M 20.12.2012 13.04.2020 ■
Mockito org.mockito M 2008 30.04.2020 ■
Mockrunner com.mockrunner M 2003 16.03.2020 ■
PowerMock org.powermock M 28.05.2014

(v1.5.5)
30.03.2020 ■

AssertJ org.assertj A 26.03.2013 05.05.2020 ■
Hamcrest org.hamcrest A 01.03.2012 06.05.2020 ■
XMLUnit org.xmlunit A 03.2003 04.05.2020 ■

Legend: U – unit; B – behavioural; A – assert; M – mock; G – generator; SbE – specification by example

Table 1: Analyzed unit testing frameworks and extensions for Java

It can be seen that 37 of 50 frameworks require the word “test” as method/
class annotation (@Test) or part of its name (testMethod, methodTest). The listed
frameworks are mostly extensions that depend on one of the base frameworks, such
as JUnit or TestNG. Different versions of JUnit are listed separately because test
labeling differs between them (annotations vs. method name format). A deeper ana-
lysis of frameworks’ JavaDocs revealed that many frameworks include other classes,
methods, or annotations that include the word “test” in their names. Although the
use of these methods is not mandatory, it may support the search.

3.4 Searching Projects and Data Gathering

The whole process of data gathering can be seen in Figure 2. GHTorrent provided
140 million GitHub projects. From this set all deleted, non-Java, or duplicated
projects have been removed. After cleaning the initial data, a total of 6.7 million
projects were kept for further analysis.

Figure 2. The GitHub data mining process for the study

Test Case Identification in Java OS Projects on GitHub 585

GHTorrent contained only basic metadata about the projects, which was not
sufficient for our needs. Given the meaning of the word “test” (see Section 3.2)
we searched for it across all projects. The GitHub API provides a code search11

endpoint, which index only original repositories. Repository forks are not searchable
unless the fork has more stars than the parent repository. If the project has been
detected as deleted, private, or blocked by GitHub during querying code search, it
has been not considered. Finally, a total of 4.3 million projects were included. For
each project, two requests to the GitHub code search API were called, as presented
in Table 2. The GitHub code search API had the following limitations:

• up to 1 000 results for each search;

• up to 30 requests per minute (authenticated user);

• global requests rate limited at 5 000 requests per hour;

• only files smaller than 384KB and repositories with fewer than 500 000 files are
searchable.

Search “test” in Example request at https://api.github.com/search/code

Java files content ?q=test+in:file+language:java+repo:apache/camel

Java filenames ?q=filename:test+language:java+repo:apache/camel

Table 2. The GitHub API requests used to search the string “test” in a project

3.4.1 Code Search Strategy

GitHub indexes only the default branch code (usually master), so the whole analysis
was performed only using the default branch. The string “test” can also be a part of
other words, e.g. fastest, lastest, thisistestframework. There exist 532 such words
containing “test”12 in total. To avoid inaccuracies when searching for a word of
the selected string, false positives must be excluded from the search. When using
regular GitHub search, the search term will appear in the results when driven by
the following rules:

• string uses camel case convention without numbers13, e.g., myTest,

• string uses snake case convention, e.g., my test, test 123;

• string includes a delimiter or special character (space, ., #, $, @, etc.), e.g.,
test.delimiter, @Test;

• search is case insensitive, e.g. Test sentence, test sentence.

11 https://docs.github.com/en/rest/reference/search
12 https://www.thefreedictionary.com/words-containing-test
13 Numbers can be used, but they are not considered as individual words, e.g. 123Test

or test123 will not be found.

https://api.github.com/search/code
https://api.github.com/search/code?q=test+in:file+language:java+repo:apache/camel
https://api.github.com/search/code?q=filename:test+language:java+repo:apache/camel
https://docs.github.com/en/rest/reference/search
https://www.thefreedictionary.com/words-containing-test

586 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

GitHub considers as Java language file any file with .java or .properties ex-
tensions. The same search rules apply to both search types: file content and filename
search. Obviously, according to the above rules, GitHub search automatically filters
the results, therefore, unwanted words containing the string “test” do not appear in
the results, but neither the words testing or testsAllMethods will be matched.

3.4.2 Selection of Relevant Projects

When searching for different testing types, the effort is to go through as many
projects as possible. Because GitHub contains millions of repositories, it is a chal-
lenge to choose the projects that can be the most instructive and filter out ir-
relevant ones. To make the selection as objective as possible, we planned to use
reaper tool [28], which can assess a GitHub repository in collaboration with GHTor-
rent using project metadata and code: architecture, community, continuous in-
tegration, documentation, history, issues, license, and unit testing. By evaluat-
ing all these metrics (see [28] for details), reaper tags a particular repository as
a real software project and thus exclude example projects, forks, irrelevant ones,
etc.

Many assessment attributes of the reaper tool14 require project files to be avail-
able, so each project needs to be cloned or downloaded as an archive. For large
projects, it can be gigabytes of data and the size of the project subsequently af-
fects the length of the analysis. To find out whether reaper will be beneficial for
our study, a manual analysis of 50 projects was performed and the results were
compared with the evaluation by reaper. All available evaluation attributes were se-
lected except for unit tests assessment because it was limited to JUnit and TestNG
frameworks. The thresholds and weights of particular attributes defined by the de-
velopers of the tool were preserved because these values were considered empirically
confirmed.

Because we want to select a sample of projects from which we would learn the
most, projects with the highest number of files containing the word “test” in its
body and filename were selected for the comparison. The same attributes as used
by the reaper were taken into account in the manual evaluation, but the relevance
of the project for this study was assessed by an observer. Evaluation of 50 projects
using the reaper tool took 10 days, with the most time being spent on evaluating
the project architecture. Many repositories with the highest “test” presence in
file content or filename were actually identified as Subversion (SVN) mirrors15 by
manual analysis and because there were multiple copies of the same code (caused by
the SVN’s branching style), the projects were not relevant, but the reaper assessed
such projects as suitable. According to this significant issue, important projects
could be lost by assessing project in an automated manner, so it was concluded that

14 https://github.com/RepoReapers/reaper
15 e.g. https://github.com/zg/jdk, https://github.com/dmatej/Glassfish,

https://github.com/svn2github/cytoscape

https://github.com/RepoReapers/reaper
https://github.com/zg/jdk
https://github.com/dmatej/Glassfish
https://github.com/svn2github/cytoscape

Test Case Identification in Java OS Projects on GitHub 587

it is more efficient to select projects manually driven by the following rules, inspired
by existing research:

• Priority was given to projects with the highest number of the word “test” in
the project (in file content and filename). According to [32] we can expect the
presence of tests in popular projects. If it is assumed that the word “test”
will be correlated with the number of test cases in the project, large and long
maintained projects are expected, which authors consider the best sample for
the study.

• History, as evidence of sustained evolution. Projects under 50 commits were
excluded (inspired by the reaper) because they represented small or irrelevant
projects. Those projects that contained a large number of commits (more than
1 000 per day), considered committed by a robot, were also excluded.

• Originality was evaluated by comparing the readme file for similarities in other
repositories. By such comparison, it is possible to detect clones and similar
repositories [33]. Jiang et al. [34] found that developers clone repositories to
submit pull requests, fix bugs, add new features, etc. The problem is that devel-
opers often do not create forks but project clones (a manual copy of a project),
but readme file is often unchanged.

• Community, as evidence of collaboration, was assessed by the number of con-
tributors in the project. The more developers participate in the project, the
more likely it is that the (testing) code will be written in a different style.

3.4.3 Searching Java Testing Frameworks

We were inspired by the work of Stefan et al. [30], who searched for Java performance
testing frameworks imports to assess performance testing practices. In our work we
are interested in the impact of testing frameworks on test writing, so we also searched
for imports of all testing frameworks in Table 1 (excluding generators and archived
projects).

Using the search for imports we obtained projects with different testing frame-
works. Only projects that contained the word “test” in the Java file body at least
once were queried. Because there was a large number of requests (37 per single
project), the project set was limited to 500 000, ordered by the number of Java files
containing the word “test” in its body, using the following request:

https://api.github.com/search/code?q="org.testng"+in:

file+language:java+repo:apache/camel

For each testing framework, we created a separate list of projects, sorted by the
occurrence of the word “test” in the project, to find projects with a high number of
test cases if possible. Original repositories of the searched framework were removed
from the analysis (e.g. when searching for JUnit, the original JUnit framework repos-
itory was excluded). Subsequently, the selection of relevant projects was performed

588 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

according to the steps mentioned in the Section 3.4.2. For some frameworks, e.g.
JExample16, which were created as a part of the research [35], no software repos-
itories with business focus were found and as a consequence, it was necessary to
include also example, homework, or cloned/forked ones, if the original one was not
publicly available.

3.5 Repository Analysis

Three different data sets were received by searching via GitHub API:

1. the word “test” in filename,

2. the word “test” in file content,

3. frameworks’ imports in file content.

The first four relevant and top projects (highest “test” or framework’s import string
occurrence) were manually investigated from each set to find out the test writing
practices. The projects were cloned17 and to keep the consistency between the “test”
search and the manual analysis, the project was reverted to the timestamp of GitHub
API download using the following command:

git checkout ‘git rev-list -n 1

--before="<DOWNLOADED AT>" "<DEFAULT BRANCH>"‘

For each project, all files with the word “test” in content or filename, or frame-
work’s import in file content has been selected as possible option for manual analysis.
The project files that contained the largest occurrence of the word “test” and frame-
work’s import in their content (expected a higher number of tests) were analyzed
first. During the investigation of tests from different authors and projects, we cre-
ated an automated supportive method for detecting the number of test cases in
a file. It does not require compiling the code, such as for computing code coverage,
or building abstract syntax tree (AST), e.g. indexing in an IDE.

Regardless of the framework, it is advisable to investigate the count of the
following attributes of a source file containing the word “test”:

Annotations @Test: very popular mostly thanks to JUnit and TestNG.

Methods containing test in the beginning of the name: best practices lead
developers to use this convention (also for historical purposes).

Methods containing Test in the end of the name: an alternative of previous
one.

Public methods: possibly all public methods of a test class can be considered as
tests.

16 https://github.com/akuhn/jexample
17 git clone

https://github.com/akuhn/jexample

Test Case Identification in Java OS Projects on GitHub 589

Occurrence of main: customized testing solutions are executed via main().

File path containing test: should relate to testing.

Classes containing $ in the name: the character $ in a class name mostly
denotes a generated code18 that should not be analyzed.

Total number of test occurrence in file content: to reveal the relation be-
tween executable test cases and the word “test” presence in the content.

All listed metrics (counts of occurrence in a file) were saved for each analyzed
file. The pseudocode for collecting mentioned metrics can be seen in Listing 1
(implementation available at GitHub19). The presented algorithm is partly the
result of the study because it was created in parallel with the manual analysis. The
manual analysis complements the algorithm implementation and vice versa. This
algorithm was used to evaluate the test identification for each Java file containing
the word “test”. Subsequently, the automated identification was checked during
the manual analysis to determine the correct number of test cases and the metric
used for the calculation (e.g., the number of annotations and public methods can be
the same, but the relevant number of tests can only come from one of them). It is
necessary to identify the number of particular test cases to link a specific test case
with the unit under test (UUT) and its specific method. Each test case is likely to
represent a unique use case and thus unique information to enrich the production
code.

Algorithm pred i c tTe s t s (f i l ePa t h)
Input : F i l e path to ana lyze .
Output : L i s t o f s t a t i s t i c a l data

content := load f i l ePa t h content and remove comments
nonClassContent := remove a l l class content , keep only content out s id e

o f i t
such as imports or class annotat ions

c la s sContent := remove a l l content ou t s id e o f the class block and keep
only
f i r s t −l e v e l methods without body us ing /\{([ˆ\{\}]++ |(?R)) ∗\}/

annotat ions := matches count o f regex /@Test/ in c la s sContent
startsWithTest := matches count o f regex

/public +.∗void ∗ .∗ +[Tt] e s t [a−zA−Z\\d$\]∗ ∗\(/
in c la s sContent

endsWithTest := matches count o f regex
/public +.∗void ∗ .∗ +[a−zA−Z$\] { 1 } [a−zA−Z\\d$\]∗ Test ∗\(/
in c la s sContent

publicMethods := matches count o f regex /public +.∗void +.∗\(/
in c la s sContent

inc ludesMain := matches count o f /public +stat ic +void +main .∗\ (/
in c la s sContent

hasDol la r := i f $ in f i l ename , then true , else fa l se
te s t InPath := i f ”/ t e s t ” in f i l ePa th , then true , else fa l se

18 https://docs.oracle.com/javase/specs/jls/se11/html/jls-3.html#jls-3.8
19 https://github.com/madeja/unit-testing-practices-in-java/blob/master/

AnalyzeProjectCommand.php

https://docs.oracle.com/javase/specs/jls/se11/html/jls-3.html#jls-3.8
https://github.com/madeja/unit-testing-practices-in-java/blob/master/AnalyzeProjectCommand.php
https://github.com/madeja/unit-testing-practices-in-java/blob/master/AnalyzeProjectCommand.php

590 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

i f TestNG import found in content , then
i f @Test found in nonClassContent , then

testCaseCount := publicMethods
else

testCaseCount := annotat ions
else i f JUnit4 import found in content , then

testCaseCount := annotat ions
else i f JUnit3 import found in content , then

testCaseCount := startsWithTest
else i f startsWithTest > 0 , then

testCaseCount := startsWithTest
else i f annotat ions > 0 , then

testCaseCount := annotat ions
else

testCaseCount := 0

return annotat ions , startsWithTest , endsWithTest , publicMethods
includesMain , hasDol lar , testInPath , testCaseCount

Listing 1. Pseudocode of the algorithm for gathering metadata and identified number of
tests in a Java source file

Gathered metadata about test case identification were analyzed from different
perspectives. Test classes with the highest number of the following attributes were
analyzed:

1. @Test annotations,

2. public methods with names starting with test,

3. public methods with names ending with Test,

4. main method,

5. word “test” occurrence.

For framework-dependent searches there was an additional analysis of files with the
highest framework import occurrence in the content.

3.6 Hypothesis and Research Question Evaluation

Our null and alternative hypotheses are:

Hnull 1 (H 1). There is not a strong correlation (r ∈ (−0.8, 0.8)) between the num-
ber of occurrences of the word “test” in the file content and the number of test cases
in projects with high number of “test” occurrence.

Halt 1 (H 1). There is a strong correlation (r /∈ (−0.8, 0.8)) between the number of
occurrences of the word “test” in the file content and the number of test cases.

The method of calculating standard Pearson’s correlation coefficient [36] was
used to confirm or reject H 1. The correlation coefficient was calculated as follows:

r =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2
(1)

Test Case Identification in Java OS Projects on GitHub 591

where mx is the mean of the vector x (number of “test” occurrences in file) and my

is the mean of the vector y (number of identified test cases in file). We will consider
the Hnull 1 as accepted when r ∈ (−0.8, 0.8), as only absolute correlation higher
than 0.8 is commonly considered significant.

To address RQ 1, a class/file will be considered a customized testing solution if
the following conditions are met:

• Must include actual tests of production code.

• There is at least one occurrence of the word “test”.

• There is no framework import from Table 1.

• File contains main() function.

The conditions are based on Section 4.4.2 which shows that customized testing
solutions were mostly implemented as common java programs using main() function
without using any third party framework import.

4 RESULTS

Using the automated script all repositories’ files from Table 3 were processed, 38 re-
positories and 170 076 classes altogether, from which 803 classes and 20 340 test
methods were manually investigated. Some special practices in terms of the structure
of the testing code or the developer’s reasoning were observed. The first 4 projects
from Table 3 represent repositories with the largest occurrences of the word “test”
in the filename, another 4 in file content and other repositories represent the top
import occurrence of a particular framework. The whole dataset of searching “test”
via GitHub API can be found at Zenodo20.

4.1 Accuracy of Automated Test Case Identification

To evaluate the precision of the algorithm from Listing 1, results were compared to
manual test identification of 20 340 test cases across all three datasets. Accuracy of
95.72% for test cases detection was achieved by automated identification considering
only test methods, i.e., 95.72% of all test cases were correctly identified. Considering
all 28 975 methods of manually analyzed files (with non-testing ones) a total accuracy
of 96.97% was achieved with the sensitivity of

Sensitivity =
true positives

true positives + false negatives
=

19 600

19 600 + 62
= 0.9968 (2)

and specificity of

Specificity =
true negatives

true negatives + false positives
=

8498

8 498 + 815
= 0.9125. (3)

20 https://doi.org/10.5281/zenodo.4566198

https://doi.org/10.5281/zenodo.4566198

592 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

Repository Framework
Analyzed Analyzed Java

TAClasses Tests KLOC
A M A M

openjdk/client testng, junit 30 410 130 30 410 1 661 5 149 20 798
SpoonLabs/astor junit 30 331 36 30 331 1 548 2 338 13 324
apache/camel junit 10 438 81 10 438 625 1 240 6 847
apache/netbeans testng, junit 13 056 78 13 056 1 627 5 009 11 908
JetBrains/intellij-community testng, junit 20 375 49 20 375 4 805 3 842 13 630
SpoonLabs/astor testng, junit 30 331 44 30 331 5 883 2 338 13 324
corretto/corretto-8 testng, junit 13 688 10 13 688 1 659 3 638 10 792
aws/aws-sdk-java junit 28 574 18 28 574 302 3 680 20 528
wildfly/wildfly arquillian 5 109 24 5 109 123 548 3 553
eclipse-ee4j/cdi-tck arquillian 4 758 30 4 758 139 97 2 748
resteasy/Resteasy arquillian 2 821 13 2 821 144 220 1 675
keycloak/keycloak arquillian 1 681 16 1 681 104 396 1 286
jsfunit/jsfunit cactus 222 13 222 125 21 142
bleathem/mojarra cactus 737 16 737 250 171 556
topcoder-platform

/tc-website-master
cactus 1 635 8 1 635 42 366 1 199

apache/hadoop-hdfs cactus 325 4 325 20 101 282
zanata/zanata-platform dbunit 770 21 770 171 197 554
B3Partners/brmo dbunit 145 18 145 37 47 106
gilbertoca/construtor dbunit 145 18 145 64 24 53
sculptor/sculptor dbunit 153 11 153 101 26 103
geotools/geotools groboutils 3 424 5 3 424 5 1 272 3 659
notoriousre-i-d/ce-packager groboutils 107 11 107 75 46 91
tliron/prudence groboutils 16 2 16 3 13 11
MichaelKohler/P2 jexample 36 12 36 53 4 24
akuhn/codemap jexample 132 15 132 286 41 112
wprogLK/TowerDefenceANTS jexample 17 3 17 50 9 12
rbhamra/Jboss-Files needle 44 21 44 30 5 30
akquinet/mobile-blog needle 19 10 19 33 2 10
s-case/s-case needle 46 15 46 13 39 33
dbarton-uk/population-pie needle 7 6 7 16 1 4
abarhub/rss openpojo 26 2 26 3 6 20
BRUCELLA2

/Prescriptions-Scolaires
openpojo 25 19 25 40 10 18

jpmorganchase/tessera openpojo 382 8 382 12 45 234
tensorics/tensorics-core openpojo 161 3 161 1 24 85
orange-cloudfoundry

/static-creds-broker
jgiven 21 11 21 33 2 16

eclipse/sw360 jgiven 175 4 175 51 56 161
Orchaldir

/FantasyWorldSimulation
jgiven 54 13 54 198 7 37

kodokojo/docker-image-manager jgiven 11 5 11 8 3 8
Sum 170 076 803 363 730 20 340 31 033 127 973

Legend: A – processed automated; M – investigated manually; KLOC – kilo of lines of code;
TA – average time of automated test case detection in ms.

Table 3. Statistics of the investigated repositories

Most false positives and false negatives occurrences were caused by customized test-
ing solutions, e.g., when tests were performed directly from the main() function by
calling methods of the class. If the naming conventions of the called (testing) meth-
ods were not governed by the principles of frameworks (e.g., prepending method
name with “test” or using public methods), not all test cases were detected in
an automated way.

Test Case Identification in Java OS Projects on GitHub 593

4.2 Correlation Between the Number of the Word “test”
and the Number of Test Cases in a Class

The proposed algorithm was used to identify all tests in all Java classes of projects
from Table 3. The script was used for all Java files that contained string “test” in
the file content or the filename (in total 170 076 files). Figure 3 shows the correlation
with the linear regression line of the word “test” and the number of test cases in
a particular class. A standard Pearson’s correlation coefficient of r = 0.655 was
reached (statistical significance p = 0.0, rounded on 5 decimal places), that means
there is a weak correlation when considering absolute threshold α = 0.2 defined
in Section 3.6. Nevertheless, from the perspective of finding projects containing
tests, this technique is beneficial and can help future experimenters to filter projects
containing tests much faster. Because projects have different numbers of test classes
and use different frameworks, the detailed ratio of the word “test” occurrence and
test case presence per project can be found at GitHub21.

Figure 3. Correlation of the word “test” presence and number of test cases for analyzed
classes by automated script

Due to existing research [19] that identified test files using searching “test” in
the file path, when limiting our results to files containing “test” in the path (120 907
files) the correlation coefficient of r = 0.6649 was reached. On the other hand, 49 169
classes with 3 855 test cases were discarded. Limiting results to files containing
“test” in filename (74 530 files), we reached correlation coefficient r = 0.7004 with

21 https://github.com/madeja/unit-testing-practices-in-java/blob/master/

correlation-boxplot.png

https://github.com/madeja/unit-testing-practices-in-java/blob/master/correlation-boxplot.png
https://github.com/madeja/unit-testing-practices-in-java/blob/master/correlation-boxplot.png

594 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

loss of 95 546 classes and 17 440 test cases. By any limitation the correlation did not
significantly change, therefore, to find as many test cases as possible it is convenient
to search for the word “test” in the file content.

Occurrence of the function main without the third party testing framework (more
explained in Section 4.4.2) was detected in 26 205 (15.41%) classes containing the
word “test” in their content. The proposed algorithm in Section 3.5 successfully
identified test cases in only 6% classes of this set. Because main tests make up
a fairly large proportion and the identification of test cases is not clear, it is necessary
to investigate this testing style deeper in the future.

H 1: There is a strong correlation (r /∈ (−0.8, 0.8)) between
the number of occurrences of the word “test” in the file content
and the number of test cases.

We accept Hnull 1 and reject Halt 1 because only weak Pearson’s correlation
coefficient r = 0.655 was achieved in general. In some projects, when the
correlation was calculated for each project separately, a significant correla-
tion was achieved but so far no relationship has been found concerning the
framework, the number of the word “test” presence in the content, or other
dependencies.

4.3 Efficiency of the Proposed Automated Test Case Identification

Executing a full code analysis, e.g. in an IDE, of a large project with thousands of
kilo of lines of code (KLOC), is a time-consuming task. Such example is the project
openjdk/client from Table 3. To get faster feedback about tests in a project, the
proposed algorithm was used for static source code analysis. Because the proposed
automated algorithm should run as a part of an integrated development environ-
ment (IDE) extension in the future it should be fast enough. To emulate a similar
environment that a developer can use, a laptop with 2.3GHz Dual-Core Intel Core
i5 CPU and 8GB 2 133MHz LPDDR3 RAM was used. In Table 3, the average time
(TA) of automated analysis executed 10 times can be seen. The average time of
execution was 158ms per KLOC, which authors consider as a satisfactory response
time in terms of user experience for use in an IDE extension.

4.4 Revealed Testing Practices

In related work (Section 2) there are best practices that developers can follow and
therefore can be expected in the code. During the manual investigation of mul-
tiple repositories containing tests, we identified special testing practices used by
developers, which are described in the following paragraphs. The listings that are
given as examples come from the analyzed repositories, but the code was simpli-

Test Case Identification in Java OS Projects on GitHub 595

fied for presentation purposes. Code listings refer to GitHub22 repository of this
paper.

4.4.1 Testing Using Third Party Frameworks

Regular test. Tests that follow best practices and avoid test smells fall into this
category. They represent the most of occurrences in the projects and since
these approaches are already described in the available literature [7, 8, 9], this
group will not be given detailed attention. However, the basic aspect of such
tests is that information about context and evaluation are available directly in
the particular test method (considering also test setup, teardown, and fixtures),
thanks to which the test comprehension is straightforward.

Master test. This testing code style represents test classes which contain only one
executable test method (see GitHub23). JUnit will consider only the all()

method as a test case because it is annotated with @Test annotation. Other
methods are considered auxiliary ones. The problem with such a notation is
the complexity of test comprehension. If the test fails, the developer only has
information that the test case titled all failed but does not know what the test
should have verified, what data was used, etc.

According to the best practices, it should be clear from the test name what the
test verifies. In this context, from a semantic point of view, it is possible to
consider methods as test cases on lines 1–8 (here from L1–8). The mentioned
methods are crucial in terms of failure and understanding of the test, and from
the method name, it is also clear what the test verifies. Another disadvantage
of these test types is the assertion roulette test smell [10] because iterations of
the test over the input data make it difficult to determine which data caused the
test failure and whether the input data do not interfere with each other between
the tests.

Reverse proxy test. If a separate test is written for each use case, the recom-
mendations are met, but this does not mean that it will be easy to comprehend.
Some tests call one auxiliary method in multiple tests and the result is evaluated
in the auxiliary method. According to the test evaluation manner, they can be
divided into:

1. Result evaluation via method name (see GitHub24).

2. Result evaluation via internal object state (see GitHub25).

22 https://github.com/madeja/unit-testing-practices-in-java
23 https://github.com/madeja/unit-testing-practices-in-java/blob/master/

examples/c_masterTest.java
24 https://github.com/madeja/unit-testing-practices-in-java/blob/master/

examples/c_reverseProxyMethod.java
25 https://github.com/madeja/unit-testing-practices-in-java/blob/master/

examples/c_reverseProxyObject.java

https://github.com/madeja/unit-testing-practices-in-java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_masterTest.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_masterTest.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_reverseProxyMethod.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_reverseProxyMethod.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_reverseProxyObject.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_reverseProxyObject.java

596 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

The first approach is much more difficult to comprehend due to the high degree
of abstraction. It is not clear directly from the test method code (L6-8) what is
compared during the test because the input data are loaded from a file deter-
mined by the test method name (L3). In the JetBrains/intellij-community
project, from which the example is given, the doTest() method is the general
one and it was necessary to investigate multiple classes to comprehend how tests
are evaluated. At the same time, too generic auxiliary method can result in the
general fixture test smell.

The second approach is similar to the previous one but uses the internal state
of an object (that is initialized before a particular test during test setup) or the
enum type with different method implementations. The problem may arise when
object attribute or method input parameter change the control flow. If the same
test is called with different object state or input data, the test logic does not
change and therefore it is the same test. However, if the control flow changes
in the test, e.g. by some variable value, it can be considered as a separate test
(different flow, different test). If the same help method is called more than once,
it may behave like two different test cases, which contradicts best practices and
makes the comprehension difficult.

Multiple test execution. Server-side applications test different use cases, which
require an action after the execution of base functionality, e.g. whether the right
content is shown after main test execution (see GitHub26). Because of using
JUnit3 in the example, every public method prepended by “test” is considered
as test case, so testEcho() is executed twice; as a single test case and as a part
of testA4JRedirect().

4.4.2 Customized Testing Solutions

Custom testing practices are classic Java programs executable via main() function,
whose task is to verify the functionality of the production code. Such tests are
often written due to the possibility of configuring the execution via command line
parameters, which allows variability of test execution. On the other hand, tests
should not be so environmentally dependent that they need to be configured to such
an extent. The second reason for writing such tests is that they make the code with
a large number of test cases more readable. Test methods are called directly from
main() and, if necessary, also the environment setup is performed in this function.
The following ways of calling test methods and objects were observed (examples can
be found at GitHub27):

Calling methods one by one: all testing methods are manually called from
main() together with parameters.

26 https://github.com/madeja/unit-testing-practices-in-java/blob/master/

examples/c_multipleExecution.java
27 https://github.com/madeja/unit-testing-practices-in-java

https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_multipleExecution.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_multipleExecution.java
https://github.com/madeja/unit-testing-practices-in-java

Test Case Identification in Java OS Projects on GitHub 597

Calling methods according to input data: by iterating the test data, specific
tests are called based on the current data.

Helper function that returns an array of test cases: the helper method re-
turns an array of instances created from abstract classes, whereas the abstract
methods (which represent test cases) are implemented during the instance cre-
ation. The main() contains an iteration over the array of object instances.

Iterating values of enum: similar to the previous one, but it iterates over enum
values. When creating the enum, the method of test class is implemented and
the data is set. The test class has its own implementation of a method and state
in each iteration.

Calling constructor: in the main function the testing class instance is created
and the tests are called from the constructor.

There is a problem of how to identify such tests using an automated way and
how to determine the number of tests in such a class. The main() function also
occurs in classic tests (e.g. to run test outside of IDE or without a build automation
tool28), e.g. based on JUnit or TestNG. The function can also be found in modified
runners of testing frameworks. To clearly distinguish the presence of a customized
solution without any framework, it is possible to check the presence of the framework
import – if a class contains the main() function and an import together, it is a runner
or regular test based on the framework, not a customized solution.

Other interesting ways of writing customized tests were also observed. For exam-
ple, in the openjdk/client repository, there were tests for trichotomous relations for
which a custom @Test annotation was implemented (see GitHub29). The annotation
is used to indicate the test and, at the same time, to define the type of comparison
in the method (L1, L4). Thanks to the word “test” usage, it is possible to detect the
correct number of tests, in a similar way as for JUnit. In this example, the impact
of third party framework on the developer’s customized solution is visible. There
are many tests in the repository using standardized frameworks, therefore the usage
of @Test annotation is a logical way of defining a test case. Writing tests manually
using a framework would not be as effective and would be difficult to comprehend.
On the other hand, such tests in large iterations can easily give rise to the assertion
roulette test smell, which makes it difficult to identify a test failure.

While in the previous case the test was evaluated using asserts, some approaches
have their own error handling. e.g. in the same repository for all ResourceBundle
classes, a helper test class RBTestFmwk has been implemented, which represents
a custom framework and test classes inherit from it. The framework provides the
processing of the main() function parameters, performing tests, and processing re-
sults. The test methods to be performed are defined as input parameters. The

28 https://junit.org/junit4/faq.html
29 https://github.com/madeja/unit-testing-practices-in-java/blob/master/

examples/c_main1.java

https://junit.org/junit4/faq.html
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_main1.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_main1.java

598 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

disadvantage is that when performing such tests, it is necessary to know the inter-
nal structure of the class, at least method names that need to be performed.

In general, the following risks were observed by analyzing other main testing
methods:

Execution interruption: If a test fails, execution may be completely interrupted
and no further tests will be performed (e.g. raised exception).

Failure identification: Because testing is often performed repeatedly over differ-
ent data, it can be difficult to identify the exact cause of test failure and in some
cases may require debugging the test code.

Dependence: Tests often use the same sources or data for testing and may affect
the results of other tests. Also, the tests are often order-dependent and the test
order randomness was not found in any repository.

Occurrence of the main() function without any third party testing framework
was detected in 26 205 (15.41%) classes containing the word “test” in their content.
The proposed algorithm in Section 3.5 successfully identified test cases in only 6%
classes of this set. The set can contain not only testing code, but also a production
one. Because such classes make up a fairly large proportion and the identification of
test cases is not clear due to the high diversity of writing such tests, it is necessary to
carry out an extensive study dealing solely with this issue, to find a way to precisely
identify such test cases.

RQ 1: How many testing classes are implemented as cus-
tomized testing solutions without using any third party frame-
work?

A total of 15% of classes were identified as customized testing solutions. The
diversity of such tests is very high, therefore, future investigation is needed.
This high incidence is probably caused by the nature of big projects with
a high occurrence of the word “test” in file content and it is assumed the use
of third party frameworks should be more common in smaller projects.

5 THREATS TO VALIDITY

Internal validity: The study relied on GHTorrent databank and GitHub API
search algorithm to identify relevant projects. Because only projects with Java
as a primary language were selected, testing practices in projects, where Java
was not a major language could have been lost. Test classes that did not use
the word “test” to indicate a test case were also lost. Searching for test cases
was based on best practices and rules of the identified frameworks, but there
may still exist other ways of how to identify them. The manual classification
was based on observers’ experiences and identification of practices out of the
generally known recommendations (best practices, test smells, etc.).

Test Case Identification in Java OS Projects on GitHub 599

Test case detection results were compared to manual ones with an accuracy
of 96.97%. As stated, it is necessary to further investigate customized testing
solutions that use regular Java programs to test the production code. The
implementation of such programs is often diametrically different and it is difficult
to identify test cases. Real test cases were identified by the script in 6% of classes
containing main() function.

External validity: To provide generalizable results, 20 k of test cases were ana-
lyzed manually and 170 k by an automated way. Also, the meaning and oc-
currence of the word “test” was analyzed for different natural languages and
test frameworks. The results can be used to identify test cases in Java-based
projects or projects with a different programming language with the usage of
similar testing conventions. Despite the presented observations, our findings, as
is usual in empirical software engineering, may not be directly generalized to
other systems, particularly to commercial or to the ones implemented in other
programming languages.

6 CONCLUSION AND FUTURE WORK

This paper presented an empirical study of Java open source GitHub projects to
better understand how to identify test cases and their exact location in the project
without the need for deep and time-consuming dynamic code analysis. An algorithm
based on searching the word “test” in the repository files content or filenames was
proposed and, at the same time, the unusual testing practices were investigated. In
total 20 340 test cases in 803 classes were investigated manually and 170 k classes in
an automated way. We summarise the most interesting findings from our study:

• There is not a strong correlation between the number of occurrences of the word
“test” and the number of test cases in a class.

• Searching for the word “test” in the file content can be used to identify projects
containing tests.

• Using static file analysis, the proposed algorithm can correctly detect 97% of
test cases.

• Approximately 15% of the analyzed files contains “test” in the content together
with main() function whose represent regular Java programs that test the pro-
duction code without using any third-party framework. The success rate of
identification of such test cases is very low because of implementation diversity.

Several test writing styles were found and classified, along with code samples of
the analyzed repositories. Possible code comprehension defects were also mentioned.
Based on these findings the following main contributions of this paper are concluded:

• Possibility of fast and automated test case identification together with the exact
location in the project.

600 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

• Finding of correlation coefficient r = 0.655 between the number of occurrences of
the word “test” and the number of test cases in a file, which allows to threshold
projects or files for similar analysis.

• Overview of observed testing practices concerning the existence of customized
testing solutions with an emphasis on places in testing code usable for mining
information about the production code.

As future work, we plan to find a solution for accurate identification of test
cases in customized solutions, probably based on training a machine learning model
with manually labeled test cases of such testing solutions. We believe that studying
testing practices can help comprehend the production code more easily. Gathered
data could be used for training a machine learning model to automatically recognize
tests by the structure and nature of the code. At the same time, we would like to
focus on mining information from tests that could support the production source
code comprehension and streamline the development process.

Acknowledgement

This work was supported by project VEGA No. 1/0762/19: Interactive Pattern-
Driven Language Development.

REFERENCES

[1] Scalabrino, S.—Linares-Vásquez, M.—Poshyvanyk, D.—Oliveto, R.: Im-
proving Code Readability Models with Textual Features. 2016 IEEE 24th Inter-
national Conference on Program Comprehension (ICPC), 2016, pp. 1–10, doi:
10.1109/ICPC.2016.7503707.

[2] Demeyer, S.—Ducasse, S.—Nierstrasz, O.: Object-Oriented Reengineering
Patterns. Elsevier, 2002, doi: 10.1016/B978-1-55860-639-5.X5000-7.

[3] Corritore, C. L.—Wiedenbeck, S.: Mental Representations of Expert Procedu-
ral and Object-Oriented Programmers in a Software Maintenance Task. International
Journal of Human-Computer Studies, Vol. 50, 1999, No. 1, pp. 61–83, doi: 10.1006/i-
jhc.1998.0236.

[4] Mayer, R. E.: The Psychology of How Novices Learn Computer Program-
ming. ACM Computing Surveys, Vol. 13, 1981, No. 1, pp. 121–141, doi:
10.1145/356835.356841.

[5] Butler, S.—Wermelinger, M.—Yu, Y.: Investigating Naming Convention Ad-
herence in Java References. 2015 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), 2015, pp. 41–50, doi: 10.1109/ICSM.2015.7332450.

[6] Madeja, M.—Porubän, J.: Tracing Naming Semantics in Unit Tests of Popular
Github Android Projects. In: Rodrigues, R., Janousek, J., Ferreira, L., Coheur, L.,
Batista, F., Oliveira, H.G. (Eds.): 8th Symposium on Languages, Applications and
Technologies (SLATE 2019). OpenAccess Series in Informatics (OASIcs), Vol. 74,
2019, pp. 3:1–3:13, doi: 10.4230/OASIcs.SLATE.2019.3.

https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1016/B978-1-55860-639-5.X5000-7
https://doi.org/10.1006/ijhc.1998.0236
https://doi.org/10.1006/ijhc.1998.0236
https://doi.org/10.1145/356835.356841
https://doi.org/10.1109/ICSM.2015.7332450
https://doi.org/10.4230/OASIcs.SLATE.2019.3

Test Case Identification in Java OS Projects on GitHub 601

[7] Nayyar, A.: Instant Approach to Software Testing: Principles, Applications, Tech-
niques, and Practices. BPB Publications, 2019.

[8] Lewis, W.E.: Software Testing and Continuous Quality Improvement. Second Edi-
tion. Auerbach Publications, 2004.

[9] Garcia, B.: Mastering Software Testing with JUnit 5: Comprehensive Guide to
Develop High Quality Java Applications. Packt Publishing, 2017.

[10] Van Deursen, A.—Moonen, L.M. F.—Van Den Bergh, A.—Kok, G.: Refac-
toring Test Code. Proceedings of the 2nd International Conference on Extreme Pro-
gramming and Flexible Processes in Software Engineering (XP2001), 2001, pp. 92–95.

[11] Peruma, A.—Almalki, K.—Newman, C.D.—Mkaouer, M.W.—Ouni, A.—
Palomba, F.: On the Distribution of Test Smells in Open Source Android Applica-
tions: An Exploratory Study. Proceedings of the 29th Annual International Confer-
ence on Computer Science and Software Engineering (CASCON ’19), 2019, pp. 193–
202.

[12] Spadini, D.—Palomba, F.—Zaidman, A.—Bruntink, M.—Bacchelli, A.:
On the Relation of Test Smells to Software Code Quality. 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018, pp. 1–12, doi:
10.1109/ICSME.2018.00010.

[13] Linares-Vásquez, M.—Bernal-Cardenas, C.—Moran, K.—Poshyva-
nyk, D.: How Do Developers Test Android Applications? 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2017, pp. 613–622,
doi: 10.1109/ICSME.2017.47.

[14] Beller, M.—Gousios, G.—Panichella, A.—Zaidman, A.: When, How, and
Why Developers (Do Not) Test in Their IDEs. Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015), ACM, 2015,
pp. 179–190, doi: 10.1145/2786805.2786843.

[15] Kochhar, P. S.—Thung, F.—Nagappan, N.—Zimmermann, T.—Lo, D.: Un-
derstanding the Test Automation Culture of App Developers. 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification and Validation (ICST), 2015,
pp. 1–10, doi: 10.1109/ICST.2015.7102609.

[16] Fucci, D.—Erdogmus, H.—Turhan, H.—Oivo, M.—Juristo, N.: A Dissec-
tion of the Test-Driven Development Process: Does It Really Matter to Test-First
or to Test-Last? IEEE Transactions on Software Engineering, Vol. 43, 2017, No. 7,
pp. 597–614, doi: 10.1109/TSE.2016.2616877.

[17] Bissi, W.—Serra Seca Neto, A.G.—Pereira Emer, M.C. F.: The Effects
of Test Driven Development on Internal Quality, External Quality and Productivity:
A Systematic Review. Information and Software Technology, Vol. 74, 2016, pp. 45–54,
doi: 10.1016/j.infsof.2016.02.004.

[18] Zerouali, A.—Mens, T.: Analyzing the Evolution of Testing Library Usage
in Open Source Java Projects. 2017 IEEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), 2017, pp. 417–421, doi:
10.1109/SANER.2017.7884645.

[19] Leitner, P.—Bezemer, C.-P.: An Exploratory Study of the State of Practice
of Performance Testing in Java-Based Open Source Projects. Proceedings of the 8th

https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1109/ICSME.2017.47
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1109/ICST.2015.7102609
https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1016/j.infsof.2016.02.004
https://doi.org/10.1109/SANER.2017.7884645

602 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

ACM/SPEC International Conference on Performance Engineering (ICPE ’17), ACM,
2017, pp. 373–384, doi: 10.1145/3030207.3030213.

[20] Ellims, M.—Bridges, J.—Ince, D.C.: Unit Testing in Practice. 15th In-
ternational Symposium on Software Reliability Engineering, 2004, pp. 3–13, doi:
10.1109/ISSRE.2004.44.

[21] Hemmati, H.: How Effective Are Code Coverage Criteria? 2015 IEEE International
Conference on Software Quality, Reliability and Security, 2015, pp. 151–156, doi:
10.1109/QRS.2015.30.

[22] Hilton, M.—Bell, J.—Marinov, D.: A Large-Scale Study of Test Cov-
erage Evolution. Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (ASE 2018), ACM, 2018, pp. 53–63, doi:
10.1145/3238147.3238183.

[23] Kochhar, P. S.—Lo, D.—Lawall, J.—Nagappan, N.: Code Coverage
and Postrelease Defects: A Large-Scale Study on Open Source Projects.
IEEE Transactions on Reliability, Vol. 66, 2017, No. 4, pp. 1213–1228, doi:
10.1109/TR.2017.2727062.

[24] Just, R.—Jalali, D.—Inozemtseva, L.—Ernst, M.D.—Holmes, R.—
Fraser, G.: Are Mutants a Valid Substitute for Real Faults in Software Test-
ing? Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014), ACM, 2014, pp. 654–665, doi:
10.1145/2635868.2635929.

[25] Gopinath, R.—Jensen, C.—Groce, A.: Mutations: How Close Are They to Real
Faults? 2014 IEEE 25th International Symposium on Software Reliability Engineer-
ing, 2014, pp. 189–200, doi: 10.1109/ISSRE.2014.40.

[26] Kochhar, P. S.—Thung, F.—Lo, D.: Code Coverage and Test Suite Effective-
ness: Empirical Study with Real Bugs in Large Systems. 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),
2015, pp. 560–564, doi: 10.1109/SANER.2015.7081877.

[27] Cruz, L.—Abreu, R.—Lo, D.: To the Attention of Mobile Software Developers:
Guess What, Test Your App! Empirical Software Engineering, Vol. 24, 2019, No. 4,
pp. 2438–2468, doi: 10.1007/s10664-019-09701-0.

[28] Munaiah, N.—Kroh, S.—Cabrey, C.—Nagappan, M.: Curating GitHub
for Engineered Software Projects. Empirical Software Engineering, Vol. 22, 2017,
pp. 3219–3253, doi: 10.1007/s10664-017-9512-6.

[29] Gousios, G.: The GHTorent Dataset and Tool Suite. 2013 10th Working
Conference on Mining Software Repositories (MSR), 2013, pp. 233–236, doi:
10.1109/MSR.2013.6624034.

[30] Stefan, P.—Horky, V.—Bulej, L.—Tuma, P.: Unit Testing Performance in
Java Projects: Are We There Yet? Proceedings of the 8th ACM/SPEC International
Conference on Performance Engineering (ICPE ’17), ACM, 2017, pp. 401–412, doi:
10.1145/3030207.3030226.

[31] Suĺır, M.—Bač́ıková, M.—Madeja, M.—Chodarev, S.—Juhár, J.: Large-
Scale Dataset of Local Java Software Build Results. Data, Vol. 5, 2020, No. 3,
Art. No. 86, doi: 10.3390/data5030086.

https://doi.org/10.1145/3030207.3030213
https://doi.org/10.1109/ISSRE.2004.44
https://doi.org/10.1109/QRS.2015.30
https://doi.org/10.1145/3238147.3238183
https://doi.org/10.1109/TR.2017.2727062
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/SANER.2015.7081877
https://doi.org/10.1007/s10664-019-09701-0
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1145/3030207.3030226
https://doi.org/10.3390/data5030086

Test Case Identification in Java OS Projects on GitHub 603

[32] Pham, R.—Singer, L.—Liskin, O.—Filho, F. F.—Schneider, K.: Creating
a Shared Understanding of Testing Culture on a Social Coding Site. 2013 35th In-
ternational Conference on Software Engineering (ICSE), 2013, pp. 112–121, doi:
10.1109/ICSE.2013.6606557.

[33] Zhang, Y.—Lo, D.—Kochhar, P. S.—Xia, X.—Li, Q.—Sun, J.: Detect-
ing Similar Repositories on GitHub. 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017, pp. 13–23, doi:
10.1109/SANER.2017.7884605.

[34] Jiang, J.—Lo, D.—He, J.—Xia, X.—Kochhar, P. S.—Zhang, L.: Why and
How Developers Fork What from Whom in GitHub. Empirical Software Engineering,
Vol. 22, 2017, No. 1, pp. 547–578, doi: 10.1007/s10664-016-9436-6.

[35] Kuhn, A.—Van Rompaey, B.—Haensenberger, L.—Nierstrasz, O.—
Demeyer, S.—Gaelli, M.—Van Leemput, K.: JExample: Exploiting De-
pendencies Between Tests to Improve Defect Localization. In: Abrahamsson, P.,
Baskerville, R., Conboy, K., Fitzgerald, B., Morgan, L., Wang, X. (Eds.): Agile
Processes in Software Engineering and Extreme Programming (XP 2008). Springer,
Berlin, Heidelberg, Lecture Notes in Business Information Processing, Vol. 9, 2008,
pp. 73–82, doi: 10.1007/978-3-540-68255-4 8.

[36] Pearson’s Correlation Coefficient. In: Kirch, W. (Eds.): Encyclopedia of Public
Health. Springer, Dordrecht, 2008, p. 1090, doi: 10.1007/978-1-4020-5614-7 2569.

https://doi.org/10.1109/ICSE.2013.6606557
https://doi.org/10.1109/SANER.2017.7884605
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1007/978-3-540-68255-4_8
https://doi.org/10.1007/978-1-4020-5614-7_2569

604 M. Madeja, J. Porubän, M. Bač́ıková, M. Suĺır, J. Juhár, S. Chodarev, F. Gurbáľ

Matej Madeja graduated (M.Sc.) at the Department of Com-
puters and Informatics of the Faculty of Electrical Engineering
and Informatics at the Technical University of Košice in 2017.
He defended his Master’s thesis in the field of informatics. Cur-
rently, he is Ph.D. student in the same department. His research
is focused on the improvement of program comprehension effi-
ciency, source code testing techniques, and teaching of program-
ming.

Jaroslav Porub�an is Professor and the Head of Department
of Computers and Informatics, Technical University of Košice,
Slovakia. He received his M.Sc. degree in 2000 and his Ph.D.
in 2004, both in computer science. Since 2003 he is a member
of the Department of Computers and Informatics at the Tech-
nical University of Košice. Currently, the main subject of his
research is computer language engineering focused on the design
and implementation of domain-specific languages and computer
language composition and evolution.

Michaela Ba�c��kov�a is Assistant Professor and the Head of the
Information Systems Laboratory at the Department of Comput-
ers and Informatics, Technical University of Košice, Slovakia.
She received her Ph.D. in computer science in 2014. Since 2014
she is a member of the Department of Computers and Informat-
ics at the Technical University of Košice. Currently, the main
subject of her research is UX, HCI and usability while focusing
on the domain-related terminology in user interfaces (domain
usability). Her interest is also in software languages and inno-
vations in the teaching process.

Matúš Sul��r is Assistant Professor at the Department of Com-
puters and Informatics, Technical University of Košice, Slovakia.
At the same university, he graduated with his Master’s degree in
computer science in 2014 and obtained his Ph.D. in 2018. His re-
search is focused on program comprehension, particularly on the
integration of run-time information with source code, attribute-
oriented programming, and debugging. He is also interested in
empirical studies in software engineering.

Test Case Identification in Java OS Projects on GitHub 605

Jan Juh�ar is Researcher at the Department of Computers and
Informatics, Technical University of Košice. He received his
Ph.D. in computer science in 2018. Since 2018 he is a member of
the Department of Computers and Informatics at the Technical
University of Košice. His research focuses on program compre-
hension, programming tools, source code metadata, and program
projections.

Sergej Chodarev is Assistant Professor at the Department of
Computers and Informatics, Technical University of Košice, Slo-
vakia. He received his Master’s degree in 2009 and his Ph.D.
in 2012, both in computer science. The subject of his research
includes domain-specific languages, metaprogramming, and soft-
ware engineering.

Filip Gurb�a�l is Ph.D. student at the Department of Comput-
ers and Informatics, Technical University of Košice, Slovakia. He
graduated at the university in computer science in 2020. He is
a member of the Computer Network Laboratory at the Technical
University of Košice. The subject of his research is improving
program comprehension using methods and tools. He also fo-
cuses on software testing methods and tools.

Computing and Informatics, Vol. 40, 2021, 606–627, doi: 10.31577/cai 2021 3 606

REAL TIME MOBILE AD INVESTIGATOR:
AN EFFECTIVE AND NOVEL APPROACH
FOR MOBILE CLICK FRAUD DETECTION

Iroshan Aberathne

Department of Information and Communication Technology
Faculty of Technology, University of Sri Jayewardenepura
Sri Lanka
e-mail: iroshan@sjp.ac.lk

Chamila Walgampaya

Department of Engineering Mathematics
Faculty of Engineering, University of Peradeniya
Sri Lanka
e-mail: ckw@pdn.ac.lk

Abstract. Today, mobile advertising is considered as the most effective medium to
convey promotional messages to customers because of the excessive usage of mobile
phones and tablets all around the world. However, this ecosystem has severely been
affected by fraudulent activities due to a large sum of money circulated in the adver-
tising industry. The term ad fraud is referred to as any kind of fraudulent activities
that are executed by fraudulent users either a human or an automated script. The
combat between researchers and fraudulent users never ends because more smarter
strategies are being used by the fraudsters to bypass the significant number of de-
tection and prevention solutions. The Real Time Mobile Ad Investigator-RTMAI
is proposed as a software solution to address this problem where a novel supervised
learning algorithm based on the hidden Markov model along with a rule engine have
been proposed to classify fraudulent impressions in real time. Furthermore, RTMAI
proposed a solution to address the class imbalance problem which is generic to most
of the classification datasets. The experimental results show the significance of the
proposed approach to classify the fraud or non-fraud clicks/events, impressions and
even user sessions more confidently in real time.

https://doi.org/10.31577/cai_2021_3_606

An Effective and Novel Approach for Mobile Click Fraud Detection 607

Keywords: Mobile advertising, click fraud, classification, supervised learning, class
imbalance, hidden Markov model

1 INTRODUCTION

The inception of online advertising goes to the early nineties where the very first
online advertisement, which was a banner advertisement of a web magazine named
HotWired, had been published in 1994 on a web page owned by AT&T [1]. The
Mobile Marketing Association has defined the term Mobile Advertising as a form
of advertising that transmits advertisement messages to users via mobile phones or
other wireless communication devices [2]. The recent statistics show that 33% of the
world population has been using smartphones, which is nearly more than 2.5 billion
users [3]. Significant increase of mobile Internet browsing in recent years has led to
an increase in the popularity of advertising in mobile devices. The analysis states
that currently 51% of digital advertising market share will be dominated by mobile
advertising and predicted to be 70% by 2019 with the worth of US$ 200 billions [4].

The key contributors of this market are User, Advertisers, Publishers, and Ad-
vertising Networks known as Ad networks. Users are individuals who surf websites
or use mobile apps where they see the ads shown on web pages or within the apps
that they may click on the ads. Advertiser is the one who designs the ads and
makes a contract with an ad network to publish advertisements on behalf of himself
or a company [5]. Publisher can be a web site or mobile application which dis-
plays the advertisements to the site/app visitors [5]. Generally, Large publishers
often sell around 60% of their ad space known as ad inventories though ad networks
and smaller ones sell their entire inventories [6]. Ad network are online companies
which play a broker role between advertiser and publisher. Advertisers are charged
by the ad networks for publishing their advertisements. Ad networks find suitable
publishers to display ads [6].

The most popular revenue models in this industry are Pay-Per-Impression (PPI)
and Pay-Per-Click (PPC) models where internet content providers are paid by the
advertiser per each impression or click [7, 8, 9] An impression is defined as the
displaying or loading event of advertisement into an advertisement frame while click
would be any kind of user interaction/event on the displayed advertisement.

In this study, we propose a software solution called real Time Mobile Ad In-
vestigator (RTMAI). The RTMAI has been implemented by encapsulating the Rule
Engine, a Behavioural Pattern Recognition module and a novel supervised machine
learning model. These modules interact with each other simultaneously to achieve
the final goal of classifying clicks/events, impressions and subsequently user sessions
in real time. The remainder of this paper is organised as follows. In Section 2
discuss existing detection and prevention systems. Proposed approach of this study
is discussed in detail under Section 3. The experimental results are available in
Section 4. Conclusion is given in Section 5.

608 I. Aberathne, C. Walgampaya

2 LITERATURE SURVEY

The researchers have proposed and implemented a number of click or impression
fraud detection tools using distinct methodologies. Xu et al. [10] have developed
a detection system where they used a stepwise evaluation process including proactive
functionality test at front end (i.e. user interface) backed by JavaScript and passive
examination of browsing behaviour to differentiate a clickbots from a human clicker.
DECAF [11] proposed an offline click fraud detection approach using rule-based
methods to detect placement fraud by analysing the advertisement user interface
status in mobile apps/pages. NAB (Not-A-Bot) [12] is a system that enables a range
of verifier policies for applications that would like to separate human-generated re-
quests from bot traffic. NAB approximately identifies and certifies human-generated
activities. Client machines of the NAB system attest the legitimacy of individual
requests to remote parties with a trusted component that monitors keyboard and
mouse input. FCFraud is an operating system anti-malware service proposed by
Iqbal et al. [13] inspects HTTP packets from all user processes and analyzes the
ad-related traffic from captured HTTP packets. The FCFraud detects malware that
is a part of a botnet and launches attacks using technologies similar to the desktop
malware.

MAdFraud [14] studies mobile ad fraud perpetrated by Android apps and identi-
fies two kinds of fraudulent behavior. First one is requesting ads in the background
and the second one is clicking on ads without user interaction. They further de-
veloped an analysis tool to automatically trigger and expose ad fraud in Android
emulators. However, the intrinsic limitation of offline testing on coverage and the
lack of a reliable way to distinguish benign from fraud ads make it hard for such
approaches to detecting sophisticated means of doing frauds, especially bot-driven
frauds. AdAttester [15] tries to detect and prevent well-known ad fraud by iden-
tifying incoming click or impression is actually delivered by a real user with two
primitives called verifiable display and unforgeable clicks. AdAttester cannot detect
mobile ads that violate the ad policy of the ad provider. Walgampaya et al. [16]
has used a multi-level data fusion process to detect and prevent click fraud in real
time and decision. Agarwal [17] also suggested a real time click fraud detection
technique which mainly focuses on the advisor side. Either approach has used the
same mathematical theory called the Dempster-Shafer evidence theory to tackle
fraudulent clicks in desktop environments.

Several machine learning (ML) approaches have also been experimented by re-
searchers to improve the accuracy, performance and reliability of fraudulent clicks
and impressions detection mechanisms in mobile advertising. Perera et al. [18] eval-
uated a number of ML algorithms such as decision trees, regression trees, artificial
neural networks and support vector machines on real data produced by Buzzcity
Ltd. The researchers were able to identify a number of different fraudulent patterns
in the data set but did not focus on detecting each individual event called impres-
sion. Haider et al. [4] has discussed another ML based approach which is similar to
previous authors’ approach but these authors were able to achieve better improve-

An Effective and Novel Approach for Mobile Click Fraud Detection 609

ment with identifying each individual fraud impression than the common pattern
of fraudulent events. Botnets detection approach was proposed by Gobel [19] using
the hidden Markov model in their study. The proposed approach has used network
traffic generated by computers to model the HMMs so that bots can be identified
through measuring the distances between these HMMs.

3 REAL TIME MOBILE AD INVESTIGATOR-RTMAI

Real Time Mobile Ad Investigator – RTMAI is an extended version of Real Time
Mobile Bot Miner – RTMBM [5] to address click and impression fraud problems
in the pay-per-click internet advertising model. The proposed solution is capable
enough to integrate not only in mobile but also in desktop environments. The RT-
MAI is a composition of rule engine, behavioural pattern recognition techniques [5],
advanced algorithms, novel machine learning and resampling algorithms to identify
fake user events/clicks, impressions and subsequently user sessions in real time.

3.1 System Architecture

The abstract view of RTMAI architecture is graphically represented in Figure 1.
There are four modules named Data Collection, Data Processing, Decision Making
and Admin modules that incorporate each other to build the overall system. The
RTMAI has neither functionality nor implementation change made to Data Collec-
tion or Data Processing modules compared to RTMBM [5]. However, a new Admin
Module has been implemented in RTMAI while enhancing the capability of Decision
Making module with novel supervised learning algorithm.

RTMAI uses two approaches to make a decision on whether the use event or
session is valid or fraud. Rule engine is implemented with two subsystems called
Horizontal and Vertical Analysis Sub System as the first approach. Secondly, a novel
supervised learning algorithm has been implemented based on the hidden Markov
model to classify each individual click or impression into either fraud or non fraud
category in real time. The proposed model is enhanced with another new sequence
data resampling technique to solve the class imbalanced problem in the dataset.

The admin module is the place where all the admin tasks are performed. Session
handler is responsible to manage session validation through heart-beat and scheduler
algorithms [5]. Report handler is the admin dashboard to visualize all the analytics
results along with user session and event details.

3.2 Rule Engine

The RTMAI is capable of identifying user events via a data filtering process which
is implemented with novel advanced algorithms. The front end java script consists
of all the business logics to identify advanced user events such as Touch Zoom Event
(TZE) over Swap Touch Zoom Event (STZE) where TZE event is triggered when

610 I. Aberathne, C. Walgampaya

Figure 1. System architecture

user clicks on mobile screen twice in order to zoom HTML component. The STZE
is identified when a particular user does the HTML component zoom using his/her
finger tips rather perform two clicks during a tiny time period. Such tricky user
events are captured by the RTMAI very accurately. The decision making module
has a rule engine where pre-processed data are being analysed to label as fraud or
not. A set of static rules have been defined under Horizontal and Vertical analysis
sub systems [5].

An Effective and Novel Approach for Mobile Click Fraud Detection 611

3.3 Hidden Markov Scoring Model-HMSM

The Hidden Markov Scoring Model – HMSM is a novel supervised learning classi-
fication algorithm which is implemented as a part of the decision making module.
The HMSM is based on the scoring approach of HMM rather than conventional
probabilistic models of HMM. The proposed methodology discusses an N to N pro-
cess from feature selection to target state classification via fully automated process.
The initial version of the HMSM algorithm was evaluated based on a labeled dataset
borrowed from Haider et al. [4] before production implementation.

3.3.1 Dataset

The dataset contains a number of attributes such as deliveryId, timestamp, cli-
entIp, marketId, adSpaceId, accoundId, siteId, unknownDeviceId, clientVersionId,
ipMarketId, ipCountyCode, ipIsp, adRelType, forcedAd, eventType, eventId, event-
TimeStamp and status, etc. Details of the attributes can be found in [4].

3.3.2 Derived Attributes

Derived attributes were introduced to the dataset out of existing variables with re-
spect to individual impression so that dimension of the feature vector will be reduced.
eventCount, distEventTypes, surfTimeSec are some of the derived attributes:

• eventCount is the number of triggered events per impression,

• distEventTypes is the number of distinct event types of a given impression,

• surfTimeSec is the number of seconds users engage with an impression,

• maxEventCount is the maximum event count out of distEventTypes,

• distEventFreqGroups is the number of distinct event frequency groups,

• dayOfWeek is an impression triggered date.

Finally, the dataset arranged in ascending order of the timestamp variable to
guarantee the state transition from previous state to the next state which is a fun-
damental nature of HMM.

3.3.3 Feature Vector

HMM basically interacts with state transition. All the numerical variables were
transformed into categorical variables through entropy-based binning technique ba-
sed on the target variable. Once numerical variables transformations are completed,
all the categorical variables were evaluated with chi-square test of independence
against the target variable with a significance level of 0.05. The variables which have
higher chi-square test statistics than critical value were identified as the observe or
emission variables.

612 I. Aberathne, C. Walgampaya

Altogether nine variables were identified by the chi-square test which have higher
test statistics than critical value. Out of these nine variables, five were derived
attributes and the rest of them were raw attributes. The selected feature vector is
fed into the proposed hidden Markov scoring model as emission variables.

3.3.4 HMSM Algorithm Implementation

The HMSM algorithm calculates scores for each target class based on observe vari-
ables to classify the data point in supervised learning approach. In a supervised
learning approach, a model should be trained first and then makes the predictions
with trained parameters. Calculation of A, B and π is referred to as training the
model in HMSM. Equations (1), (2) and (3) were used to calculate the A, B and π
with the training data set. The mathematical representation of the hidden Markov
model is defined by A, B, π and can be denoted by λ [20] where λ = (A,B, π).

A(i,j) = p

(
St = j

St−1 = i

)
, ∀i = 1, . . . ,M,

M∑
i=1

A(i,j) = 1, (1)

B(j,k) = p

(
Ot = k

St = j

)
, (2)

πi = p(S1 = i), ∀i = 1, . . . ,M,

M∑
i=1

πi = 1, (3)

where,

• M = total number of hidden states,

• i, j = 1, . . . ,M index the state,

• k = number of possible discrete observations,

• s = hidden state,

• st = hidden state at time t,

• π = initial state distribution, a vector of size M ,

• A = state transition probability matrix, a matrix of size M ∗M ,

• B = emission probability matrix, a matrix of size M ∗K,

• xt = observation at time t.

HMSM algorithm classifies the test data with a scoring model based on HMM.
Target variable of the experimental data set has two states called OK and Fraud,
where OK being the click is genuine and the Fraud being that the click is not genuine.
The HMSM classifies each individual record in test data into either state.

Feature Score (fscoref ,s): Calculates scores towards each hidden state (i.e. Fraud
or OK) of the target variable called fscoreFraud and fscoreOK for each individual

An Effective and Novel Approach for Mobile Click Fraud Detection 613

record in test dataset with respect to each emission feature. Equation (4) is
defined as the mathematical representation of fscore:

fscoref,s=i = −{log πi + logAi,s + logBs,k} . (4)

Mean Deviation Feature Score (mdfscoref ,s): Equation (5) calculates the
mean scores for each subset (i.e. fscoreFraud and fscoreOK) in order to calculate
the deviation of the feature score from its subset mean represented in Equa-
tion (6):

µs=i = mean (fscores=i) , (5)

mdfscoref,s=i = fscoref,s=i − µs=i, (6)

∀i = {Fraud ,OK} ,∀f = 1, . . . , F.

Minimum Mean Deviation Score (mdscoremin,s=i): Select minimum mean
deviation score out of mdfscore for each hidden status as in Equation (7):

mdscoremin,s=i = min (mdfscores=i) . (7)

HMSM identifies the most probable hidden state of a given record as the state
of the maximum mdscoremin,s=i, as shown in Equation (8):

hiddenState = max (mdscoremin,OK ,mdscoremin,Fraud) (8)

where s = hidden states and F = number of observe features.

3.4 Step-Factor Resampling and Smoothing Technique

Any kind of dataset that is related to fraud detection including the click fraud suffers
with Class Imbalance problem [21, 22]. The class imbalance occurs when the dataset
carries only a small number of data points representing the minor class compared
to the major class in a particular dataset [23]. A novel methodology is introduced
to solve this class imbalance problem in a sequence data via a resampling technique
and smoothing approach.

3.4.1 Smoothing Technique

One of the major smoothing techniques called Additive smoothing is used in this
study to upturn the zero probabilities for unseen data using ε as a tuning param-
eter since it provides better estimates compared to the other methods. Here, ε is
referred to as the smoothing factor in Additive smoothing. Estimated probabilities
pε based on the actual counts can be calculated as in Equation (9) for each value x

614 I. Aberathne, C. Walgampaya

of a variable X in a sample of N observations [24]:

pε =
(x+ ε)

(N + ε ∗Nx)
(9)

where Nx is the number of possible values contained in the sample space.

3.4.2 Resampling Technique

The proposed resampling technique identifies the major and minor classes from
a dataset and then calculates the optimum number of records to be converted so
called Conversion Factor (Z) from major class into minor class in order to balance
the dataset. The derivation of the proposed resampling technique is illustrated as
follows:

• Ci
major – number of major class instances before resample,

• Ci
minor – number of minor class instances before resample,

• Cf
major – number of major class instances after resample,

• Cf
minor – number of minor class instances after resample,

• Z – number of instances to be converted from major to minor class,

Ri =
Ci

major

Ci
minor

, (10)

Rf =
Cf

major

Cf
minor

. (11)

Since Cf
major < Ci

major and Cf
minor > Ci

minor, the relationship among the major
and minor classes before and after the resampling can be expressed with Z, as shown
in Equations (12) and (13):

Cf
major = Ci

major − Z, (12)

Cf
minor = Ci

minor + Z. (13)

The Equation (11) is rearranged according to the Equations (12) and (13) so
that Equation (14) is derived:

Rf =
Ci

major − Z

Ci
minor + Z

. (14)

The formula to calculate conversion factor – Z is derived with Equations (10)
and (14):

Z =

(
Ri −Rf

Rf + 1

)
Ci

minor. (15)

An Effective and Novel Approach for Mobile Click Fraud Detection 615

The Rf is considered as a tuning parameter to the algorithm where different
values from 1 to Ri − Rf = 1 are assigned to Rf so that a set of Z values can be
calculated according to the Equation (15).

Once the conversion factors are calculated, the respective number of records
should be converted from major to minor class in order to overcome the class imbal-
ance problem. There should be a consistent procedure to perform this conversion.
The proposed method calculates the index distance of adjacent minor class instances
and arranges them in three different ways called ASC, DESC and MID to perform
the conversion so that the consistency is guaranteed. The term Step-Factor is used
to refer to these minor class instances arrangement methods. The target class of the
dataset contains two states called OK and Fraud where OK is genuine and Fraud
means not genuine instances. The target class sequence is arranged as a list so
that the index distance of adjacent minor class instances can be calculated. The
graphical representation of this process is shown in Figure 2.

Figure 2. Index distance of minor class instances

The implementation of the first two step-factors are straightforward. The index
distances are arranged in ascending order in ASC and descending order in DESC
method. Merge sort algorithm is used to perform these said sorting because the worst
case time complexity of the merge sort is O(n log n) which enhances the efficiency
of step-factor algorithm. The index distances are arranged by the MID step-factor
following a shuffling mechanism. The MID step-factor algorithm first calculates the
number of index distances available in the list. If the number of indexes is odd,
the last index value of the list is omitted and then the index distance list so called
initial index distance list is divided into two sublists named left and right index
distance sub lists. Then the shuffling starts at the last index value of the left index
distance sub list and then first index value of the right index distance sub list and
so on. The algorithm performs conversion of major to minor class instance with
respect to selected step-factor. The shuffling process of the indexes based on the
MID step-factor is illustrated in Figure 3.

4 EXPERIMENTAL RESULTS

The Rule engine was evaluated with real world data which have been gathered from
a web based application. The HMSM and its enhancement with resampling and
smoothing technique was tested with labeled dataset [4] before integrating with the
current version of RTMAI in production.

616 I. Aberathne, C. Walgampaya

Figure 3. MID step-factor index shuffling process

4.1 Rule Engine

We have tested RTMAI with automatically generated scripts which are implemented
with selenium web driver to imitate real user behaviuor and mobile emulators such
as android and web browser emulators.

4.1.1 Horizontal Analysis Sub System – HASS

Table 1 shows the experimental results of a user session with respect to the horizontal
analysis subsystem in the decision making module where each individual user event
is analysed. The user has triggered 6 events from a desktop device and out of those
6 events three were identified as mobile events. The rule engine applies static rules
on top of this information and then identifies that this user session has been created
by an automated script and flagged respective events as fraudulent events. The
particular user tried to simulate mobile user behaviour in a desktop but RTMAI
smartly identified its fraudulent activities.

4.1.2 Vertical Analysis Sub System – VASS

Experimental results of vertical analysis or user session analysis categorised into
three segments called device, user and event data analysis. Figure 4 is a real screen-
shot of VASS analysis dashboard view. Device Analysis graph shows that both
mobile and desktop events have been triggered in this particular user session. Then
the device behaviour can be fraud to some extent.

The attribute values in user analysis must be constant and cannot be changed
for a given session. If there is a variance of an attribute, the system identifies it as
a negative behaviour. The experimental results in the User Analysis graph shows
that there are deviated behaviours in time zone, event sequence and user location.
This user is trying to hide his or her real geolocation by altering time zone offset
and location details. Meanwhile, there is a mismatch in the event sequence as well.

Final analysing aspect of the vertical analysis sub system is event behaviour
analysis where the experimental results of a particular user events are shown in the

An Effective and Novel Approach for Mobile Click Fraud Detection 617

E
v
en

t
T
a
g

E
v
en

tT
im

e
F
in
g
er
T
ip
s

E
v
en

t
(X

,
Y
)

T
im

eZ
o
n
e

Z
o
n
eT

im
e

D
ev

ic
e

D
ev

ic
e
(W

,
H
)

V
ie
w

(W
,
H
)

V
ie
w

B
ro
w
se
r

P
ro
x
ie
s

S
ta
tu

s
T
S

D
IV

2
0
:1
7
:5
0
.2
0
8

1
1
1
5
2
,
2
8
9

+
0
5
:3
0

2
0
:1
7
:5
2
.9
2
6

D
es
k
to
p

1
3
6
6
,
7
6
8

1
3
6
6
,
4
4
7

−
1

C
h
ro
m
e

1
F
ra
u
d

T
Z
E

H
3

2
0
:1
7
:4
9
.8
3

1
9
8
2
,
2
1
6

+
0
5
:3
0

2
0
:1
7
:5
1
.7
9
7

D
es
k
to
p

1
3
6
6
,
7
6
8

1
3
6
6
,
4
4
7

−
1

C
h
ro
m
e

1
F
ra
u
d

T
S

H
3

2
0
:1
7
:4
8
.7
0
8

1
5
4
0
,
2
0
5

+
0
5
:3
0

2
0
:1
7
:5
1
.4
4
1

D
es
k
to
p

1
3
6
6
,
7
6
8

1
3
6
6
,
4
4
7

−
1

C
h
ro
m
e

1
F
ra
u
d

S
E

−
1

2
0
:1
6
:5
9
.7
4
4

−
1

0
,
0

+
0
5
:3
0

2
0
:1
7
:0
2
.4
9
3

D
es
k
to
p

1
3
6
6
,
7
6
8

1
3
6
6
,
4
4
7

−
1

C
h
ro
m
e

1
O
K

L
C

D
IV

2
0
:1
6
:5
9
.4
4
7

1
4
3
8
,
3
4
5

+
0
5
:3
0

2
0
:1
7
:0
2
.1
6

D
es
k
to
p

1
3
6
6
,
7
6
8

1
3
6
6
,
4
4
7

−
1

C
h
ro
m
e

1
O
K

S
E

−
1

2
0
:1
6
:3
3
.9
3
1

−
1

0
,
0

+
0
5
:3
0

2
0
:1
6
:3
7
.3
3
6

D
es
k
to
p

1
3
6
6
,
7
6
8

1
3
6
6
,
4
4
7

−
1

C
h
ro
m
e

1
O
K

T
ab

le
1.

H
or

iz
on

ta
l

an
al

y
si

s

618 I. Aberathne, C. Walgampaya

Figure 4. Dashboard screenshot in VASS

Event Behaviour Analysis graph. The user tries to pretend as a mobile user but
a small number of desktop events have been captured by the RTMAI. There are
6 touch start events (40% out of total events) but there is less number of complex
mobile events such as touch zoom event (only 1), swap zoom event (zero event). The
real reason is, it is difficult to automate more advanced mobile events by scripts.
Comparing the probability of user events RTMAI can make appropriate decisions.

4.2 Hidden Markov Scoring Model – HMSM

The HMSM was evaluated with 20 different test samples in order to verify the
performance of the model across the dataset. An individual train/test sample is
represented by S-xx notation as shown in Figure 5 where the samples are equally dis-
tributed throughout the dataset so that consistency of the classifier can be evaluated
by calculating accuracy, precision, recall, specificity and F-score for each individual
sample as the performance measures.

Figure 5. Train/test samples distribution

An Effective and Novel Approach for Mobile Click Fraud Detection 619

The fundamental problem of any machine learning algorithm is finding optimum
training set size to perform regression or classification tasks accurately. To solve this
issue HMSM trains with 10 distinct training samples where sample size starts from
3 000 records to 25 000 records to find the optimum training sample size. Each
training set evaluated with 20 different test samples and calculated the mean value
and mean of the standard deviation of performance measures to identify the optimum
training set record size.

The HMSM model performs well in classifying test data when training sam-
ple size is 5 000. Figure 6 illustrates the model performance with all training
data sets where mean values for accuracy, recall, precision and F-score have been
reached to above 80% and specificity reached to 79% at the sample size containing
5 000 records. The stability of the model can be evaluated with the mean values
of standard deviations of each training sample. The results show that the model is
more stable when the training data set has 5 000 records where standard deviations
of all the performance measures are less than 0.25 including specificity.

Figure 6. Training set evaluation by mean and standard deviation

The observe variables which have initially been identified with the chi-square
test of independence were categorised into three groups.

Derived features: all derived features,

Raw features: all initial features without any prepossessing,

Combined features: all derived and raw features.

620 I. Aberathne, C. Walgampaya

The proposed HMSM classifier tested with a random test sample containing
50 data points based on each feature group so that the best performing feature
vector can be identified. The experimental results are visualised in Figure 7 where
the x axis represents the data point and the y axis represents the Minimum Mean
Deviation Score Difference: (mmdsd) of each data point, as shown in Equation (16).

Figure 7. Classifier behaviour with types of features

mmdsd = mdscoremin,OK −mdscoremin,Fraud. (16)

4.3 Step-Factor Resampling and Smoothing Technique

The HMSM was enhanced with smoothing factor – ε as a tuning parameter to
the model in order to scale the performance of the model. The major advantage of
smoothing factor is that it ensures the first priority objective of HMSM by increasing
specificity while keeping almost constant values for all other performance measures.
The experimental results in Figure 8 show that there is a significant effect on the
model performance and stability for all training sets with the smoothing factor.

An Effective and Novel Approach for Mobile Click Fraud Detection 621

Moreover, it is clear that specificity is much more sensitive to the smoothing factor
than all the other performance measures where a slight change in the smoothing
factor produces significant performance change in specificity.

Figure 8. Model performance with smoothing factor

The proposed resampling technique is applied to sample datasets in order to
experiment the performance enhancement of HMSM. Different datasets are validated
against each step-factor to identify the effectiveness of each individual step-factor in
this resampling approach. The model trains with the same training data set sizes
that are used in smoothing factor to compare the performance variation between the
two approaches. The experimental results in Table 2 shows the association of step-
factor resampling approach towards a sequence data set. The model performs better
when training data with 5 000 records as in smoothing factor. The experimental
results illustrate that all step-factors are almost equally contributed to the model
performance along with each training data set size.

The step-factor resampling technique has achieved comparatively greater statis-
tics for each performance measure than smoothing with each training record size.
Moreover, drastic changes in performance measures can not be experienced with
respect to training record size in this approach like in smoothing approach. For
instance, the statistics in specificity varies from 55% to 82% with the range of 17
in smoothing but that of resampling is from 75% to 84% where the range has been
reduced to 9% by step-factor resampling.

The resampling technique was applied to all 20 sample training datasets and then
evaluated the HMSM model with the smoothing factor as 0.06. The experimental

622 I. Aberathne, C. Walgampaya

Records Step Factor
Acurracy Recall Precision Specificity F-Score
µ σ µ σ µ σ µ σ µ σ

ASE 0.86 0.06 0.87 0.06 0.99 0.02 0.77 0.29 0.92 0.04
3 000 MID 0.86 0.06 0.87 0.06 0.98 0.02 0.65 0.36 0.92 0.03

DESC 0.85 0.08 0.86 0.08 0.99 0.02 0.68 0.36 0.92 0.05

ASE 0.88 0.04 0.89 0.05 0.99 0.02 0.82 0.24 0.94 0.03
5 000 MID 0.89 0.03 0.89 0.04 0.99 0.02 0.8 0.27 0.94 0.02

DESC 0.89 0.03 0.90 0.03 0.99 0.02 0.84 0.26 0.94 0.02

ASE 0.84 0.10 0.84 0.10 0.99 0.02 0.79 0.30 0.90 0.07
8 000 MID 0.84 0.07 0.84 0.07 0.99 0.02 0.74 0.29 0.91 0.05

DESC 0.84 0.05 0.84 0.06 0.99 0.02 0.73 0.31 0.91 0.03

ASE 0.79 0.14 0.79 0.14 0.99 0.02 0.84 0.26 0.87 0.10
12 000 MID 0.80 0.11 0.80 0.11 0.99 0.02 0.86 0.23 0.88 0.07

DESC 0.81 0.11 0.81 0.11 0.98 0.02 0.75 0.29 0.89 0.08

Table 2. Model performance with step-factor resampling

results show that step-factor plays a vital role in classifying test data. Each step-
factor equally contributes to enhance the performance of the model, as shown in
Figure 9, where 7 samples with DESC, 8 samples with ASC and 5 samples with
MID step-factor has enhanced the performance of the model. Moreover, 17 out
of 20, as a percentage of 85%, samples show highest performance when the sample
size equals or is less than 6 000 records. This approach including smoothing and
resampling has been ensured the most valuable capability of HMSM to classify
sequence data with small training dataset. The maximum percentage of conversion
factor -Z out of the training size is 25% and the rest of the samples are below 20%.
Furthermore, 16 samples have been reached to the optimum model performance
when the conversion factor is below 10%. There are only three samples which
have been reached to 1 000 records to train the model in order to absorb better
classification accuracy but out of these three, only one sample has a higher conversion
rate.

There are four models for HMSM. The first model is identified as the initial
model where neither smoothing factor nor resampling technique is applied. The
second and third models are incorporated with smoothing factor and step-factor
resampling technique respectively. The final model enhanced with both smoothing
and step-factor resampling approaches to evaluate the HMSM model. The indi-
vidual performance of both smoothing and resampling models are almost equal
but have gained better classification optimisation compared with the initial model.
A significant improvement of all performance measures can be identified after ap-
plying smoothing factor and resampling technique together as a hybrid approach on
HMSM. The key objective of any fraud detection approach is to increase the speci-
ficity while keeping the statistics of all other performance measures in satisfactory
level. The HMSM has achieved not only said objective with a dramatic increase of
the specificity from 79% to 91%, but also other performance measures with almost

An Effective and Novel Approach for Mobile Click Fraud Detection 623

Figure 9. Best performing training set size along with step-factor

the same quantity. The accuracy and recall have been improved by 10%, F-score
by 6% and precision has remained the same throughout the initial to final model
with a tiny standard deviation change since it has already reached a higher statistics
of 99%. The consistency and stability of the model has also been guaranteed by
the diminishing rate of standard deviation of each performance measure from initial
model to final model. The experimental results for each individual model (Inital:
Model-1, Smoothing: Model-2, Resampling: Model-3, Resampling and Smoothing:
Model-4) have been summarised in Table 3.

Model-1 Model-2 Model-3 Model-4
µ σ µ σ µ σ µ σ

Accuracy 0.84 0.05 0.88 0.04 0.89 0.03 0.94 0.03
Recall 0.85 0.05 0.88 0.04 0.90 0.03 0.95 0.03
Precision 0.99 0.01 0.99 0.01 0.99 0.02 0.99 0.02
Specificity 0.79 0.26 0.82 0.23 0.84 0.26 0.91 0.17
F-Score 0.91 0.03 0.93 0.02 0.94 0.02 0.97 0.01

Table 3. Performance evaluation of the models

Experimental results show that HMSM model performs better after enhancing
the model with smoothing factor and resampling technique. Figure 10 illustrates
the HMSM performance across 20 different samples after applying the resampling
and smoothing factor. There are only four instances with specificity less than 70%
and the lowest is 50%. All other performance measures are above 90% for all sam-

624 I. Aberathne, C. Walgampaya

ples. Moreover, Figure 11 illustrates the performance of the all four models with
the Receiver operating characteristic (ROC) curve to get a much better understand-
ing.

Figure 10. Best performing model

Figure 11. Models performance

An Effective and Novel Approach for Mobile Click Fraud Detection 625

5 CONCLUSION

The RTMAI is smart enough to identify fraud user events/clicks and sessions with
a rule engine where HASS and VASS analyse each individual user event and session
accordingly. Since RTMAI is a extended version of RTMBM, it encapsulated be-
havioural pattern recognition capability that facilitates more accurately second level
verification on top of the VASS for user session identification. The Hidden Markov
Scoring Model (HMSM), a novel supervised learning algorithm was introduced to
the RTMAI to classify fraudulent impressions in addition to the classification of
fraudulent clicks and subsequently user sessions with minimal computational power.
The HMSM guarantees high performance with minimum training data in a smaller
amount of time. A new resampling technique is proposed to address the class im-
balance problem in sequence data. The findings of this study prove that proposed
resampling and smoothing techniques perform well with the model in sequence data.
There are a number of interesting features in this resampling technique. No syn-
thetic data are introduced to the dataset. Natural patterns and the characteristics
of the initial dataset are narrowly affected because the number of conversions from
major to minor instances is very low. Altogether, the HMSM is a good alternative
algorithm in supervised learning which reduces the computation time in training
along with higher performance and higher learning efficiency on unseen data. The
proposed model can be identified as a stable classification algorithm because it per-
forms really well by identifying both positive and negative classes in higher perfor-
mance measures. The optimum model shows significant capability as a fraudulent
impression classifier with an average accuracy of 94%, average precision of 99%,
average recall of 95%, average specificity of 91% and average F-score of 97% across
20 different test samples with the standard deviation of 0.03, 0.02, 0.03, 0.17 and
0.01, respectively. Thus, this proposed RTMAI is a composition of several advanced
techniques to solve almost all the dimensions of this click fraud detection domain.

REFERENCES

[1] Evans, D. S.: The Online Advertising Industry: Economics, Evolution, and Pri-
vacy. Journal of Economic Perspectives, Vol. 23, 2009, No. 3, pp. 37–60, doi:
10.1257/jep.23.3.37.

[2] Martins, J.—Costa, C.—Oliveira, T.—Gonçalves, R.—Branco, F.: How
Smartphone Advertising Influences Consumers’ Purchase Intention. Journal of Busi-
ness Research, Vol. 94, 2019, pp. 378–387, doi: 10.1016/j.jbusres.2017.12.047.

[3] Tao, K.—Edmunds, P.: Mobile APPs and Global Markets. Theoretical Economics
Letters, Vol. 8, 2018, No. 8, pp. 1510–1524, doi: 10.4236/tel.2018.88097.

[4] Haider, C.M.R.—Iqbal, A.—Rahman, A.H.—Rahman, M. S.: An Ensemble
Learning Based Approach for Impression Fraud Detection in Mobile Advertising.
Journal of Network and Computer Applications, Vol. 112, 2018, No. 15, pp. 126–141,
doi: 10.1016/j.jnca.2018.02.021.

https://doi.org/10.1257/jep.23.3.37
https://doi.org/10.1016/j.jbusres.2017.12.047
https://doi.org/10.4236/tel.2018.88097
https://doi.org/10.1016/j.jnca.2018.02.021

626 I. Aberathne, C. Walgampaya

[5] Aberathne, I.—Walgampaya, C.: Smart Mobile Bot Detection Through Behav-
ioral Analysis. In: Kolhe, M., Trivedi, M., Tiwari, S., Singh, V. (Eds.): Advances in
Data and Information Sciences. Springer, Singapore, Lecture Notes in Networks and
Systems, Vol. 38, 2018, pp. 241–252, doi: 10.1007/978-981-10-8360-0 23.

[6] Fridgeirsdottir, K.—Najafi-Asadolahi, S.: Cost-Per-Impression Pricing for
Display Advertising. Operations Research, Vol. 66, 2018, No. 3, pp. 653–672, doi:
10.1287/opre.2017.1697.

[7] Alrwais, S. A.—Gerber, A.—Dunn, C.W.—Spatscheck, O.—Gupta, M.—
Osterweil, E.: Dissecting Ghost Clicks: Ad Fraud via Misdirected Human Clicks.
Proceedings of the 28th Annual Computer Security Applications Conference (AC-
SAC ’12), 2012, pp. 21–30, doi: 10.1145/2420950.2420954.

[8] Hu, Y.—Shin, J.—Tang, Z.: Performance-Based Pricing Models in Online Adver-
tising: Cost Per Click Versus Cost Per Action. 2012, Georgia Institute.

[9] Mahdian, M.—Tomak, K.: Pay-Per-Action Model for Online Advertising. In:
Deng, X., Graham, F. C. (Eds.): Internet and Network Economics (WINE 2007).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4858, 2007,
pp. 549–557, doi: 10.1007/978-3-540-77105-0 59.

[10] Xu, H.—Liu, D.—Koehl, A.—Wang, H.—Stavrou, A.: Click Fraud Detection
on the Advertiser Side. In: Kuty lowski, M., Vaidya, J. (Eds.): Computer Security
– ESORICS 2014. Springer, Cham, Lecture Notes in Computer Science, Vol. 8713,
2014, pp. 419–438, doi: 10.1007/978-3-319-11212-1 24.

[11] Liu, B.—Nath, S.—Govindan, R.—Liu, J.: DECAF: Detecting and Character-
izing Ad Fraud in Mobile Apps. 11th USENIX Symposium on Networked Systems
Design and Implementation, 2014, pp. 57–70.

[12] Gummadi, R.—Balakrishnan, H.—Maniatis, P.—Ratnasamy, S.: Not-a-Bot:
Improving Service Availability in the Face of Botnet Attacks. Proceedings of the 6th

USENIX Symposium on Networked Systems Design and Implementation (NSDI ’09),
2009, pp. 307–320.

[13] Iqbal, M. S.—Zulkernine, M.—Jaafar, F.—Gu, Y.: Protecting Internet Users
From Becoming Victimized Attackers of Click-Fraud. Journal of Software: Evolution
and Process, Vol. 30, 2017, No. 3, Art. No. e1871, doi: 10.1002/smr.1871.

[14] Crussell, J.—Stevens, R.—Chen, H.: MAdFraud: Investigating Ad Fraud in
Android Applications. Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’14), 2014, pp. 123–134, doi:
10.1145/2594368.2594391.

[15] Li, W.—Li, H.—Chen, H.—Xia, Y.: AdAttester: Secure Online Mobile Adver-
tisement Attestation Using TrustZone. The 13th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’15), Vol. 1, 2015, pp. 75–88,
doi: 10.1145/2742647.2742676.

[16] Walgampaya, C.—Kantardzic, M.—Yampolskiy, R.: Real Time Click Fraud
Prevention Using Multi-Level Data Fusion. Proceedings of the World Congress on
Engineering and Computer Science (WCECS 2010), Vol. 1, 2010, 6 pp.

[17] Agarwal, A.: Automatic Detection of Click Fraud in Online Advertisements. M.Sc.
Thesis, Texas Tech University, 2012.

https://doi.org/10.1007/978-981-10-8360-0_23
https://doi.org/10.1287/opre.2017.1697
https://doi.org/10.1145/2420950.2420954
https://doi.org/10.1007/978-3-540-77105-0_59
https://doi.org/10.1007/978-3-319-11212-1_24
https://doi.org/10.1002/smr.1871
https://doi.org/10.1145/2594368.2594391
https://doi.org/10.1145/2742647.2742676

An Effective and Novel Approach for Mobile Click Fraud Detection 627

[18] Perera, K. S.—Neupane, B.—Faisal, M.A.—Aung, Z.—Woon, W.L.:
A Novel Ensemble Learning-Based Approach for Click Fraud Detection in Mobile
Advertising. In: Prasath, R., Kathirvalavakumar, T. (Eds.): Mining Intelligence
and Knowledge Exploration. Springer, Cham, Lecture Notes in Computer Science,
Vol. 8284, 2013, pp. 370–382, doi: 10.1007/978-3-319-03844-5 38.

[19] Gobel, W.: Detecting Botnets Using Hidden Markov Models on Network Traces.
2008.

[20] Stamp, M.: A Revealing Introduction to Hidden Markov Models. 2004, pp. 26–56.

[21] Berrar, D.: Random Forests for the Detection of Click Fraud in Online Mobile
Advertising. Proceedings of the 1st International Workshop on Fraud Detection in
Mobile Advertising, 2012, pp. 1–10.

[22] Blundo, C.—Cimato, S.: SAWM: A Tool for Secure and Authenticated Web Me-
tering. Proceedings of the 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE ’02), 2002, pp. 641–648, doi: 10.1145/568867.568871.

[23] Somasundaram, A.—Reddy, U. S.: Data Imbalance: Effects and Solutions for
Classification of Large and Highly Imbalanced Data. 1st International Conference on
Research in Engineering, Computers and Technology (ICRECT 2016), 2016, pp. 1–16.

[24] Nivre, J.: Sparse Data and Smoothing in Statistical Part-of-Speech Tagging. Jour-
nal of Quantitative Linguistics, Vol. 7, 2000, No. 1, pp. 1–17, doi: 10.1076/0929-
6174(200004)07:01;1-3;ft001.

Iroshan Aberathne is Senior Lecturer at the Department of
Information and Communication Technology at Faculty of Tech-
nology, University of Sri Jayewardenepura, Sri Lanka. He com-
pleted his M.Phil. degree in engineering mathematics from Fac-
ulty of Engineering, University of Peradeniya, Sri Lanka in 2020
and received his B.Sc. degree with honours in computation and
management from the Faculty of Science at the same university
in 2015. He has industry and research experience in software
engineering and data science in addition to his teaching expe-
rience. His research focuses on data science, machine learning,

software engineering and computational modelling.

ChamilaWalgampaya is Senior Lecturer at the Department of
Engineering Mathematics at Faculty of Engineering, University
of Peradeniya, Sri Lanka. He earned his B.Sc. in computer en-
gineering with honours in 2001 from the Faculty of Engineering,
University of Peradeniya, Sri Lanka and completed his M.Sc. and
Ph.D. degrees from the School of Engineering at the University of
Louisville, Kentucky, U.S.A. in 2006 and 2011, respectively. He
has almost 20 years of extensive and diverse experience as an ad-
ministrator, computer programmer, researcher and teacher. His
research focus lies on click fraud mining, automatic web robots

and agents, data and evidence fusion, ensemble methods and machine learning.

https://doi.org/10.1007/978-3-319-03844-5_38
https://doi.org/10.1145/568867.568871
https://doi.org/10.1076/0929-6174(200004)07:01;1-3;ft001
https://doi.org/10.1076/0929-6174(200004)07:01;1-3;ft001

Computing and Informatics, Vol. 40, 2021, 628–647, doi: 10.31577/cai 2021 3 628

LEARNING TO TRANSLATE KANNADA
AND ENGLISH QUERIES FOR MIXED SCRIPT
INFORMATION RETRIEVAL

B. S. Sowmya Lakshmi

Department of Machine Learning
B.M. S. College of Engineering
Bangalore, Karnataka
e-mail: sowmyalakshmibs.mel@bmsce.ac.in

B.R. Shambhavi

Department of Information Science and Engineering
B.M. S. College of Engineering
Bangalore, Karnataka
e-mail: shambhavibr.ise@bmsce.ac.in

Abstract. Due to increase in the availability of numerous languages in the Web,
cross language information retrieval is one of the happening issues in the field of
natural language processing and information retrieval. Nowadays, people are ha-
bituated to combine two or more language words during oral or written discourse.
Speakers have also employed intermixing of different languages and scripts in dig-
ital media while querying, blogging and on social media platforms. The way of
representing two different language words of an utterance in their native scripts is
known as mixed scripting. In the present work, we attempted to translate mixed
script queries of Kannada and English languages into monolingual queries. We pro-
posed three approaches for translation by constructing bilingual dictionary, word
embeddings and Google translate. The proposed method outperforms the conven-
tional dictionary based approach, when word embeddings were combined with the
translations learnt from Google Translate and Dictionary.

Keywords: Code mixing, mixed script queries, cross language information re-
trieval, machine translation

https://doi.org/10.31577/cai_2021_3_628

Learning to Translate Kannada and English Queries for MSIR 629

1 INTRODUCTION

1.1 Information Retrieval (IR)

The term “Information Retrieval” was first devised by Calvin Mooers in 1950s.
Later on many researchers focused on IR in the mid of 1990s.

According to Manning et al., “Information Retrieval” refers to the technology
of “finding material (usually documents) of an unstructured nature (usually text)
that satisfies information need from within large collections (usually stored on com-
puters)”. The term “material” can be understood in many folds as tweets, videos,
music, books, images, documents etc. In this study, we restrict ourselves to text
data. Basic terminology behind IR are:

Corpus: A large repository of documents stored on single or multiple computers.

Information need: A topic about which user wants the information, often referred
as query.

Relevance: Few of the documents in the corpus might contain topics relevant to
information need.

There exist three flavours of IR based of the degree of retrieval as follows.

Web search: WWW is a huge repository of contents which can be searched with
the aid of search engines like Google, Bing etc.

Enterprise search: It can also be called Intranet search where search for docu-
ments is confined inside a particular organization or company.

Personal search: This search is restricted to one’s personal computer where the
user search required file stored in his computer. The collection is typically a set
of files on a personal computer of the user.

1.2 Cross Language Information Retrieval (CLIR)

As more digital information is made available, the Web continues to be the fore-
most channel for communication and the largest data repository. Besides the large
number of English speaking users, dominance of English on the Web is caused also
by the fact that several organizations create English versions of their websites (be-
sides those in their native languages) and of their broad business needs, probably
to be widely accessible. Governments around the world also imposed English as
a formal language, to some extent, in their educational and governmental spheres.
As a result, English was, and still is, the most dominant language for scientific
articles, lexicons, dissemination of information and different types of knowledge.
However, there exist growth of non-English languages on the Web, as some govern-
ments enforce that national corporations and organizations publish some material
like people‘s heritage, geographical data and educational technical material in native
languages.

630 B. S. Sowmya Lakshmi, B.R. Shambhavi

Accordingly, more and more pages on the Web are written in different lan-
guages. This resulted in globalized information and a large number of resources
that are very much diverse and in a multitude of languages. This feature makes the
Web essentially cross-lingual and/or multilingual. But, this linguistic multiplicity
and moving towards an international community should no longer be a barrier for
accessing information, regardless of its language, on the Web. When users need to
search in any language for a particular topic, the search results should no longer
be restricted to the native languages of those users. For such users, CLIR provides
a solution. In CLIR, users are able to obtain relevant information (document sets)
in a language that is different from the language they used in their information need
requests (queries). For example, a user may type his/her query in Kannada, a South
Indian language, but relevant document sets retrieved are in English or any other
language. CLIR system is more complex than traditional monolingual IR system as
CLIR also includes a Translation phase.

In query translation approach, query in the source language is translated into
the language in which documents are to be retrieved (target language). Machine
Translation (MT) is the task of automatically converting the sentences in one natural
language into another, preserving the meaning of the input text and producing fluent
text in output language. The main objective is to fill up the language gap between
two different languages speaking people, communities or countries. The goals of
proposed MT system are as follows:

1. In the proposed approach, as input is a Mixed Script query adoption of POS
tagging would make the translation process fruitful. Unlike, conventional MT
systems, we followed word by word translations by ignoring syntax structure of
the respective language. So, if POS of each word in the Mixed Script query
is known then translation could be performed in accordance with the POS
tags.

2. To develop a bilingual dictionary of Kannada and English Languages.

3. To develop a MT system to translate Kannada – English mixed script queries
into monolingual Kannada and English queries.

Handling Indian languages is a challenging task as they differ in morphology and
semantic features from English. Even though, the worldwide web is a host to nu-
merous languages, statistics shows that English holds the major share of documents
and usage. Which results in creation of Mixed Script space, having documents and
queries in single or multiple languages in one or more scripts. IR in Mixed Script
space can be called Mixed Script IR (MSIR). MSIR is more challenging than IR as
it involves understanding and matching of queries written in two or more scripts
with the documents in either of the scripts.

There have been several studies on CLIR including Indian languages. In a CLIR
setup, language of the query and retrieved documents are different. MSIR deals with
querying in more than one language to retrieve documents in one or more languages.
In either case, the documents and the query are written in their native scripts. This

Learning to Translate Kannada and English Queries for MSIR 631

article intends to familiarize the issue of MSIR for Kannada-English mixed query
terms. Present state of the art systems are unable to process Mixed Script Queries
due to the lack of resources such as transliterated dictionaries and MT systems.
Semantic search for Mixed-Script query is still an unsolved problem and it increases
in many folds when applied on web search. Adequate tools are not available to
process queries having Mixed-Script terms.

The major contributions of this paper are:

• To present the concept, formal definition of MSIR from web for Indian languages,
particularly Kannada-English bilingual texts.

• To create a POS tagger for Kannada words.

• To demonstrate how difficult the MSIR problem is and where existing IR tech-
niques fail when applied on such data.

The remaining sections of this paper are arranged as follows. Section 2 describes
prior research in this area. Proposed method for translating Mixed Script query is
described in Section 3. The results obtained are briefed in Section 4. Section 5
communicates conclusion of the proposed method.

2 LITERATURE SURVEY

Though MSIR has achieved very modest consideration, many laterally correlated
tasks like CLIR and transliteration reveals few problems of MSIR. Whereas lan-
guages like Chinese and Japanese follow more than one script [1], they might not
come across the actual difficulty of the MSIR as they abide by benchmark rules
for script writing and spelling. However, this is not true in the case of Indian lan-
guages. For instance, in Romanization of Kannada words, there exists no such rules
resulting in great number of discrepancies. Furthermore, these Romanized words
are combined with English words making difficult to identify transliterated text.

In CLIR queries are translated to the language of the document set. However,
out of vocabulary words like Named Entities need to be transliterated rather than
translated. There exist no standard rules for mapping alphabets of Indian languages
to English or vice versa. This has led to lot of discrepancies in developing a transliter-
ation model [2]. Most of the researchers have highlighted the difficulties in developing
transliterated language models for Indian languages in web search [3]. Researchers
emphasize on this issue in Hindi Song Search system in Latin script [4, 5]. They
focused handling transliterated word pairs matching while crawling song lyrics from
various websites from the web. Edit-distance is one among most familiar meth-
ods for matching word pairs. Authors in [6] and [7] have followed this method for
English-Telugu and Tamil-English language pairs, respectively. Authors in [8] pro-
posed a method to normalize transliterated text using combination-based approach
in which a statistical stemmer is used to delete commonly used suffixes along with
rules to map spelling variants. An equivalent system that handles both stemming
and conversion of grapheme to phoneme was used in [9] to build a standalone search

632 B. S. Sowmya Lakshmi, B.R. Shambhavi

engine for ten Indian languages. Even though, there are few substantial works
present in the field of handling variants and normalization of transliterated text, in
practice the process of MSIR is largely ignored.

Gupta et al. [10], analysed query log data of most familiar Bing search engine,
to evaluate the significance of their MSIR system. They projected a deep learning
paradigm to match mixed- script terms and handle variations in spelling. Method
significantly achieved better results when judged with Naive Bayes model by 12%
and 29% increase in Mean Recall and Mean average precision value.

Pathak et al. [11] attempted to create Automatic Parallel Corpus Creation for
Hindi English News Translation Task. Authors developed parallel corpus from com-
parable corpus crawled from the web from various sources. Quality of the parallel
corpus created was analysed by Gestalt Pattern Matching, Hamming Distance and
Levenshtein Distance algorithm to calculate sentence matching between Hindi –
English sentences. Li et al. [12] developed a Neural Machine Translation (NMT)
system, which learns a general network as usual, and then fine-tunes the network
for each test sentence. The fine-tune work was done on a small set of the bilin-
gual training data that was obtained through similarity search according to the test
sentence. Similarity among sentences were calculated using Levenshtein distance,
average word embedding and hidden states of the encoder in NMT measures. Au-
thors observed that performance of Levenshtein distance based similarity was better
than other two measures.

Another well known metric used for evaluating machine translation is Evalu-
ation of Translation with Explicit Ordering (METEOR) [13]. Dund̄er et al. [14]
proposed a machine translation for poetry and a low resource language pair, such
as Croatian-German. The authors collected data set that contained the works of
a contemporary poet of the Croatian language and the translations of his poems in
German. Results were evaluated through BLEU, METEOR, RIBES and Character
metrics. An English to Urdu and Hindi translation system was developed using
Neural network and translation rules by Khan and Usman [15]. System was eval-
uated using n-gram, BLEU, METEOR, presion and F-measure scores. METEOR
score achieved was 0.7956 for Urdu and 0.8083 for Hindi.

The necessity to recognize and process Indian language scripts is in demand
as nearly 50% of the Indian population use internet daily (according to statistics).
Indian Language Technology Proliferation and Deployment Centre (TDIL-DC) has
provided phonetic keyboard input is support for all Indian languages. However,
POS tagging on Indian languages and especially on Dravidian Languages is quite
a difficult task due to the unavailability of annotated data for these languages.
Various techniques have been applied for POS tagging in Indian languages. Gadde
and Yeleti [16] used morphological features with Hidden Markov Model (HMM)
tagger and obtained 92.36% for Hindi and 91.23% for Telugu. The Hindi POS
tagger used Hindi Treebank 3 of size 450K. Ekbal and Bandyopadhyay [17] used
Support Vector Machine (SVM) for POS tagging in Bengali obtaining 86% accuracy.
The POS tagging in morphologically richer Dravidian Indian languages has always
posed a great challenge for researchers. Malayalam is a highly agglutinative language

Learning to Translate Kannada and English Queries for MSIR 633

in the Dravidian family. Sandhi splitting or word segmentation between conjoined
words should precede the POS tagging to find word boundaries.

Devadath and Sharma [18] explored the significance of Sandhi splitting on shal-
low parser and built a POS tagger using Conditional Random Field (CRF). Their
POS tagger performed well with 90.45% accuracy. Antony et al. [19] used SVM
with lexicon to obtain 94% accuracy. A semi-supervised pattern-based bootstrap-
ping technique was implemented by Ganesh et al. [20] to build a Tamil POS Tagger.
Their system scored 87.74% accuracy on 20 000 documents containing 271K unique
words.

Due to the scarcity of quality annotated data very little work has been done
on Kannada language. Kannada language has a free form of word arrangement in
a sentence which makes POS tagging task for Kannada rigid. Most of the recent
works in POS tagging on Kannada have been experimented only with traditional
ML techniques like HMM, CRF or SVM. One of such noticeable works was pro-
posed by Shambhavi and Kumar [21]. Authors focused on assignment of POS tags
for every word belonging to input Kannada language sentences using machine learn-
ing algorithms like second-order HMM and CRF. They have used EMILLE corpus
which has 51 269 words as train data, and 2 932 words as test data. Authors were
able to achieve accuracies of 79.9% and 84.58% for HMM and CRF methods, re-
spectively.

Graves and Schmidhuber [22] proposed a POS tagger for Kannada language by
applying CRF with corpus consisting 80 000 words. They followed TDIL tags for
training and testing the system. They obtained an accuracy of 92.4% for POS
tagging.

3 CONTRIBUTION

3.1 Corpora Extraction

MT is one of the well known NLP applications. In the recent years, MT systems
are built based on Neural network approach [23], parallel data or with the aid of
bilingual dictionaries. It is hard to find a machine readable dictionary for resource
scarce language like Kannada. Bilingual dictionaries are usually built using sentence
aligned parallel text corpus. But, latest advances in developing a bilingual dictionary
is using comparable corpora [24]. Wikipedia is a well- known comparable corpora, we
used Wikipedia for the construction of bilingual dictionary of Kannada and English
language pair.

Wikipedia contains wide range of articles in different languages and several link
statistics amongst articles. It is being utilized as corpora in various NLP tasks
fruitfully. Pages on Wikipedia connect to equivalent pages in other languages on
similar topic via interlanguage links. For instance, there exist an interlanguage
link between English article “Telephone” to the corresponding Kannada article, as
depicted in Figure 1.

634 B. S. Sowmya Lakshmi, B.R. Shambhavi

Figure 1. Interlanguage link example

Titles of the majority of the articles which are associated by an interlanguage
links are translations of each other. Even though interlanguage links are accurate,
there exists some extent of discrepancies as links are generally created manually. It is
observed that, in addition to article titles, text inside the articles also share parallel
contents to the great extent. Grounded on the above observation, we used interlan-
guage link to collect Kannada-English comparable corpus from Wikipedia. Steps
adapted to develop comparable corpora of 19 263 articles of English and Kannada
from Wikipedia are as follows:

Step 1: Kannada and English latest Wikipedia database dump was downloaded
from http://download.wikimedia.org using a python script.

Step 2: Articles in English which have Kannada interlanguage link were down-
loaded, followed by the extraction of linked Kannada articles.

Step 3: Paragraphs under each heading are assumed to be related and those which
contained general information are retained to ensure comparability.

Step 4: Extracted articles are cleaned by removing unrelated words and super-
links.

3.2 Bilingual Dictionary Creation

Proposed method to create bilingual dictionary, assumes that there exists a correla-
tion amongst the patterns of word-co-occurrence across languages. However, it only
requires a medium set of comparable documents which are pre-aligned documents
with similar topics.

1. Generating Named Entity Dictionary

Named Entities (NEs) are the names of persons, organizations, companies etc.,
i.e., during translation NEs should be transliterated rather than translation.
Most of the conventional dictionaries do not have NEs. We took advantage of
these NEs to locate comparable sentences in both Kannada and English doc-
uments. Also, these NE mapping helped us to find similar sentences across
sections. So, to begin with, we tried to map NE in similar articles of both
languages. A list of every NE in each English article in the downloaded cor-
pus was created. NE recognition of English words was performed using built

http://download.wikimedia.org

Learning to Translate Kannada and English Queries for MSIR 635

in Stanford NE tagger in Python. Using the combination based translitera-
tion algorithm [25] identified NEs were transliterated to Kannada script. The
resulted transliterated NEs in Kannada script were searched and extracted in
corresponding Kannada article to match similar sentences. Levenshtein distance
algorithm was implemented to perform string matching of transliterated NE and
the corresponding NE in Kannada article. Thus, a list of NEs in English arti-
cles and its corresponding mapping in Kannada articles was built and appended
to our bilingual dictionary. The sentences which contained NE in English and
its corresponding Kannada article were short-listed to find to obtain word level
association (mappings).

2. Generate Title Dictionary

Comparable corpus consisted of text related to similar topics but in distinct
languages and authored by different authors. Therefore, the article contents
may not be precise translations, but they convey information on similar topics.
However, titles of such documents are perfect candidates of dictionary entries.
To begin with, document title pairs of source and target languages were aligned
and preprocessed to remove special characters and numerals. Title pairs were
appended to the dictionary, forming a seed dictionary of title pairs. As ob-
served, sub headings of source and target documents may not be same as they
are written by different authors. Based on the initial dictionary constructed,
related sections of articles in both English and Kannada were found. Sentences
which were parallel to some extent are mined from these related sections. Most
frequent words in these sentences were appended to the existing dictionary list
by calculating word level similarity. Word level similarity was calculated using
Pearson correlation coefficient which provided score, where every word in Kan-
nada language gets a score for words in English language. These words were
sorted based on their scores to get the best related words in Kannada language
for each English word. Algorithm 1 describes generation of title mappings, sub
heading mappings and word pair mappings.

Finally, NE dictionary, title mappings, sub heading mappings and word pair
mappings are combined to form a bilingual English–Kannada dictionary.

3. Results

Dictionary created by proposed method has been evaluated using precision met-
rics. Precision (P) is the fraction of sum of appropriately (N) translated word
pairs to total (T) number of translations in the dictionary which is used to
moderate accuracy.

Bilingual dictionary generated was evaluated manually and their respective pre-
cision scores are shown in Table 1.

636 B. S. Sowmya Lakshmi, B.R. Shambhavi

Algorithm 1 Generate title mappings, sub heading mappings and word pair map-
pings

for all En-document in English-corpus do
En-title← Title of En-document
Ka-document← corresponding Kannada document in Kannada-corpus
Ka-title← Title of Ka document
if (En-title, Ka-title) not present in Dict then

Dict← Dict U (En-title, Ka-title)
end if
for all (En-subheading, Ka-subheading) do

score-map← Pearson correlation coefficient(En-subheading,
Ka-subheading)

while score-map is not empty do
(En-subheading, Ka-subheading)← max-ScoreEntry(score-map)

if (En-subheading, Ka-subheading) not present in dictionary then
Dict← Dict U (En subheading, Ka subheading)
remove all other entries from score-map

end if
end while

end for
for all partial parallel sentences do

remove stop words
Add co-occuring word pairs to score map
while score-map is not empty do

(En-word, Ka-word)← max-ScoreEntry(score-map)
if (En-word, Ka-word) not present in dictionary then

Dict← Dict U (En word, Ka word)
remove all other entries from score map

end if
end while

end for
end for

Phase Tokens Precision

Gathering NEs 33 000 0.76

Gathering Title heading 23 398 0.89

Gathering Subheading mapping 1 362 0.86

Co-occuring words 16 785 0.65

Overall 77 545 0.79

Table 1. Precision scores

Learning to Translate Kannada and English Queries for MSIR 637

3.3 Query Translation Process

The wholeness of an IR paradigm stays in its capability to figure out the proper
meaning of the input queries before search. In contrast to regular IR, MSIR need
a translation system either by human or machine. The proposed Query translation
approach ensures to convert user query into document language before retrieval.
The proposed approaches to translate mixed script Kannada English queries to
monolingual queries are following.

1. Dictionary based translation with POS tagging

(a) POS Tagging

In the proposed approach, as input is a Mixed Script query adoption of POS
tagging was identified as a fruitful step in the translation process. Unlike,
conventional MT systems, we followed word by word translations by ignoring
syntax structure of the respective language.

Input Mixed Script query contains both Kannada and English words in their
respective scripts. POS tagging of English words was performed by in built
Stanford POS tagger. Kannada words were tagged with BiLSTM-CRF neu-
ral network approach, which yielded accuracy of 92%.

(b) Translation

Input query was translated to monolingual Kannada and English queries
with the help of bilingual dictionary constructed. Each POS tagged En-
glish word in input query was translated to Kannada using dictionary and
NEs were transliterated to Kannada script. Thus, forming input query in
Kannada language. Query in Kannada language was translated to English
using bilingual dictionary forming an English query. All translations were
word to word without considering the syntactic structure of the respective
languages.

2. Word Embedding (WE) + dictionary

We found that dictionary-based method fail to translate words which do not have
translations. Word Embeddings were adopted to handle such query terms. We
trained the word2vec package for both the Kannada and English monolingual
documents of comparable corpus obtained from Wikipedia dumps. We used the
Continuous Bag of Words (CBOW) model with a window size of 5 and output
vector of 300 dimensions with other default parameters set.

Given an mixed script query as input, each English word in the query transla-
tions were taken from the bilingual dictionary, if a translation exists. If not, it is
transformed into vector to find similar vector embeddings from corpus, and then
translation of a English word of input query to Kannada is performed. Thus,
input mixed script query is translated into a monolingual Kannada query. The
above technique is followed to translate Kannada words in the input query to
English to form monolingual English query.

638 B. S. Sowmya Lakshmi, B.R. Shambhavi

3. Dictionary +WE+ Google translate

In this technique a hybrid method is followed by combining dictionary-based
method, WE and Google translation. If the translations for input query word
does not exist either in the dictionary or in the WEs, then the words were
translated using Google translation.

4 RESULTS

We used Anaconda with Python 3 version to build all translation models. We
used NLTKs Bilingual Evaluation Understudy (BLEU) Score and Metric for ME-
TEOR to evaluate translation performance. BLEU is an algorithm for evaluating
the quality of text which has been machine-translated from one natural language
to another based on n-gram precision. Whereas, METEOR metric is based on
the harmonic mean of unigram precision and recall, with recall weighted higher
than precision. We tested translation paradigm using mixed script queries on cur-
rent trending topics from Google trends, newspaper headlines and YouTube search
queries.

1. Dictionary Based Translation

(a) English to Kannada translation to form monolingual Kannada Queries

Table 2 and Figure 2 portrays sample dictionary-based English to Kannada
translation and BLEU scores for sample queries, respectively.

Kannada En-
glish Input Mixed
Script Query

Translation
in Kannada

Translations
(dictionary)

BLEU METEOR
score

ರು ಾಕ್ grand recep-
tion

ರು ಾಕ್ ಅದೂದ್
ಆರತಕಷ್

ರು ಾಕ್ grand ಆರ-
ತಕಷ್

0.81 0.63

where ಕ ಬ್ಣದ ಕಂಬ
located in india ಕ ಬ್ಣದ ಕಂಬ ಾರ-

ತದ ಲ್ ಎ ಲ್
ಎ ಲ್ ಕ ಬ್ಣದ ಕಂಬ
located in india

0.45 0.45

ರ ಬ್ ಶವ್ ಕಪ್ live tele-
cast

ರ ಬ್ ಶವ್ ಕಪ್ ೕರ
ಪರ್ ಾರ

ರ ಬ್ ಶವ್ ಕಪ್ live
telecast

0.57 0.59

Table 2. Sample dictionary-based English to Kannada translation

(b) Kannada to English translation to form monolingual English Queries

Table 3 and Figure 3 portrays sample dictionary-based Kannada to English
translation and BLEU scores for mixed script queries, respectively.

2. Dictionary based +WE translation

(a) English to Kannada translation to form monolingual Kannada Queries

Learning to Translate Kannada and English Queries for MSIR 639

Figure 2. BLEU scores for English to Kannada dictionary translation

Kannada En-
glish Input Mixed
Script Query

Translation
in English

Translations
(dictionary)

BLEU METEOR
score

ರು ಾಕ್ grand recep-
tion

Virushka grand re-
ception ರು ಾಕ್ grand re-

ception

0.57 0.62

where ಕ ಬ್ಣದ ಕಂಬ
located in india

where is iron pillar
located in India

where is iron
plated pillared
located in India

0.65 0.97

earth ಒಳ ಪದರ how
much

earth inner layers
how much

earth ಒಳ layers
how much

0.63 0.75

Table 3. Sample dictionary-based Kannada to English translation

An illustration of results obtained for dictionary-based + WE English to
Kannada translation and BLEU scores for mixed script queries are shown in
Table 4 and Figure 4.

(b) Kannada to English translation to form monolingual English Queries

An illustration of results obtained for dictionary-based + WE English to
Kannada translation and BLEU scores for mixed script queries are shown in
Table 5 and Figure 5.

3. Dictionary based +WE+Google translate

(a) English to Kannada translation to form monolingual Kannada Queries

640 B. S. Sowmya Lakshmi, B.R. Shambhavi

Figure 3. BLEU scores for Kannada to English dictionary translation

Kannada En-
glish Input Mixed
Script Query

Translation in
Kannada

Translations BLEU METEOR
score

ರು ಾಕ್ grand recep-
tion

ರು ಾಕ್ ಅದೂದ್
ಆರತಕಷ್

ರು ಾಕ್ ಮ ೂೕನನ್ತ
ಆರತಕಷ್

0.81 0.63

where ಕ ಬ್ಣದ ಕಂಬ
located in india ಕ ಬ್ಣದ ಕಂಬ ಾರ-

ತದ ಲ್ ಎ ಲ್
ಎ ಲ್ ಕ ಬ್ಣದ ಕಂಬ
ಾರತದ ಲ್

0.94 0.67

ರ ಬ್ ಶವ್ ಕಪ್ live tele-
cast

ರ ಬ್ ಶವ್ ಕಪ್ ೕರ
ಪರ್ ಾರ

ರ ಬ್ ಶವ್ ಕಪ್ live
telecast

0.57 0.59

Table 4. Sample Dictionary based +WE English to Kannada translation

Kannada En-
glish Input Mixed
Script Query

Translation in
English

Translations BLEU METEOR
score

ರು ಾಕ್ grand recep-
tion

Virushka grand re-
ception ರು ಾಕ್ grand re-

ception

0.57 0.62

where ಕ ಬ್ಣದ ಕಂಬ
located in india

where is iron pillar
located in India

where is iron
plated pillared
located in India

0.75 0.97

earth ಒಳ ಪದರ how
much

earth inner layers
how much

earth ಒಳ layers
how much

0.63 0.75

Table 5. Sample Dictionary based +WE Kannada to English translation

Learning to Translate Kannada and English Queries for MSIR 641

Figure 4. BLEU scores for dictionary based +WE English to Kannada translation

Figure 5. BLEU scores for dictionary based +WE Kannada to English translation

642 B. S. Sowmya Lakshmi, B.R. Shambhavi

It was observed that translation results were improved by appending google
search along with dictionary and WE which is presented in Table 6 and
Figure 6.

Kannada En-
glish Input Mixed
Script Query

Translation in
Kannada

Translations BLEU METEOR
score

ರು ಾಕ್ grand recep-
tion

ರು ಾಕ್ ಅದೂದ್
ಆರತಕಷ್

ರು ಾಕ್ ಮ ೂೕನನ್ತ
ಆರತಕಷ್

0.81 0.63

where ಕ ಬ್ಣದ ಕಂಬ
located in india ಕ ಬ್ಣದ ಕಂಬ ಾರ-

ತದ ಲ್ ಎ ಲ್
ಎ ಲ್ ಕ ಬ್ಣದ ಕಂಬ
ಾರತದ ಲ್

0.94 0.67

ರ ಬ್ ಶವ್ ಕಪ್ live tele-
cast

ರ ಬ್ ಶವ್ ಕಪ್ ೕರ
ಪರ್ ಾರ

ರ ಬ್ ಶವ್ ಕಪ್ ೕರ
ಪರ್ ಾರ

1.0 1.0

Table 6. Dictionary based +WE+Google translate English to Kannada translation

Figure 6. BLEU scores for dictionary based+WE+Google translate English to Kannada
translation

(b) Kannada to English translation to form monolingual English Queries

Table 7 and Figure 7 portrays sample dictionary-based + WE + Google
translate English to Kannada translation and BLEU scores for mixed script
queries respectively.

Learning to Translate Kannada and English Queries for MSIR 643

Kannada En-
glish Input Mixed
Script Query

Translation in
English

Translations BLEU METEOR
score

ರು ಾಕ್ grand recep-
tion

Virushka grand re-
ception

Virushka grand re-
ception

1.0 1.0

where ಕ ಬ್ಣದ ಕಂಬ
located in india

where is iron pillar
located in India

where is iron
plated pillared
located in India

0.65 0.97

earth ಒಳ ಪದರ how
much

earth inner layers
how much

earth inner layers
how much

1.0 1.0

Table 7. Dictionary based +WE+Google translate Kannada to English translation

Figure 7. BLEU scores for dictionary based+WE+Google translate Kannada to English
translation

It was observed that combination of all three methods, i.e. Dictionary based +
word embedding+Google translate, yielded good performance in English to Kannada
translation and vice versa. Hence, the method was followed to achieve translations.
Words which were not translated by Dictionary based + word embedding + Google
translate method were assumed to be NEs and they were transliterated.

5 CONCLUSION

Even though MSIR is a very notable and pervasive problem, it has gained very little
attention. In this study, the problem of MSIR is handled for Queries of Kannada

644 B. S. Sowmya Lakshmi, B.R. Shambhavi

English language pair. A promising solution to address the principal issue of MSIR,
i.e., script variations in query was proposed. The MSIR model understands POS of
the query terms using BiLSTM-CRF algorithms such that input query words were
translated to other language words appropriately. Bilingual dictionary of Kannada
and English language was built using Wikipedia dumps to aid translation. An at-
tempt to translate mixed script queries of Kannada and English languages into
monolingual queries was done. Three approaches for translation was proposed by
constructing bilingual dictionary, word embeddings and Google translate. Proposed
approaches were evaluated using BLEU and METEOR metrics. Experimental re-
sults shows that proposed Dictionary based+WE+Google translate model achieve
better translations than other two models.

Future work includes refinement of the machine translation approach by explor-
ing alternative techniques. One of the refinements could be to make the choice of
NMT. As for alternative evaluation techniques, it would be interesting to experi-
ment with other metrics like Translation Error Rate (TER), NIST. Future effort in
evaluation would be directed toward character-based metrics which might show the
highest correlation with human judgement.

Acknowledgement

The authors of this article gratefully thank the Visvesvaraya Technological Univer-
sity, Jnana Sangama, Belagavi for financial support extended to this research work.

REFERENCES

[1] Yan, Q.—Grefenstette, G.—Evans, D.A.: Automatic Transliteration for
Japanese-to-English Text Retrieval. Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
2003, pp. 353–360, doi: 10.1145/860435.860499.

[2] Ahmed, U. Z.—Bali, K.—Choudhury, M.—Sowmya, V.B.: Challenges in De-
signing Input Method Editors for Indian Languages: The Role of Word-Origin and
Context. Proceedings of the Workshop on Advances in Text Input Methods (WTIM
2011), Chiang Mai, Thailand, 2011, pp. 1–9.

[3] Pal, D.—Majumder, P.—Mitra, M.—Mitra, S.—Sen, A.: Issues in Search-
ing for Indian Language Web Content. Proceedings of the 2nd ACM Workshop
on Improving Non English Web Searching (iNEWS ’08), 2008, pp. 93–96, doi:
10.1145/1460027.1460044.

[4] Dua, N.—Gupta, K.—Choudhury, M.—Bali, K.: Query Completion With-
out Query Logs for Song Search. Proceedings of the 20th International Con-
ference Companion on World Wide Web (WWW ’11), 2011, pp. 31–32, doi:
10.1145/1963192.1963209.

[5] Gupta, K.—Choudhury, M.—Bali, K.: Mining Hindi-English Transliteration
Pairs from Online Hindi Lyrics. Proceedings of the Eighth International Conference

https://doi.org/10.1145/860435.860499
https://doi.org/10.1145/1460027.1460044
https://doi.org/10.1145/1963192.1963209

Learning to Translate Kannada and English Queries for MSIR 645

on Language Resources and Evaluation (LREC ’12), Istanbul, Turkey, 2012, pp. 2459–
2465.

[6] Sowmya, V.B.—Varma, V.: Transliteration Based Text Input Methods for Telugu.
In: Li, W., Mollá-Aliod, D. (Eds.): Computer Processing of Oriental Languages.
Language Technology for the Knowledge-Based Economy (ICCPOL 2009). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5459, 2009, pp. 122–132,
doi: 10.1007/978-3-642-00831-3 12.

[7] Janarthanam, S. C.—Subramaniam, S.—Nallasamy, U.: Named En-
tity Transliteration for Cross-Language Information Retrieval Using Compressed
Word Format Mapping Algorithm. Proceedings of the 2nd ACM Workshop on
Improving Non English Web Searching (iNEWS ’08), 2008, pp. 33–38, doi:
10.1145/1460027.1460033.

[8] Oard, D.W.—Levow, G.-A.—Cabezas, C. I.: CLEF Experiments at Maryland:
Statistical Stemming and Backoff Translation. In: Peters, C. (Ed.): Cross-Language
Information Retrieval and Evaluation (CLEF 2000). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2069, 2001, pp. 176–187, doi: 10.1007/3-
540-44645-1 17.

[9] Srivastava, R.—Bhat, R.A.: Transliteration Systems Across Indian Languages
Using Parallel Corpora. Proceedings of the 27th Pacific Asia Conference on Language,
Information, and Computation (PACLIC 27), Taipei, Taiwan, 2013, pp. 390–398.

[10] Gupta, P.—Bali, K.—Banchs, R. E.—Choudhury, M.—Rosso, P.: Query
Expansion for Mixed-Script Information Retrieval. Proceedings of the 37th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’14), 2014, pp. 677–686, doi: 10.1145/2600428.2609622.

[11] Pathak, A.K.—Acharya, P.—Kaur, D.—Balabantaray, R.C.: Automatic
Parallel Corpus Creation for Hindi-English News Translation Task. 2018 International
Conference on Advances in Computing, Communications and Informatics (ICACCI),
Bangalore, India, IEEE, 2018, pp. 1069–1075, doi: 10.1109/ICACCI.2018.8554461.

[12] Li, X.—Zhang, J.—Zong, C.: One Sentence One Model for Neural Machine Trans-
lation. 2016, arXiv: 1609.06490.

[13] Sepesy Maučec, M.—Donaj, G.: Machine Translation and the Evaluation of
Its Quality. In: Sadollah, A., Sinha, T. S. (Eds.): Recent Trends in Computational
Intelligence. IntechOpen, 2019, doi: 10.5772/intechopen.89063.

[14] Dunder, I.—Seljan, S.—Pavlovski, M.: Automatic Machine Translation of Po-
etry and a Low-Resource Language Pair. 2020 43rd International Convention on In-
formation, Communication and Electronic Technology (MIPRO), Opatia, Croatia,
IEEE, 2020, pp. 1034–1039, doi: 10.23919/MIPRO48935.2020.9245342.

[15] Khan, S.—Usman, I.: A Model for English to Urdu and Hindi Machine Translation
System Using Translation Rules and Artificial Neural Network. The International
Arab Journal of Information Technology, Vol. 16, 2019, No. 1, pp. 125–131.

[16] Gadde, P.—Yeleti, M.V.: Improving Statistical POS Tagging Using Linguistic
Feature for Hindi and Telugu. International Conference on Natural Language Pro-
cessing (ICON-2008), 2008.

https://doi.org/10.1007/978-3-642-00831-3_12
https://doi.org/10.1145/1460027.1460033
https://doi.org/10.1007/3-540-44645-1_17
https://doi.org/10.1007/3-540-44645-1_17
https://doi.org/10.1145/2600428.2609622
https://doi.org/10.1109/ICACCI.2018.8554461
http://arxiv.org/abs/1609.06490
https://doi.org/10.5772/intechopen.89063
https://doi.org/10.23919/MIPRO48935.2020.9245342

646 B. S. Sowmya Lakshmi, B.R. Shambhavi

[17] Ekbal, A.—Bandyopadhyay, S.: Part of Speech Tagging in Bengali Using Sup-
port Vector Machine. International Conference on Information Technology (ICIT ’08),
Bhubaneswar, India, IEEE, 2008, pp. 106–111, doi: 10.1109/ICIT.2008.12.

[18] Devadath, V.V.—Sharma, D.M.: Significance of an Accurate Sandhi-Splitter
in Shallow Parsing of Dravidian Languages. Proceedings of the ACL 2016 Student
Research Workshop, Berlin, Germany, ACL, 2016, pp. 37–42, doi: 10.18653/v1/p16-
3006.

[19] Antony, P. J.—Mohan, S. P.—Soman, K. P.: SVM Based Part of Speech Tag-
ger for Malayalam. 2010 International Conference on Recent Trends in Information,
Telecommunication and Computing (ITC), Kerala, India, IEEE, 2010, pp. 339–341,
doi: 10.1109/itc.2010.86.

[20] Ganesh, J.—Parthasarathi, R.—Geetha, T.V.—Balaji, J.: Pattern Based
Bootstrapping Technique for Tamil POS Tagging. In: Prasath, R., O’Reilly, P.,
Kathirvalavakumar, T. (Eds.): Mining Intelligence and Knowledge Exploration.
Springer, Cham, Lecture Notes in Computer Science, Vol. 8891, 2014, pp. 256–267,
doi: 10.1007/978-3-319-13817-6 25.

[21] Shambhavi, B.R.—Kumar, P.R.: Kannada Part-of-Speech Tagging with Prob-
abilistic Classifiers. International Journal of Computer Applications, Vol. 48, 2012,
No. 17, pp. 26–30, doi: 10.5120/7442-0452.

[22] Graves, A.—Schmidhuber, J.: Framewise Phoneme Classification with Bidirec-
tional LSTM and Other Neural Network Architectures. Neural Networks, Vol. 18,
2005, No. 5-6, pp. 602–610, doi: 10.1016/j.neunet.2005.06.042.

[23] Liu, X.—Zhao, J.—Sun, S.—Liu, H.—Yang, H.: Variational Multimodal Ma-
chine Translation with Underlying Semantic Alignment. Information Fusion, Vol. 69,
2021, pp. 73–80, doi: 10.1016/j.inffus.2020.11.011.

[24] Laville, M.—Hazem, A.—Morin, E.: TALN/LS2N Participation at the BUCC
Shared Task: Bilingual Dictionary Induction from Comparable Corpora. Proceedings
of the 13th Workshop on Building and Using Comparable Corpora, Marseille, France,
2020, pp. 56–60.

[25] Sowmya Lakshmi, B. S.—Shambhavi, B.R.: Automatic English to Kan-
nada Back-Transliteration Using Combination-Based Approach. In: Sridhar, V.,
Padma, M., Rao, K. (Eds.): Emerging Research in Electronics, Computer Science and
Technology. Springer, Singapore, Lecture Notes in Electrical Engineering, Vol. 545,
2019, pp. 159–170, doi: 10.1007/978-981-13-5802-9 15.

https://doi.org/10.1109/ICIT.2008.12
https://doi.org/10.18653/v1/p16-3006
https://doi.org/10.18653/v1/p16-3006
https://doi.org/10.1109/itc.2010.86
https://doi.org/10.1007/978-3-319-13817-6_25
https://doi.org/10.5120/7442-0452
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.inffus.2020.11.011
https://doi.org/10.1007/978-981-13-5802-9_15

Learning to Translate Kannada and English Queries for MSIR 647

B. S. Sowmya Lakshmi received B.E. degree from the Visves-
varaya Technological University (VTU) in 2011 and M.Tech. in
2013. In 2021 she completed her Ph.D. from VTU in the field
of natural language processing and information retrieval. She
has academic experience of about 2 years and published more
than 10 research papers in international journals and confer-
ences. Currently she is Assistant Professor in the Department
of Machine Learning, BMSCE, Bangalore.

B.R. Shambhavi completed her Ph.D. from the Visvesvaraya
Technological University in the area of natural language process-
ing. She has academic and industry field experience of about 13
years. Her areas of interest are natural language processing and
information retrieval. She has published more than 20 research
papers in international journals and conferences. Currently she
is Associate Professor in the Department of ISE, BMSCE, Ban-
galore. She is a life member of Indian Society for Technical
Education (ISTE).

Computing and Informatics, Vol. 40, 2021, 648–689, doi: 10.31577/cai 2021 3 648

MODELLING AND CONTROL OF RESOURCE
ALLOCATION SYSTEMS WITHIN DISCRETE EVENT
SYSTEMS BY MEANS OF PETRI NETS – PART 1:
INVARIANTS, SIPHONS AND TRAPS IN DEADLOCK
AVOIDANCE

Frantǐsek Čapkovič

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: Frantisek.Capkovic@savba.sk

Abstract. Solving the deadlocks avoidance problem in Resource Allocation Sys-
tems (RAS) in Discrete-Event Systems (DES) is a rife problem, especially in Flexible
Manufacturing Systems (FMS), alias Automated Manufacturing Systems (AMS).
Petri Nets (PN) are an effectual tool often used at this procedure. In principle, there
are two basic approaches how to deal with deadlocks in RAS based on PN. They
are listed and illustrated here. First of the approaches is realized by means of the
supervisor based on P-invariants of PN, while the second one is realized by means
of the supervisor based on PN siphons. While the first approach needs to know the
reachability graph/tree (RG/RT) expressing the causality of the development of the
PN model of RAS, in order to find (after its thorough analysis) the deadlocks, the
second approach needs the thorough analysis of the PN model structure by means
of finding siphons and traps. Next, both approaches will be applied on the same
PN model of RAS and the effectiveness of the achievement of their results will be
compared and evaluated. Several simple illustrative examples will be introduced.
For the in-depth analysis of the problem of deadlock avoiding, next Part 2 of this
paper is prepared, where the newest research will be introduced and illustrated on
more complicated examples. If necessary (because of the limited length of particular
papers), also the third part – Part 3, will be prepared.

Keywords: Automated manufacturing systems, control synthesis, deadlocks, dead-
lock avoidance, discrete-event systems, flexible manufacturing systems, modelling,

https://doi.org/10.31577/cai_2021_3_648

Modelling and Control of RAS within DES by Means of PN – Part 1 649

Petri nets, place/transition Petri nets, P -invariants, resource allocation systems,
siphons, supervisor, T -invariants, traps

Mathematics Subject Classification 2010: 93-C65, 93-C30

1 INTRODUCTION

This paper has the character of an overview paper. It is conceived as the first part
of a two-part paper (maybe also a three-part, if it will be needed). Its main aim is to
introduce and describe principled terms and two basic approaches to the deadlock
avoidance in Resource Allocation Systems (RAS) in Discrete-Event Systems (DES)
as well as to present simple illustrative examples. The intended Part 2 of this paper
(possibly also the Part 3, if necessary), to solve more complicated cases of RAS
using newer methods, as well as comparing the mentioned two approaches, will be
submitted later.

Flexible Manufacturing Systems (FMS), lately also called Automated Manufac-
turing Systems (AMS), represent a class of DES. They consists of various resources
like machine tools, robots, buffers, transport belts, automatically guided vehicles
(AGV) and so on. The resources are usually shared by two or more subsystems
of AMS/FMS. Because of a limited number of resources different kinds of prob-
lems arise during the system operation, especially deadlocks [46]. Deadlocks are
undesirable and unfavorable because they disrupt the course of the technological
process. Due to deadlocks, either the entire plant or some of its parts remain stag-
nate. In such a way the primal intention of the production cannot be achieved. Such
a situation can be, especially from the practical view, understood as a very unsafe
form of non-determinism. Consequently, the approaches how to deal with this are
sought. The approaches employing Petri Nets (PN)-based models of AMS/FMS are
often used [52]. Besides the approaches based on the analysis of PN reachability
trees/graphs (RT/RG), the approaches based on utilizing PN siphons are more fre-
quently used. Moreover, in the recent years siphon-based approaches even started
to prevail.

DES are systems discrete in nature. Such a system remains in a real intact state
until it is forced to change this state as a consequence of the occurrence of a discrete
event. In this document, PN-based models of DES will be exclusively used.

1.1 Petri Net Structure

As to the structure, PN are bipartite directed graphs ⟨P, T, F,G⟩ with two kinds
of nodes – places pi, i = 1, . . . , n, and transitions tj, j = 1, . . . ,m, and also two
kinds of edges being directed arcs – fij ∈ Z≥0, i = 1, . . . , n, j = 1, . . . ,m, from
places to transitions (where Z≥0 is the set of non-negative integers), and gji ∈ Z≥0,

650 F. Čapkovič

j = 1, . . . ,m, i = 1, . . . , n, from transitions to places. In other words, fij and gji
represent weights of the directed arcs (i.e. their multiplicity).

Thus, P = {p1, . . . , pn} is a set of places; T = {t1, . . . , tm} is a set of transition;
P ∩ T = ∅, P ∪ T ̸= ∅, with ∅ being the empty set; F = {fij}i=1,n; j=1,m is
the set of the directed arcs from places to transitions (i.e. pi → tj), F ⊆ P × T ;
G = {gji}j=1,m; i=1,n is the set of the directed arcs from transitions to places (i.e.
tj → pi), G ⊆ T × P ; the set B ⊆ (P × T) ∪ (T × P), B ∈ Z, were Z is the set of
integers.

When nonzero elements of F , G are solely of value 1 the arcs are called ordinary,
when some of nonzero elements of F , G or all of them are greater than 1 the arcs are
called weighted. The sets F , G, B can be represented, respectively, by the incidence

matrices F ∈ Z(n×m)
≥0 , G ∈ Z(m×n)

≥0 , B ∈ Z(n×m) of the directed arcs. In general,

Z(a×b)
≥0 represents the (a× b) matrix of non-negative integers and Z(a×b) is the (a× b)

matrix of integers.
PN defined in such a way are called place/transition PN(P/T PN). PN are called

pure when they do not contain self-loops. PN are called ordinary when all weights
of their arcs are equal to one.

In general, PN places can be of three kinds:

1. operation places representing a progress in AMS/FMS;

2. fixed resources representing shared devices or elements (e.g. working tools);

3. variable resources representing e.g. availability of semi-products, parts, etc.

A transition t ∈ T is enabled in marking M , denoted by M [t⟩, if and only if
(verbally expresed by iff or symbolically by ⇔) ∀p ∈ P : M(p) ≥ F (p, t). Conse-
quently, when t is enabled in M , then t may yield (after its firing) another marking
M ′ where ∀p ∈ P : M ′(p) = M(p) − F (p, t) + G(t, p). This is denoted as M [t⟩M ′.
It means, that the enabled transition may be fired and partake of the PN marking
evolution. When t does not meet the above introduced condition, i.e. when ∀p ∈ P :
M(p) < F (p, t), it is disabled. Such t cannot be fired, i.e., it cannot share in the
marking development.

There exist specific transitions:

1. the source transition is a transition without any input place – it is uncondition-
ally enabled;

2. the sink transition is a transition without any output place – it consumes but
does not create any tokens.

1.2 Petri Net Dynamics

Besides the graph structure, PN have also dynamics (the PN marking evolution).
In an effort to make an analogy with the classical control theory, consider the PN
marking to be the state vector of the system being the PN model. Thus, the model

Modelling and Control of RAS within DES by Means of PN – Part 1 651

can be expressed by the following constrained linear discrete integer system:

xk+1 = xk +B.uk, k = 0, 1, . . . (1)

F.uk ≤ xk (2)

where xk = (σk
p1
, . . . , σk

pn)
T with σk

pi
∈ Z≥0 is the state vector (marking) express-

ing the states of particular places (the number of tokens in pi) in the step k;
uk = (γk

t1
, . . . , γk

tm)
T with γk

tj
∈ {0, 1} (where 0 means the disabled tj, while 1 means

the enabled tj) is the control vector in the step k; F (frequently being named as
Pre), GT (frequently being named as Post) are, respectively, the incidence matrices
corresponding to sets F , G; B = (GT − F) is the incidence matrix being the struc-
tural matrix of the system (1)–(2); x0 is the initial state vector (initial marking).
Thus, the state vector xk in (1) corresponds to M(p) mentioned above.

In the following, we will use the symbol N for the PN introduced above, and
the term marking of PN places as an alternative to the state of the places (i.e. the
number of tokens placed in them). In other words, under PN we will understand
(N,x0). Under the symbol R we will mean the set of reachable states including the

initial state x0. Sometimes R will be expressed by a matrix Xr ∈ Z(n×Nv)
≥0 , whose

columns are particular reachable state vectors with Nv being the number of the
reachable state vectors (including the initial state x0). The columns of Xr represent
the particular nodes of RT corresponding to the PN in question.

2 PRELIMINARIES

Let us introduce here the basic terms representing important terminology and prop-
erties of the PN models of AMS/FMS, which will be used in this paper.

2.1 Siphons, Traps, Deadlocks, Invariants, Repetitive
and Characteristic Vectors

Definition of Siphons and Traps. There exist many papers where siphons and
traps are defined – see e.g. [72, 84, 58, 60, 61, 92, 93, 54] and many newer ones
mostly written by Chinese authors [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40]. Siphons and traps are basic net structures of
PN [84] which allow important views on the behaviour of the modelled system as
well as on some implications on this behaviour.

For ordinary PN the definitions of siphons and traps are defined in many papers –
see e.g [72, 17, 78, 84, 1] and many other new ones mentioned above – as follows.
A nonempty subset S ⊂ P in N is called a siphon if •S ⊆ S•, i.e., if every transition
having an output place in S has an input place in S. In [72] and several other
older works the siphon is even identified with deadlock. However, at present it is
an obsolete understanding. A nonempty subset Q ⊂ P in an ordinary PN is called
a trap if Q• ⊆ •Q i.e., if every transition having an input place in Q has an output
place in Q.

652 F. Čapkovič

The illustration of the simple siphon and the simple trap is introduced in Fig-
ure 1.

a) b)

Figure 1. The a) siphon S and b) the trap Q inside a net N with the set of places P

As we can see, here •S = {t1}, S• = {t1, t2}, •S ⊆ S• while Q• = {t1},
•Q = {t1, t2}, Q• ⊆ •Q. The number of tokens in the siphon S remains the same by
firing t1 and decreases by firing t2. The number of tokens in the trap Q remains the
same by firing t1, but increases by firing t2.

Consequences of Siphons and Traps. In general,

1. the siphon behaviour is such that if it has no token in a state (marking) of N ,
then it remains without any token in each successor state. Siphons represent
a very important structural concept of PN. When all places in a siphon have
no token, all transitions connecting with the siphon cannot be firable any more.
Siphons are widely used to analyze PN liveness, and also to prevent deadlocks
in PN models of DES. The terms liveness and deadlocks are introduced in the
next paragraph;

2. the trap behaviour is such that if it has at least one token in a state (marking)
of N , then it remains marked under each successor state. It was proved in [72]
that the union of two siphons (traps) is again a siphon (trap).

The evident resume is that siphons are sets of places which, if become empty of
tokens, they will always remain empty for all reachable markings of the net, while
traps are sets of places which, if become marked, will always remain marked for all
reachable markings of the net.

Traps can also be useful in combination with place invariants (see Subsection 2.2)
to recapture information lost in the incidence matrix due to the cancellation of self-
loop arcs.

Deadlocks and Their Relation with Siphons and Traps. In some literary
sources – see e.g. [76] – is shown that each reachable marking of PN enables at least
one transition. In doing so it means that each siphon S of PN contains as a subset

Modelling and Control of RAS within DES by Means of PN – Part 1 653

an initially marked trap. It was proved by the same author in [77] that a totally
deadlocked ordinary Petri net contains at least one empty siphon.

If every non-empty siphon of PN includes a (sufficiently) marked trap then (see
e.g. [84], but also many other authors) no dead marking is reachable. This is very
important finding.

A siphon (trap) is named to be minimal if it does not contain any other siphon
(trap). Minimal siphons provide a sufficient condition for the non-existence of dead-
locks.

A strict minimal siphon [27] is a siphon containing neither other siphon nor
a trap except itself. The sum of token numbers in S is denoted by M(S), where
M(S) =

∑
p∈S M(p). A subset S ⊆ P is marked by M if M(S) > 0. A siphon is

under-marked if ∄t ∈ S• which can fire.

The proper siphon is the siphon when the set of its predecessors is strictly
included in the set of its successors. It was shown in [11, 1] that in a deadlocked
PN model all unmarked places form a siphon. Thus, the siphon-based approach
for deadlocks detection checks if the net contains a proper siphon that can become
unmarked by some firing sequence. A proper siphon does not become unmarked if
it contains an initially marked trap.

Deadlocks and Liveness. The problem of deadlocks and their effective resolution
was studied for the first time in the 60’s [15, 16], in context of the multi-threaded
computation or multi-programming (emerging at that time). Of course, since that
time the deadlock theory, and especially the deadlock avoidance one, has been in-
tensively developed – see e.g. [46, 78, 79, 80, 81, 75, 74, 73, 82, 86, 87] and especially
[63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92,
93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53].

Simply said, the deadlock is the state of N if all transitions t ∈ T are disabled.
N is named to be deadlock-free when none reachable state x ∈ R is a deadlock.
Thus, the deadlock is a state of N when DES modelled by PN comes to a state in
which no further changes are possible. In other words a deadlock is [70] a subset of
places which, if none of them is marked at the beginning of the Petri net activity,
will remain unmarked in all subsequent evolution. It can also be said that a subset
of places I ⊂ P is a deadlock iff (if and only if) each transition which is input
transition of a place in I is also output transition of a place in I.

It was said in [26] that if M0 is initial marking of N then in (N,M0) is a deadlock
only on the condition that t ∈ T : M0[t⟩ is never found.

In general, deadlocks occur in DES (especially AMS/FMS) when processes,
which want to run (and should run), hold insufficient resources, as a result of which
the system comes to a standstill. This is the acute problem which should be solved
by means of PN based RAS.

A N is said to be live, more precisely M0 is said to be a live marking for N , if (no
matter what state (marking) has been reached from M0) it is possible to ultimately
fire any transition of N by progressing through further firing sequence. A live PN

654 F. Čapkovič

guarantees [72] deadlock-free operation, no matter what firing sequence is chosen.
More details about five kinds of liveness can be found in [72]. Namely, a transition t
in (N,M0) is said to be:

1. dead (lived on the level 0 – L0 live) – if it never be fired in any firing sequence
in L(M0);

2. potentially fired (L1 live) – if it can be fired at least once in some firing sequence
in L(M0);

3. L2 live – when for k > 0 it is fired at least k-times in L(M0);

4. L3 live – if it appears infinitely often in some firing sequence in L(M0);

5. L4 live or live if it is L1 live for every marking M in R(M0).

The simple example of the live PN together with its reachability tree (RT) is
given in Figure 2 while the simple example of the nonlive PN together with its
reachability tree (RT) is given in Figure 3.

a) b)

Figure 2. a) The live PN and b) its RT

As we can see in Figure 2 b), no state discontinues the course of the modelled pro-
cess. On the other hand, in Figure 3 b) we can see that the states x1 = (0 1 0 1 0 0)T ,
x6 = (0 0 1 0 1 0)T and x7 = (0 0 0 1 0 0)T do this. These states are deadlocks.

Modelling and Control of RAS within DES by Means of PN – Part 1 655

a) b)

Figure 3. a) The nonlive PN and b) its RT

Simply said, a transition t of N is said to be live iff for all reachable states
(markings) xr ∈ R there exists a sequence of transition firings which results in
a marking in which t is enabled. The N is said to be live if all its transitions are
live. Liveness of PN implies absence of deadlocks in the modelled DES. When RT
has a node (vertex) without a successor, then PN is not live. As to RT, the Koenig
lemma [14] is also useful. It says: “Let RT be a tree of finite degree (i.e., every
vertex has a finite number of successors) and with an infinite number of vertices.
Then RT has an infinite branch.”

In PN theory siphons and traps have been introduced [11] to characterize dead-
locks of PN. Simultaneously, they can help us at finding deadlock avoidance methods.

Other details about behavioral properties of liveness are summarized in [18].
How to deal with the problem caused by the deadlock, that is a cardinal question.

There exist three basic approaches for RAS (see e.g. [19, 74, 73]) how to deal with
deadlocks and problems pertinent to them:

1. deadlock detection and recovery – i.e., to detect deadlock occurrences and restore
the systems operations with recovery procedures;

2. deadlock prevention – i.e., to prevent circular wait conditions using offline strate-
gies, mutual exclusion,

3. deadlock avoidance – i.e., to prevent deadlock situation applying online policy
control of resource allocation.

In doing so there are two principles how to create related methods, namely by means
of digraphs or by means of PN. Their comparison can be found in [20].

In this paper, solely the PN-based approaches will be used.

656 F. Čapkovič

2.2 Invariants, Repetitive and Characteristic Vectors

Invariants. There are two kinds of PN invariants: T -invariants and P -invariants.
It is well known – see e.g. [72] – that the T -invariant of PN is defined as the (m× 1)
vector w for which B.w = 0, w ̸= 0, where 0 is the (n×1) vector of zeros, while the
P -invariant is defined as the (n× 1) vector y for which BT .y = 0, y ̸= 0, where 0 is
the (m× 1) vector of zeros. When we want to compute so called proper invariants
we have to ask w > 0 and y > 0, respectively. What is important is that:

1. The T -invariant, if it exists at all, will give the number of times different tran-
sitions should be fired in order that a particular marking may be reproducible.

2. From the definition of P -invariants (yT .B = 0, i.e. yT .xk
!
=yT .x0) it follows that

for all reachable markings xk ∈ R, the weighted sum of tokens is a constant.
Let I is a P -invariant. The set PI ⊂ P is called the support of I [45] iff PI =
{p ∈ P | I(p) ̸= 0}. I is called non-negative iff I ≥ 0. I ≩ 0 is called minimal
iff there exists no P -invariant I′ ≩ 0 with I′ ≨ I. Here, the symbol ≩ means
greater-than but not equal and the symbol ≨ means less-than but not equal.

For the example of PN given in Figure 2 invariants (Figure 2 a)) and proper
invariants (Figure 2 b)) are as follows:

I1 = (0, 0, 0, 1, 1, 1, 0, 0)T ,

1Iprop = (0, 0, 0, 1, 1, 1, 0, 0)T ,

I2 = (1, 1, 1, 0, 0, 0, 0, 0)T ,

2Iprop = (1, 0, 1, 0, 1, 0, 1, 1)T ,

I3 = (0,−1, 0, 0, 1, 0, 1, 1)T ,

3Iprop = (1, 1, 1, 0, 0, 0, 0, 0)T .

Consequently, when we use the proper invariants being considered to be invari-
ants, the supports are the following:

PI1 = {p4, p5, p6},

PI2 = {p1, p3, p5, p7, p8},

PI3 = {p1, p2, p3},

while for PN displayed in Figure 3 there exists only one invariant, one proper
invariant equal to this invariant, and one support invariant as follows:

I1 = (0, 0, 1, 1, 0, 0)T ,

1Iprop = (0, 0, 1, 1, 0, 0)T ,

PI1 = {p3, p4}.

Modelling and Control of RAS within DES by Means of PN – Part 1 657

Simply said, P -invariants are the sets of places whose weighted token sum re-
mains constant for all possible markings, while T -invariants are the sets of firings
that will cause a cycle in the state space, meaning the comeback to the original state
(markings). The set of nodes corresponding to non-zero entries of an invariant is
called the support of this invariant I, written as supp(I). An invariant I is called
minimal if ∄ I′ : supp(I′) ⊂ supp(I), i.e., its support does not contain the support
of any other invariant I′, and the greatest common divisor of all non-zero entries of
I is 1.

Characteristic Vectors. Let, in general, the P -vector means a vector expressing
states of places (number of tokens inside them) – in (1)–(2) it is the state vector x –
and the T -vector means a vector expressing states of transitions (enabled, disabled) –
in (1)–(2) it is the control vector u.

Let S ⊆ P be a subset of places of N . The (n×1) vector Sσσσ is called [58, 51, 91]
the characteristic P -vector of S if ∀p ∈ S : Sσp = 1; otherwise Sσp = 0. The (m×1)
vector Sγγγ = BT .Sσσσ is called the characteristic T -vector of S.

The physical interpretation of the T -vector of a subset of places is the following:

1. Sγ(t) > 0 means that Sγ(t) tokens are put into S when the transition t fires;

2. Sγ(t) = 0 means that the number of tokens in S does not change after t fires;
(iii) Sγ(t) < 0 implies that |Sγ(t)| tokens are removed from S when t fires.

Repetitive Vectors. In [72] the term repetitiveness was also introduced. Namely,
N is said to be (partially) repetitive if there exists a marking x0 and a firing sequence
U = {ta, tb, tc . . . } from x0, i.e. x0[ta⟩x1[tb⟩x2[tc⟩ . . . , such that every (some) transi-
tion occurs infinitely often in U . It was proved there that N is (partially) repetitive
iff there exists an (m × 1) vector q of positive (non-negative) integers such that
B.q ≥ 0, q ̸= 0. Such vector q is named as the repetitive vector.

A repetitive vector q is reachable [23] iff there exists a reachable state (marking)
x ∈ R that allows firing a sequence U whose corresponding characteristic T -vector
is q.

The System Evolution. The (1)–(2) represent the discrete event system – DES.
For completeness’ sake it is necessary to introduce also the procedure of the marking
development in PN (i.e. the system evolution).

Let us develop the system (1) from x0 to xq

x1 = x0 +B.u0 (3)

x2 = x1 +B.u1 = x0 +B.u0 +B.u1 = x0 +B.(u0 + u1) (4)

. . . (5)

xq = x0 +B.(u0 + u1 + · · ·+ uq−1) = x0 +B.

q−1∑
i=0

ui (6)

658 F. Čapkovič

By the way, the vector represented the sum in (6) is called (in general) the Parikh’s
vector. Its entries show how many times the particular transitions are fired during
the system evolution. Denote this vector in our case as Pq. Now, develop analogically
the system from xq to xr

xq+1 = xq +B.uq (7)

xq+2 = xq +B.uq +B.uq+1 = xq +B.(uq + uq+1) (8)

. . . (9)

xr = xq +B.(uq + uq+1 + · · ·+ ur−1) = xq +B.

r−1∑
i=q

ui (10)

Denote the vector represented the sum in (10) as Pr. Hence,

xr = x0 +B.(Pq + Pr). (11)

The Parikh’s vectors Pq, Pr represent, respectively, not only the firing sequences
U1 (from x0 to xq) and U2 (from xq to xr) but also how many times particular
transitions are fired during the developments (6) and (10). From the point of view
of the state xq we can speak about the input firing sequence U1 and output firing
sequence U2 or about Pq and Pr, respectively.

A live PN guarantees deadlock-free operation, no matter what firing sequence
is chosen. Moreover, equations introduced above represent the analytical expression
of the principle of causality in PN.

2.3 Controllability Conditions for PN vs. Invariants and Siphons

An ordinary net N is said to be completely controllable if any marking is reachable
from any other marking. Details how invariants and siphons make possible to control
DES represented by PN models are introduced in following sections.

In case of control synthesis based on P -invariants, the permissive controller
(supervisor) have to fulfill some conditions imposed on mutual relations among states
of particular PN markings (states) in order to avoid deadlock identified by means
of the thorough analysis of RT (RG).

In case of siphon-based approach the thorough structural analysis of PN is per-
formed. Then, the properties of found siphons are utilized at the control synthesis.
Although this topic was opened long ago [72, 1, 2] it is still very live – see recent
contributions [7, 24, 25, 51, 9, 10, 63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40]. The basis of such an approach to control consists
in avoiding of emptying (unmarking) of places creating the siphons. A siphon in
ordinary PN is said to be controlled [24] if it cannot be empted (unmarked) at any
reachable marking.

Modelling and Control of RAS within DES by Means of PN – Part 1 659

If PN is generalized, owing to the weights of arcs, the non-emptyability of
a siphon is not sufficient for the absence of dead transitions, and the controllability
of a siphon is much more complex.

Elementary and Dependent Siphons. The overview and definitions of different
kind of siphons in PN are given in [58]. The motivation to propose the concept of
elementary siphons is to control dependent siphons by explicitly controlling their
elementary siphons only.

Elementary siphons play an important role in the development of deadlock pre-
vention approaches, that lead to structurally simple supervisors enforcing liveness,
based on monitors.

The set ΠE = {Sα, Sβ, . . . , Sγ}, {α, β, γ} ⊆ Z, is called the set of elementary
siphons if {γγγα, γγγβ, . . . , γγγγ} is a linearly independent maximal set of the matrix SΓ
consisting of T -vectors Sγγγ – i.e. SΓ = BT .SΣ, where SΣ is the matrix consisting of
P -vectors Sσσσ.

The T -vector Sγγγ is associated [91] with each siphon S such that Sγ(i) is the num-
ber of tokens gained in or lost from S by firing the transition ti once. A dependent
siphon S0 strongly depends on elementary siphons S1, S2, . . . , Sk if

Sγ(0) = a1.
Sγ(1) + a2.

Sγ(2) + · · ·+ ak.
Sγ(k) (12)

with ai ∈ Z≥0, i = 1, 2, . . . , k, being positive integers and Sγ(k) being nonzero entries
of Sγγγ. Such dependent siphons are named as the strongly dependent siphons (SDS).
S0 is a weakly dependent siphon (WDS) if some ai are negative. The T -vectors
for elementary siphons are mutually independent. More details can be found e.g.
in [47, 48, 49, 50, 51] as well as in [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40].

More details can be seen e.g. in [47, 48, 49, 50, 51] as well as in a great deal of
applications in [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40], where also newest approaches to the siphon-based control of AMS/FMS
and RAS are presented as follows.

In [56] the new controllability condition for siphons is presented. In [59] the
necessary and sufficient condition of a kind of PN (namely GS3PR) was proved.
In [60, 62, 64] important findings in the area of robust deadlock control of AMS
with unreliable resources are published. In [53, 50, 49, 48, 47, 91] the application
of elementary siphons, being topical at present, is broadly investigated. In [55,
28, 29, 30, 31, 32, 33] the very useful iterative solution how to avoid the need of
enumerating all the states or siphons using mathematical programming techniques
were published. In [35, 36] also distributed resolution approaches to solving the
deadlock avoiding were published. In [37] the very useful approach to simplification
of the supervisor structures was published. In [37] the supervisor synthesis and
performance improvement in an integrated way are also presented. In the works [38,
39, 40] the direct application of assembly AMS in the practice was shown.

660 F. Čapkovič

2.4 Resource Allocation Systems vs. Petri Nets

RAS represent [86] a special class of concurrent systems, especially AMS/FMS,
where the attention is focused on resources. RAS consist of a finite set of processes
that share (in a competitive way) a finite set of resources. Such a competition can
bring (i.e., is conducive to) existence of deadlocks. The deadlock causes an unac-
ceptable state when some processes in AMS/FMS are waiting for the evolution of
other processes that are also waiting for the evaluation of former ones in order to
evolve.

PN models of RAS are especially useful at synthesizing deadlock prevention
policies as well as deadlocks avoidance ones. Although many papers about RAS
were published in the last three decades, it may be said that principle papers about
RAS are [46, 78, 79, 80, 81, 75, 74, 73, 82, 86, 87]. Newer papers with very important
contributions in this area are especially [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60,
61, 47, 48, 49, 50, 51, 52, 53].

There exist several standard kinds (paradigms) of RAS [41, 51, 22, 21, 94].
Specific nomenclatures have been established, e.g. Simple Sequential Process (S2P),
Simple Sequential Process with Resources (S2PR), Systems of Simple Linear Sequen-
tial Processes with Resources (S2LSPR), Systems of Simple Sequential Processes
with Multiple Resources (S3PMR), the subclass of System of Simple Sequential
Processes with General Resource Requirements (S3PGR2) [75], Generalised Sys-
tems of Simple Sequential Processes with Resources (GS3PR), Systems of Simple
Sequential Processes with Resources (S3PR), Linear S3PR (LS3PR), Extension of
S3PR (ES3PR), and already mentioned S3PGR2 modelling manufacturing systems
in general, Weighted System of Simple Sequential Processes with Several Resources
(WS3PSR), System of Sequential Systems with Shared Resources (S4R), System of
Sequential Systems with Shared Process Resources (S4PR), etc.

The S3PR are frequently used in AMS and they are modelled by means of
PN. They represent a class of AMS with flexible routing and single-unit resource
acquisition. In such systems the part being produced using only one copy of one
resource at each processing step. Such systems create a subclass of a higher (upper)
class S∗PR [94, 21] where more copies of one resource are allowed. The asterix
does not represent exactly an integer expressing the number of copies, but a level of
complexity. Multiple-unit systems with routing flexibility are much less investigated.
S4PR are explored a lot less than S3PR. They are adequate [86, 87] for the modeling
of a wide variety of RAS. The special syntactic characteristics of this class allow to
study the modelled systems from a structural perspective. The newer publications
[63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92,
93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53] investigate
also such kinds of AMS/FMS.

The relation among some of PN-based models of RAS is illustrated in Figure 4.
From this point of view two kinds of PN places (being added to the PN model

because of the siphon control) can be distinguished as to the synthesis of AMS/FMS

Modelling and Control of RAS within DES by Means of PN – Part 1 661

a) b)

Figure 4. Relations (based on sets) among some of more important PN models of RAS

control, namely:

1. ordinary places;

2. weighted places.

Ordinary places have ordinary arcs and are added to the original PN in order to
prevent related siphon from becoming unmarked whenever it is possible. Weighted
places adopt a conservative policy controlling the release of component or parts in
AMS/FMS, modelled by PN, into the system. It means that they are added to
the original/modified PN, namely to the source transitions of the resultant PN, by
means of their output arcs.

2.5 Literature Survey

In case of the approach based on P -invariants most important contributions can be
seen in [42, 43, 71, 88, 89], but also in many other works.

However, in about the last two decades the siphon-based approach dominates
among the methodologies that deal with the deadlock analysis and control of re-
source allocation systems. This research has uncovered many useful results. Very
important share on the development of the siphon-based approach to deadlock avoid-
ing have the works [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53],
but also some others. The new controllability condition for siphons is presented
in [56]. The necessary and sufficient condition of a kind of PN (namely GS3PR) was
proved in [59]. Very important are findings in the area of robust deadlock control of
AMS with unreliable resources [60, 62, 64]. The application of elementary siphons,
being topical at present, is broadly investigated in [53, 50, 49, 48, 47, 91]. Very useful

662 F. Čapkovič

is the iterative solution using mathematical programming techniques to avoid the
need of enumerating all the states or siphons published in [55, 28, 29, 30, 31, 32, 33]
having direct impact on practice. Also distributed resolution approaches to solv-
ing the deadlock avoiding were published [35, 36]. Very useful is the approach to
simplification of the supervisor structures [37]. The supervisor synthesis and perfor-
mance improvement in an integrated way are also presented in [37]. For the direct
application in the practice of assembly AMS are important the works [38, 39, 40].

A suitable combination of the approaches in the form of invariant-controlled
elementary siphons is presented in [50].

Of course, in this paper it is impossible to devote to the complete problem of the
deadlock avoidance in AMS/FMS. Here, in the Part 1, only a broader introductory
part to the problem will be inducted and illustrated by simple explanatory examples.
The permissible scope of this article does not allow more. In the second part –
Part 2, being in preparation, newer methods of deadlock avoidance as well as their
application to more complicated cases of AMS/FMS will be analyzed. May be that
also a third part – Part 3 will be necessary because of the limited space for one
paper in this journal.

2.6 The Paper Organization

After the detailed introduction in Section 1 and preliminaries in Section 2, which
were necessary for initiation into the problem of the widely developed subject inside
PN, the paper includes the next parts.

In Section 3, solving problems in RAS is introduced – namely, the description
how to remove deadlocks and how to control RAS. This section is the core of the
paper. It consists of three subsections. Subsection 3.1 details the proposal and appli-
cation of the P -invariant method for synthesizing the supervisor removing deadlocks
in RAS while Subsection 3.2 presents the proposal and application of siphon-based
method for synthesizing the supervisor removing deadlocks in RAS. Subsection 3.3
presents a short comparison and evaluation of both approaches. Section 4 introduces
the research plan for the future. Section 5 concludes the paper.

3 SOLVING PROBLEMS WITH DEADLOCKS IN RAS

Two possible approaches to remove deadlocks by means of the supervisory control
are presented here.

The first one starts from the thorough analysis of RT of the PN model of RAS
or equivalently from RG. It is necessary to say that RG arises from RT by means of
joining all RT leaves with the same name into one node of RG. The adjacency matrix
is the same for both RT and RG. From RT/RG (expressed either in graphical form or
in the form of the adjacency matrix), information about deadlocks can be obtained.
After finding deadlocks, the supervisor based on P -invariants is synthesized in order
to remove these deadlocks.

Modelling and Control of RAS within DES by Means of PN – Part 1 663

The second approach performs the thorough structural analysis of the PN model
of RAS. It finds and uses PN siphons and traps to synthesize the supervisor removing
deadlocks. No RT/RG is necessary in this case.

Each of the mentioned approaches has its advantages and disadvantages. There-
fore, we will test both approaches on simple practical examples and compare them.
In Part 2 (potentially also in Part 3) more complicated cases of RAS will be tested
using the newest findings in that field.

3.1 An Approach Based on P -Invariants with Current Knowledge of RG

After a detailed analysis of RG the deadlocks can be identified. Then, the conditions
for supervisor synthesis based on P -invariants may be established.

Let us try to design a controller based on P -invariants – see e.g. [4]. Let the
matrix Y denote the (s× n) matrix of P -invariants, which are not known till now.
Start from the definition of P -invariants

YT .B
!
=0. (13)

Consider the restrictive condition (following from the detail analysis of RG) on the
state vector in the form as follows:

L.x ≤ b (14)

where L is the (s × n) matrix of integers expressing the expected relations among
states to eliminate deadlocks, and b is the (s× 1) vector of positive integers deter-
mining some restrictions on linear combinations of corresponding entries of the state
vector x. In order to remove the inequality (14), add a slack vector xs and put

L.x+ xs = L.x+ Is.xs = (LIs).(x
TxT

s)
T = b (15)

where the (ns × 1) vector xs consists of slack variables and Is is the (s× s) identity

matrix. Now, when we force (LIs) instead of YT , we obtain (LIs).(B
TBT

s)
T !
=0.

Hence, the structural matrix and the initial state of the supervisor are

Bs = −L.B,

x0
s = b− L.x0

(16)

where Bs = GT
s − Fs. Then the extended PN model (the original uncontrolled PN

model together with the supervisor) has the following structural matrix and the
initial state.

Bex =

(
B
Bs

)
,

x0
ex =

(
x0

x0
s

)
.

(17)

664 F. Čapkovič

The approach can be explained in details by means of the following simple example
illustrating the primary problem of RAS – removing deadlocks. There it will be
presented what difficulties can deadlocks cause in RAS as well as ways how to deal
with them.

3.1.1 Example 1

Consider the very simple PN model in Figure 5 a). The corresponding RT is shown
in Figure 5 b). There it can be seen that the state No. 9 (i.e. x9), being the 10th

column of the matrix Xr in (20) (because the numbering of reachable states starts
from 0), represents the deadlock.

a) b)

Figure 5. The simple example of a) the deadlocked PN and b) its RT

Therefore, it is necessary to avoid the deadlock. Let us demonstrate removing
the deadlock by a supervisor synthesis based on P -invariants.

The P -invariant based approach starts by the thorough analysis of the RT. Doing
so we can see that in order to eliminate the deadlock it is necessary to ensure the
priority t3 ≻ t4. Namely, it follows from the “fork” emerging from the state No. 2
(i.e. x2) being the 3rd column in (20), as well as from the “fork” emerging from the
state No. 6 (i.e. x6) being the 7th column in (20).

In this specific case it is possible to do this elimination very simply – by adding
p6 to the original PN model and interconnect it with the PN model by the arcs
from t3 to p6 and from p6 to t4. This ensures the priority t3 ≻ t4 in RT given in
Figure 5. It is clear from Figure 6 a) and from RT (right). However, the states of
the controlled model displayed in Figure 6 as well as the numbers of RT nodes are
different from the states and numbers of RT nodes of the uncontrolled model given
in Figure 5.

Modelling and Control of RAS within DES by Means of PN – Part 1 665

a) b)

Figure 6. The a) supervised PN model and b) its RT

However, the P -invariant based approach analytically described by (13)–(16) is
general one. The described procedure of the supervisor synthesis presented in [4]
can impose the restriction on the state vector x in the form (14). In our case

L = (0, 0, 1,−1, 0) and b = (1) (18)

where the matrix L is represented by the row vector and the restriction b = (1)
is the scalar, because only one of two possibilities (firing either the transition t3 or
transition t4) is possible.

To perform the analytical expression of the approach let us introduce the fol-
lowing. The structural matrix of the original PN model, the initial state x0 and RT
nodes in (20) are as follows:

B = GT − F =

−1 0 1 0
1 −1 0 0
0 −1 0 1
1 1 −1 −1
0 0 −1 1

 , x0 =

1
0
1
0
1

 , (19)

Xr =

1 0 0 1 0 1 0 0 0 0 0
0 1 0 1 1 0 0 2 1 0 2
1 1 0 1 2 0 1 1 0 2 2
0 1 2 0 0 1 1 1 2 0 0
1 1 1 0 2 0 2 0 0 3 1

 . (20)

666 F. Čapkovič

Because of (16), the structural matrix Bs of the supervisor and the initial state xs
0

of the supervisor are

Bs = (1, 2,−1,−2) and xs
0 = (0). (21)

The structure of the supervisor is

Bs = GT
s − Fs where GT

s = (1, 2, 0, 0) and Fs = (0, 0, 1, 2). (22)

The supervisor has very simple structure – it is represented by the place p6. Hence,
the supervised PN model is given in Figure 7 a). The corresponding RT is shown in
Figure 7 b). As we can see in RT, no deadlock is detected. It is necessary to add
that the states of the controlled PN in such a way as well as the RT nodes in this
case are different from the states and RT nodes in previous two cases.

a) b)

Figure 7. The a) supervised PN by means of P -invariant and b) its RT

3.1.2 Example 2

Let us introduce now a practical example. A cell of AMS/FMS consists of three
workstations, W1 with a robot R1, W2 with a robot R2, and W3 with a robot R3,
and a single AGV (being served by the robots) that transports parts among the
workstations and the input and output ports I/O of the cell. The simple scheme of
the cell is displayed in Figure 8.

There is exercised the concurrent production of the two process types with planes
as follows – P1: W1 → W2 → W3 and P2: W3 → W2 → W1. P1 produces parts of
a kind A while P2 produces parts of a kind B. Each workstation has a working table

Modelling and Control of RAS within DES by Means of PN – Part 1 667

Figure 8. The example of the real RAS with the deadlock

on which only one workpiece at a time can be held. It is evident from the routing
information about processes P1, P2 that none of the currently loaded parts is able
to go forward to the next workstation, because the corresponding working table is
occupied by the other part. This situation illustrate the deadlock that can be met
in this AMS/FMS. Simultaneously, the Figure 8 can be understood to be a kind of
RAS.

The PN model of the cell and its RT are given in Figure 9. Its parameters are

B = GT −F =

1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1

−1 1 0 0 0 0 −1 1
0 −1 1 0 0 −1 1 0
0 0 −1 1 −1 1 0 0

, x0 =

1
0
0
0
1
0
0
0
1

(23)

The places p1, p2, p3 express the presence of parts A on the working tables, while
p4, p5, p6 express the presence of parts B on the working tables. The resource
availability is monitored by the marking of the resource places p7, p8, p9.

As we can also see on the PN model of the RAS in Figure 9 a), and especially
on RT in Figure 9 b), there is the deadlock in the state x1 = (1 0 0 1 1 0 0 0 0)T . It
occurs immediately after firing t5 at the initial state x0 = (1 0 0 0 1 0 0 0 1)T .

To control the system consider the natural initial state x0 = (0 0 0 0 0 0 1 1 1)T

when all resources are available at the beginning. The corresponding RT is given in
Figure 10.

As we can see there, the states x13 = (1 1 0 1 0 0 0 0 0)T and x14 = (1 0 0 1 1 0 0 0
0)T , i.e., the 14th and 15th column of the following matrix of reachable states Xr

are deadlocks. All nodes of the RT, where the first column represents the initial

668 F. Čapkovič

a) b)

Figure 9. The a) PN model and b) corresponding RT of the RAS

state x0, are expressed by particular columns as follows:

Xr =

0 1 0 0 1 0 1 0 0 1 0 0 1 |1| |1| 0 0 0 1 0
0 0 0 1 0 0 1 0 1 0 0 0 0 |1| |0| 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 |0| |0| 0 1 0 1 0
0 0 1 0 1 0 0 0 1 0 1 0 0 |1| |1| 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 1 0 0 |0| |1| 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 |0| |0| 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0 1 0 0 |0| |0| 0 1 0 0 0
1 1 1 0 1 0 0 1 0 0 0 1 1 |0| |0| 1 0 0 0 0
1 1 0 1 0 1 1 0 0 1 0 1 0 |0| |0| 0 0 1 0 0

. (24)

3.1.3 Detail Analysis of RT

The detail analysis of RT yields the following results:

1. the sequences of firing t2 ≻ t5 as well as t5 ≻ t2 have to be forbidden, i.e., p2
and p4 cannot be active simultaneously;

2. the sequences of firing t1 ≻ t6 and t6 ≻ t1 have to be forbidden, i.e., p1 and
p5 cannot be active simultaneously;

3. the sequences of firing t1 ≻ t5 as well as t5 ≻ t1 have to be forbidden, i.e., p1
and p4 cannot be active simultaneously.

Thus, putting inequalities σp2 + σp4 ≤ 1, σp1 + σp5 ≤ 1, and σp1 + σp4 ≤ 1 we can
synthesize the supervisor. As we can see below, these places create the nonzero
entries of the matrix L, and right sides of the inequalities create the vector b.
Putting the initial state of the PN model of RAS as x0 = (0 0 0 0 0 0 1 1 1)T (i.e.,
when all three resources are available), the process of the supervisor synthesis is the
following.

Modelling and Control of RAS within DES by Means of PN – Part 1 669

Figure 10. The corresponding RT of the RAS model

3.1.4 Supervisor Synthesis

The anterior inequalities create the restrictive condition with L and b in the form

L =

 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0

 , b =

 1
1
1

 , (25)

Bs = −L.B =

 0 −1 1 0 −1 1 0 0
−1 1 0 0 0 −1 1 0
−1 1 0 0 −1 1 0 0

 , x0
s =

 1
1
1

 . (26)

Here, the positive nonzero entries of Bs = GT
s − Fs create nonzero entries of GT

s ,
while negative nonzero entries of Bs create nonzero entries of (−Fs).

The PN model of the supervised system is displayed in Figure 11 where the
controller is represented by the triplet {p10, p11, p12}. RT of such system is given in
Figure 12.

670 F. Čapkovič

Figure 11. The controlled PN model

Figure 12. The RT of the controlled PN model

Modelling and Control of RAS within DES by Means of PN – Part 1 671

Of course, the incidence matrices and the initial state of the controlled system
are

Fcs =

(
F
Fs

)
, GT

cs =

(
GT

GT
s

)
, x0

cs =

(
x0

x0
s

)
(27)

where F, GT are incidence matrices of the uncontrolled RAS and x0 is its initial
state.

The RT of the controlled RAS is given in Figure 12. No deadlock can be seen
in Figure 12. The particular nodes of this RT are expressed by the columns of the
matrix

Xr =

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1 0 1 0
0 0 1 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 0 1 1 1 0 1 1 0 0 0 1 0 0 0
1 1 1 0 0 0 1 0 1 1 1 0 0 0 0
1 1 0 1 1 1 0 0 1 0 0 0 1 0 0
1 1 0 0 1 0 1 0 1 1 0 0 1 0 0
1 0 1 1 0 0 1 0 1 0 1 1 0 0 0
1 0 0 1 1 0 1 0 1 0 0 1 1 0 0

(28)

where the first column represents the initial state x0
cs of the controlled RAS.

3.1.5 Example 3

Let us add a simple example relating the deadlocked S3PR PN model. The problem
of a deadlock in S3PR can be resolved also by means of adding a transition to the
original deadlocked PN model of RAS. Namely, imbedding such a transition into the
deadlocked PN model it is possible to achieve initial state from the deadlocked state.
Then, the development of the model can proceed from the initial state in some other
way. It was proved in [83] for S3PR kind of deadlocked PN model. Applying this
on (6), the single additional transition brings the structural matrix of the supervisor
Bs = x0 − xq. Consider the deadlocked PN model given in Figure 13 a) having
RT displayed in Figure 13 b) where the RT node No. 4 (i.e. x5) is the deadlock in
question.

Because x0 = (2, 0, 1, 0, 0, 1, 0, 2)T and x5 = (1, 1, 0, 0, 0, 0, 1, 1)T , after
calculation Bs = (1, −1, 1, 0, 0, 1, −1, 1)T . Thus, Fs = (0, 1, 0, 0, 0, 0, 1, 0)T

(arcs from places to the transition) and GT
s = (1, 0, 1, 0, 0, 1, 0, 1)T (arcs from

the transition to places). Hence, the supervised PN model without the deadlock is
given in Figure 14 a) and its RT is displayed in Figure 14 b).

Sometimes such a procedure can be used in more complicated RT having so
called diamond(s) between two different nodes. Even, the paths (left and right)

672 F. Čapkovič

a) b)

Figure 13. The a) PN model of RAS with the deadloch x5 and b) its RT

a) b)

Figure 14. The a) supervised PN model by means of the added transition t7 and b) its
RT

creating the diamond(s) may be longer than that in RT displayed in Figure 14 a)
and Figure 14 b). More about this will be said in Part 2 of this paper.

3.1.6 Local Conclusion

The approach based on P -invariants has an exact analytically expressed procedure.
After thorough analysis of RG and finding conditions how to mutually eliminate
states of relevant places (in order to eliminate deadlocks), the procedure of the
supervisor synthesis is very clear and simple. Introduced examples illustrate that the
deadlock problem can be resolved relatively simply. However, in a more complicated

Modelling and Control of RAS within DES by Means of PN – Part 1 673

structure of the PN model of RAS with RT having too patulous branching, just
the choice of the restrictions in the form of inequalities may be complicated or
even impossible. Therefore, it is also necessary to look for another approaches or
combinations of them.

3.2 Approach Based on Siphons Without the Need to Know RG

Based on the previous findings, especially those being introduced in Section 2 (Pre-
liminaries), we have to unconditionally control siphons. Of course, first of all we
have to know them, i.e., we have to compute them. There are several algorithms
how to do this. Although the calculation of siphons is not a subject of this paper,
let us mention at least several approaches to it by means of:

1. solving logical equations, namely a siphon S has to satisfy a set of conditions:
∀ti ∈ T : t•i ∩ S ̸= ∅ ⇒ •ti ∩ S ̸= ∅ – see e.g. [44];

2. linear algebraic calculation – see e.g. [45];

3. Thelen’s prime implicant method – see [90];

and some others. However, for working in Matlab the most useful seems to be the
GPenSIM tool developed by Davidrajuh [12, 13] for PN, which is able to calculate
(among other things) also siphons and traps as well as minimal siphons and minimal
traps.

The problem of deadlock avoidance in DES is equivalent to the problem of the
avoidance of empty siphons in the original ordinary PN model. The siphon based
control of a deadlocked PN has to guarantee that none of its siphons ever becomes
empty. Unfortunately, this approach does not have as much analytical support as
in the first approach based on P -invariants. Therefore, it is necessary to work with
graphical tools for the PN modelling and analyzing, more than in the first approach.
The siphon behaviour is such that if it has no token in a state (marking) of PN,
then it remains without any token in each successor state. The trap behaviour is
such that if it has at least one token in a state (marking) of PN, then it remains
marked under each successor state.

It can be said that a siphon can only lose tokens whereas a trap can only gain
tokens. Therefore, arising out of these properties, we want to utilize siphons and
traps for analyzing of PN liveness as well as for synthesizing supervisors in order to
avoid deadlocks in PN models.

Siphons are tied with deadlocks especially in PN models of RAS. As it was al-
ready mentioned, once a siphon loses all its tokens, it remains unmarked at any
subsequent markings that are reachable from the current marking – see e.g. [22].
If a siphon is emptied at a certain marking, some of its output transitions would
never be enabled. This leads to a deadlock. There exist many papers about dead-
lock prevention which have been based on siphons. They especially add monitors
(additional places) to the PN model for strict minimal siphons in order to achieve

674 F. Čapkovič

deadlock prevention. In this paper using the minimal siphons will be illustrated on
simple examples.

On the other hand, there exist newer papers – e.g. [63, 8, 25, 55, 56, 57, 59,
62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65,
66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53]. They bring very interesting
contributions in the form of new approaches how to deal with deadlocks by means of
siphons, as it already was mentioned in Section 2.5. Some of them utilize elementary
siphons. These newer approaches will be analyzed in Part 2 of this paper, which is
being prepared.

A siphon S is said to be controlled in a net (N,M0) iff ∀M ∈ R(N,M0),
M(S) > 0. Hence, any siphon that contains a marked trap is controlled, since
the marked trap can never be emptied. In an ordinary Petri net, a siphon that is
controlled does not cause any deadlock.

Siphon S in an ordinary net system (N,M0) is [51] invariant-controlled by P -
invariant I under M0 iff LT .M0 > 0 and ∀p ∈ P\S, I(p) ≤ 0, or equivalently,
lT .M0 > 0 and ||I||+ ⊆ S. Here ||I||+ = p ∈ P | I(p) > 0 is the positive support of
P -vector I.

Briefly, a siphon S is said to be controlled if it can never be emptied, and it is
said to be invariant-controlled by P -invariant I if lT .M0 > 0 and ||I||+ ⊆ S.

The problem of deadlock avoidance in DES is equivalent [88, 89] to the problem
of avoidance of empty siphons in ordinary PN model of DES. This is very important
especially in real AMS/FMS. Siphons that do not contain other siphons are named
as minimal siphons. It is sufficient to consider only minimal siphons at the supervisor
synthesis. Hence, it is necessary to ensure that the sum of the number of tokens in
each minimal siphon S is never less than one in any reachable marking. Thus, the
general condition for ith siphon Si.x ≥ b proceeds into the form Si.x ≥ 1.

Generally, the main purpose of control of DES by means of PN is to avoid
undesirable or illegal markings. In [42, 43, 88] an appropriate formal specification

lT .x ≥ b i.e. b− l.x ≤ 0 (29)

is proposed where l is a (s×1)-dimensional weight row vector; x is a state vector (i.e.
marking); and b is a scalar. Verbally it means that the weighted sum of the number
of tokens in each place should be greater than or equal to a constant. The theorem
was proved there that if a PN with incidence matrix B satisfies b− lT .x0 ≤ 0, then
a control place pc can be added which enforces the previous inequality (29). When
bc : T → Z denotes the weight vector of arcs connecting pc with the transitions in
the PN, the bc can be obtained by

bc = lT .B (30)

and the initial number of tokens in pc is

x0(pc) = lT .x0 − b ≥ 0. (31)

Modelling and Control of RAS within DES by Means of PN – Part 1 675

The control place pc enforces maximally permissive control strategy (or logic). It
means that the only reachable markings of the original net N , that pc avoids, are
those violating [42, 43]. Here, the bc is the row extending the matrix B with respect
to pc.

In general (for more additive places p1, . . . , ps) it can be written the following

L.x ≥ b or L.x− xc = b (32)

where L ∈ Zs×n
≥0 having the weighted vectors lTi , i = 1, . . . , s as its rows; b ∈ Zs×1

≥0 is

the vector of restrictions and xc ∈ Zs×1
≥0 is the vectors of slacks. We can found the

extended incidence matrix Bex and the initial state of extended state vector x0
ex as

follows:

Bc = L.B, (33)

x0
c = L.x0 − b

!

≥0, (34)

Bex =

(
B
Bc

)
, x0

ex =

(
x0

x0
c

)
(35)

where Bc = GT
c − Fc is the matrix corresponding to s additive places (monitors)

p1, . . . , ps.

Putting lTi
!
=Si, where Si is the ith PN siphon, or in general L

!
=Sm where Sm is

the matrix of all PN siphons (being its rows), we have the structure of the supervisor
as follows Bc = Sm.B.

3.2.1 Example 4

Consider the same PN model given in Figure 5. In the PN siphon-based approach
we have to find siphons and traps.

Minimal siphons in this net are {p1, p3, p4}, {p1, p2, p4} and in the matrix form:

Sm =

(
1 0 1 1 0
1 1 0 1 0

)
. (36)

Minimal traps in this net are {p1, p3, p4}, {p1, p4, p5} and in the matrix form:

Tm =

(
1 0 1 1 0
1 0 0 1 1

)
. (37)

We can see that the first siphon is equal to the first trap. This is also clear from
comparing first rows of the matrices Sm and Tm. Such a siphon is out of our interest
because it cannot be emptied once it is initially marked. Namely, this siphon contains
the marked trap, i.e., there is no deadlock threat.

Now, we have to consider the second siphon {p1, p2, p4}. We can see from Xr

in Example 1 (see (20)) that for S = (1 1 0 1 0) no marking contains M(S) > 0.

676 F. Čapkovič

a) b)

Figure 15. The a) supervised PN by means of siphons and b) its RT

The siphon contains neither the marked trap, because the trap is T = (1 0 0 1 1).
Consequently, the siphon is not controlled. Hence, it is necessary to control it

in order to avoid the deadlock. Putting l
!
=S, or in general LT !

=Sm, we have the
structure of the supervisor as follows

Bc = Sm.B =

(
1 0 1 1 0
1 1 0 1 0

)
.

−1 0 1 0
1 −1 0 0
0 −1 0 1
1 1 −1 −1
0 0 −1 1

 =

(
0 0 0 0
1 0 0 −1

)
.

(38)
Because the first row of Bc is the zero vector, the equation implies that there is only
one place pc, namely p6 in Figure 15, that will represent the supervisor/controller.
Thus, incidence matrices of the supervisor are as follows:

Fc =
(
0 0 0 1

)
, GT

c =
(
1 0 0 0

)
. (39)

The reachable states of the controlled (supervised) PN model are the following

Xc =

1 0 0 1 0 1 0 0 0 0 0
0 1 0 1 1 0 0 2 1 0 2
1 1 0 1 2 0 1 1 0 2 2
0 1 2 0 0 1 1 1 2 0 0
1 1 1 0 2 0 2 0 0 3 1
1 2 2 2 1 2 1 3 3 0 2

 (40)

Modelling and Control of RAS within DES by Means of PN – Part 1 677

where the columns represent state vectors x0 . . .x10 being nodes of the RT.
The controllability of siphon S is ensured by adding a monitor. Namely, the

number of tokens leaving S is limited by a marking invariant law being implemented
by a P -invariant whose support contains the monitor.

The supervised PN model is given in Figure 15 a). The corresponding RT is
shown in Figure 15 b) in order to see that no deadlock occurs in the supervised
system.

By the way, the controlled system in Figure 15 a) is the same as that in Fig-
ure 6 a) obtained by the prejudged relation t3 ≻ t4.

3.2.2 Example 6

In Subsection 3.1.2 (Example 2) the supervisor eliminating deadlocks was proposed.
Consider here the same deadlocked PN model and let us use the siphon-based ap-
proach to solve the problem. The PN model contains the following minimal siphons
and traps:

S1 = {p3, p4, p9},

T r1 = {p3, p4, p9},

S2 = {p2, p5, p8},

T r2 = {p2, p5, p8},

S3 = {p1, p6, p7},

T r3 = {p1, p6, p7},

S4 = {p3, p5, p8, p9},

T r4 = {p2, p4, p8, p9},

S5 = {p2, p6, p7, p8},

T r5 = {p1, p5, p7, p8},

S6 = {p3, p6, p7, p8, p9},

T r6 = {p1, p4, p7, p8, p9}.

or in the matrix form

Sm =

0 0 1 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 0 0
0 0 1 0 1 0 0 1 1
0 1 0 0 0 1 1 1 0
0 0 1 0 0 1 1 1 1

 , Tm =

0 0 1 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 0 0
0 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 0
1 0 0 1 0 0 1 1 1

 . (41)

678 F. Čapkovič

The first three siphons are equal to the first three traps.

As it can be seen from (41), the places p2, p6, p7, p8 of the siphon S5 (the 5
th row

of Sm) are active in several state vectors of the PN model – see the corresponding
rows 2, 6, 7, 8 of this matrix (24).

As we can see in Figure 9, places p2, p6, p7, p8 included in the siphon S5,
create even the empty siphon (as to marking). All the output transitions of S5

are S•
5 = {t2, t3, t6, t7, t8}. The transition t1 does not belong in S•

5 because it is the
source transition (generating siphons) and it does not fall with the siphon definition.
By the way, t5 is also the source transition. All actual output transitions of S•

5 are
disabled, since they require at least one token from some place in S5.

All of input transitions of S are •S5 = {t2, t3, t6, t7, t8}.
Even, any transition which could bring tokens in S5 is a part of •S5, and con-

sequently is disabled. Consequently, S5 will remain empty during entire system
dynamics evolution as well as the transitions in S•

5 will be dead during this evolu-
tion. Alike, we could analyze also other nonzero siphons S4, S6. Such a work is too
toilsome.

It means that it is necessary to find a way how to deliver tokens into the siphon
places. Therefore, let us compute the monitors that will make this for us.

Put L
!
=Sm. Then,

Bc = Sm.B =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 1 0 −1 1 0 0

−1 1 0 0 0 −1 1 0
−1 0 1 0 −1 0 1 0

 . (42)

Excluding the upper zero sub-matrix we obtain the controller with the incidence
matrices

Fc =

 0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0

 , GT
c =

 0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0

 . (43)

The supervised PN model of RAS and its RT are given in Figure 16 a) and 16 b),
respectively. The supervisor consists of the imbedded places (monitors) A, B, C. RT
is not necessary in this approach but it is included in order to see that no deadlock
occurs in the supervised RAS.

The nodes of RT are the rows of the following matrix where the first row is the
initial state vector x0. No state vector represents a deadlock. The nodes of the RT
are the state vectors being rows of the following matrix

Modelling and Control of RAS within DES by Means of PN – Part 1 679

a) b)

Figure 16. The PN model of the supervised RAS

XT
r =

0 0 0 0 0 0 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 0 0
0 0 0 1 0 0 1 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 1 0
0 0 0 0 1 0 1 0 1 1 0 0
0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1
1 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 1 1 0 0

. (44)

3.2.3 Local Conclusion

The approach based on siphons has not so exact analytically expressed procedure
(especially in case of siphons and traps computation) like the previous approach
based on P -invariants and analysis of RT. Firstly, it is necessary to analyze the PN
model of RAS and find its siphons and traps. There are Matlab tools for calculation
of siphons and traps – see e.g. [12, 13]. After thorough analysis of the set of siphons
and the set of traps, the procedure of the supervisor synthesis can start on. The
analytical approach to computation of monitors is utilized. Then, the procedure is

680 F. Čapkovič

also clear and simple as well as in case of the previous approach. The analysis of
RT is not necessary in this case. However, it is possible to generate RT in order to
be sure that the controlled PN model of RAS is deadlock-free.

3.3 A Short Comparison of Both Approaches

When we compare both approaches applied on the relatively simple cases of dead-
locked RAS, we can say the following:

1. the weak point (shortcomming, weakness) of the first approach consists in the
computational demands at finding RT/RG and the labor consumption at find-
ing the conditions for elimination deadlocks. In case of largely branched RT
computing takes a very long time. The dependance on the initial state is also
a weakness;

2. the weak point of the second approach consists in computational demands at
finding siphons. This may also takes a very long time.

The first approach yields the supervisor which restricts the development of the
system a little less, than the supervisor synthesized by the second approach. On the
other hand, there is a perspective of finding new and new methods in the second
approach.

However, because from several simple DES and RAS it is impossible to draw
serious conclusions, we will do this in Part 2 (may be also in Part 3) of this paper,
which is being prepared. There, not only the more complicated examples will be
tested by both approaches, and then compared each other, but also newer approaches
will be analyzed, especially some of those published in [63, 8, 25, 55, 56, 57, 59, 62,
64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67,
68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53].

4 FURTHER RESEARCH IN THE FUTURE

In this paper, the problem of deadlock avoiding in RAS was presented by means
of two different approaches. Relatively simple examples, but one of them being
practical, were introduced to illustrate the applicability of these approaches. In the
further research, we will continue in solving the problem with deadlocks in RAS,
especially of S3PR and S4PR kinds, investigated in [63, 8, 25, 55, 56, 57, 59, 62, 64,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67, 68, 69,
58, 60, 61, 47, 48, 49, 50, 51, 52, 53]. Both approaches (first based on P -invariants
and second based on siphons) will be tested on the same more complicated practical
examples. The effectiveness of finding their results will be mutually compared and
evaluated.

Moreover, a deeper view on admissibility of deadlock-free control of RAS will
be performed. Namely, there exist following kinds of PN states (markings) [65]:

1. legal;

Modelling and Control of RAS within DES by Means of PN – Part 1 681

2. illegal, or else forbidden;

3. admissible,

i.e., such from which the system cannot uncontrollably reach illegal state. In PN
which are controllable only partially, an illegal state may be reachable from a legal
one by firing of uncontrollable transitions (see e.g. [3, 4, 5, 6, 65, 66, 67, 68, 69,
53, 71, 85]). Consequently, it is necessary to find more restrictive control policy
which will enforce a subset of legal states, i.e. admissible states. From such states
the system cannot uncontrollably reach an illegal state. However, this topic will be
analyzed later, probably only in Part 3 of this paper (because of the limited space
for one paper in this journal).

5 CONCLUSION

PN are a formal modelling tool. They are a popular mathematical formalism to in-
vestigate and analyze modelling and control of DES. PN theory has been one of the
most interesting topics in computer science. PN find wide application in contempo-
rary technical systems, especially in AMS/FMS where there is also a mathematical
framework to investigate the deadlock control problems in a variety of RAS. In
such a way PN become the effective tool for the design and management of modern
AMS/FMS. In the last years the siphon-based approach has dominated among the
methodologies dealing with the deadlock analysis and control of RAS – see the new
research especially in [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50,
51, 52, 53]. Although the approach to the same problem based on P -invariants is
a little older, it does not lag behind as to the quality of its results (sometimes more
to the contrary).

In this paper, both approaches were presented and illustrated by examples. First
on simple examples and then on more complicated ones related to real RAS. The
total number of introduced examples was 6.

Each approach was evaluated in the particular local conclusion (see Subsec-
tion 3.1.6 and Subsection 3.2.3). It was demonstrated that both approaches are
suitable for the deadlock elimination very well. The detailed comparison of both ap-
proaches on the same more complicated examples will be performed in the planned
Part 2 (may be only Part 3) of this paper to be published later.

Acknowledgement

The author thanks for the partial support of the VEGA Agency (under Grant
No. 2/0020/21).

682 F. Čapkovič

REFERENCES

[1] Barkaoui, K.—Couvreur, J.M.—Dutheillet, C.: On the Liveness in Ex-
tended Non Self-Controlling Nets. In: De Michelis, G., Diaz, M. (Eds.): Application
and Theory of Petri Nets 1995 (ICATPN 1995). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 935, 1995, pp. 25–44, doi: 10.1007/3-540-60029-9 32.

[2] Barkaoui, K.—Pradat-Peyre, J. F.: On Liveness and Controlled Siphons in
Petri Nets. In: Billington, J., Reisig, W. (Eds.): Application and Theory of Petri
Nets 1996 (ICATPN 1996). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 1091, 1996, pp. 57–72, doi: 10.1007/3-540-61363-3 4.

[3] Čapkovič, F.: Petri Nets at Modelling and Control of Discrete-Event Systems Con-
taining Nondeterminism – Part 1. Computing and Informatics, Vol. 37, 2018, No. 5,
pp. 1258–1292, doi: 10.4149/cai 2018 5 1258.

[4] Čapkovič, F.: Petri Nets at Modelling and Control of Discrete-Event Systems Con-
taining Nondeterminism – Part 2. Computing and Informatics, Vol. 38, 2019, No. 3,
pp. 728–764, doi: 10.31577/cai 2019 3 728.

[5] Čapkovič, F.: Modeling and Control of Discrete-Event Systems with Partial Non-
Determinism Using Petri Nets. Acta Polytechnica Hungarica, Vol. 17, 2020, No. 4,
pp. 47–66, doi: 10.12700/APH.17.4.2020.4.3.

[6] Čapkovič, F.: Timed and Hybrid Petri Nets at Solving Problems of Computational
Intelligence. Computing and Informatics, Vol. 34, 2015, No. 4, pp. 746–778.

[7] Chao, D.Y.—Pan, Y. L.: Uniform Formulas for Compound Siphons, Complemen-
tary Siphons and Characteristic Vectors in Deadlock Prevention of Flexible Manufac-
turing Systems. Journal of Intelligent Manufacturing, Vol. 26, 2015, No. 1, pp. 13–23,
doi: 10.1007/s10845-013-0757-7.

[8] Chao, D.Y.: Max’-Controlled Siphons for Liveness of S3PGR2. IET Control Theory
and Applications, Vol. 1, 2007, No. 4, pp. 933–936, doi: 10.1049/iet-cta:20060275.

[9] Chen, Y. F.—Li, Z.W.: Design of a Maximally Permissive Liveness-Enforcing
Supervisor with a Compressed Supervisory Structure for Flexible Manufac-
turing Systems. Automatica, Vol. 47, 2011, No. 5, pp. 1028–1034, doi:
10.1016/j.automatica.2011.01.070.

[10] Chen, Y. F.—Li, Z.W.: Optimal Supervisory Control of Automated Manufacturing
Systems. 1st Edition. CRC Press, 2012, doi: 10.1201/b14588.

[11] Chu, F.—Xie, X. L.: Deadlock Analysis of Petri Nets Using Siphons and Math-
ematical Programming. IEEE Transactions on Robotics and Automation, Vol. 13,
1997, No. 6, pp. 793–804, doi: 10.1109/70.650158.

[12] Davidrajuh, R.: GPenSIM, General Purpose Petri Net Simulator for MATLAB
Platform. Available at: http://www.davidrajuh.net/gpensim/.

[13] Davidrajuh, R.: General Purpose Petri Net Simulator GPenSIM. Version 9.0. Uni-
versity of Stavanger, Norway, 2014. Available at: http://www.davidrajuh.net/

gpensim/v9/GPenSIM_v9_User_Manual.pdf.

[14] Diaz, M. (Ed.): Petri Nets: Fundamental Models, Verification and Applications.
John Wiley and Sons, 2009, doi: 10.1002/9780470611647.

https://doi.org/10.1007/3-540-60029-9_32
https://doi.org/10.1007/3-540-61363-3_4
https://doi.org/10.4149/cai_2018_5_1258
https://doi.org/10.31577/cai_2019_3_728
https://doi.org/10.12700/APH.17.4.2020.4.3
https://doi.org/10.1007/s10845-013-0757-7
https://doi.org/10.1049/iet-cta:20060275
https://doi.org/10.1016/j.automatica.2011.01.070
https://doi.org/10.1201/b14588
https://doi.org/10.1109/70.650158
http://www.davidrajuh.net/gpensim/
http://www.davidrajuh.net/gpensim/v9/GPenSIM_v9_User_Manual.pdf
http://www.davidrajuh.net/gpensim/v9/GPenSIM_v9_User_Manual.pdf
https://doi.org/10.1002/9780470611647

Modelling and Control of RAS within DES by Means of PN – Part 1 683

[15] Dijkstra, E.W.: Cooperating Sequential Processes. Technical Report, Technologi-
cal University, Eindhoven, Netherlands, 1965.

[16] Dijkstra, E.W.: Cooperating Sequential Processes. In: Genuys, F. (Ed.): Pro-
gramming Languages: NATO Advanced Study Institute. Lectures at the Summer
School, Villard-le-Lans, 1966, pp. 43–112, Academic Press Inc., London, 1968.

[17] Desel, J.—Reisig, W.: Place/Transition Petri Nets. In: Reisig, W., Rozenberg, G.
(Eds.): Lectures on Petri Nets I: Basic Models (ACPN 1996). Springer, Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 1491, 1998, pp. 122–173, doi:
10.1007/3-540-65306-6 15.

[18] Ezpeleta, J.—Colom, J.M.—Martinez, J.: A Petri Net Based Deadlock Pre-
vention Policy for Flexible Manufacturing Systems. IEEE Transaction on Robotics
and Automation, Vol. 11, 1995, No. 2, pp. 173–184, doi: 10.1109/70.370500.

[19] Fanti, M.P.—Maione, B.—Mascolo, S.—Turchiano, B.: Event-Based Feed-
back Control for Deadlock Avoidance in Flexible Production Systems. IEEE Trans-
action on Robotics and Automation, Vol. 13, 1997, No. 3, pp. 347–363, doi:
10.1109/70.585898.

[20] Fanti, M.P.—Maione, B.—Turchiano, B.: Comparing Digraph and Petri Net
Approaches to Deadlock Avoidance in FMS. IEEE Transaction on Systems, Man,
and Cybernetics, Part B (Cybernetics), Vol. 30, 2000, No. 5, pp. 783–798, doi:
10.1109/3477.875452.

[21] Farooq, A.—Huang, H.—Wang, X. L.: Petri Net Modeling and Deadlock Anal-
ysis of Parallel Manufacturing Processes with Shared-Resources. Journal of Systems
and Software, Vol. 83, 2010, No. 4, pp. 675–688, doi: 10.1016/j.jss.2009.11.705.

[22] Guan, X.—Li, Y.—Xu, J.—Wang, C.—Wang, S.: A Literature Review of Dead-
lock Prevention Policy Based on Petri Nets for Automated Manufacturing Systems.
International Journal of Digital Content Technology and Its Applications (JDCTA),
Vol. 6, 2012, No. 21, pp. 426–433, doi: 10.4156/jdcta.vol6.issue21.48.

[23] Hernández-Flores, E.—López-Mellado, E.—Raḿırez-Treviño, A.: Di-
agnosability Analysis of Partially Observable Deadlock-Free Petri Nets. Pro-
ceedings of the 3rd International Workshop on Dependable Control of Dis-
crete Systems (DCDS ’11), Saarbrücken, Germany, 2011, pp. 174–179, doi:
10.1109/dcds.2011.5970337.

[24] Hou, Y. F.—Barkaoui, K.: Deadlock Analysis and Control Based on Petri Nets:
A Siphon Approach Review. Advances in Mechanical Engineering, Vol. 9, 2017, No. 5,
pp. 1–30, doi: 10.1177/1687814017693542.

[25] Hou, Y. F.—Zhao, M.—Liu, D.—Hong, L.: An Efficient Siphon-Based Deadlock
Prevention Policy for a Class of Generalized Petri Nets. Discrete Dynamics in Nature
and Society, Vol. 2016, Art. No. 8219424, 12 pp., doi: 10.1155/2016/8219424.

[26] Hu, W. S.—Zhu Y.Y.—Lei, J.: The Detection and Prevention of Deadlock in Petri
Nets. Physics Procedia, Vol. 22, 2011, pp. 656–659, doi: 10.1016/j.phpro.2011.11.102.

[27] Hu, H.—Liu, Y.—Yuan, L.: Supervisor Simplification in FMSs: Comparative
Studies and New Results Using Petri Nets. IEEE Transactions on Control Systems
Technology, Vol. 24, 2016, No. 1, pp. 81–95, doi: 10.1109/TCST.2015.2420619.

https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1109/70.370500
https://doi.org/10.1109/70.585898
https://doi.org/10.1109/3477.875452
https://doi.org/10.1016/j.jss.2009.11.705
https://doi.org/10.4156/jdcta.vol6.issue21.48
https://doi.org/10.1109/dcds.2011.5970337
https://doi.org/10.1177/1687814017693542
https://doi.org/10.1155/2016/8219424
https://doi.org/10.1016/j.phpro.2011.11.102
https://doi.org/10.1109/TCST.2015.2420619

684 F. Čapkovič

[28] Hu, H. S.—Zhou, M.C.—Li, Z.W.: Liveness Enforcing Supervision of Video
Streaming Systems Using Non-Sequential Petri Nets. IEEE Transactions on Mul-
timedia, Vol. 11, 2009, No. 8, pp. 1457–1465, doi: 10.1109/TMM.2009.2032678.

[29] Hu, H. S.—Zhou, M.C.—Li, Z.W.: Algebraic Synthesis of Timed Supervi-
sor for Automated Manufacturing Systems Using Petri Nets. IEEE Transactions
on Automation Science and Engineering, Vol. 7, 2010, No. 3, pp. 549–557, doi:
10.1109/TASE.2009.2037825.

[30] Hu, H. S.—Zhou, M.C.—Li, Z.W.: Low-Cost and High-Performance Supervision
in Ratio-Enforced Automated Manufacturing Systems Using Timed Petri Nets. IEEE
Transactions on Automation Science and Engineering, Vol. 7, 2010, No. 4, pp. 933–
944, doi: 10.1109/TASE.2010.2046412.

[31] Hu, H. S.—Zhou, M.C.—Li, Z.W.: Supervisor Design to Enforce Production
Ratio and Absence of Deadlock in Automated Manufacturing Systems. IEEE Trans-
actions on Systems, Man, and Cybernetics – Part A: Systems and Humans, Vol. 41,
2011, No. 2, pp. 201–212, doi: 10.1109/TSMCA.2010.2058101.

[32] Hu, H. S.—Zhou, M.C.—Li, Z.W.: Supervisor Optimization for Deadlock Res-
olution in Automated Manufacturing Systems with Petri Nets. IEEE Transactions
on Automation Science and Engineering, Vol. 8, 2011, No. 4, pp. 794–804, doi:
10.1109/TASE.2011.2156783.

[33] Hu, H. S.—Zhou, M.C.—Li, Z.W.: Liveness and Ratio-Enforcing Supervision of
Automated Manufacturing Systems Using Petri Nets. IEEE Transactions on Systems,
Man, and Cybernetics – Part A: Systems and Humans, Vol. 42, 2012, No. 2, pp. 392–
403, doi: 10.1109/TSMCA.2011.2162502.

[34] Hu, H. S.—Zhou, M.C.—Li, Z.W.—Tang, Y.: An Optimization Approach
to Improved Petri Net Controller Design for Automated Manufacturing Systems.
IEEE Transactions on Automation Science and Engineering, Vol. 10, 2013, No. 3,
pp. 772–782, doi: 10.1109/TASE.2012.2201714.

[35] Hu, H. S.—Liu, Y.—Zhou, M.C.: Maximally Permissive Distributed Control
of Large Scale Automated Manufacturing Systems Modeled with Petri Nets. IEEE
Transactions on Control Systems Technology, Vol. 23, 2015, No. 5, pp. 2026–2034,
doi: 10.1109/TCST.2015.2391014.

[36] Hu, H. S.—Su, R.—Zhou, M.C.—Liu, Y.: Polynomially Complex Synthesis
of Distributed Supervisors for Large-scale AMSs Using Petri Nets. IEEE Transac-
tions on Control Systems Technology, Vol. 24, 2016, No. 5, pp. 1610–1622, doi:
10.1109/TCST.2015.2504046.

[37] Hu, H. S.—Liu, Y.: Supervisor Simplification for AMS Based on Petri Nets and
Inequality Analysis. IEEE Transactions on Automation Science and Engineering,
Vol. 11, 2014, No. 1, pp. 66–77, doi: 10.1109/TASE.2013.2288645.

[38] Hu, H. S.—Liu, Y.: Supervisor Synthesis and Performance Improvement for Auto-
mated Manufacturing Systems by Using Petri Nets. IEEE Transactions on Industrial
Informatics, Vol. 11, 2015, No. 2, pp. 450–458, doi: 10.1109/TII.2015.2402619.

https://doi.org/10.1109/TMM.2009.2032678
https://doi.org/10.1109/TASE.2009.2037825
https://doi.org/10.1109/TASE.2010.2046412
https://doi.org/10.1109/TSMCA.2010.2058101
https://doi.org/10.1109/TASE.2011.2156783
https://doi.org/10.1109/TSMCA.2011.2162502
https://doi.org/10.1109/TASE.2012.2201714
https://doi.org/10.1109/TCST.2015.2391014
https://doi.org/10.1109/TCST.2015.2504046
https://doi.org/10.1109/TASE.2013.2288645
https://doi.org/10.1109/TII.2015.2402619

Modelling and Control of RAS within DES by Means of PN – Part 1 685

[39] Hu, H. S.—Zhou, M.C.: A Petri Net-Based Discrete-Event Control of Au-
tomated Manufacturing Systems with Assembly Operations. IEEE Transactions
on Control Systems Technology, Vol. 23, 2015, No. 2, pp. 513–524, doi:
10.1109/TCST.2014.2342664.

[40] Hu, H. S.—Zhou, M.C.—Li, Z.W.—Tang, Y.: Deadlock-Free Control of Auto-
mated Manufacturing Systems with Flexible Routes and Assembly Operations Us-
ing Petri Nets. IEEE Transactions on Industrial Informatics, Vol. 9, 2013, No. 1,
pp. 109–121, doi: 10.1109/TII.2012.2198661.

[41] Huang, Y. S.—Jeng, M.D.—Xie, X. L.—Chung, D.H.: Siphon-Based Dead-
lock Prevention Policy for Flexible Manufacturing Systems. IEEE Transactions on
Systems, Man, and Cybernetics – Part A: System and Humans, Vol. 36, 2006, No. 6,
pp. 1248–1256, doi: 10.1109/TSMCA.2006.878953.

[42] Iordache, M.V.—Antsaklis, P. J.: Supervision Based on Place Invariants:
A Survey. Discrete Event Dynamic Systems, Vol. 16, 2006, No. 4, pp. 451–492, doi:
10.1007/s10626-006-0021-9.

[43] Iordache, M.V.—Antsaklis, P. J.: Supervisory Control of Concurrent Systems:
A Petri Net Structural Approach. Birkhäuser, 2006, doi: 10.1007/0-8176-4488-1.

[44] Karatkevich, A.: Dynamic Analysis of Petri Net-Based Discrete Systems. Springer,
Heidelberg, Lecture Notes in Control and Information Sciences, Vol. 356, 2007, doi:
10.1007/978-3-540-71560-3.

[45] Lautenbach, K.: Linear Algebraic Calculation of Deadlocks and Traps. In:
Voss, K., Genrich, H. J., Rozenberg, G. (Eds.): Concurrency and Nets. Springer,
Berlin, Heidelberg, 1987, pp. 315–336, doi: 10.1007/978-3-642-72822-8 21.

[46] Lawley, M.A.—Reveliotis, S. A.: Deadlock Avoidance for Sequential Resource
Allocation Systems: Hard and Easy Cases. International Journal of Flexible Manu-
facturing Systems, Vol. 13, 2001, No. 4, pp. 385–404, doi: 10.1023/A:1012203214611.

[47] Li, Z.W.—Zhou, M.C.: Elementary Siphons of Petri Nets and Their Application
to Deadlock Prevention in Flexible Manufacturing Systems. IEEE Transactions on
Systems, Man, and Cybernetics, Part A: System and Humans, Vol. 34, 2004, No. 1,
pp. 38–51, doi: 10.1109/TSMCA.2003.820576.

[48] Li, Z.W.—Zhou, M.C.: Control of Elementary and Dependent Siphons in
Petri Nets and Their Application. IEEE Transactions on Systems, Man, Cy-
bernetics, Part A, System, Humans, Vol. 38, 2008, No. 1, pp. 133–148, doi:
10.1109/TSMCA.2007.909548.

[49] Li, Z.W.—Zhou, M.C.: Elementary Siphons of Petri Nets for Efficient Deadlock
Control. In: Zhou, M.C., Fanti, M.P. (Eds.): Deadlock Resolution in Computer-
Integrated Systems. CRC Press, 2005, pp. 309–348, doi: 10.1201/9781315214665.

[50] Li, Z.W.—Wei, N.: Deadlock Control of Flexible Manufacturing Systems via
Invariant-Controlled Elementary Siphons of Petri Nets. The International Journal of
Advanced Manufacturing Technology, Vol. 33, 2007, pp. 24–35, doi: 10.1007/s00170-
006-0452-3.

[51] Li, Z.W.—Zhou, M.C.: Deadlock Resolution in Automated Manufacturing Sys-
tems: A Novel Petri Net Approach. Springer, London, Advances in Industrial Control
Series, 2009, doi: 10.1007/978-1-84882-244-3.

https://doi.org/10.1109/TCST.2014.2342664
https://doi.org/10.1109/TII.2012.2198661
https://doi.org/10.1109/TSMCA.2006.878953
https://doi.org/10.1007/s10626-006-0021-9
https://doi.org/10.1007/0-8176-4488-1
https://doi.org/10.1007/978-3-540-71560-3
https://doi.org/10.1007/978-3-642-72822-8_21
https://doi.org/10.1023/A:1012203214611
https://doi.org/10.1109/TSMCA.2003.820576
https://doi.org/10.1109/TSMCA.2007.909548
https://doi.org/10.1201/9781315214665
https://doi.org/10.1007/s00170-006-0452-3
https://doi.org/10.1007/s00170-006-0452-3
https://doi.org/10.1007/978-1-84882-244-3

686 F. Čapkovič

[52] Li, Z.W.—Wu, N.Q.—Zhou, M.C.: Deadlock Control of Automated Manufac-
turing Systems Based on Petri Nets – A Literature Review. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 42, 2012,
No. 4, pp. 437–462, doi: 10.1109/TSMCC.2011.2160626.

[53] Li, X.Y.—Liu, G.Y.—Li, Z.W.—Wu, N.Q.—Barkaoui, K.: Elementary
Siphon-Based Robust Control for Automated Manufacturing Systems with Multiple
Unreliable Resources. IEEE Access, Vol. 7, 2019, pp. 21006–21019, doi: 10.1109/ac-
cess.2019.2897753.

[54] Liu, G. J.—Jiang, C. J.: Incidence Matrix Based Methods for Computing Repeti-
tive Vectors and Siphons of Petri Net. Journal of Information Science and Engineering,
Vol. 25, 2009, No. 1, pp. 121–136.

[55] Liu, G.Y.—Li, Z.: General Mixed Integer Programming-Based Liveness Test for
System of Sequential Systems with Shared Resources Nets. IET Control Theory and
Applications, Vol. 4, 2010, No. 12, pp. 2867–2878, doi: 10.1049/iet-cta.2009.0557.

[56] Liu, G.—Li, Z.—Zhong, C.: New Controllability Condition for Siphons in a Class
of Generalised Petri Nets. IET Control Theory and Applications, Vol. 4, 2010, No. 5,
pp. 854–864, doi: 10.1049/iet-cta.2009.0264.

[57] Liu, G.—Li, Z.—Zhong, C.: Correction to ‘New Controllability Condition for
Siphons in a Class of Generalised Petri Nets’. IET Control Theory and Applications,
Vol. 7, 2013, No. 4, pp. 632–633, doi: 10.1049/iet-cta.2012.0357.

[58] Liu, G.Y.—Barkaoui, K.: A Survey of Siphons in Petri Nets. Information Scien-
ces, Vol. 363, 2016, pp. 198–220, doi: 10.1016/j.ins.2015.08.037.

[59] Liu, G.Y.—Barkaoui, K.: Necessary and Sufficient Liveness Condition of
GS3PR Petri Nets. International Journal of Systems Science, Vol. 46, 2015, No. 7,
pp. 1147–1160, doi: 10.1080/00207721.2013.827257.

[60] Liu, G. Y—Li, Z.W.—Al-Ahmari, A.M.: Liveness Analysis of Petri Nets Using
Siphons and Mathematical Programming. IFAC Proceedings Volumes, Vol. 47, 2014,
No. 2, pp. 383–387, doi: 10.3182/20140514-3-FR-4046.00078.

[61] Liu, D.—Barkaoui, K.—Zhou, M.C.: On Intrinsically Live Structure of a Class
of Generalized Petri Nets Modeling FMS. IFAC Proceedings Volumes, Vol. 45, 2012,
No. 29, pp. 187–192, doi: 10.3182/20121003-3-MX-4033.00032.

[62] Liu, G.Y.—Li, Z.W.—Barkaoui, K.—Al-Ahmari, A.M.: Robustness of Dead-
lock Control for a Class of Petri Nets with Unreliable Resources. Information Sciences,
Vol. 235, 2013, pp. 259–279, doi: 10.1016/j.ins.2013.01.003.

[63] Liu, G.Y.—Barkaoui, K.: A Survey of Siphons in Petri Nets. Information Scien-
ces, Vol. 363, 2016, pp. 198–220, doi: 10.1016/j.ins.2015.08.037.

[64] Liu, G.—Li, P.—Li, Z.—Wu, N.: Robust Deadlock Control for Automated Manu-
facturing Systems with Unreliable Resources Based on Petri Net Reachability Graphs.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 49, 2019, No. 7,
pp. 1371–1385, doi: 10.1109/TSMC.2018.2815618.

[65] Ma, Z.Y.—Li, Z.W.—Giua, A.: Computation of Admissible Marking Sets in
Weighted State Machines by Dynamic Programming. Proceedings of the 2017 IEEE
56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia,
2017, pp. 4847–4852, doi: 10.1109/CDC.2017.8264375.

https://doi.org/10.1109/TSMCC.2011.2160626
https://doi.org/10.1109/access.2019.2897753
https://doi.org/10.1109/access.2019.2897753
https://doi.org/10.1049/iet-cta.2009.0557
https://doi.org/10.1049/iet-cta.2009.0264
https://doi.org/10.1049/iet-cta.2012.0357
https://doi.org/10.1016/j.ins.2015.08.037
https://doi.org/10.1080/00207721.2013.827257
https://doi.org/10.3182/20140514-3-FR-4046.00078
https://doi.org/10.3182/20121003-3-MX-4033.00032
https://doi.org/10.1016/j.ins.2013.01.003
https://doi.org/10.1016/j.ins.2015.08.037
https://doi.org/10.1109/TSMC.2018.2815618
https://doi.org/10.1109/CDC.2017.8264375

Modelling and Control of RAS within DES by Means of PN – Part 1 687

[66] Ma, Z.Y.—Li, Z.W.—Giua, A.: Design of Optimal Petri Net Controllers for Dis-
junctive Generalized Mutual Exclusion Constraints. IEEE Transactions on Automatic
Control, Vol. 60, 2015, No. 7, pp. 1774–1785, doi: 10.1109/TAC.2015.2389313.

[67] Ma, Z.Y.—Li, Z.W.—Giua, A.: A Constraint Transformation Technique for Petri
Nets with Certain Uncontrollable Structures. IFAC Proceedings Volumes, Vol. 47,
2014, No. 2, pp. 66–72, doi: 10.3182/20140514-3-fr-4046.00085.

[68] Ma, Z.Y.—Li, Z.W.—Giua, A.: Petri Net Controllers for Disjunctive General-
ized Mutual Exclusion Constraints. Proceedings of the 2013 IEEE 18th Conference
on Emerging Technologies and Factory Automation (ETFA), Cagliari, Italy, 2013,
pp. 1–8, doi: 10.1109/ETFA.2013.6648003.

[69] Ma, Z.Y.—Li, Z.W.—Giua, A.: Petri Net Controllers for Generalized Mutual
Exclusion Constraints with Floor Operators. Automatica, Vol. 74, 2016, pp. 238–246,
doi: 10.1016/j.automatica.2016.07.042.

[70] Minoux, M.—Barkaoui, K.: Deadlocks and Traps in Petri Nets as Horn-
Satisfiability Solutions and Some Related Polynomially Solvable Problems. Discrete
Applied Mathematics, Vol. 29, 1990, No. 2-3, pp. 195–210, doi: 10.1016/0166-
218X(90)90144-2.

[71] Moody, J.O.—Antsaklis, P. J.: Petri Net Supervisors for DES with Uncon-
trollable and Unobservable Transitions. IEEE Transactions on Automatic Control,
Vol. 45, 2000, No. 3, pp. 462–476, doi: 10.1109/9.847725.

[72] Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, Vol. 77, 1989, No. 4, pp. 541–580, doi: 10.1109/5.24143.

[73] Nakamoto, F.Y.—Miyagi, P. E.—dos Santos Filho, D. J.: Automatic Gen-
eration of Control Solution for Resource Allocation Using Petri Net Model. Produçaõ
(International Journal of Advanced Manufacturing Technology), Vol. 19, 2009, No. 1,
pp. 8–26, doi: 10.1590/S0103-65132009000100002.

[74] Nakamoto, F.Y.—Miyagi, P. E.—dos Santos Filho, D. J.: Resources Allo-
cation Control in Flexible Manufacturing Systems Using the Deadlock Avoidance
Method. ABCM (Brazilian Society of Mechanical Science and Engineering), ABCM
Symposium Series in Mechatronics, Vol. 3, 2008, pp. 454–460.

[75] Park, J.—Reveliotis, S. A.: Deadlock Avoidance in Sequential Resource Allo-
cation Systems with Multiple Resource Acquisitions and Flexible Routings. IEEE
Transactions on Automatic Control, Vol. 46, 2001, No. 10, 2001, pp. 1572–1583, doi:
10.1109/9.956052.

[76] Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer, 2013, doi: 10.1007/978-3-642-33278-4.

[77] Reisig, W.: Petri Nets. Springer, Berlin, Heidelberg, EATCS Monographs on The-
oretical Computer Science, Vol. 4, 1985, doi: 10.1007/978-3-642-69968-9.

[78] Reveliotis, S. A.—Ferreira, P.M.: Deadlock Avoidance Policies for Automated
Manufacturing Cells. IEEE Transactions on Robotics and Automation, Vol. 12, 1996,
No. 6, pp. 845–857, doi: 10.1109/70.544768.

[79] Reveliotis, S. A.—Lawley, M.A.—Ferreira, P.M.: Polynomial-Complexity
Deadlock Avoidance Policies for Sequential Resource Allocation Systems. IEEE

https://doi.org/10.1109/TAC.2015.2389313
https://doi.org/10.3182/20140514-3-fr-4046.00085
https://doi.org/10.1109/ETFA.2013.6648003
https://doi.org/10.1016/j.automatica.2016.07.042
https://doi.org/10.1016/0166-218X(90)90144-2
https://doi.org/10.1016/0166-218X(90)90144-2
https://doi.org/10.1109/9.847725
https://doi.org/10.1109/5.24143
https://doi.org/10.1590/S0103-65132009000100002
https://doi.org/10.1109/9.956052
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1109/70.544768

688 F. Čapkovič

Transaction on Automatic Control, Vol. 42, 1997, No. 10, pp. 1344–1357, doi:
10.1109/9.633824.

[80] Reveliotis, S. A.: Logical Control of Complex Resource Allocation Systems. Foun-
dations and Trends in Systems and Control, Vol. 4, 2017, No. 1-2, pp. 1–223, doi:
10.1561/2600000010.

[81] Reveliotis, S. A.: Coordinating Autonomy: Sequential Resource Allocation Sys-
tems for Automation. IEEE Robotics and Automation Magazine, Vol. 22, 2015, No. 2,
pp. 77–94, doi: 10.1109/MRA.2015.2401295.

[82] Reveliotis, S. A.: On the Siphon-Based Characterization of Liveness in Sequential
Resource Allocation Systems. In: van der Aalst, W.M.P., Best, E. (Eds.): Applica-
tions and Theory of Petri Nets 2003 (ICATPN 2003). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2679, 2003, pp. 241–255, doi: 10.1007/3-
540-44919-1 17.

[83] Row, T.C.—Syu, W.M.—Pan, Y. L.—Wang, C.C.: One Novel and Opti-
mal Deadlock Recovery Policy for Flexible Manufacturing Systems Using Iterative
Control Transitions Strategy. Mathematical Problems in Engineering, Vol. 2019,
Art. No. 4847072, 12 pp., doi: 10.1155/2019/4847072.

[84] Schmidt, K.: Verification of Siphons and Traps for Algebraic Petri Nets. In:
Azéma, P., Balbo, G. (Eds.): Application and Theory of Petri Nets 1997 (ICATPN
1997). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1248,
1997, pp. 427–446, doi: 10.1007/3-540-63139-9 49.

[85] Taoka, S.—Furusato, S.—Watanabe, T.: A Heuristic Algorithm FSDC Based
on Avoidance of Deadlock Components in Finding Legal Firing Sequences of Petri
Nets. In: van der Aalst, W.M.P., Best, E. (Eds.): Applications and Theory of Petri
Nets 2003 (ICATPN 2003). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 2679, 2003, pp. 417–439, doi: 10.1007/3-540-44919-1 26.

[86] Tricas, F.—Ezpeleta, J.: Computing Minimal Siphons in Petri Net Models of Re-
source Allocation Systems: A Parallel Solution. IEEE Transactions on Systems, Man,
and Cybernetics – Part A: Systems and Humans, Vol. 36, 2006, No. 3, pp. 532–539,
doi: 10.1109/TSMCA.2005.855751.

[87] Tricas, F.: Deadlock Analysis, Prevention and Avoidance in Sequential Resource
Allocation Systems. Ph.D. Thesis, University of Zaragoza, Zaragoza, Spain, 2003.
Available at: https://www.researchgate.net/publication/33419595.

[88] Wang, Y.—Lafortune, S.—Kelly, T.—Kudlur, M.—Mahlke, S.: The The-
ory of Deadlock Avoidance via Discrete Control. ACM SIGPLAN Notices, Vol. 44,
2009, No. 1, pp. 252–263, doi: 10.1145/1594834.1480913.

[89] Wang, Y.—Kelly, T.—Kudlur, M.—Mahlke, S.—Lafortune, S.: The
Application of Supervisory Control to Deadlock Avoidance in Concurrent Soft-
ware. Proceedings of 9th IEEE/IFAC International Workshop on Discrete
Event Systems (WODES ’08), Göteborg, Sweden, 2008, pp. 287–292, doi:
10.1109/WODES.2008.4605961.

https://doi.org/10.1109/9.633824
https://doi.org/10.1561/2600000010
https://doi.org/10.1109/MRA.2015.2401295
https://doi.org/10.1007/3-540-44919-1_17
https://doi.org/10.1007/3-540-44919-1_17
https://doi.org/10.1155/2019/4847072
https://doi.org/10.1007/3-540-63139-9_49
https://doi.org/10.1007/3-540-44919-1_26
https://doi.org/10.1109/TSMCA.2005.855751
https://www.researchgate.net/publication/33419595
https://doi.org/10.1145/1594834.1480913
https://doi.org/10.1109/WODES.2008.4605961

Modelling and Control of RAS within DES by Means of PN – Part 1 689

[90] Wegrzyn, A.—Karatkevich, A.—Bieganowski, J.: Detection of Deadlocks
and Traps in Petri Nets by Means of Thelen’s Prime Implicant Method. Interna-
tional Journal of Applied Mathematics and Computer Science, Vol. 14, 2004, No. 1,
pp. 113–121.

[91] Wu, W.H.—Chao, D.Y.: Controllability of Weakly Dependent Siphons under
Elementary-Siphon Control. Transactions of the Institute of Measurement and Con-
trol, Vol. 38, 2016, No. 8, pp. 941–955, doi: 10.1177/0142331214568606.

[92] Yan, M.M.— Zhu, R.M.—Li, Z.W.—Wang, A.—Zhou, M.C.: A Siphon-
Based Deadlock Prevention Policy for a Class of Petri Nets – S3PMR. Proceedings
of the 17th World Congress of the International Federation of Automatic Control
(IFAC), Seoul, Korea, 2008, Vol. 6, 2008, pp. 3352–3357. Available at: http://toc.
proceedings.com/04672webtoc.pdf. ISBN: 978-1605607580.

[93] Yan, M.M.—Li, Z.W.—Wei, N.—Zhao, M.: A Deadlock Prevention Policy for
a Class of Petri Nets S3PMR. Journal of Information Science and Engineering, Vol. 25,
2009, No. 1, pp. 167–183.

[94] Yue, H.—Xing, K.Y.—Hu, H. S.—Wu, W.M.—Su, H.Y.: Petri-Net-Based
Robust Supervisory Control of Automated Manufacturing Systems. Control Engi-
neering Practice, Vol. 54, 2016, pp. 176–189, doi: 10.1016/j.conengprac.2016.05.009.

Frantǐsek �Capkovi�c received his Master’s degree in 1972 from
the Faculty of Electrical Engineering of the Slovak Technical
University, Bratislava, Slovakia. Since 1972 he has been work-
ing with the Slovak Academy of Sciences (SAS), Bratislava, in
1972–1991 at the Institute of Technical Cybernetics, in
1991–2001 at the Institute of Control Theory and Robotics and
in 2001 till now at the Institute of Informatics. In 1980 he
received his Ph.D. from SAS, since 1998 serving as Associate
Professor. He works in the area of modelling, analysing and in-
telligent control of Discrete-Event Systems (DES) and Hybrid

Systems. He is the author of more than 240 publications.

https://doi.org/10.1177/0142331214568606
http://toc.proceedings.com/04672webtoc.pdf
http://toc.proceedings.com/04672webtoc.pdf
https://doi.org/10.1016/j.conengprac.2016.05.009

Computing and Informatics, Vol. 40, 2021, 690–728, doi: 10.31577/cai 2021 3 690

WHAT IS YOUR CODE CLONE DETECTION
AND EVOLUTION RESEARCH MADE OF?

Chaman Wijesiriwardana

University of Moratuwa, Katubedda
Sri Lanka
e-mail: chaman@uom.lk

Prasad Wimalaratne

University of Colombo School of Computing
Reid Avenue, Colombo 7, Sri Lanka
e-mail: spw@ucsc.cmb.ac.lk

Abstract. Over the past few decades, clone detection and evolution have become
a major area of study in software engineering. Clone detection experiments present
several challenges to researchers such as accurate data collection, selecting proper
code detection algorithms, and understanding clone evolution phenomena. This
paper attempts to facilitate clone detection and evolution research by providing
a structured and systematic mechanism to conduct experiments. Clone detection
experiments usually consist of several tasks such as fetching data from a version con-
trol system, performing necessary pre-processing activities, and feeding the data to
a clone detection algorithm. Therefore, a particular clone detection experiment can
interpret as a meaningful combination of such tasks into a scientific workflow. In
this work, the concrete tasks in a code clone detection workflow are referred to as
Building Blocks. This paper presents a useful collection of Building Blocks iden-
tified based on a systematic literature review, and a conceptual framework of an
experimental testbed to facilitate clone detection experiments. The reusability of
the Building Blocks was validated using four case studies selected from the litera-
ture. The validation results confirm the reusability and the expressiveness of the
Building Blocks in new ventures. Besides, the proposed experimental testbed is
proven beneficial in conducting and replicating clone detection experiments.

https://doi.org/10.31577/cai_2021_3_690

Building Blocks of Code Clone Detection 691

Keywords: Code clone detection, clone evolution, scientific workflows, building
blocks, experiemental testbed

1 INTRODUCTION

Code clones are source code fragments that are similar or identical in terms of text,
structure, or meaning. During software development, code fragments are copied
and pasted with or without major alternations. The pasted portion of the code
is said to be a clone, and this practice is known as code cloning. This has been
a common practice in the software development process due to several reasons such
as limitations of the programming languages, delaying refactoring, and high code
reuse [46]. The negative impacts of code cloning has been reported in several stud-
ies [34, 3, 8]. The consequences of code cloning, clone evolution, and clone removal
have both positives and negatives. Fowler et al. [24] were one of the firsts to argue
that code cloning is one of the leading causes of bad smells in software systems. On
the other hand, some researchers counter-argued by highlighting several positives
of cloning such as improved productivity [5, 43, 71]. According to [15], there can
be organizational reasons to copy-paste code. Therefore, a systematic analysis is
required before the clone removal. As a result, clone removal can sometimes directly
associate with a considerable risk factor. More research along this direction should
be conducted to get a better understanding, and the uncertainties mentioned above
evidently emphasize the need for systematic Code Clone Detection and Evolution
(CCDE) experiments.

This paper contributes to this field of study by proposing a structured and or-
ganized way to plan and conduct CCDE experiments. Clone detection studies are
conducted based on a well-defined logical process with some common steps. For
example, studies typically start with mining activity, e.g., by retrieving data from
a version control system. Then the mined source code is processed and transformed
into an intermediate format, such as tokens, code metrics, Abstract Syntax Trees
(ASTs), or Program Dependency Graphs (PDGs). This data is then fed into a code
clone detection algorithm to extract the clones. Finally, the detected code clones
can be further subjected to clone genealogy analysis (i.e., clone patterns, visual-
ization) to understand clone evolution better. This research insists that the steps
mentioned above can adequately arrange and combine into a well-defined scientific
workflow [18, 80]. Each step represents a particular clone detection task, such as
mining the code base, calculating metrics, or generating an AST. These tasks may
be in different representation levels and the effort required to perform the tasks may
have significant differences. However, the identification of representation levels and
the effort required for the tasks are out of the scope of this paper. In this paper,
these concrete tasks are referred to as Building blocks for CCDE research. We be-
lieve that the concept of Building blocks will provide direct solutions to some of the
common challenges such as accurate data extraction, data cleaning, and pick the

692 C. Wijesiriwardana, P. Wimalaratne

correct clone detection technique in conducting CCDE studies. Therefore, Building
blocks provide ways to thoroughly comprehend the clone detection process as well
as to replicate previous experiments systematically. This work devised a conceptual
framework and a proof-of-concept experimental testbed to conduct CCDE exper-
iments, which could be extended to conduct other types of software engineering
experiments as well.

This paper intends to address the following Research Questions (RQs):

RQ1: Is it possible to identify reusable data flow-based Building Blocks for code
clone detection and evolution from the existing literature and express them in
a unified manner?

RQ2: How to interlink such Building Blocks categorized into multiple abstraction
levels to develop a conceptual framework of an experimental testbed to conduct
code clone detection and evolution experiments?

Based on the research questions, this paper presents three main contributions.
First, a novel concept and a methodology for identifying re-usable building blocks
from various research workflows in the area of code clone detection. Second, a con-
crete collection of useful formal building blocks was collected via the above method-
ology. Finally, a conceptual framework of an experimental testbed by interlinking
the identified building blocks to conduct and replicate previous CCDE experiments.

The remainder of this paper is organized as follows: Section 2 describes the back-
ground of software evolution analysis and code clone detection. Section 3 details our
research methodology to identify building blocks from the analysis workflows. In
Section 4, we present our catalog of building blocks extracted via the literature sur-
vey followed by the conceptual framework of the experimental testbed in Section 5.
Then we present validation in Section 6 followed by the discussion and conclusion
in Section 7 and Section 8, respectively.

2 BACKGROUND

Analysis of software evolution is known as an enormously dynamic field of research
in software engineering. Understanding the evolution of large-scale software systems
is a demanding problem for several reasons: huge amounts of information have to
be considered, and historical data has to be analyzed. Software evolution analysis
mainly focuses on two main aspects; to better understand the reasons for its existing
problems and to forecast its future developments [17]. Software evolution analysis
experiment such as CCDE is a classic example to address both of these goals. First,
we summarize some of the pioneer surveys in CCDE and indicate how our approach
conceptually differs from the existing surveys. Then we dig into the CCD techniques
and tools followed by a summary of the existing approaches for software engineer-
ing data analytics. Finally, we briefly describe the need for a novel mechanism to
facilitate the researchers in conducting CCDE experiments.

Building Blocks of Code Clone Detection 693

2.1 Surveys in Code Clone Detection and Evolution

A considerable number of code clone related survey papers are published in the past.
Koshke [46] was one of the first to write a survey paper on code clone detection.
That paper reports some essential aspects such as different categorizations of clone
types, root causes for cloning, current opinions of cloning, empirical studies on the
evolution of clones, benchmarks for clone detector evaluations, and presentation
issues.

Roy et al. [70] presented a qualitative comparison and evaluation of the existing
literature in clone detection techniques and tools. A more detailed description can
be found in [68]. The findings of their research could help new potential users of
clone detection techniques in understanding the range of available techniques and
tools and selecting those most appropriate for their needs. Ratten et al. [67] perform
a systematic review of existing code clone approaches based on 213 identified papers.
The results are presented in different dimensions like classification of clone research,
code clone management as cross-cutting domain, types of clones, clone detection
tools, and clone detection approaches. Similar to [68], this approach also intends
to facilitate researchers in conducting code clone detection researches. Sheneamer
et al., [76] also surveyed code clone detection. The aim of this paper goes beyond
comparing the tools and techniques. Instead, it presents several observations in
developing hybrid techniques in the future. Pate et al. present a survey paper in
code clone evolution., [63]. They have indicated that human-based empirical studies
and classification of clone evolution patterns as two significant areas for further work.
Ain et al. [3] reviewed 54 journal papers and conference papers, which emphasized
the need to introduce novel approaches to detect all four types of clones. Walker
et al. [84] presented a systematic mapping study on existing CCD tools with regards
to technique, open-source nature, and language coverage. Finally, they propose some
possible future directions for code-clone detection tools.

2.2 Code Clone Detection: Techniques and Tools

Code reuse is a frequent activity in software development. Code reusing can be in
the form of copying a portion of the code and pasting it with or without modifica-
tions. This type of reuse known as code cloning and the pasted code fragment is
called a clone of the original code [70]. Nevertheless, during the maintenance stage,
identifying the original code fragment and the copied code fragment is a non-trivial
task. Several clone detection approaches have been proposed in the literature span-
ning from textual to semantic approaches. However, this paper does not consider
the techniques and tools proposed for cross-language clone detection [57].

Text based clone detection: During this approach, code fragments are compared
with each other in the form of texts; strings or lexemes and similar portions are
identified as code clones [67]. One of the earliest clone detection approaches
was proposed by Johnson [36, 38]. He applied a fingerprinting mechanism for

694 C. Wijesiriwardana, P. Wimalaratne

comparison of source code. Ducasse et al. [21] developed a language independent
clone detection tool, duploc, which aims at overcoming the obstacle of having
the right parser for the right dialect for every language. However, this approach
requires a significant effort in pre-processing and transforming the source code
into the required syntax. Duploc cannot detect Type-3 clones or deal with
modifications and insertions in copy-pasted code [76]. NICAD [69] is a text-
based clone detection tool that is capable of effectively detecting clones up to
type 3. It is based on lightweight parsing to implement code normalization
and code filtering. Seunghak and Jeong [49] presented a text-based code clone
detection technique. They have implemented Similar Data Detection (SDD)
tool, which is an Eclipse plug-in. Dou et al. [20] has effectively used text-based
clone detection technique in detecting clones in spreadsheets.

Token based clone detection: Token-based clone detection techniques are con-
sidered better than text-based detection. In this approach, lexical analysis is
used to extract the tokens from the source code by lexical analysis. One of the
focal points behind token-based clone detection algorithms is to perform suffix
tree or suffix array based token-to-token comparisons. A suffix tree is a data
structure that exposes the internal structure of a string in a deeper way [28].
Suffix array is also a conceptually simple data structure which is initially devel-
oped for on-line string searches [54]. The central advantage of suffix arrays over
suffix trees is that, in practice, suffix arrays use three to five times less space.
CCFinder [40] is a well-known tool of this category, which finds identical subse-
quences by using a suffix tree matching algorithm. The research community for
code clone analysis as well as code clone management broadly uses CCFinder.
Dup [7, 6] is another token-based clone detection tool, which divides the source
files into tokens by a lexical analyzer. CCLEARNER [51] is a token based clone
detection tool developed by leveraging deep learning. However, approaches such
as [69] and [74] are not exploiting suffix trees or arrays in detecting code clones.
For example, Sajanai et al., [74] uses an optimized partial index and filtering
heuristics to achieve large-scale clone detection. This technique has used in
recent studies as well [73].

Tree-based clone detection: In tree-based clone detection algorithms, the source
code transformed into a parse tree or an abstract syntax tree. A parse tree is
a data structure for the parsed representation of a statement in a particular code
fragment [12]. The usefulness of generating the parse tree is that, by parsing
two code fragments and comparing their parse trees, it is possible to determine
whether the code fragments are identical or not. Abstract Syntax Tree is also
a special kind of parse tree. In parse trees, the roots of subtrees represent
nonterminal symbols of the grammar, while leaves represent terminal grammar
symbols. In an abstract syntax tree, operators represent root nodes, while leaves
symbolize operands [60]. Once the trees are generated, tree-matching algorithms
are used to find the similar code fragments. One of the first approaches of this
category was presented by Yang [89]. CloneDR [11] is another token-based clone

Building Blocks of Code Clone Detection 695

detection tool, which can detect exact and near-miss clones using hashing and
dynamic programming. Wahler et al. [83] presented a technique to find clones
at a more abstract level by converting abstract syntax tree to XML format.

Program dependency graph based clone detection: A program dependence
graph (PDG) is a graph representation of a code fragment. In PGDs, basic
statements such as variable declarations, assignments, and function calls are
represented by program vertices. Edges between program vertices in PDGs rep-
resent the data and control dependencies between statements [23]. In Program
Dependency Graphs (PDG), the source code is abstracted to extract the con-
trol flow and data flow graphs. Krinke [48] has presented a methodology for
identifying similar code based on finding similar maximal sub-graphs by using
the k-limiting technique. Hugo and Kusumoto [29] proposed a methodology to
enhance PGD based clone detection based on PDG specializations and detection
heuristics. Clone detection tools based on PGDs, as proposed in [44] and [87],
can be used to identify type 4 clones.

Metric based clone detection: In a metric-based approach [45, 55] the source
code is divided into smaller units (e.g., one line, one method, one class) and
metrics are calculated for each unit. The metrics of each unit are compared,
and those with the same values are identified as clones. Examples of metrics are
the number of function calls within a unit or the cyclomatic complexity of the
unit. The type of metrics used by each tool impacts the language dependency
of the tool.

Hybrid clone detection: Hybrid clone detection techniques typically employ
a combination of clone detection techniques. A hybrid approach aims at over-
whelming the problems encountered by specific techniques. Leitao [50] presents
a hybrid approach that combines syntactic techniques and semantic techniques
with specialized comparison functions. Hummel et al. [33] present ConQat,
which is an incremental index-based hybrid technique to detect clones. Agrawal
et al. [2] described a hybrid approach by combining token-based and textual ap-
proaches to find code cloning. Hu et al. [31, 32] recently proposed BINMATCH,
which is a hybrid approach to detect binary clone functions.

2.3 Code Clone Evolution

Software evolves from one version to another when adding new features, getting
involved with fixing bugs, improving performance and increasing reliability. As
a result, code clones also evolve simultaneously together with software systems.
Therefore, analysis of code clone evolution is critical to comprehend the effect of
code clones to the entire software system.

There are several noteworthy studies in the literature on code clone evolution
with a particular focus on clone genealogies. Kim et al. [43] has pioneered one of the
first investigations on code clone evolution. That paper defined clone genealogies
as the history of how each element in a group of clones has changed concerning

696 C. Wijesiriwardana, P. Wimalaratne

other elements in the same group. In that research, they emphasized the need for
understanding clone genealogies to maintain code clones better. Saha et al. [71]
extended the research conducted by Kim et al. [43] by incorporating different di-
mensions. They have presented an empirical study to investigate clone genealogies
using 17 open source software systems. Clone evolution related investigations have
been further reported by Göde [26], Barbour et al. [8] and Krinke [47].

2.4 Software Engineering Data Analytics

Existing frameworks for software engineering data analytics based on either generic
query languages such as SQL or domain-specific languages. Some of the approaches
that directly follow the standard SQL syntax are Gitana [16], AlitheiaCore [27]
and MetricMiner [77]. However, such approaches not specifically targeted at facil-
itating CCDE experiments. Thus, CCDE specific functionalities are not available.
Besides, the domain-specific languages such as Boa [22] and QWALKEKO [78] re-
quires a prior understanding of the language itself. Hence, the usability of such
frameworks, particularly, for novice researchers is questionable.

2.5 Summary

Our approach is conceptually different from the previous work. Existing survey
papers on CCDE mainly focused on identifying the different techniques, tools, com-
pare them, selecting appropriate technique, and present the observations on future
CCD tools. This paper presents a different dimension to facilitate researchers in
understanding and conducting code clone detection experiments by utilizing a set
of Building Blocks that are meant to CCD experiments. For example, conducting
comparison studies is hard for the researchers as the clone detection techniques are
naturally complex as there are many different pre-processing activities, transfor-
mation activities, and algorithms are involved. Therefore, a unified framework to
facilitate replication studies is important, and to the best of our knowledge, such
frameworks are not adequately presented in the literature. Thus, we believe that
our approach would shed light on future directions such as [63].

3 APPROACH

This research aims at providing a systematic way to conduct CCDE experiments by
identifying reusable tasks from the literature. Initially, a literature review on pa-
pers published on reputed software engineering conferences such as ICSE1, MSR2,
ICSM(E)3 and FSE4 conducted for 11 years (2010-2020). All the papers are ex-

1 International Conference on Software Engineering
2 Working Conference on Mining Software Repositories
3 International Conference on Software Maintenance (and Evolution)
4 Foundations of Software Engineering

Building Blocks of Code Clone Detection 697

tracted from the main track of each of the conferences. First, the papers published
on CCDE has filtered and carefully investigated the methodology section in each
article. However, the study is not strictly limited to the baseline papers on the
mentioned conferences in the given duration. We further traced back and forth to
find related work published outside the selected papers as well. Based on this study,
a mechanism has introduced to drill-down the experiments to identify the concrete,
reusable tasks. From the clone detection experiments, four main activities has iden-
tified: data gathering, pre-processing, clone detection and post-processing. Such
activities are implemented via smaller tasks or sub-tasks, which refers to as Build-
ing Blocks in this paper. Finally, we proposed a method to represent the building
blocks using a semi-structured textual notation and a graphical notation. Below we
provide an overview of our proposed methodology.

This review can be further extended by considering the other reputed software
engineering conferences. However, the objective of this study is to find a useful
collection of building blocks to conduct CCDE experiments. Thus, the papers pub-
lished in the selected conferences were rich enough to identify the building blocks
for CCDE.

3.1 Data Collection

The process of selecting suitable research publications for a particular review has
two major problems: identifying the relevant work and assessing the quality of the
selected studies. Therefore, it was decided to minimize the risk of errors by mainly
reviewing the papers published in well-reputed software engineering conferences.
A literature review is conducted in the proceedings of the ICSE, MSR, ICSM(E)
and FSE conferences for eleven years (2010–2020). From that the papers published
on code clone detection has filtered out. Table 1 presents a summary of the reviewed
papers.

Year
No. of Papers Reviewed

ICSE MSR ICSM(E) FSE

2010 1 2 3 3

2011 2 1 3 0

2012 4 0 3 0

2013 3 2 3 1

2014 3 3 7 1

2015 0 1 2 1

2016 1 0 1 1

2017 2 1 2 0

2018 1 2 2 1

2019 3 1 2 0

2020 3 0 1 0

Table 1. Number of reviewed clone detection papers

698 C. Wijesiriwardana, P. Wimalaratne

3.2 Drilling Down Code Clone Detection Experiments to Building Blocks

Scientific workflows are meant to be data flow oriented, which facilitates stream-
lining of scientific tasks to make significant scientific discoveries [53]. They widely
recognized as a useful mechanism to describe and manage complex scientific anal-
yses. Scientific workflows provide means to specify how a specific experiment can
be modeled and carried out. In such workflows, relevant activities need to sequence
in a pipeline to create a workflow that can execute a particular analysis experi-
ment. Therefore, a specific CCDE experiment can interpret as a problem of creating
a suitable workflow and running it without interruptions. In this research, scientific
workflows are considered to be the top level abstraction of CCDE experiments.

Activities: A CCDE workflow is composed of activities. Activities are the tasks
and sub-tasks that directly associated with CCDE experiments such as fetching
data from VCS, calculating metrics or removing test files. In this paper, tasks
that serve a specific analysis or perform a specific operation are grouped under
a particular Activity. For example, extracting data from a VCS is an essential
task in CCDE experiments. Therefore, fetch data from GIT, fetch data from
SVN and fetch data from CVS can be grouped under an activity called data
gathering. Similarly, tasks such as snapshot generation and token generation
can pool under the activity called pre-processing. As explained in [43], though
it is not necessary to follow all the steps, a typical clone detection process fol-
lows the key activities namely pre-processing, transformation, match detection,
formatting, filtering, and aggregation. We slightly modified the activities while
keeping the core concept unchanged to fit into our context, as shown in Figure 1.

Figure 1. Common activities in a code clone detection and evolution workflow

1. Data gathering: During this phase, historical data about software projects
are extracted from version control systems (e.g., CVS, SVN, GIT). Given
that one of the leading contributions of this research is to identify reusable
BBs in CCDE research, the other variant of data extractions such as gath-
ering data from binaries has not considered.

2. Pre-processing: Data pre-processing can be in different forms such as data
cleaning, data conversion or data integration. For example, data originating
from the version control repositories need to be converted to different for-
mats to facilitate various kinds of CCDE experiments. Furthermore, data
from a VCS has to tokenize before feeding it into a token-based clone de-
tection algorithm. The pre-processing steps can be carried out within the

Building Blocks of Code Clone Detection 699

clone detectors as well. However, separating it out from clone detectors has
several notable advantages. For instance, novice researchers can better un-
derstand the fine-grained details of the entire CCDE process. Besides, the
BBs in the pre-processing stage can be utilized in various software evolution
experiments.

3. Clone detection: During this step, how the different clone detection ap-
proaches function in different settings are described. For example, after
tokenizing the source code in the pre-processing stage, it has to be fed into
a token-based clone detection algorithm. Similarly, metrics-based clone de-
tectors depend on the metrics that generated in the pre-processing step.

4. Clone evolution: The primary goal of this step is to investigate how the
clone detection results can utilize in clone evolution. For example, code
clone genealogies provide useful insights to express how code clones change
over multiple versions of the software.

Building Blocks: Activities are implemented via Building Blocks (BBs). A build-
ing block noticeably represents a specific analysis task such as fetch data from
GIT, fetch data from SVN, generate snapshots or create ASTs. Figure 2 is
a graphical representation of such BBs. Each BB is responsible only for a small
fragment of functionality. Dependencies between BBs within a workflow de-
termined by a list of parameters such as input and output parameters, pre-
conditions and post-conditions. Input parameters and the pre-conditions are
directly associated with Predecessor BBs, whereas output parameters and the
post-conditions are directly associated with Follow-up BBs. Predecessor BBs
and Follow-up BBs are two properties used to represent a particular BB, which
explains in the next paragraph. For example, if an input parameter of an ac-
tivity B is connected to an output parameter of activity A, it means that ac-
tivity A must execute before activity B, and the data produced by activity A is
consumed by activity B. The connection logic is explained in Section 6.2 under
the implementation details of the proposed experimental testbed. Therefore,
more comprehensively, we can infer that CCDE experiments consist of activi-
ties (e.g., data gathering, pre-processing), which are implemented via building
blocks (e.g., SVN miner, AST generator).

Representing Building Blocks: A building block may consist of processes, data
sources, operators and relationships. A process is a concrete example of activity,
as mentioned earlier (e.g., mine version control repositories, mine bug reposito-
ries). The data source can be a source code repository such as Git, a bug
repository such as Bugzilla, or any other intermediate location that keeps data.
Operators are the basic operations that could perform on data (e.g., filter, sort).
Likewise, a set of well-defined building blocks will be created, offering the option
to use and combine such building blocks into a workflow to solve or to better
understand complex CCD tasks.The usefulness and reusability of BBs mainly
depend on the degree of expressiveness of such BBs. This expressiveness allows
easily identifying when and why to use specific BBs, as well as when and why not

700 C. Wijesiriwardana, P. Wimalaratne

Figure 2. Building blocks in a CCDE workflow

use them. As per our understanding, there is no universally accepted standard
for representing any sort of analysis tasks, in our case Building Blocks. However,
we consider the following properties are rich enough to effectively describe a BB.

• Building block name: name of the BB

• Activity name: high level activity of the BB

• Problem(situation): why and when to apply the BB

• Solution: how to apply the BB and what it exactly does

• Alternatives: what other BBs could be used to replace this BB

• Predecessors: what other BBs should be executed prior to this BB

• Follow-up BBs: what other BBs could be executed after this BB

• References: how other researchers have used this BBs in conducting CCD
experiments

4 BUILDING BLOCKS FOR CODE CLONE DETECTION
AND EVOLUTION

This section presents a catalog of BBs, which classified into four main activities: data
gathering, pre-processing, clone detection and post-processing. Such BBs further
described by using the properties mentioned in Section 3.2. Individual BBs are
not represented graphically. However, an overall view of BBs and how they can
meaningfully interconnect with other BBs provided in Figure 3. This representation
goes beyond a simple classification, but provide insights to the researchers on how
to utilize and compose BBs to solve a particular analysis task.

Building Blocks for Data Gathering: Software evolution experiments typically
require information about software projects that are collected via repository

Building Blocks of Code Clone Detection 701

Figure 3. Activities and building blocks in code clone detection and evolution

702 C. Wijesiriwardana, P. Wimalaratne

mining. For data gathering, two important BBs have identified and presented
to extract information from version control repositories namely VCS Miner and
VC Migrator (See Table 2). More specifically, VCS Miner is a more general term
that explicitly represents GIT Miner, SVN Miner, and CVS Miner.

Building Blocks for Pre-Processing: As with any dataset, there is certainly
a great deal of cleaning and pre-processing required before any real analysis
can perform. The pre-processing stage can often take the majority of the time
spent on a data analysis project. Having a proper understanding of the required
pre-processing steps allows a researcher to speed up the data preparation pro-
cess as well as to reduce the complexity of the mining process. In this work,
seven main BBs have identified for pre-processing: Snapshot Generator, Test
Files Remover, Program Model Generator, Dependency Graph Generator, AST
Generator, Metrics Generator and Token Generator (see Table 3).

Building Blocks for Clone Detection: Several code clone detection approaches
and tools have proposed in the literature spanning from textual to semantic.
Designing a clone detection experiments requires identification of a suitable clone
detection technique based on the available data set and the output of the pre-
processing step. In this work, five central BBs have identified for clone detection:
String Based Clone Detector, AST Based Clone Detector, Metrics Based Clone
Detector, Graph-Based Clone Detector and Token-Based Clone Detector (see
Table 4).

Building Blocks for Clone Evolution: Conducting a comprehensive analysis of
clone evolution can uncover the patterns and characteristics exhibited by clones
as they evolve within a system. Software practitioners can use the results of
this study to understand and to manage the clones more efficiently. In this
work, three BBs have identified for post-processing: Genealogy Generator 1,
Genealogy Generator 2 and Genealogy Reconstructor (see Table 5).

5 CONCEPTUAL FRAMEWORK
OF THE EXPERIMENTAL TESTBED

This section presents the conceptual foundation of a domain-specific framework to
support CCDE experiments. The framework adheres to an extensible multi-layered
abstraction mechanism that consists of the collection of BBs identified previously.
The BBs are systematically organized on top of a collection of basic operators derived
from relational algebra.

5.1 Stack of Building Blocks

As depicted in Figure 4, the Building Blocks stack consists of several layers, that
are arranged based on the BBs identified in the previous section along with a newly
introduced collection of Operators.

Building Blocks of Code Clone Detection 703
P
ro
b
le
m

B
B

N
a
m
e
a
n
d

S
o
lu
ti
o
n
O
v
er
v
ie
w

A
lt
er
n
a
ti
v
es

P
re
d
ec
es
so
rs

F
o
ll
ow

-u
p
s

R
ef
er
en

ce
s

S
o
u
rc
e

co
d
e

m
a
n
a
g
em

en
t

sy
st
em

s
(S
C
M
)
ch
a
ra
ct
er
is
-

ti
ca
ll
y

o
ff
er

a
ri
ch

v
er
si
o
n

h
is
to
ry

o
f
so
ft
w
a
re

p
ro
je
ct
s.

T
h
ey

g
iv
e

cr
u
d
e

in
fo
rm

a
-

ti
o
n
a
b
o
u
t
th
e
o
ri
g
in
s
o
f
th
e

co
d
e
a
n
d
it
’s
ch
a
n
g
e
h
is
to
ry
.

S
u
ch

in
fo
rm

a
ti
o
n

in
d
ir
ec
tl
y

p
ro
v
id
e

co
d
e

cl
o
n
in
g

in
fo
r-

m
a
ti
o
n

a
t

va
ri
o
u
s

st
a
g
es
.

T
h
er
ef
o
re
,
th
er
e

is
a

n
ee
d

to
g
a
th
er

d
a
ta

fr
o
m

v
er
si
o
n

co
n
tr
o
l
re
p
o
si
to
ri
es

su
ch

a
s

S
V
N
,
C
V
S
a
n
d
G
IT

.

V
C
S

M
in
e
r

It
m
in
es

th
e
v
er
si
o
n

co
n
tr
o
l
re
p
o
si
to
ry

o
f

so
ft
w
a
re

sy
st
em

s.

S
V
N

M
in
er
,

C
V
S

M
in
er
,

G
IT

M
in
er

N
o
n
e

T
o
k
en

g
en

er
a
-

to
r,

S
n
a
p
sh
o
t

g
en

er
a
to
r,

P
ro
g
ra
m

m
o
d
el

g
en

-
er
a
to
r,

V
C

m
ig
ra
to
r,

M
et
ri
cs

g
en

-
er
a
to
r,

A
S
T

g
en

er
a
to
r

X
ie

e
t

a
l
[8
6
]
:

T
h
is

p
a
-

p
er

a
n
a
ly
ze
d
ch
a
n
g
e
h
is
to
ry

o
f
th
re
e
so
ft
w
a
re

sy
st
em

s
b
y

m
in
in
g
S
V
N

re
p
o
si
to
ri
es
.

S
a
h
a

e
t
a
l.

[7
2
]:

T
h
is

p
a
-

p
er

a
n
a
ly
ze
d
si
x
o
p
en

so
u
rc
e

so
ft
w
a
re

sy
st
em

s
b
y
m
in
in
g

S
V
N

re
p
o
si
to
ri
es
.

A
v
e
rs
a
n
o

e
t

a
l.

[5
]:

T
h
is

p
a
p
er

ex
tr
a
ct
ed

co
d
e

fr
o
m

C
V
S

re
p
o
si
to
ri
es

o
f

tw
o

so
ft
w
a
re

sy
st
em

s
(i
.e
.,

A
rg
o
U
M
L

a
n
d

D
N
S
J
av
a
)

to
co
n
d
u
ct

a
n
d

em
p
ir
ic
a
l

st
u
d
y.

M
o
st
ly

th
e

o
ri
g
in
a
l

so
ft
-

w
a
re

sy
st
em

a
re

st
o
re
d

in
tr
a
d
it
io
n
a
l

S
C
M
s

(e
.g
.,

S
V
N
,
C
V
S
).

D
ec
en

tr
a
li
ze
d

so
u
rc
e

co
d
e

m
a
n
a
g
em

en
t

sy
st
em

s
(e
.g
.,

G
IT

)
ca
n

p
ro
v
id
e

ri
ch
er

co
n
te
n
t

h
is
-

to
ri
es

th
a
n

th
e

tr
a
d
it
io
n
a
l

S
C
M
s.

T
h
er
ef
o
re
,

cl
o
n
e

d
et
ec
ti
o
n

a
lg
o
ri
th
m
s

a
n
d

to
o
ls

m
ig
h
t
p
er
fo
rm

b
et
te
r

w
it
h
a
D
S
C
M

re
p
o
si
to
ry
.

V
C

M
ig
ra

to
r

It
m
ig
ra
te
s

d
a
ta

fr
o
m

tr
a
d
it
io
n
a
l

S
C
M

re
p
o
si
to
ry

to
D
C
S
M

re
p
o
si
to
ry

(e
.g
.,

fr
o
m

S
V
N

to
G
IT

)

N
o
n
e

S
V
N

M
in
er
,

C
V
S
M
in
er

T
o
k
en

g
en

er
a
-

to
r,

S
n
a
p
sh
o
t

g
en

er
a
to
r,

P
ro
g
ra
m

m
o
d
el

g
en

-
er
a
to
r,

V
C

m
ig
ra
to
r,

M
et
ri
cs

g
en

-
er
a
to
r,

A
S
T

g
en

er
a
to
r

R
a
h
m
a
n

e
t

a
l.

[6
5
,
6
6
]:

T
h
ey

m
ig
ra
te
d

S
V
N

a
n
d

C
V
S

re
p
o
si
to
ri
es

to
G
IT

in
o
rd
er

to
sp

ee
d

u
p

th
e
p
ro
-

ce
ss
.

T
h
is

p
a
p
er

a
n
a
ly
se
s

re
la
ti
o
n
sh
ip

b
et
w
ee
n
cl
o
n
in
g

a
n
d
d
ef
ec
t
p
ro
n
en

es
s.

T
a
b
le

2
:
B
u
il
d
in
g
b
lo
ck
s
fo
r
d
a
ta

g
a
th
er
in
g

704 C. Wijesiriwardana, P. Wimalaratne
P
ro
b
le
m

B
B

N
a
m
e
a
n
d

S
o
lu
ti
o
n
O
v
er
v
ie
w

A
lt
er
n
a
ti
v
es

P
re
d
ec
es
so
rs

F
o
ll
ow

-u
p
s

R
ef
er
en

ce
s

S
o
ft
w
a
re

ev
o
lu
ti
o
n

ex
p
er
i-

m
en
ts

n
ee
d

to
ca
p
tu
re

re
-

v
is
io
n
s
a
n
d

re
le
a
se
s
o
f
so
ft
-

w
a
re

sy
st
em

s
fo
r
a

co
n
si
d
-

er
ed

ti
m
e
p
er
io
d
in

o
rd
er

to
co
n
d
u
ct

va
ri
o
u
s
co
d
e
cl
o
n
e

d
et
ec
ti
o
n
ex
p
er
im

en
ts
.

S
n
a
p
sh

o
t

G
e
n
e
ra

-
to

r
It

ca
n

g
en

er
a
te

a
se
t

o
f

sn
a
p
sh
o
ts

o
f

th
e

so
ft
w
a
re

sy
st
em

fo
r
a

m
en
ti
o
n
ed

ti
m
e

p
e-

ri
o
d
.

re
le
a
se

le
v
el

sn
a
p
sh
o
t

g
en

er
a
-

to
r,

re
v
i-

si
o
n

le
v
el

sn
a
p
sh
o
t

g
en

er
a
to
r

V
C
S
m
in
er

C
lo
n
e

d
et
ec
-

to
r,

T
es
t
fi
le
s

re
m
ov
er

X
ie

e
t
a
l.

[8
6
]:

T
h
is

p
a
p
er

ex
tr
a
ct
s

sn
a
p
sh
o
ts

a
t

ea
ch

re
v
is
io
n
.

S
a
h
a

e
t
a
l.

[7
2
]:

T
h
is

p
a
-

p
er

ca
p
tu
re
s
a
ll

m
in
o
r
a
n
d

m
a
jo
r
re
le
a
se
s.

R
a
h
m
a
n

e
t

a
l.

[6
5
,
6
6
]:

T
h
is

p
a
p
er

re
q
u
ir
es

sn
a
p
-

sh
o
ts

in
m
o
n
th
ly

re
v
is
io
n
s.

S
o
ft
w
a
re

co
n
ta
in
s
m
a
n
y
te
st

fi
le
s
th
a
t
a
re

u
se
d
d
u
ri
n
g
th
e

d
ev
el
o
p
m
en

t
o
f
th
e

sy
st
em

to
te
st

th
e

d
iff
er
en

t
fu
n
c-

ti
o
n
a
li
ti
es
.

S
in
ce

te
st

fi
le
s

a
re

fr
eq
u
en

tl
y

co
p
ie
d

a
n
d

m
o
d
ifi
ed

to
te
st

a
d
iff
er
en
t

ca
se
,
th
ey

ca
n
co
n
ta
in

m
a
n
y

cl
o
n
es
.

T
e
st

F
il
e
s
R
e
m
o
v
e
r

It
re
m
ov
es

te
st

fi
le
s

fr
o
m

th
e
su
b
je
ct

sy
s-

te
m
s.

N
o
n
e

S
n
a
p
sh
o
t

g
en

er
a
to
r

C
lo
n
e

d
et
ec
-

to
r

B
a
rb

o
u
r

e
t

a
l.

[9
]:

T
h
is

p
a
p
er

re
m
ov
es

te
st

fi
le
s
fr
o
m

A
R
G
O
U
M
L

a
n
d

A
N
T

sy
s-

te
m
s.

X
ie

e
t
a
l.

[8
6
]:

T
h
is

p
a
p
er

re
m
ov
es

te
st

fi
le
s

to
av
o
id

th
e
cl
o
n
es

th
a
t
a
re

n
o
t
in
-

v
o
lv
ed

in
n
o
rm

a
l
ex
ec
u
ti
o
n
s.

L
o
g
ic
a
l

cl
o
n
es

ca
n

re
v
ea
l

m
a
n
y

b
u
si
n
es
s

a
n
d

p
ro
-

g
ra
m
m
in
g

ru
le
s

th
a
t

a
re

o
ft
en

n
o
t

p
ro
p
er
ly

d
o
cu

-
m
en
te
d

d
u
ri
n
g
so
ft
w
a
re

d
e-

v
el
o
p
m
en

t.
T
h
er
ef
o
re
,

th
er
e

is
a

n
ee
d

fo
r
m
a
k
in
g

th
es
e

ru
le
s
ex
p
li
ci
t
in

o
rd
er

to
im

-
p
ro
v
e
th
e
effi

ci
en

cy
in

so
ft
-

w
a
re

m
a
in
te
n
a
n
ce
.

P
ro

g
ra

m
M

o
d
e
l

G
e
n
e
ra

to
r

It
ex
tr
a
ct
s

th
e

p
ro
-

g
ra
m

m
o
d
el

fr
o
m

th
e

so
u
rc
e

co
d
e,

w
h
ic
h

co
n
si
st
s

o
f

m
et
h
o
d
s,

en
ti
ty

cl
a
ss
es
,
et
c.

N
o
n
e

V
C
S
m
in
er

T
ex
t

b
a
se
d

cl
o
n
e
d
et
ec
to
r

Q
ia
n

e
t

a
l.

[6
4
]:

T
h
is

p
a
p
er

ex
tr
a
ct
s

a
p
ro
g
ra
m

m
o
d
el

fr
o
m

th
e
so
u
rc
e
co
d
e.

T
h
a
t
is

u
se
d
to

a
n
a
ly
ze

th
e

b
u
si
n
es
s

a
n
d

p
ro
g
ra
m
m
in
g

ru
le
s

o
f

so
ft
w
a
re

a
p
p
li
ca
-

ti
o
n
s.

T
h
e
n
o
d
es

o
f
a
P
D
G

re
p
re
-

se
n
t
th
e
st
a
te
m
en

ts
a
n
d
co
n
-

d
it
io
n
s
o
f
a
p
ro
g
ra
m
,
w
h
il
e

ed
g
es

re
p
re
se
n
t
co
n
tr
o
l
a
n
d

d
a
ta

d
ep

en
d
en

ci
es
.
E
x
tr
a
ct
-

in
g
su
ch

in
fo
rm

a
ti
o
n
is

v
it
a
l

to
id
en

ti
fy

si
m
il
a
r
co
d
e
fr
a
g
-

m
en
ts
.

D
e
p
e
n
d
e
n
c
y

G
ra

p
h

G
e
n
e
ra

-
to

r
It

g
en

er
a
te
s
th
e
P
D
G

o
f
a
g
iv
en

so
u
rc
e
fi
le
.

N
o
n
e

V
C
S
m
in
er

D
ep

en
d
en

cy
g
ra
p
h

b
a
se
d

cl
o
n
e
d
et
ec
to
r

K
ri
n
k
e
r

[4
8
]:

A
u
th
o
rs

h
av
e
p
re
se
n
te
d
a
n
a
p
p
ro
a
ch

b
a
se
d
o
n
P
D
G
s,

b
y
sy
m
b
o
l-

iz
in
g

th
e
b
a
si
c
st
ru
ct
u
re

o
f

a
p
ro
g
ra
m

to
g
et
h
er

w
it
h
th
e

co
rr
es
p
o
n
d
in
g
d
a
ta

fl
ow

.
H
o
rw

it
z

[3
0
]:

T
h
is

p
a
p
er

in
v
es
ti
g
a
te
s

b
o
th

sy
n
ta
ct
ic

a
n
d

se
m
a
n
ti
c
d
iff
er
en

ce
s
o
f

va
ri
o
u
s
v
er
si
o
n
s
o
f
so
ft
w
a
re

b
y
ex
p
lo
it
in
g
P
D
G
s.

C
o
n
ti
n
u
ed

o
n
n
ex
t
p
a
g
e.
..

Building Blocks of Code Clone Detection 705
T
a
b
le

3
–
C
o
n
ti
n
u
ed

P
ro
b
le
m

B
B

N
a
m
e
a
n
d

S
o
lu
ti
o
n
O
v
er
v
ie
w

A
lt
er
n
a
ti
v
es

P
re
d
ec
es
so
rs

F
o
ll
ow

-u
p
s

R
ef
er
en

ce
s

In
li
te
ra
tu
re
,

se
v
er
a
l

A
b
-

st
ra
ct

S
y
n
ta
x

T
re
e

b
a
se
d

a
p
p
ro
a
ch
es

h
av
e

b
ee
n

p
ro
-

p
o
se
d
to

a
u
to
m
a
te

th
e
id
en

-
ti
fi
ca
ti
o
n
o
f
so
ft
w
a
re

cl
o
n
es
.

D
u
ri
n
g

a
p
a
rs
in
g

st
ep

,
th
e

a
lg
o
ri
th
m

sh
o
u
ld

cr
ea
te

a
n

A
S
T

b
a
se
d
re
p
re
se
n
ta
ti
o
n
o
f

th
e
so
u
rc
e
co
d
e.

A
S
T

G
e
n
e
ra

to
r

It
p
a
rs
es

th
e

so
u
rc
e

co
d
e

a
n
d

g
en

er
a
te

A
S
T

re
p
re
se
n
ta
ti
o
n

o
f
th
e
so
u
rc
e
co
d
e.

N
o
n
e

V
C
S
m
in
er

A
S
T

b
a
se
d

cl
o
n
e
d
et
ec
to
r

C
o
ra

z
z
a

e
t
a
l.

[1
4
]:

T
h
is

p
a
p
er

p
ro
p
o
se
s
a
m
et
h
o
d
o
l-

o
g
y,

w
h
ic
h
in
v
es
ti
g
a
te

A
S
T
s

a
s

w
el
l
a
s

le
x
ic
a
l
in
fo
rm

a
-

ti
o
n
fo
r
d
is
co
v
er
in
g
so
ft
w
a
re

cl
o
n
es

u
p
to

T
y
p
e
3
.

T
a
ir
a
s

a
n
d

G
ra

y
[7
9
]:

T
h
is

p
a
p
er

p
ro
p
o
se
s
a
cl
o
n
e

d
et
ec
ti
o
n

m
et
h
o
d
o
lo
g
y

b
y

u
ti
li
zi
n
g

A
S
T

re
p
re
se
n
ta
-

ti
o
n
.

M
et
ri
cs
-b
a
se
d

a
p
p
ro
a
ch
es

ca
lc
u
la
te

a
n
u
m
b
er

o
f

m
et
ri
cs

a
n
d

th
en

co
m
p
a
re

th
em

ra
th
er

th
a
n

d
ir
ec
tl
y

co
m
p
a
ri
n
g

th
e

so
u
rc
e

co
d
e

o
r
A
S
T
s.

M
e
tr
ic
s
G
e
n
e
ra

to
r

It
g
en

er
a
te
s
co
d
e
m
et
-

ri
cs

fr
o
m

th
e

so
u
rc
e

co
d
e.

N
o
n
e

V
C
S
m
in
er

M
et
ri
c-
b
a
se
d

cl
o
n
e
d
et
ec
to
r

A
n
a
to

n
io
l
e
t
a
l.

[4
]:

T
h
is

p
a
p
er

a
n
a
ly
ze
s
n
in
et
ee
n

re
-

le
a
se
s

o
f

L
in
u
x

k
er
n
el

to
id
en
ti
fy

co
d
e
d
u
p
li
ca
ti
o
n
b
y

m
ea
n
s
o
f
th
e
m
et
ri
cs
.

M
a
y
ra

n
d

e
t
a
l.

[5
5
]:

T
h
is

p
a
p
er

p
ro
p
o
se
s

a
m
et
ri
cs
-

b
a
se
d
te
ch
n
iq
u
e
to

a
u
to
m
a
t-

ic
a
ll
y
d
is
co
v
er

d
u
p
li
ca
te

(o
r

n
ea
r
d
u
p
li
ca
te
)
fu
n
ct
io
n
s
in

so
ft
w
a
re

sy
st
em

s.
C
o
n
ti
n
u
ed

o
n
n
ex
t
p
a
g
e.
..

706 C. Wijesiriwardana, P. Wimalaratne
T
a
b
le

3
–
C
o
n
ti
n
u
ed

P
ro
b
le
m

B
B

N
a
m
e
a
n
d

S
o
lu
ti
o
n
O
v
er
v
ie
w

A
lt
er
n
a
ti
v
es

P
re
d
ec
es
so
rs

F
o
ll
ow

-u
p
s

R
ef
er
en

ce
s

T
o
k
en

-b
a
se
d

cl
o
n
e

d
et
ec
-

to
rs

a
re

co
n
si
d
er
ed

b
et
-

te
r

th
a
n

si
m
p
le

k
ey
w
o
rd

m
a
tc
h
es

[6
7
].

In
th
es
e
te
ch
-

n
iq
u
es
,

le
x
ic
a
l

a
n
a
ly
si
s

is
p
ri
m
a
ri
ly

u
se
d
to

ex
tr
a
ct

th
e

to
k
en

s
fr
o
m

th
e
so
u
rc
e
co
d
e.

T
o
k
e
n

G
e
n
e
ra

to
r

It
g
en

er
a
te
s

to
k
en

s
fr
o
m

th
e
so
u
rc
e
co
d
e.

N
o
n
e

V
C
S
m
in
er

T
o
k
en

-b
a
se
d

cl
o
n
e
d
et
ec
to
r

B
a
k
e
r
[7
]:

In
re
se
a
rc
h
u
se
s

a
le
x
ic
a
l
a
n
a
ly
ze
r
to

d
iv
id
e

th
e
li
n
es

o
f
so
u
rc
e
fi
le
s
in
to

to
k
en

s.
T
h
es
e

to
k
en

s
a
re

th
en

sp
li
t
in
to

p
a
ra
m
et
er

to
-

k
en

s
a
n
d
n
o
n
-p
a
ra
m
et
er

to
-

k
en

s.
L
i

e
t

a
l.

[5
2
]:

In
th
is

a
p
p
ro
a
ch
,

st
a
te
m
en
ts

a
re

m
a
p
p
ed

to
n
u
m
b
er
s
b
y
fi
rs
t

to
k
en

iz
in
g

it
s

co
m
p
o
n
en
ts
,

su
ch

a
s
va
ri
a
b
le
s,

o
p
er
a
to
rs
,

co
n
st
a
n
ts
,

fu
n
ct
io
n
s,

k
ey
-

w
o
rd
s,

et
c.

W
a
n
g

e
t

a
l.

[8
5
]:

P
ro
-

p
o
se
d

C
C
A
li
g
n
er
:

a
to
k
en

b
a
se
d
la
rg
e-
g
a
p
cl
o
n
e
d
et
ec
-

to
r.

T
a
b
le

3
:
B
u
il
d
in
g
b
lo
ck
s
fo
r
p
re
-p
ro
ce
ss
in
g

Building Blocks of Code Clone Detection 707
P
ro
b
le
m

B
B

N
a
m
e
a
n
d

S
o
lu
ti
o
n
O
v
er
v
ie
w

A
lt
er
n
a
ti
v
es

P
re
d
ec
es
so
rs

F
o
ll
ow

-u
p
s

R
ef
er
en

ce
s

Id
en
ti
fy
in
g

so
ft
w
a
re

cl
o
n
es

a
n
d
u
n
d
er
st
a
n
d
in
g
h
ow

so
ft
-

w
a
re

ch
a
n
g
es

b
et
w
ee
n

re
-

le
a
se
s
a
re

tw
o
im

p
o
rt
a
n
t
is
-

su
es

fo
r
m
a
in
ta
in
er
s
w
h
er
e
a

te
x
t-
b
a
se
d
a
p
p
ro
a
ch

is
li
k
el
y

to
b
e
u
se
fu
l.

S
tr
in
g

B
a
se

d
C
lo
n
e
D
e
te

c
to

r
It

d
et
ec
ts

co
d
e
cl
o
n
es

b
y
st
ri
n
g
m
a
tc
h
in
g
.

N
o
n
e

S
n
a
p
sh
o
t

g
en

er
a
to
r,

P
ro
g
ra
m

m
o
d
el

g
en

-
er
a
to
r

C
lo
n
e

g
en

ea
l-

o
g
y

g
en

er
a
to
r

1
,

C
lo
n
e

g
e-

n
ea
lo
g
y

g
en

-
er
a
to
r
2

J
o
h
n
so

n
[3
7
]:

T
h
is

p
a
p
er

co
n
si
d
er
s
th
e
so
u
rc
e
a
s
te
x
t

a
n
d
a
n
a
ly
ze

it
th
e
w
ay

d
o
cu

-
m
en
ts

a
re

a
n
a
ly
ze
d
to

d
et
ec
t

th
e
co
d
e
cl
o
n
es
.

O
ss
h
e
r

e
t

a
l.

[6
2
]:

T
h
is

p
a
p
er

p
ro
p
o
se
s

a
fi
le
-l
ev
el

cl
o
n
e

d
et
ec
ti
o
n

m
et
h
o
d

b
y

co
m
b
in
in
g

th
re
e

si
m
p
le

st
ri
n
g
m
a
tc
h
in
g
te
ch
n
iq
u
es
.

A
ft
er

cr
ea
ti
n
g
th
e
A
S
T

fr
o
m

th
e
so
u
rc
e
co
d
e,

si
m
il
a
r
su
b
-

tr
ee
s
n
ee
d
to

b
e
id
en
ti
fi
ed

a
s

co
d
e

cl
o
n
es
.

In
th
is

ca
se
,

d
iff
er
en

ce
s

o
f

va
ri
o
u
s

co
d
-

in
g
st
y
le
s
a
s
w
el
l
a
s
va
ri
a
b
le

n
a
m
es

a
re

ig
n
o
re
d
.

A
S
T

B
a
se

d
C
lo
n
e

D
e
te

c
to

r
It

d
et
ec
ts

co
d
e
cl
o
n
es

fr
o
m

A
S
T

re
p
re
se
n
-

ta
ti
o
n
s.

N
o
n
e

A
S
T

g
en

er
a
-

to
r

C
lo
n
e

g
en

ea
l-

o
g
y

g
en

er
a
to
r

1
,

C
lo
n
e

g
e-

n
ea
lo
g
y

g
en

-
er
a
to
r
2

C
o
ra

z
z
a

e
t
a
l.

[1
4
]:

T
h
is

p
a
p
er

ex
p
lo
it
s
to
g
et
h
er

A
S
T

a
n
d

le
x
ic
a
l
in
fo
rm

a
ti
o
n

to
id
en
ti
fy

so
ft
w
a
re

cl
o
n
es
.

B
a
x
te

r
e
t

a
l.

[1
1
]:

T
h
is

p
a
p
er

p
ro
p
o
se
s

a
n

A
S
T

b
a
se
d
m
et
h
o
d
o
lo
g
y
to

d
et
ec
t

n
ea
r-
m
is
s
cl
o
n
es
.

M
et
ri
cs
-b
a
se
d

te
ch
n
iq
u
es

ca
lc
u
la
te

a
n
u
m
b
er

o
f
m
et
-

ri
cs

fo
r
co
d
e
fr
a
g
m
en
ts

a
n
d

th
en

co
m
p
a
re

m
et
ri
cs

v
ec
-

to
rs

ra
th
er

th
a
n

th
e
so
u
rc
e

co
d
e
o
r
A
S
T
s
d
ir
ec
tl
y.

M
e
tr
ic
s

B
a
se

d
C
lo
n
e
D
e
te

c
to

r
It

d
et
ec
ts

co
d
e

cl
o
n
es

fr
o
m

so
u
rc
e

co
d
e
m
et
ri
cs
.

N
o
n
e

M
et
ri
cs

g
en

-
er
a
to
r

C
lo
n
e

g
en

ea
l-

o
g
y

g
en

er
a
to
r

1
,

C
lo
n
e

g
e-

n
ea
lo
g
y

g
en

-
er
a
to
r
2

M
a
y
ra

n
d

e
t
a
l.

[5
5
]:

T
h
is

p
a
p
er

co
n
si
d
er
s

b
o
th

co
n
-

tr
o
l
fl
ow

m
et
ri
cs

a
n
d

d
a
ta

fl
ow

m
et
ri
cs

to
d
et
ec
t
co
d
e

cl
o
n
es
.

S
em

a
n
ti
c

a
p
p
ro
a
ch
es

o
n

co
d
e
cl
o
n
e
d
et
ec
ti
o
n

va
st
ly

re
ly

o
n
th
e
th
e
P
D
G

o
f
th
e

so
u
rc
e
co
d
e.

T
h
en

su
b
g
ra
p
h

m
a
tc
h
in
g

te
ch
n
iq
u
es

a
re

u
se
d

to
id
en

ti
fy

th
e

co
d
e

cl
o
n
es

in
a
p
ro
g
ra
m
.

G
ra

p
h

B
a
se

d
C
lo
n
e
D
e
te

c
to

r
It

d
et
ec
ts

co
d
e
cl
o
n
es

fr
o
m

to
k
en

s.

N
o
n
e

P
ro
g
ra
m

d
ep

en
d
en

cy
g
ra
p
h
g
en

er
-

a
to
r

C
lo
n
e

g
en

ea
l-

o
g
y

g
en

er
a
to
r

1
,

C
lo
n
e

g
e-

n
ea
lo
g
y

g
en

-
er
a
to
r
2

K
o
m
o
n
d
o
o
r

a
n
d

H
o
r-

w
it
z

[4
4
]:

T
h
is

p
a
p
er

re
p
-

re
se
n
ts

ea
ch

fu
n
ct
io
n
in

th
e

so
u
rc
e
co
d
e
u
si
n
g
it
s
P
D
G
,

w
h
ic
h
co
u
ld

th
en

b
e
u
se
d
to

fi
n
d
th
e
co
d
e
cl
o
n
es
.

K
ri
n
k
e

[4
8
]:

T
h
is

p
a
p
er

a
tt
em

p
ts

to
id
en
ti
fy

si
m
il
a
r

su
b
g
ra
p
h
st
ru
ct
u
re
s
th
a
t
a
re

st
em

m
in
g

fr
o
m

d
u
p
li
ca
te
d

co
d
e.

C
o
n
ti
n
u
ed

o
n
n
ex
t
p
a
g
e.
..

708 C. Wijesiriwardana, P. Wimalaratne
T
a
b
le

4
–
C
o
n
ti
n
u
ed

P
ro
b
le
m

B
B

N
a
m
e
a
n
d

S
o
lu
ti
o
n
O
v
er
v
ie
w

A
lt
er
n
a
ti
v
es

P
re
d
ec
es
so
rs

F
o
ll
ow

-u
p
s

R
ef
er
en

ce
s

T
o
k
en

-b
a
se
d

a
p
p
ro
a
ch
es

a
re

n
a
tu
ra
ll
y

la
n
g
u
a
g
e-

in
d
ep

en
d
en

t
a
n
d

a
ls
o

co
n
si
d
er
ed

a
s

lo
w
-c
o
st
.

F
u
rt
h
er

it
p
ro
d
u
ce
s

fa
st
er

re
su
lt
s

b
ec
a
u
se

th
ey

o
n
ly

n
ee
d
to

tr
a
n
sf
o
rm

th
e
so
u
rc
e

co
d
e

in
to

to
k
en

s,
w
it
h
o
u
t

th
e
n
ee
d
to

co
n
st
ru
ct

A
S
T
s

o
r
P
D
G
s.

T
o
k
e
n

B
a
se

d
C
lo
n
e
D
e
te

c
to

r
It

d
et
ec
ts

co
d
e
cl
o
n
es

fr
o
m

to
k
en

s.

N
o
n
e

T
o
k
en

g
en

er
-

a
to
r

C
lo
n
e

g
en

ea
l-

o
g
y

g
en

er
a
to
r

1
,

C
lo
n
e

g
e-

n
ea
lo
g
y

g
en

-
er
a
to
r
2

K
a
m
ia

e
t

a
l.

[4
0
]:

C
C
F
in
d
er

is
a
n

o
u
tc
o
m
e
o
f

th
is

re
se
a
rc
h
.

B
a
si
t

e
t

a
l.

[1
0
]:

T
h
is

p
a
p
er

p
ro
p
o
se
s

a
si
m
p
le

a
n
d

cu
st
o
m
iz
a
b
le

to
k
en

iz
a
-

ti
o
n

m
ec
h
a
n
is
m

fo
r

co
d
e

cl
o
n
e
d
et
ec
ti
o
n
.

J
a
lb

e
rt

a
n
d

B
ra

d
b
u
ry

[3
5
]:

T
h
is

p
a
p
er

p
ro
p
o
se
s

a
m
et
h
o
d
o
lo
g
y

to
id
en

ti
fy

b
u
g
s

u
si
n
g

C
o
n
Q
A
T

[3
9
],

w
h
ic
h
is

a
to
k
en

b
a
se
d
cl
o
n
e

d
et
ec
to
r.

T
a
b
le

4
:
B
u
il
d
in
g
b
lo
ck
s
fo
r
cl
o
n
e
d
et
ec
ti
o
n

Building Blocks of Code Clone Detection 709
P
ro
b
le
m

B
B

N
a
m
e
a
n
d

S
o
lu
ti
o
n
O
v
er
v
ie
w

A
lt
er
n
a
ti
v
es

P
re
d
ec
es
so
rs

F
o
ll
ow

-u
p
s

R
ef
er
en

ce
s

C
o
d
e
cl
o
n
e
g
en

ea
lo
g
ie
s
sh
ow

h
ow

cl
o
n
e

g
ro
u
p
s

ev
o
lv
e

w
it
h
th
e
ev
o
lu
ti
o
n
o
f
a
so
ft
-

w
a
re

sy
st
em

ov
er

m
u
lt
ip
le

v
er
si
o
n
s

o
f

th
e

p
ro
g
ra
m
.

T
h
er
ef
o
re
,
it

co
u
ld

p
ro
v
id
e

im
p
o
rt
a
n
t

in
si
g
h
ts

o
n

th
e

m
a
in
te
n
a
n
ce

im
p
li
ca
ti
o
n
s
o
f

co
d
e
cl
o
n
es
.

G
e
n
e
a
lo
g
y

G
e
n
e
r-

a
to

r
1

It
cr
ea
te
s

cl
o
n
e

g
e-

n
ea
lo
g
ie
s

fr
o
m

th
e

d
et
ec
te
d
cl
o
n
es
.

C
lo
n
e

g
e-

n
ea
lo
g
y

g
en

er
a
to
r
2

C
lo
n
e
d
et
ec
-

to
r

N
o
n
e

K
im

a
n
d

N
o
tk

in
[4
2
]:

A
u
th
o
rs

o
f
th
is

p
a
p
er

h
av
e

p
re
se
n
te
d

a
n

a
p
p
ro
a
ch

to
d
is
co
v
er

cl
o
n
e
g
en

ea
lo
g
y
b
y

ex
p
lo
it
in
g

th
e
cl
o
n
in
g

re
la
-

ti
o
n
sh
ip
s
a
m
o
n
g
a
ll

co
n
se
c-

u
ti
v
e
v
er
si
o
n
s.

A
d
a
r
a
n
d

K
im

[1
]:

T
h
ey

cr
ea
te

cl
o
n
e

g
en

ea
lo
g
ie
s,

a
ll
ow

in
g

v
is
u
a
ll
y

a
n
d

p
ro
-

g
ra
m
m
a
ti
ca
ll
y

a
n
a
ly
zi
n
g

co
d
e
cl
o
n
es
.

C
o
d
e
cl
o
n
e
g
en

ea
lo
g
ie
s
sh
ow

h
ow

cl
o
n
e

g
ro
u
p
s

ev
o
lv
e

w
it
h
th
e
ev
o
lu
ti
o
n
o
f
a
so
ft
-

w
a
re

sy
st
em

ov
er

m
u
lt
ip
le

v
er
si
o
n
s

o
f

th
e

p
ro
g
ra
m
.

T
h
er
ef
o
re
,
it

co
u
ld

p
ro
v
id
e

im
p
o
rt
a
n
t

in
si
g
h
ts

o
n

th
e

m
a
in
te
n
a
n
ce

im
p
li
ca
ti
o
n
s
o
f

co
d
e
cl
o
n
es
.

G
e
n
e
a
lo
g
y

G
e
n
e
r-

a
to

r
2

It
re
m
ov
es

in
va
li
d

cl
o
n
es

p
ri
o
r
to

g
en

er
-

a
ti
n
g

cl
o
n
e

g
en

ea
lo
-

g
ie
s.

C
lo
n
e

g
e-

n
ea
lo
g
y

g
en

er
a
to
r
1

C
lo
n
e
d
et
ec
-

to
r

G
en

ea
lo
g
y

re
-

co
n
st
ru
ct
o
r

X
ie

e
t

a
l.

[8
6
]:

P
ri
o
r
to

b
u
il
d
in
g

th
e
cl
o
n
e
g
en

ea
lo
-

g
ie
s,

th
is

st
u
d
y

re
m
ov
es

a
ll

th
e

u
n
ch
a
n
g
ed

a
n
d

in
va
li
d

(i
.e
.,

co
d
e
se
g
m
en
ts

b
el
o
n
g

to
th
e
sa
m
e
m
et
h
o
d
).

C
lo
n
e
g
en

ea
lo
g
y

g
en

er
a
ti
o
n

is
u
su
a
ll
y

d
o
n
e

u
si
n
g

to
o
ls

su
ch

a
s
g
C
a
d
.

S
u
ch

to
o
ls

co
u
ld

so
m
et
im

es
p
ro
v
id
e
er
-

ro
n
eo
u
s
re
su
lt
s.

T
h
er
ef
o
re
,

m
a
n
u
a
l
v
er
ifi
ca
ti
o
n
is
in
d
ee
d

im
p
o
rt
a
n
t.

G
e
n
e
a
lo
g
y

R
e
c
o
n
-

st
ru

c
to

r
It

m
a
n
u
a
ll
y

v
er
ifi
es

th
e
co
rr
ec
tn
es
s
o
f
th
e

re
su
lt
s

a
n
d

re
m
ov
e

th
e
fa
ls
e
p
o
si
ti
v
es
.

N
o
n
e

C
lo
n
e

g
e-

n
ea
lo
g
y

g
en

er
a
to
r

1
/
2

N
o
n
e

S
a
h
a
e
t
a
l.

[7
2
]:

T
h
ey

ru
n

g
C
a
d
fo
r
th
e
se
co
n
d
ti
m
e
to

re
co
n
st
ru
ct

th
e

g
en

ea
lo
g
ie
s

a
ft
er

re
m
ov

in
g
th
e
fa
ls
e
p
o
s-

it
iv
es

m
a
n
u
a
ll
y.

T
a
b
le

5
:
B
u
il
d
in
g
b
lo
ck
s
fo
r
cl
o
n
e
ev
o
lu
ti
o
n

710 C. Wijesiriwardana, P. Wimalaratne

GetFirst

Select

Bu
ild

in
g

Bl
oc

ks
 S

ta
ck

Snapshot
Generator

Union Join Sort

Group Filter Count O
pe

ra
to

rs
de

riv
ed

 fr
om

R
el

at
io

na
l

Al
ge

br
a

BB
s

fo
r P

re
-

pr
oc

es
si

ng

Program Model
Extractor

Data Extractors

Metrics Generator

PDG GeneratorToken GeneratorAST Generator

Metrics Based Clone Detector

PDG Based Clone DetectorText Based Clone Detector

AST Based Clone Detector Token Based Clone Detector

BB
s

fo
r C

lo
ne

D
et

ec
tio

n
BB

s
fo

r P
os

t-
pr

oc
es

si
ng

Genealogy
Reconstructor

Genealogy
Generator

Invalid Clone
Remover

Figure 4. Building blocks stack supported by the operators derived from relational algebra

These operators are directly derived from relational algebra. Relational algebra
is a procedural query language, which operates on input relations. It consists with
a set of fundamental operators such as select, project, union and cartesian

product. Though several relational algebra theorems do not strictly hold in query
languages such as SQL and LINQ, they are the native implementations of the un-
derline concept of relational algebra. Therefore, we borrowed some ideas from such
languages to identify basic operators supported by relational algebra. In this paper,
operators such as filter, select, join, sort, count, etc. has been categorized as
basic level operators. Such operators are useful in conducting CCDE experiments.

5.2 Architectural Overview of the Experimental Testbed

Figure 5 presents the architectural overview of the experimental testbed to con-
duct CCDE experiments. It consists of two main components: BBs repository, and
workflow composition and execution engine. BBs repository contains all the BBs
(i.e., BBs for data extraction, pre-processing, clone detection, and clone evolution)
and a useful collection of Operators that are described previously. The purpose of

Building Blocks of Code Clone Detection 711

Operators is to facilitate the basic functionalities such as counting or filtering. Once
the BBs and Operators are defined, CCDE experiments can be accomplished by
pipelining the required BBs and operators. Workflow composition and execution
engine is responsible for translating the CCDE workflow defined by a user into an
executable process. Finally, the analysis results will be presented to the user.

For the workflow generation, all BBs and Operators are defined directly on
an underlying logical representation, a static grammar. Static grammar consists of
the production rules to combine BBs and Operators into a meaningful workflow,
which strictly follows the connections in Figure 3. For example, AST based clone
detector can be directly composed with the AST generator. However, it cannot be
composed with PDG generator. Static grammar has to be defined manually and
should be evolved with the introduction of new BBs and Operators.

BBs for Data
Extraction

BBs for Pre-
processing

BBs for Clone
Detection

BBs for Clone
Evolution

O
pe

ra
to

rs
 d

er
iv

ed
 fr

om
R

el
at

io
na

l A
lg

eb
ra

Workflow
Execution

User

Experimental Testbed

Start

Task Task

End

Workflow Composition

Building Blocks Repository

Figure 5. Architectural overview of the experimental testbed

6 VALIDATION

Our vision is to introduce a collection of reusable BBs that are derived from the
state-of-the-art code clone detection and evolution research and efficiently utilize
them in developing an experimental testbed to conduct CCDE experiments system-
atically and conveniently. In this section, we sought to validate the two research
questions. RQ1 mainly focuses on identifying building blocks from existing CCDE
experiments, which could reuse in new ventures. For that, a case study based eval-
uation is employed to show how a particular CCDE experiment can represent by
utilizing the identified BBs. To validate RQ2, a simple prototype was implemented
to demonstrate how to develop an experimental testbed to utilize BBs effectively.
The prototype was validated with a usage scenarios for three open source projects.
Finally, the extensibility of the proposed approach in conducting a diverse range of
software analytics experiments is examined.

712 C. Wijesiriwardana, P. Wimalaratne

6.1 Reusability of BBs in CCDE Experiments

As described previously, the BBs have identified by the literature survey conducted
on the papers published in ICSE, ICSM, MSR and FSE conferences for the last
eight years. Therefore, for the validation purpose, four journal papers on code
clone detection have selected as case studies. Then, each experimental procedures
were represented as a workflow by utilizing the identified BBs. For the selected
case studies, it was evident that one experiment can be fully expressed and three
experiments can be partially represented using BBs.

Case Study 1 – Kontogiannis et al. [45]

Summary: Authors of this paper have presented a number of pattern matching
techniques by using ASTs as the code representation scheme that could use
for both code-to-code as well as concept-to-code matching. Metric-based clone
detection technique has used in the study by taking three medium-sized C pro-
grams (i.e., tcsh, bash and CLIPs) as the subject systems. First, the source
code is parsed to create the Abstract Syntax Tree (AST). Five different metrics
have calculated for every statement, block, function, and file stored as annota-
tions in the nodes of the AST. As the next step, a reference table was main-
tained, which consists of source code entities sorted by their associated metric
values.

Representation Using BBs: In this experiment, VCS miner considered the BB
for data gathering. Pre-processing step is covered with two BBs namely AST
generator and Metrics generator. Metrics based clone detector is the respon-
sible BB in the clone detection phase. Thus, the experimental design of the
above paper can be fully represented using four main BBs, as shown in Fig-
ure 6.

Figure 6. Kontogiannis’s [45] approach using BBs

Building Blocks of Code Clone Detection 713

Case Study 2 – Anatoniol et al. [4]

Summary: This paper studies the evolution of code duplications in the Linux ker-
nel. The paper followed a functional level metric-based approach to analyze
nineteen releases to identify code duplication among Linux subsystems.

Representation Using BBs: Figure 7 is an example how BBs can be used to
partially representing a previously conducted experimental design. Authors of
this paper have described mechanisms to handle preprocessor directives as well
as to handle the functions in the C code of the Linux kernel. Such tasks come
under the above mentioned Pre-processing activity. However, at the moment,
the exact BB to perform this task is not available in our BBs catalog. As stated
before, our approach will evolve with time and build its BBs catalog. Therefore,
one can define a new BB and add to our BBs catalog. However, the above
experiment can partially represent by utilizing VCS miner, Metrics generator
and Metrics based clone detector.

Figure 7. Anatoniol’s [4] approach using BBs

Case Study 3 – Geiger et al. [25]

Summary: In this paper, the authors examined whether a correlation exists be-
tween code clones and code change. The steps of this research include code clone
detection, categorization into clone types, extraction of change couplings, and
computing a relation metric. The proposed framework has validated with the
Mozilla project. The results show that a reasonable number of cases can found
where such a relation exists.

Representation Using BBs: Part of the experiment of this research can represent
using BBs, as shown in Figure 8. In this paper, authors have used CCFinder as
the clone detection tool. In Figure 8, we further describe the tasks in CCFinder
as a BPMN 2.0 subprocess. VCS miner, Token generator, and Token-based clone
detector have used in this expanded representation.

Case Study 4 – Kanwal et al. [41]

Summary: This paper investigates the evolution of structural clones by conducting
a longitudinal analysis of several versions of Java systems. The authors have
defined structural clones and their evolution patterns in a formal notation. The
trends in the patterns reveal that evolutionary characteristics of structural clones
can facilitate better clone management systems.

714 C. Wijesiriwardana, P. Wimalaratne

Figure 8. Geiger’s [25] approach using BBs

Representation Using BBs: As depicted in Figure 9, the experiment can be ef-
fectively represent with the identified BBs. The above experiment can be par-
tially represented using VCS Miner, Token generator, Token based clone detec-
tor, and Genealogy generator.

GIT GIT miner Source
code and
revision
history

Token
generator Tokens Token based

clone detector

Genealogy
generator

Change
information

Figure 9. Kanwal’s [41] approach using BBs

Summary of the evaluation results is shown in Table 6. Based on the case
studies, the RQ1 can be addressed, and we claim that it is a serious first proof
of the usefulness of the proposed BBs. The selection of case studies is based on
the clone detection and evolution experiments spanning from the year 1996 to 2019
denoting the applicability of the proposed approach in the future clone detection
and evolution experiments.

6.2 Usage Scenario in the Experimental Testbed

Clone analysis over multiple versions and releases is a major component in many
CCDE experiments [75, 56]. Such studies would reveal the trends over time as well
as the relationship between code size and the number of code clones for large-scale
software projects [13]. Below we show how to use the experimental testbed to find
the code clone percentage over multiple versions of a software project.

In order to find code clones over multiple versions, the following tasks have to
perform in the given order. First, project history for a given version/release needs

Building Blocks of Code Clone Detection 715

Title of the journal pa-
per

Used BBs Graphical
Representa-
tion

Pattern matching for clone
and concept detection.
Kontogiannis et al. [45]

VCS Miner
AST Generator
Metrics Generator
Metrics Based Clone Detector

Figure 4

Analyzing cloning evolu-
tion in the Linux kernel.
Anatoniol et al. [4]

VCS Miner
Metrics Generator
Metrics based Clone Detector

Figure 5

Relation of code clones and
change couplings
Geiger et al. [25]

VCS Miner
Token Generator
Token Based Clone Detector

Figure 6

Evolutionary Perspective
of Structural Clones in
Software
Kanwal et al. [41]

VCS Miner
Token Generator
Token Based Clone Detector
Genealogy generator

Figure 7

Table 6. Summary of the case study based validation

to be extracted from the version control repository using VCS Miner. Second, it
is converted to an intermediate data-model using one of the pre-processing BBs.
Then the results are fed to a Clone Detector to detect the duplicates. Finally, the
steps mentioned above are repeated for several versions of the software system. In
the prototype implementation, the BBs can be pipelined as a workflow and run the
analysis. Additional BBs (i.e., filter, loop) can be implemented to facilitate rich
analyses based on complex conditions. As such, a user needs to drag the BBs to
the canvas and combine them using linkers and run it. Three Apache projects have
been selected for the experiment; Apache Commons Lang5, Apache Tomcat6 and
Apache Wink7. Figure 10 presents the cloning behavior for the years 2014–2016.

However, by no means, this is a complex CCDE experiment. But, still, it answers
RQ2 by evidently demonstrating how BBs can be used in the proposed experimental
testbed to produce useful insights to the researchers.

6.3 Extensibility of Experiment Testbed
for Software Engineering Experiments

The core idea behind BBs and the conceptual framework of the experimental testbed
is not strictly limited to CCDE research. The proposed architecture of the testbed
along with the composition logic of BBs provide versatility for extending the ex-
perimental testbed for other types of software engineering experiments. However,

5 https://commons.apache.org/proper/commons-lang/
6 http://tomcat.apache.org/
7 https://wink.apache.org/

716 C. Wijesiriwardana, P. Wimalaratne

Figure 10. Clone percentage for 2014–2016

it requires a formal arrangement of BBs into several layers. Figure 11 presents the
proposed extended stack of BBs that could be used in different software engineering
experiments. The extended BBs stack for software analytics has multiple layers:
Primary BBs, Secondary BBs, and Advanced BBs.

Below we demonstrate how to build the logic to perform a software analysis task
by utilizing the BBs from the BBs Stack.

Analysis Task: Finding critical issues resolved by most frequent committer in
a project.

Background: Measuring the performance of the developers who work in a project
is a challenging task for the project managers when the team size is large and
the nature of the project is complex. However, it is notable that total lines of
codes, the number of bugs fixed, the total number of commits, or a combination
of them could produce useful insights into performance.

Implementation Using BBs: Figure 12 presents how to utilize the BBs to per-
form the above analysis task. It demonstrates how the data is integrated from
both version control and bug tracking repositories to find how many critical bugs
have been fixed by the most frequent committer.

We further tested the above scenario with three open source projects by using
the prototype implementation. The prototype allows users to utilize the BBs to
perform the tasks directly. Therefore, it provides a great level of convenience to the
users. Summary of the experimental results present in Table 7.

As shown in the Figure 12, FindMax, which is a Secondary BB, is formulated
by utilizing three Primary BBs. Thus, Secondary BBs, on the ohter hand, can be
considered as composite BBs.

Building Blocks of Code Clone Detection 717

GetFirst

Select

Ex
te

nd
ed

 B
ui

ld
in

g
Bl

oc
ks

 S
ta

ck
 fo

r S
of

tw
ar

e
An

al
yt

ic
s

Ex
pe

rim
en

ts

Find OWASP
Vulnerabilities

FindMax String Compare

Union Join Sort

Group Filter Count Pr
im

ar
y

Bu
ild

in
g

Bl
oc

ks

Se
co

nd
ar

y
Bu

ild
in

g
Bl

oc
ks

FindMin

Data Extractors

Metrics
Calculation

Find Commit
Complexity

Graph GeneratorChange Type
Detection

Tree Compare Tokenization

Bug-fixing
Commits

AST Generation

Code Clone Detection

Issue-Revision Linking

Email-Source Code Linking

Code Smell Detection

Commit-Build MappingFile Ownership Changes

Change Request Mapping Email Normalization

Ad
va

nc
ed

Bu
ild

in
g

Bl
oc

ks

Figure 11. Extended building blocks stack for software analytics

7 DISCUSSION

In this paper, we provide a catalog of Building Blocks on which the clone detection
research can be carried out. A particular BB represents a specific analysis task in any
CCDE experiment. Based on that, we demonstrated that such distinctive BBs could
properly arrange as workflows to perform a wide range of CCDE experiments. From
the selected case studies for the validation, it was evident that CCDE experiments
can either wholly or partially represent by means of BBs. Therefore, this approach
is a step towards standardization of CCDE research by providing a structured way
to conduct experiments. Our approach has multifold benefits and is worth further
exploration.

718 C. Wijesiriwardana, P. Wimalaratne

developer
name

Find the developer with
highest number of

commits

commit info

Extract commit details

bug info

Extract bug repository

list of bugs assigned the developer

Find the bugs assigned
the developer

list of critical bugs fixed by the
developer

Filter the fixed bugs
with type = "critical"

Find the number of critical
bugs fixed by the

developer

Fetch

Fetch

Inner Join

Filter

Count

R
(a

ss
ig

ne
e

=
na

m
e,

ty
pe

 =
 c

rit
ic

al
,

 s
ta

tu
s

=
fix

ed
)

R
(a

ss
ig

ne
e

=
na

m
e,

 #
 b

ug
s

)

Workflow
components Primary BBs Dataflow

Group

Sort

FindMax

GetFirst

Version
Control
Repo

Issue
Tracking

Repo

Legend

Secondary BBs

R
(id

, n
am

e,
 e

m
ai

l,
m

sg
, e

tc
)

R
(n

am
e,

 #
 c

om
m

its
)

R
(id

, a
ss

ig
ne

e,
st

at
us

, m
sg

,
et

c)

R
(a

ss
ig

ne
e

=
na

m
e,

 s
ta

tu
s,

 m
sg

,
et

c)

FindMax is
composed

of three
Primary

BBs

Figure 12. Finding the number of critical issues resolved by the most frequent committer
in a project

Guideline for Novice Researchers. This paper does not target providing a com-
prehensive literature review in the area of CCDE. Most importantly, it presents
some useful conceptual and practical insights to novice researchers by allow-
ing them to use BBs as a guide to carrying out CCDE experiments. Novice
researchers can make use of BBs to conduct experiments in a quick and com-
munity accepted way. Having a prior understanding of the BBs will help them
comprehend the published CCDE research approaches and recognize the essen-
tial background requirements; hence, can better plan their experiments. Further
analyzing the usages of those BBs in different analysis scenarios will help them
in running successful experiments.

Helping Overcome Common Problems in CCDE Experiments. Conducting
CCDE experiments presents a number of common difficulties and challenges to

Building Blocks of Code Clone Detection 719

Apache Project No. of Commits Frequent Developer No. of Bug Fixes

Gora 1 053 Developer A 52
Commons-lang 5 171 Developer B 4
IO 2 091 Developer C 0
Winx 1 312 Developer D 2

Table 7. Summary of the experimental results

researchers such as:

1. mechanism to locate the repositories to gather accurate and timely data,

2. filtering or converting such data to different formats,

3. exploring various analysis to be performed on such data, and

4. effectively running such analyses.

The concept of Activities and Building Blocks is beneficial to overcome such ex-
ertions. For example, BBs for data gathering facilitates a mechanism to locate
and extract data from repositories. Similarly, BBs for pre-processing provide
ways to convert and filter data. BBs for clone detection solves the difficulty in
exploring distinctive analysis on such data. In that way, our approach simpli-
fies the challenges mentioned above and provides a structured way to conduct
software analysis experiments.

Facilitating Comparison. Several imperative systematic literature reviews have
published on software clones in general and software clone detection in particu-
lar. These approaches typically focus on only some traits of categorization, and
most of them do not rely on an explicit high level meta-model. Therefore, there
is a need of a model, which facilitates the comparison of different clone detection
approaches at the experimental level. In this paper, we present a meta-model
infrastructure for representing, combining and comparing such experiments in
a structured way.

Fostering the Replication of Studies. The replication of such studies is just as
fundamental and is one of the main threats to validity that empirical software
engineering suffers. Such threats are manifold and range from lack of indepen-
dent validation of the results, unavailability of the tools and methodologies used,
to no impossibility to generalize the gained knowledge. Though this paper does
not provide a fully functional framework for replication, still it presents ways
to better plan the replication studies and reveal the imprecise descriptions in
Methodology sections of research publications.

Based on the nature of the BBs, it is important to realize that the proposed ap-
proach works only with syntactically similar code clones.For example, as described
in the BBs for pre-processing, the entire detection process is facilitated by ASTs,
PDGs, tokens, metrics, program models, and snapshots. Thus the BBs for clone
detection facilitates only the syntactically similar code clones. However, the detec-

720 C. Wijesiriwardana, P. Wimalaratne

tion of semantically similar code clones requires a new set of BBs that are capable
of inferring the associations across functionally similar code clones.

Several recent studies have reported on cross-language code clone detection [58,
88, 59]. For example, LICCA, a tool for cross-language clone detection [82] is based
on a tree-based intermediate representation of the source code. Thus, the proposed
BBs for pre-processing can be used for this purpose. However, this direction has
to further investigate to identify a useful set of BBs for cross-language clone detec-
tion.

Besides, visualization of the results produced by software analytics is considered
important nowadays [81, 19]. Also, recent studies have highlighted the importance
of visualizing the differences between the versions of software models [61]. Thus,
the proposed BBs stack for software analytics has provisions to augment with new
BBs that could be used to facilitate the visualization aspects of software analytics
experiments.

8 CONCLUSIONS

This paper introduced a concrete set of formal constructs, which we refer to as
Building Blocks, which can be used to conduct various CCDE experiments. These
Building Blocks provide a structured way to conduct experiments, hence it offers di-
rect solutions to everyday challenges in code clone detection, such as accurate data
collection, data cleaning, and selecting proper CCD algorithms. Our goal is not
to introduce novel CCD algorithms or report the loopholes in the existing CCDE
research, but to provide a systematic understanding of how CCDE experiments are
conducted in practice by utilizing the identified Building Blocks. Building Blocks are
represented using both textual and graphical representation, which provide means
to software researchers to conduct or replicate CCDE experiments in an unambigu-
ous manner. The conceptual framework of the experimental testbed indicates the
usefulness and the replication capabilities of Building Blocks and is proven useful
in conducting CCDE experiments. Besides, this paper presents how the stack of
Building Blocks can be extended to facilitate a wide range of software analytics
experiments beyond CCDE.

Future work of this research will focus on enhancing the experimental testbed to
a point where we can conduct a field study with professional software practitioners
in the industry. By doing that it is expected to obtain the future potentials and
the limitations of the experimental testbed in practice. In that way, useful insights
can be gained to convert our testbed to a full-fledged software evolution analysis
testbed.

Acknowledgements

The authors of this paper gratefully acknowledge the financial support provided by
the National Research Council of Sri Lanka (Grant No. NRC 15-74). We thankfully

Building Blocks of Code Clone Detection 721

acknowledge the insights and expertise provided by the colleagues at SEAL Lab at
the University of Zurich.

REFERENCES

[1] Adar, E.—Kim, M.: SoftGUESS: Visualization and Exploration of Code Clones
in Context. 29th International Conference on Software Engineering (ICSE ’07), 2007,
pp. 762–766, doi: 10.1109/ICSE.2007.76.

[2] Agrawal, A.—Yadav, S.K.: A Hybrid-Token and Textual Based Approach to
Find Similar Code Segments. 2013 Fourth International Conference on Comput-
ing, Communications and Networking Technologies (ICCCNT), 2013, pp. 1–4, doi:
10.1109/ICCCNT.2013.6726700.

[3] Ain, Q.U.—Butt, W.H.—Anwar, M.W.—Azam, F.—Maqbool, B.:
A Systematic Review on Code Clone Detection. IEEE Access, 2019, Vol. 7,
pp. 86121–86144, doi: 10.1109/ACCESS.2019.2918202.

[4] Antoniol, G.—Villano, U.—Merlo, E.—Di Penta, M.: Analyzing Cloning
Evolution in the Linux Kernel. Information and Software Technology. Vol. 44, 2002,
No. 13, pp. 755–765, doi: 10.1016/S0950-5849(02)00123-4.

[5] Aversano, L.—Cerulo, L.—Di Penta, M.: How Clones Are Maintained:
An Empirical Study. 11th European Conference on Software Maintenance and Reengi-
neering (CSMR ’07), 2007, pp. 81–90, doi: 10.1109/CSMR.2007.26.

[6] Baker, B. S.: A Program for Identifying Duplicated Code. Computing Science and
Statistics, 1993, pp. 49–49.

[7] Baker, B. S.: On Finding Duplication and Near-Duplication in Large Software
Systems. Proceedings of 2nd Working Conference on Reverse Engineering, 1995,
pp. 86–95, doi: 10.1109/WCRE.1995.514697.

[8] Barbour, L.—Khomh, F.—Zou, Y.: An Empirical Study of Faults in Late Propa-
gation Clone Genealogies. Journal of Software: Evolution and Process, Vol. 25, 2013,
No. 11, pp. 1139–1165, doi: 10.1002/smr.1597.

[9] Barbour, L.—Khomh, F.—Zou, Y.: Late Propagation in Software Clones.
2011 27th IEEE International Conference on Software Maintenance (ICSM), 2011,
pp. 273–282, doi: 10.1109/ICSM.2011.6080794.

[10] Basit, H.A.—Jarzabek, S.: Efficient Token Based Clone Detection with Flexible
Tokenization. Proceedings of the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (ESEC-FSE ’07), 2007, pp. 513–516, doi: 10.1145/1287624.1287698.

[11] Baxter, I. D.—Yahin, A.—Moura, L.—Sant’Anna, M.—Bier, L.: Clone De-
tection Using Abstract Syntax Trees. International Conference on Software Mainte-
nance, 1998, pp. 368–377, doi: 10.1109/ICSM.1998.738528.

[12] Buehrer, G.—Weide, B.W.—Sivilotti, P.A.G.: Using Parse Tree Validation
to Prevent SQL Injection Attacks. 5th International Workshop on Software Engineer-
ing and Middleware (SEM ’05), 2005, pp. 106–113, doi: 10.1145/1108473.1108496.

https://doi.org/10.1109/ICSE.2007.76
https://doi.org/10.1109/ICCCNT.2013.6726700
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1016/S0950-5849(02)00123-4
https://doi.org/10.1109/CSMR.2007.26
https://doi.org/10.1109/WCRE.1995.514697
https://doi.org/10.1002/smr.1597
https://doi.org/10.1109/ICSM.2011.6080794
https://doi.org/10.1145/1287624.1287698
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1145/1108473.1108496

722 C. Wijesiriwardana, P. Wimalaratne

[13] Chen, X.—Wang, A.Y.—Tempero, E.: A Replication and Reproduction of Code
Clone Detection Studies. Proceedings of the Thirty-Seventh Australasian Computer
Science Conference (ACSC 2014), Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, 2014, pp. 105–114.

[14] Corazza, A.—Di Martino, S.—Maggio, V.—Scanniello, G.: A Tree Kernel
Based Approach for Clone Detection. IEEE International Conference on Software
Maintenance (ICSM), 2010, pp. 1–5, doi: 10.1109/ICSM.2010.5609715.

[15] Cordy, J. R.: Comprehending Reality – Practical Barriers to Industrial Adoption of
Software Maintenance Automation. 11th IEEE International Workshop on Program
Comprehension, 2003, pp. 196–205, doi: 10.1109/WPC.2003.1199203.

[16] Cosentino, V.—Izquierdo, J. L. C.—Cabot, J.: Gitana: A SQL-Based Git
Repository Inspector. In: Johannesson, P., Lee, M., Liddle, S., Opdahl, A., Pastor
López, Ó. (Eds.): Conceptual Modeling (ER 2015). Springer, Cham, Lecture Notes in
Computer Science, Vol. 9381, 2015, pp. 329–343, doi: 10.1007/978-3-319-25264-3 24.

[17] D’Ambros, M.: Supporting Software Evolution Analysis with Historical Depen-
dencies and Defect Information. IEEE International Conference on Software Mainte-
nance, 2008, pp. 412–415, doi: 10.1109/ICSM.2008.4658092.

[18] Deelman, E.—Gil, Y.: Managing Large-Scale Scientific Workflows in Distributed
Environments: Experiences and Challenges. 2006 Second IEEE International Confer-
ence on e-Science and Grid Computing (e-Science ’06), 2006, p. 144, doi: 10.1109/E-
SCIENCE.2006.261077.

[19] Dominic, J.—Tubre, B.—Houser, J.—Ritter, C.—Kunkel, D.—
Rodeghero, P.: Program Comprehension in Virtual Reality. Proceedings of the 28th

International Conference on Program Comprehension (ICPC ’20), 2020, pp. 391–395,
doi: 10.1145/3387904.3389287.

[20] Dou, W.—Cheung, S. C.—Gao, C.—Xu, C.—Xu, L.—Wei, J.: Detecting Ta-
ble Clones and Smells in Spreadsheets. Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016), 2016,
pp. 787–798, doi: 10.1145/2950290.2950359.

[21] Ducasse, S.—Rieger, M.—Demeyer, S.: A Language Independent Approach for
Detecting Duplicated Code. IEEE International Conference on Software Maintenance
(ICSM ’99), 1999, pp. 109–118, doi: 10.1109/ICSM.1999.792593.

[22] Dyer, R.—Nguyen, H.A.—Rajan, H.—Nguyen, T.N.: Boa: A Language and
Infrastructure for Analyzing Ultra-Large-Scale Software Repositories. Proceedings
of the 2013 35th International Conference on Software Engineering (ICSE), 2013,
pp. 422–431, doi: 10.1109/ICSE.2013.6606588.

[23] Ferrante, J.—Ottenstein, K. J.—Warren, J.D.: The Program Dependence
Graph and Its Use in Optimization. ACM Transactions on Programming Languages
and Systems (TOPLAS), Vol. 9, 1987, No. 3, pp. 319–349, doi: 10.1145/24039.24041.

[24] Fowler, M.: Refactoring: Improving the Design of Existing Code. Pearson Educa-
tion India, 1999.

https://doi.org/10.1109/ICSM.2010.5609715
https://doi.org/10.1109/WPC.2003.1199203
https://doi.org/10.1007/978-3-319-25264-3_24
https://doi.org/10.1109/ICSM.2008.4658092
https://doi.org/10.1109/E-SCIENCE.2006.261077
https://doi.org/10.1109/E-SCIENCE.2006.261077
https://doi.org/10.1145/3387904.3389287
https://doi.org/10.1145/2950290.2950359
https://doi.org/10.1109/ICSM.1999.792593
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1145/24039.24041

Building Blocks of Code Clone Detection 723

[25] Geiger, R.—Fluri, B.—Gall, H.C.—Pinzger, M.: Relation of Code Clones
and Change Couplings. In: Baresi, L., Heckel, R. (Eds.): Fundamental Approaches
to Software Engineering (FASE 2006). Springer, Berlin, Heidelberg, Lecture Notes in
Computer Science, Vol. 3922, 2006, pp. 411–425, doi: 10.1007/11693017 31.

[26] Göde, N.—Harder, J.: Clone Stability. 2011 15th European Conference
on Software Maintenance and Reengineering (CSMR), 2011, pp. 65–74, doi:
10.1109/CSMR.2011.11.

[27] Gousios, G.—Spinellis, D.: Conducting Quantitative Software Engineering Stud-
ies with Alitheia Core. Empirical Software Engineering, Vol. 19, 2014, No. 4,
pp. 885–925, doi: 10.1007/s10664-013-9242-3.

[28] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997, doi:
10.1017/CBO9780511574931.

[29] Higo, Y.—Kusumoto, S.: Code Clone Detection on Specialized PDGs with Heuris-
tics. 2011 15th European Conference on Software Maintenance and Reengineering
(CSMR), 2011, pp. 75–84, doi: 10.1109/CSMR.2011.12.

[30] Horwitz, S.: Identifying the Semantic and Textual Differences Between Two Ver-
sions of a Program. ACM SIGPLAN Notices, Vol. 25, 1990, No. 6, pp. 234–245, doi:
10.1145/93542.93574.

[31] Hu, Y.—Wang, H.—Zhang, Y.—Li, B.—Gu, D.: A Semantics-Based Hybrid
Approach on Binary Code Similarity Comparison. IEEE Transactions on Software
Engineering, Vol. 47, 2021, No. 6, pp. 1241–1258, doi: 10.1109/TSE.2019.2918326.

[32] Hu, Y.—Zhang, Y.—Li, J.—Wang, H.—Li, B.—Gu, D.: BinMatch:
A Semantics-Based Hybrid Approach on Binary Code Clone Analysis. 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2018,
pp. 104–114, doi: 10.1109/ICSME.2018.00019.

[33] Hummel, B.—Juergens, E.—Heinemann, L.—Conradt, M.: Index-
Based Code Clone Detection: Incremental, Distributed, Scalable. 2010 IEEE
International Conference on Software Maintenance, 2010, pp. 1–9, doi:
10.1109/ICSM.2010.5609665.

[34] Islam, J. F.—Mondal, M.—Roy, C.K.—Schneider, K.A.: Comparing Bug
Replication in Regular and Micro Code Clones. 2019 IEEE/ACM 27th Inter-
national Conference on Program Comprehension (ICPC), 2019, pp. 81–92, doi:
10.1109/ICPC.2019.00022.

[35] Jalbert, K.—Bradbury, J. S.: Using Clone Detection to Identify Bugs in Concur-
rent Software. 2010 IEEE International Conference on Software Maintenance (ICSM),
2010, pp. 1–5, doi: 10.1109/ICSM.2010.5609529.

[36] Johnson, J. H.: Identifying Redundancy in Source Code Using Fingerprints. Pro-
ceedings of the 1993 Conference of the Centre for Advanced Studies on Collaborative
Research: Software Engineering (CASCON ’93), Vol. 1, 1993, pp. 171–183.

[37] Johnson, J.H.: Substring Matching for Clone Detection and Change Tracking.
1994 International Conference on Software Maintenance, 1994, pp. 120–126, doi:
10.1109/ICSM.1994.336783.

https://doi.org/10.1007/11693017_31
https://doi.org/10.1109/CSMR.2011.11
https://doi.org/10.1007/s10664-013-9242-3
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1109/CSMR.2011.12
https://doi.org/10.1145/93542.93574
https://doi.org/10.1109/TSE.2019.2918326
https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1109/ICSM.2010.5609665
https://doi.org/10.1109/ICPC.2019.00022
https://doi.org/10.1109/ICSM.2010.5609529
https://doi.org/10.1109/ICSM.1994.336783

724 C. Wijesiriwardana, P. Wimalaratne

[38] Johnson, J.: Visualizing Textual Redundancy in Legacy Source. Proceedings of
the 1994 Conference of the Centre for Advanced Studies on Collaborative Research:
Software Engineering (CASCON ’94), 1994, pp. 32–41.

[39] Juergens, E.—Deissenboeck, F.—Hummel, B.: CloneDetective – A Workbench
for Clone Detection Research. Proceedings of the IEEE 31st International Conference
on Software Engineering, 2009, pp. 603–606, doi: 10.1109/ICSE.2009.5070566.

[40] Kamiya, T.—Kusumoto, S.—Inoue, K.: CCFinder: A Multilinguistic Token-
Based Code Clone Detection System for Large Scale Source Code. IEEE Trans-
actions on Software Engineering, Vol. 28, 2002, No. 7, pp. 654–670, doi:
10.1109/TSE.2002.1019480.

[41] Kanwal, J.—Maqbool, O.—Basit, H.A.—Sindhu, M.A.: Evolutionary Per-
spective of Structural Clones in Software. IEEE Access, Vol. 7, 2019, pp. 58720–58739,
doi: 10.1109/ACCESS.2019.2913043.

[42] Kim, M.—Notkin, D.: Using a Clone Genealogy Extractor for Understanding and
Supporting Evolution of Code Clone. ACM SIGSOFT Software Engineering Notes,
Vol. 30, 2005, No. 4, pp. 1–5, doi: 10.1145/1083142.1083146.

[43] Kim, M.—Sazawal, V.—Notkin, D.—Murphy, G.: An Empirical Study of Code
Clone Genealogies. ACM SIGSOFT Software Engineering Notes, Vol. 30, 2005, No. 5,
pp. 187–196, doi: 10.1145/1095430.1081737.

[44] Komondoor, R.—Horwitz, S.: Using Slicing to Identify Duplication in Source
Code. In: Cousot, P. (Ed.): Static Analysis (SAS 2001). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2126, 2001, pp. 40–56, doi: 10.1007/3-540-
47764-0 3.

[45] Kontogiannis, K.A.—DeMori, R.—Merlo, E.—Galler, M.—Bern-
stein, M.: Pattern Matching for Clone and Concept Detection. Automated Software
Engineering, Vol. 3, 1996, No. 1-2, pp. 77–108, doi: 10.1007/BF00126960.

[46] Koschke, R.: Survey of Research on Software Clones. In: Koschke, R., Merlo, E.,
Walenstein, A. (Eds.): Duplication, Redundancy, and Similarity in Software. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Dagstuhl
Seminar Proceedings, 2007, pp. 368–377.

[47] Krinke, J.: A Study of Consistent and Inconsistent Changes to Code Clones. 14th

Working Conference on Reverse Engineering (WCRE 2007), 2007, pp. 170–178, doi:
10.1109/WCRE.2007.7.

[48] Krinke, J.: Identifying Similar Code with Program Dependence Graphs.
Eighth Working Conference on Reverse Engineering, 2001, pp. 301–309, doi:
10.1109/WCRE.2001.957835.

[49] Lee, S.—Jeong, I.: SDD: High Performance Code Clone Detection System for
Large Scale Source Code. Companion to the 20th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA ’05), 2005, pp. 140–141, doi: 10.1145/1094855.1094903.

[50] Leitão, A.: Detection of Redundant Code Using R2D2. Software Quality Journal,
Vol. 12, 2004, No. 4, pp. 361–382, doi: 10.1023/B:SQJO.0000039793.31052.72.

[51] Li, L.—Feng, H.—Zhuang, W.—Meng, N.—Ryder, B.: CCLearner: A Deep
Learning-Based Clone Detection Approach. 2017 IEEE International Conference on

https://doi.org/10.1109/ICSE.2009.5070566
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/ACCESS.2019.2913043
https://doi.org/10.1145/1083142.1083146
https://doi.org/10.1145/1095430.1081737
https://doi.org/10.1007/3-540-47764-0_3
https://doi.org/10.1007/3-540-47764-0_3
https://doi.org/10.1007/BF00126960
https://doi.org/10.1109/WCRE.2007.7
https://doi.org/10.1109/WCRE.2001.957835
https://doi.org/10.1145/1094855.1094903
https://doi.org/10.1023/B:SQJO.0000039793.31052.72

Building Blocks of Code Clone Detection 725

Software Maintenance and Evolution (ICSME), 2017, pp. 249–260, doi: 10.1109/IC-
SME.2017.46.

[52] Li, Z.—Lu, S.—Myagmar, S.—Zhou, Y.: CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale Software Code. IEEE Transactions on Software Engi-
neering, Vol. 32, 2006, No. 3, pp. 176–192, doi: 10.1109/TSE.2006.28.

[53] Lu, S.—Zhang, J.: Collaborative Scientific Workflows Supporting Collaborative
Science. International Journal of Business Process Integration and Management
(IJBPIM), Vol. 5, 2011, No. 2, pp. 185-199, doi: 10.1504/IJBPIM.2011.040209.

[54] Manber, U.—Myers, G.: Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, Vol. 22, 1993, No. 5, pp. 935–948, doi:
10.1137/0222058.

[55] Mayrand, J.—Leblanc, C.—Merlo, E.M.: Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics. Proceedings
of the 1996 International Conference on Software Maintenance (ICSM ’96), 1996,
pp. 244–253, doi: 10.1109/ICSM.1996.565012.

[56] Mui, H.H.—Zaidman, A.—Pinzger, M.: Studying Late Propagations in Code
Clone Evolution Using Software Repository Mining. Electronic Communications of
the EASST, Vol. 63, 2014, doi: 10.14279/tuj.eceasst.63.916.

[57] Nafi, K.W.—Kar, T. S.—Roy, B.—Roy, C.K.—Schneider, K.A.:
CLCDSA: Cross Language Code Clone Detection Using Syntactical Features and
API Documentation. 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 1026–1037, doi: 10.1109/ASE.2019.00099.

[58] Nafi, K.W.—Roy, B.—Roy, C.K.—Schneider, K.A.: A Universal Cross
Language Software Similarity Detector for Open Source Software Categoriza-
tion. Journal of Systems and Software, Vol. 162, 2020, Art. No. 110491, doi:
10.1016/j.jss.2019.110491.

[59] Nichols, L.—Emre, M.—Hardekopf, B.: Structural and Nominal Cross-
Language Clone Detection. In: Hähnle, R., van der Aalst, W. (Eds.): Fundamental
Approaches to Software Engineering (FASE 2019). Springer, Cham, Lecture Notes in
Computer Science, Vol. 11424, 2019, pp. 247–263, doi: 10.1007/978-3-030-16722-6 14.

[60] Noonan, R. E.: An Algorithm for Generating Abstract Syntax Trees. Computer
Languages, Vol. 10, 1985, No. 3-4, pp. 225–236, doi: 10.1016/0096-0551(85)90018-9.

[61] Ondik, J.—Rástočný, K.: Interactive Visualization of Differences Between Soft-
ware Model Versions. Proceedings of the 7th International Conference on Model-
Driven Engineering and Software Development (MODELSWARD 2019), 2019,
pp. 264-271, doi: 10.5220/0007345502640271.

[62] Ossher, J.—Sajnani, H.—Lopes, C.: File Cloning in Open Source Java Projects:
The Good, the Bad, and the Ugly. 2011 27th IEEE International Conference on
Software Maintenance (ICSM), 2011, pp. 283–292, doi: 10.1109/ICSM.2011.6080795.

[63] Pate, J. R.—Tairas, R.—Kraft, N.A.: Clone Evolution: A Systematic Review.
Journal of Software: Evolution and Process, Vol. 25, 2013, No. 3, pp. 261–283, doi:
10.1002/smr.579.

[64] Qian, W.—Peng, X.—Xing, Z.—Jarzabek, S.—Zhao, W.: Mining Logical
Clones in Software: Revealing High-Level Business and Programming Rules. 2013

https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1504/IJBPIM.2011.040209
https://doi.org/10.1137/0222058
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.14279/tuj.eceasst.63.916
https://doi.org/10.1109/ASE.2019.00099
https://doi.org/10.1016/j.jss.2019.110491
https://doi.org/10.1007/978-3-030-16722-6_14
https://doi.org/10.1016/0096-0551(85)90018-9
https://doi.org/10.5220/0007345502640271
https://doi.org/10.1109/ICSM.2011.6080795
https://doi.org/10.1002/smr.579

726 C. Wijesiriwardana, P. Wimalaratne

29th IEEE International Conference on Software Maintenance, 2013, pp. 40–49, doi:
10.1109/ICSM.2013.15.

[65] Rahman, F.—Bird, C.—Devanbu, P.: Clones: What is that Smell? 2010
7th IEEE Working Conference on Mining Software Repositories (MSR 2010), 2010,
pp. 72–81, doi: 10.1109/MSR.2010.5463343.

[66] Rahman, F.—Bird, C.—Devanbu, P.: Clones: What is that Smell? Empirical
Software Engineering, Vol. 17, 2012, No. 4-5, pp. 503–530, doi: 10.1007/s10664-011-
9195-3.

[67] Rattan, D.—Bhatia, R.—Singh, M.: Software Clone Detection: A Systematic
Review. Information and Software Technology, Vol. 55, 2013, No. 7, pp. 1165–1199,
doi: 10.1016/j.infsof.2013.01.008.

[68] Roy, C.K.—Cordy, J. R.: A Survey on Software Clone Detection Research. Tech-
nical Report No. 2007-541, School of Computing, Queen’s University at Kingston,
Ontario, Canada, 2007, pp. 64–68.

[69] Roy, C.K.—Cordy, J. R.: NICAD: Accurate Detection of Near-Miss Inten-
tional Clones Using Flexible Pretty-Printing and Code Normalization. 2008 16th

IEEE International Conference on Program Comprehension, 2008, pp. 172–181, doi:
10.1109/ICPC.2008.41.

[70] Roy, C.K.—Cordy, J. R.—Koschke, R.: Comparison and Evaluation of Code
Clone Detection Techniques and Tools: A Qualitative Approach. Science of Computer
Programming, Vol. 74, 2009, No. 7, pp. 470–495, doi: 10.1016/j.scico.2009.02.007.

[71] Saha, R.K.—Asaduzzaman, M.—Zibran, M.F.—Roy, C.K.—
Schneider, K.A.: Evaluating Code Clone Genealogies at Release Level:
An Empirical Study. 2010 10th IEEE Working Conference on Source Code
Analysis and Manipulation (SCAM), 2010, pp. 87–96, doi: 10.1109/SCAM.2010.32.

[72] Saha, R.K.—Roy, C.K.—Schneider, K.A.—Perry, D. E.: Understanding
the Evolution of Type-3 Clones: An Exploratory Study. 2013 10th IEEE Work-
ing Conference on Mining Software Repositories (MSR), 2013, pp. 139–148, doi:
10.1109/MSR.2013.6624021.

[73] Saini, V.—Farmahinifarahani, F.—Lu, Y.—Baldi, P.—Lopes, C.V.: Oreo:
Detection of Clones in the Twilight Zone. Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2018), 2018, pp. 354–365, doi:
10.1145/3236024.3236026.

[74] Sajnani, H.—Saini, V.—Svajlenko, J.—Roy, C.K.—Lopes, C.V.: Sourcer-
erCC: Scaling Code Clone Detection to Big-Code. Proceedings of the 38th Inter-
national Conference on Software Engineering (ICSE ’16), 2016, pp. 1157–1168, doi:
10.1145/2884781.2884877.

[75] Schwarz, N.—Lungu, M.—Robbes, R.: On How Often Code is Cloned Across
Repositories. Proceedings of the 34th International Conference on Software Engineer-
ing (ICSE), 2012, pp. 1289–1292, doi: 10.1109/ICSE.2012.6227097.

[76] Sheneamer, A.—Kalita, J.: A Survey of Software Clone Detection Techniques.
International Journal of Computer Applications, Vol. 137, 2016, No. 10, pp. 1–21,
doi: 10.5120/IJCA2016908896.

https://doi.org/10.1109/ICSM.2013.15
https://doi.org/10.1109/MSR.2010.5463343
https://doi.org/10.1007/s10664-011-9195-3
https://doi.org/10.1007/s10664-011-9195-3
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1109/ICPC.2008.41
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1109/SCAM.2010.32
https://doi.org/10.1109/MSR.2013.6624021
https://doi.org/10.1145/3236024.3236026
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1109/ICSE.2012.6227097
https://doi.org/10.5120/IJCA2016908896

Building Blocks of Code Clone Detection 727

[77] Sokol, F. Z.—Aniche, M.F.—Gerosa, M.A.: MetricMiner: Supporting Re-
searchers in Mining Software Repositories. 2013 IEEE 13th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2013, pp. 142–146,
doi: 10.1109/SCAM.2013.6648195.

[78] Stevens, R.—De Roover, C.: Querying the History of Software Projects Using
QWALKEKO. 2014 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2014, pp. 585–588, doi: 10.1109/ICSME.2014.101.

[79] Tairas, R.—Gray, J.: Phoenix-Based Clone Detection Using Suffix Trees. Pro-
ceedings of the 44th Annual Southeast Regional Conference (ACM-SE 44), 2006,
pp. 679–684, doi: 10.1145/1185448.1185597.

[80] Taylor, I. J.—Deelman, E.—Gannon, D.B.—Shields, M. (Eds.): Workflows
for e-Science: Scientific Workflows for Grids. Springer Publishing Company, Incorpo-
rated, 2014, doi: 10.1007/978-1-84628-757-2.

[81] Vincur, J.—Navrat, P.—Polasek, I.: VR City: Software Analysis in Virtual
Reality Environment. 2017 IEEE International Conference on Software Quality, Re-
liability and Security Companion (QRS-C), 2017, pp. 509–516, doi: 10.1109/QRS-
C.2017.88.

[82] Vislavski, T.—Rakić, G.—Cardozo, N.—Budimac, Z.: LICCA: A Tool for
Cross-Language Clone Detection. 2018 IEEE 25th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), 2018, pp. 512–516, doi:
10.1109/SANER.2018.8330250.

[83] Wahler, V.—Seipel, D.—Wolff, J.—Fischer, G.: Clone Detection in
Source Code by Frequent Itemset Techniques. Fourth IEEE International Work-
shop on Source Code Analysis and Manipulation, 2004, pp. 128–135, doi:
10.1109/SCAM.2004.6.

[84] Walker, A.—Cerny, T.—Song, E.: Open-Source Tools and Benchmarks for
Code-Clone Detection: Past, Present, and Future Trends. ACM SIGAPP Applied
Computing Review, Vol. 19, 2019, No. 4, pp. 28–39, doi: 10.1145/3381307.3381310.

[85] Wang, P.—Svajlenko, J.—Wu, Y.—Xu, Y.—Roy, C.K.: CCAligner:
A Token Based Large-Gap Clone Detector. Proceedings of the 40th Interna-
tional Conference on Software Engineering (ICSE ’18), 2018, pp. 1066–1077, doi:
10.1145/3180155.3180179.

[86] Xie, S.—Khomh, F.—Zou, Y.: An Empirical Study of the Fault-Proneness
of Clone Mutation and Clone Migration. Proceedings of the Tenth Working
Conference on Mining Software Repositories (MSR), 2013, pp. 149–158, doi:
10.1109/MSR.2013.6624022.

[87] Xue, Y.—Xing, Z.—Jarzabek, S.: CloneDiff: Semantic Differencing of Clones.
Proceedings of the 5th International Workshop on Software Clones (IWSC ’11), 2011,
pp. 83–84, doi: 10.1145/1985404.1985428.

[88] Xuyang, Y.—Chiba, S.: Attempts on Applying Graph Neural Network to Cross-
Language Code-Clone Detection. Graduate School of Information Science and Tech-
nology, University of Tokyo, 2020. http://jssst.or.jp/files/user/taikai/2020/
FOSE/fose1-3.pdf.

https://doi.org/10.1109/SCAM.2013.6648195
https://doi.org/10.1109/ICSME.2014.101
https://doi.org/10.1145/1185448.1185597
https://doi.org/10.1007/978-1-84628-757-2
https://doi.org/10.1109/QRS-C.2017.88
https://doi.org/10.1109/QRS-C.2017.88
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.1109/SCAM.2004.6
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3180155.3180179
https://doi.org/10.1109/MSR.2013.6624022
https://doi.org/10.1145/1985404.1985428
http://jssst.or.jp/files/user/taikai/2020/FOSE/fose1-3.pdf
http://jssst.or.jp/files/user/taikai/2020/FOSE/fose1-3.pdf

728 C. Wijesiriwardana, P. Wimalaratne

[89] Yang, W.: Identifying Syntactic Differences Between Two Programs. Soft-
ware: Practice and Experience, Vol. 21, 1991, No. 7, pp. 739–755, doi:
10.1002/spe.4380210706.

Chaman Wijesiriwardana received his B.Sc. (Hons) special
degree in computer science from the University of Peradeniya,
Sri Lanka and obtained his M.Sc. in information and commu-
nications technology from the Asian Institute of Technology,
Thailand and his Ph.D. degree in software engineering from the
University of Colombo School of Computing. He worked as Re-
search Assistant in the Software Evolution and Architecture Lab
at the University of Zurich for 3 years. His research interests in-
clude software evolution analysis, mining software repositories
and software security.

Prasad Wimalaratne obtained his B.Sc. special degree in
computer science from the University of Colombo and his Ph.D.
in virtual environments from the University of Salford, United
Kingdom, in 2002. He is Senior Member of IEEE and Member
of Computer Society of Sri Lanka (CSSL). He has won several
awards including the Presidential Award, University of Colombo
Vice Chancellor’s Award for Research Excellence, University of
Colombo Senate (Open) Awards and CSSL’s ICT Researcher
of the Year award for research excellence. His research inter-
ests include interactive 3D interfaces, unmanned aerial vehicles

(UAVs), virtual environments, assistive technology and code analysis. He joined the aca-
demic staff of the University of Colombo in 1995 and is currently the Head of the Depart-
ment of Communication and Media Technologies at the University of Colombo School of
Computing.

https://doi.org/10.1002/spe.4380210706

