
Computing and Informatics, Vol. 39, 2020, 1117–1147, doi: 10.31577/cai 2020 6 1117

FINDING EFFECTIVE COMPILER OPTIMIZATION
SEQUENCES: A HYBRID APPROACH

Nilton Luiz Queiroz Junior, Anderson Faustino da Silva

Departament of Informatics
State University of Maringá
Maringá, Paraná, Brazil
e-mail: niltonlqjr@gmail.com, anderson@din.uem.br

Luis Gustavo Araujo Rodriguez

Institute of Mathematics and Statistics
University of São Paulo
São Paulo, São Paulo, Brazil
e-mail: luisgar1990@gmail.com

Abstract. The Optimization Selection Problem is widely known in computer scien-
ce for its complexity and importance. Several approaches based on machine learning
and iterative compilation have been proposed to mitigate this problem. Although
these approaches provide several advantages, they have disadvantages that can hin-
der the performance. This paper proposes a hybrid approach that combines the best
of machine learning and iterative compilation. Several experiments were performed
using different strategies, metrics and hardware platforms. A thorough analysis of
the results reveals that the hybrid approach is a considerable improvement over
machine learning and iterative compilation. In addition, the hybrid approach out-
performs the best compiler optimization level of LLVM.

Keywords: Compilers, optimization, optimization selection problem, iterative
compilation, machine learning

Mathematics Subject Classification 2010: 68-N20

1118 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

1 INTRODUCTION

Compilers are computer programs capable of transforming code written in a source
language into a target language [1, 19, 20]. The final product is an equivalent
program generated into an executable file.

This process is divided into several phases, and one of the most important is the
optimization phase. This stage is fundamental because it improves the quality of the
final executable program, reducing run-time, code size or even power consumption [1,
4, 10].

An important aspect of compilers is their ability to provide optimizations [13].
However, two optimizations (one after the other) can provide greater benefits. For
example, copy propagation can generate dead code, which is useless code that will
not be used in the future and does not affect program results. This type of code is
removed by a compiler optimization called Dead-code elimination, and thus improves
the performance.

The previous example provides an insight into how optimizations interact with
each other. Based on these interactions, modern compilers (GCC [22], ICC [23],
LLVM [24]) offer standard optimization levels (O1, O2, O3), which can be used to
optimize the source code. However, the performance achieved by the aforementioned
levels is different for each program. This is because optimization selection depends
on program features. In addition, the most effective optimizations depend on the
system architecture and input, however the latter is usually different and thus its
effects are ignored.

The Optimization Selection Problem (OSP) consists in choosing the most ef-
fective optimizations for a given program. It is worth mentioning that this type
of problem is classified as undecidable. This is because of the search-space size,
which is related to the quantity of optimizations provided by the compiler and its
possible combinations. Thus, mitigating this problem is highly desirable. There are
several mitigating techniques for the OSP, and the most common are the follow-
ing:

Selecting an optimization set: Optimizations are selected for a given program
without considering their order of application. This approach is used frequently
because compiler systems such as GCC and HotSpot VM cannot reorder opti-
mizations based on the complexity of the intermediate code, which create de-
pendencies between optimizations [6].

Selecting an optimization sequence: Optimization sequences are selected and
their order of application is considered. Sequence selection considers whether or
not to repeat optimizations within a sequence.

Parameterization of optimizations: Attempts to find the most effective combi-
nation of parameters for optimizations.

In general, researchers investigate only one approach to mitigate the OSP. This
paper proposes to select an optimization sequence adopting automatic schemes. Our

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1119

system either creates sequences for programs using Iterative Compilation (IC) [26];
or selects sequences from a knowledge base using Machine Learning (ML) [10, 15].

IC consists in evaluating the quality of the target code generated by different
sequences, and therefore returns the most effective target code. However, ML based
approaches attempt to predict sequences, from previously-successful compilations,
that will have good performance in new programs.

ML has higher usage than IC based approaches because of its lower response
time, which is spent mostly on the training phase. In this stage, it is necessary
to evaluate the performance of several different sequences with example programs.
Thus, the exact program is compiled and executed several times.

In this context, it is vital to characterize programs. Thus, one of the most
difficult tasks is choosing a set of features that can effectively represent a program.
Certain studies in the literature have shown that extracting features through control
or data flow graphs are strategies that achieve good results; consequently, surpassing
features extracted directly from the source code [11, 15]. Research studies also indi-
cate that applying IC for each program function in Just-in-Time (JIT) environments
yields better results than characterizing the function and predicting which sequence
to use [6].

This paper describes a hybrid approach, already implemented on [8], that com-
bines the best of IC and ML in order to mitigate the OSP. The objective is to describe
an approach that initially uses ML to select potential optimization sequences. This
is done considering the features of an unknown program. Afterwards, it applies
IC to adapt potential optimization sequences to the said program. Thus, it is ex-
pected that performance will improve by adapting the solution rather than only
using potential sequences.

Furthermore, the hybrid approach applies a learning scheme for recently-com-
piled programs. This is done using a Genetic Algorithm (GA) that creates new
sequences, and thus the explored portion of the search space will always have these
types of sequences. Therefore, these new sequences can be used for recent programs
either after: feeding the knowledge base; compiler processing, or finding sequences
for batch programs. In addition, this paper also includes the analysis, and propose
a new approach to select the initial solution for the GA. It is called Centralized
Sequence Selection, that choses all sequence from the most similar program.

The main contributions of this paper are as follows:

• a comparison between two different strategies to select the initial solution;

• different approaches for feeding a knowledge database; and

• an analysis of the performance impact of the approach with different hardware
platforms and input sets.

The results indicate that the proposed hybrid approach outperforms both IC and
ML. Furthermore, the average speedup achieved by the hybrid approach is superior
to the best compiler optimization level of LLVM.

1120 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

The rest of the paper is organized as follows. Section 2 introduces the hybrid
approach for mitigating the OSP. Section 3 presents the instantiation of the hybrid
approach. Section 4 describes the experimental environment and setup. Section 5
presents a discussion of the results, comparing them with other approaches proposed
in the literature. Section 6 presents related works. Finally, Section 7 provides the
conclusions of this paper.

2 A HYBRID SOLUTION FOR MITIGATING THE OSP

IC is an appealing option because it achieves better results than ML. However, ML is
also interesting because it applies strategies capable of accelerating the convergence
to a good solution. Thus, this paper describes a hybrid approach for solving the
OSP. The objective is to combine the best of both IC and ML. The proposed hybrid
approach can be described as follows.

2.1 Overview of the Hybrid Approach

Suppose there exists a training set, containing S good optimization sequences for
P programs with their features. First, the approach creates a model based on the
knowledge database (KD), which is used to predict good optimization sequences
for a particular test program. Second, the approach selects N potential optimiza-
tion sequences, using the created model, for the test program. Afterwards, the N
sequences will feed a solution adapter, which utilizes a strategy based on IC to
adapt (improve) the solution found in the ML phase. Finally, the best target code,
found by the adapter, is returned to the user and the KD is updated with recent
knowledge.

Although the system has the capacity of providing itself with feedback, an initial
KD is necessary. In addition, a database generator is used just once, and thus the
initial knowledge is built with both sequences and performances for some programs.
Therefore, the system has the capacity to generate new sequences and provide itself
with a feedback.

The system increments its KD as new programs are compiled. However, not all
sequences will be possible candidates for the compilation of new programs. This
occurs because the database is filtered, and thus poor performing sequences are
discarded. It is important to highlight that the architecture is flexible enough to
allow for a change of focus in terms of performance improvement. Therefore, it is
necessary to store/record values in the KD.

The proposed hybrid approach is shown in Figure 1, which will be described
more specifically in the following subsections.

As shown in Figure 1, the components of the hybrid architecture can be divided
into 3 main groups:

1. Group of training components;

2. Group of prediction components; and

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1121

Database Generator

Base

Filter

Model Creator

(Machine Learning

Algorithm)

 Knowledge Base

Program

Features

Sequences

 Prediction

 Group

Machine

Learning

Model

New Source

Code
Features

Stractor

Sequence

Predictor

Solution

Adapter

Best

Sequence

 Fit

 Group

 Training

 Group

Sequences

Program

Features

Figure 1. Architecture of our hybrid approach

1122 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

3. Group of adaptive components.

These components will be described in Sections 2.2, 2.3 and 2.4. In addition,
the approaches used to feed the knowledge database will be discussed in Section 2.5.

2.2 Group of Training Components

This group is comprised of components that handle the background process of the
system. The aforementioned group has a component called the database generator,
which is executed just once to create the KD. It is also comprised of a database filter
and generative models in the context of ML, which the latter is used for prediction
purposes.

Database Generator is an algorithm used for creating a knowledge database,
which is usually created randomly [10, 2, 15]. However, there are several strate-
gies for generating the knowledge database [7, 18]. The proposed hybrid ap-
proach uses a GA, which will be discussed in Section 3.1.1. The database gener-
ator will be used just once because of two reasons. First, it is a large IC process.
Second, its objective is to generate a large database for initial programs, which
will be compiled on the system.

Database Filter. The hybrid architecture considers similar programs, and thus
chooses sequences that will compose the initial population of the GA. The low-
performing sequences, in relation to the evaluation criteria, will be excluded
from the model creation phase. However, these sequences will remain in the
KD. The database filter is the component that executes these tasks. It discards
bad sequences in terms of the performance goal, and associates the remaining
sequences with the program features. It is consistently executed in the KD
before the ML model is generated.

Generative Models in the Context of ML. This component collects program
information given by the database filter. Afterwards, it creates the ML model
using this information. This model will be utilized by the prediction compo-
nents. Therefore, the parameters of the ML algorithm are defined in this phase.
Subsequently, the model is created using sequences and information provided by
the database filter. It is important to highlight that several ML algorithms can
be used to create the model. The only restriction is that the algorithm must
have a training and testing phase. In addition, the algorithm must be able to
provide a classification based on a ranking scheme.

2.3 Group of Prediction Components

This group is comprised of components that predict sequences of the initial popula-
tion. These components consist of a single feature extractor and sequence prediction
scheme.

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1123

Feature Extractor. This component receives the source code, and afterwards ex-
tracts the features used in the prediction scheme. The extracted features are
the same as those stored in the KD, and they will feed the KD using sequences
generated in the solution adaptation stage. These features are also used for
feeding purposes in the sequence prediction scheme.

Sequence Prediction Scheme. This module selects sequences that will compose
the initial solution for the solution adapter. It receives a prediction model,
created by the generative model, and features extracted from the test program.
The selected sequences are chosen based on the similarity between program
features in the KD and testing phase. The sequences can be chosen either from
a single program or several programs.

2.4 Group of Adaptive Components

This group is comprised of just one component, which adapts the solution to the
new program. This component is called the solution adapter.

Solution Adapter generates the final solution. Furthermore, this component cre-
ates solutions and feeds the knowledge database; in other words, it deeply ex-
plores the search space of the OSP. The initial solution of the algorithm is com-
prised of K sequences, which are selected by the sequence prediction scheme. Af-
terwards, the algorithm chosen to adapt the solution runs over these sequences.
This algorithm must be capable of receiving and improving at least one sequence.
The database generator stores all generated sequences in the KD. However, only
the most effective sequence is considered the final solution, and thus it is given
to the test program.

2.5 Approaches for Feeding the Knowledge Database

Although the hybrid approach is flexible enough to operate without feeding the
database, a scheme for such a process generates knowledge for medium and long-
term goals. Thus, the architecture of the hybrid approach allows the user to choose
when the feedback will occur. Thus, two approaches are proposed for feeding the
KD:

Constant Feeding: The hybrid approach stores new information in the KD (fea-
tures and sequences) and recreates the model. This process is done for all
compiled programs.

Batch Feeding: The hybrid approach stores new information in the KD, and recre-
ates the model after K compiled programs. This is done for every compiled
program.

These two approaches have different execution frequencies for creating the ML
model.

1124 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

The ML model based on the constant-feeding approach is created after a solution
is found. Although, it has a higher cost than batch feeding, it has an intense
feedback. This feeding mechanism produces a more non-deterministic approach than
batch feeding. This result is produced because there are N ! forms of organizing N
programs. Thus, altering the order of the programs can modify the initial population
of the subsequent program; consequently, producing a different result.

However, batch feeding stores information and generated sequences in the data-
base, and the model is recreated after K programs are compiled. The non-determi-
nism of this feeding approach is less than constant feeding because altering the order
of the programs that are in the same batch will not modify the initial population
of the subsequent program. It is worth noting that constant feeding is basically
a version of batch feeding with K = 1.

3 INSTANTIATION OF THE HYBRID APPROACH

The hybrid approach, described in the previous section, can be instantiated using
different strategies. Thus, this section describes how it was implemented. The
proposed strategy was implemented as a tool of LLVM [9], which was chosen because
it allows full control over optimizations.

This means that it is possible to enable a list of optimizations through the
command line. The position of each optimization indicates its order of application.

The infrastructure implemented can be viewed in Figure 2.

Figure 2. Infrastructure of the instantiations

Two plugins were implemented for LLVM:

1. libWuLars: used for extracting the hottest function of the program, as proposed
by Wu and Larus (1994) [25]; and

2. libFeaturesExtractor: used for extracting features proposed by Namolaru
et al. [14].

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1125

The remaining libraries (also known as libs) are standard for LLVM. In addition,
they assist with developing plugins for LLVM.

The tools are provided by LLVM for compiling and optimizing code among
other functions. Furthermore, a tool called HybridSelector is also used, which helps
implement the proposed hybrid approach in Figure 1.

HybridSelector uses Support Vector Machine (SVM) as an ML algorithm. In
addition, all IC phases are done using GAs. Finally, all features are extracted
without the need to execute the program.

The following sections will present in detail the implementation of the Hybrid-
Selector tool. In addition, these sections will describe each component and the
different parameterizations used for the experiments.

3.1 Iterative Compilation

IC is used in two phases of the hybrid approach. Its purpose is to create the KD and
adapt the solution. Although the parameters are modified, the database generator
and solution adapter use the same GA for each instantiation.

3.1.1 Database Generator

The algorithm 1 presents a pseudocode to the KD generation.
The GA presented in Algorithm 1 was used to create the database. This algo-

rithm is executed with two distinct parametrization. Although these parameters are
similar, they have two differences:

1. total number of individuals in a population;

2. and a stop criterion.

Both executions use tournament selection, and possess crossover and mutation
operators. Although there are four mutation operators in the algorithm, only one
can be applied to each individual. Thus, for every individual that mutation are
applied, only one of four is chosen.

The mutation operators consist of:

1. substituting a randomly-positioned optimization for any other valid optimiza-
tion;

2. permutation-based procedures for two optimizations that compose the sequence;

3. including a randomly-selected optimization into the sequence; and

4. excluding a randomly-positioned optimization.

Crossover takes a portion (specifically half) of each solution and concatenates
them. The probability of applying mutation and crossover operators are 40 % and
60 %, respectively, as specified in [12]. In addition, this paper proposes an elitism-
based algorithm, and thus the best/most effective solution is carried out to the

1126 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

Data: TrainPrograms,MaxSeqSize,NumIndividuals,BaselineList
Result: KD
KD← ∅;
foreach Program ∈ TrainPrograms do

Generation← ∅;
NumGeneration← 0;
Sequences← ∅;
Size← Random(1,MaxSeqSize);
ProgramFeatures← getFeaturesByFunction(Program);
// Create a dictionary with functions names as keys and

functions features as values

Baselines← GetBaseilnes(Program,BaselineList) // Compile with

Compiler Baselines in BaselineList and get its execution

time

for i← 1 to NumIndividuals do
Individual← CreateIndividual(Size); // Create an optimization

sequence

IndividualFitness← Fitness(Individual,Program); // Compile and

execute program with an individual

Generation← Generation ∪ (Individual, IndividualFitness) ;

end
Sequences[NumGeneration]← Generation;
while not reach at least one stop criteria do

Generation← evolve(Generation); // do Crossover, Mutation

and get fitness of each individual

NumGeneration← NumGeneration + 1;
Sequences[NumGeneration]← Generation;

end
KD← KD + (Program,Baselines,ProgramFeatures, Sequences)

end
Algorithm 1: Genetic algorithm to create KD

next generation. The fitness function used in this paper refers to the run-time
of the program given in seconds. This function calculates the arithmetic mean of
5 executions for each sequence.

Both initial populations are randomly generated and comprised of either 10 or
50 individuals. Each chromosome of the individuals is a string that specifies one
optimization to the compiler (those string are presented in Table 2). The number of
individuals is given by a specific parameter. The size of each individual is randomly
generated as well, varying between 1 and 61. This range was chosen because it relates
to the number of different optimizations available (O1, O2, O3). The algorithm has
3 stop criteria:

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1127

1. The standard deviation of the fitness function is less than 0.01.

2. The total number of generations is either:

• 100 with an initial population of 50 individuals; or

• 20 with an initial population of 10 individuals.

3. The best fitness value does not improve after three consecutive generations.

After the GA is executed with the aforementioned parametrizations, all se-
quences are gathered to create the KD. Thus for every experiment, the first model
is built with the KD created in the previous phase.

3.1.2 Solution Adapter

The GA was also used for adaptation purposes. Its parameterization is very similar
to the GA presented in Section 3.1.1.

The mutation and crossover operators are identical, and thus have equal prob-
ability. Furthermore, the fitness function is identical as well. Thus, the main dif-
ference between the algorithms is their initial population, which is not comprised of
randomly-selected individuals. Instead, the initial population is selected from the
KD, and is comprised of 10 individuals and 20 generations, and every individual is
a optimization sequence that is applied on the whole program.

3.2 Feature Extraction

The features used for all instantiations are shown in Table 1, and were proposed by
Namolaru et al.

These features are provided by two different scopes, which are based on:

1. The entire program structure: this indicates that the extracted features describe
the entities of the entire program;

2. Hot functions: this indicates that the program will only be represented by its
hottest function, which is highly beneficial for the compiler to optimize. The
algorithm used to search for the hottest function was proposed by Wu and Lars
(1994) [25]. This strategy is justified by Amdahl’s Law [16].

In both cases, the features were not submitted to a prior preprocessing.

3.3 Machine Learning

SVM is a popular and widely-acclaimed ML algorithm, and thus was chosen for
this experiment. A machine learning library called Scikit-learn was selected for
implementing SVM [17]. The configuration, parametrization and implementation of
the algorithm are described in the following sections.

1128 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

Number of Instructions
Number of assignment instructions
Number of integer binop instructions
Number of float binop instructions
Number of terminator instructions
Number of bitwise binop instructions
Number of vector instructions
Number of memory access and addressing instructions
Number of aggregate instructions
Number of integer conversion instructions
Number of float conversion instructions
Number of call instructions
Number of call instructions that has pointers as arguments
Number of call instructions that have more than 4 arguments
Number of call instructions that return an integer
Number of call instructions that return a float
Number of call instructions that return a pointer
Number of switch instructions
Number of indirect branches instructions
Number of conditional branches instructions
Number of unconditional branches instructions
Number of load instructions
Number of store instructions
Number of GetElemPtr instructions
Number of other instructions
Number of PHI nodes
Number of BBs with no PHI nodes
Number of BBs with up to 3 PHI nodes
Number of BBs with more than 3 PHI nodes
Number of Basic Blocks (BB)
Average number of instructions per BB
Number of edges in a Control Flow Graph (CFG)
Number of critical edges in a CFG
Average number of PHI nodes per BB
Number of BBs with 1-successor
Number of BBs with 2-successor
Number of BBs with more than 2-successor
Number of BBs with 1-predecessor
Number of BBs with 2-predecessor
Number of BBs with more than 2-predecessor
Number of BBs with 1-successor and 1-predecessor
Number of BBs with 2-successor and 1-predecessor
Number of BBs with 1-successor and 2-predecessor
Number of BBs with 2-successor and 2-predecessor
Number of BBs with more than 2-successor and 2-predecessor
Number of BBs with less than 15 instructions
Number of BBs with more than 15 instructions
and less than 500 instructions
Number of BBs with more than 500 instructions

Table 1. Features

3.3.1 Parametrization of SVM

SVMs are effective tools for binary classification. One-Versus-All (commonly re-
ferred to as OVA) is a strategy used for these types of problems, and was imple-
mented for this experiment. Thus, the decision function of our SVM algorithm is
capable of ranking test programs. In addition, we also analyzed the possibility of
using a statistical SVM, however the results did not match our predictions because
it had a low sample rate for each class.

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1129

The SVM kernel function used were linear function, and all the parameters of
the kernel were the default of Scikit-learn library.

The adopted approach considers every program of the KD as a class for the SVM.
Thus, each class is comprised of only one example because its program characteri-
zation was static. If a dynamic characterization occurs, every program execution is
collectively seen as an example.

The features used to classify the program are extracted by the Feature extractor,
which was previously discussed in Section 3.2.

3.3.2 Model Creator

The algorithm 2 presents the pseudocode to the model creator.

Data: KD,Representation, SVMParameters
Result: Model
SVMFeatures← ∅;
KD← FilterBase(KD)// Removes sequences worst than the best

baseline also remove programs that have one baseline with

execution time equals 0 from base

if Representation = HotFunction then
foreach (Program,Baselines,Features, Sequences) ∈ KD do

hot← findHotFunction(Program);
Vector← toVector(Features[hot]);
SVMFeatures← SVMFeatures ∪ (Vector,Program.Name);
// Vector is a vector of features and Program.Name is the

program name string, that will be used as label in SVM

end

else
foreach (Program,Features, Sequences) ∈ KD do

end
ProgramFeatures← sumDictFields(Features);
Vector← toVector(ProgramFeatures);
SVMFeatures← SVMFeatures ∪ (Vector,Program.Name);

end
SVMModel← SVMTrain(SVMFeatures, SVMParameters);
Model.SVM← SVMModel;
Model.Representation← Representation;
Model.KD← KD;

Algorithm 2: Algorithm to create a SVM model

It is worth highlighting that training the SVM is done with data filtered from
the KD. In addition, features that do not appear in at least one program from the
KD are excluded from the training phase. The number of features can increase as
new programs are added to the KD.

1130 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

The database filter uses speedup as a threshold compared to the LLVM opti-
mization levels.

The model creator has two types of instantiations, and the scope of features
given by the feature extractor is different for each type. These two scopes were
previously discussed in Section 3.2.

3.3.3 Sequence Predictor

The main objective of the SVM prediction phase is to predict the initial population,
and consequently the GA will improve the sequences. This GA is described in
Section 3.1.2.

Thus, a new program P is given to the feature extractor as an input. Afterwards,
the collected features with an ML model are given to the sequence predictor. There-
fore, the predictor will select sequences that will compose the initial population of
the GA.

However, some sequences can cause errors to the LLVM optimizer, and thus it is
vital to validate the selected sequences. Therefore, each sequence is validated, and
their error prone counterparts are discarded.

The sequence prediction was instantiated in two different ways:

• Centralized: All sequences of the population are provided by the program with
the highest similarity. Thus, only the aforementioned program is predicted, and
consequently its sequences are extracted. However if the most similar program is
not able to provide all the sequences, the second most similar program is chosen,
and so forth. This process repeats until the initial population is completely
built.

• Distributed: Programs provide a number of sequences (Np), and it is propor-
tional to the value of the decision function (Decision valp). This value is given
by the prediction function of the SVM model. In this case, the programs pro-
vide their best sequences, and each program provides Np, which is calculated
by the equation 1. This prediction strategy is implemented to generate diver-
sity between the initial sequences of the GA, considering that the sequences will
originate from different programs. The sequences are extracted until the size of
the initial population is reached, and are ordered from the most similar to least
similar program.

Np =

⌈
Population size× Decision valP∑

x∈Base Decision valx

⌉
(1)

In the experiments presented in this paper, the GA for adapting solutions has
an initial population of 10 individuals. In the Distributed sequence prediction, each
program contributes with only a single sequence. This occurs because the deci-
sion function of the SVM has small differences between two programs that occupy
consecutive positions. The Algorithm 3 presents the pseudocode of this phase.

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1131

Data: Model,PredictionType,K,NewProgram
Result: Population
SVMModel← Model.SVMModel;
Representation← Model.Representation;
KD← Model.KD;
NewProgramFeatures← getFeaturesByFunction(NewProgram);
if Representation = HotFunction then

hot← findHotFunction(Program);
NewFeatures← NewProgramFeatures[hot];

else
NewFeatures← sumDictFields(NewProgramFeatures);

end
SimilartyRank← Classify(NewFeatures, SVMModel);
// Creates an array where each element is a tuple composed by

the programs in KD and its decision function value according

to SVMModel. This array is sorted byt decision function

value.

Population← ∅;
rank← 0;
S ← size(Population);
if PredictionType = Centralized then

while S < K do
MostSimilar← SimilarityRank[rank].Name;
Population←

Population ∪ SelectSequences(MostSimilar,K-S,KD)// Select

the K-S best Sequences form the MostSimilar

S ← size(Population);
rank← rank + 1;

end

else
SumDV← SumDecisionValues(SimilarityRank);
while S < K do

Program← SimilarityRank[rank].Name;
DV← SimilarityRank[rank].DecisionValue;
numProgSeq← dK × (DV/SumDV)e
Population← Population ∪ SelecteSequences(Program,K-S,KD);
S ← size(Population);
rank← rank + 1;

end

end
Algorithm 3: Algorithm to generate the starter population

1132 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

3.4 Approaches for Feeding the Knowledge Database

Three experiments were conducted to evaluate the approaches for feeding the data-
base. These experiments were handled for each instantiation of the hybrid approach.
Two of these experiments were conducted to evaluate batch feeding, while the other
evaluates constant feeding.

For batch feeding, the conducted experiments were the following:

• The first experiment consisted in predicting and adapting the solution for every
program from one benchmark. This is done using a model generated by the
KD of micro-benchmarks. Although the KD was fed during this procedure, the
model was not recreated. Afterwards, an entirely new model was created, and
the same procedure was made for every program from a different benchmark.
However, the latter does not build new models.

• The second experiment is very similar to the first, however the benchmark order
was inverted.

For constant feeding, the test programs were ordered alphabetically, and the
model was recreated after every prediction and adaptation procedure.

4 EXPERIMENTAL ENVIRONMENT

The following subsections describe the hardware platform, strategies, benchmarks
and metrics used for the experiments.

4.1 Experimental Architecture

The experiments were conducted in the following environment:

Hardware: Intel Core i7-3770 processor with a frequency of 3.40 GHz, 8 MB cache
and 8 GB of RAM;

Operating System: Ubuntu 15.10 with kernel 4.2.0-35-generic.

4.2 Compilation System

The compilation system used was LLVM, which has difficulties with certain se-
quences, and thus the LLVM optimizer (opt) hangs or crashes; consequently having
unresponsive behavior. Therefore, this problem was mitigated by reducing the num-
ber of optimizations. Thus, sequences were comprised of optimizations from O1, O2,
and O3. These optimizations are shown in Table 2.

These optimizations do not guarantee that problem-less sequences will generate,
however it does reduce unresponsive behaviors and crashes/hangs.

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1133

adce alignment-from-
assumptions

always-inline argpromotion

assumption-cache-tracker barrier basicaa basiccg

bdce block-freq branch-prob constmerge

correlated-propagation deadargelim domtree dse

early-cse elim-avail-extern float2int functionattrs

globaldce globalopt gvn indvars

inline inline-cost instcombine ipsccp

jump-threading lazy-value-info lcssa licm

loop-accesses loop-deletion loop-idiom loop-rotate

loop-simplify loop-unroll loop-unswitch loop-vectorize

loops lower-expect memcpyopt memdep

mldst-motion no-aa prune-eh reassociate

scalar-evolution sccp scoped-noalias simplifycfg

slp-vectorizer sroa strip-dead-prototypes tailcallelim

targetlibinfo tbaa tti verify

Table 2. Optimizations

4.3 Benchmarks Used

We used three benchmarks: two to evaluate strategies and one to evaluate the KD
generation.

KD Generation. This phase uses micro-kernel applications, which in this paper
are referred to as micro-benchmarks. These applications are available on the
LLVM test-suite, and were used for experiments conducted by Purini and Jain
(2013) [18]. The complete list of these applications is shown in Table 3.

Test Programs. We used the Collective Benchmark (cBench, with the dataset
configured to 1; and the Polyhedral Benchmark (PolyBench), with the dataset
configured to extralarge. These benchmarks are shown in Table 4.

4.4 Evaluation Metrics

Four metrics were used for analyzing the results:

1. Speedup over O0;

2. NPS: number of programs that achieve higher speedup than the best compiler
optimization level. This process is also called coverage;

3. NoS: number of evaluated sequences; and

4. ReT: response time.

The speedup is calculated as follows:

Speedup = Runtime Level O0/Runtime.

1134 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

ackermann flops-8 perm

ary3 fp-convert pi

binary-trees hash pidigits

bubblesort heapsort puzzle

chomp himenobmtxpa puzzle-stanford

dry huffbench queens

dt intmm queens-mcgill

fannkuch lists quicksort

fasta lpbench random

fasta-redux mandel realmm

fbench mandel-2 recursive

ffbench mandelbrot reedsolomon

fib2 matrix regex-dna

fldry methcall richards benchmark

flops misr salsa20

flops-1 n-body sieve

flops-2 nsieve-bits spectral-norm

flops-3 oourafft strcat

flops-4 oscar towers

flops-5 partialsums treesort

flops-6 perlin whetstone

flops-7

Table 3. Micro-benchmarks

cBench
automotive bitcount bzip2d consumer mad network dijkstra security blowfish e security sha
automotive qsort1 bzip2e consumer tiff2bw network patricia security pgp d telecom adpcm c
automotive susan c consumer jpeg c consumer tiff2rgba office ghostscript security pgp e telecom adpcm d
automotive susan e consumer jpeg d consumer tiffdither office synth security rijndael d telecom CRC32
automotive susan s consumer lame consumer tiffmedian security blowfish d security rijndael e telecom gsm

Polybench

2mm cholesky durbin gesummv lu syr2k
3mm correlation fdtd-2d gramschmidt mvt syrk
adi covariance floyd-warshall heat-3d nussinov trisolv
atax deriche gemm jacobi-2d seidel-2d trmm
bicg doitgen gemver ludcmp symm

Table 4. Test programs

4.5 Strategies

Several strategies were evaluated. Table 5 presents the strategies for mitigating the
OSP.

IC.GA.50 and IC.GA.10 are used by the GA to create the database. IC.GA.50
and IC.GA.10 have 50 and 10 individuals, respectively. IC.Best10 consists in apply-
ing 10 sequences found by Purini and Jain [18], and consequently returns the best
target code.

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1135

Approach
Sequence
Selection

Program
Representation

Feeding
Strategy

Compilation
Order

Maximum
NoS

The Proposed Hybrid Approaches

H.DHB.PC Distributed Hot Batch Poly-cBench 200

H.DHB.CP Distributed Hot Batch cBench-Poly 200

H.DHC.A Distributed Hot Constant Alphabetical 200

H.DFB.PC Distributed Full Batch Poly-cBench 200

H.DFB.CP Distributed Full Batch cBench-Poly 200

H.DFC.A Distributed Full Constant Alphabetical 200

H.CHB.PC Centralized Hot Batch Poly-cBench 200

H.CHB.CP Centralized Hot Batch cBench-Poly 200

H.CHC.A Centralized Hot Constant Alphabetical 200

H.CFB.PC Centralized Full Batch Poly-cBench 200

H.CFB.CP Centralized Full Batch cBench-Poly 200

H.CFC.A Centralized Full Constant Alphabetical 200

Machine Learning Approaches

ML.DH Distributed Hot – – 10

ML.DF Distributed Full – – 10

ML.CH Centralized Hot – – 10

ML.CF Centralized Full – – 10

Iterative Compilation Approaches

IC.GA.50 – – – – 5 000

IC.GA.10 – – – – 200

IC.Best10 – – – – 10

Table 5. Strategies

We also evaluated four machine learning methods: ML.DH that selects sequences
using the distributed strategy for the hottest function features; ML.DF that selects
sequences using the distributed strategy for the full program features; ML.CH that
selects sequences using the centralized strategy for the hottest function features; and
ML.CF that selects sequences using the centralized strategy for the full program
features.

5 EXPERIMENTS

The following subsections describe in detail the experimental results.

5.1 Quality of the Knowledge Database

The KD was generated from two executions of our GA, and it is presented in Fig-
ure 3.

The aforementioned figure presents a violin plot, which shows sequences cre-
ated for each microbenchmark. In addition, the violin plot represents each LLVM

1136 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

a
c
k
e

rm
a

n
n

a
ry

3
b

in
a

ry
−

tr
e

e
s

b
u

b
b
le

s
o

rt
c
h

o
m

p
d

ry d
t

fa
n

n
k
u

c
h

fa
s
ta

fa
s
ta

−
re

d
u

x
fb

e
n

c
h

ff
b

e
n

c
h

fi
b

2
fl
d

ry
fl
o

p
s

fl
o

p
s
−

1
fl
o

p
s
−

2
fl
o

p
s
−

3
fl
o

p
s
−

4
fl
o

p
s
−

5
fl
o

p
s
−

6
fl
o

p
s
−

7
fl
o

p
s
−

8
fp

−
c
o

n
ve

rt
h

a
s
h

h
e

a
p

s
o

rt
h

im
e

n
o

b
m

tx
p

a
h

u
ff

b
e

n
c
h

in
tm

m
lis

ts
lp

b
e

n
c
h

m
a

n
d

e
l

m
a

n
d

e
l−

2
m

a
n

d
e

lb
ro

t
m

a
tr

ix
m

e
th

c
a

ll
m

is
r

n
−

b
o

d
y

n
s
ie

ve
−

b
it
s

o
o

u
ra

ff
t

o
s
c
a

r
p

a
rt

ia
ls

u
m

s
p

e
rl

in
p

e
rm p

i
p

id
ig

it
s

p
u

z
z
le

p
u

z
z
le

−
s
ta

n
fo

rd
q

u
e

e
n

s
q

u
e

e
n

s
−

m
c
g

ill
q

u
ic

k
s
o

rt
ra

n
d

o
m

re
a

lm
m

re
c
u

rs
iv

e
re

e
d

s
o

lo
m

o
n

re
g

e
x
−

d
n

a
ri

c
h

a
rd

s
_

b
e

n
c
h

m
a

rk
s
a

ls
a

2
0

s
ie

ve
s
p

e
c
tr

a
l−

n
o

rm
s
tr

c
a

t
to

w
e

rs
tr

e
e

s
o

rt
w

h
e

ts
to

n
e

S
p

e
e

d
u

p
 O

ve
r

O
0

Database
O1
O2
O3

Figure 3. Knowledge Database

standard optimization level with lines. As shown in this figure, the best/most effec-
tive LLVM optimization level was superior to the GA in the following cases: misr,
bubblesort, dry, intmm, fldry, lists and whetstone.

The genetic algorithm had a speedup rate slightly higher (not more than 3×)
than the LLVM standard optimization levels. This indicates that although the base
is not comprised of the best possible sequences, it can have sequences superior to
the best/most effective LLVM optimization level (89.06 % of the programs) in terms
of both quantity and quality.

In total, 23 410 sequences were generated. 25.18 % (5894) of these sequences
were better, in terms of speedup over O0, than the most effective LLVM optimization
level. The initial population can be comprised of these aforementioned sequences.

5.2 Performance

A summary of the results is presented in Table 6.
As shown above, “pure” or unaltered ML techniques had similar speedups in

most cases, however their NPS is lower compared to distributed-selection-based
hybrid approaches and IC. This does not apply for IC.Best10 approaches. ML.DH
had the best/most effective speedups, however its NPS was worse compared to
ML.DF.

A total of 59 programs were evaluated. ML.DH is superior to ML.DF in 35 pro-
grams, the latter overcame the former in just 24 programs. In addition, the best-case

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1137

Strategy
Speedup

NPS
NoS

Best GMS Worst SDS Max AVG Min

H.DHB.PC 4.47× 1.99× 1.06× 0.83× 46 110 51.09 10

H.DHB.CP 4.50× 1.99× 1.07× 0.79× 45 117 54.85 10

H.DHC.A 4.48× 1.97× 1,06× 0.83× 46 180 55.46 10

H.DFB.PC 6.00× 1.99× 1.06× 0.91× 45 140 50.14 10

H.DFB.CP 4.44× 1.96× 1.07× 0.75× 44 99 51.98 10

H.DFC.A 4.46× 1.95× 1.05× 0.78× 43 119 52.79 10

H.CHB.PC 4.42× 1.88× 1.00× 0.79× 38 150 50.53 10

H.CHB.CP 4.51× 1.85× 1.03× 0.70× 35 120 53.61 10

H.CHC.A 4.45× 1.87× 0.91× 0.77× 36 120 46.44 10

H.CFB.PC 4.20× 1.87× 1.02× 0.66× 36 149 52.98 10

H.CFB.CP 4.11× 1.85× 1.02× 0.66× 35 168 50.88 10

H.CFC.A 4.22× 1.88× 1.06× 0.66× 32 110 51.15 10

ML.DH 4.49× 1.91× 1.05× 0.77× 33 10 10 10

ML.DF 4.06× 1.90× 1.06× 0.68× 35 10 10 10

ML.CH 4.42× 1.84× 1.01× 0.72× 30 10 10 10

ML.CF 4.10× 1.82× 1.02× 0.63× 23 10 10 10

IC.GA.50 4.35× 2.083× 1.08× 0.83× 56 650 286.17 100

IC.GA.10 6.71× 1.930× 1.04× 0.92× 46 120 53.68 10

IC.Best10 3.75× 1.801× 1.05× 0.59× 24 10 10 10

O1 4.70× 1.69× 0.99× 0.63× – 1 1 1

O2 4.37× 1.84× 1.03× 0.75× – 1 1 1

O3 4.36× 1.84× 1.05× 0.76× – 1 1 1

Best: the best result; GMS: geometric mean speedup; Worst: the worst result; SDS:
standard deviation speedup; Max: maximun NoS; AVG: average NoS; Min: minimun

NoS.

Table 6. Summary of experiments

scenario for ML.DH and ML.DF was 4.49× (gemm) and 4.06× (gemm), respec-
tively. These results indicate that program characterization based on the hottest
function provides a better initial solution to the solution adapter. In addition, an-
other key element worth analyzing is ML. Distributed-selection-based approaches
achieved a slightly higher NPS than Centralized-selection-based techniques. How-
ever, a thorough analysis revealed that ML strategies had a higher speedup than
centralized-selection-based techniques in 9 programs (2mm, lame, covariance, doit-
gen, durbin, jacobi-2d, mvt, adpcm d and CRC32). Finally, ML.DH had the best
results in 2 cases.

Overall, IC.GA.50 had the best results. It had higher speedups than IC.GA.10
in 48 programs. Compared to other strategies, IC.GA.50 had higher speedups in
27 out of 59 programs. This result was highly anticipated because this strategy
is the most aggressive; consequently, evaluating a high number of sequences. In
addition, IC.GA.10 had higher speedups than IC.GA.50 in 11 programs (susan e,

1138 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

bzip2e, jpeg c, lame, correlation, doitgen, durbin, gesummv, mvt, trmm, and seidel-
2d). Thus, this confirms that less aggressive IC techniques have satisfying results
in some cases, and consequently surpass more aggressive IC strategies. Addition-
ally, IC.GA.10 and IC.GA.50 had maximal speedups of 6.71× (durbin) and 4.35×
(gemm), respectively. Furthermore, IC.GA.10 had the best results, in 4 programs,
among all the strategies.

IC.Best10 surpassed all the other strategies in just 2 programs (bicg and ri-
jndael d). This result was also anticipated because the aforementioned strategy
evaluates the same number of sequences. However, this strategy excels over ML
in only 14 programs (adi, atax, bicg, correlation, gemver, gesummv, lu, dikstra,
ghostscript, pgp d, rijndael d, rijndael e, seidel-2d and trisolv).

An individual analysis reveals that the success rate of IC.Best10 does not in-
crease significantly compared to ML.DH and ML.DF, and achieves 15 and 19 than
the aforementioned strategies, respectively. The highest speedup reached by
IC.Best10 was 3.75× (doitgen). However, this is the lowest speedup compared to
other strategies including the LLVM optimization levels. Thus, we conclude and
confirm that this strategy is the worst compared to others.

The hybrid approach reached its highest speedup by using H.DFB.PC. The
speedup rate is 6.00× (durbin). The other strategies do not possess significant dif-
ferences in terms of speedups. H.CHB.CP reached approximately half of the perfor-
mance of the other hybrid strategies in 1 case (nussinov). Furthermore, H.DHB.PC
and H.DHC.A had the highest value in the same case (bitcount). The centralized-
selection based hybrid approach had worse performance than its distributed-selection
based counterpart. This indicates that looking for sequences from different sources
to obtain a more diversified population is an appealing option. Overall, the best-
performing hybrid strategy was H.DHC.A because it had the highest speedup in
6 programs.

All strategies, except for IC.Best10 and both MLS’s, had higher speedups than
the optimization levels of LLVM. Specifically, IC.GA.50 had the best performance.
These results were as expected, since IC.GA.50 is the most aggressive strategy in
these experiments.

The behavior of the hybrid approach was altered for every strategy. However, the
most important factor in improving performance is the initial solution. It is widely
known that the initial selection of sequences is highly influential to the end results,
and thus centralizing the selection of an initial solution is not beneficial. This can
be confirmed because its performance was lower than IC.GA.10 in the majority of
the programs. However, decentralizing the selection of an initial solution was better
than IC.GA.10.

IC.GA.10 is appealing because it had a high geometric mean. However, it
is approximately 3.35 % lower than the geometric mean of the hybrid approach.
Nevertheless, it surpassed every strategy of the hybrid approach with centralized-
selection-based techniques.

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1139

It is very important to highlight that the both MLF’s approaches had speedups
of approximately 1.03 % and 1.04 % lower than IC.GA.10. This result indicates that
these methods have low-cost benefits.

The strategies can be categorized as follows:

1. Strategies that evaluate an unfixed number of sequences; and

2. Strategies that evaluate a fixed number of sequences.

IC.GA.50 was the best strategy among those in the first category. In addition,
it had the largest number of explored sequences. Statistically, it evaluated 5.5 times
more than the hybrid approach.

However, the hybrid approach and IC.GA.10 evaluated almost the same number
of sequences. This indicates that the hybrid approach can reach higher speedups
than a “pure” or unaltered IC strategy. In addition, GAs with a well selected
population is an improvement over GAs with initial random populations.

IC.Best10 and ML.CF were the worst-performing strategies among those in the
second category. They had the worst coverage, and does not even reach speedups
obtained by optimization levels of LLVM (O2 and O3). Considering the number of
evaluated sequences, ML.DH and ML.DF had acceptable improvements, however its
coverage was low. Both of these strategies are an improvement over optimization
levels of LLVM (O1, O2 and O3).

IC.GA.50 is superior in terms of NPS, and covers 95 % of the programs. Fur-
thermore, IC.GA.10 covered 78 % of the programs. The distributed-selection based
hybrid approach covered 73 % (at its worst) and 78 % (at its best) of the programs.
The centralized-selection based hybrid approach covered 54 % (at its worst) and 64 %
(at its best). ML.DH and ML.DF covered 56 % and 59 % of the programs, respec-
tively, and ML.CH covered 51 % of the programs. Finally, IC.Best10 and ML.CF
were the two worst cases in covering, achieving 41 % and 38 %, respectively. This
indicates that aggressive exploration strategies increase the coverage; consequently,
covering the majority of all tested programs.

The response time is the total time spent in sequence-selection and improvement
phases, however the time spent on creating the database is ignored because this
process is executed only once and it will not be necessary for future compilations.
ML and IC.Best10 had the lowest response times. In addition, they are also the
worst-performing strategies, as discussed previously.

However, IC.GA.10 and IC.GA.50 spent an average time of 2 hours and 18
minutes, and 14 hours and 30 minutes, respectively. Finally, the hybrid approach
spent 3 hours and 35 minutes finding a solution for each program.

The hybrid approach outperforms IC.GA.10 by 3.47 % (in terms of speedup);
consequently, consuming 56 % more of the time spent by IC.GA.10. In addition,
IC.GA.50 outperforms IC.GA.10 by up to 7.93 %, and thus consuming 530 % more
time than IC.GA.10.

Another important fact to be observed is that there is a soft relation between
Standard Deviation and GMS. The approaches that reach low GMS tend to provide

1140 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

low Standard Deviations, and the approaches that reach high GMS tend to provide
higher Standard deviation. This indicates that for some programs, the effort of
iterative compilation, even with a selected start sequence set, may not achieve high
improvements.

These results indicate that the most-time-consuming strategies reach the best
speedups, however there are strategies (such as the hybrid approach) that increase
speedups by slightly increasing the time consumption.

5.3 Different Hardware Platforms

Constant feeding experiments were executed on different hardware platforms as well.
However, these experiments consisted of both cBench and Polybench benchmarks.
Figure 4 presents the GMS of both the Core-i7 architecture (described in Section 4.1)
and the following hardware platform: Intel Xeon E5504 processor with a frequency
of 2.00 GHz, 4 MB of cache and 24 GB of RAM. The experiment performed on the
Intel Xeon architecture considered an already-established KD. Thus, the results are
based on the same database created on the Core-i7 architecture.

0

0.5

1

1.5

2

2.5

Xeon Core-i7

S
p
e
e
d
u
p
 O

v
e
r

O
0

O3
O2
O1
Full
Hot

Figure 4. Results on different hardware platforms

Intel’s Xeon processor had better results than the Core-i7. Compared to the
best compiler optimization level (03), the hybrid approach gained performance by
up to 6.49 % and 6.47 % on the Core-i7 and Xeon architecture, respectively. The
performance gain at 02 and 01 optimization levels were very similar, varying no
more than 1 %. The results indicate that, for both architectures, the performance
gain of the hybrid approach was approximately the same proportion.

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1141

A thorough analysis of the results reveals the following conclusions.

• It is possible to obtain effective speedups using a database created on a different
hardware platform.

• Representing programs based on their hot functions is an efficient strategy to
reduce the performance loss when the data-set is altered, as well as the hardware
platform.

• Using a hybrid approach is a smart and effective strategy to mitigate the OSP,
regardless of the data-set or hardware platform.

5.4 Different Input Sets

An additional experiment was conducted with different input sets. These experi-
ments were performed only with constant feeding and cBench because of the limited
availability of several datasets. In addition, they are based only on distributed-
selection based strategies. Figure 5 shows the results for these experiments. In
addition, Table 7 presents speedups for each different input.

1

1.5

2

2.5

3

3.5

4

4.5

a
u
to

m
o
tiv

e
_
b
itc

o
u
n
t

a
u
to

m
o
tiv

e
_
q
s
o
rt1

a
u
to

m
o
tiv

e
_
s
u
s
a
n
_
c

a
u
to

m
o
tiv

e
_
s
u
s
a
n
_
e

a
u
to

m
o
tiv

e
_
s
u
s
a
n
_
s

b
z
ip

2
d

b
z
ip

2
e

c
o
n
s
u
m

e
r_

jp
e
g
_
c

c
o
n
s
u
m

e
r_

jp
e
g
_
d

c
o
n
s
u
m

e
r_

la
m

e

c
o
n
s
u
m

e
r_

m
a
d

c
o
n
s
u
m

e
r_

tiff2
b
w

c
o
n
s
u
m

e
r_

tiff2
rg

b
a

c
o
n
s
u
m

e
r_

tiffd
ith

e
r

c
o
n
s
u
m

e
r_

tiffm
e
d
ia

n

n
e
tw

o
rk

_
d
ijk

s
tra

n
e
tw

o
rk

_
p
a
tric

ia

o
ffic

e
_
g
h
o
s
ts

c
rip

t

o
ffic

e
_
rs

y
n
th

s
e
c
u
rity

_
b
lo

w
fis

h
_
d

s
e
c
u
rity

_
b
lo

w
fis

h
_
e

s
e
c
u
rity

_
p
g
p
_
d

s
e
c
u
rity

_
p
g
p
_
e

s
e
c
u
rity

_
rijn

d
a
e
l_

d

s
e
c
u
rity

_
rijn

d
a
e
l_

e

s
e
c
u
rity

_
s
h
a

te
le

c
o
m

_
a
d
p
c
m

_
c

te
le

c
o
m

_
a
d
p
c
m

_
d

te
le

c
o
m

_
C

R
C

3
2

te
le

c
o
m

_
g
s
m

S
p
e
e
d
u
p
 O

v
e
r

O
0

Hottest function Input 1
Hottest function Input 10
Hottest function Input 20

Full Program Input 1
Full Program Input 10
Full Program Input 20

Figure 5. Different input sizes

Based on the aforementioned results, the performance was influenced by altering
the data-sets, as reported in the literature [3]. The performance loss was only up to
4.86 %, regardless of the program characterization.

It is important to specify that only static features are considered when extract-
ing good/effective sequences from the database. This process does not consider the

1142 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

Input
Hot Function Full Program

Best GMS Worst Best GMS Worst

1 4.12× 1.99× 1.06× 3.35× 1.97× 1.06×
10 3.18× 1.96× 1.07× 3.20× 1.95× 1.08×
20 3.18× 1.90× 1.08× 3.09× 1.89× 1.06×

Best: the best result; GMS: geometric mean speedup; Worst: the worst result

Table 7. Speedups for each different input

program behavior when data-sets are exchanged. However, this process does not
require the program execution to extract features, which will affect the system re-
sponse time. Therefore, a performance loss of up to 4.86 % is appealing compared
to the cost of executing a program.

6 RELATED WORKS

Zhou and Lin [26] used a genetic algorithm called NSGA-II to investigate multi-
objective compilations, and thus compared randomly-selected sequences. The com-
piler used for this research study was GCC. The optimization levels -O1, -O2, -O3,
-Os were selected for the experiments, thus totaling 54 optimizations and a search
space size of 254. A set of 10 cBench programs were used, and the goal was to opti-
mize the code size and run-time. The hyper-volumes created by NSGA-II had the
best results, and random sequences had better performance than GCC optimization
levels. A thorough analysis revealed that NSGA-II had the best results in terms of
run-time and code size.

Jantz and Kulkarni [5] proposed an approach reducing the search-space of the op-
timization sequences. This is done by exploring dependencies between the optimiza-
tions. Applying cleanup phases such as dead-code elimination and dead-assignment
elimination, which does not have much interaction with other optimizations, some
optimizations can be removed from the search space and applied after each opti-
mization.

The works presented by [5] and [26] focus on a pure IC strategy. They does not
use a combination between ML and IC strategies as our work.

Malik [11] uses the concept of an histogram based on a data flow graph to
establish the similarity between programs. This histogram was built considering
the distance to a sink node (node without successor nodes) and a root node (node
without predecessor nodes). Thus, Malik showed how data flow graphs can be
beneficial to characterize programs using static information and SVM. However,
these sets are not adapted to recently-established programs, which could provide
greater benefits.

Park et al. [15] introduced a model to characterize programs based on graph-
model representation, collecting instruction information for each node. In addition to
the proposed model, the authors also implemented other techniques to characterize

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1143

programs, which can be categorized into dynamic or static representations. The
former requires program execution for classifications and the latter only needs to
analyze the source code. The results showed that control flow graphs had better
performance among other strategies.

Jantz and Kulkarni [6] addressed the Optimization Selection Problem in just-
in-time compilers using Java Virtual Machine (JVM). This paper does not consider
the order of optimizations because HotSpot (in JVM) does not require it. First, the
analysis was done by recompiling the methods, removing only one optimization at
a time from the standard sequence of JVM (used as baseline). Thus, it was possible
to make the following observations: most optimizations do not have negative im-
pacts for several methods of the program. However, some methods can hinder the
performance more frequently; and most optimizations have a small individual influ-
ence on the performance. In addition, they also used a logistic regression thechnique
to predict sequences and then compare it to an GA implementation.

Lima et al. [10] used machine learning to improve power and performance effi-
ciency during compilation. They showed that sacrificing performance was unneces-
sary to reduce power consumption.

Junior and da Silva [7] evaluated the performance of different case-based rea-
soning configurations, which use dynamic and static features to find good/effective
optimization sequences. The authors presented a measure of similarity among other
strategies to build past experiences. The proposed algorithm is divided into two
phases: an offline phase; and an online phase. The former creates sequences
for prior experiences of the knowledge database. This phase can be done ran-
domly or using a meta-heuristic. The online phase is based on case-reasoning,
and thus all prior program experiences are analyzed, and its sequences are fil-
tered. Afterwards, the input sequence is compiled with the given number of analo-
gies. These sequences are extracted from the most similar program. The results
show that the approach used to create the knowledge database influences the re-
sults.

The works presented by [7, 10, 11, 15, 6] uses IC to generate a knowledge
database and also use ML to select a number of sequences and then pick up the
best between them. Instead of the instruction: select the best one, our work adapts
the sequence after ML phase.

Martins et al. [12] implemented a clustering approach, transforming code from
program functions to symbolic representations, to mitigate the OSP. These repre-
sentations refer to the DNA of the program, where tokens of the source code are
transformed into characters. The clustering approach starts by extracting DNA
from the program function. Thus, the distance matrix for programs is calculated
using the normalized compression distance algorithm. This matrix will serve as
a basis to build a tree topology in which the clustering algorithm will be capable
of finding possible clusters. Finally, all optimizations are included in the reduced
search space. The results showed that reducing the search space is significant and
highly beneficial to the performance. This work differs from our because the ini-
tial population of GA is generated by the optimization of the reduced search space,

1144 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

while our work select the initial population to the program based on SVM predic-
tion.

Purini and Jain [18] proposed a search strategy slightly different than machine
learning and iterative compilation. The objective of this strategy was to build a set of
good optimization sequences, where for each class of programs there exists a sequence
of optimizations that reach a satisfying performance. While in this work the goal
is to search a generic optimization sequence that fits well in different programs, our
work focus on search specific optimization sequences.

Tartara and Crespi Reghizzi [21] proposed a continuous learning approach that
does not require prior knowledge to create optimization sequences. These sequences
are represented as mathematical formulas. Every formula can be represented us-
ing a grammar based on certain rules of binary operations, Boolean and numeric
values, if-expressions, comparison operators, arithmetic and Boolean operators, and
program features. This approach uses a knowledge database for storing and ex-
tracting sequences, however this information is randomly-generated if the number
of sequences is insufficient. The results showed that converging for good performance
does not require several executions, and in some cases it has better values than the
highest optimization level in both compilers. This work is different from our work,
because it does not have an offline phase. In our work we used the training group
component that does the offline phase.

7 CONCLUSION

The selection of optimization sequences can greatly impact the run-time of a pro-
gram. In addition, the OSP depends heavily on the hardware architecture.

This paper proposes a hybrid approach for mitigating the OSP. Since this
problem is complex, this approach uses an ML approach (SVM) to feed the ini-
tial solution of a GA and then search for good/effective solutions. The results
showed that the hybrid approach achieved significant improvements over “pure”
or unaltered ML and IC strategies, achieving speed-ups over 2.00×, 1.93× and
2.08× with H.DHB.PC, IC.GA.10 and IC.GA.50, respectively. Machine learning
strategies achieved the lowest speed-ups among the aforementioned approaches,
1.91.

It is extremely important to highlight that the strategy used for the initial se-
quences had the highest overall influence, and we conclude that distributed-selection
is the best approach for selecting the initial solution. In addition, the experiments
showed that the approach is portable, because it can be transferred from one archi-
tecture to another without a performance loss. Furthermore, the hybrid approach
is beneficial because its solutions improve over time, whereas ML and IC do not
provide this advantage. IC strategies need to restart the process on every occasion
and ML cannot create new sequences.

Future works include investigating the influence of different schemes to generate
the KD, and additional ML approaches to predict the initial population. In addition,

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1145

instantiating the hybrid approach with more aggressive solution adapters can be
proposed in the future.

REFERENCES

[1] Aho, A.V.—Lam, M. S.—Sethi, R.—Ullman, J.D.: Compilers: Principles,
Techniques and Tools. Prentice Hall, 2006.

[2] Cavazos, J.—Fursin, G.—Agakov, F.—Bonilla, E.—O’Boyle, M.F. P.—
Temam, O.: Rapidly Selecting Good Compiler Optimizations Using Performance
Counters. Proceedings of the International Symposium on Code Generation and Op-
timization (CGO ’07), IEEE, 2007, pp. 185–197, doi: 10.1109/cgo.2007.32.

[3] Chen, Y.—Huang, Y.—Eeckhout, L.—Fursin, G.—Peng, L.—
Temam, O.—Wu, C.: Evaluating Iterative Optimization Across 1000 Datasets.
SIGPLAN Notices, Vol. 45, 2010, No. 6, pp. 448–459, doi: 10.1145/1809028.1806647.

[4] Daud, S.—Ahmad, R.B.—Murthy, N. S.: The Effects of Compiler Optimisa-
tions on Embedded System Power Consumption. International Journal of Informa-
tion and Communication Technology (IJICT), Vol. 2, 2009, No. 1-2, pp. 73–82, doi:
10.1504/ijict.2009.026431.

[5] Jantz, M.R.—Kulkarni, P.A.: Exploiting Phase Inter-Dependencies for Faster
Iterative Compiler Optimization Phase Order Searches. 2013 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems (CASES), 2013,
pp. 1–10, doi: 10.1109/cases.2013.6662511.

[6] Jantz, M.R.—Kulkarni, P.A.: Performance Potential of Optimization Phase
Selection During Dynamic JIT Compilation. SIGPLAN Notices, Vol. 48, 2013, No. 7,
pp. 131–142, doi: 10.1145/2517326.2451539.

[7] Queiroz Junior, N. L.—da Silva, A. F.: Finding Good Compiler Optimiza-
tion Sets – A Case-Based Reasoning Approach. Proceedings of the 17th Interna-
tional Conference on Enterprise Information Systems, 2015, Vol. 2, pp. 504–515, doi:
10.5220/0005380605040515.

[8] Queiroz Junior, N. L.—Rodriguez, L.G.A.—da Silva, A. F.: Combining Ma-
chine Learning with a Genetic Algorithm to Find Good Compiler Optimizations Se-
quences. Proceedings of the 19th International Conference on Enterprise Information
Systems (ICEIS), 2017, Vol. 3, pp. 397–404, doi: 10.5220/0006270403970404.

[9] Lattner, C.—Adve, V.: LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis and Transformation. Proceedings of the 2004 International Sym-
posium on Code Generation and Optimization (CGO ’04), 2004, pp. 75–86, doi:
10.1109/cgo.2004.1281665.

[10] de Lima, E.D.—de Souza Xavier, T.C.—da Silva, A. F.—Ruiz, L. B.: Com-
piling for Performance and Power Efficiency. Proceedings of the 23rd International
Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS),
2013, pp. 142–149, doi: 10.1109/patmos.2013.6662167.

[11] Malik, A.M.: Spatial Based Feature Generation for Machine Learning Based Op-
timization Compilation. 2010 Ninth International Conference on Machine Learning
and Applications (ICMLA), 2010, pp. 925–930, doi: 10.1109/icmla.2010.147.

https://doi.org/10.1109/cgo.2007.32
https://doi.org/10.1145/1809028.1806647
https://doi.org/10.1504/ijict.2009.026431
https://doi.org/10.1109/cases.2013.6662511
https://doi.org/10.1145/2517326.2451539
https://doi.org/10.5220/0005380605040515
https://doi.org/10.5220/0006270403970404
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1109/patmos.2013.6662167
https://doi.org/10.1109/icmla.2010.147

1146 N. L. Queiroz Junior, A. F. da Silva, L. G. A. Rodriguez

[12] Martins, L.G.A.—Nobre, R.—Cardoso, J.M.P.—Delbem, A.C.B.—
Marques, E.: Clustering-Based Selection for the Exploration of Compiler Optimiza-
tion Sequences. ACM Transactions on Architecture and Code Optimization, Vol. 13,
2016, No. 1, Art. No. 8, 28 pp., doi: 10.1145/2883614.

[13] Muchnick, S. S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997.

[14] Namolaru, M.—Cohen, A.—Fursin, G.—Zaks, A.—Freund, A.: Practical
Aggregation of Semantical Program Properties for Machine Learning Based Op-
timization. Proceedings of the 2010 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems, ACM, 2010, pp. 197–206, doi:
10.1145/1878921.1878951.

[15] Park, E.—Cavazos, J.—Alvarez, M.A.: Using Graph-Based Program Char-
acterization for Predictive Modeling. Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization, ACM, 2012, pp. 196–206, doi:
10.1145/2259016.2259042.

[16] Patterson, D.A.—Hennessy, J. L.: Computer Organization and Design: The
Hardware/Software Interface. Fourth Edition. The Morgan Kaufmann Series in Com-
puter Architecture and Design, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[17] Pedregosa, F.—Varoquaux, G.—Gramfort, A.—Michel, V.—
Thirion, B.—Grisel, O.—Blondel, M.—Prettenhofer, P.—Weiss, R.—
Dubourg, V.—Vanderplas, J.—Passos, A.—Cournapeau, D.—
Brucher, M.—Perrot, M.—Duchesnay, E.: Scikit-Learn: Machine Learning
in Python. The Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–2830.

[18] Purini, S.—Jain, L.: Finding Good Optimization Sequences Covering Program
Space. ACM Transactions on Architecture and Code Optimization, Vol. 9, 2013,
No. 4, Art. No. 56, 23 pp., doi: 10.1145/2400682.2400715.

[19] Scott, M. L.: Programming Languages Pragmatics. Morgan Kaufmann Publishers,
San Francisco, CA, USA, 2009.

[20] Sebesta, R.W.: Concepts of Programming Languages. Addison Wesley, San Fran-
cisco, CA, USA, 2009.

[21] Tartara, M.—Crespi Reghizzi, S.: Continuous Learning of Compiler Heuris-
tics. ACM Transactions on Architecture Code Optimization, Vol. 9, 2013, No. 4,
Art. No. 46, 25 pp., doi: 10.1145/2400682.2400705.

[22] GNU Compiler Collection. 2017, http://gcc.gnu.org.

[23] Intel C Compiler. 2017, https://software.intel.com/en-us/c-compilers, doi:
10.1145/62297.62412.

[24] The LLVM Compiler Infrastructure. 2017, http://llvm.org.

[25] Wu, Y.—Larus, J. R.: Static Branch Frequency and Program Profile Analysis.
Proceedings of the 27th Annual International Symposium on Microarchitecture (MI-
CRO 27), ACM, 1994, 11 pp., doi: 10.1145/192724.192725.

[26] Zhou, Y.—Lin, N.: A Study on Optimizing Execution Time and Code Size in Itera-
tive Compilation. 2012 Third International Conference on Innovations in Bio-Inspired
Computing and Applications (IBICA), 2012, pp. 104–109, doi: 10.1109/ibica.2012.46.

https://doi.org/10.1145/2883614
https://doi.org/10.1145/1878921.1878951
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1145/2400682.2400715
https://doi.org/10.1145/2400682.2400705
http://gcc.gnu.org
https://software.intel.com/en-us/c-compilers
https://doi.org/10.1145/62297.62412
http://llvm.org
https://doi.org/10.1145/192724.192725
https://doi.org/10.1109/ibica.2012.46

Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1147

Nilton Luiz Queiroz Junior is Professor in the Department
of Informatics of the State University of Maringá located in
Brazil. He is lecturing undergraduate courses. He received his
Bachelor and Master degrees in computer science from the State
University of Maringá, Brazil in 2014 and 2016, respectively.
His research interests include parallel programming and compile
techniques.

Anderson Faustino da Silva is Professor in the Department
of Informatics of the State University of Maringá located in
Brazil, lecturing undergraduate and graduate courses. He re-
ceived his Bachelor’s degree in computer science from the State
University of West Paraná, Brazil in 2000. He then received his
Master and Ph.D. degrees in systems engineering and computer
science from the Federal University of Rio de Janeiro, Brazil in
2003 and 2006, respectively. His research interests include par-
allel programming and compile techniques.

Luis Gustavo Araujo Rodriguez is currently Ph.D. student
in computer science at the University of São Paulo in Brazil.
He received his Bachelor’s degree in computer science from the
Catholic University of Honduras in 2013. He then received his
Master’s degree in computer science from the State University
of Maringá, Brazil in 2016. His research interests include high
performance computing, parallel programming, and compiler.

Computing and Informatics, Vol. 39, 2020, 1148–1171, doi: 10.31577/cai 2020 6 1148

OPEN HYBRID MODEL: A NEW ENSEMBLE MODEL
FOR SOFTWARE DEVELOPMENT COST ESTIMATION

Amin Moradbeiky, Vahid Khatibi Bardsiri

Department of Computer Engineering, Faculty of Science
Kerman Branch, Islamic Azad University
Kerman, Iran
e-mail: ampayam@yahoo.com, kvahid2@live.utm.my

Mehdi Jafari

Department of Electrical Engineering, Faculty of Engineering
Kerman Branch, Islamic Azad University
Kerman, Iran
e-mail: mjafari@iauk.ac.ir

Abstract. Given various features of a software project, it may face different admin-
istrative challenges requiring right decisions by software project managers. A ma-
jor challenge is to estimate software development cost for which different methods
have been proposed by many researchers. According to the literature, the capa-
bility of a proposed model or method is demonstrated in a specific set of software
projects. Hence, the aim of this study is to present a model to take advantage of
the capabilities of various software development cost estimation models and meth-
ods simultaneously. For this purpose, a new model called “open hybrid model” was
proposed based on the firefly algorithm. The proposed model includes an extensible
bank of estimation methods. The model also includes an extensible bank of rules
to describe the relation between existing methods. Considering project conditions,
the proposed model tries to find the best rule for combining estimation methods in
the methods bank. Three datasets of real projects were used to evaluate the preci-
sion of the proposed model, and the results were compared with those of other 11
methods. The results were compared based on performance parmeters widely used
to show the accuracy and stability of estimation models. According to the results,
the open hybrid model was able to select the most appropriate methods present in
the methods bank.

Keywords: Development cost estimation, firefly algorithm, software project

A New Ensemble Model for Software Development Cost Estimation 1149

1 INTRODUCTION

According to the literature [30, 36, 5], various methods for software cost estimation
can be classified as algorithmic and non-algorithmic strategies. Both strategies can
be useful depending on the type of software projects. The efficiency will be increased
by proper identification of the requirements of each method. Each method has its
own advantages and disadvantages.

Moreover, different approaches have been recently used for software development
cost estimation. For instance, back propagation learning algorithms on a multilayer
perceptron and the genetic programming (GP) have been proposed for this pur-
pose [24]. Reddy et al. [33] used the multi-objective particle swarm optimization
(MOPSO) to develop a software cost estimation model which outperformed the
standard constructive cost model (COCOMO). Andreou and Papatheocharous [2]
employed fuzzy decision trees for software cost estimation.

A set of cost estimation methods are classified as algorithmic strategies. These
methods employ mathematical models for estimating project costs. These models
are defined as a function of cost factors.

Several algorithmic methods such as linear and nonlinear models, Putman’s
model, Seer-Sem model, function point model, Bailey and Basili model, Aron model,
Doty model, COCOMO (constructive cost model), and COCOMO II have been
proposed so far. COCOMO has been used by many researchers and thus is further
discussed in this section.

COCOMO was first proposed by Boehm in 1981 as an empirical model by col-
lecting data of different real-world software projects. The collected data are then
analyzed to obtain certain formulas matching observations. In addition, Boehm
et al. analyzed the developed version of COCOMO with more capabilities than the
earlier version and released it as COCOMO II [7, 8, 9].

As mentioned earlier, algorithmic methods based on one or more mathematical
formulas lack sufficient flexibility. Consequently, non-algorithmic models have been
proposed for cost estimation.

Unlike algorithmic methods, non-algorithmic methods are based on analytical
comparison and inference. The use of non-algorithmic methods requires accurate
information on prior projects. Non-algorithmic methods make estimations by ana-
lyzing prior datasets without employing any specific relation or equation. The most
common methods for estimating software criteria in non-algorithmic methods in-
clude exhaustive search, comparison, trial, error and inference. Some studies in this
field are reviewed below:

Cuadrado-Gallego et al. [10] analyzed and compared machine learning and ex-
pert judgment methods that have been extensively used for cost estimation of soft-
ware projects. To this end, they compared and pointed out advantages and disad-
vantages of seven machine learning methods including neural networks, fuzzy logic,
comparative analysis, decision trees, case-based reasoning (CBR) and rule-based
reasoning and hybrid systems. According to their results, CBR outperformed other

1150 A. Moradbeiky, V.K. Bardsiri, M. Jafari

methods. In fact, this method could be successful in the absence of statistical rela-
tionships.

Wen et al. [41] systematically analyzed machine learning models for software
cost estimation from four perspectives. They analyzed different studies completed
between 1991 and 2010 in terms of machine learning, estimation precision, compar-
ison models and estimation field. Different machine learning models have their own
advantages and disadvantages; thus, they can be employed in different fields. Huang
et al. [17] analyzed preprocessing as a major step of machine learning in software
project cost estimation. They aimed at empirical evaluation of the effect of data
preprocessing on machine learning methods for software cost estimation. Bardsiri
and Hashemi [6] employed the correlation analysis approach to evaluate the effi-
ciency and precision of five major machine learning methods for software project
cost estimation. They also analyzed the effect of feature selection on the estimation
precision.

Idri et al. [18] classified the papers published on CBR cost estimation by IEE,
ACM, ScienceDirect, and Google Scholar from 1990 to 2012 in terms of method-
ology, type and technique. According to their findings, ABE methods outper-
formed other techniques, especially when combined with the fuzzy logic or ge-
netic algorithm. Sigweni and Shepperd [37] systematically reviewed and evalu-
ated feature weighting techniques in the ABE method for software development
cost estimation. They analyzed different aspects of each technique in addition
to advantages, disadvantages and efficiency on different datasets. For this pur-
pose, they comprehensively reviewed all papers in this area published from 2000 to
2014.

González-Ladrón-de-Guevara et al. [15] analyzed software development cost es-
timation in the ISBSG dataset. They reviewed different studies on the ISBSG
dataset (2000–2013) to determine those ISBSG variables used in estimations and
to examine the effect of ISBSG variables on the development of cost estimation
models. They also determined dependent or independent variables. Out of 71
ISBSG variables, 20 variables were used as independent variables in most stud-
ies. Their findings can help other researchers in selecting appropriate variables in
cost estimation models. General algorithms can be used to develop a model from
databases. The EM clustering algorithm [14] was combined with the database seg-
mentation method leading to an exact model and estimate for size-effort criterion
and standard quality criterion. The estimation criterion improved the accuracy
of expected parameters in each segment using EM clustering algorithm and local
regression.

The use case points-activity based costing (UCPabc) method and function points
(FP) can be employed for software development cost estimation. Azzeh and Nassif
used UCPabc for software development cost estimation [4]; however, Dewi et al.
used FP for this purpose [12]. Dewi et al. compared FP and UCPabc and found
that the latter was much more accurate than the former [11].

Pospieszny et al. [31], Mensah et al. [26], Puspaningrum and Sarno [32], Moosavi
and Bardsiri [27], Wani and Quadri [40], Arora and Mishra [3], Abnane et al. [1],

A New Ensemble Model for Software Development Cost Estimation 1151

and Khuat and Le [20] respectively employed a linear method integrated with neural
networks, multivariate regression model, artificial neural networks integrated with
the harmony algorithm, neural networks integrated with the fuzzy method, neu-
ral networks, the fuzzy model and the artificial bee colony algorithm for software
development cost estimation.

Rastogi et al. [34] evaluated software cost estimation techniques and models
extensively. They compared and classiffied different methods and considered cost
estimation techniques resulting in a higher precision as a selection criterion. Ac-
cording to their results, all cost estimation techniques have their own advantages
and disadvantages. They also believe that there is no single method which can be
accepted by all researchers. Therefore, a combination of different methods should
be employed to achieve realistic cost estimation. Shekhar and Kumar [36] reviewed
and analyzed different software cost estimation techniques and models. For this
purpose, they analyzed advantages and disadvantages of different methods and con-
cluded that no single method could be used as the best cost estimation method
and a more accurate estimate could be achieved by combining different methods.
Pandey [30] classiffied software project cost estimation methods into parametric
and nonparametric models by analyzing different cost estimation techniques and
addressing their advantages and disadvantages. Khatibi and Jawawi [19] reviewed
and analyzed different software cost estimation methods from different points of
view. Each of the cost estimation methods can be employed efficiently in certain
projects and situations. The performance of any estimation method depends on
different parameters such as project complexity, project span, etc.

Ensemble models have been presented for estimating software development cost
by another group of scholars. In these models, independent methods attempt to
predict software development cost separately. The estimates from different methods
are then combined with a method to calculate the final estimate. Various estima-
tors and combinators have been used in the literature. Studies by Wu et al. [42],
Kocaguneli et al. [22], Elish [13], and Hsu et al. [16] can be noted in this re-
gard.

The reviewed studies suggest a single method or model can offer high estimation
accuracy only in a limited number of datasets. Ensemble models allow benefiting
from the advantages of different models and methods at the same time. A review
of ensemble models reveals they are based on a limited number of estimators and
combiners. Further, a survey of previous ensemble models shows using the same
combiner fails to produce the most accurate estimations in all datasets. This study
proposes an ensemble model that is not dependent on a set number of estimators
and combiners, and enabling it to combine its estimators intelligently and by the
best approach.

This article is organized as follows: Section 2 describes the background and
related work. Section 3 describes the firefly algorithm. Different criteria are intro-
duced to evaluate the precision of the model proposed in Section 4. The proposed
model and its evaluation method are introduced in Section 5 and Section 6, respec-
tively. The datasets of real projects introduced in Section 7 are used for testing. The

1152 A. Moradbeiky, V.K. Bardsiri, M. Jafari

results of testing the proposed model are compared to those of other 11 methods to
determine the superiority of the proposed model. These 11 methods are presented in
Section 8. Section 9 presents the results of testing the proposed model. The results
are analyzed statistically in Section 10. Conclusions and future work are reported
in Section 11.

2 BACKGROUND AND RELATED WORK

Ensemble models can be used in various data mining fields. Malgonde and Chari [25]
used an ensemble model for estimating agile software development cost. Silva
et al. [38] combined data mining techniques for predicting the export potential of
a company. In an article on network security, Ochieng et al. [28] described identi-
fication of worms by an ensemble model. Salehi et al. [35] proposed an ensemble
model by data mining techniques for cancer detection.

Various ensemble models have also been provided for software development cost
estimation. According to the literature on software development cost prediction
methods, ensemble models which include multiple predictors as a peer prediction
model give more accurate results than each of the individual methods [22]. Ensemble
models rely on multiple methods so that the inability of a method in providing an
accurate estimate can be compensated by the accurate estimates provided by other
methods and this is the main reason behind the success of these models [22].

Figure 1 shows the architecture of ensemble models. In general, ensemble models
consist of two important parts. The first part includes a set of individual estimation
models or methods (f1...m). The second part includes a set of various methods for
combining the estimations (C1...k) obtained from estimators in the first part. Each
combinator calculates an independent estimation. Accordingly, one can conclude
that if Part 1 or 2 or both include a diverse and accurate set of various models or
methods, the final model will be able to provide exact estimates in different datasets.

Figure 1. Architecture of ensemble models

Wu et al. [42] proposed an ensemble model for estimation of software develop-
ment cost. For this purpose, they combined estimates obtained from different CBR
methods by four linear combination techniques, namely median combination, mean
combination, weighted mean combination (WMC) and outperformance combination
(OC). The proposed model in their study was tested on two datasets. According to

A New Ensemble Model for Software Development Cost Estimation 1153

the results of these two datasets and based on the evaluation criterion MMRE, the
WMC combination techniques provided more accurate results in one of the datasets,
whereas the other combination technique (mean) led to more accurate results in the
other dataset. The results of tests based on the evaluation criterion MdMRE also
confirmed this point.

Elish [13] proposed an ensemble model for software development cost estimation.
He combined the estimates obtained from three different methods by eight combi-
nation methods. The model proposed by Elish was tested by different datasets.
According to the results, different combination methods led to best results based on
the same evaluation criterion used in various datasets.

Hsu et al. [16] developed an ensemble model consisting of COCOMO, linear
regression, CBR, grey relational analysis and artificial neural networks estimators.
Equally weighted combination, median weighted combination and weighted adjust-
ment based on a criterion were used for combining the estimations. The final model
was tested by different datasets. The results obtained from different combination
methods in various datasets indicated that no certain combination method was able
to obtain the best results in all datasets.

Song et al. [39] provided an ensemble model of five machine learning methods
for estimating software development cost. Kultur et al. [23] proposed an ensemble
model using neural networks. Pahariya et al. [29] provided an ensemble model in
which the results from computational intelligence techniques are combined by three
different methods to calculate the final estimate.

According to the literature, no certain combination method was able to calculate
the most accurate estimation in the different datasets, which raises the question
whether it is possible to provide an intelligent model to detect the ability of different
estimation methods in various datasets and select the best combination method.

The accuracy of ensemble estimation models is dependent on the accuracy and
diversity of models and methods in the 1 and 2 parts (Figure 1, the architecture of
ensemble models). According to the literature, the ensemble model is dependent on
a certain and limited set of estimator and combinator methods. On the other hand,
there are very diverse estimation and combination methods and new methods are
still added to this set. The important question raised here is whether a proposed
hybrid model can generate accurate results regardless of accuracy obtained from
combination or estimation methods used in its parts of 1 and 2 (Figure 1, the
architecture of ensemble models). Simply speaking, is it possible to eliminate factors
limiting the accuracy of the final model due to limitations of models or methods used
in the 1 or 2 part (Figure 1)? The model proposed in this article is able to eliminate
the above-mentioned limitations.

3 FIREFLY ALGORITHM

Firefly algorithm (FA) was first introduced by Xin-She Yang in 2009 [43]. FA is
a meta-heuristic optimization algorithm that imitates the social behavior of fireflies

1154 A. Moradbeiky, V.K. Bardsiri, M. Jafari

flying in the tropical and temperate summer sky. FA algorithm has been used based
on three principles:

1. Each firefly is capable of attracting other fireflies.

2. Attraction of each firefly depends on the level of its light so that the one with
more light attracts a firefly with less light. If no firefly has more light, one is
selected randomly.

3. The light of each firefly is under the influence of its distance from the goal.

As illustrated in Figure 2, each firefly generates a random solution. Then, some
parameters as light intensity, primary attractiveness, and absorption coefficient are
defined. Then, the most brilliant firefly is selected. Fireflies move toward a more
brilliant firefly. Moving toward each other, fireflies light decreases and their attrac-
tiveness varies. Next, the best firefly is picked up for repetitive cycle according to
an objective function. This process continues until the end condition is done.

The firefly attractiveness is due to its light determined by the objective function
from the problem. As the most optimized method, the I light of firefly in the specific
location of X can be selected as I(x) ∝ f(x). β is the relative attractiveness seen
by each firefly. Therefore, it would change with rij distance between i firefly and
j firefly. Additionally, light intensity decreases taking distance from the source.
Light is absorbed in media. Therefore, attractiveness varies as its ratio varies.

Figure 2. Pseudocode of firefly algorithm [43]

Each firefly owns its specific attractiveness

β(r) = β0e
−γrm ,m ≥ 1. (1)

A New Ensemble Model for Software Development Cost Estimation 1155

The distance between two fireflies of i and j is calculated through following formula

rij = |xi − xj| =

√√√√ d∑
k=1

(xi,k − xj,k)2. (2)

The movement of fireflies attracting more fireflies is calculated through the following
formula

xi = xi + β0e
γr2ij(xj − xi) + α

(
rand − 1

2

)
. (3)

Five parameters in the FA should be set for optimization purposes generally called
FA configuration for problem solving. The settings of these parameters vary with the
problem under study and expected objectives of the algorithm [43]. These settings
determine the behavior of the algorithm during problem solving. The FA parameters
are as follows:

1. N represents the number of fireflies used for problem solving.

2. MaxGeneration indicates the number of iterations.

3. Alpha (α) is a coefficient within the range [0, 1] and is multiplied by the random
number.

4. Betamin (β min) represents the minimum Beta (β) value, which is indicative of
attractiveness of the light source.

5. Gamma (γ) is determined considering attractiveness variations. This parameter
plays a key role in convergence rate and the behavior of FA.

A hyper-parameters tuning step was used for precise FA conguration. In this
step, the best α and γ were obtained in the [0, 1] and [0.1, 20] ranges, respectively,
by a comprehensive trial and error process.

4 ESTIMATION ERROR DETERMINATION EQUATIONS

Specific metrics were employed in this study to calculate the estimation error. These
metrics have been used in several studies to compare the research results with those
of other similar studies. The metrics include relative error (RE), magnitude of
relative error (MRE), mean magnitude of relative error (MMRE), median magnitude
of relative error (MdMRE) and prediction percentage (Pred), shown by metrics (4),

1156 A. Moradbeiky, V.K. Bardsiri, M. Jafari

(5), (6), (7) and (8):

RE =
Estimate− Actual

Actual
, (4)

MRE =
|Estimate− Actual|

Actual
, (5)

MMRE = Mean(MRE), (6)

MdMRE = Median(MRE), (7)

PRED(X) =
A

N
. (8)

5 PROPOSED MODEL

Different methods have been proposed for estimating important project parameters
such as cost. According to the literature, the methods can only operate properly in
limited datasets because of dependence on a certain estimation technique. Accord-
ing to this point, the challenge addressed in this study was to determine in which
datasets a method would operate more successfully, to what extent it would be suc-
cessful and how it would be possible to employ its high precision. For this purpose,
a new model called “open hybrid model” was proposed based on the FA. It is also
possible to add different estimation methods to the methods bank of the proposed
model.

5.1 The Open Hybrid Model

The proposed model in this study includes a bank of various estimation meth-
ods. The main idea of the model is that an estimator machine, based on a spe-
cific method such as the ABE, is capable of proper cost estimation only in few
datasets. Accordingly, the first objective of the proposed model is to test the
precision levels of different methods for estimating a set of projects. Then it in-
tends to allocate a specific value to each method with respect to its precision.
This value indicates the effectiveness of a method on the final estimation. The
model first divides the datasets of projects into basic, training and testing projects.
The proposed model operates in two stages: training and testing. In the train-
ing stage, the open hybrid model operates on basic and training projects. The
training stage aims at evaluating the precision of each method existing in the meth-
ods bank and also achieving the best configuration for the optimal use of each
method. In the testing stage, the open hybrid model operates on the basic and test-
ing projects to evaluate the precision of configuration obtained from the training
stage.

A New Ensemble Model for Software Development Cost Estimation 1157

5.2 Training

Figure 3 shows the training flowchart. As mentioned earlier, the training stage
operates on the basic and training projects. There are two banks of methods and
rules in this stage. The methods bank consists of different methods for software
development cost estimation. The rules bank includes different rules for integration
of estimation methods in the methods bank. The coordinator function (COF) in
the training stage employs the methods bank and rules bank. The COF needs a set
of projects for estimation. It makes use of other projects resembling the one which
should be estimated (P ′) to increase the estimation precision. To find projects
similar to P ′, it is clustered along with the basic projects based on specific features
(f list). The f list is a set of projects features recommended by FA. Based on the
accuracy of estimation from the training set, the FA attempts to recommend a better
f list in each iteration, selecting more similar projects to P ′ for its estimation. When
proposing f list , FA is only allowed to recommend from continuous features. The
P ′-containing cluster is then sent to the COF, which uses the received projects to
estimate P ′ based on the rule (proposed by FA) taken from the rules bank (this
specific rule determines how to use existing methods in the methods bank). Table 1
shows the rules in the rules bank where ESi represents the value of current project
estimated by ith method, and Wi (proposed by FA) indicates the coefficient of the
ith method existing in the methods bank. In some rules, er and m have been used
to reduce the estimation error. This study used the k-means clustering method in
which the number of clusters, denoted by k, should be adjusted. This parameter
is recommended by FA during the training stage and then improved in the later
iterations. The obtained k value is then used for testing.

function

Rule 1 Cost = W1 × ES1 + W2 × ES2 + · · ·+ Wn × ESn
Cost = Cost + Cost ×m
Cost = Cost + er

Rule 2 Cost = Median(ES1...n)
Cost = Cost + Cost ×m
Cost = Cost + er

Rule 3 Cost = Mean(ES1...n)
Cost = Cost + Cost ×m
Cost = Cost + er

Rule 4 Cost = ESi (ESi is best method in training iteration)

Table 1. Rules bank

In each stage of the open hybrid model, the FA proposes k and f list for clus-
tering the projects and a rule with the required parameters and coefficients (W ,
er, m) of that rule to the COF in each iteration. The COF uses the proposed k,
f list and rule to estimate each and every project of the training set. Finally, the
estimation error of the training set is determined and returned as the feedback of

1158 A. Moradbeiky, V.K. Bardsiri, M. Jafari

the proposed k, f list and rule to the FA. In the next iteration, the FA tries to
propose k, f list and rule with more appropriate parameters and coefficients to the
COF. The output of the training stage includes the best k, f list and rule along
with the proposed parameters and coefficients required by that rule.

Figure 3. The training stage of the open hybrid model

5.3 Testing

As mentioned above, the testing stage operates on the basic and testing projects.
According to Figure 4, the resulting configuration of the previous stage is given as
the input to the model. The open hybrid model selects a project from the testing
set (P ′) and then clusters P ′ with basic projects based on the f list and k obtained
from the previous stage. The cluster including P ′ is then given to the COF for
estimating the development cost of P ′ based on the rule obtained from the previous
stage. Another project is then selected and estimated through the previous stages.
Iterations continue until no other projects remain in the testing set. Finally, the
estimation error of each project is used to determine MdMRE, MMRE, and Pred.
The results were used for comparing the models.

A New Ensemble Model for Software Development Cost Estimation 1159

Figure 4. The testing stage of the open hybrid model

As the notable advantage of the open hybrid model over previous methods, it
has been designed to add new methods and rules to the methods and rules banks.
The model is also able to measure the efficiency of the new method intelligently
and use it proportionately to its efficiency. Considering the methods used in the
methods bank, the existing methods should be so diverse that model can operate
dynamically in different modes and adapt to new conditions. The model proposed
in this paper was obtained by analyzing the results of numerous studies indicating
the success of any method in some datasets.

6 EVALUATION METHOD

The arrangement of samples in the training or testing stage may significantly affect
the results of estimation models [21]. Therefore, a method is required to show the
independency of results from the arrangement of samples to demonstrate the stabil-
ity of results produced by the proposed model. Different evaluation methods such as
3-fold, 10-fold, and leave one out (LOO) have been proposed for this purpose. The
LOO method was utilized in this study. In this method, when all projects except for
one are used in the training stage, only one project is used in the testing stage. The
nested LOO cross-validation was adopted in the compared methods. During train-
ing, different possible scenarios were considered for adjustable parameters by the
LOO method, and the best quantities were used for testing. The process continued
until tests completed for all projects.

1160 A. Moradbeiky, V.K. Bardsiri, M. Jafari

7 DATASETS

The Desharnaise dataset contains data of 81 software projects collected from Cana-
dian software houses. The software projects in this dataset have been described
by 11 features. The dependent cost feature is based on 1000 person-hours. Ten
independent features in this dataset include ‘TeamExp’, ‘ManagerExp’, ‘YearEnd’,
‘Duration’, ‘Transactions’, ‘Entities’, ‘AdjFP’, ‘AdjFactor’, ‘RawFP’, and ‘Dev.Env’.
Given that the data of 4 projects out of 81 projects in this dataset is missing and
not available, the tests were conducted using the remaining 77 projects.

The Albrecht dataset contains data on software projects designed by third
generation programming languages (3GLs). This dataset contains information on
24 projects. There is a dependent feature called ‘work hours’ in this dataset based
on 1 000 hr. There are also 7 independent features (‘input count’, ‘output count’,
‘query count’, ‘file count’, ‘line of code’, ‘RawFP’, and ‘function points’) in this
dataset.

The Kemerer dataset contains data on 15 software projects. The software
projects in this dataset have been explained by 6 independent features and 1 depen-
dent feature. The independent features include ‘Language’, ‘hardware’, ‘RawFp’,
‘Duration’, ‘KSLOC’ and ‘AdjFP’. ‘Cost’ is considered as a dependent feature in
this dataset and is measured by man-months. Table 2 shows the specifications of
these datasets.

Dataset Number of Projects Number of Features Mean of Cost

1 kemerer 15 7 219
2 desharnise 77 11 4 833
3 albrecht 24 8 21

Table 2. Datasets

8 TECHNIQUES

The results obtained from testing the proposed model were compared with those
of different models to evaluate its precision. The following models were used for
comparison:

Voting Ensemble: Elish [13] proposed an ensemble model for software develop-
ment cost estimation. He combined the estimates obtained from three different
methods by eight combination methods

Linearly Weighted Combinations Model (LWCM): Hsu et al. [16] developed
an ensemble model consisting of COCOMO, linear regression, CBR, grey re-
lational analysis and artificial neural networks estimators. Equally weighted
combination, median weighted combination and weighted adjustment based on
a criterion were used for combining the estimations.

A New Ensemble Model for Software Development Cost Estimation 1161

Multilayer Perceptron (MLP): The neural network is a nonlinear modeling
technique and MLP is a widely used neural network based on a network of
neurons on an input layer with one or more hidden layers and an output layer.

Analog Based Estimation (ABE): ABE searches for the most similar sample to
that which should be estimated. This method employs its internal functions to
determine the resemblance of samples. The number of similar samples used for
estimation is determined by the parameter K.

PSO + ABE: An estimation model based on ABE and particle swarm optimiza-
tion (PSO) algorithm to increase the accuracy of software development cost
estimation.

Ordinary Least Squares (OLS): OLS, as a regression-based method, is employed
to determine the best regression line by minimizing the total squares.

Robust Regression (RoR): RoR is a regression-based method which can operate
more accurately by weighting against unconventional data.

Multivariate Adaptive Regression Splines (MARS): MARS is a nonlinear
nonparametric regression method with some interesting features such as ease of
interpretability, modeling nonlinear complicated relationships and quick model
development.

Classification and Regression Trees (CART): CART is an algorithm in which
decision trees are employed for classification.

M5: This method can be regarded as a new type of CART. The model tree created
by this method considers a linear regression for each leaf instead of determining
a single value.

Least Squares SVM (LSSVM): The support vector machine (SVM) is a non-
linear machine learning method capable of mapping the input state space onto
a space of higher dimensions leading to development of simpler linear regression
functions.

9 TESTING THE OPEN HYBRID MODEL

Albrecht, Desharnise and Kemerer datasetes were employed to test the open hybrid
model. The methods bank of the proposed model included CART, SWR, MLR,
ABE and LSSVM. No normalization processes were performed on the data, and
all of the methods were treated similarly and equally. The results of testing the
proposed model on each dataset are described below.

Table 3 compares the results obtained from testing the open hybrid model on
Albrecht with other methods. The proposed model was compared with other meth-
ods in terms of three different criteria (MMRE, MdMRE, and Pred). Accordingly,
the proposed model was 51 %, and 65 % more precise than the most precise method
in MMRE (Voting Ensemble), and the most precise method in MdMRE (LWCM),
respectively. These results also indicated the higher precision of the proposed model

1162 A. Moradbeiky, V.K. Bardsiri, M. Jafari

than other methods. Figure 5 shows the results on a diagram for a better compari-
son. As clearly seen, the proposed model is able to increase the estimation precision
simultaneously in terms of MdMRE, MMRE, and Pred.

Method MMRE MdMRE Pred

Open Hybrid 0.22 0.08 0.62
LWCM 0.63 0.23 0.62
Voting Ensemble 0.45 0.37 0.41
ABE 0.85 0.38 0.29
CART 1.04 0.51 0.33
LSSVM 0.88 0.63 0.33
M5’ 0.89 0.46 0.25
MARS 0.87 0.29 0.45
MLP 0.95 0.41 0.2
OLS 0.79 0.5 0.37
PSO + ABE 1.04 0.48 0.12
ROR 0.72 0.66 0.29

Table 3. The results of testing Albrecht in comparison with other methods

Figure 5. Comparing different methods in MMRE, MdMRE, and Pred on Albrecht

Table 4 compares the results of testing the open hybrid model on Kemerer with
other methods. The results were evaluated in terms of MMRE, MdMRE, and Pred.
Accordingly, the proposed model was nearly 54 %, 67 %, and 43 % more precise than
the most precise method in MMRE (LWCM), the most precise method in MdMRE
(LWCM), and the most precise method in Pred (Voting Ensemble), respectively.
For a better comparison, the test results were shown on a diagram in Figure 6 which
clearly depicts the precision of the proposed model on Kemerer in comparison with
other methods.

A New Ensemble Model for Software Development Cost Estimation 1163

Method MMRE MdMRE Pred

Open Hybrid 0.23 0.09 0.66
LWCM 0.5 0.28 0.33
Voting Ensemble 0.54 0.36 0.46
ABE 0.82 0.46 0.2
CART 0.96 0.61 0.06
LSSVM 0.64 0.55 0.26
M5’ 1.15 0.73 0.2
MARS 1.4 0.8 0.26
MLP 0.57 0.49 0.33
OLS 0.64 0.5 0.26
PSO + ABE 0.61 0.47 0.33
ROR 0.62 0.36 0.13

Table 4. The results of testing Kemerer in comparison with other methods

Figure 6. Comparing different methods in MMRE, MdMRE, and Pred on Kemerer

The proposed model was also tested on Desharnise and the results are presented
in Table 5. 11 other methods were also tested on this dataset. The results of
testing the proposed model were compared with those of other methods in terms of
MMRE, MdMRE, and Pred. According to the results, the proposed method was
nearly 35 %, 40 %, and 43 % more precise than the most precise method in MMRE
(Voting Ensemble), the most precise method in MdMRE (Voting Ensemble), and
the most precise method in Pred (Voting Ensemble), respectively. For a better
comparison, the results were also shown on a diagram in Figure 7, indicating the
proper capability of the proposed model.

1164 A. Moradbeiky, V.K. Bardsiri, M. Jafari

Method MMRE MdMRE Pred

Open Hybrid 0.26 0.17 0.59
LWCM 0.49 0.29 0.25
Voting Ensemble 0.4 0.28 0.41
ABE 0.74 0.4 0.28
CART 0.68 0.35 0.27
LSSVM 0.58 0.41 0.24
M5’ 0.72 0.39 0.29
MARS 1.19 0.57 0.23
MLP 0.91 0.54 0.24
OLS 0.71 0.53 0.27
PSO + ABE 0.87 0.4 0.4
ROR 0.6 0.49 0.36

Table 5. The results of testing Desharnise in comparison with other methods

Figure 7. Comparing different methods in MMRE, MdMRE, and Pred on Desharnise

10 TEST RESULT ANALYSIS

Wilcoxon statistical test with two input statistical samples was used to determine
the effectiveness of the proposed model. The output, P-value, shows the difference
between the two input samples. A small P-value indicates the difference of the two
samples, whereas a large value shows the similarity of both samples. A P-value
less than 0.05 means a large difference between the two samples. Table 6 lists the
Wilcoxon test results on MRE. It shows different P-values obtained from conducting
the Wilcoxon test on the MRE of each method in comparison with the proposed
model on different datasets. The results indicate the higher effectiveness of the
proposed model in increasing estimation precision.

The box plot was employed for detailed analysis of the results of the proposed
model. The box plot shows the MRE range obtained from testing the proposed

A New Ensemble Model for Software Development Cost Estimation 1165

Method Albrecht Kemerer Desharnise

ABE 0.0023 0.0021 0.0001
CART 0.0006 0.0014 7.95E−06
LWCM 0.019 8.00E−02 2.7E−02
Voting Ensemble 0.011 1.80E−02 4.20E−02
LSSVM 5.50E−04 4.70E−03 1.06E−05
M5’ 0.0003 0.0012 1.17E−05
MARS 0.044 0.0018 5.36E−10
MLP 0.0005 3.40E−02 2.41E−08
OLS 0.013 0.027 1.58E−08
PSO + ABE 9.32E−05 5.60E−02 0.0002
ROR 5.00E−04 2.40E−03 1.19E−05

Table 6. P-values of Wilcoxon test

model on a dataset. Using this box plot, the MRE range and precision of the
proposed model can easily be compared to those of other models. Figures 8, 9 and 10
show the box plots of MRE obtained from testing different methods on Albrecht,
Kemerer, and Desharnise, respectively. As can be seen, the proposed model shows
the lowest median and quartile range. All the results confirm the capability of the
proposed model.

Figure 8. The box plot of MRE obtained by testing the proposed model on Albrecht

11 CONCLUSION

Software development cost estimation is an important issue resulting in an effective
planning for software project management. Several methods and models have been
proposed for this purpose. Despite acceptable precision of the proposed methods in

1166 A. Moradbeiky, V.K. Bardsiri, M. Jafari

Figure 9. The box plot of MRE obtained by testing the proposed model on Kemerer

Figure 10. The box plot of MRE obtained by testing the proposed model on Desharnise

some cases, they fail operate accurately in other cases. The aim of this study was
to combine these methods to take their advantages simultaneously to obtain a more
accurate estimate. This idea led the authors to implement a model called the “open
hybrid model”.

The methods proposed in previous studies accurately estimate specific types of
software projects when they depend on a specific estimation method. However, the
challenge addressed here was to identify in what types of projects an estimation
method can operate successfully, to what extent it can be successful, and how it
is possible to take advantage of such a high level of precision. For this purpose,
a new model called open hybrid model was developed in Section 5 based on the

A New Ensemble Model for Software Development Cost Estimation 1167

FA. Different estimation methods can be added to the methods bank of this model.
The proposed model is able to find the best rule for employing the methods in the
methods bank using a variety of parameters and tools in the model.

The precision of the proposed model was evaluated by using three datasets
of software projects. The results were compared with those obtained by testing
11 methods. The results were evaluated in terms of MMRE, MdMRE, and Pred.
According to the results, the proposed model showed a high precision and ability to
use capabilities of the methods existing in its methods bank. The results of tests
were interpreted in detail in Section 9. Wilcoxon statistical test was conducted on
the results to determine the effectiveness of the proposed model. The Wilcoxon
results were analyzed in Section 10.

Regarding the other features of the proposed model, it was designed to include
the new methods in its methods bank to use their advantages. Therefore, a new
method with precise estimations in one or multiple datasets can be added to the
methods bank. According to the results of multiple tests, the open hybrid model
is able to intelligently identify a space in which a method can operate well. It can
also effectively use every method under appropriate conditions. In future studies,
more diverse and accurate methods and rules can be added to the methods and rules
banks of this model.

REFERENCES

[1] Abnane, I.—Idri, A.—Abran, A.: Empirical Evaluation of Fuzzy Analogy for
Software Development Effort Estimation. Proceedings of the Symposium on Applied
Computing (SAC ’17), ACM, 2017, pp. 1302–1304, doi: 10.1145/3019612.3019905.

[2] Andreou, A. S.—Papatheocharous, E.: Software Cost Estimation Using Fuzzy
Decision Trees. 2008 23rd IEEE/ACM International Conference on Automated Soft-
ware Engineering, L’Aquila, Italy, 2008, pp. 371–374, doi: 10.1109/ase.2008.51.

[3] Arora, S.—Mishra, N.: Software Cost Estimation Using Artificial Neural Net-
work. In: Pant, M., Ray, K., Sharma, T., Rawat, S., Bandyopadhyay, A. (Eds.): Soft
Computing: Theories and Applications, Springer, Singapore, Advances in Intelligent
Systems and Computing, Vol. 584, 2018, pp. 51–58, doi: 10.1007/978-981-10-5699-
4 6.

[4] Azzeh, M.—Nassif, A. B.: A Hybrid Model for Estimating Software Project Effort
from Use Case Points. Applied Soft Computing, Vol. 49, 2016, pp. 981–989, doi:
10.1016/j.asoc.2016.05.008.

[5] Bardsiri, A. K.—Hashemi, S. M.: Software Effort Estimation: A Survey of Well-
Known Approaches. International Journal of Computer Science Engineering (IJCSE),
Vol. 3, 2014, No. 1, pp. 46–50.

[6] Bardsiri, A. K.—Hashemi, S. M.: Empirical Evaluation of Different Machine
Learning Methods for Software Services Development Effort Estimation Through
Correlation Analysis. European Journal of Applied Sciences, Vol. 8, 2016, No. 4,
pp. 257–269.

https://doi.org/10.1145/3019612.3019905
https://doi.org/10.1109/ase.2008.51
https://doi.org/10.1007/978-981-10-5699-4_6
https://doi.org/10.1007/978-981-10-5699-4_6
https://doi.org/10.1016/j.asoc.2016.05.008

1168 A. Moradbeiky, V.K. Bardsiri, M. Jafari

[7] Boehm, B. W.: Software Engineering Economics. New York, 1981.

[8] Boehm, B. W.—Abts, C.—Brown, A. W.—Chulani, S.—Clark, B. K.—
Horowitz, E.—Madachy, R.—Reifer, D. J.—Steece, B.: Software Cost Es-
timation with Cocomo II. Prentice-Hall, 2000.

[9] Boehm, B. W.—Valerdi, R.: Achievements and Challenges in Cocomo-Based Soft-
ware Resource Estimation. IEEE Software, Vol. 25, 2008, No. 5, pp. 74–83, doi:
10.1109/ms.2008.133.

[10] Cuadrado-Gallego, J. J.—Rodŕıguez-Soria, P.—Mart́ın-Herrera, B.:
Analogies and Differences Between Machine Learning and Expert Based Software
Project Effort Estimation. 2010 11th ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,
IEEE, 2010, pp. 269–276, doi: 10.1109/snpd.2010.47.

[11] Sholiq—Dewi, R. S.—Subriadi, A. P.: A Comparative Study of Software Devel-
opment Size Estimation Method: UCPabc vs Function Points. Procedia Computer
Science, Vol. 124, 2017, pp. 470–477, doi: 10.1016/j.procs.2017.12.179.

[12] Dewi, R. S.—Subriadi, A. P.—Sholiq: A Modification Complexity Factor
in Function Points Method for Software Cost Estimation Towards Public Ser-
vice Application. Procedia Computer Science, Vol. 124, 2017, pp. 415–422, doi:
10.1016/j.procs.2017.12.172.

[13] Elish, M. O.: Assessment of Voting Ensemble for Estimating Software Develop-
ment Effort. 2013 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), 2013, pp. 316–321, doi: 10.1109/cidm.2013.6597253.

[14] Cuadrado-Gallego, J. J.—Sicilia, M.-Á.: An Algorithm for the Generation of
Segmented Parametric Software Estimation Models and Its Empirical Evaluation.
Computing and Informatics, Vol. 26, 2007, No. 1, pp. 1–15.

[15] González-Ladrón-de-Guevara, F.—Fernández-Diego, M.—Lokan, C.:
The Usage of ISBSG Data Fields in Software Effort Estimation: A Systematic Map-
ping Study. Journal of Systems and Software, Vol. 113, 2016, pp. 188–215, doi:
10.1016/j.jss.2015.11.040.

[16] Hsu, C.-J.—Rodas, N. U.—Huang, C.-Y.—Peng, K.-L.: A Study of Improving
the Accuracy of Software Effort Estimation Using Linearly Weighted Combinations.
2010 IEEE 34th Annual Computer Software and Applications Conference Workshops,
2010, pp. 98–103, doi: 10.1109/compsacw.2010.27.

[17] Huang, J.—Li, Y.-F.—Xie, M.: An Empirical Analysis of Data Preprocessing
for Machine Learning-Based Software Cost Estimation. Information and Software
Technology, Vol. 67, 2015, pp. 108–127, doi: 10.1016/j.infsof.2015.07.004.

[18] Idri, A.—Azzahra Amazal, F.—Abran, A.: Analogy-Based Software Develop-
ment Effort Estimation: A Systematic Mapping and Review. Information and Soft-
ware Technology, Vol. 58, 2015, pp. 206–230, doi: 10.1016/j.infsof.2014.07.013.

[19] Khatibi, V.—Jawawi, D. N. A.: Software Cost Estimation Methods: A Review.
Journal of Emerging Trends in Computing and Information Sciences, Vol. 2, 2011,
No. 1, pp. 21–29.

https://doi.org/10.1109/ms.2008.133
https://doi.org/10.1109/snpd.2010.47
https://doi.org/10.1016/j.procs.2017.12.179
https://doi.org/10.1016/j.procs.2017.12.172
https://doi.org/10.1109/cidm.2013.6597253
https://doi.org/10.1016/j.jss.2015.11.040
https://doi.org/10.1109/compsacw.2010.27
https://doi.org/10.1016/j.infsof.2015.07.004
https://doi.org/10.1016/j.infsof.2014.07.013

A New Ensemble Model for Software Development Cost Estimation 1169

[20] Khuat, T. T.—Le, M. H.: Applying Teaching-Learning to Artificial Bee Colony for
Parameter Optimization of Software Effort Estimation Model. Journal of Engineering
Science and Technology, Vol. 12, 2017, No. 5, pp. 1178–1190.

[21] Kocaguneli, E.—Menzies, T.: Software Effort Models Should Be Assessed via
Leave-One-Out Validation. Journal of Systems and Software, Vol. 86, 2013, No. 7,
pp. 1879–1890, doi: 10.1016/j.jss.2013.02.053.

[22] Kocaguneli, E.—Menzies, T.—Keung, J. W.: On the Value of Ensemble Ef-
fort Estimation. IEEE Transactions on Software Engineering, Vol. 38, 2012, No. 6,
pp. 1403–1416, doi: 10.1109/TSE.2011.111.

[23] Kultur, Y.—Turhan, B.—Bener, A. B.: ENNA: Software Effort Estimation
Using Ensemble of Neural Networks with Associative Memory. Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of Software Engineering
(SIGSOFT ’08/FSE-16), 2008, pp. 330–338, doi: 10.1145/1453101.1453148.

[24] Kumari, S.—Pushkar, S.: Performance Analysis of the Software Cost Estimation
Methods: A Review. International Journal of Advanced Research in Computer Scien-
ce and Software Engineering, Vol. 3, 2013, No. 7, pp. 229–238.

[25] Malgonde, O.—Chari, K.: An Ensemble-Based Model for Predicting Agile Soft-
ware Development Effort. Empirical Software Engineering, Vol. 24, 2019, No. 2,
pp. 1017–1055, doi: 10.1007/s10664-018-9647-0.

[26] Mensah, S.—Keung, J.—Bosu, M. F.—Bennin, K. E.: Duplex Output Software
Effort Estimation Model with Self-Guided Interpretation. Information and Software
Technology, Vol. 94, 2018, pp. 1–13, doi: 10.1016/j.infsof.2017.09.010.

[27] Moosavi, S. H. S.—Bardsiri, V. K.: Satin Bowerbird Optimizer: A New Opti-
mization Algorithm to Optimize ANFIS for Software Development Effort Estima-
tion. Engineering Applications of Artificial Intelligence, Vol. 60, 2017, pp. 1–15, doi:
10.1016/j.engappai.2017.01.006.

[28] Ochieng, N.—Mwangi, W.—Ateya, I.: Optimizing Computer Worm Detec-
tion Using Ensembles. Security and Communication Networks, Vol. 2019, 2019,
Art. No. 4656480, doi: 10.1155/2019/4656480.

[29] Pahariya, J. S.—Ravi, V.—Carr, M.: Software Cost Estimation Us-
ing Computational Intelligence Techniques. 2009 World Congress on Nature
and Biologically Inspired Computing (NaBIC), IEEE, 2009, pp. 849–854, doi:
10.1109/nabic.2009.5393534.

[30] Pandey, P.: Analysis of the Techniques for Software Cost Estimation. 2013 Third
International Conference on Advanced Computing and Communication Technologies
(ACCT), IEEE, 2013, pp. 16–19, doi: 10.1109/acct.2013.13.

[31] Pospieszny, P.—Czarnacka-Chrobot, B.—Kobylinski, A.: An Effective Ap-
proach for Software Project Effort and Duration Estimation with Machine Learn-
ing Algorithms. Journal of Systems and Software, Vol. 137, 2018, pp. 184–196, doi:
10.1016/j.jss.2017.11.066.

[32] Puspaningrum, A.—Sarno, R.: A Hybrid Cuckoo Optimization and Harmony
Search Algorithm for Software Cost Estimation. Procedia Computer Science, Vol. 124,
2017, pp. 461–469, doi: 10.1016/j.procs.2017.12.178.

https://doi.org/10.1016/j.jss.2013.02.053
https://doi.org/10.1109/TSE.2011.111
https://doi.org/10.1145/1453101.1453148
https://doi.org/10.1007/s10664-018-9647-0
https://doi.org/10.1016/j.infsof.2017.09.010
https://doi.org/10.1016/j.engappai.2017.01.006
https://doi.org/10.1155/2019/4656480
https://doi.org/10.1109/nabic.2009.5393534
https://doi.org/10.1109/acct.2013.13
https://doi.org/10.1016/j.jss.2017.11.066
https://doi.org/10.1016/j.procs.2017.12.178

1170 A. Moradbeiky, V.K. Bardsiri, M. Jafari

[33] Prasad Reddy, P. V. G. D.—Hari, C. V. M. K.—Srinavasa Rao, T.: Multi
Objective Particle Swarm Optimization for Software Cost Estimation. International
Journal of Computer Applications, Vol. 32, 2011, No. 3, pp. 13–17.

[34] Rastogi, H.—Dhankhar, S.—Kakkar, M.: A Survey on Software Effort Esti-
mation Techniques. 2014 5th International Conference – Confluence the Next Gener-
ation Information Technology Summit (Confluence), IEEE, 2014, pp. 826–830, doi:
10.1109/confluence.2014.6949367.

[35] Salehi, M.—Razmara, J.—Lotfi, S.: A Novel Data Mining on Breast Cancer
Survivability Using MLP Ensemble Learners. The Computer Journal, Vol. 63, 2020,
pp. 435–447, doi: 10.1093/comjnl/bxz051.

[36] Shekhar, S.—Kumar, U.: Review of Various Software Cost Estimation Tech-
niques. International Journal of Computer Applications, Vol. 141, 2016, No. 11,
pp. 31–34, doi: 10.5120/ijca2016909867.

[37] Sigweni, B.—Shepperd, M.: Feature Weighting Techniques for CBR in Soft-
ware Effort Estimation Studies: A Review and Empirical Evaluation. Proceedings
of the 10th International Conference on Predictive Models in Software Engineering
(PROMISE ’14), ACM, 2014, pp. 32–41, doi: 10.1145/2639490.2639508.

[38] Silva, J.—Borré, J. R.—Piñeres Castillo, A. P.—Castro, L.—Varela, N.:
Integration of Data Mining Classification Techniques and Ensemble Learning for Pre-
dicting the Export Potential of a Company. Procedia Computer Science, Vol. 151,
2019, pp. 1194–1200, doi: 10.1016/j.procs.2019.04.171.

[39] Song, L.—Minku, L. L.—Yao, X.: The Impact of Parameter Tuning on Software
Effort Estimation Using Learning Machines. Proceedings of the 9th International
Conference on Predictive Models in Software Engineering (PROMISE ’13), ACM,
2013, Art. No. 9, doi: 10.1145/2499393.2499394.

[40] Wani, Z. H.—Quadri, S. M. K.: Software Cost Estimation Based on the Hybrid
Model of Input Selection Procedure and Artificial Neural Network. Artificial Intelli-
gent Systems and Machine Learning, Vol. 10, 2018, No. 1, pp. 18–24.

[41] Wen, J.—Li, S.—Lin, Z.—Hu, Y.—Huang, C.: Systematic Literature Re-
view of Machine Learning Based Software Development Effort Estimation Mod-
els. Information and Software Technology, Vol. 54, 2012, No. 1, pp. 41–59, doi:
10.1016/j.infsof.2011.09.002.

[42] Wu, D.—Li, J.—Liang, Y.: Linear Combination of Multiple Case-Based Reason-
ing with Optimized Weight for Software Effort Estimation. The Journal of Super-
computing, Vol. 64, 2013, No. 3, pp. 898–918, doi: 10.1007/s11227-010-0525-9.

[43] Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O.,
Zeugmann, T. (Eds.): Stochastic Algorithms: Foundations and Applications (SAGA
2009). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5792,
2009, pp. 169–178, doi: 10.1007/978-3-642-04944-6 14.

https://doi.org/10.1109/confluence.2014.6949367
https://doi.org/10.1093/comjnl/bxz051
https://doi.org/10.5120/ijca2016909867
https://doi.org/10.1145/2639490.2639508
https://doi.org/10.1016/j.procs.2019.04.171
https://doi.org/10.1145/2499393.2499394
https://doi.org/10.1016/j.infsof.2011.09.002
https://doi.org/10.1007/s11227-010-0525-9
https://doi.org/10.1007/978-3-642-04944-6_14

A New Ensemble Model for Software Development Cost Estimation 1171

Amin Moradbeiky received his B.Sc. from University of Sis-
tan and Baluchestan, Iran in 2009 and M.Sc. from Islamic Azad
University, Kerman Branch, Iran in 2014, both in engineering of
information technology. He is currently Ph.D. student of soft-
ware engineering in Islamic Azad University, Kerman Branch,
Iran. His research interests are soft computing techniques, soft-
ware test and software measurement.

Vahid Khatibi Bardsiri is a lecturer at the Department of
Computer Science, Islamic Azad University, Bardsir Branch,
Iran. He received his B.Sc. and M.Sc. degrees in software engi-
neering from Ferdowsi University of Mashhad, Iran in 2002 and
from Science and Research Branch of Islamic Azad University,
Iran in 2004, respectively. He received his Ph.D. in the area of
software development effort estimation at Universiti Teknologi
Malaysia (UTM) in 2013. He is a senior member of International
Association of Computer Science and Information Technology
(IACSIT). His research interests are agile software development

methods, soft computing techniques and software measurement.

Mehdi Jafari received his B.Sc. degree in electronic engineer-
ing and M.Sc. degree in communication systems from Shiraz
University of Technology, Iran, in 1992 and 1996, respectively.
During 1992–1998 he stayed in the Signal Processing Research
Laboratory, Ministry of Telecommunications of Iran. He re-
ceived Ph.D. degree in communication systems in Science and
Research Branch of Islamic Azad University, Iran in 2008. He
is currently Head of Electrical Engineering Department of Is-
lamic Azad University, Kerman Branch, Iran. His main research
interests are artificial intelligence, image and video processing,

pattern recognition and prediction.

Computing and Informatics, Vol. 39, 2020, 1172–1202, doi: 10.31577/cai 2020 6 1172

EXPLANATION OF SIAMESE NEURAL NETWORKS
FOR WEAKLY SUPERVISED LEARNING

Lev Utkin, Maxim Kovalev, Ernest Kasimov

Peter the Great Saint Petersburg Polytechnic University (SPbPU)
Saint Petersburg, Russia
e-mail: {lev.utkin, maxkovalev03, kasimov.ernest}@gmail.com

Abstract. A new method for explaining the Siamese neural network (SNN) as
a black-box model for weakly supervised learning is proposed under condition that
the output of every subnetwork of the SNN is a vector which is accessible. The
main problem of the explanation is that the perturbation technique cannot be used
directly for input instances because only their semantic similarity or dissimilarity
is known. Moreover, there is no an “inverse” map between the SNN output vector
and the corresponding input instance. Therefore, a special autoencoder is proposed,
which takes into account the proximity of its hidden representation and the SNN
outputs. Its pre-trained decoder part as well as the encoder are used to reconstruct
original instances from the SNN perturbed output vectors. The important features
of the explained instances are determined by averaging the corresponding changes
of the reconstructed instances. Numerical experiments with synthetic data and with
the well-known dataset MNIST illustrate the proposed method.

Keywords: Interpretable model, explainable AI, Siamese neural network, embed-
ding, autoencoder, perturbation technique

Mathematics Subject Classification 2010: 68T10

1 INTRODUCTION

Machine learning models, especially, deep models play an important role in making
prediction and decision for many applications. For example, computer-aided diag-
nosis systems using machine learning models for the diagnosis of various diseases
have become a key element in medical imaging and personalized medicine over the

Explanation of Siamese Neural Networks 1173

past few years. However, many modern efficient machine learning techniques are not
easily explainable, they are black boxes, i.e., they do not explain their predictions in
a way that humans could understand. This may be an obstacle for incorporating the
machine learning models into applied areas like medicine. Often, humans are unable
to effectively use predictions provided by the machine learning models without their
interpretation and explanation. As a result, a lot of models have been developed to
explain predictions of the deep classification and regression algorithms, for example,
deep neural network predictions [1].

A clear taxonomy for understanding the diverse forms of explanations is pro-
vided by Arya et al. [2]. Since a lot of machine learning models are black boxes,
then we mainly consider the so-called post-hoc explanations which involve auxiliary
models to explain the black-box models after it has been trained. These auxil-
iary or explanation models can also be divided into three types: example-based,
local and global models. According to the example-based approach, an instance
from the training set is selected, which could explain the behavior of a black-box
model. One of the methods implementing the example-based explanations is near-
est neighbors [3]. Local or prediction-level models focus on explaining how they
make individual predictions, namely, what features lead to the individual prediction
(see [4] for a definition). Explanations are derived by fitting an interpretable model
locally around the considered instance. Global or dataset-level models explain im-
portance of features across a dataset or a population [5]. They explain the global
relationships between features and the model predictions.

A key component of general explanations for the local models as well as for
the global models is the contribution of individual input features. A prediction is
computationally explained by assigning to each feature a number which denotes its
impact on the prediction.

One of the important machine learning tasks is to compare pairs of objects,
for example, pairs of images, pairs of data vectors, etc. The task can be solved
in the framework of the distance metric learning approach [6, 7, 8], which is based
on computing a corresponding pairwise metric function that measures a distance
between data vectors or a similarity between the vectors. The basic idea behind
the metric learning solution is that the distance between similar objects should be
smaller than the distance between different objects.

A powerful implementation of the metric learning dealing with non-linear data
structures is the so-called Siamese neural network (SNN) [9, 10]. The SNN con-
sists of two identical neural subnets sharing the same set of weights. The basic
idea behind the SNN is to train the subnets to compare a pair of feature vectors
in terms of their semantic similarity or dissimilarity. The SNN realizes a non-linear
embedding of data with the objective to bring together similar instances and to
move apart dissimilar instances. In a simplest case, when the training set is la-
belled, i.e., every instance belongs to a class, then two instances are similar if they
belong to the same class. Two instances are dissimilar if they belong to differ-
ent classes. At the same time, the SNN can be applied to the weakly supervised
case when there are no labels of training instances, but there is only a side infor-

1174 L. Utkin, M. Kovalev, E. Kasimov

mation of relationship of instances, i.e., of semantic similarity or dissimilarity of
instances.

An approach to explain the Siamese neural network (SNN) as a black-box model
is proposed. The approach is agnostic to the black-box model. This means that we
do not know or do not use any details of the black-box model. Only its input and the
corresponding output are used for training the explanation model. We also assume
that the explained SNN is regarded as the black-box model in the sense that we
know input feature vectors and embedded vectors, but we do not know peculiarities
and tuning parameters of the SNN.

At the same time, to the best of our knowledge, there are no appropriate algo-
rithms for explaining the SNN which is used as a weakly supervised learning model.
Therefore, we aim to solve this explanation problem and to propose the correspond-
ing approach which allows us to get subsets of features explaining similarity and
dissimilarity of certain instances.

First of all, let us consider main difficulties of explaining the SNN. They are the
following:

1. The input vectors (instances) are semantically similar or dissimilar. Therefore,
direct distances between the input feature vectors do not have a sense. Seman-
tically dissimilar vectors may be closer to each other than semantically similar
vectors.

2. The perturbation technique cannot be used directly for input instances of the
SNN due to the possible large dimensionality of input data.

3. Prototypes cannot be defined in case of weakly supervised data. Moreover,
prototypes defined as mean values of the input vectors also do not have a sense
because the input vectors may be too different. They can be defined only by
using the output vectors (embeddings).

4. There is no an “inverse” map between the embedded vectors and the correspond-
ing input feature vectors, i.e., we do not know subsets of features in the input
vector corresponding to some features of the embedded vector.

Taking into account the fact that the distance measurement has a sense only for
the SNN output vectors, direct ideas for explaining the SNN are the following:

1. to select a predefined number of features from a pair of embeddings of semanti-
cally similar instances, which have the smallest distance between each other;

2. to select a predefined number of features from a pair of embeddings of seman-
tically dissimilar instances, which have the largest Euclidean distance between
each other;

3. to perturb the selected features in a specific way;

4. to reconstruct the obtained perturbation in order to find which features of re-
constructed instances are changed in accordance with the perturbation of em-
beddings;

Explanation of Siamese Neural Networks 1175

5. maximally changed features of reconstructed instances explain similarity or dis-
similarity of the considered original instances.

These ideas could be viewed as an approach for developing a SNN explanation
method, but a bottleneck of the approach is the reconstruction of instances from
the corresponding embeddings. Our experiments have shown that it is very difficult
to train a reconstruction neural network, having the embedded vectors as its input
and the original instances as its output, due to a large difference between the in-
stance dimensionality and the embedded vector size. Therefore, we propose to apply
an autoencoder (AE) of a special type in order to overcome the above difficulty and
to help for reconstructing the instances from their embeddings. The proposed AE is
trained in a way different from the standard AE. In contrast to the standard AE, it
takes into account the proximity of its hidden representation and the SNN outputs
by means of extending the corresponding loss function. The decoder part of the pre-
trained AE can be regarded as the reconstruction neural network after its additional
training by using the SNN outputs. Our numerical experiments have demonstrated
that this scheme allows us to reconstruct images (instances) with a high accuracy.
By perturbing the SNN outputs in a special way and using the trained decoder of the
AE, we can consider how these perturbations impact on the reconstructed instances.

The paper is organized as follows. Related work concerning with available ex-
planation models and the SNN applications is considered in Section 2. A detailed
description of the SNN architecture is given in Section 3. Main ideas of the proposed
SNN explanation method are discussed in Section 4. Details of the AE implemen-
tation for improving the reconstruction of original images from the corresponding
embeddings are given in Section 5. A scheme of the used perturbation technique
and the instance reconstruction is studied in Section 6. Numerical experiments
illustrating the proposed method on the basis of the synthetic dataset and the well-
known MNIST dataset are given in Section 7. Concluding remarks are provided in
Section 8.

2 RELATED WORK

2.1 Explanation Models

There are a lot of approaches to locally explain black-box models. One of the very
popular methods is the Local Interpretable Model-agnostic Explanations
(LIME) [11]. The main intuition of LIME is that the explanation may be derived
locally from a set of synthetic instances generated randomly in the neighborhood of
the instance to be explained such that every synthetic instance has a weight accord-
ing to its proximity to the explained instance. Several modifications of LIME have
been proposed due to success and simplicity of the method, for example, ALIME [12],
NormLIME [13], DLIME [14], Anchor LIME [15], LIME-SUP [16], LIME-Aleph [17],
SurvLIME [18]. Garreau and Luxburg [19] proposed a thorough theoretical analysis
of LIME.

1176 L. Utkin, M. Kovalev, E. Kasimov

Another very popular method is the SHAP [20] and its modifications which take
a game-theoretic approach by optimizing a regression loss function based on Shapley
values [21, 22, 23, 24]. Alternative methods are influence functions [25], a multiple
hypothesis testing framework [26], and many other methods.

A large part of methods can be united as counterfactual explanations [27]. They
try to answer the question: “Why is the outcome Y obtained instead of Z?”. A sim-
plest approach to answer the question is to find the nearest training instance be-
longing to another class. As shown by Moore et al. [28], this approach strongly
depends on the size and quality of the considered training set, and it cannot find
a counterfactual that is not explicitly in the set. Therefore, a lot of new methods of
the counterfactual explanation have been developed [29, 30, 31, 32, 33, 34, 35].

Dhurandhar et al. [36, 37] extended the counterfactual explanation by introduc-
ing the so-called contrastive explanation methods which produce explanations of the
form [36]: “An input feature vector is classified in class y because features fi1 , . . . ,
fik are present and because features fj1 , . . . , fjl are absent”.

A large part of explanation methods uses a prototype technique which selects
representative instances from training data, for instance, from instances belonging
to the same class. These instances are called prototypes [38, 39]. The explanation
methods using this technique determine how an explained instance is similar to
a prototype.

It is important to point out also that most aforementioned explanation methods
starting from LIME [11] are based on perturbation technique [40, 41, 42, 43, 44,
45]. These methods assume that contribution of a feature can be determined by
measuring how prediction score changes when the feature is altered [46]. Strumbel
and Kononenko [20] propose to perturb the input feature vectors and to observe
how changes of the input features correspond to changes of the outcome. They rely
on an assumption that a feature is important and strongly impacts the outcome
if its change sufficiently changes the outcome. Perturbation techniques are model-
agnostic, i.e., perturbations can be applied to a black-box model without any need
to access the internal structure of the model. However, the perturbation technique
may meet computational difficulties when perturbed input instances have a lot of
features.

Several comprehensive surveys devoted to various explainable methods can be
found in literature [47, 48, 49, 1, 50]. A very interesting critical review of main
assumptions and statements accepted in explaining the black-box machine learning
models is provided by Rudin [51]. The review [51] considers in detail how to avoid
mistakes and incorrect assumptions in explanation models. The corresponding soft-
ware packages [52] are developed in order to simplify the explanation process for
various machine learning models.

2.2 Metric Learning and Siamese Neural Networks

A detailed description of the metric learning approaches is represented by Le Ca-
pitaine [53] and by Kulis [7]. One of the most important and popular approaches

Explanation of Siamese Neural Networks 1177

is to use the Mahalanobis distance as a distance metric which assumes some linear
structure of data. However, this assumption significantly restricts the applicability
of the Mahalanobis distance for comparing pairs of objects. Therefore, in order to
overcome this restriction, the kernelization of linear methods is one of the possi-
ble ways for solving the metric learning problem. Bellet et al. [6] review several
approaches and algorithms to deal with nonlinear forms of metrics. In particular,
these are the support vector metric learning algorithm provided by Xu et al. [54],
the gradient-boosted large margin nearest neighbors method proposed by Kedem
et al. [55], the Hamming distance metric learning algorithm provided by Norouzi
et al. [56]. Various methods and applications of the metric learning can be found
in [57, 58, 59, 60, 61, 62, 54, 63].

SNNs realize a non-linear embedding of data [64] and were introduced in 90s by
Bromley and LeCun to solve signature verification as an image matching problem [9].
SNNs have been widely spread in solving many application problems. In particular,
they are applied to problems of image recognition and verification [10, 65, 66, 67, 68,
69], of speaker verification [70], of visual tracking [71, 72], of novelty and anomaly
detection [73, 74], and to many different theoretical and practical problems [75, 76,
77, 78]. An important application of the SNN is one-shot learning [79] or few-shot
learning [80, 81, 82, 83], when it is supposed that there are only a few training
instances in some classes for training. A more detailed and general definition of the
one-shot and few-shot learning is given in [84].

It should be noted that the above applications present only a small part of all
applications of the SNNs. Many modifications of SNNs have been also developed,
including fully-convolutional SNNs [85], SNNs combined with a gradient boosting
classifier [86], SNNs with the triangular similarity metric [8].

3 SIAMESE NEURAL NETWORKS

Let S = {(xi,xj, zij), (i, j) ∈ K} be a dataset consisting of N pairs of feature
vectors xi ∈ Rm and xj ∈ Rm such that a binary label zij ∈ {0, 1} is assigned
to every pair (xi,xj). If both feature vectors xi and xj are semantically similar,
then zij takes value 0. If the vectors are semantically dissimilar, i.e., they corre-
spond to different classes, then zij takes value 1. This implies that the training
set S can be divided into two subsets: a similar or positive set with zij = 0 and
a dissimilar or negative set with zij = 1. It should be noted that knowledge of
classes is not necessary if we have only weak information about similarity of pairs
of instances.

The main idea of using the SNN can be formulated as follows. If there are two
feature vectors xi and xj being dissimilar, then the Euclidean distance d(xi,xj) be-
tween these feature vectors should be as large as possible. However, this may be
not a case in practice. For instance, if to consider the medicine application, then
tuberculosis and adenocarcinoma in the lung cancer diagnosis may have similar com-
puted tomography patterns, but these are quite different diseases. Adenocarcinoma

1178 L. Utkin, M. Kovalev, E. Kasimov

is cancer, but tuberculosis is not. At the same time, different forms of lung cancer
may look quite differently, for instance, lepidic and squamous cell carcinoma. In
this case, the Euclidean distance d(xi,xj) may be rather large, but it should be
as small as possible. In other words, the Euclidean distance d(xi,xj) often does
not correspond to semantic similarity of objects. Therefore, we have to consider
not the distance between feature vectors themselves, but the distance between new

feature representations or embeddings denoted as hi = (h
(i)
1 , . . . , h

(i)
D) ∈ RD and

hj = (h
(j)
1 , . . . , h

(j)
D) ∈ RD, which fulfil the conditions of distances and similar-

ity, i.e., the Euclidean distance d(hi,hj) between vectors hi and hj should be as
small (large) as possible for a pair of objects with zij = 0 (zij = 1). At that,
every vector hi is a map f of xi to a low-dimensional space, i.e., hi = f(xi)
and hj = f(xj). The function f is implemented by every subnetwork in the
SNN.

A standard architecture of the SNN given in the literature (see, for example, [10])
is shown in Figure 1. It consists of two identical neural subnets which are trained
to compare a pair of feature vectors in terms of their semantic similarity or dissim-
ilarity.

Figure 1. The architecture of the SNN

It should be noted that there are many specific loss function for training the
SNN [6, 53, 8], which solve the problem of the object comparison. One of the
functions is the contrastive loss function defined as

l(xi,xj, zij) =

{
‖hi − hj‖22 , zij = 0,

max(0, τ − ‖hi − hj‖22), zij = 1,
(1)

where τ is a predefined threshold.

Hence, the total error function for minimizing is defined as

LSiam(W) =
∑

(i,j)∈K

l(xi,xj, zij) + µR(W). (2)

Explanation of Siamese Neural Networks 1179

Here R(W) is a regularization term added to improve generalization of the neural
network; W is the matrix of the neural subnet parameters; µ is a hyper-parameter
which controls the strength of the regularization.

It is assumed below that the outputs hi and hj are known for every pair (xi,xj).

4 A GENERAL IDEA FOR EXPLAINING THE SNN

First of all, we have to define what is the meaning of the semantically similar and
dissimilar instances from the interpretation point of view. In other words, we have
to explain why two instances xi and xj are semantically similar or dissimilar, i.e.,
which features of the instances make them similar or dissimilar. This is not a trivial
question because the similarity of two instances and the distance between them in
the input space may be not correlated. Therefore, it is difficult to apply various
techniques, for example perturbation schemes, to the input examples. However,
the similarity and the distance can be considered in the output space, where the
distance between embeddings hi and hj corresponding to similar examples is sup-
posed to be rather small, and the distance between embeddings corresponding to
dissimilar examples is large. This implies that there are features of the vectors hi

and hj, which determine the similarity of input instances by comparing the corre-
sponding distances between these features. These features can be called important
features.

In order to explain the important features defining the semantic similarity and
dissimilarity, we consider a simple example. Suppose that embeddings consist of two
features h1 and h2, i.e., D = 2. Three 2-dimensional vectors are shown in Figure 2
in the form of small circles and a triangle. It can be seen from Figure 2 that the first
and the second points correspond to semantically similar instances because they are
close to each other. It is obvious that the first and the third points are semantically
dissimilar because they are far from each other. The semantic similarity of points 1
and 2 is defined by feature h2 because distance dsimilar is smallest. This implies
that the second feature can be viewed as important for semantic similarity of two
instances. It should be noted that points 1 and 2 are close to each other also due
to feature h1. However, its impact is smaller in comparison with the impact of
feature h2. We can say the same about the first and the third points. They are
dissimilar due to feature h1 because the large distance ddissimilar defines the semantic
dissimilarity of the instances. This implies that the first feature can be viewed as
important for semantic dissimilarity of instances 1 and 3.

In sum, we have a rule for determining important features of embeddings, which
define semantic similarity and dissimilarity of input examples. The main problem is
that we do not know how these important features of embeddings are connected with
the corresponding original instances because there is no an “inverse” map from em-
beddings to input instances. Therefore, in order to solve the interpretation problem,
we have to construct this “inverse” map and to find features of the input instances
which correspond to important features of embeddings. If we had such the “in-

1180 L. Utkin, M. Kovalev, E. Kasimov

Figure 2. Pairs of semantically similar (1 and 2) and dissimilar (1 and 3) instances whose
embeddings consist of two features (h1 and h2)

verse” map, then the problem would be solved by perturbing the important features
of embeddings and analyzing the corresponding changes of the input instances.

One of the ways for implementing the “inverse” map is to train a reconstruc-
tion neural network with embeddings h as inputs and the corresponding input in-
stances x as outputs. However, our experiments have shown that this reconstruc-
tion network is overfitted and does not allow to correctly reconstruct the input
instances especially when the number of training instances is not large and the in-
stances x are images of a high dimensionality. It turns out that it is simpler to
train an AE and then to use its pre-trained decoder part for additional training
and for reconstruction. Therefore, our idea is to train the AE whose inputs are
instances x, its code (the hidden representation) is close to the embedding vector h.
The trained decoder part of the AE can be used as a pre-trained reconstruction
neural network which transforms embeddings h into instances x. Moreover, this
reconstruction neural network can be additionally trained by using embeddings h
and instances x.

Having important features of vectors hi and hj and the trained reconstruction
neural network, we perturb the features in accordance with the following rules. If the
pair of similar instances is analyzed, then the features are perturbed to reduce the
distance between these important features. The perturbation of important features
of dissimilar instances is carried out to increase the distance between them. Changes
of the reconstructed instances produce the corresponding heatmaps explaining sim-
ilarity or dissimilarity of two input instances.

Perturbations aim at describing how the output of the explained model changes
when one or more input features are perturbed. The intuition of the technique
is that the more a model’s response depend on a feature, the more predictions or
some output score change with the corresponding feature changes. The perturbation
scheme can be regarded as one of the interesting approaches to the model interpre-

Explanation of Siamese Neural Networks 1181

tation development and to the explainer evaluation [44]. Suppose there is a feature
vector x ∈ Rm that is slightly perturbed to a new vector x + δ, where δ is a small
perturbation that does not alter the meaning of the data point, i.e., the vector x + δ
remains the similarity relationship with other vectors from the training set without
changes. The perturbation scheme can be also viewed in the framework of a sensitiv-
ity analysis method which aims to consider how the output of the explainable model
changes when one or more input features are perturbed. Perturbation methods have
the advantages of a straightforward interpretation, as they are a direct measure of
the marginal effect of some input features to the output [40]. Moreover, pertur-
bation schemes can be simply implemented, and they can be applied to post-hoc
models.

Finally, the proposed method for explaining the SNN can be represented by
means of an algorithm consisting of two parts. The first part aims to train the
additional AE with a special loss function, which plays a partial role of the ex-
plainer. It aims to reconstruct the input instances from the training set and to
take into account the SNN output. The second part is to train the decoder of the
pre-trained AE, to perturb the embedding vectors at the SNN output, to use the
decoder in order to reconstruct the perturbed embeddings and to observe the fea-
tures of the reconstructed vectors which are changed due to the perturbation of
embeddings.

Let us consider every part of the above algorithm in detail. Suppose that we
have a trained SNN as a black-box model. For every input instance xi, we have
the corresponding embedding vector hi ∈ RD such that hi = f(xi). For the sake of
clarity, we will call instances xi as images whereas the embeddings will be called as
vectors.

5 PRE-TRAINING OF THE AE

Suppose that inputs of the proposed AE are images xi. Then we expect to get
reconstructed images x∗i as its outputs. The corresponding loss function Lrecon AE

for training the AE is defined, for example, as follows:

Lrecon AE(W,xi,x
∗
i) =

n∑
i=1

‖xi − x∗i ‖
2
2 . (3)

A regularization term is not written here because it will be used later. In order
to use the pre-trained decoder for reconstruction of vector hi ∈ RD, the AE has to be
trained in a special way. First of all, the length of a part of its hidden representation
has to coincide with the length of vector h, which is equal to D. Second, the loss
function should take into account proximity of vectors hi and the corresponding
vectors of the AE hidden representation denoted as bi ∈ RD, i.e., we need to have
the vectors bi in the hidden layer coinciding with the vectors hi obtained by means
of the SNN. Therefore, we propose to change the loss function for training the AE
by adding the loss function Lclose in the following way:

1182 L. Utkin, M. Kovalev, E. Kasimov

Lautoen(W) = γLrecon AE(W,xi,x
∗
i) + µLclose(W,hi,bi) + λR(W)

= γ

n∑
i=1

‖xi − x∗i ‖
2
2 + µ

n∑
i=1

‖hi − bi‖22 + λR(W). (4)

Here R(W) is a regularization term, λ is a hyper-parameter which controls the
strength of the regularization; W is the set of the neural network weights; γ and µ
are parameters that control the interaction of the loss function terms.

Figure 3. The autoencoder training scheme

One of the problems here is a case when D is small. Hence, the AE may
provide the unsatisfactory reconstruction if the hidden representation is of a too
small size. Therefore, for improving the presented architecture, it is proposed to
enlarge the hidden representation of the AE, i.e., the vector bi by means of its
concatenation with a vector ai ∈ RA. As a result, we get the vector ci = (bi||ai) ∈
RD+A, where (bi||ai) denotes the concatenation operation of vectors bi and ai. The
enlarged embedding allows us to improve the decoder training. In the same way,
we later enlarge the outputs of the SNN, which contain vectors (hi||ai) ∈ RD+A

of the same dimensionality. Before training the AE, we assume that the vector
ai concatenated with the SNN output is arbitrary, for example, with zero-valued
elements.

A scheme of the first part of the explanation algorithm is shown in Figure 3. It
can be seen from the scheme that the AE is trained by using embedding vectors hi

from subnetworks of the SNN and the input images xi.

Explanation of Siamese Neural Networks 1183

The pre-trained decoder part as well as the trained encoder part of the AE can
be used for additional training and for reconstruction of the perturbed embeddings
that is for implementing the second part of the algorithm. The use of the AE
allows us to significantly simplify the training process and to get acceptable vector
reconstructions. It should be noted that an architecture of the encoder differs from
the architecture of a subnetwork of the SNN because we consider the SNN as a black
box whose architecture is unknown.

6 PERTURBATION OF EMBEDDINGS
AND THE INSTANCE RECONSTRUCTION

The second part of the explanation algorithm, including the perturbation and the
image reconstruction is shown in Figure 4.

Figure 4. A scheme of the second part of the explanation algorithm

The pre-trained decoder can be again trained by using only vectors hi from the
SNN output and vectors ai from the AE encoder output. The concatenated vector
(hi||ai) is the decoder input, the reconstructed image x#

i is the decoder output. The
loss function is the standard Euclidean distance between images x#

i and xi. It is
important to note that the vector ai is computed by means of the encoder part of
the AE. The set of all vectors ai corresponding to all training instances could be
separately stored in order to avoid the repeated use of the encoder. However, this
can be done only for training. When we have new instances, the encoder has to
be used. If the SNN outputs are not so small, then the AE hidden representation

1184 L. Utkin, M. Kovalev, E. Kasimov

can have the same size as vectors hi. In this case, A = 0 and vectors ai as well as
the encoder are not needed, and the scheme of the second part of the explanation
algorithm is simplified.

For a new pair of images xi and xj, we find vectors hi and hj as outputs of
the SNN. If the images are semantically similar, then we find a predefined number
of important features in hi and hj with smallest distances. There are different
ways for choosing important features. The first way is just to define the number of
important features s < D such that the index set J ⊆ {1, . . . , D} consists of s indices

corresponding to smallest distances between features h
(i)
k and h

(j)
k , k = 1, .., D. In

this case, the value of s can be regarded as a tuning parameter. The second way is to
define a threshold α of the relative Euclidean distances rk ∈ [0, 1] between important
features of two vectors hi and hj. It is supposed that features are important if there
holds

rk =

∣∣∣h(i)k − h
(j)
k

∣∣∣
maxl=1,...,D

∣∣∣h(i)l − h
(j)
l

∣∣∣ ≤ α, k = 1, . . . , D. (5)

Then the index set J of important features is defined as

J = {k : rk ≤ α}. (6)

In the same way, we define the rule for important features of the semantically
dissimilar images. In particular, features in hi and hj with largest distances can be
viewed ad important features.

By having a set of important features, we can perturb them to study how the
important features of the SNN outputs impact on the original images xi and xj.
The trained decoder is used to reconstruct images from hi + δi and hj + δj and to

investigate how features of the reconstructed images x#
i and x#

j are changed. Here
δi and δj are the perturbation vectors such that indices of their non-zero elements
are from the index set J , other elements are equal to zero. In sum, we have the
embeddings hi and hj, the reconstructed images x#

i and x#
j , the index set J of

important features of embeddings. Important features as an example (two features)
in hi and hj are shown by dashed cells in Figure 4. The perturbed vectors hi and
hj are fed to the corresponding decoders in order to get the reconstructed images

x#
i and x#

j which depends on perturbations.

Suppose that the perturbation δ of an embedding leads to the changed ith feature
x#i (δ) of the reconstructed image x#. After generating the random vector δ many
times, say N times, the mean value of the ith feature changes is defined as

Ti = N−1
N∑
j=1

(
x#i (δj)− x#i

)
. (7)

It should be noted that Ti may be positive as well as negative. If we consider
the visual interpretation, then all values of Ti are scaled to be in interval [−1, 1].

Explanation of Siamese Neural Networks 1185

Finally, we compute absolute values T ∗i of Ti in order to visualize the largest changes.
The heatmaps explaining the considered instances are determined from condition
T ∗i ≥ β, i.e., they have largest changes of the reconstructed instance. Here β is
a threshold of relative changes of features, which can be regarded as another tuning
parameter.

The perturbation vectors are randomly generated in the following way. Suppose
that the index set J consists of s elements. First, we generate the vector δ in the
s-sphere defined as B = {δ ∈ Rs : |δ| = R} with some predefined radius R. There
are several methods for the uniform sampling of points δ in the s-sphere with the
unit radius R = 1, for example, [87, 88]. Then every generated point is multiplied by
R. Moreover, we take vectors δ only from a part of the s-sphere. This part is defined
by a hyper-quadrant, which the second embedding hj is located in, under condition
that the vector hi is in the origin of coordinates. The radius is defined as a portion
of the Euclidean distance d(hj,hi) between hj and hi, i.e., R = q · d(hj,hi), where
q is also a tuning parameter.

7 NUMERICAL EXPERIMENTS

7.1 A Synthetic Example

One of the questions of the SNN explanation is to understand how the instances may
be semantically similar or dissimilar and how to explain the important features of
the instances, which are responsible for the semantics. This question is not trivial.
Indeed, we simply and logically understand the similarity or dissimilarity at the
embedding level because they depend on the distance between vectors. However,
the similarity or dissimilarity of images are semantic and, therefore, not obvious.
In order to see what the similarity and dissimilarity mean for images, we consider
a synthetic example. We consider two types of randomly generated images: triangles
and circles. Sizes of triangles and circles may be different and random. All images
are of 28× 28 pixels.

The SNN as well as the AE are implemented in Python by using the Keras
package with Tensorflow. They are trained on the generated set of images with
circles and triangles. The length of the hidden representation layer of the AE is 41,
i.e., vector h consists of 32 features (D = 32), and vector a is of the length 9. The
hyper-parameter µ, which controls the strength of the regularization is 0.02. The
loss function for training the SNN is of the form:

l(xi,xj, zij) =

{ (
‖hi − hj‖22 − ω

)2
, zij = 0,(

max(0, τ − ‖hi − hj‖22)
)2
, zij = 1.

(8)

Here ω is an intraclass margin which is introduced to diverse instances of the
same class. It can be seen from (8) that the loss function differs from (1). The
function (8) is used because embeddings of similar instances are too close to each

1186 L. Utkin, M. Kovalev, E. Kasimov

other. A simple way to make them different is to introduce the margin ω which sets
the minimal distance between embeddings equal to ω.

Numerical results are shown in Figures 5, 6, 7, 8 such that every figure contains
numerical results of 6 experiments depending on the value of important features s for
perturbation. Every experiment is represented by means of four pictures or two pairs
of pictures. The first pair (vertically) consists of original images, whose similarity
or dissimilarity has to be explained, overlapped by the corresponding heatmaps.
The second pair of pictures is the heatmaps of features explaining the similarity or
dissimilarity. It is important to note that the heatmaps are obtained by using the
pre-trained autoencoder.

Figure 5. Examples of semantically similar images (triangles) and the explanation
heatmaps for s = 2, 4, 6, 8, 10, 12

It can be seen from Figure 5 that the semantic similarity of triangles is defined
starting from angles of the triangles (see the corresponding pictures of heatmaps by
s = 2). This is a very interesting result. Indeed, the triangles are intuitively similar
by angles. Sides of triangles also play some role in explanation, but they may be
like some parts of small circles due to the low resolution of images. It can be seen
from pictures by increasing the value of s = 4, 6, 8. We get sides of triangles as
important features. It is interesting to note that insides of the triangles almost do
not participate in the explanation though these are solid on the original images and
differ from the background color. It is also interesting to see that that increasing of
s does not necessarily leads to increasing the important features of the reconstructed
images. For example, the number of important features by s = 12 is less than by

Explanation of Siamese Neural Networks 1187

s = 10. This is due to the fact that some new perturbations mask changes the
previous perturbations.

Figure 6. Examples of semantically similar images (circles) and the explanation heatmaps
for s = 2, 4, 6, 8, 10, 12

When we look at Figure 6, it can be seen that the circles are like rectangles
with chamferings due to the low resolution. It is also an interesting case, because
the similarity is observed mainly in chamferings, and it covers sides only partially
by increasing s.

But the most interesting cases are shown in Figures 7 and 8, where the semantic
dissimilarity is studied. Two cases are studied:

1. The original triangle is small and the circle is large.

2. The original triangle is large and the circle is small.

It is clearly seen from the first pictures that the dissimilarity is explained by angles
of triangles and by chamferings of circles. Indeed, triangles as well as “rectangles-
circles” have sides as similar elements. They do not explain the semantic dissim-
ilarity. Only angles of triangles and chamferings are really different. The sides of
triangles and the whole circles become important only by large values of s. We
intentionally consider the images of the low resolution in order to see some pecu-
liarities of explaining the “wrong” rectangle and the “wrong” circle. It is again
important to point out that insides of the pictures do not participate in the expla-
nation.

1188 L. Utkin, M. Kovalev, E. Kasimov

Figure 7. Examples of semantically dissimilar images (large circles and small triangles)
and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Figure 8. Examples of semantically dissimilar images (small circles and large triangles)
and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Explanation of Siamese Neural Networks 1189

Architectures of the SNN and the AE are not provided for these numerical
examples because they are stated to understand the meaning of the similarity and
dissimilarity explanations. However, the corresponding architectures for explaining
results obtained on the MNIST dataset are given below.

7.2 MNIST

The proposed explanation method is studied by applying the MNIST dataset which
is a commonly used large dataset of 28x28 pixel handwritten digit images [89]. It
has a training set of 60 000 instances, and a test set of 10 000 instances. The digits
are size-normalized and centered in a fixed-size image. The dataset is available at
http://yann.lecun.com/exdb/mnist/. If two digits from the MNIST dataset are
identical, i.e., they belong to the same class, then they are semantically similar. If
two digits are different, then they are semantically dissimilar.

7.3 Architecture of Neural Networks

Layer Dimension Activation

Input 28× 28 –

Conv1 28× 28× 4 ReLU

Pooling1 14× 14× 4 –

Flatten 784 –

Dense1 128 ReLU

Output (Dense2) 20 Tanh

Table 1. An architecture of every subnetwork of the SNN for the MNIST dataset

Layer Dimension Activation

Input 28× 28 –

Conv1 28× 28× 8 ReLU

Pooling1 14× 14× 8 –

Conv2 14× 14× 16 ReLU

Pooling2 7× 7× 16 –

Flatten 784 –

Hidden 26 Tanh

Dense 784 ReLU

Reshape 7× 7× 16 –

Up-Sampling 14× 14× 16 –

Conv3 14× 14× 8 ReLU

Up-Sampling 28× 28× 8 –

Output (Conv4) 20 Sigmoid

Table 2. An architecture of the AE for the MNIST dataset

http://yann.lecun.com/exdb/mnist/

1190 L. Utkin, M. Kovalev, E. Kasimov

Figure 9. Examples of semantically similar images of digits 4 from the MNIST dataset
and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Figure 10. Examples of semantically similar images of digits 5 from the MNIST dataset
and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Explanation of Siamese Neural Networks 1191

Figure 11. Examples of semantically dissimilar images of digits 3 and 5 from the MNIST
dataset and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

Figure 12. Examples of semantically dissimilar images of digits 7 and 9 from the MNIST
dataset and the explanation heatmaps for s = 2, 4, 6, 8, 10, 12

1192 L. Utkin, M. Kovalev, E. Kasimov

An architecture of the SNN for experiments with the MNIST dataset is shown
in Table 1. Every subnetwork is implemented as a convolutional network having
a convolutional layer (Conv1), a max pooling layer (Pooling1), flatten layer (Flat-
ten), which transforms a two-dimensional matrix into a vector, two dense layers
(Dense1 and Dense2), which are represented by fully connected networks. Parame-
ters of the loss function (8) are µ = 0.0005, ω = 0.5, τ = 3.

An architecture of the AE is shown in Table 2. The encoder part consists
of two convolutional layers (Conv1 and Conv2), two max pooling layers (Pooling1
and Pooling2), flatten layer (Flatten). The decoder part consists of a dense layer
(Dense), a reshape layer to change dimensions (Reshape), two upsampling layers
and two convolutional layers (Conv3 and Conv4).

The length of the hidden representation layer is 26, i.e., vector h consists of 20
features (D = 20), and vector a is of the length 6.

7.4 Results

Numerical results illustrating the explanation method on the MNIST dataset are
shown in Figures 9, 10, 11, 12. The figures have the same structure as Figures 5, 6,
7, 8, i.e., every figure contains numerical results of 6 experiments depending on the
value of important features s for perturbation.

Figures 9 and 10 show semantically similar digits 4 and 5, respectively. It can
be seen from pictures in Figure 9 that the selected features indicate peculiarities
of the digit 4, which differ from other digits. In particular, the important features
are located at the upper part of the digit and its middle part. The same can be
said about the digit 5 shown in Figure 10. The important features are concen-
trated at the middle part of the digits and partially select their upper curve. We
again see from Figures 9 and 10 that the semantic similarity of pairs of original
images is clearly exhibited by means of important features which explain this sim-
ilarity.

Figures 11 and 12 show semantically dissimilar digits 3,5 and 7,9, respectively.
The explanation of the semantic dissimilarity is very explicit in Figure 11. Indeed,
the selected important features are inherent in the difference of two digits. Figure 12
is also very demonstrative. It can be seen from Figure 12 that only the parts of
digits 7 and 9 are selected for explanation that characterize differences between the
different digits. It is interesting to note that the slanting vertical slashes are not
selected for explanation because they are common for these two digits. They are
only partly selected when s = 12, i.e., features of embeddings responsible for the
semantic similarity begin to act.

It can be also concluded from all the considered examples that the choice of
a proper value of parameter s is not a trivial task. It can be solved by enumerating
several values s and depends on many factors: datasets, the length of embeddings,
the dimensionality of images, etc.

Explanation of Siamese Neural Networks 1193

8 CONCLUSION

A new method for explaining the SNN results under condition of the weakly super-
vised learning has been presented in this paper. Basic ideas behind the method are
comparisons of the explained instances at the embedding level and reconstruction
of the embedding feature vectors by means of the separately trained decoder and
the encoder of the AE in order to analyze the impact of the embedding vector per-
turbations on the reconstructed features of original instances. It should be noted
that the main elements of the proposed method such as the AE with the extended
loss function and the perturbation technique can be implemented independently of
a structure of the explained SNN. This implies that the proposed method can be ap-
plied to various applications using SNNs. The method can be also used when there
is information about classes of training data. This case can be viewed as a special
case of the considered explanation approach.

To the best of our knowledge, there are no explanation methods applied to
the SNN. Therefore, we do not compare the proposed method with the well-known
methods such as LIME, SHAP, etc.

One of the limitations of the proposed approach is a possible small amount of
training data in order to train the AE. The SNN is trained on pairs of instances
such that the number of pairs may be large even by a small number of original
instances. However, the AE has to be trained only by using the available data.
One of the ways to overcome this problem is to train the AE on concatenated
pairs of original instances. However, our experiments have shown that this obvious
way may lead to the unsatisfactory reconstruction. Therefore, a modification of
the method taking into account the lack of the sufficient amount of training data
is a direction for further research. Another limitation is a rather large number of
tuning parameters, including the number of important features, the length of the
AE hidden representation, etc. Some efficient rules for restricting their values can
be also regarded as a direction for further research.

It is important to note that the idea to reconstruct original instances from
embeddings by means of the AE with the modified loss function can be applied
not only to SNNs, but to different neural networks which implement the feature
extraction procedures. If we have information about output feature extracted vectors
of the neural networks, then the corresponding results can be explained in the same
way. The main difference is that prototypes of classes should be used in order to
select the important extracted features instead of output vectors of the SNN. In other
words, in order to explain an original instance, the corresponding feature extracted
vector is compared with the prototype of the class of this instance, and the nearest
features are selected for their perturbation. In the same way, the counterfactual
explanation technique can be applied by considering the prototypes of other classes.
A detailed study of these extensions of the proposed method is another direction for
further research.

1194 L. Utkin, M. Kovalev, E. Kasimov

Acknowledgement

The reported study was funded by RFBR, project No. 20-01-00154.

REFERENCES

[1] Guidotti, R.—Monreale, A.—Ruggieri, S.—Turini, F.—Giannotti, F.—
Pedreschi, D.: A Survey of Methods for Explaining Black Box Models. ACM Com-
puting Surveys, Vol. 51, 2019, No. 5, Art. No. 93, doi: 10.1145/3236009.

[2] Arya, V.—Bellamy, R. K. E.—Chen, P. Y.—Dhurandhar, A.—Hind, M.—
Hoffman, S. C.—Houde, S.—Liao, Q. V.—Luss, R.—Mojsilović, A.—
Mourad, S.—Pedemonte, P.—Raghavendra, R.—Richards, J.—
Sattigeri, P.—Shanmugam, K.—Singh, M.—Varshney, K. R.—Wei, D.—
Zhang, Y.: One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI
Explainability Techniques. arXiv:1909.03012, 2019.

[3] Molnar, C.: Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable. Published online, https://christophm.github.io/

interpretable-ml-book/, 2019.

[4] Murdoch, W. J.—Singh, C.—Kumbier, K.—Abbasi-Asl, R.—Yu, B.: Inter-
pretable Machine Learning: Definitions, Methods, and Applications. PNAS, Vol. 116,
2019, No. 44, pp. 22071–22080, doi: 10.1073/pnas.1900654116.

[5] Ibrahim, M.—Louie, M.—Modarres, C.—Paisley, J. W.: Global Explana-
tions of Neural Networks: Mapping the Landscape of Predictions. Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’19), 2019,
pp. 279–287, doi: 10.1145/3306618.3314230.

[6] Bellet, A.—Habrard, A.—Sebban, M.: A Survey on Metric Learning for Fea-
ture Vectors and Structured Data. arXiv:1306.6709, 2013.

[7] Kulis, B.: Metric Learning: A Survey. Foundations and Trends in Machine Learning,
Vol. 5, 2013, No. 4, pp. 287–364, doi: 10.1007/s11042-015-2847-3.

[8] Zheng, L.—Duffner, S.—Idrissi, K.—Garcia, C.—Baskurt, A.: Siamese
Multi-Layer Perceptrons for Dimensionality Reduction and Face Identification.
Multimedia Tools and Applications, Vol. 75, 2016, No. 9, pp. 5055–5073, doi:
10.1007/s11042-015-2847-3.

[9] Bromley, J.—Bentz, J.—Bottou, L.—Guyon, I.—LeCun, Y.—
Moore, C.—Sackinger, E.—Shah, R.: Signature Verification Using a “Siamese”
Time Delay Neural Network. International Journal of Pattern Recognition and Arti-
ficial Intelligence, Vol. 7, 1993, No. 4, pp. 669–688, doi: 10.1142/S0218001493000339.

[10] Chopra, S.—Hadsell, R.—LeCun, Y.: Learning a Similarity Metric Discrimina-
tively, with Application to Face Verification. 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, 2005, pp. 539–546,
doi: 10.1109/CVPR.2005.202.

[11] Ribeiro, M.—Singh, S.—Guestrin, C.: “Why Should I Trust You?” Explaining
the Predictions of Any Classifier. arXiv:1602.04938v3, 2016.

https://doi.org/10.1145/3236009
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1145/3306618.3314230
https://doi.org/10.1007/s11042-015-2847-3
https://doi.org/10.1007/s11042-015-2847-3
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1109/CVPR.2005.202

Explanation of Siamese Neural Networks 1195

[12] Shankaranarayana, S. M.—Runje, D.: ALIME: Autoencoder Based Approach
for Local Interpretability. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A.,
Menezes, R., Allmendinger, R. (Eds.): Intelligent Data Engineering and Automated
Learning – IDEAL 2019. Springer, Cham, Lecture Notes in Computer Science,
Vol. 11871, 2019, pp. 454–463, doi: 10.1007/978-3-030-33607-3 49.

[13] Ahern, I.—Noack, A.—Guzmán-Nateras, L.—Dou, D.—Li, B.—Huan, J.:
NormLime: A New Feature Importance Metric for Explaining Deep Neural Networks.
arXiv:1909.04200, 2019.

[14] Zafar, M. R.—Khan, N. M.: DLIME: A Deterministic Local Interpretable
Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems.
arXiv:1906.10263, 2019.

[15] Ribeiro, M. T.—Singh, S.—Guestrin, C.: Anchors: High-Precision Model-
Agnostic Explanations. AAAI Conference on Artificial Intelligence, 2018,
pp. 1527–1535.

[16] Hu, L.—Chen, J.—Nair, V. N.—Sudjianto, A.: Locally Interpretable Models
and Effects Based on Supervised Partitioning (LIME-SUP). arXiv:1806.00663, 2018.

[17] Rabold, J.—Deininger, H.—Siebers, M.—Schmid, U.: Enriching Visual with
Verbal Explanations for Relational Concepts – Combining LIME with Aleph. In:
Cellier, P., Driessens, K. (Eds.): Machine Learning and Knowledge Discovery in
Databases (ECML PKDD 2019). Springer, Cham, Communications in Computer
and Information Science, Vol. 1167, 2019, pp. 180–192, doi: 10.1007/978-3-030-43823-
4 16.

[18] Kovalev, M. S.—Utkin, L. V.—Kasimov, E. M.: SurvLIME: A Method for Ex-
plaining Machine Learning Survival Models. Knowledge-Based Systems, Vol. 203,
2020, Art. No. 106164, doi: 10.1016/j.knosys.2020.106164.

[19] Garreau, D.—von Luxburg, U.: Explaining the Explainer: A First Theoretical
Analysis of LIME. Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics, PMLR, Vol. 108, 2020, pp. 1287–1296.

[20] Štrumbelj, E.—Kononenko, I.: An Efficient Explanation of Individual Classifi-
cations Using Game Theory. Journal of Machine Learning Research, Vol. 11, 2010,
pp. 1–18.

[21] Aas, K.—Jullum, M.—Løland, A.: Explaining Individual Predictions When
Features Are Dependent: More Accurate Approximations to Shapley Values.
arXiv:1903.10464, 2019.

[22] Ancona, M.—Oztireli, C.—Gross, M.: Explaining Deep Neural Networks with
a Polynomial Time Algorithm for Shapley Values Approximation. Proceedings of the
36th International Conference on Machine Learning, PMLR, Vol. 97, 2019, pp. 272–
281.

[23] Lundberg, S. M.—Lee, S. I.: A Unified Approach to Interpreting Model Pre-
dictions. In: Guzon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., Garnett, R. (Eds.): Advances in Neural Information Processing Sys-
tems 30 (NIPS 2017), 2017, pp. 4765–4774.

https://doi.org/10.1007/978-3-030-33607-3_49
https://doi.org/10.1007/978-3-030-43823-4_16
https://doi.org/10.1007/978-3-030-43823-4_16
https://doi.org/10.1016/j.knosys.2020.106164

1196 L. Utkin, M. Kovalev, E. Kasimov

[24] Owen, A. B.—Prieur, C.: On Shapley Value for Measuring Importance of De-
pendent Inputs. SIAM/ASA Journal on Uncertainty Quantification, Vol. 5, 2017,
pp. 986–1002, doi: 10.1137/16M1097717.

[25] Koh, P. W.—Liang, P.: Understanding Black-Box Predictions via Influence Func-
tions. Proceedings of the 34th International Conference on Machine Learning, PMLR,
Vol. 70, 2017, pp. 1885–1894.

[26] Burns, C.—Thomason, J.—Tansey, W.: Interpreting Black Box Models with
Statistical Guarantees. arXiv:1904.00045, 2019.

[27] Wachter, S.—Mittelstadt, B.—Russell, C.: Counterfactual Explana-
tions Without Opening the Black Box: Automated Decisions and the GDPR.
Harvard Journal of Law and Technology, Vol. 31, 2018, pp. 841–887, doi:
10.2139/ssrn.3063289.

[28] Moore, J.—Hammerla, N.—Watkins, C.: Explaining Deep Learning Models
with Constrained Adversarial Examples. In: Nayak, A., Sharma, A. (Eds.): PRICAI
2019: Trends in Artificial Intelligence. Springer, Cham, Lecture Notes in Computer
Science, Vol. 11670, 2019, pp. 43–56, doi: 10.1007/978-3-030-29908-8 4.

[29] Goyal, Y.—Wu, Z.—Ernst, J.—Batra, D.—Parikh, D.—Lee, S.: Coun-
terfactual Visual Explanations. Proceedings of the 36th International Conference on
Machine Learning, PMLR, Vol. 97, 2019, pp. 2376–2384.

[30] Hendricks, L. A.—Hu, R.—Darrell, T.—Akata, Z.: Grounding Visual Ex-
planations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.): Com-
puter Vision – ECCV 2018. Springer, Cham, Lecture Notes in Computer Science,
Vol. 11206, 2018, pp. 269–286, doi: 10.1007/978-3-030-01216-8 17.

[31] Laugel, T.—Lesot, M.-J.—Marsala, C.—Renard, X.—Detyniecki, M.:
Comparison-Based Inverse Classification for Interpretability in Machine Learning. In:
Medina, J. et al. (Eds.): Information Processing and Management of Uncertainty in
Knowledge-Based Systems. Theory and Foundations (IPMU 2018). Springer, Cham,
Communications in Computer and Information Science, Vol. 853, 2018, pp. 100–111,
doi: 10.1007/978-3-319-91473-2 9.

[32] Liu, S.—Kailkhura, B.—Loveland, D.—Han, Y.: Generative Counterfac-
tual Introspection for Explainable Deep Learning. 2019 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), 2019, doi: 10.1109/global-
sip45357.2019.8969491.

[33] Van Looveren, A.—Klaise, J.: Interpretable Counterfactual Explanations
Guided by Prototypes. arXiv:1907.02584, 2019.

[34] Poyiadzi, R.—Sokol, K.—Santos-Rodŕıguez, R.—De Bie, T.—
Flach, P. A.: FACE: Feasible and Actionable Counterfactual Explanations.
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20),
2020, pp. 344–350, doi: 10.1145/3375627.3375850.

[35] van der Waa, J.—Robeer, M.—van Diggelen, J.—Brinkhuis, M.—
Neerincx, M.: Contrastive Explanations with Local Foil Trees. arXiv:1806.07470,
2018.

https://doi.org/10.1137/16M1097717
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1007/978-3-030-29908-8_4
https://doi.org/10.1007/978-3-030-01216-8_17
https://doi.org/10.1007/978-3-319-91473-2_9
https://doi.org/10.1109/globalsip45357.2019.8969491
https://doi.org/10.1109/globalsip45357.2019.8969491
https://doi.org/10.1145/3375627.3375850

Explanation of Siamese Neural Networks 1197

[36] Dhurandhar, A.—Chen, P. Y.—Luss, R.—Tu, C. C.—Ting, P.—
Shanmugam, K.—Das, P.: Explanations Based on the Missing: Towards
Contrastive Explanations with Pertinent Negatives. arXiv:1802.07623v2, 2018.

[37] Dhurandhar, A.—Pedapati, T.—Balakrishnan, A.—Chen, P. Y.—
Shanmugam, K.—Puri, R.: Model Agnostic Contrastive Explanations for Struc-
tured Data. arXiv:1906.00117, 2019.

[38] Bien, J.—Tibshirani, R.: Prototype Selection for Interpretable Classification. The
Annals of Applied Statistics, Vol. 5, 2011, No. 4, pp. 2403–2424, doi: 10.1214/11-
AOAS495.

[39] Kim, B.—Rudin, C.—Shah, J.: The Bayesian Case Model: A Generative Ap-
proach for Case-Based Reasoning and Prototype Classification. In: Ghahramani, Y.,
Welling, M., Cortes, C., Lawrence, N., Weinberger, K. Q. (Eds.): Advances in Neural
Information Processing Systems 27 (NIPS 2014), 2014, pp. 1952–1960.

[40] Ancona, M.—Ceolini, E.—Öztireli, C.—Gross, M.: Gradient-Based Attribu-
tion Methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, K. R.
(Eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
Springer, Cham, Lecture Notes in Computer Science, Vol. 11700, 2019, pp. 169–191,
doi: 10.1007/978-3-030-28954-6 9.

[41] Fong, R.—Vedaldi, A.: Explanations for Attributing Deep Neural Network Pre-
dictions. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, K. R. (Eds.):
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer,
Cham, Lecture Notes in Computer Science, Vol. 11700, 2019, pp. 149–167, doi:
10.1007/978-3-030-28954-6 8.

[42] Fong, R.—Vedaldi, A.: Interpretable Explanations of Black Boxes by Meaningful
Perturbation. Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 3449–3457, doi: 10.1109/ICCV.2017.371.

[43] Petsiuk, V.—Das, A.—Saenko, K.: RISE: Randomized Input Sampling for Ex-
planation of Black-Box Models. arXiv:1806.07421, 2018.

[44] Vu, M. N.—Nguyen, T. D.—Phan, N.—Gera, R.—Thai, M. T.: Evaluating
Explainers via Perturbation. arXiv:1906.02032v1, 2019.

[45] Zeiler, M. D.—Fergus, R.: Visualizing and Understanding Convolutional Net-
works. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.): Computer Vision –
ECCV 2014. Springer, Cham, Lecture Notes in Computer Science, Vol. 8689, 2014,
pp. 818–833, doi: 10.1007/978-3-319-10590-1 53.

[46] Du, M.—Liu, N.—Hu, X.: Techniques for Interpretable Machine Learning. Com-
munications of the ACM, Vol. 63, 2019, No. 1, pp. 68–77, doi: 10.1145/3359786.

[47] Adadi, A.—Berrada, M.: Peeking Inside the Black-Box: A Survey on Explain-
able Artificial Intelligence (XAI). IEEE Access, Vol. 6, 2018, pp. 52138–52160, doi:
10.1109/ACCESS.2018.2870052.

[48] Arrieta, A. B.—D́ıaz-Rodŕıguez, N.—Del Ser, J.—Bennetot, A.—
Tabik, S.—Barbado, A.—Garcia, S.—Gil-Lopez, S.—Molina, D.—
Benjamins, R.—Chatila, R.—Herrera, F.: Explainable Artificial Intelligence
(XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI.
Information Fusion, Vol. 58, 2020, pp. 82–115, doi: 10.1016/j.inffus.2019.12.012.

https://doi.org/10.1214/11-AOAS495
https://doi.org/10.1214/11-AOAS495
https://doi.org/10.1007/978-3-030-28954-6_9
https://doi.org/10.1007/978-3-030-28954-6_8
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1145/3359786
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1016/j.inffus.2019.12.012

1198 L. Utkin, M. Kovalev, E. Kasimov

[49] Gilpin, L. H.—Bau, D.—Yuan, B. Z.—Bajwa, A.—Specter, M.—Kagal, L.:
Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018
IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA),
2018, pp. 80–89, doi: 10.1109/DSAA.2018.00018.

[50] Mohseni, S.—Zarei, N.—Ragan, E. D.: A Survey of Evaluation Methods and
Measures for Interpretable Machine Learning. arXiv:1811.11839v1, 2018.

[51] Rudin, C.: Stop Explaining Black Box Machine Learning Models for High Stakes
Decisions and Use Interpretable Models Instead. Nature Machine Intelligence, Vol. 1,
2019, pp. 206–215, doi: 10.1038/s42256-019-0048-x.

[52] Nori, H.—Jenkins, S.—Koch, P.—Caruana, R.: InterpretML: A Unified
Framework for Machine Learning Interpretability. arXiv:1909.09223, 2019.

[53] Le Capitaine, H.: Constraint Selection in Metric Learning. arXiv:1612.04853v1,
2016.

[54] Xu, Z.—Weinberger, K. Q.—Chapelle, O.: Distance Metric Learning for Ker-
nel Machines. arXiv:1208.3422, 2012.

[55] Kedem, D.—Tyree, S.—Sha, F.—Lanckriet, G.—Weinberger, K.: Non-
Linear Metric Learning. In: Pereira, F., Burges, C. J. C., Bottou, L., Weinberger,
K. Q. (Eds.): Advances in Neural Information Processing Systems 25 (NIPS 2012),
2012, pp. 2582–2590.

[56] Norouzi, M.—Fleet, D. J.—Salakhutdinov, R. R.: Hamming Distance Met-
ric Learning. In: Pereira, F., Burges, C. J. C., Bottou, L., Weinberger, K. Q.
(Eds.): Advances in Neural Information Processing Systems 25 (NIPS 2012), 2012,
pp. 1070–1078.

[57] Hoffer, E.—Ailon, N.: Deep Metric Learning Using Triplet Network. In: Fera-
gen, A., Pelillo, M., Loog, M. (Eds.): Similarity-Based Pattern Recognition (SIM-
BAD 2015). Springer, Cham, Lecture Notes in Computer Science, Vol. 9370, 2015,
pp. 84–92, doi: 10.1007/978-3-319-24261-3 7.

[58] Huang, K.—Jin, R.—Xu, Z.—Liu, C. L.: Robust Metric Learning by Smooth
Optimization. Proceedings of the 26th Conference on Uncertainty in Artificial Intel-
ligence (UAI 2010), 2010, pp. 244–251.

[59] Li, C.—Georgiopoulos, M.—Anagnostopoulos, G. C.: Kernel-Based
Distance Metric Learning in the Output Space. The 2013 International
Joint Conference on Neural Networks (IJCNN), IEEE, 2013, pp. 1–8, doi:
10.1109/IJCNN.2013.6706862.

[60] Schultz, M.—Joachims, T.: Learning a Distance Metric from Relative Compar-
isons. In: Thrun, S., Saul, L., Schölkopf, B. (Eds.): Advances in Neural Information
Processing Systems 16 (NIPS 2003), 2003, pp. 41–48.

[61] Weinberger, K. Q.—Saul, L. K.: Distance Metric Learning for Large Margin
Nearest Neighbor Classification. Journal of Machine Learning Research, Vol. 10, 2009,
pp. 207–244.

[62] Xing, E.—Jordan, M.—Russell, S.—Ng, A.: Distance Metric Learning with
Application to Clustering with Side-Information. In: Becker, S., Thrun, S., Ober-
mayer, K. (Eds.): Advances in Neural Information Processing Systems 15 (NIPS
2002), 2002, pp. 505–512.

https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1007/978-3-319-24261-3_7
https://doi.org/10.1109/IJCNN.2013.6706862

Explanation of Siamese Neural Networks 1199

[63] Yin, X.—Chen, Q.: Deep Metric Learning Autoencoder for Nonlinear Tem-
poral Alignment of Human Motion. 2016 IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 2160–2166, doi:
10.1109/ICRA.2016.7487366.

[64] Roy, S.—Harandi, M.—Nock, R.—Hartley, R.: Siamese Networks: The
Tale of Two Manifolds. Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Vol. 2, 2019, pp. 3046–3055, doi:
10.1109/ICCV.2019.00314.

[65] He, K.—Zhang, X.—Ren, S.—Sun, J.: Deep Residual Learning for Image Recog-
nition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[66] Hu, J.—Lu, J.—Tan, Y. P.: Discriminative Deep Metric Learning for Face Verifica-
tion in the Wild. 2014 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 1875–1882, doi: 10.1109/CVPR.2014.242.

[67] Sun, Y.—Chen, Y.—Wang, X.—Tang, X.: Deep Learning Face Representation
by Joint Identification-Verification. In: Ghahramani, Y., Welling, M., Cortes, C.,
Lawrence, N., Weinberger, K. Q. (Eds.): Advances in Neural Information Processing
Systems 27 (NIPS 2014), 2014, pp. 1988–1996.

[68] Yi, D.—Lei, Z.—Liao, S.—Li, S. Z.: Deep Metric Learning for Person Re-
Identification. Proceedings of the 2014 22nd International Conference on Pattern
Recognition (ICPR), 2014, pp. 34–39, doi: 10.1109/ICPR.2014.16.

[69] Zhang, C.—Liu, W.—Ma, H.—Fu, H.: Siamese Neural Network Based Gait
Recognition for Human Identification. 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 2832–2836, doi:
10.1109/ICASSP.2016.7472194.

[70] Chen, K.—Salman, A.: Extracting Speaker-Specific Information with a Regular-
ized Siamese Deep Network. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F.,
Weinberger, K. Q. (Eds.): Advances in Neural Information Processing Systems 24
(NIPS 2011), 2011, pp. 298–306.

[71] Jiang, C.—Xiao, J.—Xie, Y.—Tillo, T.—Huang, K.: Siamese Network En-
semble for Visual Tracking. Neurocomputing, Vol. 275, 2018, pp. 2892–2903, doi:
10.1016/j.neucom.2017.10.043.

[72] Zhan, H.—Ni, W.—Yan, W.—Wu, J.—Bian, H.—Xiang, D.: Visual Track-
ing Using Siamese Convolutional Neural Network with Region Proposal and Do-
main Specific Updating. Neurocomputing, Vol. 275, 2018, pp. 2645–2655, doi:
10.1016/j.neucom.2017.11.050.

[73] Masana, M.—Ruiz, I.—Serrat, J.—van de Weijer, J.—Lopez, A. M.: Met-
ric Learning for Novelty and Anomaly Detection. arXiv:1808.05492, 2018.

[74] Utkin, L. V.—Zaborovsky, V. S.—Lukashin, A. A.—Popov, S. G.—
Podolskaja, A. V.: A Siamese Autoencoder Preserving Distances for Anomaly
Detection in Multi-Robot Systems. 2017 International Conference on Control, Arti-
ficial Intelligence, Robotics and Optimization (ICCAIRO), Prague, Czech Republic,
IEEE, 2017, pp. 39–44, doi: 10.1109/ICCAIRO.2017.17.

https://doi.org/10.1109/ICRA.2016.7487366
https://doi.org/10.1109/ICCV.2019.00314
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2014.242
https://doi.org/10.1109/ICPR.2014.16
https://doi.org/10.1109/ICASSP.2016.7472194
https://doi.org/10.1016/j.neucom.2017.10.043
https://doi.org/10.1016/j.neucom.2017.11.050
https://doi.org/10.1109/ICCAIRO.2017.17

1200 L. Utkin, M. Kovalev, E. Kasimov

[75] Berlemont, S.—Lefebvre, G.—Duffner, S.—Garcia, C.: Class-Balanced
Siamese Neural Networks. Neurocomputing, Vol. 273, 2018, pp. 47–56, doi:
10.1016/j.neucom.2017.07.060.

[76] Dhami, D. S.—Kunapuli, G.—Page, D.—Natarajan, S.: Predicting Drug-
Drug Interactions from Molecular Structure Images. AAAI Fall Symposium – AI
for Social Good, AAAI, 2019, pp. 1–6.

[77] Shaham, U.—Lederman, R. R.: Learning by Coincidence: Siamese Networks and
Common Variable Learning. Pattern Recognition, Vol. 74, 2018, pp. 52–63, doi:
10.1016/j.patcog.2017.09.015.

[78] Wang, J.—Fang, Z.—Lang, N.—Yuan, H.—Su, M. Y.—Baldi, P.: A Multi-
Resolution Approach for Spinal Metastasis Detection Using Deep Siamese Neural
Networks. Computers in Biology and Medicine, Vol. 84, 2017, pp. 137–146, doi:
10.1016/j.compbiomed.2017.03.024.

[79] Fei-Fei, L.—Fergus, R.—Perona, P.: One-Shot Learning of Object Categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, 2006, No. 4,
pp. 594–611, doi: 10.1109/TPAMI.2006.79.

[80] Koch, G.—Zemel, R.—Salakhutdinov, R.: Siamese Neural Networks for One-
Shot Image Recognition. Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, JMLR: W & CP, Vol. 37, 2015, pp. 1–8.

[81] Snell, J.—Swersky, K.—Zemel, R.: Prototypical Networks for Few-Shot Learn-
ing. In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., Garnett, R. (Eds.): Advances in Neural Information Processing Sys-
tems 30 (NIPS 2017), 2017, pp. 4077–4087.

[82] Triantafillou, E.—Zemel, R.—Urtasun, R.: Few-Shot Learning Through
an Information Retrieval Lens. In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., Garnett, R. (Eds.): Advances in Neural Information
Processing Systems 30 (NIPS 2017), 2017, pp. 2255–2265.

[83] Wang, Y.—Yao, Q.: Few-Shot Learning: A Survey. arXiv:1904.05046v1, 2019.

[84] Wang, Y.—Yao, Q.—Kwok, J.—Ni, L. M.: Generalizing from a Few Examples:
A Survey on Few-Shot Learning. arXiv:1904.05046v2, 2019.

[85] Bertinetto, L.—Valmadre, J.—Henriques, J. F.—Vedaldi, A.—
Torr, P. H. S.: Fully-Convolutional Siamese Networks for Object Tracking.
In: Hua, G., Jégou, H. (Eds.): Computer Vision – ECCV 2016 Workshops. Springer,
Cham, Lecture Notes in Computer Science, Vol. 9914, 2016, pp. 850–865, doi:
10.1007/978-3-319-48881-3 56.

[86] Leal-Taixé, L.—Canton-Ferrer, C.—Schindler, K.: Learning by Track-
ing: Siamese CNN for Robust Target Association. 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 418–425, doi:
10.1109/cvprw.2016.59.

[87] Barthe, F.—Guédon, O.—Mendelson, S.—Naor, A.: A Probabilistic Ap-
proach to the Geometry of the `np -Ball. The Annals of Probability, Vol. 33, 2005,
No. 2, pp. 480–513, doi: 10.1214/009117904000000874.

https://doi.org/10.1016/j.neucom.2017.07.060
https://doi.org/10.1016/j.patcog.2017.09.015
https://doi.org/10.1016/j.compbiomed.2017.03.024
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1109/cvprw.2016.59
https://doi.org/10.1214/009117904000000874

Explanation of Siamese Neural Networks 1201

[88] Harman, R.—Lacko, V.: On Decompositional Algorithms for Uniform Sam-
pling from n-Spheres and n-Balls. Journal of Multivariate Analysis, Vol. 101, 2010,
pp. 2297–2304, doi: 10.1016/j.jmva.2010.06.002.

[89] LeCun, Y.—Bottou, L.—Bengio, Y.—Haffner, P.: Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, Vol. 86, 1998, No. 11,
pp. 2278–2324, doi: 10.1109/5.726791.

https://doi.org/10.1016/j.jmva.2010.06.002
https://doi.org/10.1109/5.726791

1202 L. Utkin, M. Kovalev, E. Kasimov

Lev Utkin is Head of the Institute of Computer Science and
Technology in Peter the Great Saint Petersburg Polytechnic Uni-
versity, Saint Petersburg, Russia. He is Professor and the Head
of the Research Laboratory of Neural Network Technologies and
Artificial Intelligence in the same university. In 1986 he gradu-
ated from the Saint Petersburg State Electrotechnical University
(former Leningrad Electrotechnical Institute). He holds Ph.D. in
information processing and control systems (1989) from the same
university and D.Sc. in mathematical modelling (2001) from the
Saint Petersburg State Institute of Technology, Russia. He was

awarded an Alexander von Humboldt Foundation Fellowship (2001–2003). He is a mem-
ber of the Society for Imprecise Probability Theory and Applications (SIPTA) and the
International Society on Multiple Criteria Decision Making (ISMCDM). He is author of
more than 300 scientific publications, including AI journals: Neurocomputing, Neural
Networks, Knowledge-Based Systems, Applied Soft Computing, AI in Medicine, etc. His
research interests are focused on machine learning, imprecise probability theory, decision
making.

Maxim Kovalev is Ph.D. student at the Institute of Applied
Mathematics and Mechanics in Peter the Great Saint Peters-
burg Polytechnic University, Saint Petersburg, Russia. He is
Research Assistant at the Neural Network Technologies and Ar-
tificial Intelligence Laboratory in the same university. In 2019,
he graduated from Peter the Great Saint Petersburg Polytech-
nic University, holding M.Sc. in bioinformatics. His research
interests are focused on machine learning, explainable artificial
intelligence, computational biology.

Ernest Kasimov is Research Assistant at the Neural Network
Technologies and Artificial Intelligence Laboratory in Peter the
Great Saint Petersburg Polytechnic University. In 2020, he grad-
uated from the same university, holding M.Sc. in mathematics
and computer science. His research interests are focused on ma-
chine learning.

Computing and Informatics, Vol. 39, 2020, 1203–1228, doi: 10.31577/cai 2020 6 1203

ERROR ANALYSIS OF THE CHOLESKY QR-BASED
BLOCK ORTHOGONALIZATION PROCESS
FOR THE ONE-SIDED BLOCK JACOBI SVD
ALGORITHM

Shuhei Kudo

RIKEN Center for Computational Science, 7-1-26
Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
e-mail: shuhei.kudo@riken.jp

Yusaku Yamamoto

Department of Communication Engineering and Informatics
The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu
Tokyo, 182-8585, Japan
e-mail: yusaku.yamamoto@uec.ac.jp

Toshiyuki Imamura

RIKEN Center for Computational Science, 7-1-26
Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
e-mail: imamura.toshiyuki@riken.jp

Abstract. The one-sided block Jacobi method (OSBJ) has attracted attention as
a fast and accurate algorithm for the singular value decomposition (SVD). The
computational kernel of OSBJ is orthogonalization of a column block pair, which
amounts to computing the SVD of this block pair. Hari proposes three methods
for this partial SVD, and we found through numerical experiments that the variant
named “V2”, which is based on the Cholesky QR method, is the fastest variant and
achieves satisfactory accuracy. While it is a good news from a practical viewpoint,
it seems strange considering the well-known instability of the Cholesky QR method.
In this paper, we perform a detailed error analysis of the V2 variant and explain

1204 S. Kudo, Y. Yamamoto, T. Imamura

why and when it can be used to compute the partial SVD accurately. Thus, our
results provide a theoretical support for using the V2 variant safely in the OSBJ
method.

Keywords: Singular value decomposition, one-sided Jacobi method, error analysis,
parallel computing, orthogonalization

Mathematics Subject Classification 2010: 65F15, 65F25, 65G50

1 INTRODUCTION

Let A ∈ Rm×n, where m ≥ n, be a dense rectangular matrix and consider computing
its singular value decomposition (SVD) A = UΣV >, where U ∈ Rm×n is a matrix
with orthonormal columns, Σ ∈ Rn×n is a diagonal matrix and V ∈ Rn×n is an
orthogonal matrix. This type of SVD is referred to as the thin SVD, in contrast to
the full SVD, where U ∈ Rm×n and Σ ∈ Rm×n. There are two major approaches for
this problem [1]. The first one consists of bi-diagonalization based methods like the
QR [2], Divide-and-Conquer [3] and MRRR [4, 5] methods. The second one is the
one-sided Jacobi method [6], which is an iterative method that starts from A(0) = A.
At the rth step, the method chooses a pair of columns of A(r) and orthogonalizes
them mutually by a Givens rotation [7] from the right, thereby producing A(r+1). If
the column pair at each step is chosen judiciously, A(r) converges to a matrix A(∞)

with orthogonal columns. Then, by writing A(∞) = U (∞)Σ(∞), where U (∞) ∈ Rm×n

is a matrix with orthonormal columns and Σ(∞) ∈ Rn×n is a diagonal matrix, and de-
noting the accumulated Givens matrices by V (∞), we have A = U (∞)Σ(∞)(V (∞))>,
the thin SVD of A. Whereas the bi-diagonalization based approach is generally
more efficient in terms of computational work1, the one-sided Jacobi method has
the advantage that small singular values can be computed to high relative accuracy
under certain conditions [8]. Such an ability is important in applications like vi-
bration analysis by finite element methods and quantum mechanical calculations,
where the smallest singular values are of primary physical interest [9]. Moreover,
thanks to the introduction of QR preprocessing [6, 10], the convergence speed of
the method has been greatly improved. The numerical properties of the one-sided
Jacobi method are well studied and a reliable and accurate SVD solver based on it
has been implemented in LAPACK [10].

To further enhance the performance of the one-sided Jacobi method, two tech-
niques, parallelization and blocking, can be employed. At each step of the algorithm,
it is possible to orthogonalize multiple column pairs simultaneously as long as they

1 When m = n, the bi-diagonalization based methods require at least203 n
3 floating-

point operations (FLOPs), while the OSBJ method requires 6n3 × nsweep + 9n3 FLOPs,
where nsweep is the number of sweeps (see 2.1.2), which is typically between 1 and 10.

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1205

are disjoint, and this brings about inherent parallelism [11]. Blocking refers to or-
thogonalizing a pair of column blocks instead of a column pair. This requires partial
SVD, as we will see later, but greatly enhances the computational intensity by re-
placing level-1 BLAS like operations such as the Givens rotation by level-3 BLAS
operations [12]. The one-sided block Jacobi (OSBJ) method, which adopts both of
these improvements, is highly competitive in terms of computational performance
and sometimes outperforms the bi-diagonalization based ScaLAPACK SVD routine
on modern parallel computers [13]. However, in contrast to the case of the point
Jacobi method, still little is known about its convergence and numerical proper-
ties.

In this paper, we focus on the mutual orthogonalization of a pair of row blocks,
which is a kernel operation in the OSBJ method, and perform its roundoff error ana-
lysis. The numerical errors arising in this operation influence both the convergence
speed of the algorithm and the accuracy of the final results, so its analysis should
be of great importance. However, to the best of our knowledge, no such analysis
has been provided so far. There are several algorithms proposed for this mutual
orthogonalization. Among them, the LHC method [14] is based on the Householder
QR decomposition. On the other hand, Hari et al. propose three methods named
V1, V2 and V3 [15]. In this paper, we focus on Hari’s V2 method, which is based on
the Cholesky QR algorithm. This method is superior to the LHC and V1 method in
terms of parallel granularity or computational work and has better (experimental)
numerical stability than the V3 method. We perform a detailed roundoff error
analysis of the V2 method and derive a bound on the orthogonality of the column
block pair updated by the V2 method, as well as a bound on the backward error
of orthogonalization. If the QR preprocessing is applied to the OSBJ method, it is
observed in many cases that the column-scaled and row-scaled condition numbers of
A(k) approach to 1 quickly. Under these conditions, we show that both of the above
bounds become O(u), where u is the unit roundoff. Thus, our analysis will provide
a necessary theoretical background for using Hari’s V2 method safely in the OSBJ
method for the SVD.

The rest of this paper is organized as follows. Section 2 summarizes the overall
procedure of the one-sided block Jacobi method, as well as the details of orthogo-
nalization methods of the column block pair. In Section 3, we present the roundoff
error analysis of the V2 method for orthogonalization. Numerical results that sup-
port our theoretical results are provided in Section 4. Finally, Section 5 concludes
the paper.

2 THE ONE-SIDED BLOCK JACOBI METHOD

2.1 The Overall Procedure of OSBJ

The overall procedure of the OSBJ method consists of three parts, namely, prepro-
cessing, the SVD of the preprocessed matrix, and the postprocessing. For the first
and the third parts, we use the QR pre/postprocessing proposed by Drmač and

1206 S. Kudo, Y. Yamamoto, T. Imamura

adopted in the LAPACK implementation of the one-sided point Jacobi method [10].
This will be explained in 2.1.1 below. The pre/postprocessing switches among sev-
eral variants depending on the properties of the input matrix A, but here we explain
only the most basic version. The SVD of the preprocessed matrix, which is the cen-
tral part, will be described in 2.1.2.

In this section, we adopt the MATLAB notation for submatrices. Thus, for
example, the jth column vector of a matrix A is denoted by A(:, j). The 2-norm
condition number of A is denoted by κ2(A).

2.1.1 QR Pre/Postprocessing

The goal of QR pre/postprocessing is to reduce the condition number of the input
matrix A, thereby accelerating the convergence of the OSBJ method. In the pre-
processing, we first perform two QR decompositions (QRD) with column-pivoting
on the input matrix A:

AP1 = Q1R1, (1)

R>1 P2 = Q2R2, (2)

where P1 and P2 are permutation matrices. Then, we let B = R>2 ∈ Rn×n. This is
the preprocessed matrix. We compute its SVD, B = ŪΣV̄ > by OSBJ. Finally, we
recover the SVD of A by the following postprocessing:

U = Q1P2Ū , (3)

V = P1Q2(R
−>
2 ŪΣ). (4)

Figure 1 shows the pseudocode of the OSBJ method with QR pre/postprocessing.
Here, U and V are the matrices of the left and right singular vectors, respectively,
and S is a diagonal matrix whose diagonal elements are the singular values. “osbj”
is the OSBJ method for the preprocessed matrix B to be explained in 2.1.2.

1: procedure posbj(A)
2: [Q1, R1, P1] = qr(A)
3: [Q2, R2, P2] = qr(R1′)
4: B = R2′

5: [Ub, S, V b] = osbj(B)
6: U = Q1 ∗ P2 ∗ Ub
7: V = P1 ∗Q2n(R2′) ∗ Ub ∗ S
8: return U, S, V

Figure 1. Pseudocode of the OSBJ method with QR pre/postprocessing. We are using
MATLAB-like notations. Thus, “ ’ ” denotes the transposition, “*” denotes the matrix
product and “\” denotes the solution of a linear system. “qr” is the MATLAB function to
compute the QR decomposition with column-pivoting. “osbj” is the OSBJ code defined
in Figure 2. Note that “Ub”, “S” and “V b” are used to denote Ū , Σ and V̄ .

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1207

Thanks to the column-pivoting in the first QRD, the row-scaled condition num-
ber of R1 is bounded by a constant independent of κ2(A), typically of O(n) [10,
Remark 3.2]. Here, the row-scaled condition number κR(A) and the column-scaled
condition number κC(A) of A are defined as

κR(A) := κ2(D
−1
r A) (5)

where Dr = diag(||A(1, :)||, ‖A(2, :)||, . . . , ‖A(n, :)||),

κC(A) := κ2(AD
−1
c) (6)

where Dc = diag(||A(:, 1)||, ‖A(:, 2)||, . . . , ‖A(:, n)||).
The same holds true also for the second QRD, and thus both κR(B) and κC(B)

become small. This explains why the QR preprocessing is so successful in reducing
the number of sweeps of the one-sided Jacobi method. LAPACK implements some
more tricks to improve performance or accuracy for special cases. For a well con-
ditioned matrix, it uses the pivot-less QRD instead of (2) for better performance,
and for a badly conditioned matrix, it may add one more QRD. The details are
described in [10, Section 5]. We used LAPACK’s QR preprocessing code in our
numerical experiments.

2.1.2 SVD of the Preprocessed Matrix

Now we will explain the second (central) part, the computation of SVD of B by
OSBJ. Let B be partitioned into column blocks as B = [B1B2 . . . Bq] ∈ Rn×n, where
Bi ∈ Rn×ni and n1 + n2 + · · · + nq = n. The OSBJ method starts from B(0) = B
and orthogonalizes a pair of column blocks at each step by post-multiplication by
an orthogonal matrix. Let the indices of the column blocks chosen at step r be
(Ir, Jr). Then, the orthogonalization is performed in the following manner.

1. The matrix X = [B
(r)
Ir
B

(r)
Jr

] is formed.

2. The thin SVD of X is computed as X = UXΣXV
>
X .

3. B
(r)
Ir

and B
(r)
Jr

is updated as [B
(r+1)
Ir

B
(r+1)
Jr

] = XVX = UXΣX .

4. B
(r)
Ir

and B
(r)
Jr

are replaced by B
(r+1)
Ir

and B
(r+1)
Jr

.

We call step 2. the “partial SVD.” By post-multiplying X by VX obtained in the
partial SVD, its column vectors are orthogonalized, since XVX = (UXΣXV

>
X)VX =

UXΣX and UXΣX is a column-scaled version of UX , which has orthonormal columns.
Steps 2. and 3. are the most time-consuming parts in the OSBJ algorithm and there
are several approaches for performing them; they will be explained in Subsection 2.2
in detail. By choosing the sequence {(Ir, Jr)}r=0,1,... properly (see the paragraph
below) and repeating this orthogonalization process for r = 0, 1, . . ., B(r) converges
to a matrix with orthogonal columns [12].

The overall procedure of the OSBJ method for the preprocessed matrix is shown
in Figure 2. Here, lines 4 through 6 correspond to the orthogonalization of the

1208 S. Kudo, Y. Yamamoto, T. Imamura

column block pair. After all the columns have been orthogonalized to a specified
level, the singular triplet U, S and V are computed in lines 8 through 12. See [13]
for details.

1: procedure osbj(B)
2: r = 0; I = 1; J = 2; B0 = B; S = O
3: while ortho(B) > tol do
4: [I, J] = next pivot(I, J, r)
5: X = [B[I], B[J]]
6: [B[I], B[J]] = V 2(X)
7: end while
8: for j = 1, n
9: S(j, j) = norm(B(∗, j))

10: U(∗, j) = B(∗, j)/S(j, j)
11: end for
12: V = B\B0
13: return U, S, V

Figure 2. Pseudocode of the OSBJ method for the preprocessed matrix. Here,
“next pivot” is a function to generate the indices of the column block pair to be orthog-
onalized at the rth step. “ortho” is a function to compute the measure of orthogonality

defined by Equation (8). “B[I]” is the Ith block column of B (that is, B
(r)
I). [A,B] de-

notes the concatenation of two matrices A and B. In the pseudocode, the procedure V 2
defined in Figure 3 is used for orthogonalization, but procedures V 1 and V 3 can be used
as well.

Now, we will give some details on the choice of the sequence {(Ir, Jr)}r=0,1,... and
the stopping criterion.

Ordering of pairs. Many strategies have been proposed for choosing the sequence
{(Ir, Jr)}r=0,1,.... Among them, we use the row-cyclic ordering, which belongs to
the simplest class called cyclic ordering. In the cyclic ordering, we first choose

a finite sequence {(Ir, Jr)}q(q−1)/2r=0 in such a way that every possible pair (I, J),
where 1 ≤ I < J ≤ q, appears exactly once in the sequence. This finite sequence
is called sweep. Then, the iteration using this sweep is repeated until convergence.
The pair in the row-cyclic ordering is defined as follows:

(Ir, Jr) =

(1, 2), r = 0,

(Ir−1,Jr−1 + 1), r > 0, Jr−1 < q,

(Ir−1 + 1, Ir−1 + 2), otherwise.

(7)

Termination. As shown in the pseudocode in Figure 2, the iteration of the OSBJ
method is terminated when the normalized column vectors of B(r) are orthogonal to
working accuracy. For the one-sided point Jacobi method, Drmač recommends to
use the following stopping criterion to achieve high relative accuracy of the computed

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1209

singular values.

ortho(B) ≡ max
1≤i<j≤n

|b(r)
i · b

(r)
j |

‖b(r)
i ‖2‖b

(r)
i ‖2

≤ tol. (8)

Here, b
(r)
i is the ith column of B(r) and tol =

√
nu [10, Remark 2.2]. We also adopt

this criterion for our OSBJ. The dot products b
(r)
i · b

(r)
j for 1 ≤ i < j ≤ n are

computed at once using a level-3 BLAS routine xSYRK for high performance.

2.1.3 Numerical Properties of Orthogonalization
of the Column Block Pair

In concluding this subsection, we make two comments on the numerical properties
of orthogonalization of the column block pair (steps 2. and 3. of 2.1.2), which will
be useful in the error analysis in Section 3. First, X is a tall-and-skinny matrix
whose aspect ratio is q : 2. Moreover, its column-scaled condition number κC(X) is
usually small, because κC(X) ≤ κC(B(r)) and it is usually observed that κC(B(r))
does not grow much during the computation. In fact, in our numerical experiments,
we observe that κC(B(r)) converges to one. This observation is important in the error
analysis to be given in the next section. Second, while the post-multiplication by the
orthogonal matrix VX in step 3. seems harmless, it can cause potential difficulties in
finite precision arithmetic, as the following analysis by Drmač suggests [12]. Let V̂X
be the computed right singular vector matrix of X and assume that δVX = V̂X−VX
is small. Furthermore, Let X ′ be the matrix obtained by normalizing the columns
of X and write X = X ′D, where D is diagonal. Then, we have

XV̂X = XVX +XδVX = (U +X ′δF)ΣX , (9)

δF = DδVXΣ−1X . (10)

Since δF can be large even if δVX is small, this means that the normalized columns
of the updated column block pair can be far from orthogonal. This will retard the
convergence. The above observation suggests that a more intricate error analysis of
steps 2. and 3. is necessary and it will be the main subject of this paper.

2.2 Methods for Orthogonalization of the Column Block Pair

As stated in 2.1.2, there are several methods for the partial SVD, or orthogonaliza-

tion of the column block pair X = [B
(r)
Ir
B

(r)
Jr

] ∈ Rn×l, where l = nIr + nJr . Here, we
review them briefly, discuss their advantages and disadvantages, and explain why
we focus on Hari’s V2 method in this paper.

The simplest approach is to apply the one-sided point Jacobi method directly
to X, but it is inefficient because the whole X matrix must be updated by the Givens
rotation, which is a level-1 BLAS-like slow operation. To avoid this, two approaches
have been used. The first is to form the Gram matrix C = X>X and compute its

1210 S. Kudo, Y. Yamamoto, T. Imamura

eigendecomposition C = VXDV
>
X [22]. The second approach, known as the LHC

method [14], is to compute the (thin) QR decomposition X = QR, where Q ∈ Rn×l

and R ∈ Rl×l, and compute its SVD, R = URΣXV
>
X . The one-sided (point) Jacobi

method can be used for this SVD. In either way, the orthogonalized column block
pair is computed by Y = XVX or Y = QURΣX .

In the LAPACK implementation of the LHC method, the QR decomposition is
computed by the Householder QR method and then the matrix QUR is formed as
the column-normalized version of Y = XVX . This guarantees that the columns of
QUR are highly orthogonal. However, its computational cost is roughly twice that
of the Cholesky QR-based methods to be described below. Moreover, since QUR is
not directly computed from X and VX but from Q and UR, it is not straightforward
to show that the backward error ‖QURΣX −XVX‖2 is small.

As an alternative, the Cholesky QR method can be used to compute the QR
decomposition of X. This method forms the Gram matrix C = X>X, computes
its Cholesky decomposition C = R>R and finally obtain the orthogonal factor by
Q = XR−1. While the method is known to be unstable when the condition num-
ber of X is large, it requires only half as much computational work as the House-
holder QR method. Furthermore, it is suited to high performance computing since
most of its computations can be done with the level-3 BLAS such as xSYRK and
xTRSM.

Hari et al. propose three algorithms for using the Cholesky method in the partial
SVD, which they call V1, V2 and V3 [15]. They all use the one-sided point Jacobi
method to compute the SVD of R, R = URΣXV

>
X , but differ in the way of computing

the orthogonal matrix VX . V1 computes VX as a product of the Givens rotations
used in the Jacobi method. In V2, the Givens rotations are not accumulated and
VX is computed as VX = R−1URΣX . In V3, VX is computed as VX = R>URΣX .
These three algorithms are shown in Figure 3. From the viewpoint of high perfor-
mance computing, V2 and V3, which do not require the accumulation of the Givens
matrices, are desirable. However, Hari et al. report that OSBJ using V3 does not
converge in their numerical experiments. They recommend V1 for accuracy, but also
comment that V2 can be faster than V1. Hence it would be worthwhile to analyze
the numerical properties of V2. If we can show by the roundoff error analysis that
V2 has sufficient accuracy under certain conditions, it can be the method of choice,
since it is both fast and accurate. This error analysis is the topic of the next section.
We will also compare the V1 and V2 methods experimentally in Section 4.

3 ERROR ANALYSIS

In this section, we perform roundoff error analysis of the Cholesky QR-based partial
SVD, focusing on Hari’s V2 variant. Our objective is to show that the V2 variant
has sufficient accuracy under certain conditions, thereby establishing the competi-
tiveness of the method not only in terms of speed but also in terms of accuracy. To
this end, we need to evaluate two kinds of errors. The first error is the orthogonality

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1211

1: procedure V1(X)
2: C = X ′ ∗X
3: R = chol(C)
4: [Ux, Sx, V x] = jsvd(R)
5: return X ∗ V x

1: procedure V2(X)
2: C = X ′ ∗X
3: R = chol(C)
4: [Ux, Sx] = jsvd(R)
5: V x = R\Ux ∗ Sx
6: return X ∗ V x

1: procedure V3(X)
2: C = X ′ ∗X
3: R = chol(C)
4: [Ux, Sx] = jsvd(R)
5: V x = R′∗Ux∗(Sx.ˆ−1)
6: return X ∗ V x

Figure 3. Pseudocodes of Hari’s V1, V2 and V3 methods. We are using MATLAB-like
notations as in Figure 1. “.ˆ” denotes the element-wise power. “jsvd” is the same
as MATLAB’s “svd”, which computes the thin SVD of the input matrix, except that
it uses the Jacobi SVD algorithm. “jsvd” skips the computation of “Vx” if it is not
needed.

error. Let Ŷ ∈ Rn×l be the updated column block pair computed in finite precision
arithmetic and assume that Ŷ can be written as

Ŷ = (Ū + δU)Σ̂ (11)

where Ū ∈ Rn×l is an exactly orthogonal matrix and Σ̂ is a diagonal matrix. Then
we define δU as the orthogonalization error in the partial SVD. The second error is
the backward error. Assume that the same Ŷ can be written as

Ŷ = (X + δX)V̄X (12)

where V̄X is an exactly orthogonal matrix. This equation shows that Ŷ is an exact
(one-sided) orthogonal transformation of a perturbed matrix X + δX. Then we
define δX the backward error in the partial SVD. The orthogonalization error is
related to the stagnation of the convergence of OSBJ, because large δU means that
the columns of B(r) have not been orthogonalized properly after the partial SVD.
On the other hand, the backward error is related to the accuracy of the entire SVD,
because large δX means that OSBJ is computing the SVD of a largely perturbed
input matrix. The plan of this section is as follows. In Subsection 3.1, we derive
an upper bound on the orthogonality error. The bound on the backward error will
be provided in Subsection 3.2. Finally, we discuss the criterion for using the V2
method safely in Subsection 3.3.

Throughout this section, we use the following notations [16]. The symbol fl(·)
is used to denote the result of floating-point computation. For any matrix A, we
denote its computed counterpart by Â. The column scaled version of A is denoted
by A′. We denote the (i, j) element of A by Ai,j and the matrix whose (i, j) element

1212 S. Kudo, Y. Yamamoto, T. Imamura

is |Ai,j| by |A|. The jth column vector of A is denoted by aj. Inequalities like A ≤ B
mean element-wise inequality. The unit roundoff is denoted by u and γm ≡ mu

1−mu
.

In the following, we freely use the inequality like γm < 1.01mu = O(mu). We also
assume that n ≥ l = nIr + nJr and n2u� 1.

3.1 Orthogonality Error of V2

The V2 variant computes the partial SVD in the following four steps.

• Compute the QR decomposition X = QR by the Cholesky QR method.

• Apply the one-sided point Jacobi method to R and obtain URΣX .

• Compute VX by VX = R−1URΣX .

• Update the column block pair by matrix multiplication Y = XVX .

In the following, we will analyze the errors in these steps in this order.

3.1.1 Errors in the Cholesky QR Method

Let dj = ‖xj‖2 for 1 ≤ j ≤ l and D ≡ diag(d1, d2, . . . , dl). Then, X can be written
as X = X ′D, where X ′ is the column scaled version of X. In the Cholesky QR
method, we first form the Gram matrix C = X>X and then compute its Cholesky
decomposition, C = R>R. By denoting the computed version of C and R by Ĉ and
R̂, respectively, we have the following lemma.

Lemma 1. Let the forward error in the computation of Ĉ be E1 and the backward
error in the computation of R̂ from Ĉ be E2. That is,

Ĉ = C + E1 = X>X + E1, (13)

R̂>R̂ = Ĉ + E2 = C + E1 + E2. (14)

Then, the elements of |E1| and |E2| can be bounded as follows.

|E1|i,j ≤ γndidj = O(nu)didj, (15)

|E2|i,j ≤ γl+1

√
Ĉi,iĈj,j ≤ γl+1(1 + γn)didj = O(lu)didj. (16)

Proof. The normwise error bounds on E1 and E2 are given in [17]. Here, however,
we need component-wise error bounds. From the forward error bound of matrix
multiplication, we have |E1| ≤ γn|X|>|X|. Thus,

|E1|i,j ≤ γn

n∑
k=1

|X|k,i|X|k,j ≤ γn ‖|xi|‖2 ‖|xj|‖2 = γndidj. (17)

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1213

The first inequality in (16) is due to Demmel [18, Lemma 2.1]. The second inequality
can be proved by noting Ĉi,i ≤ (1 + γn)d2i from (15) and using

γl+1(1 + γn) = O(lu)(1 +O(nu)) = O(lu). (18)

�

By letting R̂′ = R̂D−1, we have R̂′>R̂′ = X ′>X ′ + E3, where

E3 = D−1(E1 + E2)D
−1, (19)

|E3| ≤ O(nu)� 1. (20)

Noting that E3 is an l × l matrix, we also have

‖E3‖2 ≤ ‖ |E3| ‖F ≤ O(nlu)� 1. (21)

In the following, we make the following important assumption on κ2(X
′):

O(nlu)κ22(X
′)� 1. (22)

We can justify this assumption because in the OSBJ method with QR preprocessing,
the column-scaled condition number of B(r), and therefore of X, is usually small and
approaches to 1 as the iteration proceeds. See Subsection 3.3 for the treatment of
the case when (22) is not satisfied.

Let us denote the smallest and the largest eigenvalues of X ′>X ′ by λmin(X ′>X ′)
and λmax(X

′>X ′), respectively. Since all the column vectors of X ′ has the unit
length, λmax(X

′>X ′) ≥ 1. Thus, from (22), we have

λmin(X ′>X ′)� λmax(X
′>X ′)O(nlu) ≥ O(nlu). (23)

On the other hand, since R̂′>R̂′ = X ′>X ′ + E3, we have from (21) and Weyl’s
theorem,

λmin(R̂′>R̂′) ≥ λmin(X ′>X ′)− ‖E3‖2 ≥ λmin(X ′>X ′)−O(nlu) ≥ O(nlu). (24)

This can be rewritten as ∥∥∥R̂′−1∥∥∥2
2
O(nlu)� 1. (25)

Now, we evaluate how close the computed upper triangular factor R̂ is to the
true upper triangular factor R. In particular, we express R̂−1 in terms of R−1 for
later use. The following lemma holds.

Lemma 2. Under the assumption (22), there exist an orthogonal matrix W1 and
an error matrix E4 that satisfy

R̂−1 = R−1(W1 + E4), (26)

‖E4‖2 ≤
∥∥∥R̂′−1∥∥∥2

2
O(nlu). (27)

1214 S. Kudo, Y. Yamamoto, T. Imamura

Proof. First, consider the following product:(
RR̂−1

)> (
RR̂−1

)
= R̂−>CR̂−1

= R̂−>(R̂>R̂−DE3D)R̂−1

= I − R̂′−>E3R̂
′−1 ≡ I + E5. (28)

Since E5 is a symmetric matrix, we consider its EVD, E5 = W2Γ1W
>
2 . Then,

‖E5‖2 = ‖Γ1‖2 ≤
∥∥∥R̂′−1∥∥∥2

2
‖E3‖2 ≤

∥∥∥R̂′−1∥∥∥2
2
O(nlu)� 1 (29)

where we used (21) and (25) in the second and the third inequalities, respectively.
Using the same EVD, we rewrite the rightmost-hand side of (28) as

I + E5 = W2(I + Γ1)W
>
2 =

(
(I + Γ1)

1
2 W>

2

)> (
(I + Γ1)

1
2 W>

2

)
. (30)

Then, since[(
RR̂−1

)(
(I + Γ1)

1
2 W>

2

)−1]> [(
RR̂−1

)(
(I + Γ1)

1
2 W>

2

)−1]
= I (31)

from (28), there exists an orthogonal matrix W3 such that

RR̂−1 = W3 (I + Γ1)
1
2 W>

2 . (32)

Hence,

R̂−1 = R−1
(
W3W

>
2 +W3

(
(I + Γ1)

1
2 − I

)
W>

2

)
= R−1(W1 + E4) (33)

where
W1 = W3W

>
2 , E4 = W3

(
(I + Γ1)

1
2 − I

)
W>

2 . (34)

Since Γ1 is a diagonal matrix, E4 can be bounded using the inequality (1 + x)
1
2 ≤

1 + x
2
, which holds when |x| ≤ 1, as

‖E4‖2 = ‖ (I + Γ1)
1
2 − I‖2 ≤

1

2
‖Γ1‖2 ≤

1

2

∥∥∥R̂′−1∥∥∥2
2
O(nlu) (35)

where we used (29) in the last inequality. �

Now we evaluate the condition number of R̂′. From R̂′>R̂′ = R′>R′ + E3, we
have∥∥∥R̂′∥∥∥2

2
≤ ‖R′‖22 + ‖E3‖2 ≤ (1 + ‖E3‖2) ‖R

′‖22 = O(1) ‖R′‖22 = O(1) ‖X ′‖2 (36)

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1215

where we used ‖R′‖22 = λmax(X
′>X ′) ≥ 1 in the second inequality. On the other

hand, we have from R̂′>R̂′ = X ′>X ′ + E3, (23) and (21),∥∥∥R̂′−1∥∥∥
2
≤ O(1)

∥∥X ′−1∥∥
2
. (37)

Combining these leads to the following lemma.

Lemma 3. Under the assumption of (22),

κ2(R̂
′) = O(1)κ2(R

′) = O(1)κ2(X
′). (38)

3.1.2 Errors in the One-Sided Point Jacobi Method

Assume that the one-sided point Jacobi method on R ended successfully and the
matrix T̂ = [t1, t2, . . . , tl] is obtained. T̂ is an approximation to URΣX , where UR
is the left singular vector matrix of R and ΣX is a diagonal matrix whose diagonal
elements are the singular values of R (and therefore of X). We write T̂ as T̂ = ÛΣ̂,
where

Û = [û1, û2, . . . , ûl] =

[
t̂1

‖t̂1‖
,

t̂2

‖t̂2‖
, . . . ,

t̂l

‖t̂l‖

]
, (39)

Σ̂ = diag(σ̂1, σ̂2, . . . , σ̂l) = diag(‖t̂1‖, ‖t̂2‖, . . . , ‖t̂l‖). (40)

From (8), the stopping criterion in floating point arithmetic can be written as follows.

∣∣fl(t̂>i t̂j)∣∣ ≤ fl

(
tol

√
t̂>i t̂i

√
t̂>j t̂j

)
for 1 ≤ i < j ≤ l, (41)

where we use tol =
√
lu as noted in Subsection 2.1.

Lemma 4. When the stopping criterion (41) is satisfied, the following inequality
holds for 1 ≤ i < j ≤ l. ∣∣û>i ûj∣∣ ≤ O(lu). (42)

Proof. We first bound the right-hand side of (41) from above as follows.

fl

(
tol

√
t̂>i t̂i

√
t̂>j t̂j

)
≤ (1 + u)4 tol

√
fl(t̂>i t̂i)

√
fl(t̂>j t̂j)

≤ (1 + u)4 (1 + γl)
2 tol

∥∥t̂i∥∥2 ∥∥t̂j∥∥2
≤ O(1)tol

∥∥t̂i∥∥2 ∥∥t̂j∥∥2 . (43)

Here, the factor (1 + u)4 comes from the errors arising in the two square roots,
their product, and the product by tol. In the second inequality, we used fl(t̂>i t̂i) ≤

1216 S. Kudo, Y. Yamamoto, T. Imamura∥∥t̂i∥∥22 (1 + γl). Next, we evaluate the left-hand side of (41) from below. From the
error analysis of an inner product [16], we have

fl(t̂>i t̂j) = t̂>i t̂j + e, (44)

|e| ≤ γl
∣∣t̂i∣∣> ∣∣t̂j∣∣ ≤ γl

∥∥t̂i∥∥2 ∥∥t̂j∥∥2 . (45)

Hence, ∣∣fl(t̂>i t̂j)∣∣ ≥ ∣∣t̂>i t̂j∣∣− γl ∥∥t̂i∥∥2 ∥∥t̂j∥∥2 . (46)

Combining (41), (43) and (43) gives∣∣t̂>i t̂j∣∣ ≤ (O(1)tol + γl)
∥∥t̂i∥∥2 ∥∥t̂j∥∥2 = O(lu)

∥∥t̂i∥∥2 ∥∥t̂j∥∥2 . (47)

Dividing both sides by
∥∥t̂i∥∥2 ∥∥t̂j∥∥2, we obtain (42). �

As for the orthogonality of the computed matrix Û , we have the following lemma.

Lemma 5. The matrix Û can be written as

Û = Ū + δÛ (48)

where Ū is an exactly orthogonal matrix and δÛ is an error matrix satisfying∥∥∥δÛ∥∥∥
2
≤ O(l2u)� 1. (49)

Proof. Since
∣∣∣Û>Û − I∣∣∣ ≤ O(lu) from Lemma 4, we have

∥∥∥Û>Û − I∥∥∥
2
≤
∥∥∥∣∣∣Û>Û − I∣∣∣∥∥∥

F
≤ O(l2u). (50)

Thus, by writing the EVD of Û>Û as Û>Û = Z(I + Γ3)Z
>, we have ‖Γ3‖ ≤

O(l2u) � 1. Now, let (I + Γ3)
1
2 = I + Γ4, where Γ4 is a diagonal matrix. Then,

‖Γ4‖2 ≤ ‖ (I + Γ3)
1
2 ‖ − 1 ≤ 1

2
‖Γ3‖2 = O(l2u). Moreover, since(

Û
(
(I + Γ4)Z

>)−1)> (Û ((I + Γ4)Z
>)−1) = I, (51)

there exists an orthogonal matrix W4 such that

Û = W4(I + Γ4)Z
>. (52)

By letting Ū = W4Z
> and δÛ = W4Γ4Z

>, we have (48). The norm of δÛ can be
bounded as ‖δÛ‖2 = ‖Γ4‖2 = O(l2u). �

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1217

3.1.3 Errors in the Computation of VX

In the next step, we compute VX by VX = R−1UΣ. In floating point arithmetic, we
compute V̂X = fl(R̂−1T̂) from the result T̂ of the one-sided point Jacobi method
by solving the triangular system with multiple right-hand sides. Now, let us denote
the ith column vector of V̂X by v̂i and the backward error in the solution of the ith

triangular system by δR̂i. Then,

v̂i = fl(R̂−1t̂i) = (R̂ + δR̂i)
−1t̂i

=
((
I + δR̂iR̂

−1
)
R̂
)−1

t̂i

= R̂−1
(
I + δR̂iR̂

−1
)−1

t̂i. (53)

We further define R̂′ and δR̂′i as R̂′ = R̂D−1 and δR̂′i = δR̂iD
−1 using the diagonal

matrix D defined in 3.1.1. Then, the following lemma holds.

Lemma 6. Assume that (22) holds and define an error matrix Fi by

I + Fi =
(
I + δR̂iR̂

−1
)−1

. (54)

Then,

‖Fi‖2 ≤ O(l
3
2uκ2(R̂

′)). (55)

Proof. The backward error δR̂i in the solution of the triangular system satisfies∣∣∣δR̂i

∣∣∣ ≤ γl

∣∣∣R̂∣∣∣ [16]. Multiplying both sides by a nonnegative diagonal matrix D−1

gives ∣∣∣δR̂′i∣∣∣ ≤ γl

∣∣∣R̂′∣∣∣ . (56)

Hence, ∥∥∥δR̂′i∥∥∥
2
≤
∥∥∥∣∣∣δR̂′i∣∣∣∥∥∥

F
≤ γl

∥∥∥∣∣∣R̂′∣∣∣∥∥∥
F
≤ O

(
l
3
2u
)∥∥∥R̂′∥∥∥

2
. (57)

Thus, we have∥∥∥δR̂iR̂
−1
∥∥∥
2

=
∥∥∥δR̂′iR̂′−1∥∥∥

2

≤
∥∥∥δR̂′i∥∥∥

2

∥∥∥R̂′−1∥∥∥
2

≤ O
(
l
3
2u
)∥∥∥R̂′∥∥∥

2

∥∥∥R̂′−1∥∥∥
2

= O
(
l
3
2u
)
κ2(R̂

′)� 1 (58)

where we used O
(
l
3
2u
)
κ2(R̂

′) ≤ O (nlu)κ2(R̂
′) = O (nlu)κ2(X

′) � 1, which is

a consequence of (22) and Lemma 3. As a result, the Neumann series expansion of

1218 S. Kudo, Y. Yamamoto, T. Imamura

I + Fi =
(
I + δR̂iR̂

−1
)−1

converges and we have

I + Fi =
∞∑
k=0

(
−δR̂iR̂

−1
)k
, (59)

from which

‖Fi‖2 =

∥∥∥δR̂iR̂
−1
∥∥∥
2

1−
∥∥∥δR̂iR̂−1

∥∥∥
2

≤ O
(
l
3
2u
)
κ2(R̂

′) (60)

follows immediately. �

Now we rewrite v̂i using t̂i = σ̂iûi as

v̂i = R̂−1(I + Fi)t̂i = R̂−1(ûi + Fiûi)σ̂i = R̂−1(ûi + δûi)σ̂i (61)

where we defined δûi = Fiûi. Letting δÛ = [δû1δû2 . . . δûl], we have

V̂X = R̂−1(Û + δÛ)Σ̂ = R̂−1(I + δÛÛ−1)ÛΣ̂

= R̂−1(I + E6)ÛΣ̂ (62)

where E6 = δÛÛ−1. The following lemma gives a bound on ‖E6‖2.

Lemma 7. Under the assumption (22), the following inequality holds.

‖E6‖2 ≤
∥∥∥δÛ∥∥∥

2

∥∥∥Û−1∥∥∥
2
≤ O(l2u)κ2(R̂

′). (63)

Proof. From (52), the singular values of Û are equal to those of I + Γ4 and are
therefore larger than or equal to 1− ‖Γ4‖ = 1−O(l2u). Thus,∥∥∥Û−1∥∥∥

2
≤ 1 +O(l2u). (64)

On the other hand, since ‖δûi‖2 ≤ ‖Fi‖2 ‖ûi‖2 ≤ O(l
3
2u)κ2(R̂

′) ·O(1),

∥∥∥δÛ∥∥∥
2
≤
∥∥∥δÛ∥∥∥

F
≤

√√√√ l∑
i=1

‖δûi‖22 ≤ O(l2u)κ2(R̂
′). (65)

Multiplying these two bounds gives ‖E6‖2 ≤ O(l2u)κ2(R̂
′). �

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1219

3.1.4 Errors in the Product Y = XVX

Finally, we evaluate the errors in Ŷ = fl(XV̂X). From the error analysis of matrix
multiplication [16], we can write Ŷ as

Ŷ = XV̂X + EMM , (66)

|EMM | ≤ γl |X|
∣∣∣V̂X∣∣∣ . (67)

We first evaluate the error contained in XV̂X itself and then the matrix multiplica-
tion error EMM . From (62) and (26), V̂X can be written as

XV̂X = XR̂−1(I + E6)ÛΣ̂

= XR−1(W1 + E4)(I + E6)ÛΣ̂. (68)

By inserting X = QR and (48) into the last expression leads to

XV̂X = Q(W1 + E4)(I + E6)ÛΣ̂

= Q(W1 + E4 +W1E6 + E4E6)(Ū + δÛ)Σ̂ (69)

=
(
QW1Ū + E7

)
Σ̂. (70)

Here, E7 = Q(E4 +W1E6 + E4E6)(Ū + δÛ) +QW1δÛ and its norm is bounded as

‖E7‖2 ≤ ‖E4 +W1E6 + E4E6‖2
∥∥∥Ū + δÛ

∥∥∥
2

+
∥∥∥δÛ∥∥∥

2

≤ O(l2u)κ2(R̂
′) +O(nlu)

∥∥∥R̂′−1∥∥∥2
2

+O(l2u)

≤ O(nlu)κ22

(
R̂′
)

(71)

where we used
∥∥∥R̂′−1∥∥∥2

2
≤
∥∥∥R̂′∥∥∥2

2

∥∥∥R̂′−1∥∥∥2
2

= κ22

(
R̂′
)

, by noting that the column

vectors of R′ have the unit length.

To evaluate the matrix multiplication error EMM , we use the relation:

|X|
∣∣∣V̂X∣∣∣ = |X ′|DD−1

∣∣∣R′−1(W1 + E4)(I + E6)Û
∣∣∣ Σ̂. (72)

By inserting this into (67), we have∥∥∥EMM Σ̂−1
∥∥∥
2
≤ O(l2u) ‖X ′‖2

∥∥R′−1∥∥
2
‖W1 + E4‖2 ‖I + E6‖2

∥∥∥Û∥∥∥
2

≤ O(l2u)κ2(X
′). (73)

1220 S. Kudo, Y. Yamamoto, T. Imamura

Finally, we put (71) and (73) into (66) and replace κ2(R
′) with κ2(X

′) using
Lemma 3. Then we arrive at the following theorem that bounds the deviation from
orthogonality of the matrix Ŷ obtained by the partial SVD.

Theorem 1. Assume that X ∈ Rn×l is a full rank matrix with n ≥ l and the con-
dition number of its column-scaled version X ′ satisfies O(nlu)κ22(X

′)� 1. Assume
further that Hari’s V2 variant for the partial SVD has been applied to X success-
fully and the matrix Ŷ is obtained. Then, there exist a matrix Ū with orthogonal
columns, a diagonal matrix Σ̂ and an error matrix δU such that

Ŷ = (Ū + δU)Σ̂, (74)

‖δU‖2 ≤ O(nlu)κ22(X
′). (75)

Since the column-scaled condition number of X approaches to 1 quickly in OSBJ
with QR preprocessing, this result is highly satisfactory.

3.2 Backward Error of V2

We also need to evaluate how close to orthogonal the transformation matrix VX is,
because non-orthogonality of VX causes deviation of the singular values of Y = XVX
from those of X. To this end, the next theorem by Drmač can be used directly.

Theorem 2 (Drmač [10], Equations (5.3), (5.7), (5.8)). Assume that the one-sided
point Jacobi method is applied to an upper triangular matrix R̂ and the matrix T̂ ,
which is an approximation to the product of the left singular vector matrix of R̂
and the diagonal matrix containing the singular values of R̂, is obtained. Assume
further that V̂X is computed as V̂X = fl(R̂−1T̂). Then, there exist an orthogonal
matrix V̄X and an error matrix δV̂X such that

V̄X = V̂X + δV̂X , (76)∥∥∥δV̂X∥∥∥
2
≤ κR(R̂) ·O(sl2u) (77)

where s is the number of iteration of the one-sided point Jacobi method until con-
vergence and κR(R̂) is the row-scaled condition number of R̂.

Using this result, we can evaluate the row-wise backward error of V2. Let the
jth row vectors of X, Ŷ and EMM be x̃j, ỹj and ẽj, respectively. Note that

|ẽj| ≤ γl |x̃j|
∣∣∣V̂X∣∣∣ (78)

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1221

from (67). Then, we have from (66) and (76),

ỹj = x̃jVX + ẽj

=
(
x̃j +

(
−x̃jδV̂X + ẽj

)
V̄ >X

)
V̄X

= (x̃j + δx̃j)V̄X (79)

where δx̃j =
(
−x̃jδV̂X + ẽj

)
V̄ >X and

‖δx̃j‖2 ≤ ‖x̃j‖2
∥∥∥δV̂X∥∥∥

2
+ γl ‖x̃j‖2

∥∥∥V̂X∥∥∥
F

≤ ‖x̃j‖2
(
κR(R̂) ·O(sl2u) +O(l

3
2u)

∥∥∥V̂X∥∥∥
2

)
= ‖x̃j‖2 κR(R̂) ·O(sl2u). (80)

Thus, we can conclude that the upper bound on the row-wise backward error δx̃j is

proportional to κR(R̂).

3.3 Criterion for Using the Variant V2

Drmač shows that when κ2(R̂
′) = κC(R̂) is very close to 1, κR(R̂) also becomes

small as well [10, Proposition 3.1]. Thus, we can expect that as the iteration of
OSBJ proceeds, κR(R̂) will get smaller. In fact, in the numerical experiments to be
presented in the next section, we observed that κR(R̂) does not become much larger
than κC(R̂), but frequently becomes smaller than the latter.

However, at intermediate steps, there is no theoretical guarantee that κR(R̂) is
sufficiently small. Hence, in our implementation, we chose to switch from V2 to V1
when κR(R̂) is large, because V̂X computed by V1 is guaranteed to be always nearly
orthogonal. To estimate κR(R̂), we use LAPACK’s xTRCON, which is an efficient
condition number estimator in 1-norm or infinity norm. Specifically, we compute
the row-scaled version R̂′′ of R̂ and use the relation:

κR(R̂) = κ2(R̂
′′) ≈ κ1(R̂

′′), (81)

which holds approximately when l is not too large. The criterion for using V2 is

κ1(R̂
′′) ≤

√
l (82)

and V1 is used instead if this is not satisfied. In the numerical experiments to be
given in the next section, this switching did not occur frequently. Thus we can say
that the V2 variant, which is superior in terms of speed, can be used safely in place
of the V1 variant most of the time.

1222 S. Kudo, Y. Yamamoto, T. Imamura

4 NUMERICAL RESULTS

In this section, we experimentally evaluate the error of Hari’s V2 method to support
our theoretical analysis and compare them with those of Hari’s V1 method. We
used variety of test matrices which differ in the matrix size m = n, the number of
blocks q, the 2-norm condition number κ2(A), and the distribution of the singular
values. We generated five different matrices for each combination of the parameters
listed below using LAPACK’s DLATMS:

• m = n = 200, 400, 800, 1 600

• q = 10, 20, 40

• κ = 105, 1010, 1015

• the distribution of singular values from DLATMS described in [19]

– mode = 1: σ1 = 1, σ2 = σ3 = · · · = σn = 1/κ

– mode = 2: σ1 = σ2 = · · · = σn−1 = 1, σn = 1/κ

– mode = 3: σi = κ−(i−1)/(n−1)

– mode = 4: σi = 1− (i−1)(1−1/κ)
n−1

– mode = 5: the singular values are random numbers in the range (1/κ, 1)
such that their logarithms are uniformly distributed.

These matrices have singular value distributions that are often seen in real-world
problems, such as singular values with high multiplicity and highly clustered singular
values at the lower end of the spectrum. To organize the results in small spaces, we
indexed the matrices using the formula:

index = 9 log2(n/200) + 3 log2(q/10) + log10(κ)/5− 1. (83)

We used double-precision floating-point numbers throughout the experiments, thus,
the unit of round-off u ≈ 1.01× 10−16.

4.1 Condition Numbers Observed During the Computation

Table 1 shows the maximum values of the estimated condition numbers, κ1(R̂
′) and

κ1(DrR̂), which are observed in the tests. We used the LAPACK’s DTRCON to
estimate the 1-norm condition numbers, thus, they are not exactly same as those
used in the analysis, κ(R̂′) and κR(R̂), but they provide a good estimate of the true
values with small computation cost.

The condition numbers in the tables are drastically small (< 100) compared with
those of the input matrices, which can be as large as 1015, even in the first sweep,
thanks to the QR preprocessing. It is also notable that the row-scaled condition
numbers in the table are smaller than the column-scaled ones. These small figures
make our theoretical error bounds (see (75) and (80)) of the order of u. Moreover,
because they are small, the switching from V2 to V1 described in Subsection 3.3

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1223

Sweep # mode = 1 mode = 2 mode = 3 mode = 4 mode = 5

κ1(R̂
′) 1 10.707 1.001 33.112 33.304 33.220

2 1.233 1.000 1.756 3.763 1.743
3 1.010 N/A 1.014 1.287 1.024
4 1.002 N/A 1.000 1.021 1.000

κ1(DrR̂) 1 10.213 1.000 24.093 21.942 18.454
2 1.152 1.000 1.664 3.435 1.653
3 1.010 N/A 1.014 1.269 1.024
4 1.002 N/A 1.000 1.021 1.000

Table 1. The estimated condition numbers with LAPACK’s DTRCON. We only listed the
maximum values for each mode. N/A means the iteration has already converged.

did not occur for most of the matrices and even when it occurred, it was only a few
times. In our tests, no switching occurred for 861 matrices out of 900, only once
for 26, and up to five times for the rest. All the swithing, if any, occurred in the
first sweep.

4.2 Orthogonality Error of Ŷ

V1 V2

0 10 20 30 0 10 20 30

10-15

10-14

10-13

index

or
th

og
on

al
ity

 o
f Ŷ

mode

1

2

3

4

5

Figure 4. The maximum orthogonality error of Ŷ for each parameter combination

Figure 4 shows the orthogonality error of Ŷ defined as∥∥∥(Ŷ Σ̂−1)>Ŷ Σ̂−1 − I
∥∥∥
max

. (84)

This error must be small for the convergence of the overall process. We only plotted
the maximum values over all sweeps for each combination of the parameters. For
both V1 and V2 methods, the errors are small or close to the

√
nu (the black lines

in the figures). Generally, V2 has smaller errors than V1 in this test.

1224 S. Kudo, Y. Yamamoto, T. Imamura

4.3 Residual and Orthogonality of the Factors

V1 V2

0 10 20 30 0 10 20 30

10-15

10-14

10-13

index

re
si
du
al

mode

1

2

3

4

5

Figure 5. The maximum value of the residual for each parameter combination

V1 V2

0 10 20 30 0 10 20 30

10-15

10-14

10-13

index

or
th

og
on

al
ity

 o
f V̂

mode

1

2

3

4

5

Figure 6. The maximum orthogonality error of V̂ for each parameter combination

Figures 5, 6 show the residual of the decomposition,
∥∥∥A− ÛΣ̂V̂

∥∥∥
max

/ ‖A‖max,

and the orthogonality of the computed V̂ ,
∥∥∥V̂ >V − I∥∥∥

max
, respectively. The resid-

uals are small for both V1 and V2, therefore, the Jacobi method can compute the
SVD of the test matrices accurately even with the V2 method. The residuals of V2
are a bit larger than those of V1, but we think they are still acceptable because they
are around nu (the red lines in the figures), the unit roundoff times a low degree
polynomial of n. The situation is similar for the orthogonality of V̂ . The errors are
small for both V1 and V2. The errors of V2 are a bit larger than those of V1, but
they are still acceptable because they are smaller than nu.

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1225

0.0

0.5

1.0

1.5

400 600 800 1000 2000 4000

n

re
la

tiv
e

tim
e

to
 L

A
P

A
C

K

method

LAPACK

V1

V2

Figure 7. Normalized computation time of the three methods

4.4 Computation Time

Lastly, we compare the computation time of three methods, namely, V1, V2 and
LAPACK DGESVJ, which is an implementation of the one-sided point Jacobi SVD
method. We generated matrices with parameters n = 400 to 4 000, κ = 1010, mode =
3, and q = 10, 20, 40 (only for V1 and V2). The computation time was measured five
times for each combination of the parameters, their average was calculated, and the
value of q which attains the shortest average time was selected for each combination.
The experiments were done on a 4-core desktop PC with Intel Core i7-7490 (3.6 GHz,
8 MiB cache) and dual-channel DDR3-1600 memories. Our program was compiled
with gcc and gfortran version 7.5.0 and linked with OpenBLAS v3.9.0, with flags
-O3 -mtune=ntive -march=native.

Figure 7 shows the normalized computation time, where the time of DGESVJ is
set to 1. For large matrices, the OBSJ methods, V1 and V2, outperforms DGESVJ,
and they achieve more than 2.5 times speedup over DGESVJ. V2 is always faster
than V1 in the plot. The difference is larger for small matrices, but it is still more
than 10 % when n = 4 000.

5 CONCLUSION

In this paper, we presented a roundoff error analysis of the block orthogonalization
process used in the one-sided block Jacobi SVD method. In particular, we focused
on the so-called V2 method proposed by Hari and showed that the orthogonality
error and the backward error are essentially bounded by the product of the unit
roundoff and the column-scaled and row-scaled condition numbers, respectively, of
the block to be orthogonalized. Since these condition numbers are usually small and
approach one as the iteration proceeds, our results suggest that the V2 method is
accurate in terms of both orthogonality and backward error. Numerical experiments
confirm this theoretical prediction.

1226 S. Kudo, Y. Yamamoto, T. Imamura

Our future work includes error analysis of the V1 method, which is another
block orthogonalization method proposed by Hari, and a study on the impact of our
present results on the convergence and accuracy of the one-sided block Jacobi SVD
method.

Acknowledgement

We are grateful to Professor Marian Vajteršic for providing us with the opportu-
nity to present part of the results in this paper at a workshop in the PPAM 2017
conference and at the PARNUM 2019 workshop.

REFERENCES

[1] Dongarra, J.—Gates, M.—Haidar, A.—Kurzak, J.—Luszczek, P.—
Tomov, S.—Yamazaki, I.: The Singular Value Decomposition: Anatomy of Op-
timizing an Algorithm for Extreme Scale. SIAM Review, Vol. 60, 2018, No. 4,
pp. 808–865, doi: 10.1137/17m1117732.

[2] Van Zee, F. G.—van de Geijn, R. A.—Quintana-Ort́ı, G.: Restructuring the
Tridiagonal and Bidiagonal QR Algorithms for Performance. ACM Transactions on
Mathematical Software, Vol. 40, 2014, No. 3, Art. No. 18, doi: 10.1145/2535371.

[3] Gates, M.—Tomov, S.—Dongarra, J.: Accelerating the SVD Two Stage Bidi-
agonal Reduction and Divide and Conquer Using GPUs. Parallel Computing, Vol. 74,
2018, pp. 3–18, doi: 10.1016/j.parco.2017.10.004.

[4] Willems, P. R.—Lang, B.—Vömel, C.: Computing the Bidiagonal SVD Using
Multiple Relatively Robust Representations. SIAM Journal on Matrix Analysis and
Applications, Vol. 28, 2006, No. 4, pp. 907–926, doi: 10.1137/050628301.

[5] Willems, P. R.—Lang, B.: Twisted Factorizations and qd-Type Transformations
for the MR3 Algorithm – New Representations and Analysis. SIAM Journal on Matrix
Analysis and Applications, Vol. 33, 2012, No. 2, pp. 523–553, doi: 10.1137/110834044.

[6] Veselić, K.—Hari, V.: A Note on a One-Sided Jacobi Algorithm. Numerische
Mathematik, Vol. 56, 1989, pp. 627–633, doi: 10.1007/bf01396349.

[7] Parlett, B. N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998,
doi: 10.1137/1.9781611971163.

[8] Demmel, J.—Veselić, K.: Jacobi’s Method Is More Accurate than QR. SIAM
Journal on Matrix Analysis and Applications, Vol. 13, 1992, No. 4, pp. 1204–1245,
doi: 10.1137/0613074.

[9] Demmel, J.—Gu, M.—Eisenstat, S.—Slapničar, I.—Veselić, K.—Drmač,
Z.: Computing the Singular Value Decomposition with High Relative Accuracy.
Linear Algebra and Its Applications, Vol. 299, 1999, No. 1-3, pp. 21–80, doi:
10.1016/s0024-3795(99)00134-2.

[10] Drmač, Z.—Veselić, K.: New Fast and Accurate Jacobi SVD Algorithm. I. SIAM
Journal on Matrix Analysis and Applications, Vol. 29, 2008, No. 4, pp. 1322–1342,
doi: 10.1137/050639193.

https://doi.org/10.1137/17m1117732
https://doi.org/10.1145/2535371
https://doi.org/10.1016/j.parco.2017.10.004
https://doi.org/10.1137/050628301
https://doi.org/10.1137/110834044
https://doi.org/10.1007/bf01396349
https://doi.org/10.1137/1.9781611971163
https://doi.org/10.1137/0613074
https://doi.org/10.1016/s0024-3795(99)00134-2
https://doi.org/10.1137/050639193

Error Analysis of the Orthogonalization Process in Block Jacobi SVD 1227

[11] Brent, R. P.—Luk, F. T.: The Solution of Singular-Value and Symmetric Eigen-
value Problems on Multiprocessor Arrays. SIAM Journal on Scientific and Statistical
Computing, Vol. 6, 1985, No. 1, pp. 69–84, doi: 10.1137/0906007.

[12] Drmač, Z.: A Global Convergence Proof for Cyclic Jacobi Methods with Block
Rotations. SIAM Journal on Matrix Analysis and Applications, Vol. 31, 2009, No. 3,
pp. 1329–1350, doi: 10.1137/090748548.

[13] Kudo, S.—Yamamoto, Y.—Bečka, M.—Vajteršic, M.: Performance Analysis
and Optimization of the Parallel One-Sided Block Jacobi SVD Algorithm with Dy-
namic Ordering and Variable Blocking. Concurrency and Computation: Practice and
Experience, Vol. 29, 2017, Art. No. e4059, doi: 10.1002/cpe.4059.

[14] Chan, T. F.: An Improved Algorithm for Computing the Singular Value Decompo-
sition. ACM Transactions on Mathematical Software, Vol. 8, 1982, No. 1, pp. 72–83,
doi: 10.1145/355984.355990.

[15] Hari, V.—Singer, S.—Singer, S.: Full Block J-Jacobi Method for Hermi-
tian Matrices. Linear Algebra and its Applications, Vol. 444, 2014, pp. 1–27, doi:
10.1016/j.laa.2013.11.028.

[16] Higham, N. J.: Accuracy and Stability of Numerical Algorithms. 2nd Ed., SIAM,
Philadelphia, PA, 2002, doi: 10.1137/1.9780898718027.

[17] Yamamoto, Y.—Nakatsukasa, Y.—Yanagisawa, Y.—Fukaya, T.: Roundoff
Error Analysis of the CholeskyQR2 Algorithm. Electronic Transactions on Numerical
Analysis, Vol. 44, 2015, pp. 306–326.

[18] Demmel, J. W.: On Floating Point Errors in Cholesky. LAPACK Working Notes,
No. 14, 1989, pp. 1–7.

[19] The LAPACK Documentation. Available at: http://www.netlib.org/lapack/

explore-html/index.html.

[20] Luk, F. T.—Park, H.: A Proof of Convergence for Two Parallel Jacobi SVD Al-
gorithms. IEEE Transactions on Computers, Vol. 38, 1989, No. 6, pp. 806–811, doi:
10.1109/12.24289.

[21] Singer, S.—Singer, S.—Novaković, V.—Davidović, D.—Bokulić, K.—
Ušćumlić, A.: Three-Level Parallel J-Jacobi Algorithms for Hermitian Matrices.
Applied Mathematics and Computation, Vol. 218, 2012, No. 9, pp. 5704–5725, doi:
10.1016/j.amc.2011.11.067.

[22] Bečka, M.—Okša, G.: New Approach to Local Computations in the Parallel One-
Sided Jacobi SVD Algorithm. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Kar-
czewski, K., Kitowski, J., Wiatr, K. (Eds.): Parallel Processing and Applied Mathe-
matics (PPAM 2015). Springer, Cham, Lecture Notes in Computer Science, Vol. 9573,
2016, pp. 605–617, doi: 10.1007/978-3-319-32149-3 56.

https://doi.org/10.1137/0906007
https://doi.org/10.1137/090748548
https://doi.org/10.1002/cpe.4059
https://doi.org/10.1145/355984.355990
https://doi.org/10.1016/j.laa.2013.11.028
https://doi.org/10.1137/1.9780898718027
http://www.netlib.org/lapack/explore-html/index.html
http://www.netlib.org/lapack/explore-html/index.html
https://doi.org/10.1109/12.24289
https://doi.org/10.1016/j.amc.2011.11.067
https://doi.org/10.1007/978-3-319-32149-3_56

1228 S. Kudo, Y. Yamamoto, T. Imamura

Shuhei Kudo is Postdoctoral researcher of Large-Scale Paral-
lel Numerical Computing Technology Research Team at RIKEN
Center for Computational Science in Japan. He received his
Bachelor’s degree and Master’s degree from The Kobe Univer-
sity in 2013 and 2015, respectively. He received his Ph.D. from
the University of Electro-Communications in 2018. His current
research interests include high performance computing and par-
allel numerical linear algebra algoritms in science and engineer-
ing.

Yusaku Yamamoto is Professor of high performance comput-
ing at the University of Electro-Communications in Japan. He
received his Bachelor’s degree and Master’s degree from the Uni-
versity of Tokyo in 1990 and 1992, respectively. He received his
Ph.D. from the Nagoya University in 2003. His current research
interests include high performance algorithms in numerical lin-
ear algebra and applications of linear algebra in science and en-
gineering.

Toshiyuki Imamura is currently a Team Leader of Large-Scale
Parallel Numerical Computing Technology at RIKEN Center for
Computational Science. He received his diploma and doctorate
in applied systems and sciences in 1993 and 2000, respectively.
He was a Researcher at Japan Atomic Energy Research Institute
in 1996–2003, a visiting scientist at HLRS in 2001–2002, and
Associate Professor at the University of Electro-Communications
in 2003–2012. Since 2012 he has been with RIKEN. His research
interests include high-performance computing, automatic-tuning
technology, parallel eigenvalue computation. He is a member of
IPSJ, JSIAM, and SIAM.

Computing and Informatics, Vol. 39, 2020, 1229–1249, doi: 10.31577/cai 2020 6 1229

PROBABILISTIC MEMORY MODEL FOR VISUAL
IMAGES CATEGORIZATION

Linxia Xiao, Yanjiang Wang∗, Baodi Liu, Weifeng Liu

College of Control Science and Engineering
China University of Petroleum (East China)
Qingdao, 266580, China
e-mail: b17050163@s.upc.edu.cn, yjwang, liubaodi, liuwf@upc.edu.cn

Abstract. During the past decades, numerous memory models have been proposed,
which focused mainly on how spoken words are studied, whereas models on how
visual images are studied are still limited. In this study, we propose a probabilistic
memory model (PMM) for visual images categorization which is able to mimic the
workings of the human brain during the image storage and retrieval. First, in the
learning phase, the visual images are represented by the feature vectors extracted
with convolutional neural network (CNN) and each feature component is assumed to
conform to a Gaussian distribution and may be incompletely copied with a certain
probability or randomly produced in accordance to an exponential distribution.
Then, in the test phase, the likelihood ratio between the test image and each studied
image is calculated based on the probabilistic inference theory, and an odd value
in favor of an old item over a new one is obtained based on all likelihood values.
Finally, if the odd value is above a certain threshold, the Bayesian decision rule
is applied for image classification. Experimental results on two benchmark image
datasets demonstrate that the proposed PMM can perform well on categorization
tasks for both studied and non-studied images.

Keywords: Memory model, image categorization, probability distribution, proba-
bilistic inference, Bayesian decision

Mathematics Subject Classification 2010: 68-Txx

∗ corresponding author

1230 L. Xiao, Y. Wang, B. Liu, W. Liu

1 INTRODUCTION

As was known to all, computer vision research aims to make the computers easily
perceive, understand, and remember the visual images effortlessly as humans do.
With the rapid development of cognitive neuroscience and cognitive psychology,
numerous new theories and methods have emerged [1], which constantly deepen the
study of the complex mechanisms of the human brain and promote the progress of
computer vision and artificial intelligence. The fact that the human may retrieve
objects from their cluttered surroundings without any difficulties is closely related to
the human memory mechanism. Since the time when the first psychology memory
model put forward by Atkinson and Shiffrin [2], many memory models have been
proposed to date, such as SAM (Search of Associative Memory) [3], BCDMEM (Bind
Cue Decide Model of Episodic Memory) [4], TCM (Temporal Context Model) [5],
and REM (Retrieving Effective from Memory) [6], etc. However, the majority of
these memory models merely focus on the words list study, seldom, if ever, the
research is conducted on the representation, storage, and retrieval of visual images.

Recently, machine learning algorithms have been found to be able to categorize
visual images with high accuracy and the performances can be even, to some ex-
tent, comparable to human beings [7, 8, 9]. However, the key distinction between
machine learning based image classification algorithms and human decision is that
the machine learning based algorithms will classify an image from a new category
into a studied category rather than report unknown like a human. In other words,
machine learning based classification methods can distinguish one object from some
limited studied objects, while humans can distinguish a certain category of objects
from some infinite unknown categories. When one perceives an object never seen
before, he will respond ‘unknown’ to it immediately instead of checking it against all
the studied objects in his memory, indicating that the human brain memory works
in a different way during performing classification tasks. Therefore, in this paper,
we will shed light on how visual images are represented and stored as well as how
the stored images are retrieved when performing categorization tasks.

Murdock et al. [10] strengthened that a reasonable memory model should address
the following issues, i.e., how the information is organized, encoded and stored during
learning and how the information could be retrieved or recalled when needed. These
topics have gained strong concerns in research areas such as computer vision and
image processing and have come a long way. However, the performances yielded
are still far from human beings who can make decisions based on the experience
and the knowledge learned in the past. Therefore, we can glean some insights from
the human brain, especially the mechanism for making an inference and decision to
enhance the robustness of the computer vision algorithms. In fact, in the early 1980s,
Hinton and Sejnowski showed in their study that the human brain can be regarded as
a machine which could infer and make decisions based on external uncertainties [11],
suggesting that the brain represents knowledge and makes decisions in the form of
probability distributions. Knill and Pouget [12] further developed the idea based on
psychophysical evidence and proposed the concept of Bayesian brain which works on

Probabilistic Memory Model for Visual Images Categorization 1231

Bayesian probability. In their research, they also described the neural representation
mechanism of uncertainty in the human brain. Meanwhile, Lee and Mumford [13]
also suggested that the hierarchical Bayesian inference might model the interactive
computations in visual cortex and provided some neurophysiological evidences that
support the plausibility of their study. Since then, Bayesian models were widely
applied in inductive learning and reasoning [14], free recall of memory [15], visual
search and recognition [16] as well as visual attention [17].

In this paper, in order to imitate the memory function of the human brain, we
apply the probabilistic inference and Bayesian decision theories to the modeling of
visual images storage and retrieval and put forward a probabilistic memory model
(PMM) for visual images categorization. First, regarding the image representation
and storage, we apply the deep convolutional neural network (CNN) to extract the
image features, and each feature component is supposed to conform to a Gaussian
distribution and may be incompletely copied with a certain probability or randomly
produced according to an exponential distribution. The probability representation
aims to mimic the sensory error as well as the memory noise of the human brain
in the study phase. Then the likelihood ratio between the test image and all the
studied images can be obtained, and an odd value can be computed based on all the
likelihood values, which is regarded as a criterion for deciding whether the image
is studied or not. For image retrieval, the Bayesian decision rule is performed. We
evaluate the performance of the proposed PMM by applying it on image categoriza-
tion tasks in which experiments are conducted on two benchmark image databases
and the results are compared with the state-of-the-art image classification methods.

The structure of the paper is organized as follows. Section 2 elaborates the
related work. Section 3 introduces the proposed PMM model using probabilistic
inference and Bayesian decision. Section 4 provides the experiments and perfor-
mances of PMM on visual image classification tasks. Finally, some conclusions are
summarized in Section 5.

2 RELATED WORK

In this section, we will retrospect some relevant work about visual image represen-
tation, storage and recall, i.e., feature representation and the traditional memory
model – REM model [6].

As for feature representation, currently a mass of methods for images feature ex-
traction have been put forward, such as histogram of oriented gradient (HOG) [18],
local binary patterns (LBP) [19], Haar-like [20] and gradient location-orientation
histogram (GLOH) [21], etc. These methods can achieve good results when applied
to simple images, but the effects will get worse when dealing with complex natural
images. Recently, deep learning based feature extraction methods exhibit better
performance when handling images with noise or cluttered background in compari-
son to the traditional approaches, such as autoencoder neural networks (ANN) [22],
restricted Boltzmann machine (RBM) [23], recurrent neural network (RNN) [24] and

1232 L. Xiao, Y. Wang, B. Liu, W. Liu

convolutional neural networks (CNN) [25], etc. Notably, the hierarchical convolu-
tional neural network (HCNN) [26] can model the neural single-unit and population
responses in the visual cortical areas of the human brain, especially, the VGG-19
model [25] is known for its deep representation of visual images.

As for the traditional memory models, the REM model is the most typical
memory model for words list study. The REM model supposed that human memory
consisted of a series of separate images, with each one being a vector of feature values,
which are stored randomly or incompletely copied from the studied vector with error.
When a word was studied, the storage probability of each feature was µ∗. It was
worth noting that when any feature value was stored, it did not change any longer.
When some information was stored in the feature vector, the probability of stored
value consisted of two parts: the rightly copied probability was c and the randomly
chosen probability was 1 − c which satisfied a geometric probability distribution
P (V = j) = (1 − g)j−1g, j = 1, 2, . . . ,∞. Given the test vector either studied
or unstudied, it was matched against the studied feature vectors. The matching
result D = {Dj}j=1,2,...,N was then computed to find the matched and non-matched
locations, and neglected the locations where the feature value was zero, where Dj

denoted the aligning result between the test and the jth word feature vector.

Next, calculated the likelihood ratio λj based on the matching result Dj:

λj =
P (Dj|Sj)
P (Dj|Nj)

(1)

where Sj and Nj standed for the events that the jth image was an s-image and
a d-image, respectively. Finally, calculated the odds in favor of an old over a new
item based on the likelihood values:

Φ =
1

N

N∑
j=1

λj. (2)

If Φ > 1, the test word was judged as an old one; or else, the test word was identified
as new.

REM model offers a memory mechanism to elucidate a series of episodic mem-
ory phenomena, such as the list-length, list-strength, word-frequency and mirror
effects, etc. However, it can only provide some accounts for word list study. Due to
the complex characteristics of visual images, the research about the representation,
storage, and retrieval of visual images is still a challenging task.

3 THE PROPOSED PMM MODEL

In what follows, we will elaborate the proposed PMM modeling process, including
image representation and storage with probability, memory recall by probability
reference, and memory retrieval with Bayesian decision.

Probabilistic Memory Model for Visual Images Categorization 1233

3.1 Visual Image Representation and Storage with Probability

The primary part of the memory modeling process is feature representation for the
information to be stored, which is essential for the performance of the model. In
words list study, the feature of a word is expressed by integers, which is very simple
and easy to handle, whereas the feature of an image is much more complicated.
Neural evidence shows that the visual information in human brain is processed
hierarchically [27, 28]. Thus a pre-trained convolutional neural network model with
19 layers, named VGG-19 [25], is adopted to extract the primitive image features.

More specifically, given a visual image set X = {X11, X12, . . . , X1n1 , X21, X22,
. . . , X2n2 , . . . , XC1, XC2, . . . , XCnC

}, where Xij denotes the jth image coming from
the ith category, C represents the number of categories in the image set and is
signified by Z = Z1, Z2, . . . , ZC , and the number of images in the ith category Zi
is ni. We first employ the VGG-19 model to extract the feature values of images
during the study phase, which are represented as F = {F11, F12, . . . , F1n1 , F21, F22,
. . . , F2n2 , . . . , FC1, FC2, . . . , FCnC

}, where Fij ∈ R1×D indicates the feature vector of
image Xij, D implies the dimension of the feature vector.

To simulate the visual sensor error, for computational simplicity and conve-
nience, each extracted image feature is modeled using a Gaussian distribution:

q (Fij|µi) ∼ N
(
fij : µi, σ

2
)
i ∈ [1, C] (3)

where fij represents the observed feature values of the jth image from the ith category,
µi is the mean value of the ith category, and σ2 is the precision parameter. Suppose
each feature value of images of each category is independent for each other, then
the probability distribution of the image features of each category takes the form:

q(F |µ) =
C∏
i=1

q(Fij|µi). (4)

To imitate the storage process of the human brain, we hypothesize that the
feature vector of each studied image is stored either correctly copied or an incom-
plete and error prone copy, suggesting the image features extracted by CNN are
incomplete, with some feature components produced randomly. Here, we assume
that each stored feature value may be either correctly copied with probability ρ,
satisfying a Gaussian distribution, or randomly produced with probability 1 − ρ,
conforming to an exponential distribution (allowing the probability of accidentally
selecting the correct value):

g(F = x) =

{
ge−gx, x > 0,

0, otherwise,
(5)

where g is the exponential distribution parameter. The reason for choosing exponen-
tial distribution is that exponential distribution can describe the time probability

1234 L. Xiao, Y. Wang, B. Liu, W. Liu

distribution between the events in the Poisson process, which is broadly consistent
with the neurons encoding process in the human brain [29].

In summary, the probabilistic storage process of the PMM can be described by
a 4-tuple, i.e., the three parameters of the two probability distributions and one
correctly copied probability ρ:

F ∼ {µ, σ, g, ρ} . (6)

3.2 Visual Images Recall

Given a test image Xt, memory recall means determining whether it is studied or
not. The feature vector Ft ∈ R1×D of the test image Xt is extracted by deep CNN
first and then matched with the studied feature set F = {F11, . . . , FCnC

}. The
matching rule between the test feature vector Ft and the learned feature vector Fij
is set as follows:

Rij(d) =

1, if Ft(d) 6= 0 and Fij(d) 6= 0,

−1, if Ft(d) 6= 0 and Fij(d) = 0,

0, otherwise,

(7)

where 1 ≤ d ≤ D, in what follows, Ft(d) and Fij(d) are abbreviated as Fd and Fd,ij
respectively. The matched result Rij is used to find those positions whose values
match or mismatch. When Ft and Fij are matched, Rij = 1, when Ft and Fij are
not matched, Rij = −1, the other cases are ignored. The whole matching result is
expressed by R = {R11, R12, . . . , RCnC

}.
Then the likelihood ratio Lij is calculated based on each matching result Rij

and equals the probability that image Xij is an s-image (same as the test image)
over the probability being a d-image (different from the test image). Suppose the
prior probability of s-image and d-image is identical, then we have:

Lij =
P (Yij|Rij)

P (Nij|Rij)
=

P (Yij)P (Rij |Yij)
P (Rij)

P (Nij)P (Rij |Nij)

P (Rij)

=
P (Rij|Yij)
P (Rij|Nij)

(8)

where Yij and Nij represent the events that image Xij is an s-image and a d-image,
respectively. Then,

Lij =
D∏
d=1

P (Fd,ij|Yij, Fd)
P (Fd,ij|Nij, Fd)

(9)

where Fd denotes the dth feature value coming from the test image, Fd,ij is the dth

feature value of image Xij. P (Fd,ij|Yij, Fd) is the probability when Xij is an s-image,
the dth feature value in the test image is Fd, and the dth feature value in the feature
vector of the image Xij is Fd,ij. P (Fd,ij|Nij, Fd) is the probability when Xij is an
d-image, the dth feature value in the test image is Fd, and the dth feature value in

Probabilistic Memory Model for Visual Images Categorization 1235

Figure 1. An illustration of the storage and retrieval process for PMM

the feature vector of image Xij is Fd,ij. According to the matching results in R,
Equation (9) can be decomposed into

Lij =
∏
d∈Q

P (Fd,ij|Yij, Fd)
P (Fd,ij|Nij, Fd)

∏
d∈M

P (Fd,ij|Yij, Fd)
P (Fd,ij|Nij, Fd)

(10)

where M and Q are the sets of exponents for the matched and nonmatched non-zero
features, respectively. When d ∈ Q, for s-images, the dth feature of Xij does not
match with the test image, meaning the feature is wrongly copied, i.e.,

P (Fd,ij|Yij, Fd) = (1− ρ)P (Fd,ij|Nij, Fd). (11)

Let nij,Q be the number of all mismatched non-zero feature values in image Xij,
then by substituting Equation (11) into Equation (10), we obtain:

Lij = (1− ρ)nij,Q

∏
d∈M

P (Fd,ij|Yij, Fk)
P (Fd,ij|Nij, Vd)

. (12)

When d ∈ M , the dth feature of Xij matches with the test image, for d-images,
the probability of storing value Fd,ij satisfies an exponential distribution g(F), as

1236 L. Xiao, Y. Wang, B. Liu, W. Liu

shown in Equation (5). Whereas for s-images, the probability of storing value Fd,ij
consists of two parts: the correctly copied probability which satisfies the Gaussian
distribution and the randomly chosen probability which is distributed exponentially,
i.e.,

P (Fd,ij|Yij, Fd) = ρq(Fd,ij) + (1− ρ)g(Fd,ij), (13)

P (Fd,ij|Yij, Fd)
P (Fd,ij|Nij, Fd)

=
ρq(Fd,ij) + (1− ρ)g(Fd,ij)

g(Fd,ij)
(14)

where q(Fd,ij) = 1√
2πσ

exp[− 1
2σ2 (Fd,ij − µi)2] and g(Fd,ij) = gexp(−gFd,ij). Then, we

have

Lij = (1− ρ)nij,Q

∏
d∈M

ρq(Fd,ij) + (1− ρ)g(Fd,ij)

g(Fd,ij)

= (1− ρ)nij,Q

∏
d∈M

ρq(Fd,ij) + (1− ρ)ge−gFd,ij

ge−gVd,ij
. (15)

In summary, the likelihood ratio set symbolized as L = {Lij}i=1,...,C,j=1,...,nC
can

be obtained by checking against the given test image Xt with all studied images
X = {Xij}i=1,...,C,j=1,...,nC

.

With the above likelihood ratios, whether the test image Xt is studied (old) or
not (new) during the learning phase can be determined.

Let Φ denote the odds, which equals the probability that the test image Xt is
old over the probability being new. Then we have,

Φ =
P (O|R)

P (N |R)
=

P (O)P (R|O)
P (R)

P (N)P (R|N)
P (R)

=
P (R|O)

P (R|N)
(16)

where P (R|O) =
∑C

i=1

∑ni

j=1 P (R|Yij)P (Yij)), C is the number of image categories,

ni is the number of images of the ith category Zi.

Assume the probability of being an s-image for each class is identical and the
probability of being an s-image for each test image is identical too, i.e. P (Yij) = 1

C
1
ni

.
Then,

Φ =
C∑
i=1

ni∑
j=1

1

C

1

ni

P (R|Yij)
P (R|N)

=
1

C

C∑
i=1

1

ni

ni∑
j=1

P (R|Yij)
P (R|N)

. (17)

When the studied Xij is an s-image, i.e., event Yij happens, the other images are
d-image, i.e., N event happens, then

P (R|Yij) = P (Rij|Yij)
∏

i 6=i′,j 6=j′
P (Ri′j′|Ni′j′). (18)

Probabilistic Memory Model for Visual Images Categorization 1237

Figure 2. Exemplars in Caltech-101 dataset

Finally, we have

Φ =
1

C

C∑
i=1

1

ni

(
ni∑
j=1

P (Rij|Yij)
∏

i 6=i′,j 6=j′ P (Ri′j′ |Ni′j′)

P (Rij|Nij)
∏

i 6=i′,j 6=j′ P (Ri′j′ |Ni′j′)

)

=
1

C

C∑
i=1

1

ni

(
ni∑
j=1

P (Rij|Yij)
P (Rij|Nij)

)

=
1

C

C∑
i=1

1

ni

ni∑
j=1

Lij

=
1

C

C∑
i=1

ni∑
j=1

1

ni
Lij. (19)

Given a threshold θ, if Φ > θ, the test image is judged as ‘studied’ (old), otherwise
‘unstudied’ (new).

3.3 Memory Retrieval with Bayesian Decision

When the test image is studied, the Bayesian decision rule can be adopted to deter-
mine its category, i.e., memory retrieval.

Given a test image Xt, assume there are two different classes Za and Zb, 1 ≤ a
and b ≤ C. Assume the posterior probability of being class Za and Zb are P (Za|Xt)
and P (Zb|Xt), 1 ≤ a and b ≤ C, respectively, then according to Bayesian decision
theory,

Xt ∈

{
Za, if P (Za|Xt) > P (Zb|Xt),

Zb, otherwise.
(20)

Let {Xaj}j=1,...,na and {Xbj}j=1,...,nb
denote the studied images for the two classes Za

and Zb, respectively. Hence, for two-category problem, the Bayesian decision rule

1238 L. Xiao, Y. Wang, B. Liu, W. Liu

takes the form,

It ∈

{
Za, if P (Za|Xt)

P (ZB |Xt)
> 1,

Zb, otherwise.
(21)

Figure 3. Exemplars in Caltech-256 dataset

P (Za|Xt)

P (Zb|Xt)
∝ P (R|Ya)
P (R|Yb)

=

∑na

j=1 P (R|Yaj)P (Yaj)∑nb

j=1 P (R|Ybj)P (Ybj)

=
1
C

1
na

∑na

j=1 P (R|Yaj)
1
C

1
nb

∑nb

j=1 P (R|Ybj)

∝
1
na

∑na

j=1 P (Raj|Yaj)
1
nb

∑nb

j=1 P (Rbj|Ybj)

∝
1
na

∑na

j=1 Laj
1
nb

∑nb

j=1 Lbj
(22)

Applying the Bayesian decision rule, we have,

Xt ∈

{
Za, if 1

nu

∑na

j=1 Laj >
1
nb

∑nb

j=1 Lbj,

Zb, otherwise.
(23)

Similarly, for multi-category classification problem, given the studied class set Z =
Z1, Z2, . . . , ZC , then the final Bayesian decision rule can be defined as

Xt ∈ Za, if
1

na

na∑
j=1

Laj >
1

nb

nb∑
j=1

Lbj (24)

Probabilistic Memory Model for Visual Images Categorization 1239

for all b 6= a, 1 ≤ a, b ≤ C. The storage and retrieval process for PMM is illustrated
in Figure 1, where the parameters ρ, g and θ are assumed to be 0.1, 0.01 and 1,
respectively. The process includes nine steps:

The storage and retrieval process for PMM

Step 1 : Given the studied feature vectors coming from three different classes with
each consisting of two images.

Step 2 : Estimate the corresponding means µ and variance σ2 of the two studied
feature values in each class, respectively.

Step 3 : Present the feature vector of the test image whose category needs to be
judged.

Step 4 : Find the matched and nonmatched locations between the feature values of
the studied images and the test image according to Equation (7), where 1 represents
the matched features, -1 stands for the nonmatched features.

Step 5 : Given the matching results. For the positions where the value is 0, the
matching result is ignored. For nonmatched positions where the value is -1, the
matching result is set as 1-ρ, whereas for the matched positions where the value is
1, the matching result is computed according to Equation (14).

Step 6 : Calculate the likelihood ratio Lij by multiplying all the matching results for
each image according to Equation (15).

Step 7 : Calculate the class likelihood ratio based on the summation of all the
ratios of the two studied images from the same category.

Step 8 : Compute the odd value Φ based on all likelihood values according to
Equation (19).

Step 9 : Make the decision. If the odd value is larger than a certain threshold, the
test image is decided as old, and the Bayesian decision rule is applied to the image
classification, otherwise decided as new.

4 EXPERIMENTS

For the purpose of performance evaluation of the proposed PMM, we conduct the ex-
periments on two benchmark image databases, Caltech-101 [30] and Caltech-256 [31].
The experiments are implemented on MATLAB R2017b. The test environment is a
laptop computer with Intel (R) Core (TM) i7-4770 CPU @ 3.40 GHz, 16 GB mem-
ory, and Windows10 operating system. First, the parameters of the PMM are tuned
to reach the optimal performance, and then the effects on image classification by
PMM are compared with several image classification methods, including the tradi-
tional support vector machine (SVM) [32] and some state-of-the-art methods such
as VGG-19 [33], ResNet-50 [34], SLRC [35], ICS-DLSR [36], WKRBM [37], Euler-
SRC [38] and NRC [39]. Finally, the memory recognition performance of PMM is
evaluated. All the experimental results are averaged by 10 runs.

1240 L. Xiao, Y. Wang, B. Liu, W. Liu

4.1 Datasets

4.1.1 Caltech-101 Dataset

The Caltech-101 dataset contains a total of 9 144 images from 102 classes, one of
which is the background, the number of images for each class ranges from 31 to 800.
Figure 2 shows some exemplars in Caltech-101 dataset.

a) Exemplars of training set

b) Exemplars of studied images for testing c) Exemplars of unstudied images for testing

Figure 4. Exemplars of training images and test images on Caltech-101 dataset

4.1.2 Caltech-256 Dataset

The Caltech-256 dataset contains 257 categories with a total of 30 607 images with
each category more than 80 different images. Figure 3 shows some exemplars in
Caltech-256 dataset.

4.2 Parameters Optimization

As mentioned above, the probabilistic storage process of the PMM can be described
by 4 parameters, two Gaussian distribution parameters µ and σ, and two other
probability parameters ρ and g. For the Gaussian distribution parameters µ and
σ, they can be estimated by the images of each category after feature extraction.
While only the parameters µ and g need to be optimized. In the experiment, for each
dataset, we randomly choose 20 categories and 20 images per category for training,

Probabilistic Memory Model for Visual Images Categorization 1241

a) Exemplars of training set

b) Exemplars of studied images for testing c) Exemplars of unstudied images for testing

Figure 5. Exemplars of training images and test images on Caltech-256 dataset

then randomly choose 10 images of each category for hit rate evaluation, meanwhile
randomly choose 20 new categories (10 images of each category) for false alarm
evaluation, that is, the test images include 200 studied images and 200 new categories
images. Some image exemplars are shown in Figure 4 and Figure 5. Figure 6 and
Figure 7 demonstrate the comparison results of the recognition performance under
varying parameters g and ρ. As shown in Figure 6 and Figure 7, for both datasets,
when g = 0.01 and g = 0.02, the hit rates are higher than other g, while when
g = 0.02, the false alarm rates are obviously lower than g = 0.01. When ρ = 0.1,
the hit rates are higher and the false alarm rates are lower than other ρ. Accordingly,
the optimal parameters are set as g = 0.02 and ρ = 0.1 for both datasets.

4.3 Image Classification with PMM

For further validation of the pure classification performance, we compare the PMM
model with SVM [32] and some state-of-the-art methods such as VGG-19 [33],
ResNet-50 [34], SLRC [35], ICS-DLSR [36], WKRBM [37], Euler-SRC [38] and
NRC [39] on both datasets. In the experiment, for each dataset, we randomly
select 20, 40, 80 categories and 30 images per category, including 10 images as train-
ing set and 20 images as test set or 25 images as training set and 5 images as test
set, respectively. The image features are extracted with the trained convolutional
neural network VGG-19 model except the ResNet-50 method, in which the image
features are extracted with the trained residual neural network model. In SVM, the
extracted features are fed into a linear support vector machine (LIB-SVM [32]). As

1242 L. Xiao, Y. Wang, B. Liu, W. Liu

shown in Tables 1 and 2, the classification performance of PMM has the highest
classification rate in comparison to all the other eight models with both datasets.

0.1 0.2 0.3 0.4 0.5

The Probability Value of

50

60

70

80

90

100

T
he

 H
it

R
at

e
(%

)

The Hit Rate Curve

g=0.01
g=0.02
g=0.03
g=0.04

0.1 0.2 0.3 0.4 0.5

The Probability Value of

0

10

20

30

40

50

60

T
he

 F
al

se
 A

la
rm

 r
at

e(
%

)

The False Alarm Rate Curve

g=0.01
g=0.02
g=0.03
g=0.04

Figure 6. Comparison results of the memory recognition performance under varying pa-
rameters ρ and g on Caltech-101 dataset

0.1 0.2 0.3 0.4 0.5

The Probability Value of

40

50

60

70

80

90

100

T
he

 H
it

R
at

e
(%

)

The Hit Rate Curve

g=0.01
g=0.02
g=0.03
g=0.04

0.1 0.2 0.3 0.4 0.5

The Probability Value of

0

10

20

30

40

50

60

T
he

 F
al

se
 A

la
rm

 R
at

e
(%

)

The False Alarm Rate Curve

g=0.01
g=0.02
g=0.03
g=0.04

Figure 7. Comparison results of the memory recognition performance under varying pa-
rameters ρ and g on Caltech-256 dataset

4.4 Recognition Performance Evaluation

Memory recognition performance means the rate of responding ‘old’ or ‘new’ to
a probe image. To evaluate the effects of recognition, we compare the PMM model
with some machine learning based approaches including VGG-19 [33], ResNet-50 [34]
and NRC [39] on both datasets, which also show good classification performance. In

Probabilistic Memory Model for Visual Images Categorization 1243

Images Methods 20 categories 40 categories 80 categories

10 train/20 test PMM 95.80 94.55 91.65
SVM 91.73 87.94 83.96
VGG-19 92.72 91.34 91.31
ResNet-50 95.10 91.63 91.35
SLRC 90.24 88.97 87.60
ICS-DLSR 89.61 87.82 86.80
WKRBM 88.51 87.31 85.22
Euler-SRC 88.11 87.16 86.77
NRC 93.55 91.47 90.32

25train/5test PMM 97.80 96.40 92.85
SVM 92.80 91.85 88.95
VGG-19 96.52 94.62 92.75
ResNet-50 96.60 94.70 92.92
SLRC 92.81 90.61 88.53
ICS-DLSR 89.91 88.32 87.34
WKRBM 92.51 90.43 89.53
Euler-SRC 91.89 90.13 88.64
NRC 94.11 93.72 91.96

Table 1. Comparison classification performance of PMM with the other eight methods on
Caltech-101 dataset (%)

Images Methods 20 categories 40 categories 80 categories

10 train/20 test PMM 91.83 87.31 84.89
SVM 85.72 80.45 76.65
VGG-19 88.22 87.09 83.56
ResNet-50 91.05 87.23 83.96
SLRC 88.69 86.25 81.81
ICS-DLSR 87.95 85.83 80.62
WKRBM 88.53 84.41 81.38
Euler-SRC 88.43 85.75 82.12
NRC 89.25 86.33 83.31

25 train/5 test PMM 93.78 90.44 86.44
SVM 89.56 88.61 82.81
VGG-19 90.01 89.72 86.15
ResNet-50 92.40 89.95 86.50
SLRC 90.86 87.50 84.50
ICS-DLSR 91.31 88.83 84.08
WKRBM 91.38 87.13 83.66
Euler-SRC 91.85 87.65 84.25
NRC 91.80 88.75 85.75

Table 2. Comparison classification performance of PMM with the other eight methods on
Caltech-256 dataset (%)

1244 L. Xiao, Y. Wang, B. Liu, W. Liu

the experiment, for each dataset, we randomly choose 20 categories and 20 images
per category for training, then randomly choose 10 images of each category for
testing, meanwhile randomly choose 20 new categories (10 images of each category)
for testing, that is, the test images include 200 studied images and 200 new category
images. Tables 3 and 4 list the hit rates and false alarm rates for each of the methods
for both datasets. It can be seen that these machine learning based methods fail to
decide whether a test image is studied or not, whereas the proposed PMM is able
to recognize most of the unstudied images.

Methods P(H) P(F)

PMM 96.07 29.28

VGG-19 91.85 100

ResNet-50 93.33 100

NRC 92.25 100

Table 3. Comparison recognition results of the hit rates P(H) (%) and the false alarm
rates P(F) (%) of PMM, VGG-19, ResNet-50 and NRC methods on Caltech-101 dataset

Methods P(H) P(F)

PMM 91.67 29.98

VGG-19 87.37 100

ResNet-50 90.33 100

NRC 88.78 100

Table 4. Comparison recognition results of the hit rates P(H) (%) and the false alarm
rates P(F) (%) of PMM, VGG-19, ResNet-50 and NRC methods on Caltech-256 dataset

5 CONCLUSIONS

In this paper, we have presented a probabilistic memory model (PMM) for visual
image storage and recall based on probabilistic inference and Bayesian decision.
We assume that the original visual image feature values extracted by deep CNN are
stored stochastically, with being correctly copied with some probability or randomly
produced conforming to an exponential distribution. The probabilistic generative
model can facilitate the matching process between the test image and the studied
images during learning. Thus, when a new object of a new category is presented,
PMM can judge it as an unknown object instead of identifying it from a studied
category. Additionally, the proposed PMM can also be applied to the classification of
natural multi-category images. We have conducted experiments on Caltech-101 and
Caltech-256 databases to validate the effectiveness of PMM. The results manifest
that PMM achieves better classification performance in image classification tasks
than most state-of-the-art image classification methods. It is worth highlighting
that PMM can also determine the images from an unstudied category, whereas the
other methods fail.

Probabilistic Memory Model for Visual Images Categorization 1245

The current PMM can imitate the human brain memory for visual images learn-
ing to some extent and offer a new way for visual images categorization, however,
there are also some limitations to PMM. First, the probabilistic model parameters
are chosen experimentally and might be influenced by the image datasets used. Sec-
ondly, the matching rule between the test feature vector and the learned feature
vectors seems simple and might not be consistent with the way of humans memo-
rizing visual images. These two issues will remain for further investigation in our
future work.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of
China (No. 62072468), the Shandong Provincial Natural Science Foundation, China
(Nos. ZR2018MF017, ZR2019MF073), and the Fundamental Research Funds for the
Central Universities, China University of Petroleum (East China) (No. 18CX060-
60A).

REFERENCES

[1] Lee, M. D.—Vanpaemel, W.: Determining Informative Priors for Cognitive Mod-
els. Psychonomic Bulletin and Review, Vol. 25, 2018, No. 1, pp. 114–127, doi:
10.3758/s13423-017-1238-3.

[2] Atkinson, R. C.—Shiffrin, R. M.: Human Memory: A Proposed System and
Its Control Processes. Psychology of Learning and Motivation, Vol. 2, 1968, No. 1,
pp. 89–195, doi: 10.1016/s0079-7421(08)60422-3.

[3] Raaijmakers, J. G. W.—Shiffrin, R. M.: SAM: A Theory of Probabilistic Search
of Associative Memory. Psychology of Learning and Motivation, Vol. 14, 1980,
pp. 207–262, doi: 10.1016/s0079-7421(08)60162-0.

[4] Dennis, S.—Humphreys, M. S.: A Context Noise Model of Episodic Word Recog-
nition. Psychological Review, Vol. 108, 2001, pp. 452–478, doi: 10.1037/0033-
295x.108.2.452.

[5] Polyn, S. M.—Kahana, M. J.: Memory Search and the Neural Representation
of Context. Trends in Cognitive Sciences, Vol. 12, 2008, No. 1, pp. 24–30, doi:
10.1016/j.tics.2007.10.010.

[6] Shiffrin, R. M.—Steyvers, M.: A Model for Recognition Memory: REM – Re-
trieving Effectively from Memory. Psychonomic Bulletin and Review, Vol. 4, 1997,
No. 2, pp. 145–166, doi: 10.3758/bf03209391.

[7] Liu, B.—Jing, L.—Li, J.—Yu, J.—Gittens, A.—Mahoney, M. W.: Group
Collaborative Representation for Image Set Classification. International Journal of
Computer Vision, Vol. 127, 2019, No. 2, pp. 181–206, doi: 10.1007/s11263-018-1088-
0.

[8] Wan, W.—Zhong, Y.—Li, T.—Chen, J.: Rethinking Feature Distribution for
Loss Functions in Image Classification. Proceedings of 2018 IEEE/CVF Conference

https://doi.org/10.3758/s13423-017-1238-3
https://doi.org/10.1016/s0079-7421(08)60422-3
https://doi.org/10.1016/s0079-7421(08)60162-0
https://doi.org/10.1037/0033-295x.108.2.452
https://doi.org/10.1037/0033-295x.108.2.452
https://doi.org/10.1016/j.tics.2007.10.010
https://doi.org/10.3758/bf03209391
https://doi.org/10.1007/s11263-018-1088-0
https://doi.org/10.1007/s11263-018-1088-0

1246 L. Xiao, Y. Wang, B. Liu, W. Liu

on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
2018, pp. 9117–9126, doi: 10.1109/cvpr.2018.00950.

[9] Liu, B. D.—Gui, L.—Wang, Y.—Wang, Y. X.—Shen, B.—Li, X.—Wang,
Y. J.: Class Specific Centralized Dictionary Learning for Face Recognition. Multime-
dia Tools and Applications, Vol. 76, 2017, No. 3, pp. 4159–4177, doi: 10.1007/s11042-
015-3042-2.

[10] Murdock, B. B.: A Theory for the Storage and Retrieval of Item and Associa-
tive Information. Psychological Review, Vol. 89, 1982, No. 6, pp. 609–626, doi:
10.1037/0033-295x.89.6.609.

[11] Hinton, G. E.—Sejnowski, T. J.: Optimal Perceptual Inference. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Wash-
ington, D. C., June 1983, pp. 448–453.

[12] Knill, D. C.—Pouget, A.: The Bayesian Brain: The Role of Uncertainty in
Neural Coding and Computation. Trends in Neurosciences, Vol. 27, 2004, No. 12,
pp. 712–719, doi: 10.1016/j.tins.2004.10.007.

[13] Lee, T. S.—Mumford, D.: Hierarchical Bayesian Inference in the Visual Cortex.
Journal of the Optical Society of America A – Optics Image Science and Vision,
Vol. 20, 2003, No. 7, pp. 1434–1448, doi: 10.1364/josaa.20.001434.

[14] Tenenbaum, J. B.—Griffiths, T. L.—Kemp, C.: Theory-Based Bayesian Mod-
els of Inductive Learning and Reasoning. Trends in Cognitive Sciences, Vol. 10, 2006,
No. 7, pp. 309–318, doi: 10.1016/j.tics.2006.05.009.

[15] Socher, R.—Gershman, S.—Sederberg, P.—Norman, K.—Perotte, A.—
Blei, D.: A Bayesian Analysis of Dynamics in Free Recall. In: Bengio, Y., Schuur-
mans, D., Lafferty, J., Williams, C., Culotta, A. (Eds.): Advances in Neural Infor-
mation Processing Systems 22 (NIPS 2009), 2009, pp. 1714–1722.

[16] Elazary, L.—Itti, L.: A Bayesian Model for Efficient Visual Search and
Recognition. Vision Research, Vol. 50, 2010, No. 14, pp. 1338–1352, doi:
10.1016/j.visres.2010.01.002.

[17] Chikkerur, S.—Serre, T.—Tan, C.—Poggio, T.: What and Where:
A Bayesian Inference Theory of Attention. Vision Research, Vol. 50, 2010, No. 22,
pp. 2233–2247, doi: 10.1016/j.visres.2010.05.013.

[18] Song, S.—Xu, B.—Yang, J.: SAR Target Recognition via Supervised Discrim-
inative Dictionary Learning and Sparse Representation of the SAR-HOG Feature.
Remote Sensing, Vol. 8, 2016, No. 8, Art. No. 683, doi: 10.3390/rs8080683.

[19] Kaplan, K.—Kaya, Y.—Kuncan, M.—Minaz, M. R.—Ertunç, H. M.: An
Improved Feature Extraction Method Using Texture Analysis with LBP for Bear-
ing Fault Diagnosis. Applied Soft Computing, Vol. 87, 2020, Art. No. 106019, doi:
10.1016/j.asoc.2019.106019.

[20] Ai, J.—Tian, R.—Luo, Q.—Jin, J.—Tang, B.: Multi-Scale Rotation-Invariant
Haar-Like Feature Integrated CNN-Based Ship Detection Algorithm of Multiple-
Target Environment in SAR Imagery. IEEE Transactions on Geoscience and Remote
Sensing, Vol. 57, 2019, No. 12, pp. 10070–10087, doi: 10.1109/tgrs.2019.2931308.

https://doi.org/10.1109/cvpr.2018.00950
https://doi.org/10.1007/s11042-015-3042-2
https://doi.org/10.1007/s11042-015-3042-2
https://doi.org/10.1037/0033-295x.89.6.609
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1364/josaa.20.001434
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.1016/j.visres.2010.01.002
https://doi.org/10.1016/j.visres.2010.05.013
https://doi.org/10.3390/rs8080683
https://doi.org/10.1016/j.asoc.2019.106019
https://doi.org/10.1109/tgrs.2019.2931308

Probabilistic Memory Model for Visual Images Categorization 1247

[21] Mikolajczyk, K.—Schmid, C.: A Performance Evaluation of Local Descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, 2005,
No. 10, pp. 1615–1630, doi: 10.1109/tpami.2005.188.

[22] Chicco, D.—Sadowski, P.—Baldi, P.: Deep Autoencoder Neural Networks for
Gene Ontology Annotation Predictions. Proceedings of the 5th ACM Conference
on Bioinformatics, Computational Biology, and Health Informatics (BCB ’14), 2014,
pp. 533–540, doi: 10.1145/2649387.2649442.

[23] Larochelle, H.—Mandel, M.—Pascanu, R.—Bengio, Y.: Learning Algo-
rithms for the Classification Restricted Boltzmann Machine. The Journal of Machine
Learning Research, Vol. 13, 2012, No. 1, pp. 643–669.

[24] Gregor, K.—Danihelka, I.—Graves, A.—Rezende, D.—Wierstra, D.:
DRAW: A Recurrent Neural Network for Image Generation. Proceedings of the 32nd

International Conference on Machine Learning, PMLR, Vol. 37, 2015, pp. 1462–1471.

[25] Simonyan, K.—Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. 3rd International Conference on Learning Representations (ICLR
2015), San Diego, CA, USA, 2015. arXiv:1409.1556v6, 2015.

[26] Yamins, D. L. K.—DiCarlo J. J.: Using Goal-Driven Deep Learning Models to
Understand Sensory Cortex. Nature Neuroscience, Vol. 19, 2016, No. 3, pp. 356–365,
doi: 10.1038/nn.4244.

[27] Fukushima, K.: Neocognitron: A Self-Organizing Neural Network Model for
a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biological Cy-
bernetics, Vol. 36, 1980, pp. 193–202, doi: 10.1007/bf00344251.

[28] Riesenhuber, M.—Poggio, T.: Hierarchical Models of Object Recognition in
Cortex. Nature Neuroscience, Vol. 2, 1999, No. 11, pp. 1019–1025, doi: 10.1038/14819.

[29] Beck, J. M.—Ma, W. J.—Kiani, R.—Hanks, T.—Churchland, A. K.—
Roitman, J.—Shadlen, M. N.—Latham, P. E.—Pouget, A.: Probabilistic
Population Codes for Bayesian Decision Making. Neuron, Vol. 60, 2008, No. 6,
pp. 1142–1152, doi: 10.1016/j.neuron.2008.09.021.

[30] Li, F. F.—Fergus, R.—Perona, P.: Learning Generative Visual Models from Few
Training Examples: An Incremental Bayesian Approach Tested on 101 Object Cate-
gories. Computer Vision and Image Understanding, Vol. 106, 2007, No. 1, pp. 59–70,
doi: 10.1016/j.cviu.2005.09.012.

[31] Griffin, G.—Holub, A.—Perona, P.: Caltech-256 Object Category Dataset.
California Institute of Technology, 2007.

[32] Chang, C. C.—Lin, C. J.: LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology (TIST), Vol. 2, 2011, No. 3,
Art. No. 27, doi: 10.1145/1961189.1961199.

[33] He, K.—Zhang, X.—Ren, S.—Sun, J.: Deep Residual Learning for Im-
age Recognition. Proceedings of the 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778, doi:
10.1109/cvpr.2016.90.

[34] Deng, W.—Hu, J.—Guo, J.: Face Recognition via Collaborative Representation:
Its Discriminant Nature and Superposed Representation. IEEE Transactions on Pat-

https://doi.org/10.1109/tpami.2005.188
https://doi.org/10.1145/2649387.2649442
https://doi.org/10.1038/nn.4244
https://doi.org/10.1007/bf00344251
https://doi.org/10.1038/14819
https://doi.org/10.1016/j.neuron.2008.09.021
https://doi.org/10.1016/j.cviu.2005.09.012
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1109/cvpr.2016.90

1248 L. Xiao, Y. Wang, B. Liu, W. Liu

tern Analysis and Machine Intelligence, Vol. 40, 2018, No. 10, pp. 2513–2521, doi:
10.1109/tpami.2017.2757923.

[35] Wen, J.—Xu, Y.—Li, Z.—Ma, Z.—Xu, Y.: Inter-Class Sparsity Based Discrim-
inative Least Square Regression. Neural Networks, Vol. 102, 2018, No. 10, pp. 36–47,
doi: 10.1016/j.neunet.2018.02.002.

[36] Qin, Y.—Tian, C.: Weighted Feature Space Representation with Kernel for Image
Classification. Arabian Journal for Science and Engineering, Vol. 43, 2018, No. 12,
pp. 7113–7125, doi: 10.1007/s13369-017-2952-x.

[37] Song, Y.—Liu, Y.—Gao, Q.—Gao, X.—Nie, F.—Cui, R.: Euler Label Con-
sistent K-SVD for Image Classification and Action Recognition. Neurocomputing,
Vol. 310, 2018, pp. 277–286, doi: 10.1016/j.neucom.2018.05.036.

[38] Xu, J.—An, W.—Zhang, L.—Zhang, D.: Sparse, Collaborative, or Nonnegative
Representation: Which Helps Pattern Classification? Pattern Recognition, Vol. 88,
2019, pp. 679–688, doi: 10.1016/j.patcog.2018.12.023.

[39] Sederberg, P. B.—Norman, K. A.: Learning and Memory: Computational Mod-
els. Encyclopedia of Behavioral Neuroscience, 2010, pp. 145–153, doi: 10.1016/b978-
0-08-045396-5.00140-8.

https://doi.org/10.1109/tpami.2017.2757923
https://doi.org/10.1016/j.neunet.2018.02.002
https://doi.org/10.1007/s13369-017-2952-x
https://doi.org/10.1016/j.neucom.2018.05.036
https://doi.org/10.1016/j.patcog.2018.12.023
https://doi.org/10.1016/b978-0-08-045396-5.00140-8
https://doi.org/10.1016/b978-0-08-045396-5.00140-8

Probabilistic Memory Model for Visual Images Categorization 1249

Linxia Xiao received her Master’s degree in communication
and information system from Shandong University of Science
and Technology in 2017. Currently, she is studying for her Ph.D.
degree in control science and engineering in China University of
Petroleum. Her research interests include pattern recognition,
computer vision, and cognitive science.

Yanjiang Wang is currently Full Professor with the College of
Control Science and Engineering, China University of Petroleum
(East China), China. He received his M.Sc. degree in commu-
nication and electronic system from the Beijing University of
Aeronautics and Astronautics, Beijing, China, in 1989 and the
Ph.D. degree in signal and information processing from the Bei-
jing Jiaotong University, Beijing, China, in 2001. He was Post-
doctoral Researcher with the Institute of Drilling Engineering,
Shengli Oilfield, Dongying, China, from 2003 to 2006. From 2013
to 2014, he was Visiting Scholar with the Department of Psycho-

logical and Brain Sciences, Indiana University, Bloomington, Indiana, USA. His current
research interests include bio-inspired pattern recognition, cognitive memory modeling and
human brain connectivity. He has authored or co-authored more than 200 papers in top
journals and prestigious conferences.

Baodi Liu received his Ph.D. degree in electronic engineer-
ing from the Tsinghua University, Beijing, China. He is cur-
rently Associate Professor with the College of Information and
Control Engineering, China University of Petroleum, Qingdao,
China. His research interests include computer vision and ma-
chine learning.

Weifeng Liu received his double B.Sc. degree in automation
and business administration and the Ph.D. degree in pattern
recognition and intelligent systems from the University of Scien-
ce and Technology of China, Hefei, China in 2002 and 2007, re-
spectively. His current research interests include pattern recog-
nition and machine learning.

Computing and Informatics, Vol. 39, 2020, 1250–1281, doi: 10.31577/cai 2020 6 1250

MITIGATING DRAWBACKS OF LOGISTIC MAP
FOR IMAGE ENCRYPTION ALGORITHMS

Jakub Oravec, Ľuboš Ovseńık, Ján Turán, Tomáš Huszańık

Department of Electronics and Multimedia Communications
Technical University of Košice
Němcovej 32
040 01 Košice, Slovakia
e-mail: {jakub.oravec, lubos.ovsenik, jan.turan,

tomas.huszanik}@tuke.sk

Abstract. This paper identifies and analyses some drawbacks of the logistic map
which is still one of the most used chaotic maps in image encryption algorithms. As
some of the disadvantages are caused by inappropriate implementations of the logis-
tic map, this paper proposes a set of rules which should lead to enhancement of the
desired chaotic behavior. Probably the most important rule introduces alternating
value of parameter utilized by the logistic map. With careful choice of values and an
adapted quantization technique, some of the issues should be fixed and theoretically
also the values of numerical parameters should be improved. These assumptions are
verified by applying the proposed set of rules on an algorithm from our prior work.
Effects of the proposed rules on the used algorithm are investigated and all nec-
essary modifications are thoroughly discussed. The paper also compares obtained
values of commonly used numerical parameters and computational complexity with
some other image encryption algorithms based on more complex chaotic systems.

Keywords: Fixed point, image encryption, logistic map, Lyapunov exponent, pe-
riodic cycle

Mathematics Subject Classification 2010: 94A60, 68U10

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1251

1 INTRODUCTION

Nowadays, there are many possible ways for establishing security of multimedia
data. Each solution has certain advantages and drawbacks determined by its design
and expected applications. This statement is valid even for well-established “con-
ventional” encryption algorithms such as Advanced Encryption Standard (AES) [1].
While AES could be used in a wide amount of applications, it was designed primar-
ily for operations with small blocks of hexadecimal data. Careless implementation
of AES for image encryption, especially using simpler modes of operation could lead
to undesired results. One example of this situation is shown in Figure 1 where
a grayscale image with a resolution of 256 × 128 pixels was encrypted by AES us-
ing Electronic CodeBook (ECB) mode of operation [2]. This example used key
0× C4 EB 50 BC 0E C5 EB 50 BC 0E C5 EB 50 BC 0E C5 for the encryption.

image encrypted by AES ECBplain image (before encryption)

Figure 1. Visible artifacts in an image encrypted by AES ECB

The encrypted image displayed in Figure 1 shows that AES in ECB mode could
create visible artifacts that are correlated with the plain image. This drawback is
not present in other modes of operation [2], but not all users are familiar with it.

Presented issue of AES in ECB mode is caused by its design – the image is
processed as a set of blocks. Each block is replaced by a corresponding block from
a code book during the encryption. If the plain image contains several identical
blocks of image pixel intensities, all these blocks are replaced by the same block
from the code book. This situation is undesirable since the images are known for
rather high redundancy and they can contain multiple groups of identical blocks.

On the other hand, encryption algorithms that were designed specifically for
image encryption try to adjust their steps to characteristics of image data. This
means that the dedicated image encryption algorithms are robust against attacks
that are feasible on image data. Also, performance of the dedicated algorithms
should be better, however this is hard to prove as the conventional algorithms use
various tricks such as hardware acceleration [3] for increasing their performance.

The dedicated image encryption algorithms found their applications mainly in
areas which are sensitive to presence of even small artifacts such as encryption
of medical images [4] or encryption of secret data in steganographic systems [5].
Also some biometric systems could benefit from lower computational complexity of
carefully designed image encryption algorithms [6].

1252 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

The history of dedicated image encryption algorithms goes back to 1989, when
Matthews proposed an encryption algorithm that utilized logistic map (LM) [7].
While this scheme did not encrypt images, it described some techniques that later
became essential for the image encryption algorithms. The choice of used chaotic
map was explained by Matthews mainly by good understanding of the LM at the
time. One of the first extensive studies of LM was published already in 1976 by
May [8] and since then, multiple works investigated properties of LM in general [9,
10, 11], or its properties in certain applications [12, 13, 14, 15, 16, 17].

The work of Matthews was later continued by Fridrich, who described one of
the first encryption algorithms designed specifically for operations with images in
1998 [18]. Probably the biggest advantage of Fridrich’s algorithm is its architecture
which was later adopted by many other image encryption algorithms. Some of
the drawbacks of this algorithm and similar ones were described by Solak et al.
in 2010 [19] and later also by Xie et al. in 2017 [20]. The newest image encryption
algorithms take into account the drawbacks of Fridrich’s architecture and they utilize
techniques to overcome these issues [21, 22, 23, 24]. However, less work has been
done in mitigating vulnerabilities of the LM in image encryption algorithms even if
they are already described [12, 14].

These vulnerabilities such as occurrence of periodic cycles [10], existence of a re-
lation between successive iterates or their uneven distribution [12] negatively affect
generated pseudo-random (PR) sequences. If the generated sequences do not possess
required statistical properties and they are still used for encryption, the analysis of
encrypted data can reveal information about algorithm’s architecture or a part of
used key. Furthermore, some attacks can obtain parts of the plain data and this
could eventually lead to a break of whole encryption algorithm [13, 14, 15, 16].

The LM is not the only chaotic map used for image encryption, however it
can be considered as one of the most popular. Some approaches utilize various
modifications of LM or other chaotic maps. Cao et al. described a new custom map
in their paper from 2018 [25] that was a result of cascading LM and other chaotic
map. Similar solution was proposed by Alawida et al. in 2019 [26]. In both these
cases authors review basic properties of the resulting maps by means of their chaotic
behavior. However, long-time experience with LM shows that new vulnerabilities
could be found out even after multiple years of research [14]. Therefore usage of
a newly derived chaotic map without exhaustive analysis of its properties could be
viewed as a disadvantage of whole image encryption algorithm.

Other notable approach for enhancement of chaotic behavior is usage of chaotic
maps with far too many dimensions. Usage of multidimensional systems could lead
to big key spaces, however in general they have a negative impact on computational
complexity of the algorithms. Probably the most extreme cases are algorithms by
Zhu and Zhu from 2018 [27] or by Sun et al. from 2019 [28]. The first proposal uses
six dimensional system, while the second one uses seven dimensional system.

In this paper, we would like to address some of the basic defects regarding usage
of LM in the image encryption algorithms. While some are caused by the map itself
(or its discretized version), some can be viewed as an inappropriate implementation

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1253

by the researchers. We would like to propose some fixes for issues that still do
not have an efficient solution. As these fixes can affect other techniques used in
the field (such as quantization [29]), this paper will briefly describe also some well-
known practices in the field of image encryption. Furthermore, in order to provide
a complex insight to all necessary blocks of an image encryption algorithm, we will
shortly mention also some techniques described in our prior works (e.g. in [24]).

The second goal of this paper is to compare values of commonly used numerical
parameters and measure the increase of computational complexity caused by the
proposed fixes. As equation of the LM is considered to be quite simple and therefore
the map is considered as relatively fast [10], the proposed fixes should not greatly
affect the computational complexity. The increase of computational complexity
would be measured by applying the proposed fixes to our prior algorithm [24].

The rest of the paper is organized as follows: Section 2 analyzes the behavior
and general properties of the LM. Section 3 describes proposed fixes and the way
how they interact with other used techniques. Also some other useful methods are
mentioned. Section 4 experimentally verifies impact of proposed fixes and contains
measurements of numerical parameters and computational complexity. Lastly, Sec-
tion 5 summarizes the paper and gives a brief overview of possible future work.

2 LOGISTIC MAP AND ITS PROPERTIES

Logistic map (LM) could be characterized as an one dimensional chaotic map with
one control parameter r. When r ∈ (0, 4), each iteration of LM produces an iterate
xn ∈ (0, 1). Calculation of the first iterate x1 requires an initial value x0 ∈ (0, 1)
(also known as an initial point). Equation for the LM can be expressed as (1):

xn+1 = r · xn(1− xn). (1)

Equation (1) shows that successive iterates xn+1 use values of previous iterates xn
in their calculations. In order to suppress noticeable relationship between initial
value x0 and successive iterates, some of them are used only for providing other
initial value. This concept is known as a transient period and its usual length is at
least 1 000 iterates. With this length, the first 1 000 iterates are discarded (they are
not used for an application of the LM) and the first usable iterate is x1001.

2.1 Bifurcations, Self Similarity and Islands of Stability

The behavior of LM with various values of parameter r can be illustrated by a bifur-
cation diagram. An example of a bifurcation diagram obtained with 1 000 samples
for r ∈ (0, 4) is shown in Figure 2.

First bifurcation takes place at r ∼ 3, where predictable trajectory of iterate
values divides into two trajectories. Iterate values switch between these trajectories,
called orbits based on value of parameter r. Second bifurcation happens at r =

1254 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

0

0.2

0.4

0.6

0.8

1

x
n

r

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 2. A bifurcation diagram of the logistic map

1 +
√

6 ∼ 3.44949. The distance between following bifurcations decreases each time
by a ratio approximately given by Feigenbaum constant δf ∼ 4.6692 [30].

It needs to be pointed out that the shape of orbits after second bifurcation
resembles shape of orbits after first bifurcation. This is one example of self similarity
or fractal behavior caused by the LM.

The point where r ∼ 3.56995 is considered as “an onset of chaos” [31]. However,
the iterates still do not obtain values from whole interval of (0, 1). Moreover, there
are some areas known as islands of stability where increasing value of r does not cause
multiplication of orbit amount, but the amount of orbits is significantly decreased.
The self similarity of LM and an island of stability around r = 1 +

√
8 ∼ 3.82843

are illustrated in Figure 3 on a magnified part of the bifurcation diagram. The
magnified part contains 1 000 samples for r ∈ (3.5, 4).

2.2 Measurement of Chaotic Behavior

Quantification of chaotic behavior is important for comparing various chaotic maps.
The dynamics of chaotic maps are usually expressed by values of maximal Lyapunov
exponents (LEs) λmax. As the LM is only one dimensional chaotic map, it does have
only one LE λmax = λ.

The basic idea behind computation of LEs investigates relationship of two or-
bits: the first one starts with an initial point p0 and initial point for the sec-
ond orbit denoted as p0 + δ0 is achieved by applying small perturbation δ0 to
the point p0. If orbits for these two initial points diverge from each other over
time (λ > 0), investigated system is considered as chaotic. Otherwise, when the
orbits are converging to each other (λ < 0), it may indicate that investigated
system at a certain point tends to have periodic orbit or a fixed point. These
two basic situations are displayed in Figure 4. Generally speaking, the higher

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1255

0

0.2

0.4

0.6

0.8

1

x
n

r

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4

Figure 3. An illustration of self similarity and islands of stability

value of positive λ is, the better chaotic behavior can be expected from chaotic
map.

orbits are converging, λ < 0

pn
δn+

p 0

δ 0

+

time

it
er

a
te

 v
a
lu

e

p 0

pn

λ >orbits are diverging, 0

p 0

δ 0

+

pn
δn+

time

it
er

a
te

 v
a
lu

e

p 0

pn

Figure 4. An illustration of diverging and converging orbits

In general, the values of λ can be computed via (2). Please note that practical
computations are limited to finite amount of iterates n. Therefore, the resulting
value of λ is only an estimation [32]. Commonly used values of n are 1 000 or 10 000
iterates.

λ =
1

n
·
∣∣∣∣δnδ0
∣∣∣∣ =

1

n
· ln|(fn)′(x0)| ∼ lim

n→∞

1

n
·
n−1∑
i=0

ln|f ′(xi)| (2)

where brackets |a| denote absolute value of a, δ0 is an initial perturbation – an initial
difference between orbits, δn is the difference between orbits after n iterations, ln(b)

1256 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

is a natural logarithm of b, (fn) is a value of function f at point n, (fn)′(x0) is
a derivation of fn with respect to x0 and i is the iterate index number.

The calculations of λ for the LM substitute arbitrary function f with (1) that
could be rearranged and its derivation with respect to xi equals to r(1−2xi). There-
fore, the estimation of LE for the LM λLM could be expressed as (3):

λLM ∼ lim
n→∞

1

n
·
n−1∑
i=0

ln|r(1− 2xi)|. (3)

Please note that the value of λLM depends on both r and xi which is a substitu-
tion for xn from (1). While the dependence on r is pretty clear from the bifurcation
diagram (see Figure 2 as the amount of bifurcations increases with greater values
of r), the dependence on xn is not that clear. It is caused by the fact that xn is a
result of n iterations of the LM which started with an initial value of x0 ∈ (0, 1).
Various values of x0 therefore can affect the behavior of the LM [32].

The obtained estimated values of LE for the LM with x0 = 0.5, r ∈ 〈0, 4〉
and n = 1 000 are displayed in Figure 5. The interval for r is represented by 40 000
samples. The red line at λ = 0 marks the boundary which determines if the behavior
of the LM is considered as chaotic or not. Please note that the predictable regions
of the bifurcation diagram (see Figures 2 and 3) result in negative values of λ.

r

0 0.5 1 1.5 2 2.5 3 3.5 4
-10

-8

-6

-4

-2

0

2

(0
.5

)
λ

,
r

Figure 5. Estimated Lyapunov exponents for r ∈ 〈0, 4〉

A detail of the estimated values of LE for x0 = 0.5, r ∈ 〈3.5, 4〉 and n = 1 000
is shown in Figure 6. The interval investigated in Figure 6 uses finer resolution as
it contains 50 000 samples (equivalent to 400 000 samples for r ∈ 〈0, 4〉). It needs to
be pointed out that the spike around island of stability at r = 1 +

√
8 ∼ 3.82843

resembles spikes visible in Figure 5. This is also caused by self similarity of the

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1257

r

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4
-4

-3

-2

-1

0

1

2
(0
.5

)
λ

,
r

Figure 6. Estimated Lyapunov exponents for r ∈ 〈3.5, 4〉

LM [31]. Therefore usage of finer resolution could reveal some spikes that are present
at values of r that could be otherwise not sampled.

Please note that while the equation of the LM (1) is given for r ∈ (0, 4), the plot
of estimated LE in Figure 4 uses r ∈ 〈0, 4〉. This is due to fact that global minimum
and global maximum of the estimated LE values are located on the boundary points
of this interval. Some researchers use λmax ∼ 1.3447 which is present for x0 =
0.5 at r = 4 with n = 1 000, however this value of r could cause occurrence of
a fixed point xn = 0 in systems with finite precision (used in a majority of practical
applications).

With usage of the double precision data type defined by IEEE 754 standard [33],
the decimal part of number is represented by 52 bits. This gives a precision of
log10 252 ∼ 15.6536 decimal places, therefore double precision data type reliably
represents only numbers with 15 or less decimal places. If some number has more
decimal places, it is rounded to the closest double precision value.

The largest value of λ for x0 = 0.5, r ∈ (0, 4) and n = 1 000 in the double
precision data type is located at r = 4− 9 · 10−15 and its estimated value is approx.
0.67601. This measurement used resolution equivalent to 4 · 1016 samples for the
interval of r ∈ 〈0, 4〉, therefore the set of possible xn has more samples than the
amount of numbers in interval (0, 1) represented by the double precision data type.

The effect of various initial values x0 on estimated values of λ is illustrated
in Figure 7. This measurement used amount of samples equivalent to 4 · 1013 for
r ∈ 〈0, 4〉 and n = 1 000. Please note that the two used values of x0 cause different
behavior of the LM only around a “self similar window”. Also the values of λ were
estimated with relatively fine resolution, coarser resolutions with less samples could
suppress some areas with significant spikes.

1258 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

-1.5

-1

-0.5

0

0.5

1

x
0

λ
(

,
r
)

r

3.
99

99
62

34
9

3.
99

99
62

34
7

3.
99

99
62

34
72

3.
99

99
62

34
74

3.
99

99
62

34
76

3.
99

99
62

34
78

3.
99

99
62

34
8

3.
99

99
62

34
82

3.
99

99
62

34
84

3.
99

99
62

34
86

3.
99

99
62

34
88

= 0.250x = 0.50x

Figure 7. Dependence of estimated Lyapunov exponents on initial value x0

2.3 Periodic Cycles and Fixed Points

As it was already mentioned, negative values of λ could lead to inappropriate be-
havior of the LM. One example of this behavior can be demonstrated using the
local minimum of λ for x0 = 0.5 from Figure 7. Successive iterates generated with
parameter r belonging to this minimum of λ are shown in Table 1.

x0 = 0.5, r = 3.999962347607499

x1 = 0.999990586901875 x6 = 0.009607660983953 x10 = x1 = 0.999990586901875
x2 = 0.000037651683653 x7 = 0.038061057061643 x11 = x2 = 0.000037651683653
x3 = 0.000150599646393 x8 = 0.146448273443029 x12 = x3 = 0.000150599646393
x4 = 0.000602302194975 x9 = 0.500000000000973 x13 = x4 = 0.000602302194975
x5 = 0.002407735043706 x14 = x5 = 0.002407735043706

Table 1. An example of periodic cycles generated by logistic map

The situation presented in Table 1 is known as a periodic cycle of the LM.
The presented example is caused by finite precision as a value of iterate x9 is very
similar to the value of x0 and while their successive iterates are different in systems
with higher precision, double precision systems represent them both with the same
value that eventually becomes x10 = x1. Situations like this are undesirable in
cryptographic applications. In this case the length of this periodic cycle is just
9 iterates.

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1259

Analytical solution for finding out periodic cycles and their length for arbitrary
values of r and x0 has not been proposed yet. Persohn and Povinelli provided
an overview of amount of periodic cycles with certain length, however, only for the
single precision data type [10]. Therefore, possible occurrence of periodic cycles in
the LM could be indicated only by negative values of λ.

Another issue with the LM is existence of fixed points for xn ∈ (0, 4). The fixed
points do not change their values in successive iterations which could be expressed
mathematically as xn = xn+1 = xn+2 = · · · = xn+m where m is amount of iterates
computed after xn. The fixed points for the LM could be obtained analytically by
setting xn+1 to xn in (1). The modified equation has two solutions: xn equals either
0 or 1− 1

r
. While the first case is easily suppressed by using xn ∈ (0, 4), the second

case is a bigger issue as value of this fixed point changes depending on used r. The
issue with this fixed point can be illustrated by an example provided in Table 2.

x0 = 0.25, r = 4− 10−15, fixed point at xn = 1− 1
r ∼ 0.75

x1 = 0.75
x2 = x1 = 0.75
x3 = x2 = x1 = 0.75

Table 2. An illustration of a fixed point of logistic map

An interesting thing about the example presented in Table 2 is that the value of
1− 1

4−10−15 is considered to be equal to 1− 1
4

= 0.75. In this case the small difference
could not be preserved due to finite precision of double precision data type.

The issue with fixed points needs to be solved for enabling proper usage of the
LM for encryption. The probability of “hitting” a fixed point among all other iterate
values may seem low, but after reaching the value of the fixed point, all successive
iterates will have the same value.

2.4 Relation Between Successive Iterates, Their Distribution
and the Need for Quantization

As it is visible in (1), the LM is an iterative function as xn = f(xn−1). Equation (1)
could be rearranged and there are two solutions for calculating value of previous
iterate xn−1 from value of current iterate xn with known value of parameter r (4):

xn−1 =
1

2

(
1∓

√
1− 4

xn
r

)
. (4)

The dependence of iterate values on values of the previous iterates could be also
illustrated by a Poincaré plot. An example of this plot is shown in Figure 8 where
a sequence of 2 000 iterates was computed with r = 4− 10−15 and x0 = 0.5.

Two dimensional Poincaré plots have values of actual iterate xn on their vertical
axis and values of previous iterates xn−1 on their horizontal axis. If a horizontal
line representing xn would be drawn over the plot, two perpendicular lines drawn at

1260 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

interceptions with the parabola lead to values of xn−1. Figure 8 shows the example
presented in Table 2, where iterate value xn = 0.75 could be obtained from two
previous iterate values xn−1,1 = 0.25 and xn−1,2 = 0.75 with usage of r = 4− 10−15.

0

0.2

0.4

0.6

0.8

1

x
n

0 0.2 0.4 0.6 0.8 1

n –x 1

Figure 8. A Poincaré plot showing relation between two successive iterates

While this relation is crucial for computing successive iterates, it needs to be
suppressed for usage in cryptographic applications. The possibility of reconstructing
previous iterate values from one iterate is investigated by phase space reconstruction
attacks [34, 35], however none of the proposed attacks could be practically used yet.

Other important feature of a set of computed iterates is their distribution among
the interval (0, 1). Ideally, the distribution should be uniform. However, as it was
already mentioned and as it is visible in the bifurcation diagrams (see Figures 2
and 3), some values of r do not produce iterate values xn that cover whole interval
(0, 1). An illustration of this case is shown in Figure 9 where blue bins use r1 = 3.75,
x0 = 0.5 and transient period of 1 000 iterates in order to generate 106 iterates. The
second set of bins, red ones were generated by the same settings of the LM except
for using r2 = 4− 10−15. The histogram has 20 bins with equal size.

Figure 9 shows that the first non-zero bin for r1 = 3.75 is located in interval
(0.2, 0.25〉 and the last one is present in interval (0.9, 0.95〉. The four bins at the
beginning and the last bin are empty in the case of r1 while they are populated for
r2. Also, please note that the bins close to boundaries of the histogram have bigger
amount of samples and that the histogram for r2 is approximately symmetric with
respect to its center. These findings could be used for analysis, so they need to be
suppressed for enabling usage of the LM for image encryption.

There is also a problem with the usage of computed iterate values in image
encryption algorithms. As the iterate values xn are decimal numbers from interval
(0, 1) and the image encryption algorithms process images either as a set of bytes
(256 possible integer values) or bits (2 possible integer values), it is useful to perform

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1261

upper boundary of bins

0.
05 0.

1
0.
15 0.

2
0.
25 0.

3
0.
35 0.

4
0.
45 0.

5
0.
55 0.

6
0.
65 0.

7
0.
75 0.

8
0.
85 0.

9
0.
95 1

re
la

ti
ve

 f
re

q
u
en

cy
 [
%

]

0

5

10

15

20
1r = 3.75 = 4 – 10

–15
r 2

Figure 9. Distribution of iterate values for two different values of parameter r

quantization of the iterate values. Multiple ways of quantization were proposed,
some of our prior work even solves the already mentioned issue of relation between
successive iterates [24].

3 PROPOSED SOLUTION

Based on the findings from analysis of the LM, we tried to mitigate its drawbacks
by using a following set of rules:

• usage of combinations of parameter r and initial value x0 that have positive λ,
so the occurrence of periodic cycles should be suppressed,

• the fixed points should be suppressed by alternating two values of r – each value
of r will have its counterpart, denoted as rc (from “complementary r”) which
would have a fixed point located at other value of xn,

• each pair of values of r and rc should be selected in a way that results in quick
divergence form their respective fixed points,

• the elements of resulting PR sequences should not have any distinctive relation
between pairs of successive elements and their distribution should be close to
uniform (this point has been partially solved in our prior works [24, 35]),

• implementation of these rules should have minimal impact on the computational
complexity of image encryption algorithms.

1262 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

3.1 Suitable Parameters for Logistic Map in Double Precision Data Type

In order to meet given requirements, we chose to use interval of parameter r that
obtains positive values of λ and does not have many significant spikes. As most
image encryption algorithms use double precision data type, the upper boundary of
chosen interval was set the closest it can get to r = 4, so the upper boundary was
chosen as 4− 10−15.

The selection of a lower boundary was motivated by enabling as large interval
of parameter r as possible. The size of this interval is important, as key elements
are used directly for computation of values of r. Therefore, the larger interval of r
enables larger amount of usable keys (known as a key space).

The keys are represented in a hexadecimal or binary form. Conversion between
these two forms is simple as one hexadecimal character contains 16 = 24 binary
characters. For enabling usage of integer amount of key elements as values of r,
also the number of samples in interval of r needs to be a power of 16. The cho-
sen value of number of samples was 164 = 65 536 as bigger powers of 16 resulted
in intervals of r that have significant spikes in plots of their λ. The plot of λ es-
timated for the resulting interval of r ∈ 〈4 − 65 536 · 10−15, 4 − 10−15〉, x0 = 0.5
and n = 1 000 is shown in Figure 10. While the analysis was done with resolu-
tion equivalent to 4 · 1016 samples for interval 〈0, 4〉, the plot uses coarser resolution
equivalent to 4 · 1013 samples for the same interval for the sake of better readabil-
ity.

r

3.
99
99
99
99
99
34
46
4

3.
99
99
99
99
99
42
65
6

3.
99
99
99
99
99
50
84
8

3.
99
99
99
99
99
59
04
0

3.
99
99
99
99
99
67
23
2

3.
99
99
99
99
99
75
42
3

3.
99
99
99
99
99
83
61
5

3.
99
99
99
99
99
91
80
7

3.
99
99
99
99
99
99
99
9

0.664

0.666

0.668

0.67

0.672

0.674

0.676

0.678

(0
.5

)
λ

,
r

Figure 10. Lyapunov exponents for chosen interval of values for parameter r

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1263

The reason behind the choice of x0 being fixed at 0.5 is the rather small effect
on the resulting iterate values xn. Its impact is present mostly in areas with smaller
or negative λ as it was explained in Section 2.2 and especially in Figure 7.

As 4 hexadecimal characters are mapped to 65 536 very similar values of r, the
impact of a slightly different key on the resulting iterate values xn might raise some
concern. As it was pointed out in Section 2.1, the LM uses a concept of the transient
period. In the case of our proposal, its length is set to 100 iterates for each used
value of r. As our solution alternates between r and its complement rc, the total
length of the transient period for each used r is 200 iterates. The resulting values
of x200 obtained by similar values of r are displayed in Table 3.

rc = r − 10−5

used r 4− 32 768 · 10−15 4− 32 767 · 10−15 4− 32 766 · 10−15

x0 0.5 0.5 0.5
x1 0.999999999991808 0.999999999991808 0.999999999991809
x2 0.000000000032768 0.000000000032767 0.000000000032766
x3 0.000000000131072 0.000000000131068 0.000000000131063
x4 0.000000000524286 0.000000000524271 0.000000000524250
.
x200 0.845629440355832 0.933763238939059 0.189452959055630

Table 3. Different values of x200 obtained with similar values of r

The results presented in Table 3 show that even small differences in value of r
result in rather big differences in values of x200. This is a property of chaos, known
as a butterfly effect [31].

Image encryption algorithms usually utilize multiple PR sequences for their op-
erations. Therefore, multiple values of r are necessary which brings up the key length
to multiples of 4 hexadecimal characters or 16 bits. However, current encryption
algorithms utilize key lengths that exceed even 256 bits. In order to enable usage of
longer keys (and thus larger key space), our proposal uses multiple values of r and
their respective rc during the transient period. These are denoted as ri and rc,i and
their amount depends on desired size of the key space.

The example of multiple ri and rc,i used in an image encryption algorithm is
illustrated in Table 4. In this case, the algorithm uses 8 values of ri and their
respective rc,i in order to produce 4 final PR sequences. The rule which determines
purpose of individual key parts is also known as a key schedule.

This example uses 8 values of ri and their respective rc,i. As each ri is computed
from 16 bits of key, the total length of a key for the example is 8 · 16 = 128 bits.
As all of the ri and rc,i are used during the transient period, even a small change
in one part of the key affects all generated PR sequences. This concept is known as
key diffusion [35, 36]. Total size of the transient period in this case is 1 600 iterates
(100 for each of the ri and rc,i).

1264 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

sequence
indexes i of ri and rc,i used indexes i of ri and rc,i used
during the transient period after the transient period

seq1 1 to 8 1
seq2 2 to 8, then 1 2
seq3 3 to 8, then 1 and 2 3
seq4 4 to 8, then 1 to 3 4

Table 4. An example of a simple key schedule

3.2 Suppression of Periodic Cycles and Fixed Points

As it was mentioned earlier in Section 2.3, the occurrence of periodic cycles could
be greatly suppressed by usage of values of r that have positive λ. Analysis of the
periodic cycles is quite computationally exhaustive and has been performed only for
the single precision data type yet [10]. On the other hand, the values of fixed points
could be easily derived for each value of r as it was already shown.

In order to suppress these drawbacks, our proposal alternates between two re-
lated parameter values r and rc. Each odd iteration of the LM uses r, while each
even iteration utilizes respective rc. This approach should be able to solve both
mentioned problems.

Because the rules proposed in our approach should have minimal impact on the
computational complexity of whole image encryption algorithms, it is important to
have a fast way for computing rc from r. As the chosen interval for value of r is
〈4−65 536·10−15, 4−10−15〉, we decided to select interval for rc as 〈4−10−5−65 536·
10−15, 4− 10−5− 10−15〉. This interval of rc should provide several advantages: first
of all the chosen rc should have favorable values of λ as they are still close to r = 4.
The plot of values of λ for the mentioned interval of rc with x0 = 0.5, n = 1 000 and
resolution equivalent to 4 · 1013 samples for interval 〈0, 4〉 is shown in Figure 11.

Secondly, the selection of interval for rc leads to a simple formula for its calcu-
lation from r (5):

rc = r − 10−5. (5)

Lastly, as the values of rc and r are different on their fifth decimal place, a slightly
adapted quantization block presented in our previous work [24] should be able to
ensure quick divergence from any fixed points. An example of fixed points for one
pair of parameters r and rc is shown in Table 5.

parameter r rc
value 4− 10−15 4− 10−5 − 10−15

fixed point at 1− 1
r 0.75 0.749999374998438

Table 5. Fixed points for a pair of parameters r and rc

While the difference between fixed points displayed in Table 5 may seem neg-
ligible, it is big enough to ensure quick divergence from fixed points with usage of

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1265

0.66

0.665

0.67

0.675

0.68
r
c

(0
.5

)
λ

,

3.
99
99
89
99
99
34
46
4

3.
99
99
89
99
99
42
65
6

3.
99
99
89
99
99
50
84
8

3.
99
99
89
99
99
59
03
9

3.
99
99
89
99
99
67
23
2

3.
99
99
89
99
99
75
42
4

3.
99
99
89
99
99
83
61
5

3.
99
99
89
99
99
91
80
7

3.
99
99
89
99
99
99
99
9

r c

Figure 11. Lyapunov exponents for chosen interval of values for parameter rc

suitable quantization approach. If value of rc would be obtained by modification of
a higher decimal place, the plot of resulting λ could contain significant spikes and
it could also negatively affect the distribution of iterate values after their quantiza-
tion.

3.3 Quantization and Successive Iterate Relation

In our previous work, it was found out that the non-uniform distribution of iterate
values xn is caused mainly by higher amount of iterate values that are close to the
boundaries of interval (0, 1) [24, 35]. This could be easily fixed by dismissing several
decimal places of iterate values after whole sequence of iterates has been computed.

A quantization technique that dismisses first four decimal places of each iterate
value xn was proposed in [35]. Its equation could be expressed as (6):

x′n =
⌊
(maxval + 1) ·

(
104 · xn (mod 1)

)⌋
(6)

where x′n is a sequence of quantized iterate values, brackets bac denote the greatest
integer less than or equal to a, n is a sequential number of an iterate and maxval is
maximal allowed value after quantization.

The effects of quantization by (6) are shown in Figures 12 and 13. The sequences
for these plots were made in the same way as for Figures 8 and 9. Figure 13 uses
only one value of r = 4−10−15 so please compare it only with red bars from Figure 9.

1266 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

0

0.2

0.4

0.6

0.8

1
x

n'

0 0.2 0.4 0.6 0.8 1

x'n – 1

Figure 12. A Poincaré plot of iterates after quantization

re
la

ti
ve

 f
re

q
u
en

cy
 [
%

]

0

2

4

6

8

upper boundary of bins

0.
05 0.

1
0.
15 0.

2
0.
25 0.

3
0.
35 0.

4
0.
45 0.

5
0.
55 0.

6
0.
65 0.

7
0.
75 0.

8
0.
85 0.

9
0.
95 1

Figure 13. Distribution of iterate values after quantization

Please note that the quantization by using (6) suppresses relations between
successive iterates. While the relations can be found in a sequence of computed
iterates, the removal of the first four decimal places by quantization results in a more
uniform distribution of the points shown by a Poincaré plot in Figure 12. Also, the
amount of points on the horizontal lines belonging to x′n is not clear so any attempts
to obtain x′n−1 from x′n are even harder.

The histogram of values of quantized iterates displayed in Figure 13 shows that
the distribution is much more uniform than in the previous case (see red bars on

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1267

Figure 9). Removal of more decimal places did not yield better results in terms of
more uniform distribution of iterate values [35, 24].

As it was mentioned, the quantization technique greatly affects the speed of
divergence from fixed points. An example is presented in Table 6. Please note
that the same values of x0 and r were used in Table 2. However the previous case
did not alternate between r and rc and therefore ended in an occurrence of a fixed
point.

r = 4− 10−15, fixed point at xn = 0.75
rc = 4− 10−5 − 10−15, fixed point at xn = 0.749999374998438

iterate value
value after removal value after quantization

of first four decimal places by (6), maxval = 255

x0 0.75 – –
x1 0.75 0.999999999998181 255
x2 0.749998125000000 0.981250000002547 251
x3 0.750003749985937 0.037499859367927 9
x4 0.749990624990627 0.906249906268386 231
x5 0.750018749667183 0.187496671829649 47
x6 0.749960624353186 0.606243531856308 155
x7 0.750078745091862 0.787450918623108 201
.
x50 0.202236261140394 0.362611403942537 92
x51 0.645347023281394 0.470232813938310 120
x52 0.915494682550523 0.946825505234301 242
x53 0.309456675088959 0.566750889588548 145
.

Table 6. An illustration of quick divergence from fixed point

Values reported in Table 6 show that the first usage of rc which has a different
fixed point introduces a slight divergence from the fixed point for r. Also, if the
value of computed iterate would be equal to the fixed point for rc, the alternation
to r would help to provide a small perturbation which would result in a diver-
gence.

There are two interesting facts about values presented in Table 6. Firstly, the
value of x1 = 0.75 after removal of the first 4 decimal places becomes ∼ 0.99999.
This is due to fact that x1 is represented by its closest possible representation in
double precision data type which is actually 0.74999999999999978. The first four
decimal places of this number are removed and the other places are shifted towards
the decimal point. The last two decimal places (78) are changed in order to meet
the closest possible number after the quantization in double precision data type
(8181).

The second interesting fact is that the values of x1, x2 and x3 are close to the
boundaries of set {0, 1, . . . , 255}. However, after rather small amount of iterates,
the distribution becomes more uniform.

1268 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

4 EXPERIMENTAL RESULTS

Usage of the proposed rules should result in a more suitable behavior of the LM (1)
and therefore it can positively affect the performance of whole image encryption
algorithms. On the other hand more complex computations can raise computational
complexity. In order to investigate these assumptions, the proposed set of rules was
applied to one of our prior image encryption algorithms published in [24]. The
mentioned algorithm was already highly optimized for achieving good performance,
so the resulting values of numerical parameters should clearly show the effect of the
proposed set of rules.

All performed measurements were done on a PC with 2.5 GHz CPU, 12 GBs of
RAM in computing environment MATLAB R2015a on Windows 10 OS. A set of
experimental plain images lena, lenaG and peppersG is shown in Figure 14. Their
parameters are described in Table 7. A set of experimental keys K1 and K2 are
presented in Table 8. The first one was derived from binary representation of decimal
part of number π. The second key has a minimal difference, as the sixth hexadecimal
character is changed from 0 to 1.

lena lenaG peppersG

Figure 14. A set of experimental plain images

image lena lenaG peppersG

height [px] 512 512 512
width [px] 512 512 512
color depth [bits/px] 24 8 8

Table 7. Parameters of used plain images

key value

K1 0× C4 EB 50 BC 0E C5 EB 50 BC 0E C5 EB 50 BC 0E C5

K2 0× C4 EB 51 BC 0E C5 EB 50 BC 0E C5 EB 50 BC 0E C5

Table 8. A set of experimental keys

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1269

4.1 Brief Description of Used Algorithm

The image encryption algorithm proposed in [24] processes images with arbitrary
resolution higher than 16×16 pixels. This restriction is caused by Mojette transform
(MoT) that is used during a plaintext related chaining stage. The color depths of
input images could be either 8 or 24 bits per pixel. Used key is 128 bits long, entered
in a hexadecimal form and it is used for generation of six PR sequences by means
of the LM (1).

Described image encryption algorithm has 5 stages. The first and the last stage
combine image pixel intensities with PR sequences generated by the LM (1). Since
these combinations protect the other stages against attacks, the security of whole
examined image encryption algorithm relies heavily on the first and last stage.

The second stage rearranges image pixels in order to suppress correlation be-
tween adjacent image pixel intensities. The rearrangement is carried out by cyclic
shifts in individual columns of the processed image followed by cyclic shifts in the
rows of the image.

Stages three and four introduce dependencies between pixel intensities in order
to increase sensitivity to small differences between various plain images. While the
third stage scans and processes the image in all four possible directions for spreading
the differences, the fourth stage uses pixel intensities as parameters for the MoT.
The previously loaded pixel intensities choose values that are combined with actually
processed pixel intensities.

The decryption algorithm utilizes analogous stages in a reversed order. More
details about this solution could be found in [24].

4.2 Modifications of Used Algorithm

Due to previous optimization of the used algorithm a rather small amount of mod-
ifications was necessary for adhering to the proposed set of rules. First of all,
the concept of shifting between values of r and rc was introduced. The inter-
vals for these parameters were set as it was recommended in Section 3.1: r ∈
〈4− 65 536 · 10−15, 4− 10−15〉 and rc ∈ 〈4− 10−5 − 65 536 · 10−15, 4− 10−5 − 10−15〉.

Secondly, the whole key schedule was reworked as the original approach used
parts of the key with 8 hexadecimal characters. This was not longer possible as the
65 536 possible values of r or rc are represented only by 4 hexadecimal characters.
The eight values of r and their respective values of rc are computed by (7):

ri = 4 + 10−15 · (Ki − 65 536),

rc,i = ri − 10−5
(7)

where Ki represents a decimal form of ith four hexadecimal character group from
key K, i = 1, 2, 3, . . . , 8. The conversion from a hexadecimal to a decimal form uses
big endian ordering scheme.

1270 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

The key schedule used in the modified algorithm is presented in Table 9. Each
parameter is used for 100 iterations in the transient period (each pair of r ad rc
therefore for 200 iterations). The total amount of iterations during the transient
period is extended from previously used 1 000 iterates to 1 600.

sequence
indexes i of ri and rc,i used indexes i of ri and rc,i used
during the transient period after the transient period

seq1 1 to 8 1
seq2 2 to 8, then 1 2
seq3 3 to 8, then 1 and 2 3
seq4 4 to 8, then 1 to 3 4
seq5 5 to 8, then 1 to 4 5
seq6 6 to 8, then 1 to 5 6

Table 9. Key schedule used in the modified algorithm

Finally, the quantization does not shift decimal places of iterates by five places
anymore. In order to provide both quick divergence from fixed points and suppres-
sion of relations between successive iterations, the quantization shifts decimal places
by four places by (6) and rc is set in a way that it is different from r on fifth decimal
place. These steps were selected because of suitable values of λ for r and rc with x0
fixed at 0.5. More details on this issue were presented in Section 2.2.

A simple verification that the proposed set of rules did not significantly harm the
basic features of the original image encryption algorithm can be performed through
encryption and decryption an image. The example presented in Figure 15 used plain
image lena and key K1. The first decryption used correct key and its result is the
same as the plain image. However second decryption deliberately used a wrong key
(K2) and the decryption results in an image similar to noise.

K 1encrypted by ,K 1
K 1decrypted by

encrypted by
K 2

K 1,encrypted by
decrypted by

Figure 15. Preserved key sensitivity of the modified algorithm

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1271

4.3 Used Numerical Parameters

There are several commonly utilized numerical parameters that can be used for mea-
suring performance of the image encryption algorithms. This paper utilizes values
of correlation coefficients ρ, entropy H, Number of Pixel Change Ratio (NPCR)
and Unified Average Changing Intensity (UACI). The last two parameters were
described by Wu et al. in [37].

In addition to these parameters, this paper also utilizes a measure of compu-
tational complexity known as number of cycles necessary for an operation (either
encryption or decryption of an image). This measure takes into account resolution
and color depth of the testing images and also a configuration of used PC.

Values of correlation coefficients ρ are computed separately for each color plane
in three directions – horizontally (denoted as ρh), vertically (ρv) and diagonally (ρd).
The computation of ρ is usually done on a finite amount of randomly chosen pixel
pairs. Each pixel pair contains intensities of two image pixels that are adjacent in
a chosen direction. In general, ρ are computed by using (8):

ρ =

∑numpp

pp=1 (vec1(pp)− vec1) · (vec2(pp)− vec2)√∑numpp

pp=1 (vec1(pp)− vec1)2 ·
∑numpp

pp=1 (vec2(pp)− vec2)2
[–] (8)

where pp = 1, 2, . . . , numpp is an index of pixel pair, numpp is total amount of pixel
pairs (usually selected as 1 000), vectors vec1 and vec2 represent intensities of pixels
from pixel pairs and vec denotes arithmetic mean of vector vec.

The entropy H as it was described by Shannon [38] can be viewed as a random-
ness measure of a information source. It is computed individually for each color
plane of an image by applying (9):

H = −
2L−1∑
in=0

p(in) · log2 (p(in)) [bits/px] (9)

where L is a color depth of investigated color plane, in denotes intensity of image
pixel and p(in) stands for a probability of occurrence of pixel with intensity in. The
ideal value of entropy H is close to the color depth of investigated color plane.

Each computation of NPCR and UACI utilizes two encrypted images E1 and
E2. These were made by encryption with the same algorithm and the same key from
plain images P1 and P2. The first plain image P1 was arbitrarily chosen, while the
second plain image P2 is a copy of P1 with a difference in an intensity of one image
pixel. Furthermore, the size of this difference is minimal (only one intensity level).
Values of NPCR and UACI therefore measure the differences done by encryption of
two almost identical plain images.

The location of the difference introduced in plain image P2 is usually randomly
chosen. In order to suppress the impact of certain locations on the resulting values,
the values of NPCR and UACI are presented as a mean of larger set of measurements
(usually mean of 100 computed values).

1272 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

Number of Pixel Change Ratio (NPCR) is calculated individually for each color
plane of the investigated image by using (10):

NPCR =
100

h · w

h∑
l=1

w∑
k=1

Diffmat(l, k) [%] (10)

where h and w represent height and width of images E1 and E2, l and k are line and
column indexes and Diffmat is a difference matrix, Diffmat(l, k) = 1 if E1(l, k) 6=
E2(l, k), Diffmat(l, k) = 0 otherwise.

Unified Average Changing Intensity (UACI) is also computed individually for
each color plane of the tested image via (11):

UACI =
100

h · w

h∑
l=1

w∑
k=1

|E1(l, k)− E2(l, k)|
2L − 1

[%] (11)

where brackets |a| denote absolute value of a and L is a color depth of the investi-
gated color plane.

Please note that while NPCR only sums amount of pixels with different in-
tensities after encryption of P1 and P2, UACI also takes into account the size of
individual differences. Also, the proposal of NPCR and UACI by Wu et al. [37]
mentions expected values of the two parameters. The expected values are presented
as intervals and they depend on a resolution of used images. If a computed value
of NPCR or UACI belongs to the interval of the expected value, the resulting en-
crypted image can be considered as robust against differential attacks with certain
confidence (determined by significance level α) [37].

For one of the most used significance levels at α = 0.001 which results in confi-
dence of 99.9 %, the intervals of NPCR and UACI for an image with resolution of
512× 512 pixels are (99.5717 %, 100 %〉 and (33.1594 %, 33.7677 %), respectively.

The computational complexity of the image encryption algorithms can be mea-
sured via time toper necessary for completing an operation (encryption or decryption)
on an image. Usually, a mean of 100 repeated measurements is used for suppressing
effect of some faster or slower times (e.g. due to other processes running on a testing
PC). These means are denoted as tenc for encryption times and tdec for decryption
times in the following text.

Configuration of the testing PC is taken into account by computing number of
CPU cycles that are necessary for an operation with one byte of image data. The
equation for this measure is given as (12):

cycoper =
fCPU · toper · 23

h · w · d
[cycles/B] (12)

where fCPU is a clock frequency of CPU in the testing PC, toper is the operation
(encryption or decryption) time in seconds, h and w stand for height and width
of the used image, d is its color depth given in bits per pixel and a constant of

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1273

23 represents amount of bits in a byte. Please note that most image encryption
algorithms utilize computational environments that use only one CPU core.

4.4 Measured Values and Discussion

The measured values of correlation coefficients ρ, entropy H, NPCR and UACI for
plain images lena, lenaG and peppersG encrypted by keys K1 and K2 are included
in Table 10. Please bear in mind, that this comparison is done only for investigat-
ing impact of the proposed set of rules, therefore the values for plain images (not
encrypted) are not presented. The letters R, G and B stand for red, green and blue
color plane. Symbol ‘–’ denotes that the presented results are obtained for the only
color plane of grayscale images.

image and
key

ρh ρv ρd H NPCR UACI
color plane [–] [–] [–] [bits/px] [%] [%]

algorithm from reference [24]

lena

R
K1

0.0004 0.0013 0.0005 7.9993 99.6101 33.4738
G −0.001 −0.0021 −0.0037 7.9994 99.6109 33.4742
B −0.0032 −0.002 0.0017 7.9992 99.6103 33.4746
R

K2

0.0033 0.0026 −0.001 7.9994 99.6105 33.4742
G 0.0006 0.0015 −0.0016 7.9993 99.6113 33.4749
B 0.0016 0.0013 0.003 7.9993 99.6101 33.4743

lenaG –
K1 0.0008 0.0005 −0.0004 7.9992 99.61 33.4714
K2 0.0015 0.001 −0.0012 7.9993 99.6099 33.4725

peppersG –
K1 0.0051 0.0007 −0.0001 7.9991 99.6106 33.4721
K2 0.0019 −0.0011 −0.0008 7.9991 99.6121 33.4729

algorithm from [24] improved by the proposed solution

lena

R
K1

0.0019 0.0015 0.0019 7.9993 99.6191 33.4908
G −0.0005 0.0021 0.0034 7.9993 99.6204 33.49
B −0.0018 0.0005 −0.0004 7.9993 99.6183 33.4873
R

K2

−0.0001 −0.001 −0.0006 7.9992 99.6202 33.4884
G 0.0009 −0.0001 −0.0038 7.9993 99.6198 33.4894
B 0.0001 0.0007 −0.0017 7.9992 99.621 33.4872

lenaG –
K1 0.0021 0.0006 0.0019 7.9992 99.6206 33.4867
K2 −0.0032 0.0013 0.0002 7.9993 99.6196 33.4904

peppersG –
K1 0.0003 −0.0001 −0.0008 7.9994 99.6187 33.4856
K2 −0.0001 −0.0034 0.0027 7.9993 99.618 33.4892

Table 10. Measured values of ρ, H, NPCR and UACI

The results presented in Table 10 show that difference in values of correlation
coefficients ρ (computed from 1000 pairs of adjacent pixel intensities) did not change
much by application of the proposed set of rules. Also, the change in values of en-
tropy H might be viewed as negligible. This could be caused by a good performance
of the original algorithm as it was discussed in the paper [24].

1274 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

On the other hand, the values of NPCR and UACI were slightly improved.
Please bear in mind, that there is only a slight improvement, but it could greatly
help in the case of a differential attack. Also, since the proposed set of rules mitigates
vulnerabilities of the LM, the possibility of other attacks should be suppressed. On
top of that, all values of NPCR and UACI for both the original algorithm and its
improved version belong to intervals of the expected values [37].

The increase of computational complexity is illustrated by values included in Ta-
ble 11. It is clearly seen that application of the proposed set of rules has only a small
impact on computational complexity of the whole image encryption algorithm. Fur-
thermore, the used algorithm was highly optimized so any new modifications could
result in a visible increase of computational complexity.

image key
tenc increase tdec increase cycenc cycdec
[ms] [%] [ms] [%] [cycles/B] [cycles/B]

algorithm from reference [24]

lena
K1 436.2245

–
420.5649

–
1 386.72 1 336.94

K2 436.3845 420.3934 1 387.23 1 336.39

lenaG
K1 126.2499

–
122.7206

–
1 204.01 1 170.35

K2 126.9473 122.6332 1 210.66 1 169.52

peppersG
K1 127.1529

–
122.8078

–
1 212.62 1 171.19

K2 126.8485 122.7695 1 209.72 1 170.82

algorithm from [24] improved by the proposed solution

lena
K1 448.7342 2.87 429.9181 2.22 1 426.49 1 366.67
K2 447.9295 2.65 431.0329 2.53 1 423.93 1 370.22

lenaG
K1 129.5253 2.59 126.5223 3.1 1 235.25 1 206.61
K2 130.9827 3.18 125.8389 2.61 1 249.15 1 200.09

peppersG
K1 130.8076 2.87 125.5048 2.2 1 247.48 1 196.91
K2 129.9531 2.45 125.7442 2.42 1 239.33 1 199.19

Table 11. Measured values of computational complexity

The measured increase of the computational complexity was ranging approxi-
mately from 2.2 % to 3.2 % (with the worst case of almost 13 ms for a true color
image with a resolution of 512 × 512 pixels). This is a relatively interesting result
for as complex changes as those described in Section 4.2. This finding can also im-
ply that well-tailored fixes or bigger patches could further improve the behavior of
simpler chaotic maps like the LM.

4.5 Comparison with Some Other Proposals

The impact of the proposed set of rules on the LM could be pointed out by a com-
parison of numerical results with some other approaches. Some of the relatively new
algorithms were selected for the comparison, with a strong emphasis on algorithms
that use multidimensional systems. Usage of these systems in image encryption is
interesting as some researchers directly relate the robustness of whole image encryp-

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1275

tion algorithm to behavior of its chaotic system given by its LEs. However, the
finite precision and some bad implementations can degrade their results. Therefore,
we would like to compare results obtained by our well-tuned algorithm based on
a simple chaotic map with the numerical results and computational complexity of
image encryption algorithms that utilize far more complex chaotic systems.

An approach using a cascade of two chaotic maps was described by Cao et al.
in 2018 [25]. The authors discuss that in certain interval, the parameter of used
chaotic system results in λ close to value of 6. A similar solution was proposed by
Alawida et al. in 2019 [26], where resulting value of λ is close to 2. Moreover, these
researchers performed a brief investigation regarding relation of successive iterates.

A paper by Sun et al. [28] from 2019 describes an algorithm that uses seven
dimensional chaotic system. Also, the computational complexity of this algorithm
is increased by usage of hash function for introducing a plaintext related operation.

Liu et al. published a paper [39] in 2020 that characterizes their algorithm as
“fast”. However they still use the combination of two relatively complex chaotic
maps that negatively affect the resulting computational complexity.

The comparison of numerical results including the computational complexity
given in amount of cycles necessary for an encryption of one byte of image data
cycenc is shown in Table 12. The value in italics marks that it was the best among
all compared approaches and value ‘–’ stands for not reported measurement.

approach
ρh ρv ρd H NPCR UACI cycenc
[–] [–] [–] [bits/px] [%] [%] [cycles/B]

plain image lenaG

proposed 0.0021 0.0006 0.0019 7.9992 99.6206 33.4867 1 235.25
ref. [25] 0.0019 0.0012 0.0009 7.9973 99.6096 33.4574 9 402.59
ref. [26] −0.0017 −0.0084 −0.0019 7.9975 99.62 33.505 24 644.78
ref. [39] 0.0106 −0.0012 0.0009 – 99.6216 33.4994 3 484.18

plain image peppersG

proposed 0.0003 −0.0001 −0.0008 7.9994 99.6187 33.4856 1 247.48
ref. [26] 0.0024 −0.0131 0.0002 7.997 99.617 33.391 –
ref. [28] 0.0017 0.0012 −0.0128 7.9978 99.62 33.63 27 694.7

Table 12. A comparison of the obtained numerical results

Obtained values of correlation coefficients ρ show just little differences between
compared approaches. On the other hand, the results for entropy H are much more
different. It could be noticed that the proposed solution achieves the best values
of H, very close to the theoretical boundary of 8 bits per pixel.

Probably the most interesting values for comparison are those of NPCR and
UACI. While [25] has quite low values of both NPCR and UACI, the other three
algorithms that used plain image lenaG have similar values of NPCR. The solu-
tion described in this paper obtains the lowest value of UACI among these three
approaches even after the value was increased by applying the proposed set of rules.

1276 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

Results for encryption algorithms that utilized plain image peppersG show an ex-
ample of an unbalanced performance. While the value of NPCR obtained by [26] is
quite high, the value of UACI is the lowest among all reported values. Even more in-
teresting is a fact that the same algorithm achieved best value of UACI for previous
plain image lenaG. The solution proposed in this paper may have far worse value of
UACI than [28], however its performance is uniform over both plain images used for
a comparison. Values of UACI reported in [28] for other plain images (lenaG was
not used) varied from 33.36 % to 33.63 %.

The measurement of amount of CPU cycles necessary for encryption of one
byte of image data shows that our proposal is clearly the fastest one among the
discussed algorithms. A rather interesting contrast is shown by values of cycenc for
quite similar approaches [25] and [26]. The first design was much more optimized
as it used more than 2.5 times less CPU cycles to complete the encryption than
the second approach. Also, the second fastest solution from [39] took almost three
times more CPU cycles than the proposed solution. The slowest algorithm [28] is
negatively affected mainly by high complexity of used operations.

5 CONCLUSIONS

This paper described and extensively analyzed some of the vulnerabilities related to
the usage of logistic map in image encryption algorithms. Some of the drawbacks
were identified and suppressed already in the past, however, some others are present
also in the newer proposals. This paper namely dealt with the usage of parameter
values that result in a predictable behavior of the map, its periodic cycles and fixed
points.

These disadvantages are mitigated by a proposed set of rules. One of the rules
describes a way to choose a pair of suitable parameter values. Usage of appropriate
parameter values in a data type with finite precision should prevent occurrence of
periodic cycles. Also the speed of divergence from a fixed point was investigated.
A rather quick divergence was reached by a combination of alternating parameter
values and a modified quantization technique.

In order to verify the mentioned assumptions, the proposed set of rules was ap-
plied on an algorithm from our prior work. Obtained numerical results show that
the usage of the rules helped to enhance the chaotic behavior of a rather simple
logistic map to the level that the image encryption algorithm based on it achieves
almost the same values of numerical parameters as algorithms based on more com-
plex chaotic systems. Moreover, the logistic map still preserves its advantages such
as a relatively simple usage leading to lower computational complexity. Also, as the
properties of the logistic map are quite well studied, the probability of finding some
new vulnerabilities is smaller than in newer, more complex chaotic systems.

Because the usage of the proposed set of rules did not significantly increase
the computational complexity (the results show an increase ranging approx. from
2.2 % to 3.2 %), it gives a possibility for even more work in this area. However, it

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1277

needs to be done with great care, as there are many examples of image encryption
algorithms that have a higher computational complexity, as they rely on computa-
tionally exhaustive techniques such as cascades of chaotic maps, their coupling or
hash functions.

Acknowledgment

This work was supported by research grants APVV-17-0208 and VEGA 1/0584/20.

REFERENCES

[1] Advanced Encryption Standard (AES). Federal Information Processing Publication
197 (FIPS 197), 2001, doi: 10.6028/NIST.FIPS.197.

[2] Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. NIST Special Publication 800-38A, National Institute of Standards
and Technology, 2001, doi: 10.6028/NIST.SP.800-38A.

[3] Gueron, S.: Intel® Advanced Encryption Standard (AES) New Instructions Set.
Intel, White Paper, 2010. Available at: https://www.intel.com/content/dam/doc/
white-paper/advanced-encryption-standard-new-instructions-set-paper.

pdf.

[4] Chen, X.—Hu, C. J.: Adaptive Medical Image Encryption Algorithm Based on
Multiple Chaotic Mapping. Saudi Journal of Biological Sciences, Vol. 24, 2017, No. 8,
pp. 1821–1827, doi: 10.1016/j.sjbs.2017.11.023.

[5] Oravec, J.—Turán, J.: Substitution Steganography with Security Improved by
Chaotic Image Encryption. Proceedings of 2017 IEEE 14th International Scien-
tific Conference on Informatics (INFORMATICS 2017), Poprad, Slovakia, 2017,
pp. 284–288, doi: 10.1109/INFORMATICS.2017.8327261.

[6] Abundiz-Pérez, F.—Cruz-Hernández, C.—Murillo-Escobar, M. A.—
López-Gutiérrez, R. M.—Arellano-Delgado, A.: A Fingerprint Image En-
cryption Scheme Based on Hyperchaotic Rössler Map. Mathematical Problems in
Engineering, Vol. 2016, 2016, Art. No. 2670494, doi: 10.1155/2016/2670494.

[7] Matthews, R.: On the Derivation of a “Chaotic” Encryption Algorithm. Cryptolo-
gia, Vol. 13, 1989, No. 1, pp. 29–42, doi: 10.1080/0161-118991863745.

[8] May, R. M.: Simple Mathematical Models with Very Complicated Dynamics. Na-
ture, Vol. 261, 1976, No. 5560, pp. 459–467, doi: 10.1038/261459a0.

[9] Phatak, S. C.—Rao, S. S.: Logistic Map: A Possible Random-Number Genera-
tor. Physical Review E, Vol. 51, 1995, No. 4, pp. 3670–3678, doi: 10.1103/Phys-
RevE.51.3670.

[10] Persohn, K. J.—Povinelli, R. J.: Analyzing Logistic Map Pseudorandom Num-
ber Generators for Periodicity Induced by Finite Precision Floating-Point Repre-
sentation. Chaos, Solitons and Fractals, Vol. 45, 2012, No. 3, pp. 238–245, doi:
10.1016/j.chaos.2011.12.006.

https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.SP.800-38A
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://doi.org/10.1016/j.sjbs.2017.11.023
https://doi.org/10.1109/INFORMATICS.2017.8327261
https://doi.org/10.1155/2016/2670494
https://doi.org/10.1080/0161-118991863745
https://doi.org/10.1038/261459a0
https://doi.org/10.1103/PhysRevE.51.3670
https://doi.org/10.1103/PhysRevE.51.3670
https://doi.org/10.1016/j.chaos.2011.12.006

1278 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

[11] Özkaynak, F.: A Novel Method to Improve the Performance of Chaos Based
Evolutionary Algorithms. Optik, Vol. 126, 2015, No. 24, pp. 5434–5438, doi:
10.1016/j.ijleo.2015.09.098.

[12] Arroyo, D.—Alvarez, G.—Fernandez, V.: On the Inadequacy of the Logistic
Map for Cryptographic Applications. Proceedings of 10th Spanish Meeting on Cryp-
tology and Information Security, Salamanca, Spain, 2008, pp. 77–82.

[13] Rhouma, R.—Solak, E.—Belghith, S.: Cryptanalysis of a New Substitution-
Diffusion Based Image Cipher. Communications in Nonlinear Science and Numerical
Simulation, Vol. 15, 2010, No. 7, pp. 1887–1892, doi: 10.1016/j.cnsns.2009.07.007.

[14] Alvarez, G.—Amigó, J. M.—Arroyo, D.—Li, S.: Lessons Learnt from the
Cryptanalysis of Chaos-Based Ciphers. In: Kocarev, L., Lian, S. (Eds.): Chaos-
Based Cryptography. Springer, Berlin-Heidelberg, Studies in Computational Intelli-
gence, Vol. 354, 2011, pp. 257–295, doi: 10.1007/978-3-642-20542-2 8. ISBN 978-3-
642-20541-5.

[15] Li, C.—Li, S.—Lo, K.-T.: Breaking a Modified Substitution-Diffusion Image
Cipher Based on Chaotic Standard and Logistic Maps. Communications in Non-
linear Science and Numerical Simulation, Vol. 16, 2011, No. 2, pp. 837–843, doi:
10.1016/j.cnsns.2010.05.008.

[16] Li, C.—Xie, T.—Liu, Q.—Cheng, G.: Cryptanalyzing Image Encryption Using
Chaotic Logistic Map. Nonlinear Dynamics, Vol. 78, 2014, No. 2, pp. 1545–1551, doi:
10.1007/s11071-014-1533-8.

[17] Preishuber, M.—Hütter, T.—Katzenbeisser, S.—Uhl, A.: Depreciating
Motivation and Empirical Security Analysis of Chaos-Based Image and Video En-
cryption. IEEE Transactions on Information Forensics and Security, Vol. 13, 2018,
No. 9, pp. 2137–2150, doi: 10.1109/TIFS.2018.2812080.

[18] Fridrich, J.: Symmetric Ciphers Based on Two-Dimensional Chaotic Maps. Inter-
national Journal of Bifurcation and Chaos, Vol. 8, 1998, No. 6, pp. 1259–1284, doi:
10.1142/S021812749800098X.

[19] Solak, E.—Çokal, C.—Yildiz, O. T.—Biyikoğlu, T.: Cryptanalysis of
Fridrich’s Chaotic Image Encryption. International Journal of Bifurcation and Chaos,
Vol. 20, 2010, No. 5, pp. 1405–1413, doi: 10.1142/S0218127410026563.

[20] Xie, E. Y.—Li, C.—Yu, S.—Lü, J.: On the Cryptanalysis of Fridrich’s Chaotic
Image Encryption Scheme. Signal Processing, Vol. 132, 2017, pp. 150–154, doi:
10.1016/j.sigpro.2016.10.002.

[21] Fu, C.—Hou, S.—Zhou, W.—Liu, W. Q.—Wang, D. L.: A Chaos-Based Image
Encryption Scheme with a Plaintext Related Diffusion. Proceedings of 2013 9th Inter-
national Conference on Information, Communications and Signal Processing (ICICS
2013), Tainan, Taiwan, 2013, pp. 1–5, doi: 10.1109/ICICS.2013.6782914.

[22] Zhang, Y.: The Image Encryption Algorithm with Plaintext-Related Shuf-
fling. IETE Technical Review, Vol. 33, 2016, No. 3, pp. 310–322, doi:
10.1080/02564602.2015.1087350.

[23] Li, Z.—Peng, C.—Li, L.—Zhu, X.: A Novel Plaintext-Related Image Encryption
Scheme Using Hyper-Chaotic System. Nonlinear Dynamics, Vol. 94, 2018, No. 2,
pp. 1319–1333, doi: 10.1007/s11071-018-4426-4.

https://doi.org/10.1016/j.ijleo.2015.09.098
https://doi.org/10.1016/j.cnsns.2009.07.007
https://doi.org/10.1007/978-3-642-20542-2_8
https://doi.org/10.1016/j.cnsns.2010.05.008
https://doi.org/10.1007/s11071-014-1533-8
https://doi.org/10.1109/TIFS.2018.2812080
https://doi.org/10.1142/S021812749800098X
https://doi.org/10.1142/S0218127410026563
https://doi.org/10.1016/j.sigpro.2016.10.002
https://doi.org/10.1109/ICICS.2013.6782914
https://doi.org/10.1080/02564602.2015.1087350
https://doi.org/10.1007/s11071-018-4426-4

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1279

[24] Ovseńık, Ľ.—Turán, J.—Huszańık, T.—Oravec, J.—Kováč, O.—
Oravec, M.: An Image Encryption Algorithm with Plaintext Related Chain-
ing. Computing and Informatics, Vol. 38, 2019, No. 3, pp. 647–678, doi:
10.31577/cai 2019 3 647.

[25] Cao, C.—Sun, K.—Liu, W.: A Novel Bit-Level Image Encryption Algo-
rithm Based on 2D-LICM Hyperchaotic Map. Signal Processing, Vol. 143, 2018,
pp. 122–133, doi: 10.1016/j.sigpro.2017.08.020.

[26] Alawida, M.—Samsudin, A.—Teh, J. S.—Alkhawaldeh, R. S.: A New Hybrid
Digital Chaotic System with Applications in Image Encryption. Signal Processing,
Vol. 160, 2019, No. 15, pp. 45–58, doi: 10.1016/j.sigpro.2019.02.016.

[27] Zhu, S.—Zhu, C.: Image Encryption Algorithm with an Avalanche Effect Based
on a Six-Dimensional Discrete Chaotic System. Multimedia Tools and Applications,
Vol. 77, 2018, No. 21, pp. 29119–29142, doi: 10.1007/s11042-018-6078-2.

[28] Sun, S.—Guo, Y.—Wu, R.: A Novel Image Encryption Scheme Based on 7D
Hyperchaotic System and Row-Column Simultaneous Swapping. IEEE Access, Vol. 7,
2019, pp. 28539–28547, doi: 10.1109/ACCESS.2019.2901870.

[29] Mihálik, J.—Gladǐsová, I.—Michalčin, V.: Two Layer Vector Quantization of
Images. Radioengineering, Vol. 10, 2001, No. 2, pp. 15–19.

[30] Feigenbaum, M. J.: Universal Behavior in Nonlinear Systems. Physica D: Nonlinear
Phenomena, Vol. 7, 1983, No. 1-3, pp. 16–39, doi: 10.1016/0167-2789(83)90112-4.

[31] Gleick, J.: Chaos: Making a New Science. Vintage Books, London, 1998, 380 pp.,
ISBN 978-07-4938-606-1.

[32] Ibarra Olivares, E.—Vázquez-Medina, R.—Cruz-Irisson, M.—Del-Rio-
Correa, J. L.: Numerical Calculation of the Lyapunov Exponent for the Logistic
Map. Proceedings of 2008 12th International Conference on Mathematical Methods
in Electromagnetic Theory (MMET 2008), Odessa, Ukraine, 2008, pp. 409–411, doi:
10.1109/MMET.2008.4581011.

[33] IEEE: 754-2019 – IEEE Standard for Floating-Point Arithmetic. doi:
10.1109/IEEESTD.2019.8766229.

[34] Liu, L.—Miao, S.: A New Image Encryption Algorithm Based on Logistic Chaotic
Map with Varying Parameter. SpringerPlus, Vol. 5, 2016, No. 1, Art. No. 289, doi:
10.1186/s40064-016-1959-1.

[35] Oravec, J.—Turán, J.—Ovseńık, Ľ.—Huszańık, T.: A Chaotic Image Encryp-
tion Algorithm Robust Against the Phase Space Reconstruction Attacks. Acta Poly-
technica Hungarica, Vol. 16, 2019, No. 3, pp. 37–57, doi: 10.12700/aph.16.3.2019.3.3.

[36] Oravec, J.—Turán, J.—Ovseńık, Ľ.: Image Encryption Technique with Key
Diffused by Coupled Map Lattice. Proceedings of 2018 28th International Confer-
ence Radioelektronika, Prague, Czech Republic, 2018, pp. 1–6, doi: 10.1109/RA-
DIOELEK.2018.8376374.

[37] Wu, Y.—Noonan, J. P.—Agaian, S.: NPCR and UACI Randomness Tests for
Image Encryption. Journal of Selected Areas in Telecommunications (JSAT), Vol. 2,
2011, No. 4, pp. 31–38.

https://doi.org/10.31577/cai_2019_3_647
https://doi.org/10.1016/j.sigpro.2017.08.020
https://doi.org/10.1016/j.sigpro.2019.02.016
https://doi.org/10.1007/s11042-018-6078-2
https://doi.org/10.1109/ACCESS.2019.2901870
https://doi.org/10.1016/0167-2789(83)90112-4
https://doi.org/10.1109/MMET.2008.4581011
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1186/s40064-016-1959-1
https://doi.org/10.12700/aph.16.3.2019.3.3
https://doi.org/10.1109/RADIOELEK.2018.8376374
https://doi.org/10.1109/RADIOELEK.2018.8376374

1280 J. Oravec, Ľ. Ovseńık, J. Turán, T. Huszańık

[38] Shannon, C. E.: Communication Theory of Secrecy Systems. The Bell Sys-
tem Technical Journal, Vol. 28, 1949, No. 4, pp. 656–715, doi: 10.1002/j.1538-
7305.1949.tb00928.x.

[39] Liu, L.—Lei, Y.—Wang, D.: A Fast Chaotic Image Encryption Scheme with Si-
multaneous Permutation-Diffusion Operation. IEEE Access, Vol. 8, 2020, pp. 27361–
27374, doi: 10.1109/ACCESS.2020.2971759.

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1109/ACCESS.2020.2971759

Mitigating Drawbacks of Logistic Map for Image Encryption Algorithms 1281

Jakub Oravec received his M.Sc. and Ph.D. degrees from
the Department of Electronics and Multimedia Communications,
Technical University of Košice in 2015 and 2019, respectively.
Since April 2020 he has served there as Assistant Professor. His
research interests include image encryption, steganography and
digital image processing.

Ľuboš Ovsen��k received his M.Sc. and Ph.D. degrees from
the Department of Electronics and Multimedia Communications,
Technical University of Košice in 1990 and 2002, respectively.
Currently, he works at the Technical University of Košice as
Associate Professor. His research interests are fiber optic com-
munication systems and sensor networks.

Ján Tur�an received Ing. (M.Sc.) degree in physical engineer-
ing with honours from the Czech Technical University, Prague,
Czech Republic, in 1974, and RNDr. degree in experimental
physics with honours from the Charles University, Prague, Czech
Republic in 1980. He received his CSc. (Ph.D.) and Dr.Sc.
(D.Sc.) degrees in radioelectronics from the Technical Univer-
sity of Košice, Slovakia in 1983 and 1992, respectively. Since
March 1979, he has been at the Technical University of Košice
as Full Professor for electronics and information technology. His
research interests include digital signal processing and fiber op-

tics, communication and sensing.

Tomáš Huszan��k received his M.Sc. degree from the Depart-
ment of Electronics and Multimedia Communications, Technical
University of Košice in 2017. Currently, he is Ph.D. student in
the same department. His research interests include all opti-
cal networks and degradation mechanisms in all optical WDM
systems.

Computing and Informatics, Vol. 39, 2020, 1282–1310, doi: 10.31577/cai 2020 6 1282

TIME-SENSITIVE ADAPTIVE MODEL FOR ADULT
IMAGE CLASSIFICATION

Mohammad Reza Mazinani, Seyyed Mojtaba Hoseini
Kourosh Dadashtabar Ahmadi

Faculty of Electrical and Computer Engineering
Malek Ashtar University of Technology
15875-1774, Iran
e-mail: mazinany@gmail.com, mojtabahoseini@aut.ac.ir,

dadashtabar@mut.ac.ir

Abstract. Images play an important role in modern internet communications, but
not all of the images shared by the users are appropriate, and it is necessary to check
and reject the inappropriate ones. Deep neural networks do this task perfectly, but it
may not be necessary to use maximum power for all images. Many easier-to-identify
images may be classified at a lower cost than running the full model. Also, the
pressure on the system varies from time to time, so an algorithm that can produce
the best possible results for different budgets is very useful. For this purpose, a deep
convolutional neural network with the ability to generate several outputs from its
various layers has been designed. Each output can be considered as a classifier
with its own cost and accuracy. A selector is then used to select and combine the
results of these outputs to produce the best possible result in the specified time
budget. The selector uses a reinforcement learning model, which, despite the time-
consuming learning phase, is fast at execution time. Our experiments on challenging
social media images dataset show that the proposed model can reduce the processing
time by 32 % by sacrificing only 1.4 % of accuracy compared to the VGG-f network.
Also, using different metrics such as F1-score and AUC (the Area Under the Curve
in the accuracy vs. time budget chart), the superiority of the proposed model at
different time budgets over the base model is shown.

Keywords: Adult content recognition, time-sensitive, cost-sensitive model, convo-
lutional neural network, deep learning, image classification

Mathematics Subject Classification 2010: 68T10

Time-Sensitive Adaptive Model for Adult Image Classification 1283

1 INTRODUCTION

In image and video sharing platforms, users upload images or videos to the multime-
dia sharing platform’s servers and share them publicly. In such platforms, latency
in the appearance of shared data is not acceptable to the users, and images are ex-
pected to be visible immediately after upload. Also, according to the rules of most
sites, some images and videos are in the category of unacceptable images and must
be deleted. These categories can vary depending on the different platform policies,
for example, violence, racism, and nudity [1, 2]. Due to the huge number of images
uploaded to the image-sharing platforms, it is not possible to manually check all
images. So, a high-speed automatic image recognition system becomes a necessity
for them.

Additionally, by increasing the speed of the Internet and improving video trans-
fer technologies, live video streaming is becoming more and more popular. Live
streaming provides video frames instantly. Therefore, in live video streaming plat-
forms, in addition to being careful in filtering objectionable video frames, processing
online is also very important, and this filtering should not cause lag or delay in the
live streaming. [3, 4] have tried to identify people who abuse these platforms and
then attempt to remove this content or restrict the streamer user. Many providers
who publish adult content on the live streaming platform with the intention of gen-
erating revenue or harassment, are broadcasting sex-related content intelligently.
They may only show nude content in part of the video, or may only produce sexual
content through gesture or voice, which is harder to detect. Hence, because it is not
feasible to review the video by human operators, it is necessary to use algorithms
to do the review thoroughly.

The image recognition process in image sharing platforms has other challenges.
Some photos are taken by professional users in the right lighting conditions and
are high-quality images, but some photos are taken by amateur users with mobile
phones and are blurry, poorly lit, oversaturated, or nearly dark. Another type of
challenge is because of the content of the images. Some sports, such as boxing and
swimming, involve half-naked bodies but are not sexual images. Nude pictures of
babies also show a naked picture of a human being, but it is not considered porn.
People in the image may have clothes, but due to their facial or body posture, the
whole image is considered sexual.

One way to overcome these challenges is to use deep convolutional neural net-
works (CNN). In recent years, very deep networks have been presented with ac-
ceptable accuracy in image classification on databases with 1 000 image categories,
such as googlenet [5], vgg-verydeep [6], and resnet-152 [7]. We also use CNN in our
model to accurately detect adult images. But the use of neural networks causes a
new challenge. These networks usually take a long time to process each image, and
the deeper the network, the longer the processing time. In this article, our main
focus is on reducing processing time.

Despite the various challenges, many images on image sharing servers have sim-
ple content and can be detected with simple algorithms. For example, images of

1284 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

objects, animals, buildings, etc. can be accurately categorized into normal classes
using simple convolutional neural networks with a small number of layers. Using
simple networks saves computational time and cost, but is less accurate on more
complex images. Therefore, it will be very advantageous to design a model that can
provide tags for simple images at a lower computational cost using a simple network.
This model should use more complex networks to accurately detect complicated im-
ages.

Also, in some cases, the classifier must be able to produce the best result given
the limitations of available computational sources. Conditions like:

• The volume of requests to the server: In some hours, many requests are sent
to the servers, and in other hours the requests may be much less than server
processing capacity.

• Limited processing capacity of different devices: Processing power on portable
devices such as mobile phones, wearables, IoT devices, or laptops is different.
So the algorithm must have the ability to adapt to processing power.

• Increasing the processing accuracy by a cloud processor: Simple images can
be processed by the user’s device, and if the result is desirable, it can be dis-
played to the user; otherwise, the data can be sent to a cloud server to continue
processing. [8].

Given the above conditions, it will be necessary to create a model that can
process images with a limited source. In this article, we consider processing time as
our limited resource. Time constraints can take many forms.

• The fixed time limit for each image (hard budget): The classifier should provide
the best result based on the specified time limit. This model can be useful in
cases where images are given to different devices for processing. As an example,
in [9] each image is assigned to a separate processor, and when it reaches the time
limit for each image, these processes end, and the obtained result is reported.

• The time limit for a set of images (average budget): A set of images is sent to
the processor, and it is necessary to process them in a limited time interval. In
this case, the processing time of each image is not limited separately, and the
only limitation is the average processing time. This model is useful when the
complexity of input images varies.

The model introduced in this article is designed to meet the needs of the average
budget. The general structure of the model is shown in Figure 1. As shown in
Figure 1, images uploaded by users are inserted in a buffer. The server reads a set
of images and sends them with the time limit to our model. If the number of images
in the buffer become too large, the server considers a shorter time limit, to increase
the output rate of the buffer and reduce the size of the buffer.

Our goal is to provide a novel model with the ability to classify a set of images
in a specified time limit, with the highest achievable accuracy. Our method does
not apply the same processing to all images like static methods [10, 11, 12, 13],

Time-Sensitive Adaptive Model for Adult Image Classification 1285

Image set

Time constraint

Image labels

Buffer

Upload image

Server

Time-sensitive adaptive
classifier

Clients

Figure 1. The overall structure of the time-sensitive adaptive model application on the
image-sharing platform server (Icons made by Freepik from https://www.flaticon.com)

but it tracks a different process for each input instance. So our method could be
considered as an input dependent method.

In this paper, a model is presented that can process a set of images with any
time budget. The innovation of this research is the specific design of its selector, by
which, in addition to the ability to finish the process at different time budgets, also
the accuracy can be increased by combining the outputs of the different layers of
the CNN classifier. The increase in speed and accuracy is due to the fact that the
selector uses outputs of the earlier layers of the CNN classifier for simpler images,
and continues to the deeper layers of the network for the more complex images. We
used reinforcement learning to design the selector, which has many advantages for
this task. The advantages of our selector model are described below.

• Improving the average speed of adult image classification: Our basic CNN con-
tains several outputs from the middle layers. We trained the selector by the
q-learning algorithm. The reinforcement learning agent tries to minimize the
time cost using earlier layers of CNN, so the overall speed increased.

• Increasing accuracy by combining outputs: In cascading methods, the last clas-
sifier result is presented as the final model output. But in our model after
observing the results of the outputs, the reinforcement learning agent decides
which category is better to be presented as the correct final result, based on past
experiences.

• Flexibility to select any subset of classifier outputs in any order: The selection
of each of the classifier outputs is defined as an action in the reinforcement
learning model. Therefore, unlike cascading models, there is no limit on the

https://www.flaticon.com

1286 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

order of classifier outputs selection. So, for example, when we have a lot of
processing capacity, the selector may choose the most complex classifier output.
This ability to freely choose between outputs allows the selector to be applied
to any structure, such as a CNN with complex tree structure, or even several
separate CNNs.

• The ability of the selector to work with different time budgets: The selection of
classifier outputs is done in such a way that the cost of the classifier error and
the cost of processing time are minimized. By increasing the time cost factor,
the selector tends to select classifiers with lower cost. Therefore, by changing
this factor, the selector will be trained for different time budgets. At runtime,
any of these trained models can be easily used based on the given time budget.

The rest of the paper is organized as follows: Section 2 provides an overview of
the previous works in the field of adult image recognition, as well as some related
articles on cost-sensitive classification subject. Section 3 first demonstrates the
contribution and justification of our model, and then explains the overall structure
of the model and describes its parts in detail. Section 4 presents the obtained
experimental results, and Section 5 discusses the properties of the proposed model
and plans for future work.

2 RELATED WORK

Since our model consists of two primary parts, one is the base classifier, and the
other is the selector, which is responsible for managing the outputs of this classifier.
Therefore, articles related to these two areas and their advantages and disadvantages
are described separately.

2.1 Adult Content Detection

Adult image recognition methods can be divided into three general categories: skin
as the main feature, local features, and convolutional neural network (CNN). Due
to the limitations of skin-based methods and local features, we chose deep neural
networks for the classification part of the model. The limitations and weaknesses of
these methods are discussed below.

2.1.1 Skin as the Main Feature

In these methods, the main focus is on finding skin regions, and then use the char-
acteristics of these regions, such as the distribution of skin pixels, the area of skin
regions, the number of skin regions, etc., to classify images [18, 19]. These methods
do not recognize black and white images and do not have enough recognition capa-
bilities in finding skin in different lighting conditions. To increase the ability to find
skin, Lee et al. [20] find the faces in the image, and by sampling the skin pixels from
the face, they detect skin pixels in other areas of the image. In skin-based methods,

Time-Sensitive Adaptive Model for Adult Image Classification 1287

despite the increased accuracy in finding skin areas, the accuracy in detecting adult
images was very low. So different methods added new features, such as the number
of faces and the regions of the faces [21], texture [22], and shape [23] to increase
accuracy. Although the classification error was reduced with the addition of new
features, the processing time was increased significantly.

In addition to the problems mentioned, skin-based methods also have an intrinsic
drawback because they usually do not take into account people’s position. For
instance, in some images, the skin area is very small; however, it is considered an
adult image due to people’s positions. Therefore, these methods have very low
accuracies in practice.

2.1.2 Local Features

Classifiers based on local features, extract attributes and shapes from different parts
of the image. Lopes et al. [24] use the scale invariant feature transform (SIFT)
feature. First, these features are extracted locally from the image, and then all the
features are formed in the form of histograms of visual features. It then uses this new
feature to classify images. They use the standard SIFT feature, which is extracted
from non-color images. They then use the Hue-SIFT feature, which adds color
information to the previous feature and increases the accuracy of the algorithm.
Hue-SIFT does not use the color characteristic properly, so to take advantage of
the color feature, Deselaers et al. [25] use image patches as local features. They
then reduce the size of image patches using PCA, and use the bags of visual words
method to produce the final feature vector. They finally use created feature vector
to classify images.

These methods are more accurate than skin based methods. Still, because they
often use handcrafted features, they do not produce an accurate result on new and
intricate images.

2.1.3 Convolutional Neural Network (CNN)

Recently, deep learning methods have much higher accuracy than previous algo-
rithms, especially in image classification [26]. [27] uses deep learning to classify
adult images, using a simple combination of two – Alex-net [28] and googlenet [29]
networks. This paper demonstrates that the use of CNN is more accurate than
pre-selected features such as SIFT.

Deep neural network training requires a large number of training images. Some
articles use data augmentation, for example, flipping the image or using different
images crop [30]. Another way to overcome the lack of training images prob-
lem is to use the weights of the pre-trained network to train a similar network
(fine-tuning). Vitorino et al. [32] use this method to detect child pornographic
images. They first choose a CNN that was trained on ImageNet [33] and fine-
tuned it using 200 000 training adult images. Then, with a small dataset from
children, they fine-tuned the trained network to detect child pornographic images.

1288 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

We used data-augmentation and fine-tuning in our work and will explain them in
Section 3.2.

Another way to increase the accuracy of classification is to combine multiple
classifiers. Shen et al. [31] combined the results of several CNNs using Bayesian
networks. Cheng et al. [34] combined the features extracted by the two CNNs
and adopted the final feature vector for classification. In these methods, due to
the processing of all CNNs, the processing time is greatly increased. Also, this
processing is done for all images, regardless of the difficulty and ease of the image.
In our method, the amount of processing depends on the input difficulty, so the
overall processing time will be optimized.

Due to the superiority of the convolutional neural network for classification, we
used this method to build our base classifier. But to generate output at different
times, we added several intermediate outputs to the structure of one of the known
CNNs. Table 1 shows a comparison of existing work in the field of adult image
classification.

Model Advantages Disadvantages

adult image classification
using skin region [18, 19]

classify high quality
naked image

unable to recognize grayscale
images. very low accuracy

adult image classification
using skin plus face [20, 21]
texture [22], or shape [23]

acceptable accuracy in
color image

unable to recognize grayscale
images. very time consuming

adult image classification
using local features [24, 25]

medium accuracy on
color and grayscale im-
age

time consuming. not accurate
on intricate images

adult image classification
using CNN [27]

accurate requires a large number of
training images

adult image classification
using CNN plus data aug-
mentation [30], or fine-
tuning CNN [32]

accurate. trainable by
small training set

time consuming

adult image classifica-
tion using combination of
CNNs [31, 34]

very accurate very time consuming

Table 1. Adult image classification methods comparison

2.2 Cost-Sensitive Models

In addition to trying to reduce the processing time of previous deep neural networks
in a static way [10, 11, 12, 13], some input dependent work has been done to reduce
time. In this section, we will review some related cost-sensitive articles. For a more
informative description, these methods are divided into three categories.

Time-Sensitive Adaptive Model for Adult Image Classification 1289

2.2.1 Dynamic Pruning

Some works remove unnecessary nodes or layers within a CNN. For example, Bengio
et al. [36] remove some nodes from the layers during the training and testing to
reduce computations. Their method works like a dropout layer in CNN but has tried
to estimate the best path in the neural network for different samples and deactivate
unnecessary nodes. The other work by [16, 17] tries to reduce the processing time of
the network by pruning the channels. For each input image, after each convolutional
layer, the output channels that are not considered useful for image classification are
pruned.

Because these methods use an integrated structure, they do not produce any
results between processing steps. Therefore, after determining the result, it is
not possible to increase the accuracy with more processing along the new path,
and the whole network must be processed with new parameters from the begin-
ning.

2.2.2 Decision Making with Threshold

Some works use a cascade structure to make decisions with the threshold. The
cascade model is CNN with some output from the middle layers. They use the
confidence value (obtained from the softmax layer output), which shows a num-
ber between zero and one for each class. At the time of inference, if the value
of confidence is greater than a specific value, the model terminates the processing
and shows the last obtained image label as a result of the whole network. There-
fore, for some images, fewer processing steps are performed. Berestizshevsky and
Even [14] used this method and selected the ResNet [7] network as the cascade
model, with three outputs in the middle layers. The same method is used in [8],
but the focus is on the use of CNN on devices that either have little memory to
maintain all network parameters or do not have the computational power required
to process in a specified short time. Therefore, fewer layers are processed on the
portable device, and if more processing is required, the information is sent to the
cloud server.

One of the advantages of this method is that they could change the decision
threshold at test time. If the output accuracy is more important, increase the value
of the decision threshold, and when the time budget is low, reduce the threshold
value to increase the speed. And these methods are fast in selecting a processing
path. But the disadvantage is that it can only be applied to the cascading model and
cannot be applied to the network structure in the form of a tree. Also, specifying
a fixed decision threshold may reduce the accuracy of the decision. Our method
uses one decision-maker (selector) for all output and path of the network, and it
could be used on any structure, and the final class is selected accurately using all
available outputs.

1290 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

2.2.3 Classifiers as Decision-Makers

The use of classifiers to make decisions increases accuracy and allows the use of
non-cascade structures. In different network structures in each branch, a classi-
fier has the task of choosing the path. For example, Bolukbasi et al. [35], used
a cascading structure. At each branch, the classifier decides to exit the correctly
identified samples from the processing path. Odena et al. [37] introduce a structure
that has three metalayers, each consisting of two modules. Before processing each
metalayer, a function uses previous outputs to decide which module to use in the
metalayer so that the network can achieve the desired accuracy and speed. Liu
and Deng [15] use control modules within the network to select the best process-
ing path. Control modules are trained using the backpropagation algorithm and
reinforcement learning. They tested their model on high-low, cascade, chain, and
hierarchy structures.

These methods use complex classifiers to select the best route on CNN, so they
have two drawbacks. First: using a complex classifier adds a time cost to the
whole process. Second: the selector classifier error is added to the total image
classification error. Our method at the time of testing is a lookup table, and the
required processing time is very low. Also, to prevent errors, the next path is
selected, after the output of the classifier in the current path is specified. Therefore,
the confidence obtained in this output is used for a better decision in choosing the
future path or exit the network. And unlike some methods [35], we do not predict
this confidence that may cause an error.

Table 2 shows a comparison of existing work in the field of cost-sensitive image
classification. To estimate the correctness of the classification, we use the criterion
presented in [14]. We use a smart selection of outputs instead of using the threshold.
The details of our selector algorithm are explained in Section 3.3.

Model Advantages Disadvantages

Dynamic pruning using
pruning nodes [36], or
pruning channels [16, 17]

speed up the normal
CNN

unable change speed or accu-
racy at runtime

Decision making with
threshold [14, 8]

change speed or accu-
racy at runtime easily

only could be applied to the
cascading model. may reduce
the accuracy of the decision

Classifiers as decision-
makers in specified struc-
ture [35, 37]

select path in network
more accurate

just used in specified struc-
ture. time consuming. may
increase error.

Classifiers as decision-
makers in any struc-
ture [15]

work in any structure time consuming. may increase
error.

Table 2. Cost-sensitive methods comparison

Time-Sensitive Adaptive Model for Adult Image Classification 1291

3 PROPOSED MODEL

3.1 Time-Sensitive Adaptive Classifier Structure

Our model proposes to use a dynamic classifier selection technique. The paper [39]
states that the dynamic classifier selection is composed of three phases:

1. Classifiers generation,

2. Selection, and

3. Fusion.

Our proposed model combines two latter phases, so it consists of two main parts, the
Classifiers generation and the Selector (a combination of selection and fusion). The
Classifiers are the outputs of different layers of CNN, which are generated at different
times from the start of the network execution. The Selector is a reinforcement
learning agent that selects some of these outputs to achieve the best performance,
taking into account the time budget.

Figure 2 shows the general structure of the model and the connection between
these two parts.

CNN with multiple
output

Selector

Input images

Desired time Images labels

Figure 2. Structure of the proposed method: A model based on reinforcement learning is
used for the selector part, and a deep convolutional neural network with several outputs
from the middle layers is used for the classifier part

The goal of our cost-sensitive problem is to reduce the total cost of the classifi-
cation, for any given time budget (t′). The total cost of the model (Cost total(t

′)) is
shown as:

Cost total(t
′) = Costerror(t

′) + Costevaluation-time(t
′) (1)

where Costerror(t
′) is the classifier error cost that is shown in Equation (2) and

Costevaluation-time(t
′) is the time of running the algorithm on a set of data that is

1292 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

shown in Equation (3).

Costerror(t
′) =

N∑
i=1

|W ′(xi)−W (xi|t′)| (2)

Costevaluation-time(t
′) =

N∑
i=1

T (xi|t′) + Tselector(t
′) (3)

In these formulas, xi is the input image, N is the number of input images,
W (xi|t′) is the output label of the model given time budget t′, and W ′(xi) is the
true label of image xi, T (xi|t′) is the CNN processing time for input image xi given
time budget t′, and Tselector(t

′) is processing time of our selector module given time
budget t′. At runtime, the selector easily accesses a Q-table and selects the action
with the highest value, so its processing time could be ignored. CNN processing time
is calculated based on the number of operations performed in the network layers.
More precisely, we show T (xi|t′) as follows:

T (xi|t′) '
L∑
l=1

Pl(xi|t′).nl−1.s
2
l .nl.m

2
l , (4)

Pl(xi|t′) =

1, lth layer processed,

0, lth layer not processed,
(5)

where L is the number of all layers in the CNN, Pl(xi|t′) is the coefficient that
determines whether each layer is processed or not, nl−1 is the number of the input
channels of the lth layer, nl is the number of output channels (filters), sl is the spatial
size of the filter, and ml is the spatial size of the output channels. In a regular
CNN, all layers are processed, so Pl(xi|t′) is equal to 1 for all layers. But in our
proposed method, we intend to prevent some layers from being processed. The
selector accomplishes this goal using a reinforcement learning method. If the input
image can be correctly recognized by the outputs of the first layers, it prevents the
execution of the final layers of the network. So Pl(xi|t′) will be equal to zero for the
final layers of the network if the input image is easy.

According to the expressed formulas, the time complexity of the final model
could be written as:

O

(
L∑
l=1

Pl.nl−1.s
2.nl.m

2
l

)
. (6)

Here, Pl (0 ≤ Pl ≤ 1) is the probability of using each layer of the model. Our
method causes Pl to be less than 1 for a number of layers, as described in Section 3.3.

In the following sections, we illustrate two main parts of our proposed method
named time-sensitive adaptive classifier.

Time-Sensitive Adaptive Model for Adult Image Classification 1293

3.2 Classifiers Generation

As stated in the previous section, the classifiers generation is the first phase of the
dynamic classifier selection technique. We need a range of classifiers, some with
faster output but less accurate, and some with slower output but more accurate.
For this purpose, a deep convolutional neural network (CNN) with several outputs
in the middle layers is designed. From the popular and state-of-the-art CNNs such as
Googlenet [5], Resnet-152 [7], and VGG network [26], we chose the VGG network.
Because this network has fewer layers and is faster than the rest, and also our
problem is a two-class problem, so it does not need a complex structure for high-
accuracy classification. There are different types of VGG network, and we chose the
lightest and fastest one called vgg-f. For the need of the final model, we added three
more outputs to the base network.

The designed network, which has four outputs, is shown in Figure 3. The output
layers are shown with a red rectangle and are named softmax1, softmax2, softmax3,
softmax4. In the convolutional and fully connected layers, we show the characteristic
of each layer by ”Convs ∗ s ∗ n” and ”FCs ∗ s ∗ n” respectively, where s ∗ s is the
size of the filter and n is the number of the input channel. The processing time
required to produce each output is the sum of the processing times of the layers on
the path to it. Therefore, to achieve the softmax1 output, the convolutional layer,
the pooling layer, the fully connected layer, and finally, the softmax1 layer must be
processed, so according to Figure 3, the processing time will be t1 + t3. Normally to
reach the softmax3 output, the processing time will be t1 + t2 + t4 + t7. However,
if softmax1 output is already generated on the same image, the output of the first
layer of pooling is ready, so there is no need to spend time t1. In this case, the
processing time for the softmax3 output will be t2 + t4 + t7.

Different network outputs produce their results with different accuracies at dif-
ferent times. The softmax1 output has the highest processing speed and the lowest
accuracy, and the softmax4 output has the lowest processing speed and the highest
accuracy.

To train our network, we use fine-tuning of the vgg-f network [26]. The vgg-f
network has been trained on the ImageNet dataset [33] containing 1 000 classes. We
train each of the four outputs separately. To fine-tune the network, first, remove
the last fully connected layer before softmax4 from the vgg-f network, and replace
it with a fully connected layer with two output nodes for both normal and adult
classes. To train only the newly inserted layer, we keep the weights of all the previous
layers constant, then train the network with our dataset. The fine-tuning method is
also used to train the branch layers. For example, to train the fully connected layer
before softmax 1, the fully connected layer with two output nodes is connected to
the end of the first pooling layer, as shown in Figure 3. Then, by keeping the weight
of the main network layers constant, this new layer is trained with our training
dataset. The same goes for training the other two branches.

Before training or testing, we resized all the images to 224× 224. We also used
the data augmentation method to improve the training of the neural network. So

1294 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

Input image

Conv 11*11*3

Conv 5*5*64

Pool /2

Pool /2

Conv 3*3*256

Conv 3*3*256

Conv 3*3*256

Pool /2

FC 6*6*256

FC 1*1*4096

FC 1*1*4096

Softmax 4

FC 27*27*64

Softmax 1

FC 13*13*256

Softmax 2

FC 13*13*256

Softmax 3

t1

t2

t4

t6

t3

t5

t7

Figure 3. Designed CNN as a classifier with multiple outputs: the green rectangles show
the convolutional and fully-connected layers, the blue rectangles represent the pooling
layers, and the red rectangles represent the softmax (Network output) layers. t1, t2, . . . , t7
indicate the processing time of each part of the network.

each time the images were called during the training, a slight shift in image cropping,
a change in image brightness, and image flipping has been applied.

3.3 Selector

The second phase of a dynamic classifier selection technique is the design of the
selector that task is to select and fuse the outputs. After training our CNN, a selector
is required to select and combine the best outputs that can get the best result in
the shortest time for each image. In other words, for simpler images, output with
less processing time should be selected, and for more difficult images, more complex
outputs with higher accuracy should be selected. The selector should also be able
to keep the average processing time of the images within a specified time budget.

Among the reinforcement learning (RL) methods, Q-learning has been selected.
By embedding the accuracy and the time-cost to the reward of the RL method,
we lead the RL agent to select the outputs in which the answer with the highest
accuracy and the lowest cost will be achieved. At execution time, when the RL

Time-Sensitive Adaptive Model for Adult Image Classification 1295

agent selects an output, the CNN executes the path to that output, then the RL
agent observing the output decides whether to select another output or terminate
the process and produce a resulting label. The agent observes and considers both
the selected classifier output and its confidence about that output.

The degree of confidence in the output is obtained using the softmax layer
output. The softmax formula produces a number between zero and one for each
class so that the sum of all the probabilities is equal to one. This number represents
the score that determines how much each input belongs to the class:

Pi =
esi∑N
c=1 e

sc
(7)

where Pi is the probability of each output, si is the score value of class i, and N is
the number of classes.

The probability given to each class is considered as the network’s confidence in
the output of that class. Therefore, if this confidence is high, the path selected in
CNN has achieved the desired result, and the selector can report the final selected
class. But, if this probability, for both classes is close to 0.5, it indicates that the
classifier is not sure of the correctness of its output, so the selector selects another
output of the neural network to get a more accurate result.

The overall structure of the reinforcement learning algorithm and a number of its
states are shown in Figure 4. To further explain our reinforcement learning model,
action, state, and reward for the designed model are described below.

Action: In the beginning, the agent can select each of the CNN outputs and pro-
cess the path leading to that output. In the next step, if more processing is
required, the agent can choose another output among the unselected outputs.
For example, action a1 means to select the softmax1 output. After performing
the action a1, we reach one of the states related to this output according to
the resulting confidence. Also, in each state, the agent can choose one of the
normal and adult classes and then go to the final state, which itself is defined as
an action. Therefore, according to the confidence obtained at each output, the
agent decides to select one of the classes or to continue processing a new path
in the neural network.

State: Different states are defined for the proposed model. There is a start and
finish state displayed by red rectangles in Figure 4. The two states before the
finish state represent the number of model classes (normal and adult). After
leaving each of the middle states, the agent (to complete the processing) could
decide to choose one of these two classes. Other states also specify which output
had been selected in the neural network, and what classes with what confidence
is selected. Since we have only two classes in this case, if the confidence level for
the output of the normal class is above 0.5, the normal class is selected, other-
wise, the adult class is selected. In Figure 4, S1 = R1 shows the selection of the
normal class at the softmax1 output with confidence above 0.5, and S1 = R2

1296 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

Start

S1=R1

S1=R2

S2=R1

S2=R2

S3=R1

S3=R2

S1=R1
S2=R1

S1=R2
S2=R1

S1=R1
S2=R2

S1=R2
S2=R2

S1=R1
S3=R1

S1=R2
S3=R1

...

S1=R1
S2=R1
S3=R1

S1=R1
S2=R1
S3=R2

S1=R1
S2=R2
S3=R1

a2

a5 or a6

...

Class 0 Class 1

Finish

...

a2

a1 a1

a3

a5 a6

Figure 4. The general structure of the reinforcement learning algorithm in a simple mode:
The start and finish states are displayed with red rectangles, and middle states are dis-
played with ellipses. The actions that shown by arrows named as a1, a2, a3, a4 indicate
the selection of each of the CNN outputs, and a5, a6 specify the actions of selecting each
of the final classes. S1 represents softmax1 output, S2 represents softmax2 output, and so
on. R1 and R2 represent two value interval for confidence.

shows the selection of the adult class with confidence above 0.5 (equal to the
confidence below 0.5 at the output of the normal class). That is the easiest way
to quantize the confidence value into two intervals. In Section 4, this quanti-
zation is done with more intervals, and its effect on the achieved accuracy is
shown.

Reward: In the Q-learning algorithm, the value of each state and action is up-
dated according to the current reward and the highest reward obtained in the
next state. Our presented reward depends on two factors: the calculation time
of the processed CNN layers, and the misclassification error. Q-table values are
updated using the following equation [41]:

Qnew(si, ai)← Qold(si, ai) + β.(Rewardi + γ.maxaQ(si+1, a)−Qold(si, ai)) (8)

Time-Sensitive Adaptive Model for Adult Image Classification 1297

where Q(si, ai) is the value of state si by performing action ai, β is learn-
ing rate, γ is the discount factor, maxaQ(si+1, a) is the maximum value that
can be obtained from state si+1, and Rewardi is the reward received by per-
forming action ai in state si. According to Equation (1), to simultaneously
consider the accuracy and time cost, the Rewardi is determined as follows:

Rewardi = Accuracyi − α.TimeCost i (9)

where Accuracyi is achieved in final action based on whether the classifica-
tion result is correct or not. If the class assigned to each instance in pre-
finish states is correct, Accuracyi is set with a positive constant value (we used
10) and otherwise with a negative constant value (we used −10). TimeCost i
for each action indicates the extra time spent to get the output in the CNN
up to this point. The α parameter is a factor that determines the balance
between time and accuracy. If we look for a faster result, this value is in-
creased, so the results that are generated over a longer time will be more penal-
ized.

By changing the parameter α, the model is trained for different time constraints.
So, for various time budgets, we set the α to various values and we will have different
Q tables.

According to the times t1, t2, . . . , t7 shown for different parts of the network in
Figure 3, Equation (4) can be simplified for our model as follows:

T (xi|t′) '
7∑

l=1

Pl(xi|t′).tl (10)

where T (xi|t′) is the CNN processing time for input image xi given time budget t′,
l indicates the lth part of the CNN, and Pl(xi|t′) is the phrase that determines
whether each part is processed or not. By penalizing longer times using Equation (9),
more layers will be neglected and processing time T (xi|t′) will be reduced.

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 Dataset Description

We created a dataset containing 18 000 different images to train and test the model.
We wanted the database to have diverse and challenging images, so we collected
many samples from public social networks or image sharing sites. Social network
images are often produced by non-professional users, and many of them do not have
proper lighting or quality. Dataset images were selected to include both simple and
hard images. In the adult class, 38 % are simple images, but the rest of the images
have various challenges. About 22 % of the images have poor illumination, in 40 %
of the images the important parts of the image are covered with clothes or with text

1298 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

on the image, 20 % of the images are not naked and can only be detected by body
positions. The dataset can be downloaded from [40].

Figure 5 shows some samples from this dataset. The upper row shows normal
images; the three images on the left are simple, but the two images on the right are
more difficult to recognize because of their large area of skin and high similarity to
adult images. The lower row shows adult images; the three images on the left side
include the naked bodies and are easy to recognize. But the two images on the right
side are difficult to recognize, these two images are taken outdoors, and the peoples
in them are not completely naked, but they are adult images because of showing
certain parts of the body.

Figure 5. Sample images of our dataset: The first row shows the images of the normal
class, and the second row shows the adult class

The entire dataset is divided into three parts. The neural network is trained
using the first part of the dataset, the second part of the dataset is used to train
the selector, And finally, the third part (test data) is used to report the accuracy of
the network.

4.2 Experimental Setup

To train and test the deep neural network and other parts of the model, a device
with 2.7 GHz Intel Core i5 processor and 8 GB RAM has been used. MatConvNet
software package [38] has been used for training and testing the CNN.

Our CNN is trained using data from the first part of the dataset, then the results
are reported on the images of the third part (test data). The values obtained for
the various outputs of the CNN are shown in Table 3. The accuracy of the first
output (softmax1) is about 77 % and the accuracy of the last output (softmax4) is
about 93 %. At the output of the last layer, a 16 % increase in accuracy has been
achieved, but the processing time has increased almost sevenfold. The times related
to different parts of the CNN are shown with t1, t2, . . . , t7 according to Figure 3.

Time-Sensitive Adaptive Model for Adult Image Classification 1299

The reported processing time of each output is the average processing time for
all images. And the accuracy is presented according to the following formula using
the average accuracy of different classes.

Accuracy =
TP

totalNumberP
+ TN

totalNumberN

2
∗ 100 (11)

where TP is the number of correctly classified images of the adult class and
totalNumberP is the total number of images of the adult class, similarly, TN is
the number of correctly classified images of the normal class and totalNumberN is
the total number of images of the normal class. Using this formula, the accuracy of
the classification does not change according to the imbalance between the number
of samples in each class.

Output name Accuracy (percent) Time (ms) Time according to Figure 3

Softmax1 77.13 4.65 t1 + t3
Softmax2 82.1 12.03 t1 + t2 + t5
Softmax3 85.07 17.27 t1 + t2 + t4 + t7
Softmax4 92.53 33.36 t1 + t2 + t4 + t6

Table 3. Accuracy and the processing time of the outputs of the proposed method’s CNN

4.3 Quantizing the Confidence into Four Intervals

As explained in the previous sections, to determine the different states in the selector,
it is necessary to quantize the numerical values of the softmax output. We also want
to define different states for different classes. Of course, the output nodes of the last
layer of the neural network have the same number as classes, so in our case, it has
two output nodes. Since the sum of the values of these two outputs is equal to one,
the specified classes can be extracted using one of the output nodes. Assuming we
display the output range of the normal output node with [0, 1], if the output value
is in the range (0.5, 1], we consider it as the normal class, and if it is in the range
[0, 0.5], we consider it as the adult class.

In this section, the output range is quantized into four intervals. Therefore, the
quantization is considered as follows:

R1 = [0, a], R2 = (a, 0.5], R3 = (0.5, a′], R4 = (a′, 1] (12)

where R1, R2, R3, R4 are different intervals. To make this intervals balanced, we
set a′ = 1 − a. Thus, if the output is in the range of R1 or R4, the confidence of
the output is high, otherwise, the confidence is low. For example, if the output for
the normal class is in the range R4 = (a′, 1], it indicates that the normal class is
selected with high confidence, and if it is in the range R3 = (0.5, a′], the normal
class is selected with low confidence.

1300 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

Reinforcement learning models are trained using the second part of the database
(as a training set for the selector) and different models are obtained for different
values of a. The results for these models on the train set as well as the test set are
shown in Figure 6.

In each model, by changing the α parameter in Equation (12), the resulting
accuracies and their corresponding processing times are obtained.

According to Figure 6, the corresponding line to the all presented models is
above the line of the base network, so the given models performed better at the
same time budget. Models with a greater area under the curve are generally more
accurate. For a better comparison, we have shown the area under the curve in the
accuracy vs. time budget chart (AUC) for different models in Table 4. According to
the table, the best result is 279.5 that is obtained on the test set for the parameter
a = 0.1.

Model Area Under the Curve

base net 201.3

a = 0.05 268.5

a = 0.1 279.5

a = 0.2 274.1

a = 0.3 260.6

a = 0.4 237.8

Table 4. Area under the curve for models with four quantization intervals with different
parameter of a

When only the accuracy is important and the penalty for image processing time
is low, the selector uses all network outputs to select the appropriate class. Since
most of the processing path is common between the outputs of the base network,
using all outputs does not significantly increase processing time. Although the use
of all outputs increased the accuracy on the training data, there is no significant
increase in the accuracy on the test data. This is because most of the image pro-
cessing is done in the convolution layers, our three branches consist only of fully
connected layers.

4.4 Different Number of Quantization Intervals

In this section, we have increased the number of quantization intervals and measured
its effect on accuracy. Below our different quantization intervals are shown.

3part model = {R1 = [0, 0.3], R2 = (0.3, 0.7], R3 = (0.7, 1]}, (13)

4part model = {R1 = [0, 0.2], R2 = (0.2, 0.5], R3 = (0.5, 0.8], R4 = (0.8, 1]}, (14)

Time-Sensitive Adaptive Model for Adult Image Classification 1301

75

77

79

81

83

85

87

89

91

93

95

0 5 10 15 20 25 30 35 40

Ac
cu

ra
cy

 (%
)

Process time (ms)

Train set - Four ranges

base net

a=0.4

a=0.3

a=0.2

a=0.1

a=0.05

75

77

79

81

83

85

87

89

91

93

95

0 5 10 15 20 25 30 35 40

Ac
cu

ra
cy

 (%
)

Process time (ms)

Test set - Four ranges

base net

a=0.4

a=0.3

a=0.2

a=0.1

a=0.05

Figure 6. Accuracy versus time budget for models with four quantization intervals: The
blue line shows the connection between four points related to the resulting points of the
four outputs of the base network. For different values of a, the results are shown by
a different color. The top chart shows the results on the train set, and the bottom chart
shows the results on the test set.

1302 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

6part model = {R1 = [0, 0.1], R2 = (0.1, 0.2], R3 = (0.2, 0.5],

R4 = (0.5, 0.8], R4 = (0.8, 0.9], R4 = (0.9, 1]}, (15)

8part model = {R1 = [0, 0.1], R2 = (0.1, 0.2], R3 = (0.2, 0.3],

R4 = (0.3, 0.5], R5 = (0.5, 0.7], R6 = (0.7, 0.8],

R7 = (0.8, 0.9], R8 = (0.9, 1]}, (16)

10part model = {R1 = [0, 0.1], R2 = (0.1, 0.2], R3 = (0.2, 0.3], R4 = (0.3, 0.4],

R5 = (0.4, 0.5], R6 = (0.5, 0.6], R7 = (0.6, 0.7],

R8 = (0.7, 0.8], R9 = (0.8, 0.9], R10 = (0.9, 1]} (17)

where 3part model, 4part model, 6part model, 8part model, 10part model are five
models that are trained with different quantization intervals. For each of these
models, different divider numbers have been tested, and the value with the highest
accuracy has been placed in the above equation as the selected model. The result
on the test and train set for all models is shown in Figure 7. We notice that most of
the points of the proposed models are above the resulting line of the base network.
So our models perform better in these conditions.

In the case of 3 quantization interval, in about five milliseconds, the model’s
accuracy is lower than the first output of the CNN, because in this model only when
the output confidence is above 70 %, the class is specified; otherwise, the output
value is in the range R2, which does not show a specific class and only indicates
that the classifier is not confident about its output. As the number of quantization
intervals increases, the accuracy of the training data increases, but after increasing
the intervals to more than four parts, due to the overfitting of the model to the
training data, the accuracy of the test data decreases. As in the previous section, it
was found that using all the outputs of the neural network in the selector does not
significantly increase the accuracy on the test data, and this shows that the output
of the last layer of the base neural network contains the information of the other
outputs.

For a more accurate comparison of the models, we also have calculated the area
under the curve of accuracy vs. time budget chart (AUC), as shown in Table 5.
According to this table, the best number of quantization intervals for the model is
four part quantization. The worst model is the 10 part, but even this model has
performed better than the base network.

4.5 Final Model Evaluation

To verify that the final selected model performs better than the base network for all
different time budgets, we calculated the precision, recall, and F1-score values for a
number of different time budgets, and showed them in Table 6. In the least and most
time-consuming cases, the results of our model are equal to the base network. But

Time-Sensitive Adaptive Model for Adult Image Classification 1303

75

80

85

90

95

100

0 5 10 15 20 25 30 35 40

Ac
cu

ra
cy

 (%
)

Process time (ms)

Train set - Multiple ranges

base net

3 part

4 part

6 part

8 part

10 part

75

77

79

81

83

85

87

89

91

93

95

0 5 10 15 20 25 30 35 40

Ac
cu

ra
cy

 (%
)

Process time (ms)

Test set - Multiple ranges

base net

3 part

4 part

6 part

8 part

10 part

Figure 7. Accuracy versus time budget for models with different quantization intervals:
The blue line shows the connection between four points related to the resulting points of
the four outputs of the base network. Models by changing the quantization intervals into
3, 4, 6, 8, and 10 intervals are shown in the figure with different colors. The top chart
shows the results on the train set, and the bottom chart shows the results on the test set.

1304 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

Model Area Under the Curve

base net 201.3

3 part 252.2

4 part 279.5

6 part 269.1

8 part 258.9

10 part 244.8

Table 5. Area under the curve for models with different quantization intervals

for all intermediate time budgets, the results are improved. For example, for 12.03
milliseconds for the base network, the precision, recall, and F1-score are 0.8141,
0.832, and 0.8229, respectively, while for the proposed model, in less time, i.e. 8.76
milliseconds, the performance is better, and the precision, recall, and F1-score are
0.819, 0.8406, and 0.8297, respectively. Therefore, as explained in the previous
sections, the combination of network outputs as performed by the proposed model
is able to improve the final result, in addition to the ability to produce output at
the given time budgets.

Model Process Time (ms) Precision Recall F1-score

base net

4.65 0.7602 0.7927 0.7761
12.03 0.8141 0.832 0.8229
17.27 0.8465 0.8567 0.8516
33.36 0.9288 0.9213 0.925

our 4 part model

4.65 0.7603 0.793 0.7763
8.76 0.819 0.8406 0.8297

10.41 0.8367 0.849 0.8428
12.32 0.8724 0.8506 0.8614
16.55 0.8782 0.8876 0.8829
22.58 0.9127 0.9096 0.9111
33.36 0.9287 0.9213 0.925

Table 6. F1-score comparison for 4 part model and base model

Reduction of processing time is achieved by reducing the values of Pl(xi|t′) for
different parts of the CNN, in Equation (10). The first chart in Figure 8 shows
the average of Pl values for different time budgets t′ for all images in the test set.
The second chart shows the processing time for different time budgets. Pl and tl
corresponds to a part of the CNN in Figure 3.

In Figure 8, P3, P5, P7, P6 correspond to the parts leading to the output softmax1,
softmax2, softmax3, and softmax4 of the CNN, respectively. In the following, we
will explain two charts of the Figure 8.

In the top chart, when the time budget is very low, only softmax1 output is
used (i.e. p1 = 1 and p3 = 1). As the budget increases, the probability of using
layers with higher computational cost increases. Therefore, the hypothesis of re-

Time-Sensitive Adaptive Model for Adult Image Classification 1305

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4.65 7.82 8.76 10.41 11.48 12.32 15.12 22.58 33.36

St
ac

ke
d

pr
ob

ab
ilit

y

Given time budget

p1 p2 p3 p4 p5 p6 p7

0

5

10

15

20

25

30

35

40

4.65 7.82 8.76 10.41 11.48 12.32 15.12 22.58 33.36

Pr
oc

es
sin

g
tim

e

Given time budget

p1*t1 p2*t2 p3*t3 p4*t4 p5*t5 p6*t6 p7*t7

Figure 8. The top chart shows the stacked probability of Pl given different time budgets.
The bottom chart shows the stacked time of each part of the CNN (i.e. Pl ∗ tl) given
different time budgets.

1306 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

ducing time complexity by reducing the use of layers (presented in Equation (6)) is
verified.

When time budgets are less than 15.12 milliseconds, the first output (P3) is used,
but the sum of probability of using the other outputs (P5 +P7 +P6) is less than one.
That is, some images are simple and can be correctly classified using only the first
output of the CNN.

The bottom chart shows that the outputs P3, P5, and P7 consume very little
processing time and most of the processing is related to the middle layers. When the
maximum time budget is given, the selector does not use outputs from the earlier
parts of the network and only uses the last output P6. Because the outputs are
not completely independent, the latest output contains information about previous
outputs, and the use of earlier outputs does not improve the result.

By increasing the time budget, the selector has used the layers with more time
cost, which are also more accurate. But this use is not linear and the selector tries
to use the best combination for different given budgets. For example, the selector
has used softmax3 (correspond to P7) very little, and by increasing the time budget,
the selector has increased the share of softmax4 (correspond to P6).

5 CONCLUSIONS AND FUTURE WORKS

This paper presents a method to adaptively resolve the trade-off between accuracy
and time budget for adult image classification. We used a dynamic classifier selection
technique. First, we created a CNN with three outputs from the middle layers, then
we trained a selector using the Q-learning method to select and combine the best
CNN outputs for each image based on the available time budget. The results confirm
that our selector can increase the accuracy of the classifier by using the appropriate
combination of network outputs. The final model also has the ability to generate
results for different time budgets.

In the future, we intend to automize the quantization of the outputs of the soft-
max layers using a linear classifier. So, the error of manually quantizing the ranges
can be eliminated. We also plan to extend this method for classifying adult videos.
By considering the correlation of consecutive frames and using the appropriate se-
lector, we could reduce the processing time of the entire video.

REFERENCES

[1] Community Guidelines, Instagram Help Center. Available at: https://help.

instagram.com/477434105621119, July 17, 2020.

[2] Community Standards, Facebook. Available at: https://www.facebook.com/

communitystandards/objectionable_content, July 17, 2020.

[3] Wang, L.—Zhang, J.—Tian, Q.—Li, C.—Zhuo, L.: Porn Streamer Recogni-
tion in Live Video Streaming via Attention-Gated Multimodal Deep Features. IEEE

https://help.instagram.com/477434105621119
https://help.instagram.com/477434105621119
https://www.facebook.com/communitystandards/objectionable_content
https://www.facebook.com/communitystandards/objectionable_content

Time-Sensitive Adaptive Model for Adult Image Classification 1307

Transactions on Circuits and Systems for Video Technology, Vol. 30, 2020, No. 12,
pp. 4876–4886, doi: 10.1109/TCSVT.2019.2958871.

[4] Lykousas, N.—Gómez, V.—Patsakis, C.: Adult Content in Social Live Stream-
ing Services: Characterizing Deviant Users and Relationships. 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), 2018, pp. 375–382, doi: 10.1109/ASONAM.2018.8508246.

[5] Liu, H.—Simonyan, K.—Yang, Y.: DARTS: Differentiable Architecture Search.
7th International Conference on Learning Representations (ICLR 2019), 2019,
pp. 1–13.

[6] Simonyan, K.—Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. 3rd International Conference on Learning Representations (ICLR
2015). ArXiv Preprint ArXiv:1409.1556v6, 2015.

[7] He, K.—Zhang, X.—Ren, S.—Sun, J.: Deep Residual Learning for Image Recog-
nition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[8] Leroux, S.—Bohez, S.—De Coninck, E.—Verbelen, T.—Vankeirs-
bilck, B.—Simoens, P.—Dhoedt, B.: The Cascading Neural Network: Building
the Internet of Smart Things. Knowledge and Information Systems, Vol. 52, 2017,
No. 3, pp. 791–814, doi: 10.1007/s10115-017-1029-1.

[9] Karayev, S.—Baumgartner, T.—Fritz, M.—Darrell, T.: Timely Object
Recognition. In: Pereira, F., Burges, C. J. C., Bottou, L., Weinberger, K. Q. (Eds.):
Advances in Neural Information Processing Systems 25 (NIPS 2012), 2012, pp. 890–
898, http://papers.nips.cc/paper/4712-timely-object-recognition.

[10] Iandola, F. N.—Han, S.—Moskewicz, M. W.—Ashraf, K.—Dally, W. J.—
Keutzer, K.: SqueezeNet: AlexNet-Level Accuracy with 50× Fewer Parameters
and < 0.5 MB Model Size. 2016, pp. 1–13, http://arxiv.org/abs/1602.07360.

[11] Howard, A. G.—Zhu, M.—Chen, B.—Kalenichenko, D.—Wang, W.—
Weyand, T.—Andreetto, M.—Adam, H.: MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications. 2017, http://arxiv.org/abs/

1704.04861.

[12] Zhang, X.—Zhou, X.—Lin, M.—Sun, J.: ShuffleNet: An Extremely Effi-
cient Convolutional Neural Network for Mobile Devices. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856, doi:
10.1109/CVPR.2018.00716.

[13] Ma, N.—Zhang, X.—Zheng, H.-T.—Sun, J.: ShuffleNet V2: Practical Guide-
lines for Efficient CNN Architecture Design. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (Eds.): Computer Vision – ECCV 2018. Springer, Cham, Lecture
Notes in Computer Science, Vol. 11218, 2018, pp. 122–138, doi: 10.1007/978-3-030-
01264-9 8.

[14] Berestizshevsky, K.—Even, G.: Dynamically Sacrificing Accuracy for Reduced
Computation: Cascaded Inference Based on Softmax Confidence. In: Tetko, I. V.,
Kůrková, V., Karpov, P., Theis, F. (Eds.): Artificial Neural Networks and Machine
Learning – ICANN 2019: Deep Learning. Springer, Cham, Lecture Notes in Computer
Science, Vol. 11728, 2019, pp. 306–320, 2019, doi: 10.1007/978-3-030-30484-3 26.

https://doi.org/10.1109/TCSVT.2019.2958871
https://doi.org/10.1109/ASONAM.2018.8508246
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s10115-017-1029-1
http://papers.nips.cc/paper/4712-timely-object-recognition
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-30484-3_26

1308 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

[15] Liu, L.—Deng, J.: Dynamic Deep Neural Networks: Optimizing Accuracy-
Efficiency Trade-Offs by Selective Execution. 32nd AAAI Conference on Artificial
Intelligence (AAAI-18), 2018, pp. 3675–3682.

[16] Lin, J.—Rao, Y.—Lu, J.—Zhou, J.: Runtime Neural Pruning. In: Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(Eds.): Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017,
pp. 2182–2192.

[17] Rao, Y.—Lu, J.—Lin, J.—Zhou, J.: Runtime Network Routing for Efficient Im-
age Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 41, 2019, No. 10, pp. 2291–2304, doi: 10.1109/TPAMI.2018.2878258.

[18] Zheng, H.—Daoudi, M.—Jedynak, B.: Blocking Adult Images Based on Statis-
tical Skin Detection. In Electronic Letters on Computer Vision and Image Analysis,
Vol. 4, 2004, No. 2, 14 pp., doi: 10.5565/rev/elcvia.78.

[19] Zheng, H.—Liu, H.—Daoudi, M.: Blocking Objectionable Images: Adult Images
and Harmful Symbols. 2004 IEEE International Conference on Multimedia and Expo
(ICME), Vol. 2, 2004, pp. 1223–1226, doi: 10.1109/icme.2004.1394442.

[20] Lee, J. S.—Kuo, Y. M.—Chung, P. C.: The Adult Image Identification Based on
Online Sampling. Proceedings of the 2006 IEEE International Joint Conference on
Neural Network, 2006, pp. 2566–2571, doi: 10.1109/IJCNN.2006.247111.

[21] Zheng, Q. F.—Zhang, M. J.—Wang, W. Q.: A Hybrid Approach to Detect Adult
Web Images. In: Aizawa, K., Nakamura, Y., Satoh, S. (Eds.): Advances in Multimedia
Information Processing – PCM 2004. Springer, Berlin, Heidelberg, Lecture Notes in
Computer Science, Vol. 3332, 2004, pp. 609–616, doi: 10.1007/978-3-540-30542-2 75.

[22] Zhu, H.—Zhou, S.—Wang, J.—Yin, Z.: An Algorithm of Pornographic Image
Detection. Proceedings of the 4th International Conference on Image and Graphics
(ICIG 2007), 2007, pp. 801–804, doi: 10.1109/ICIG.2007.29.

[23] Zheng, Q. F.—Zeng, W.—Wang, W. Q.—Gao, W.: Shape-Based Adult Image
Detection. International Journal of Image and Graphics, Vol. 6, 2006, No. 1, pp. 115–
124, doi: 10.1142/S0219467806002082.

[24] Lopes, A. P. B.—de Avila, S. E. F.—Peixoto, A. N. A.—Oliveira, R. S.—
De A. Araújo, A.: A Bag-of-Features Approach Based on Hue-SIFT Descriptor
for Nude Detection. 2009 17th European Signal Processing Conference (EUSIPCO),
Glasgow, UK, 2009, pp. 1552–1556, https://ieeexplore.ieee.org/abstract/

document/7077625/.

[25] Deselaers, T.—Pimenidis, L.—Ney, H.: Bag-of-Visual-Words Models for Adult
Image Classification and Filtering. 2008 19th International Conference on Pattern
Recognition, 2008, pp. 1–4, doi: 10.1109/ICPR.2008.4761366.

[26] Chatfield, K.—Simonyan, K.—Vedaldi, A.—Zisserman, A.: Return of the
Devil in the Details: Delving Deep into Convolutional Nets. Proceedings of the British
Machine Vision Conference 2014, 2014, pp. 6.1–6.12, doi: 10.5244/C.28.6.

[27] Moustafa, M.: Applying Deep Learning to Classify Pornographic Images and
Videos. Proceedings of the 7th Pacific-Rim Symposium on Image and Video Technol-
ogy (PSIVT 2015), Auckland, New Zealand, 2015, http://arxiv.org/abs/1511.

08899.

https://doi.org/10.1109/TPAMI.2018.2878258
https://doi.org/10.5565/rev/elcvia.78
https://doi.org/10.1109/icme.2004.1394442
https://doi.org/10.1109/IJCNN.2006.247111
https://doi.org/10.1007/978-3-540-30542-2_75
https://doi.org/10.1109/ICIG.2007.29
https://doi.org/10.1142/S0219467806002082
https://ieeexplore.ieee.org/abstract/document/7077625/
https://ieeexplore.ieee.org/abstract/document/7077625/
https://doi.org/10.1109/ICPR.2008.4761366
https://doi.org/10.5244/C.28.6
http://arxiv.org/abs/1511.08899
http://arxiv.org/abs/1511.08899

Time-Sensitive Adaptive Model for Adult Image Classification 1309

[28] Krizhevsky, A.—Sutskever, I.—Hinton, G. E.: Imagenet Classification with
Deep Convolutional Neural Networks. In: Pereira, F., Burges, C. J. C., Bot-
tou, L., Weinberger, K. Q. (Eds.): Advances in Neural Information Processing
Systems 25 (NIPS 2012), 2012, pp. 1097–1105, http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

[29] Szegedy, C.—Liu, W.—Jia, Y.—Sermanet, P.—Reed, S.—Anguelov, D.—
Erhan, D.—Vanhoucke, V.—Rabinovich, A.: Going Deeper with Convolutions.
Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.

[30] Nian, F.—Li, T.—Wang, Y.—Xu, M.—Wu, J.: Pornographic Image Detec-
tion Utilizing Deep Convolutional Neural Networks. Neurocomputing, Vol. 210, 2016,
pp. 283–293, doi: 10.1016/j.neucom.2015.09.135.

[31] Shen, R.—Zou, F.—Song, J.—Yan, K.—Zhou, K.: EFUI: An Ensemble Frame-
work Using Uncertain Inference for Pornographic Image Recognition. Neurocomput-
ing, Vol. 322, 2018, pp. 166–176, doi: 10.1016/j.neucom.2018.08.080.

[32] Vitorino, P.—Avila, S.—Perez, M.—Rocha, A.: Leveraging Deep Neural
Networks to Fight Child Pornography in the Age of Social Media. Journal of Vi-
sual Communication and Image Representation, Vol. 50, 2018, pp. 303–313, doi:
10.1016/j.jvcir.2017.12.005.

[33] Deng, J.—Dong, W.—Socher, R.—Li, L. J.—Li, K.—Fei-Fei, L.: Ima-
geNet: A Large-Scale Hierarchical Image Database. 2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2009), 2009, pp. 248–255, doi:
10.1109/CVPR.2009.5206848.

[34] Cheng, F.—Wang, S. L.—Wang, X. Z.—Liew, A. W. C.—Liu, G. S.: A Global
and Local Context Integration DCNN for Adult Image Classification. Pattern Recog-
nition, Vol. 96, 2019, Art. No. 106983, doi: 10.1016/j.patcog.2019.106983.

[35] Bolukbasi, T.—Wang, J.—Dekel, O.—Saligrama, V.: Adaptive Neural Net-
works for Efficient Inference. 34th International Conference on Machine Learning
(ICML 2017), PMLR, Vol. 70, 2017, pp. 527–536.

[36] Bengio, E.—Bacon, P.-L.—Pineau, J.—Precup, D.: Conditional Computation
in Neural Networks for Faster Models. 2015, http://arxiv.org/abs/1511.06297.

[37] Odena, A.—Lawson, D.—Olah, C.: Changing Model Behavior at Test-Time
Using Reinforcement Learning. Proceedings of the 5th International Conference on
Learning Representations (ICLR 2017), Workshop Track, 2017, pp. 1–6, https://
arxiv.org/pdf/1702.07780.pdf.

[38] Vedaldi, A.—Lenc, K.: MatConvNet: Convolutional Neural Networks for MAT-
LAB. Proceedings of the 23rd ACM International Conference on Multimedia (MM
2015), 2015, pp. 689–692, doi: 10.1145/2733373.2807412.

[39] Cruz, R. M. O.—Sabourin, R.—Cavalcanti, G. D. C.: Dynamic Classifier Se-
lection: Recent Advances and Perspectives. Information Fusion, Vol. 41, 2018,
pp. 195–216, doi: 10.1016/j.inffus.2017.09.010.

[40] Noktedan, A.: Adult Content Dataset. Figshare, 20-Dec-2020, doi:
10.6084/m9.figshare.13456484.v1.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1016/j.neucom.2015.09.135
https://doi.org/10.1016/j.neucom.2018.08.080
https://doi.org/10.1016/j.jvcir.2017.12.005
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.patcog.2019.106983
http://arxiv.org/abs/1511.06297
https://arxiv.org/pdf/1702.07780.pdf
https://arxiv.org/pdf/1702.07780.pdf
https://doi.org/10.1145/2733373.2807412
https://doi.org/10.1016/j.inffus.2017.09.010
https://doi.org/10.6084/m9.figshare.13456484.v1

1310 M. R. Mazinani, S. M. Hoseini, K. Dadashtabar Ahmadi

[41] Watkins, C. J. C. H.—Dayan, P.: Q-Learning. Machine Learning, Vol. 8, 1992,
pp. 279–292, doi: 10.1007/BF00992698.

Mohammad Reza Mazinani is Ph.D. candidate in computer
engineering, Malek Ashtar University of Technology, Iran. He
received his M.Sc. degree in artificial intelligence from the Com-
puter Engineering Department, Sharif University of Technology,
Iran. His research interests are deep learning, cost-sensitive com-
puting, image and video processing, and pattern recognition.

Seyyed Mojtaba Hoseini received his B.Sc. degree in elec-
tronic engineering from Malek Ashtar University of Technol-
ogy in 1991. He also received his M.Sc. and Ph.D. degrees in
computer architecture engineering from Amirkabir University of
Technology in 1995 and 2011, respectively. His research interest
is in wireless sensor networks, with an emphasis on target cover-
age and tracking applications, image and signal processing, and
evolutionary computing.

Kourosh Dadashtabar Ahmadi is Chairman of Computer
and Artificial Intelligence Research Institute, Head of AI group,
and Assistant Professor in Malek Ashtar University of Technol-
ogy, Iran. He received his M.Sc. in information technology from
Tarbiat Modares University in 2007, and Ph.D. in artificial in-
telligence from Malek Ashtar University of Technology, Iran in
2015. His research interests are information fusion, cyber secu-
rity, image processing, deep learning, and reinforcement learn-
ing.

https://doi.org/10.1007/BF00992698

Computing and Informatics, Vol. 39, 2020, 1311–1335, doi: 10.31577/cai 2020 6 1311

DECODING FIVE TIMES EXTENDED REED
SOLOMON CODES USING SYNDROMES

Peter Farkaš

Institute of Multimedia ICT, FEI STU
Ilkovičova 3
812 19 Bratislava, Slovakia
&
Institute of Applied Informatics
Faculty of Informatics Pan-European University, Slovakia
Temat́ınska 10
851 05 Bratislava, Slovakia
e-mail: p.farkas@ieee.org

Martin Rakús

Institute of Multimedia ICT, FEI STU
Ilkovičova 3
812 19 Bratislava, Slovakia
e-mail: martin.rakus@stuba.sk

Abstract. Recently a new family of five times extended Reed Solomon codes con-
structed over certain finite fields GF (2ζ), where ζ ≥ 3 is an odd integer, was discov-
ered. Until now only an erasure decoding algorithm for these codes was published.
In this paper a new decoding algorithm is presented, which allows correcting up to
two errors in a codeword from the five times extended Reed Solomon codes. The
proposed decoding algorithm is based on syndrome usage.

Keywords: Algorithm, extended Reed Solomon codes, error correction decoding,
syndromes

Mathematics Subject Classification 2010: 58F15, 58F17, 53C35

1312 P. Farkaš, M. Rakús

1 INTRODUCTION

Reed Solomon (RS) codes were discovered more than 60 years ago [3]. Their practical
importance was proven by mass applications in such systems as CD or DVB [4].
More surprisingly, in recent years a new interest in these codes has risen in the
research community. It is caused by the fact that they are extensively used in cloud
technology, namely in distributed storage systems [5, 6, 7, 8, 9]. In [1] it was shown
that RS codes could be extended not only three times, but even five times when
they are constructed over certain finite fields. For such five times extended RS codes
a decoding algorithm is known [2] which is suitable only for erasure decoding. In
case of erasures the positions are known in a received vector and therefore only
the erasure values have to be found out during decoding. In contrast to this, the
positions of the errors in received vectors are unknown; therefore both error values
and error positions have to be determined during decoding. The error correction
is useful in many applications of RS codes [4]. For example, in [10] syndrome
decoding is patented for random access-based computer memory systems by IBM
Corp. Interestingly, it contains a reference to [11] in which the authors of this paper
proposed a related code which inspired the construction of five times extended Reed
Solomon codes [1].

In this paper a decoding algorithm is presented which allows correcting at least
2 errors in five times extended RS codes from [1].

The paper is organized as follows. In Section 2 a short introduction to the
original (not extended) RS codes error correcting decoding via syndromes is pre-
sented. In Section 3 the error correcting decoding of the original RS codes is given.
In Section 4 the novel error correcting algorithm for five times extended RS codes
introduced in [1] is presented. In Section 5 some remarks on the decoding implemen-
tation are given. In Section 6 the complexity estimation of the algorithm is made.
Conclusions in Section 7 summarize the results of the paper.

2 A SHORT INTRODUCTION TO ORIGINAL RS CODES

RS codes are linear block codes which could be described by many mathemati-
cal tools and which have many interesting connections with different mathematical
branches. In this section only a short introduction to RS codes is given. The
interested reader could find a more detailed explanation of RS codes and their ap-
plications for example in [4]. To explain the proposed decoding algorithm a basic
description of RS codes as linear block codes via matrices and as cyclic codes using
polynomials is given.

A linear block code is defined as a k-dimensional subspace of an n-dimensional
vector space over a finite field GF (q). Basic parameters of linear block codes are:
the codeword length n, the number of information symbols k in each codeword
and the code distance dm which is a minimal Hamming distance between any two
codewords. Sometimes linear block codes are in shorthand using a triple [n, k, dm],

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1313

which contains these fundamental parameters. The code distance dm and the num-
ber of correctable errors t in a linear code are connected by the following inequal-
ity:

2t+ 1 ≤ dm.

Because a linear block code is defined as a k-dimensional subspace of an n-di-
mensional vector space over a finite field GF (q) it could be described via a k × n
generator matrix Gk×n which contains as rows k linearly independent vectors with
length n. In systematic form:

Gk×n =
[
Ik×k | Pk×(n−k)

]
(1)

where Ik×k and Pk×(n−k) are the identity and parity matrices, respectively. For
decoding purposes a control matrix is defined as:

H(n−k)×n =
[
PT

(n−k)×k | I(n−k)×(n−k)
]

(2)

where I(n−k)×(n−k) and PT
(n−k)×k are the identity and transposed parity matrices,

respectively. The following equation is valid:

Gk×n.H
T
n×(n−k) = 0k×(n−k) (3)

where HT
n×(n−k) and 0k×(n−k) are the transposed matrix H and all zeros matrix,

respectively.
In [1] a new family of codes constructed over GF (2ζ), where ζ ≥ 3 is an odd

integer, using the H matrix (4) was proposed.

H =

α0 α0 · · · α0 α0 α0 1 0 0 0 0
α(q−2) α(q−3) · · · α2 α1 α0 0 1 0 0 0
α2(q−2) α2(q−3) · · · α4 α2 α0 0 0 1 0 0
α3(q−2) α3(q−3) · · · α6 α3 α0 0 0 0 1 0
α4(q−2) α4(q−3) · · · α8 α4 α0 0 0 0 0 1

 . (4)

The basic parameters of this family of block codes can be characterized by
a triple [q + 4, q − 1, 5].

3 ERROR CORRECTING DECODING OF ORIGINAL RS CODES

The definition of original RS codes correcting t errors requires that each codeword of
these cyclic codes has 2t consecutive and distinct elements of a finite field as roots.
In other words the generating polynomial should also have the same property. In
GF (2ζ), ζ ≥ 2 we get:

g(x) =
(
x+ αj

) (
x+ αj+1

) (
x+ αj+2

)
. . .
(
x+ αj+2t−1

)
(5)

where j is an integer (for convenience usually equal to 0 or 1). In the following
explanation we will use j = 0 for simplicity. Then the generator polynomial can be

1314 P. Farkaš, M. Rakús

written as follows:

g(x) =
(
x+ α0

) (
x+ α1

) (
x+ α2

)
. . .
(
x+ α2t−1

)
. (6)

The original RS codes could be described using the following control matrix:

HRS =

α0 α0 · · · α0 α0 α0

α(q−2) α(q−3) · · · α2 α1 α0

...
... · · · ...

...
...

α(2t−1)(q−2) α(2t−1)(q−3) · · · α(2t−1)2 α(2t−1) α0

 (7)

which is in fact a Vandermonde matrix V2t×n over GF (2ζ).

There are numerous different decoding algorithms for original RS codes. In this
section, we will describe only the basic algorithm for error correction of codewords
of RS codes based on syndromes. The reason is that this algorithm is the most
related to the proposed decoding algorithm for the five times extended RS codes,
which will be described later.

The main goal of error correcting codes and their decoding is to decrease the
number of errors and/or erasures which can occur during the information trans-
mission or storage. Next, we will focus on error correction. The codewords of RS
codes can be described as vectors in which the coordinates are symbols from the
underlying finite field:

c = (cn−1, cn−2, . . . , c1, c0). (8)

Another possibility is to use polynomials for descriptions:

c(x) = cn−1x
n−1 + cn−2x

n−2 + . . .+ c1x
1 + c0x

0. (9)

The symbols ci in (8) and 9 are elements from GF (q). In the present digital era
the most practical choice are finite fields GF (2ζ), which are extensions of the binary
finite field. ζ ≥ 2 is positive integer.

In such fields the ith error in a codeword could be described using two un-
knowns – the so called error value Yi ∈ GF (2ζ) and its position, which is given by
a corresponding error locator Xi ∈ GF (2ζ). The decoder needs to calculate both
of these values for each error in order to correct one error in a codeword. On the
other hand, each polynomial 9) representing a codeword from the RS code has 2t
roots which are consecutive elements in GF (2ζ). This allows the formation of 2t
equations in order to correct t errors in one codeword from the original RS code.
The following explanation and example of the basic decoding algorithm makes it
more obvious.

The model of an additive error channel is illustrated in Figure 1.

Because for any codeword of a cyclic code the following two equations hold:

c(x) mod g(x) = 0 (10)

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1315

Figure 1. Additive error channel model. ⊕ denotes a polynomial addition over GF (2ζ),
c(x) is the transmitted codeword, e(x) is an error polynomial and v(x) is the received
polynomial which can contain errors.

and
g(αk) = 0; k = j, (j + 1), . . . , (j + 2t− 1) (11)

then the following equation is also valid:

c(αk) = 0; k = j, (j + 1), . . . , (j + 2t− 1). (12)

One of the many algorithms which are known for error correcting decoding for
original RS codes is the following syndrome method. The first step consists of
inserting the roots, which define the concrete RS code via (5) into the received
polynomial v(x) = vn−1x

n−1 + vn−2x
n−2 + . . .+ v1x

1 + v0x
0:

Sk = v(αk) = c(αk) + e(αk); k = j, (j + 1), . . . , (j + 2t− 1). (13)

If j = 0:
S0 = v(α0),

S1 = v(α1),

...

S2t−1 = v(α2t−1)

(14)

where Sj denotes the jth syndrome, j = 0, 1, . . . , 2t− 1. From (12) and (13):

Sk = e(αk); k = j, (j + 1), . . . , (j + 2t− 1). (15)

Therefore each syndrome is dependent only on the error polynomial written as
e(x) = en−1x

n−1 + en−2x
n−2 + . . . + e1x

1 + e0x
0 and it could be expressed also via

the unknowns which have to be calculated in order to correct the errors. Namely
the error locators Xi; i = 0, 1, 2, . . . , t and error values Yi; i = 0, 1, 2, . . . , t:

Sk =
t∑
i=1

YiX
k
i ; k = 0, 1, . . . , 2t− 1. (16)

(At this stage it is not known how many errors τ occurred in reality, but we
suppose that τ ≤ t and so we start with the worst case assumption, that τ = t.)

1316 P. Farkaš, M. Rakús

Actually (16) is a system of nonlinear equations which could not be solved
directly. It could be better seen after writing (16) in a more detailed fashion:

Y1 + Y2 · · · + Yt = S0,

Y1X1 + Y2X2 · · · + YtXt = S1,

Y1X
2
1 + Y2X

2
2 · · · + YtX

2
t = S2,

...

Y1X
2t−1
1 + Y2X

2t−1
2 · · · + YtX

2t−1
t = S2t−1.

(17)

A clever way to deal with this difficulty is to first find the error locators and then
after introducing them into (16) the system turns into a system of linear equations
which could be solved by standard algorithms, for example Gauss elimination.

The error locator polynomial could be used for this purpose. The error locator
polynomial: λ(x) = λtx

t + λt−1x
t−1 + . . .+ λ1x+ 1 is a polynomial which has roots,

which are error locators. It could be expressed as follows:

λ(Xi) = 0 i = 0, 1, . . . , t. (18)

In order to find an error locator polynomial we can rewrite (18):

λtX
t
i + λt−1X

t−1
i + . . .+ λ1Xi + 1 = 0 i = 0, 1, . . . , t. (19)

(19) could be multiplied by YiX
z
i ; i = 1, 2, . . . , t; z ∈ Z:

λtYiX
t+z
i + λt−1YiX

t+z−1
i + . . .+ λ1YiX

z
i + YiX

z
i = 0 i = 0, 1, . . . , t. (20)

Now we can write (18) for fixed values of z ∈ Z. For z = 0 we get:

Y1X
0
1 + λ1Y1X

1
1 + · · · + λtY1X

t
1 = 0,

Y2X
0
2 + λ1Y2X

1
2 + · · · + λtY2X

t
2 = 0,

...

YtX
0
t + λ1YtX

1
t + · · · + λtYtX

t
t = 0.

(21)

Summation of (21) gives us:

S0 + λ1S1 + . . .+ λtSt = 0. (22)

Similarly for z = 1 we get:

Y1X
1
1 + λ1Y1X

2
1 + · · · + λtY1X

t+1
1 = 0,

Y2X
1
2 + λ1Y2X

2
2 + · · · + λtY2X

t+1
2 = 0,

...

YtX
1
t + λ1YtX

2
t + · · · + λtYtX

t+1
t = 0.

(23)

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1317

Summation of (23) gives us:

S1 + λ1S2 + . . .+ λtSt+1 = 0. (24)

We can continue in a similar way until we get the following system of equations:

S0 + λ1S1 + · · · + λtSt = 0,

S1 + λ1S2 + · · · + λtSt+1 = 0,

...

St−1 + λ1St + · · · + λtS2t−1 = 0.

(25)

This system of linear equations could be solved by any standard method, for
example by Gauss-Jordan elimination. As a result we get the coefficients of the
error locator polynomial.

The error locator polynomial determination from the calculated syndromes could
also be done using different approaches, for example the Berlekamp-Massey algo-
rithm [12, 13].

In the third step the locators are found via Chien search [14]. It is, in princi-
ple, a slightly augmented brute force algorithm in which the symbols are inserted
consecutively into the locator polynomial, evaluated and tested if:

λ(Xi) = 0 i = 0, 1, . . . , τ ; τ ≤ t (26)

until we get τ locators. This algorithm is possible because the underlying field is
finite. It will stop when we get enough solutions. In other words it means that with
high probability we do not usually have to insert all nonzero elements.

Nevertheless, the Chien search has high complexity. If the error locator has
a small degree it could be solved directly [15, 16, 17]. Or theorem 3.2.15 in [18]
can be used with much smaller computational complexity. For example the method
in [16] has very low complexity.

The result of this step will be the set of error locators: Xi; i = 0, 1, . . . , τ , where
τ is the number of errors which actually occurred during transmission in the decoded
codeword.

The fourth step is the calculation of error values. This can be done thanks to
known syndromes, which could be expressed in another form:

Sk =
τ∑
i=1

YiX
k
i k = 0, 1, . . . , 2t− 1. (27)

In this step it remains to calculate the error values Yi; i = 0, 1, . . . , τ . This could
be accomplished simply by solving the set of equation given by (27). At first we
have to insert the values of error locators into it which will transform it into a set
of linear equations. (The error locator values are elements of the finite field and

1318 P. Farkaš, M. Rakús

therefore also their powers are elements of the same finite field.) Then this set of
linear equations could be solved by the Sarus rule or by Gauss-Jordan elimination.

In this step the attempt to correct the received word could be done by adding
the error values to received symbols in positions determined by error locators.

One may ask how the actual number of errors τ ≤ t could be obtained in
the third step of the above algorithm. When using Gauss-Jordan elimination it
is quite straightforward. When using the Sarus rule we have to test if the de-
terminant of the system is zero. We have to suppose that τ = t first. If the
determinant of the matrix corresponding to the system of equations is zero, we
will have to suppose that τ = t − 1 and again compute the new determinant
and test if it is zero and if not then we can conclude that τ = t − 1. If it
is zero we can continue to decrease τ and modify the corresponding system ma-
trix by deleting the last row and last column until we get a nonzero determinant.
It has to be said that there exists a much more efficient method to find the er-
ror locator, namely the Berlecamp Massey algorithm. The details can be found
in [12, 13].

The last step is obtaining the estimation of the transmitted or stored codeword
from the received word – the actual error correction of the received word. This is
done by adding the error values to the positions determined by error locators in the
received codeword.

4 A DECODING ALGORITHM FOR ERROR CORRECTION
FOR FIVE TIMES EXTENDED RS CODES

In [1] it was proven that the code distance of each code from this family is 5. This
code distance potentially allows for correcting up to two errors in a codeword. This
is a necessary but insufficient condition. The additional condition which has to be
fulfilled is the knowledge of a decoding algorithm.

Unfortunately the approach presented in the previous section is not applicable
to codes proposed in [1]. It is because (4) contains not only a Vandermonde matrix
as a submatrix, but also an additional identity matrix in juxtaposition. It becomes
obvious by inspection of the matrix (4), which can be represented in a compact form
as:

H5×n =
[
V5×(q−1) | I5×5

]
. (28)

Therefore in this section a new specialized error correcting algorithm will be
presented for codes from [1]. The main problem is that the classical syndrome
method in this case is not able to distinguish between different error patterns by
analyzing the values of syndromes. The approach which will overcome this difficulty
is similar to using sieves for mechanical separation by size. In other words the
algorithm deals first with error patterns detectable by syndromes. The rest of the
error patterns are processed at the end of decoding.

At first we will introduce notation which will allow us to underline some proper-
ties, which will be exploited in the decoding algorithm. The codewords of the codes

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1319

from [1] will be denoted as follows:

c = (ck−1, ck−2, . . . , c1, c0, p0, p1, p2, p3, p4) (29)

where the left part contains information vector: c = (mk−1,mk−2, . . . ,m1,m0), or
in other words:

ci = mi i = 0, 1, . . . , k − 1 (30)

and

pI =
k−1∑
i=0

miα
I ; I = 0, 1, . . . , 4. (31)

It is obvious that (30) and (31) could also be used for systematic encoding of
codes from [1]. The received vector which has to be decoded and therefore can
contain errors will be denoted as follows:

v = (vk−1, vk−2, . . . , v1, v0, r0, r1, r2, r3, r4). (32)

The decoding algorithm starts with the calculation of 5 syndromes via multi-
plying the received vector by the transposed control matrix (4):

s = v.HT
5×n. (33)

The resulting vector will contain, as its coordinates, the desired syndromes:

s = (S0, S1, S2, S3, S4). (34)

The second step consists of analysing s. The algorithm will continue in depend-
ing on this analysis.

1. If all coordinates of s are zeros:

s = (0, 0, 0, 0, 0) (35)

the algorithm ends, and it is supposed that no errors occurred, therefore:

ĉ = v (36)

where ĉ is the estimation of the transmitted or stored codeword.

2. If only one syndrome SI (one coordinate) is nonzero and all other four are zeros,
then it is supposed that only one error occurred in the parity symbol correspond-
ing to the position of the nonzero element in s. This symbol can be corrected
simply by calculating the corresponding parity symbol again using the received
non corrupted symbols corresponding to information symbols. Assuming that
SI 6= 0 then SI = Y and:

p̂I = SI + rI . (37)

For the other coordinates of the decoded word (36) is valid.

1320 P. Farkaš, M. Rakús

3. If only two syndromes e.g. SI 6= 0 and SJ 6= 0 and all other are zeros, then
it is supposed that only two errors occurred and only in the parity positions.
Otherwise, if one error is in the parity part and the other in the information
part or both errors are in the information part, or only one error occurred in
the information part then at least one other syndrome would be nonzero. This
follows from the properties of Vandermonde matrices. In this case the two
corresponding parity symbols could be computed similarly as in case 2. Now
SI 6= 0 =⇒ SI = Y1 and SJ 6= 0 =⇒ SJ = Y2 then:

p̂I = SI + rI ,

p̂J = SJ + rJ .
(38)

Note: In the following steps a situation when one or two errors can occur in the
information part, or one error can occur in the information part and one in the
parity part, has to be investigated and decided. For these tests a set of auxiliary
variables is computed:

A1 = S1

S0
,

A2 = S2

S1
,

A3 = S3

S2
,

A4 = S4

S3
.

(39)

In connection with (39) possible division by 0 has to be taken into account in
any practical implementation e.g. by substituting a value not present in the given
GF (q).

4. At first let us assume that one error occurred in the information part. In this
case all of the following equations must be fulfilled:

S0 = Y,

S1 = XY,

S2 = X2Y,

S3 = X3Y,

S4 = X4Y.

(40)

From (40) follows that:

A1 = A2 = A3 = A4 = X = αj (41)

where j gives the position of the error in the information part to which the error
value Y = S0 (from (40)) has to be added in order to correct the received word:

ĉj = vj + Y. (42)

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1321

5. If in one or in two cases Ai 6= Ai+1, i = 1, 2, 3 then one error occurred in the
information part and one in the parity part. In order to test in which position
in the parity part the error occurred, one of the following 5 sets of equations
is valid. In order to determine the error position in the parity part one of the
following tests has to hold.

(a) If J = 0 then:
S0 = Y1 + Y2,

S1 = X1Y1,

S2 = X2
1Y1,

S3 = X3
1Y1,

S4 = X4
1Y1.

(43)

Test if the following is true:

A1 6= A2 ∧ A2 = A3 ∧ A3 = A4. (44)

From (43) follows that:
X1 = S2

S1
= αj,

X2 = α0,

Y1 =
S2
1

S2
,

Y2 = S0 +
S2
1

S2
.

(45)

(b) If J = 1 then:
S0 = Y1,

S1 = X1Y1 + Y2,

S2 = X2
1Y1,

S3 = X3
1Y1,

S4 = X4
1Y1.

(46)

Test if the following is true:

A1 6= A2 ∧ A2 6= A3 ∧ A3 = A4. (47)

From (46) follows that:

X1 = S3

S2
= αj,

X2 = α1,

Y1 = S0,

Y2 = S1 + S3

S2
S0.

(48)

1322 P. Farkaš, M. Rakús

(c) If J = 2 then:
S0 = Y1,

S1 = X1Y1,

S2 = X2
1Y1 + Y2,

S3 = X3
1Y1,

S4 = X4
1Y1.

(49)

Test if the following is true:

A1 6= A2 ∧ A2 6= A3 ∧ A1 = A4. (50)

From (49) follows that:
X1 = S1

S0
= αj,

X2 = α2,

Y1 = S0,

Y2 = S2 +
S2
1

S0
.

(51)

(d) If J = 3 then:
S0 = Y1,

S1 = X1Y1,

S2 = X2
1Y1,

S3 = X3
1Y1 + Y2,

S4 = X4
1Y1.

(52)

Test if the following is true:

A1 = A2 ∧ A2 6= A3 ∧ A3 6= A4. (53)

From (52) follows that:
X1 = S1

S0
= αj,

X2 = α3,

Y1 = S0,

Y2 = S3 +
S3
1

S2
0
.

(54)

(e) If J = 4 then:
S0 = Y1,

S1 = X1Y1,

S2 = X2
1Y1,

S3 = X3
1Y1,

S4 = X4
1Y1 + Y2.

(55)

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1323

Test if the following is true:

A1 = A2 ∧ A2 6= A3 ∧ A3 6= A4. (56)

From (55) follows that:
X1 = S1

S0
= αj,

X2 = α4,

Y1 = S0,

Y2 = S4 +
S4
1

S3
0
.

(57)

Correction of the received word:

ĉj = vj + Y1,

r̂J = rJ + Y2, J = 0, 1, . . . , 4.
(58)

(f) In this step an assumption is made that both errors are in the information
part. In this case the following is true:

A1 6= A2 ∧ A2 6= A3 ∧ A3 6= A4 (59)

and the following equations must be fulfilled:

S0 = Y1 + Y2, (60)

S1 = X1Y1 +X2Y2, (61)

S2 = X2
1Y1 +X2

2Y2, (62)

S3 = X3
1Y1 +X3

2Y2, (63)

S4 = X4
1Y1 +X4

2Y2. (64)

The unknown variables X1, X2, Y1, Y2 can be computed using a standard
method described in Section 3. The correction of the received word can be
done similarly as in case 4. But now, two positions in the information part
have to be corrected corresponding to the two locators X1 and X2 by adding
the calculated values Y1 and Y2 of the errors to the received symbols:

ĉi = vi + Y1,

ĉj = vj + Y2.
(65)

6. If none of the cases: 1.–6. is confirmed, then it has to be assumed that more
than two errors occurred and the decoding failure has to be declared.

In Figure 2 the proposed decoding algorithm is depicted in a compact way using
a flow chart.

1324 P. Farkaš, M. Rakús

+

+

+

+

+

_

_

_

_

_

S = (S0, S1, S2, S3, S4)

Si = 0 ; i = 0, 1, ... , 4

Si = 0 \ { Sj }; i = 0, 1, ... , 4

Si = 0 \ { Sj, Sk }; i = 0, 1, ... , 4

1 error in the

information part

2 errors in the

information part

end
decoding failure

correction of
1 parity symbol

correction of
2 parity symbols

correction of
1 information

symbol

correction of
2 information

symbols

end
decoding completed

Figure 2. Flow chart of decoding algorithm

5 SOME REMARKS ON DECODING IMPLEMENTATION

In the previous section the basic principles of the decoding algorithm were presented
for error correction in five times extended Reed Solomon codes. In this section we
will explain some properties which were used in particular steps of the decoding
algorithm and describe in more detail how to solve the different, earlier mentioned
systems of equations. We will start with polynomial notation for (29) and (32):

c(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + (p0 + p1 + p2 + p3 + p4)x
0, (66)

v(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + (r0 + r1 + r2 + r3 + r4)x
0 (67)

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1325

which will help to express the formulas needed to explain the proposed decoding
algorithm. Similarly the error vector could be expressed using a polynomial:

e(x) = ek−1e
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + (ε0 + ε1 + ε2 + ε3 + ε4)x
0. (68)

Note: This notation will also be useful later in the section dealing with the ana-
lysis of the decoding algorithm complexity. This is because the complexity could
be very often decreased by ideas inspired by hardware realizations of decoders. On
the other hand the hardware for cyclic codes is conveniently described by polyno-
mials.

By observing (66), (67) and the calculation of the syndromes together with
knowing the role of locators during decoding ordinary RS codes, it is obvious that
the description (66) and (67) is correct. However, it is not helpful since it does
not allow us to distinguish the positions of v0 and r0, r1, . . . , r4. It is because in
this polynomial description all these symbols appear in sum as a coefficient of x0.
Therefore, we will introduce the following new sets of polynomials which are better
adapted to the decoding of five times extended RS codes. This approach enables us
to solve the mentioned problem with location distinction.

c0(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p0x
0,

c1(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p1x
0,

c2(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p2x
0,

c3(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p3x
0,

c4(x) = ck−1x
k−1 + ck−2x

k−2 + . . .+ c1x
1 + c0x

0 + p4x
0,

(69)

v0(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r0x
0,

v1(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r1x
0,

v2(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r2x
0,

v3(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r3x
0,

v4(x) = vk−1x
k−1 + vk−2x

k−2 + . . .+ v1x
1 + v0x

0 + r4x
0,

(70)

e0(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε0x
0,

e1(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε1x
0,

e2(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε2x
0,

e3(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε3x
0,

e4(x) = ek−1x
k−1 + ek−2x

k−2 + . . .+ e1x
1 + e0x

0 + ε4x
0.

(71)

1326 P. Farkaš, M. Rakús

Using these polynomials we can express the syndromes as follows:

S0 = v0(α
0) = c0(α

0) + e0(α
0) = ek−1 + . . .+ e1 + e0 + ε0,

S1 = v1(α
1) = c1(α

1) + e1(α
1) = ek−1α

k−1 + . . .+ e1α
1 + e0α

0 + ε1α
0,

S2 = v2(α
2) = c2(α

2) + e2(α
2) = ek−1α

2(k−1) + . . .+ e1α
2 + e0α

0 + ε2α
0,

S3 = v3(α
3) = c3(α

3) + e3(α
3) = ek−1α

3(k−1) + . . .+ e1α
3 + e0α

0 + ε3α
0,

S4 = v4(α
4) = c4(α

4) + e4(α
4) = ek−1α

4(k−1) + . . .+ e1α
4 + e0α

0 + ε4α
0.

(72)

Now we can explain some properties on which the particular steps of the pro-
posed decoding algorithm are based depending on error location.

Case 1 is trivial and known for syndrome decoding of linear block codes.
In Case 2, the following property is used: assuming that the error occurs in one of

the parity symbols, or in other words, if one of the symbols from a set {ε0, ε1, ε2, ε3, ε4}
in the error polynomial is nonzero, it means that only one corresponding syndrome
is nonzero. It follows from (72).

Similarly in Case 3, the following property is used: assuming that only two
syndromes e.g. SI and SJ are nonzero and all others are zeros, then it is supposed
that exactly two errors occurred in the parity positions, which follows from (72).

In Case 4, it is supposed that:

ε0 = ε1 = ε2 = ε3 = ε4 = 0 (73)

and only one of the symbols from the set {ek−1, ek−2, . . . , e1, e0} is nonzero. From
these assumptions it follows that:

c0(x) = c1(x) = c2(x) = c3(x) = c4(x) = c(x). (74)

And therefore (40) follows from (17).
In Case 5, it is supposed that the first error ocured in the information part

of the codeword and the second one in the parity part. Therefore, for the first
error we can use error locator X1 as usually defined inside the information part
which is mapped on c(x) because in this case: ε0 = ε1 = ε2 = ε3 = ε4 = 0
and c0(x) = c1(x) = c2(x) = c3(x) = c4(x) = c(x). However, for the second
error the assumptions are different. Namely that one of the symbols from a set
{ek−1, ek−2, . . . , e1, e0} in the error polynomial is nonzero. On the other hand, the
location and value of the second error is not given by a standard locator in this case.
These are determined indirectly using tests: (44),(47),(50),(53),(56) and the system
of equations: (45),(48),(51),(54),(57). The reason is that the single nonzero element
from the set {ek−1, ek−2, . . . , e1, e0} will cause the second summand on the right side
to be equal to zero in only one of the above mentioned systems of equations.

In Case 6, the reasoning is similar, because it is assumed that (73) is valid
and two of the symbols from set {ek−1, ek−2, . . . , e1, e0} are nonzero. Therefore (73)
also holds. Consequently (60), (61), (62), (63) and (64) follow from (17) again.

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1327

However, in this case it is worth giving more details of the method how to solve the
system of Equations (60), (61), (62), (63) and (64). In order to decode the received
word it is necessary to find two unknown locators X1, X2 and two unknown error
values Y1, Y2, together 4 unknowns. Therefore at least 4 equations are needed to be
calculated. However, the Equations (60), (61), (62), (63) and (64) are not linear.
Therefore a direct analytical solution is not easy or viable at all. The following
notification allows arguing that the standard approach as in decoding ordinary RS
codes is possible. Because in Case 5, it is supposed that two errors occurred, the
locator polynomial has degree two:

λ(x) = λ2x
2 + λ1x

1 + x0. (75)

Therefore:

λ2X
2
i + λ1X

1
i + 1 = 0; i = 1, 2. (76)

After multiplying (75) with YiX
z
i ; i = 1, 2; z ∈ Z we get:

λ2YiX
z+2
i + λ1YiX

z+1
i + YiX

z
i = 0; i = 1, 2 z ∈ Z. (77)

Now we can write (76) for a fixed value of z ∈ Z. For z = 0 we get:

λ2Y1X
2
1 + λ1Y1X

1
1 + Y1X

0
1 = 0,

λ2Y2X
2
2 + λ1Y2X

1
2 + Y2X

0
2 = 0.

(78)

Summation of (78) gives us:

λ2S2 + λ1S1 + S0 = 0. (79)

For z = 1, we get similarly:

λ2Y1X
3
1 + λ1Y1X

2
1 + Y1X

1
1 = 0,

λ2Y2X
3
2 + λ1Y2X

2
2 + Y2X

1
2 = 0.

(80)

Summation of (80) gives us:

λ2S3 + λ1S2 + S1 = 0. (81)

Now (79) and (81) form a system of linear equations with two unknowns: λ1
and λ2. Such a system is easily solvable by standard approaches. For example:

λ2 =
S1 + S0S2

S2
2 + S1S3

, (82)

λ1 =
S0 + λ2S2

S1

. (83)

1328 P. Farkaš, M. Rakús

As a result we have a concrete error locator polynomial and therefore the Chien
algorithm could be used in order to get locators X1 and X2. Or (75) can be solved
directly [15, 16, 17, 18].

For example in [17] after substituting x = λ1
λ2
u into (75), the error locator poly-

nomial will be:

λ(x) =
λ21
λ2

(
u2 + u+

λ2
λ21

)
. (84)

In order to find its roots it is necessary to solve:

u2 + u+
λ2
λ21

= 0. (85)

Because GF (2m) is, by squaring, transformed linearly over GF (2), Equation (85)
could be reformulated as follows:

u (Θ + I) =
Λ2

Λ2
1

(86)

where u, Λ2

Λ2
1
, I and Θ are binary vectors, identity matrix and m×m square operator

matrix, respectively. After adding the two matrices in (86) the following equality is
obtained:

u×T =
Λ2

Λ2
1

(87)

where T = Θ + I. To make the computation fast the pseudo inverse of T could be
implemented via lookup table in advance for the specific finite field GF (2m). The
calculation of error locators then consists of the following steps:

• calculating Λ2

Λ2
1
;

• reading out the two roots: U1, U2 from the lookup table;

• transforming U1, U2 into locators X1, X2 by using:

X1 =
Λ1

Λ2

U1; (88)

• thanks to Vieta’s formulas we can use addition instead of multiplication for the
second locator transformation:

X2 = U1 +
Λ1

Λ2

. (89)

After calculating X1, X2 they could be inserted into (61). By using the resulting
equation and (60) the error values Y1 and Y2 could be calculated from this linear
system of equations:

Y2 =
S1 + S0X1

X1 +X2

, (90)

Y1 = S0 + Y2. (91)

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1329

Case 7 is a consequence of the fact that all correctable configurations of errors
determined by the code distance of the codes are covered by previous cases: 1–6.
However, if non correctable configuration of errors occurs, for example containing
more than two errors, then the decoding can end in failure or incorrect decoding.
The failure can be detected in Case 7. After this detection some remedy mech-
anism can be started, for example the request for re-sending the codeword again
could be generated. Therefore this situation is better than the incorrect decoding
caused by more than two errors. This can happen if under the influence of more
than two errors the received combination is closer to some other codeword than
to one which was sent. Namely its Hamming distance is smaller than or equal to
two.

6 COMPLEXITY ESTIMATION OF THE ALGORITHM

In this section the complexity estimation of the proposed decoding algorithm is
presented. The number of operations needed for calculating syndromes will not be
counted, because these operations are necessary in any syndrome based decoding
and they are usually done by hardware. It is obvious that the number of operations
necessary for correct decoding is dependent on the number of errors which occur in
the transmission channel and on their positions in the received codeword. Therefore
an average number of operations per codeword was chosen for this estimation with
the assumption that the error occurrence mechanism is modeled as a q-ary symmetric
channel depicted in Figure 3.

α0 α0

α1 α1

αq−2 αq−2

1 - (q - 1)p

1 - (q - 1)p

1 - (q - 1)p

p

p

p

p

p

p

Figure 3. q-ary symmetric channel

1330 P. Farkaš, M. Rakús

If we denote by Pe = (q − 1)p the probability of error in this channel model,
then:

P0 = (1− Pe)q+4, (92)

P1 =

(
q + 4

1

)
Pe(1− Pe)q+3, (93)

P2 =

(
q + 4

2

)
P 2
e (1− Pe)q+2 (94)

are the probabilities that 0, 1 and 2 errors occur in a received codeword, respectively.
However the complexity also depends on the constellation of the error or errors.
Therefore the following probabilities for the decoding complexity estimation will be
defined:

• probability of one error in parity symbol:

P1P = P1
5

q + 4
= 5Pe(1− Pe)q+3, (95)

• probability of one error in information symbol:

P1I = P1
q − 1

q + 4
= (q − 1)Pe(1− Pe)q+3, (96)

• probability of two errors in parity symbol:

P2P = P2

(
5
2

)
(
q + 4

2

) = 10P 2
e (1− Pe)q+2, (97)

• probability of two errors in information symbol:

P2I = P2

(
q − 1

2

)
(
q + 4

2

) =
(q − 1)(q − 2)

2
P 2
e (1− Pe)q+2, (98)

• probability of one error in parity symbol and one error in information symbol:

P1P1I = P2
5(q − 1)

(q + 4)2
=

5(q − 1)(q − 2)

2(q + 4)
P 2
e (1− Pe)q+2, (99)

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1331

• probability of more than two errors in codeword:

P>2 =

q+4∑
j=3

(
q + 4
j

)
P j
e (1− Pe)q+4−j. (100)

After the algorithm gets as an input 5 syndromes, five comparisons of the calcu-
lated syndromes are done and depending on the results one of the following subrou-
tines are performed. The complexity for each case can be given by the number of
operations. Next, the average number of operations could be calculated using the cu-
mulative probability theorem. We will introduce the vector Υ = (υ1, υ2, υ3, υ4, υ5)
in which the particular non-negative integer coordinates: υ1, υ2, υ3, υ4, υ5 denote
the number of additions, multiplications, divisions, comparisons and look up table
accesses, respectively, which are needed in order to perform the particular subrou-
tines. The detailed estimation of the necessary operations (except calculation of
syndromes) follows:

• one error in parity symbol: 1 addition:

Υ1P = (1, 0, 0, 0, 0), (101)

• two errors in parity symbol: 2 additions:

Υ2P = (2, 0, 0, 0, 0), (102)

• one error in information symbol: 1 addition, 4 divisions and 3 comparisons:

Υ1I = (1, 0, 4, 3, 0), (103)

• one error in parity symbol and one error in information symbol. Now the cal-
culations and mutual comparison of auxiliary variables: A1, A2, A3, A4 was done
in the previous case. In the worst case 3. additional additions, one additional
multiplication and 3 additional divisions have to be performed. Therefore:

Υ1P1I = (4, 1, 7, 3, 0), (104)

• two errors in information symbols: For the calculations and mutual compar-
ison of auxiliary variables: A1, A2, A3, A4 holds the same as in the previous
case. Then the correction of two errors will need for solutions of (88), (89),(90)
and (91): 4 additions, 8 divisions, 5 multiplications and 2 readouts from the
look up table:

Υ2I = (4, 5, 12, 3, 2), (105)

• more than two errors in information symbol: In this case the complexity of
procedures quantified by Υ1I ,Υ2I ,Υ1P1I can be added as the worst case:

Υ>2I = (16, 6, 23, 9, 2). (106)

1332 P. Farkaš, M. Rakús

We will characterize the overall complexity using a vector: Γ = (γ1, γ2, γ3, γ4, γ5)
in which the particular coordinates: γ1, γ2, γ3, γ4, γ5 denote average numbers of: ad-
ditions, multiplications, divisions, comparisons and look up table accesses, respec-
tively, which are needed in order to perform the particular subroutines. The value
of Γ can be evaluated from (101), (102), (103), (104), (105) and (106) using the
cumulative probability formula:

Γ = Υ1P × 5Pe(1− Pe)q+3

+ Υ2P × 10P 2
e (1− Pe)q+2

+ Υ1I × (q − 1)Pe(1− Pe)q+3

+ Υ2I ×
(q − 1)(q − 2)

2
P 2
e (1− Pe)q+2

+ Υ1P1I ×
5(q − 1)(q − 2)

2(q + 4)
P 2
e (1− Pe)q+2

+ Υ>2I ×
q+4∑
j=3

(
q + 4
j

)
P j
e (1− Pe)q+4−j. (107)

After evaluation using (107) it is possible to get information about the average
number of particular operations: additions, multiplications, divisions, comparisons
and accessing the look up table, necessary for decoding the received codewords. By
observing (107) it is also obvious that these average numbers of operations depend
on the error probability Pe of the q-ary symmetric channel and on q – the number
of elements in the finite field.

The total average number of operations per codeword is given by the sum of all
coordinates of (107):

Γ̄ =
5∑
i=1

γi. (108)

A tabular representation of (108) for selected values of Pe for GF (64) and
GF (256) is shown in Table 1.

GF(64) GF(256)

Pe Γ Γ

10−2 7.058 34.89

10−3 5.280× 10−1 2.370

10−4 5.109× 10−2 2.077× 10−1

10−5 5.092× 10−3 2.048× 10−2

Table 1. The average number of operations

It has to be stressed out that the complexity estimations in Table 1 do not
include the complexities of syndrome calculations. These complexities are constant

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1333

for particular finite fields. In GF (q) if we use the Horner scheme for syndrome
calculations we will need 5× (q − 2) additions and 5× (q − 2) multiplications. E.g.
in GF (64) and in GF (256) the overall number of operations needed for calculation
of syndromes will be 640 and 2 560, respectively. As was already mentioned, the
syndromes always have to be calculated in any syndrome decoding algorithm and
usually this is done via hardware. The average number of operations needed in the
proposed algorithm for example where Pe = 10−3 is less than 1 and less than 3 in
GF (64) and GF (256), respectively.

7 CONCLUSIONS

In this paper a new decoding algorithm was proposed for the five times extended
Reed Solomon codes proposed in [1], which allows correcting up to two errors in
a codeword. In contrast to known error correcting syndrome decoding algorithms,
the method proposed in this paper has to deal with the problem that the control
matrix is not a pure Vandermonde matrix, but it is a juxtaposition of a Vandermonde
and an identity matrix. Therefore, the proposed algorithm had to (to some extent)
use strategy somewhat like a set of sieves in order to separate different possible error
patterns. This strategy is explained in detail using specially created polynomial and
matrix analytical descriptions. This algorithm was also verified using Mathematica
software for all distinct cases and all typical combinations of error patterns.

Acknowldegement

This work was supported by the Slovak Research and Development Agency under
the Contract No. APVV-19-0436 and it was also supported by the Scientific Grant
Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy
of Sciences (grant VEGA No. 1/0477/18).

REFERENCES

[1] Rakús, M.—Farkaš, P.—Páleńık, T.—Danǐs, A.: Five Times Extended Reed-
Solomon Codes Applicable in Memory Storage Systems. IEEE Letters of the Com-
puter Society, Vol. 2, 2019, No. 2, pp. 9–11, doi: 10.1109/LOCS.2019.2911517.

[2] Rakús, M.—Farkaš, P.—Páleńık, T.: Erasure Decoding of Five Times Ex-
tended Reed-Solomon Codes. Journal of Electrical Engineering, Vol. 70, 2019, No. 3,
pp. 256–258, doi: 10.2478/jee-2019-0035.

[3] Reed, I. S.—Solomon, G.: Polynomial Codes over Certain Finite Fields. M.I.T.
Lincoln Laboratory Group Report 47.23, 31 December 1958.

[4] Wicker, S. B.—Bhargava, V. K.: Reed-Solomon Codes and Their Applications.
Wiley-IEEE Press, 1999, 336 pp., doi: 10.1109/9780470546345. ISBN 978-0-780-
35391-6.

https://doi.org/10.1109/LOCS.2019.2911517
https://doi.org/10.2478/jee-2019-0035
https://doi.org/10.1109/9780470546345

1334 P. Farkaš, M. Rakús

[5] Li, W.—Wang, Z.—Jafarkhani, H.: Repairing Reed-Solomon Codes over
GF (2l). IEEE Communications Letters, Vol. 24, 2020, No. 1, pp. 34–37, doi:
10.1109/LCOMM.2019.2950922.

[6] Zhang, G.—Liu, H.: Constructions of Optimal Codes with Hierarchi-
cal Locality. IEEE Transactions on Information Theory (Early access), doi:
10.1109/TIT.2020.2977636.

[7] Chen, Z.—Barg, A.: Explicit Constructions of MSR Codes for Clustered Dis-
tributed Storage: The Rack-Aware Storage Model. IEEE Transactions on Information
Theory, Vol. 66, 2020, No. 2, pp. 886–899, doi: 10.1109/TIT.2019.2941744.

[8] Zhang, Y.—Zhang, Z.: An Improved Cooperative Repair Scheme for Reed-
Solomon Codes. Proceedings of 2019 19th International Symposium on Communi-
cations and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, 2019,
pp. 525–530, doi: 10.1109/ISCIT.2019.8905159.

[9] Li, W.—Wang, Z.—Jafarkhani, H.: On the Sub-Packetization Size and the Re-
pair Bandwidth of Reed-Solomon Codes. IEEE Transactions on Information Theory,
Vol. 65, 2019, No. 9, pp. 5484–5502, doi: 10.1109/TIT.2019.2917425.

[10] Jagmohan, A.—Lastras-Montano, L. A. (Inventors): Mis-Correction and No-
Correction Rates for Error Control. US patent: US 8 806 295 B2, Aug. 12, 2014
(Assignee: IBM Corp.).

[11] Rakús, M.—Farkaš, P.: Double Error Correcting Codes with Improved Code
Rates. Journal of Electrical Engineering, Vol. 55, 2004, No. 3-4, pp. 89–94.

[12] Berlekamp, E. R.: Nonbinary BCH Decoding. International Symposium on Infor-
mation Theory, San Remo, Italy, 1967, doi: 10.1109/tit.1968.1054109.

[13] Massey, J.: Shift-Register Synthesis and BCH Decoding. IEEE Transactions on In-
formation Theory, Vol. 15, 1969, No. 1, pp. 122–127, doi: 10.1109/TIT.1969.1054260.

[14] Chien, R.: Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes.
IEEE Transactions on Information Theory, Vol. 10, 1964, No. 4, pp. 357–363, doi:
10.1109/TIT.1964.1053699.

[15] Berlekamp, E. R.—Rumsey, H.—Solomon, G.: On the Solution of Algebraic
Equations over Finite Fields. Information and Control, 1967, pp. 553–564, doi:
10.1016/s0019-9958(67)91016-9.

[16] Walker, C. W.: New Formulas for Solving Quadratic Equations over Certain Finite
Fields. IEEE Transactions on Information Theory, Vol. 45, 1999, No. 1, pp. 283–284,
doi: 10.1109/18.746816.

[17] Pommerening, K.: Quadratic Equations in Finite Fields of Characteristic 2.
May 2000, English Version, February 2012, available online: https://www.staff.

uni-mainz.de/pommeren/MathMisc/QuGlChar2.pdf.

[18] Goresky, M.—Klapper, A.: Algebraic Shift Register Sequences. Cambridge Uni-
versity Press, 2005.

https://doi.org/10.1109/LCOMM.2019.2950922
https://doi.org/10.1109/TIT.2020.2977636
https://doi.org/10.1109/TIT.2019.2941744
https://doi.org/10.1109/ISCIT.2019.8905159
https://doi.org/10.1109/TIT.2019.2917425
https://doi.org/10.1109/tit.1968.1054109
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1964.1053699
https://doi.org/10.1016/s0019-9958(67)91016-9
https://doi.org/10.1109/18.746816
https://www.staff.uni-mainz.de/pommeren/MathMisc/QuGlChar2.pdf
https://www.staff.uni-mainz.de/pommeren/MathMisc/QuGlChar2.pdf

Decoding Five Times Extended Reed Solomon Codes Using Syndromes 1335

Peter Farka�s is with the Institute of Multimedia Information
and Communication Technologies, Slovak University of Tech-
nology in Bratislava (STU) and also with the Institute of Ap-
plied Informatics, Faculty of Informatics, Pan European Univer-
sity in Bratislava as Professor. From 2002 until 2007 he was
Visiting Professor at Kingston University, UK and Senior Re-
searcher at SIEMENS PSE. In 2003 SIEMENS named him VIP
for his innovations and patents. In 2004 he was awarded with
the Werner von Siemens Excellence Award for research results
on two-dimensional complete complementary codes. From 2008

to 2009 he worked also as Consultant in the area of software defined radio for SAND-
BRIDGE Tech. (USA). He was the Leader of a Team from STU in projects funded by the
European Community under the 5FP and 6FP “Information Society Technologies Pro-
grams”: NEXWAY IST-2001-37944 (Network of Excellence in Wireless Applications and
Technology) and CRUISE (Creating Ubiquitous Intelligent Sensing Environments) FP6
IST-2005-4-027738 (2006–2007). His research interests include coding, communications
theory and sequences for CDMA. He has published 1 book, about 45 papers in reviewed
scientific journals and about 100 papers in international conferences. He is the author
or co-author of 7 patents. He is and was serving in TPC of about 60 international con-
ferences and presented 12 invited lectures. As an IEEE volunteer, he was serving in the
IEEE Czechoslovakia Section Executive Committee in different positions from 1992 to
2014 and from 2005 to 2006 he served as Chair of the Conference Coordinator Subcom-
mittee in IEEE Region 8. He organized the IEEE R8 Conference EUROCON 2001 and
was Chairman of SympoTIC ’03, SympoTIC ’04, SympoTIC ’06 and co-organizer of the
Winter School on Coding and Information Theory 2005. From 2016 he has been serving
as a vice-chair of the Computer chapter in the IEEE Czechoslovakia Section.

Martin Rak�us studied radio electronics and graduated from
the Slovak University of Technology in 2001. In 2004 he re-
ceived his Ph.D. from the Slovak University of Technology and
in 2020 he became Associate Professor at the same institute.
Since 1995 he has been with the Institute of Multimedia Infor-
mation and Communication Technology, Faculty of Electrical
Engineering and Information Technology, Slovak University of
Technology in Bratislava, Slovakia. His primary research inter-
ests are error control coding and digital communication systems.
He is a member of the IEEE.

Computing and Informatics, Vol. 39, 2020, 1336–1359, doi: 10.31577/cai 2020 6 1336

EVENT DETECTION IN TWITTER
USING MULTI TIMING CHAINED WINDOWS

Mohammad Mahdi Mojiri, Reza Ravanmehr∗

Department of Computer Engineering
Central Tehran Branch, Islamic Azad University
Tehran, Iran
e-mail: mojiry@gmail.com, r.ravanmehr@iauctb.ac.ir

Abstract. Twitter is a popular microblogging and social networking service. Twit-
ter posts are continuously generated and well suited for knowledge discovery us-
ing different data mining techniques. We present a novel near real-time approach
for processing tweets and detecting events. The proposed method, Multi Timing
Chained Windows (MTCW), is independent of the language of the tweets. The
MTCW defines several Timing Windows and links them to each other like a chain.
Indeed, in this chain, the input of the larger window will be the output of the
smaller previous one. Using MTCW, the events can be detected over a few min-
utes. To evaluate this idea, the required dataset has been collected using the Twit-
ter API. The results of evaluations show the accuracy and the effectiveness of our
approach compared with other state-of-the-art methods in the event detection in
Twitter.

Keywords: Event detection, microblogging, twitter, timing windows, MTCW

1 INTRODUCTION

Nowadays, social networks are much used in everyday lives, and the users of these
networks usually share a lot of information with others about their events and inci-
dents, their opinions on various issues, and so on. Meanwhile, Twitter has an essen-
tial role due to the number of users and its specific structure. This microblog had
336 million monthly active users in the first quarter of 2018 who sent 500 million

∗ Corresponding author

Event Detection in Twitter Using Multi Timing Chained Windows 1337

tweets per day [1, 2]. The high number of posts on this social network and the
extent of its users have attracted the interest of researchers. In recent years, this
huge amount of data has provided a hotbed for data mining research to discover
facts, trends, events, and even predict specific incidents [3, 4, 5, 6, 7].

The data streaming process, including social networks, produces millions of doc-
uments (image, text, audio, etc.) per hour. Since these documents arrive at high
speed, there is not much time to process them, and they cannot be stored in memory,
either. Therefore, it is very difficult to compare the current and previous documents
and find any similarities or changes between them.

On social networks such as Twitter, data is produced in an unlimited and endless
stream. Therefore, the process for storing and analyzing this inexhaustible stream
of information should not be dependent on the hardware specification of the system,
such as memory capacity. In other words, if the event detection algorithm is applied
to tweets for two months or two days, its accuracy should not be reduced, as well
as the limitations of hardware such as memory to prevent it [5]. So, we need to
propose an approach to detect events employing the analysis of tweets while they
are received and require no further storage and processing.

The research conducted by Petrovic et al. [8] and Osborne and Dredze [9] confirm
the effectiveness of employing Twitter for an event detection system. However, there
are at least two severe challenges of doing so. Firstly, not all data from Twitter
are correct and may include spam and personal information without processing
capability. In studies such as [10], news agencies are the source of valid information,
but the posts of users in social networks are not limited to factual data and events.
Indeed, many posts are spam and trivial statements. The majority of tweets are not
true stories, some concern personal life, some conversation and friendly chats, and
some spam. The second challenge is the message length limit on Twitter. Twitter
does not allow users to post a text longer than 280 characters, which causes changes
in the syntax of the language. For example, short sentences are written instead of
full sentences, which makes it difficult to process the tweets.

Many event detection approaches take advantage of the keywords contained in
the users’ post.The Burst Keyword is a group of keywords that represents a trend
or the occurrence of a new event. Certainly, the period of the occurrence of these
Burst Keywords is also very important; for example, if a Burst Keyword is observed
over a few minutes, it represents an event, but if it occurs over several days, it
indicates a new trend. The main idea of this research is to use multiple Timing
Windows simultaneously and link them together. In this method, the smaller Timing
Windows removes the words in the next (larger) Timing Windows and sends the
remaining words to that Timing Windows. By applying this method, the history
of repetitive words will not affect the detection of a sudden increase in windows
at present. Moreover, processing of incoming tweets as well as other calculations
are performed only for the first window, and there will be no waste of time for
preliminary calculations in other Windows.

In the proposed method, Multi Timing Chained Windows (MTCW), sudden
events can be detected over a few minutes. The suggested method is also indepen-

1338 M.M. Mojiri, R. Ravanmehr

dent of the user language. It benefits from the constant time and space complexity
for any number of tweets, as explained in the next sections.

In the following, the research fundamentals of this study are described. The
related works in the field of event detection are discussed in Section 3. The proposed
approach is described in Section 4. Next, experimental results and evaluation of
MTCW are discussed employing the collected Twitter dataset. Then, our proposed
approach is compared with other state-of-the-art methods in event detection on
Twitter. Finally, we conclude the paper and provide future works.

2 FUNDAMENTALS OF RESEARCH

In this section, the foundations of this research, including concepts, objectives, and
quality of service parameters in event detection, are described.

2.1 Concepts in Event Detection

In recent years, the detection of an event has been a very trending topic. The
underlying assumption is that an increasing use of some related keywords shows
that an event is happening. Event is an occurrence of interest among users of
the social media to discuss a real-world event-associated topic, usually after the
incident or even sometimes prediction of it [11]. In the domain of Topic Detec-
tion and Tracking (TDT) [12], an event is defined as “Something that happens
at a specific time and place along with all necessary conditions and unavoidable
consequences”.

In fact, there is no distinct segregation between trending topic detection and
event detection in many papers. In some papers discussing the subject of trend-
ing topic detection, the term event detection is frequently mentioned, including [5,
13, 14, 15, 16, 17]. It is also pretty much the same in Twitter. In Twitter,
there is a proprietary algorithm to detect and display the trending topics, con-
sisting of terms and phrases that express the “trending” behavior. While Twit-
ter’s trending topics sometimes reflect current events (e.g., “iPhone X announce-
ment”), they often include keywords for popular conversation topics (e.g., cryp-
tocurrency).

As another example, suppose a celebrity who asks the fans in a tweet to com-
ment on purchasing an apartment or a villa. A large number of tweets are gen-
erated discussing the disadvantages and benefits of each option. In this case, the
“house” or “apartment” is raised as a trending topic, but has any event occurred in
fact?

Indeed, the current systems usually are not intelligent enough to be able to
recognize the difference between an event or a widespread discussion about a topic;
therefore, most papers do not distinguish between an event and a trending topic.
However, in articles such as [4], it has been attempted to use temporal and local tags
to differentiate between urgent events with trends. It should be noted that Becker,

Event Detection in Twitter Using Multi Timing Chained Windows 1339

Naaman, and Gravano [18] were the first researchers who considered this distinction
between a trending topic and event detection.

2.2 Objectives of Event Detection

Considering the concepts and requirements of an event detection system, four signif-
icant objectives can be specified for an ideal user event detection system, including
Generality, Scalability, Real-time processing, and No supervision. Apart from these
four objectives, there are other criteria for perfect event detection. For example, no
use of additional data and information or use of a dictionary could be good targets.

Generality: Many systems of event detection can only detect specific topics. In
fact, just a series of topics already given to the system are detected. For example,
an approach has been presented in [4] which detects whether the event is urgent
or not and then classifies the event from among the preset categories (flood,
earthquake, fire, etc.). In fact, this approach cannot detect such things as the
death of a famous person.

Scalability or independence from space and time: The event detection system
should not be dependent upon memory. This system should not slow down
over time and should process each data upon arrival. This target states the
consistency of the space required over time. Obviously, the system grows over
time, which should not increase the required memory. Also, in solving a problem
like event detection in Twitter, the growth rate is not fixed. In an approach like
EDCoW [5] which works with signal processing, elimination of several tweets
has been considered to reduce the space, while it cannot be a guarantee for
scalability.

Real-time processing: This objective means the detection of the event as soon as
it is observed. The real-time concept has been observed in a small number of ap-
proaches. Almost all of them conducted their assessment by collecting a dataset,
but there is no discussion about the processing time in a real environment. In
TwitterMonitor [19],the system works online, but even in this case, only a small
number of tweets are tested due to lack of access to all tweets.

No supervision: The final event detection system must be able to operate with-
out user monitoring, verification, and feedback. There should be no need for
a training phase in the system since training is reserved for some tweets in the
dataset whose behavior will change over time.

No use of a dictionary or additional data: Approaches such as [20] employed
a dictionary as well to improve the accuracy of their system. The use of such
things can result in a loss of generality of the approach because it is not possible
to find and use a comprehensive dictionary for all the languages. Even if one
finds and uses all the dictionaries, the system performance is reduced due to
their high volume. Besides, the common languages in the world are generally

1340 M.M. Mojiri, R. Ravanmehr

dynamic and produce new words, so the use of a dictionary can be considered
a weakness of the method.

2.3 Quality of Services in Event Detection

An effective event detection system is the one with a high recall to be able to retrieve
each related event, as well as high precision to reject all the unrelated events [21].

In an event detection system, precision represents the usefulness of the output
list (diagnostic events). The closer the events in the system output to real answers,
the better this criterion. The precision is introduced as follows:

Precision =
CDE

TDE
. (1)

In this equation, CDE (Correctly Detected Events) represents the number of
correctly detected events, and TDE (Total Detected Events) is the total number
of detected events. The recall represents the completeness of the output list. The
recall is equal to:

Recall =
CDE

TE
. (2)

In this equation, TE (Total Events) is equal to the total number of events that
occurred during the period in question. Recall shows how well the system works in
finding the events.

3 RELATED WORKS

Atefeh and Khreich generally classified event detection approaches in Twitter into
document-pivot and feature-pivot techniques depending on whether they rely on
a document or temporal features [22]. However, another classification has been
recently proposed by Hasan et al. on Twitter-centric event detection systems [11].

Hasan et al. classified the event detection approach based on their common fea-
tures into term-interestingness, topic-modeling, and incremental-clustering. The
term-interestingness methods rely on tracking the terms from the Twitter data
stream likely to be related to an event. The topic-modeling approaches associate
each tweet with a probability distribution over the different latent topics to discover
the hidden semantic structures from a stream of tweets to detect the related events.
The incremental-clustering methods employ an incremental clustering strategy in
order to avoid having a fixed number of clusters due to the high-volume, real-time
Twitter data where a wide variety of topics are discussed.

Considering the above categories and taking into account the proposed approach
in this article, we classify the research associated with Twitter event detection into
the following two categories: Burst/Hot Keywords Frequency and Statistical Ana-
lysis.

Event Detection in Twitter Using Multi Timing Chained Windows 1341

A majority of event detection techniques use the frequency of keywords in users’
posts to detect the related events. Some other approaches like Benhardus employ
TF-IDF (Term Frequency–Inverse Document Frequency) factor, again related to
the frequency. The extraction of Burst Keywords using Timing Windows can be
used for event detection in many approaches, such as [19, 23, 24, 25]. The timing
Window is a time slice in which the words are collected, and their sudden increase
is studied. Also, looking for special keywords (“Hot Keywords”) is another method
to detect events. If the tweet or group of tweets include these hot keywords, then
the associated event will be discovered (Section 3.1).

Some other approaches employ various statistical techniques such as LDA or
Bayesian (Section 3.2). In these approaches, each tweet is associated with a probabil-
ity distribution over various latent topics to discover the hidden semantic structures
from a collection of tweets, such as [33, 34, 35].

3.1 Burst/Hot Keywords Frequency

As defined in articles, an event is expressed as a group of keywords, and the event
detetcion system goal is to find this group that appears simultaneously in a stream
of data.

A method for event detection using text mining techniques has been presented
by Benhardus in [20]. This approach takes advantage of the frequency with TF-IDF
factor as well as Entropy test. In this approach, the tweets are grouped in packages.
Depending on when the tweets are sent, groups are normalized., which means that
each document is linked to a fixed time interval.

Massive Online Analysis (MOA) TweetReader detects a trend in three steps [26].
In the first step, upon the arrival of each tweet from Twitter API, pre-processing is
done, and then the feature vector is formed using TF-IDF parameter. In the second
step, the tweets are tagged using a trained component, and finally, if a change is
observed, the trend is discovered.

The SABESS (Social Awareness Based Emergency Situation Solver) approach
employs the frequency method with some modifications [4]. Upon the arrival of each
tweet, SABESS determines whether it is an urgent event or not, what category it is
(flood, earthquake, fire, etc.), and where is the location of the event.

Recently, Frequent Pattern Mining (FPM) has been employed for event de-
tection in Twitter. The FPM helps to find patterns of words that frequently oc-
cur in the Twitter data stream. The method called SFPM (Soft FPM) is also
applied for this purpose by mitigating the requirement that all items must be
frequent in the pattern [27]. Gaglio et al. extended the SFPM method to deal
with dynamic environments of Twitter by splitting the streams into dynamic win-
dows whose size depends both on the volume of tweets and time [28]. Huang
et al. proposed an event detection based on the High Utility Pattern Clustering
(HUPC) framework by clustering all patterns generated by the FP-Growth algo-
rithm [29].

1342 M.M. Mojiri, R. Ravanmehr

In the approach presented by Choi and Park, emerging topics on Twitter have
been detected based on High Utility Pattern Mining (HUPM). The goal of HUPM
is to find itemsets that have high frequency and high utility at the same time [30].

In [31], six different methods for topic detection have been evaluated (i.e., LDA,
Doc-p, Gfeat-p, FPM, SFPM, and Bngram) on three datasets. Finally, a comparison
of these methods concluded that the combination of DF-IDF and nGram in Bngram
method showed the best results.

TwitterMonitor attempts to find the trend of users using the frequency me-
thod [19]. It first detects the Burst Keywords (keywords that suddenly appear in
an unusually large number of tweets), and these words are then placed in their
related groups. In other words, a trend is detected as a set of Burst Keywords
that have frequently appeared together in tweets. Once a trend is detected, Twit-
terMonitor extracts additional information from the tweets related to the detected
trend.

Guzman et al. have introduced an approach in [23] to detect sudden keywords. In
this approach, suddenly rising words are detected using a five-stage algorithm. Each
stage is written with a standalone module. Three modules are used for preprocessing,
and the remaining two modules detect sudden words.

In EDCoW method, an event is indicated by keywords that are suddenly in-
creased [5]. This approach attempts to detect new and important events using
a signal processing technique. In EDCoW approach, a signal is generated only when
a word shows a sudden behavior. The signal is then quickly processed without the
need for considerable memory by Wavelet analysis. In fact, after receiving a sig-
nal, trivial words are discarded, and only the signal and its affiliates are considered.
Then, the cross-correlation between signals is calculated, followed by event detection
through signal clustering via graph partitioning.

TopicSketch is a framework for real-time detection of bursty topics on Twit-
ter [32]. This approach utilizes two main techniques; a sketch-based topic model
and a hashing-based dimension reduction technique. TopicSketch is not suitable for
topic detection in a stream of documents with multiple topics.

Burnap et al. attempted to categorize public posts on Twitter according to their
tension [3]. In this paper, tension is defined as follows: “any event that seriously
disrupts a normal relationship between individuals or groups, which also spreads to
groups or individuals not involved in the relationship”. In their paper, first, the
incoming tweet is tagged, and then the Burst keyword (if present) is detected in
tension level. Their method determines the level of tension using simple rules. For
example, if the tweet includes one or more words from vulgar and profane words,
the tension level is detected as high.

Zhang et al. proposed a Pattern-based Topic Detection and Analysis System
(PTDAS) on Weibo, a Chinese Twitter-like platform [33]. For this purpose, they
have developed three different modules: Topic detection, Evolutionary analysis, and
Sentimental analysis. A key component of their method is to employ an FP-growth-
like algorithm to mine cosine interesting patterns from a set of tweets.

Event Detection in Twitter Using Multi Timing Chained Windows 1343

3.2 Statistical Analysis

Given a set of keywords, various statistical models such as pLSI (probabilistic Latent
Semantic Indexing) [34] and LDA (Latent Dirichlet Allocation) [35] can be used for
topic detection in Twitter data streams. However, pLSI was based on the likelihood
principle, and it can not assign probabilities to new documents. This was resolved by
LDA, which models each document as a mixture of topics and topics as a mixture
of words. Indeed, LDA is a Bayesian network that generates a document using
a mixture of topics and words.

In [13], the authors used the Online LDA approach, which has been developed
for modeling several latent variables (titles) in a series of texts, including words.
In this approach, new events make sense with new words (for example, names of
people, parties, etc.), so that the collection of words is updated each time a document
arrives. The words with a lower threshold are removed from the end.

Ahuja et al. have proposed Spatio-Temporal Event Detection (STED), a proba-
bilistic model that detects events using information from news and Twitter [36]. For
this purpose, they employed timestamps and geolocation information from tweets
to estimate the temporal and regional distributions of events.

Huang et al. applied LDA to identify potential topics in a Twitter data
stream [37]. They first employed ST-DBSCAN (an unsupervised data clustering
algorithm) to cluster the tweets of every day. Moreover, spatial, temporal, and tex-
tual patterns for every cluster have been generated. Then, they applied LDA to
identify potential topics in the cluster and analyze the structure of every tweet.

Gupta et al. collected the tweets and then, for unprocessed tweets run the LDA
streaming and retrieved the tweet based on the domain to which it belongs [38]. If
the tweet belongs to a certain event category, then it extracts tweets using domain-
based classification. Moreover, the scoring function is used to correctly identify
whether the tweet is belonging to that domain or not.

Another statistical model, namely Bursty Biterm Topic Model (BBTM), has
been proposed by Yan et al. to solve the data sparsity problem in topic modeling
over the short texts [39]. Their work is devoted to Biterm Topic Model (BTM), which
models biterms (i.e., word pairs) rather than words for effective topic modeling in
short texts.

Mehrotra et al. proposed an approach for aggregating tweets in order to improve
the quality of LDA-based topic modeling in microblogs [40]. They achieved this
through various pooling schemes that aggregate tweets in a data preprocessing step
for LDA. Their pooling schemes included Author-wise, Burst-score-wise, Temporal,
and Hashtag-based Pooling.

4 THE PROPOSED METHOD: MTCW

As discussed in the previous section, the use of Timing Windows is a convenient
method for event detection. The Timing Window is a slice of time that could be
a quarter of an hour, an hour, or even a day. If time slices are represented with kt

1344 M.M. Mojiri, R. Ravanmehr

then k0 is the first slice of time. In Table 1, different time slices from ten minutes
to one day have been shown.

Time slices 10 minutes 100 minutes One day
k0 From 1:00 AM to 1:10 AM From 1:00 AM to 2:40 AM From 2016-02-01 to 2016-02-02
k1 From 1:10 AM to 1:20 AM From 2:40 AM to 4:00 AM From 2016-02-02 to 2016-02-03
k2 From 1:20 AM to 1:30 AM From 4:00 AM to 5:40 AM From 2016-02-03 to 2016-02-04

Table 1. Examples of time slices

L is a Timing Window that keeps the words in a fixed number of time slices.
When a new word arrives, the earlier word is removed from the beginning of the
Timing Window. Therefore, the size of L will always be constant. Upon the arrival
of a new word, the model is rebuilt. Table 2 presents an example of a Timing
Window in size of 5, indicating that L can only contain five words; if a new word
arrives, the earlier word is removed.

L in kt Content of L in size of 5 words

L in k0
Word Iran Rouhani ART 100$ Planes
Frequency 735 352 439 259 199

L in k1
Word Unfrozen Claims Iran Rouhani ART
Frequency 689 598 497 356 241

L in k2
Word Unfrozen Iran Claims Rouhani ART
Frequency 741 656 568 522 345

L in k3
Word Planes Iran Rouhani Unfrozen Claims
Frequency 659 612 563 456 450

Table 2. Examples of timing window

The words in tweets of each time slice together with their frequency make
up the content of a Timing Window. When a short slice of time is selected,
a sharp increase in the number of certain words in this time slice indicates a sudden
event.

We define several Timing Windows and link them to each other like chains in
a way that the input of the larger window will be the output of the previous smaller
window. This new concept has been introduced as Multi Timing Chained Windows
(Figure 1).

A stop word is defined as a word that contains no meaning or relevance by
itself [20]. In other approaches, a fixed list of Stop Words is usually used. Our
approach, namely MTCW, is capable of simultaneously detecting sudden events
and user events as well as making a dynamic list of Stop Words in the language of
a query. The idea of dynamic generation of Stop Words helps the algorithm to be
compatible with the environment under any conditions. More precisely, if a new
word is spread among users, new words are added to the collection of Stop Words
over time.

The developed approach for event detection comprises six modules (Figure 2).
Each module has its specific task, and instead of saving its output, it directly delivers

Event Detection in Twitter Using Multi Timing Chained Windows 1345

Figure 1. Different signal levels in MTCW approach

it to the next module to increase the speed and reduce the use of memory. In the
following, each module is briefly explained.

Figure 2. The layered architecture of proposed trend detection

4.1 The First Module: Receive Tweets

This module receives tweets from the Twitter Streaming API. The Twitter Stream-
ing API continuously delivers the details of tweets requested by users in JSON
format. Based on the track and location filters, this API only delivers a portion of
tweets to the user.

Although MTCW, in the first step, collects tweets using Twitter Streaming API,
the methodology of the proposed approach is not user-centric. In fact, user’s tweets

1346 M.M. Mojiri, R. Ravanmehr

affect the functionality and the correctness of MTCW (same as all social-aware event
detection systems), but the user/operator could not impose any preferences directly
on the system’s performances.

4.2 The Second Module: Preprocess Tweets

This module processes the text of a tweet in a straightforward way. In fact, every
effort is made to spend the minimum possible time for initial processing. This
module receives the text of a tweet and finally produces a sorted array of tweets along
with the frequency. This module performs six operations on the text of a tweet, as
shown in Pseudocode 1.

TweetPreprocess(string s){
 String r;
 Array result[][];
 r = ConvertLowCase(s);
 r = ConvertSpace(r);
 r = SplitBasedonSpace(r);

 r = RemoveWordsLessthan3char(r);
 for (i=0; i< length(r); i++)
 if (r[i] isInArray result)
 result[r[i]]++;
 else
 add r[i], 1 to result;
 AsortArray(result);
 return result;
}

Pseudocode 1: Preprocess tweets module

4.3 The Third Module: Create Signal

The assorted array of words from tweets and the frequency of each word is called
signal. The signal is assorted in a descending order based on the frequency. In
this study, each signal is constructed in four levels. In fact, four different Timing
Windows are considered to construct a signal.

The first level signal: It should be noted that the first signal is received directly
from the words of the first Timing Window tweets, while in the next levels, words
from a previous level are used as the input. In this level, tweets are received
in a ten-minute interval, and their text is delivered to the second module for
processing. The arrays received from the second module are combined with
each other to produce the signal.

Event Detection in Twitter Using Multi Timing Chained Windows 1347

The process is as follows: words in the fourth level of Timing Windows (Dynamic
Stop Words) are deleted from arrays. Then, the words in the next level time
series (second level) are also deleted from the array. In fact, the words that
have reached the next level are those with a high frequency in the recent past,
which cannot thus represent an urgent event. Frequencies of similar words are
added together. Afterwards, the remaining words of the signal are arranged in
descending order based on the sum of frequencies. Finally, the signal is sliced
according to first level limitation parameter of the signal word. In MTCW, this
parameter is set to 100 for the first level signal, i.e., 100 frequently repeated
words are maintained. In this way, space limitation is observed, and there is no
need for further space with an increasing number of incoming tweets.

The pseudocode of the above process has been listed in Pseudocode 2.

CreateSignals(inputArray, lastLevelWords, nextLevelWords, limitationSignalLevel){

 inputArray = LastLevelRemoveWords (inputArray, lastLevelWords);

 inputArray = nextLevelRemoveWords (inputArray, nextLevelWords);

 outArray = AsortArray (outArray);

 signal = CutArray (outArray , limitationSignalLevel);

 return result;

}

Pseudocode 2: Create signal module

Making the second, third, and fourth level signal: After few iterations of
the first level signal, the second level signal is constructed. After generating ten
signals in the first level, a new signal for the second level is constructed (every
100 minutes). This process is repeated to create next level signals. Indeed, after
ten iterations of the second level signal, the third level signal is constructed
(every 1 000 minutes), and after five iterations of third level signal, the fourth
level signal is constructed.

The procedure for signal generation is as follows:

• Considering the current signal level, five to ten signals of the previous level
are combined to create the signal of the next level.

• The signal integration is performed by summing up the total number of
similar words (frequency).

• For the second level signals, the words that exist in the next time series
(third) is deleted. The same happens for the third level signal.

• The result is assorted in a descending order based on the frequency.

• Finally, the assorted result is sliced based on the words limitations.

1348 M.M. Mojiri, R. Ravanmehr

4.4 The Fourth Module: Create Time Series

A number of signals generated at successive time intervals is called time series. There
is a distinct time series for each level. The series is updated upon the creation of
each signal. The update is done as follows:

If a word is absent in a time series, it is added to the time series, and iteration
is set to zero in previous signals for that word. If the word exists in the time series,
a new iteration is added as the last word signal, and the oldest signal of that word
is deleted. If both previous conditions are false, then a zero repeat is added to the
word, and the earliest signal of that word is deleted.

The pseudocode for creating time series is listed in Pseudocode 3.

CreateTimeSeries(signals){

 array timeSeries[][];

 foreach (signals as signal){

 CreateNewSignalTimeSeries (timeSeries);

 foreeach (signal as word => frequency)

 if (word is not in timeSeries){

 AddToTimeSeries(timeSeries, word, frequency);

 AddZeroToLastSignalTimeSeries (timeSeries, word);

 } else{

 AddNewFrequencyWordToOld (timeSeries, word , newFrequency);

 }

 AddZeroOtherWordsNewSignal(timeSeries);

 }

}

Pseudocode 3: Create time series module

No time series is constructed for the fourth level, but its signal is updated.
The reason for this is that Stop Words are kept at this level and that the highest
iterations should always remain at this level. Therefore, upon the arrival of a new
signal at the fourth level, the number of iterations is compared with the previous
signal, and if there is a higher value in the new signal, the previous signal is updated.
Finally, based on the limitation of signal words, only the most frequently repeated
ones remain.

In other words, in the previous levels, the words are horizontally and vertically
removed from Timing Windows, but in the fourth level, the words are removed
vertically.

Vertical and horizontal update: The following time series in Table 3 includes
four words and four-signal limitations. If the new signal arrives with a “How” word
and iteration of 12, the word “Hi” is excluded due to the limitation of words. In
this case, we say the word was out vertically (Figure 3).

Now, suppose the arrival of a new signal, including the word “Hello” with five
iterations. In this case, all iterations of the word “Salam” are set to zero and are
deleted from the set of time series words. Now, we say the word was out horizontally
(Figure 4).

Event Detection in Twitter Using Multi Timing Chained Windows 1349

Hello 0 3 9 6

Word 2 5 3 2

Salam 0 11 0 0

Hi 1 0 0 5

Table 3. Time series in the last level

Figure 3. Vertical update of the last level time series

4.5 The Fifth Module: Detect Burst Keywords

After updating the time series, the fifth module investigates a sudden increase in
the iteration of words. The output of this module is the candidate of Burst Key-
words.

The following criterion is used to find candidate Burst keywords:∣∣∣∣Fw −Mw

Mw

∣∣∣∣ > BP. (3)

In this formula,Fw represents the frequency of the word W in the new signal.
Mw is the average frequency of the word W in previous signals. In addition, BP
(burst parameter) is a measure of Burst Keyword that can be different for each
level. In our experiments, the BP value has been experimentally considered 0.3 for
the first level and 0.7 for the second and third levels, respectively.

For example, if the frequency of the word “planes” in the first level of the new
signal is 1 200 (Fw = 1 200) and the average frequency value of this word in previous
signals is 1 000 (Mw = 1 000), then this word is a candidate as a Burst Keyword in
the first level of the signal (BP = 0.3 > 0.2). The candidate Burst Keywords are

Figure 4. Horizontal update of the last level time series

1350 M.M. Mojiri, R. Ravanmehr

returned together with their entire signal to calculate the similarity of their keywords
in the next module.

4.6 The Sixth Module: Detect Event

We detect events by grouping a set of candidate Burst Keywords with similar burst
patterns. This set includes a few candidate Burst Keywords with a sudden increase
in their iteration with a similar pattern of burst in recent signals.

The similarity in the time series of candidate Burst Keywords is checked for
each signal. Finding the level of similarity in the time series of two candidate Burst
Keywords can indicate the similarity of their iteration pattern. If the two candidate
Burst Keywords have the same iteration pattern, it can be stated that they are at
the same set.

The cross-correlation measure is used to examine the behavioral similarity of
two candidate Burst Keywords. The cross-correlation is a criterion to detect the
similarity of two time series in signal processing. In the discrete domain, the follow-
ing equation is used to calculate the cross-correlation for two time series of x and y
with the length of n [41]:

r =

∑n
i [(x(i) −mx) × (y(i− d) −my)]√∑n
i (x(i) −mx)2

√∑n
i y(i− d) −my)2

(4)

where x and y are actually two time series supposed to be measured in terms of
similarity, with mx and my presenting the mean of two time series. d is the lag
parameter for which the value of 1 has been chosen in this algorithm.

5 EXPERIMENTAL RESULTS

A dataset has been collected using Twitter streaming API to analyze and evalu-
ate this idea. The tweets were collected from 28. 1. 2016 to 27. 2. 2016 based on
track = “iran”, “tehran”, “thr”. Over one and a half million tweets (1 524 493) were
collected. Tweets from the same day were classified together, and every day was
divided into ten-minute intervals. For each interval, the tweets were stored as a text
file. The information collected from every tweet included ID, date, text, origin, User
ID, username, and location of the user posting the tweet.

It should be mentioned that most proposed approaches in event detection use
their proprietary datasets for evaluation purposes. To this end, Twitter streaming
API has been employed to collect and create our proprietary dataset. In fact, to
evaluate MTCW, we compared the News items related to Iran, which were detected
by our proposed approach with the Google News search service. The search was
done by examining Google News, searching for the word Iran, and setting the time
interval from day to day. However, several methods benefit from publicly avail-
able datasets. In order to precisely evaluate MTCW and eliminate any possible

Event Detection in Twitter Using Multi Timing Chained Windows 1351

inconsistency or bias in the dataset, MTCW has also been evaluated using a pub-
licly available dataset, which has been employed by many articles. The results are
reported in Section 6.2.

Figure 5. Google News service

As mentioned above, for the first phase of evaluation, Google New search service
returns ten events related to Iran on a respective day. An event may include 1–7 news
items from different News agencies. The collection of a number of news from an event
contributes to a better analysis of the results. We may have detected an event but
with different words and syntax. Different headlines from various news agencies
concerning a single event are an idea for a better comparison of results. We combine
these headlines, and if the detected event is close to this combination, then we
declare the detection of that event.

The results of the evaluation related to the first level series and Google News
headlines are shown in Figure 5. As it can be seen in Figure 6 b, for some days,
all ten events have been detected. Also, the results have been improved over
time.

1352 M.M. Mojiri, R. Ravanmehr

a) Precission and recall for detected events

b) Detected events day by day

Figure 6. Experimental results

6 EVALUATION AND COMPARISON

In Section 5, we provided the precision and recall of our event detection approach
compared to the Google News service. For further evaluation of the proposed
method, quantitative and qualitative comparisons have been performed with other
state-of-the-art methods in event detection in Twitter, as discussed in the next sub-
sections.

6.1 Qualitative Comparison

In the following Table, the approaches assessed in the Related Work section have
been compared based on the five objectives described in Section 2.2.

MTCW approach has the Generality feature. Since the algorithm is not sensitive
to a specific subject and no word or phrase has already been tagged, it recognizes
an event based on frequency patterns of words (which can be related to each topic).

Our solution does not depend on time and space (Scalability feature). In the
proposed algorithm, the signal length is constant at all levels, so the algorithm only
needs a constant space for storing information and the relevant history, and this

Event Detection in Twitter Using Multi Timing Chained Windows 1353

space will not increase over time. The processing done in the algorithm does not
change over time due to the constancy of the input, so the complexity of the time
is constant.

The proposed solution requires limited preprocessing, and little time is needed
to process the tweets and generate the result (Real-time processing feature). In
fact, the algorithm produces the result of an event within the specified time interval
without any delay at each signal level.

The use of the idea of dynamic Stop Words forms an unsupervised system (No
Supervision feature). In this system, based on user behavior, meaningless words are
removed over time, and meaningful words are added to the system. MTCW does
not use any dictionary or additional words and data, either.

No. Approach Generality Scalability Real-time
processing

No super-
vision

Non-use
Additional
Data

1 Benhardus [20] X X 7 X 7

2 TwitterMonitor [19] X X X X X
3 EDCoW [5] X X X X X
4 SasaPetrovic [42] 7 X X X X
5 Bifet [26] 7 7 7 X X
6 Pete Burnap [3] 7 X 7 7 7

7 Takeshi Sakaki [43] 7 7 X X 7

8 Aielloi [31] X 7 X 7 7

9 Hyeok Jun Choi [30] X X X X X
10 MTCW X X X X X

Table 4. Qualitative comparison of different approaches

6.2 Quantitative Comparison

To evaluate MTCW, we utilized the same evaluation framework proposed by Aiello
et al. [31]. They have extracted tweets about three major real-world events that
occurred in 2012, which includes the FA Cup Final (FA), Super Tuesday (ST), and
US Elections (US). Since they are not allowed to publicly distribute the original
tweets, the distributions only contain the tweet IDs and the ground truth topics
which have been organized in timeslots as explained in [1]. Indeed, Aiello et al.
generated a ground truth for the dataset consisting of a manual review of published
media reports about the event. This ground truth includes 13 topics for FA, 22 topics
for ST, and 64 topics for US datasets [31].

The “FA Cup” dataset contains tweets posted during the final match of the
Football Association Challenge Cup held on May 5, 2012. The ground truth for
the FA Cup dataset comprises 13 topics, including kick off, goals, half-time, fouls,
bookings, and the end of the match.

The “Super Tuesday” dataset consists of tweets posted during the US primary
elections, which were held on the first Tuesday of March 2012 in ten US states. The
ground truth comprises 22 topics, which represent the key moments of the elections
and projections of the voting results in different states.

1354 M.M. Mojiri, R. Ravanmehr

The “US Election” dataset contains tweets posted during the United States
presidential election of 2012, which was held on November 6, 2012. The ground truth
consists of 64 topics. The topics were related to the outcomes of the presidential
election, derived from mainstream media.

Totally, we extracted about 200k tweets for FA, 500 k tweets for ST, and 1 100 k
tweets for the US. It should be mentioned that some tweets were not downloaded
as they are not available anymore. Sequiera and Lin [44] performed experiments
on the long term effect of tweet removal from Tweets2013 corpus. They observed
that the deletions would less likely have an impact on the ranking of systems. The
details of the three datasets are given in Table 5.

Dataset Temporal Coverage No. of Tweets Total Topics

FA Cup 6 HOURS 124 524 13

Super Tuesday 24 HOURS 540 241 22

US Election 36 HOURS 2 335 105 64

Table 5. Datasets details

We have compared the precision and recall of MTCW with some well-known
methods based on the above datasets in Table 6. The baselines selected for eval-
uation include the state-of-the-art event detection systems and cover a wide range of
techniques in this domain, such as BNgram [31], Frequent Pattern Mining
(FPM) [31], Soft Frequent Pattern Mining (SFPM) [27], Graph-based feature-pivot
(GFeat-p) [31], and a probabilistic topic model-based LDA [45]. Moreover, we have
compared the performance of MTCW with a recently published method, HUPM [30].
As shown in Table 6, our approach proposes competitive or even better results with
state-of-the-art event detection approaches.

The experimental results for the FA dataset show that both precision and recall
are the highest for MTCW. Similarly, for the ST dataset, MTCW precision is the
best one after FPM, and MTCW recall is very close to SFPM, which offers the
best recall among others. The evaluation results from the US dataset indicates
that MTCW precision is the highest, and its recall is very competitive among the
compared methods.

Method
FA Cup Super Tuesday US Elections

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score
BNgram 0.2989 0.5778 0.394 0.6286 0.6471 0.6377 0.4050 0.5632 0.4712
FPM 0.7500 0.4286 05455 1.0000 0.4091 05807 0.0000 0.0000 0
SFPM 0.2336 0.6579 0.3448 0.4717 0.8929 0.6173 0.2412 0.6953 0.3582
GFeat-p 0.0000 0.0000 0 0.3750 0.6000 0.4615 0.3750 0.4839 0.4225
LDA 0.1637 0.6829 0.2641 0.0000 0.0000 0 0.1654 0.6286 0.2619
HUPM 0.3200 0.6000 0.4174 0.4860 0.7080 0.5764 0.3520 0.5650 0.4338
MTCW 0.8500 0.7250 0.7825 0.7750 0.8234 0.7985 0.4650 0.6125 0.5287

Table 6. Quantitative comparison of different approaches

Event Detection in Twitter Using Multi Timing Chained Windows 1355

7 CONCLUSIONS

In this paper, we proposed a new approach for event detection in Twitter using Multi
Timing Chained Windows (MTCW). In our method, the time and space complexity
are constant for any number of tweets, and the approach is also independent of user
language. We examined MTCW on Iran-related tweets over a period of 27 days.
More than 1.5 million tweets related to Iran were collected in this period. Using the
Google News service, news about Iran were categorized within the period of tweets
collection, which were used to evaluate the results. The results indicate the high
precision of the proposed method. Moreover, common datasets such as FA Cup
Final, Super Tuesday, and US Elections have been employed to compare MTCW
with baselines and recent approaches.

As future works, it is suggested to collect the tweets based on their location
instead of their subject to improve the effectiveness of the results, but we should
be aware of the complexity of this dataset. In addition, the TF-IDF approach can
be used instead of frequency to create signals. Also, by increasing the number of
windows, a closer examination of the precision of this method will become possible.

REFERENCES

[1] Twitter by the Numbers. 2021, available at: https://www.omnicoreagency.com/

twitter-statistics.

[2] Company – About – Twitter. 2021, available at: https://about.twitter.com/

company.

[3] Burnap, P.—Rana, O. F.—Avis, N.—Williams, M.—Housley, W.—
Edwards, A.—Morgan, J.—Sloan, L.: Detecting Tension in Online Commu-
nities with Computational Twitter Analysis. Technological Forecasting and Social
Change, Vol. 95, 2015, pp. 96–108, doi: 10.1016/j.techfore.2013.04.013.

[4] Klein, B.—Castanedo, F.—Elejalde, I.—López-de-Ipiña, D.—Prada Ne-
spral, A.: Emergency Event Detection in Twitter Streams Based on Natural Lan-
guage Processing. In: Urzaiz, G., Ochoa, S. F., Bravo, J., Chen, L. L., Oliveira, J.
(Eds.): Ubiquitous Computing and Ambient Intelligence. Context-Awareness and
Context-Driven Interaction. Springer, Cham, Lecture Notes in Computer Science,
Vol. 8276, 2013, pp. 239–246, doi: 10.1007/978-3-319-03176-7 31.

[5] Weng, J.—Yao, Y.—Leonardi, E.—Lee, F.: Event Detection in Twitter. De-
velopment, 2011, pp. 401–408.

[6] Gerber, M. S.: Predicting Crime Using Twitter and Kernel Density Estimation.
Decision Support Systems, Vol. 61, 2014, pp. 115–125, doi: 10.1016/j.dss.2014.02.003.

[7] Dong, G.—Yang, W.—Zhu, F.—Wang, W.: Discovering Burst Patterns of Burst
Topic in Twitter. Computers and Electrical Engineering, Vol. 58, 2017, pp. 551–559,
doi: 10.1016/j.compeleceng.2016.06.012.

[8] Petrović, S.—Osborne, M.—McCreadie, R.—Macdonald, C.—Ounis, I.—
Shrimpton, L.: Can Twitter Replace Newswire for Breaking News? Proceedings of

https://www.omnicoreagency.com/twitter-statistics
https://www.omnicoreagency.com/twitter-statistics
https://about.twitter.com/company
https://about.twitter.com/company
https://doi.org/10.1016/j.techfore.2013.04.013
https://doi.org/10.1007/978-3-319-03176-7_31
https://doi.org/10.1016/j.dss.2014.02.003
https://doi.org/10.1016/j.compeleceng.2016.06.012

1356 M.M. Mojiri, R. Ravanmehr

the Seventh International AAAI Conference on Weblogs and Social Media (ICWSM-
13), Boston, MA, USA, 2013.

[9] Osborne, M.—Dredze, M.: Facebook, Twitter and Google Plus for Breaking
News: Is There a Winner? Proceedings of 8th International Conference on Weblogs
and Social Media (ICWSM 2014), 2014, pp. 611–614.

[10] Allan, J.—Lavrenko, A. V.—Jin, H.: First Story Detection in TDT Is Hard.
Proceedings of the Ninth International Conference on Information and Knowledge
Management (CIKM 2000), 2000, pp. 374–381, doi: 10.1145/354756.354843.

[11] Hasan, M.—Orgun, M. A.—Schwitter, R.: A Survey on Real-Time Event De-
tection from the Twitter Data Stream. Journal of Information Science, Vol. 44, 2018,
No. 4, pp. 443–463, doi: 10.1177/0165551517698564.

[12] Allan, J.: Topic Detection and Tracking: Event-Based Information Organization.
Kluwer Academic Publishers, 2002, doi: 10.1007/978-1-4615-0933-2.

[13] Lau, J. H.—Collier, N.—Baldwin, T.: On-Line Trend Analysis with Topic Mod-
els: #twitter Trends Detection Topic Model Online. International Conference on
Computational Linguistics (COLING 2012), Vol. 2, 2012, pp. 1519–1534.

[14] Rafea, A.—GabAllah, N. A.: Topic Detection Approaches in Identifying Top-
ics and Events from Arabic Corpora. Procedia Computer Science, Vol. 142, 2018,
pp. 270–277, doi: 10.1016/j.procs.2018.10.492.

[15] Madani, A.—Boussaid, O.—Zegour, D. E.: Real-Time Trending Topics Detec-
tion and Description from Twitter Content. Social Network Analysis and Mining,
Vol. 5, 2015, Art. No. 59, doi: 10.1007/s13278-015-0298-5.

[16] Gaglio, S.—Lo Re, G.—Morana, M.: A Framework for Real-Time Twitter
Data Analysis. Computer Communications, Vol. 73, 2016, Part B, pp. 236–242, doi:
10.1016/j.comcom.2015.09.021.

[17] Comito, C.—Forestiero, A.—Pizzuti, C.: Bursty Event Detection in Twitter
Streams. ACM Transactions on Knowledge Discovery from Data, Vol. 13, 2019, No. 4,
Art. No. 44, 28 pp., doi: 10.1145/3332185.

[18] Becker, H.—Naaman, M.—Gravano, L.: Beyond Trending Topics: Real-World
Event Identification on Twitter. Proceedings of the Fifth International AAAI Con-
ference on Weblogs and Social Media (ICWSM), 2011.

[19] Mathioudakis, M.—Koudas, N.: TwitterMonitor: Trend Detection over the
Twitter Stream. Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’10), 2010, pp. 1155–1158, doi:
10.1145/1807167.1807306.

[20] Benhardus, J.—Kalita, J.: Streaming Trend Detection in Twitter. International
Journal of Web Based Communities (IJWBC), Vol. 9, 2013, No. 1, pp. 122–139, doi:
10.1504/ijwbc.2013.051298.

[21] Fawcett, T.: An Introduction to ROC Analysis. Pattern Recognition Letters,
Vol. 27, 2006, No. 8, pp. 861–874, doi: 10.1016/j.patrec.2005.10.010.

[22] Atefeh, F.—Khreich, W.: A Survey of Techniques for Event Detection in
Twitter. Computational Intelligence, Vol. 31, 2015, No. 1, pp. 132–164, doi:
10.1111/coin.12017.

https://doi.org/10.1145/354756.354843
https://doi.org/10.1177/0165551517698564
https://doi.org/10.1007/978-1-4615-0933-2
https://doi.org/10.1016/j.procs.2018.10.492
https://doi.org/10.1007/s13278-015-0298-5
https://doi.org/10.1016/j.comcom.2015.09.021
https://doi.org/10.1145/3332185
https://doi.org/10.1145/1807167.1807306
https://doi.org/10.1504/ijwbc.2013.051298
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1111/coin.12017

Event Detection in Twitter Using Multi Timing Chained Windows 1357

[23] Guzman, J.—Poblete, B.: On-Line Relevant Anomaly Detection in the Twitter
Stream: An Efficient Bursty Keyword Detection Model. Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Description (ODD ’13), 2013, pp. 31–
39, doi: 10.1145/2500853.2500860.

[24] Zhang, C.—Lei, D.—Yuan, Q.—Zhuang, H.—Kaplan, L.—Wang, S.—
Han, J.: GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged
Tweet Streams. ACM Transactions on Intelligent Systems and Technology, Vol. 9,
2018, No. 3, Art. No. 34, 24 pp., doi: 10.1145/3066166.

[25] Zhang, C.—Zhou, G.—Yuan, Q.—Zhuang, H.—Zheng, Y.—Kaplan, L.—
Wang, S.—Han, J.: GeoBurst: Real-Time Local Event Detection in Geo-Tagged
Tweet Streams. Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’16), 2016, pp. 513–522,
doi: 10.1145/2911451.2911519.

[26] Bifet, A.—Holmes, G.—Pfahringer, B.: MOA-TweetReader: Real-Time Anal-
ysis in Twitter Streaming Data. In: Elomaa, T., Hollmén, J., Mannila, H. (Eds.): Dis-
covery Science (DS 2011). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 6926, 2011, pp. 46–60, doi: 10.1007/978-3-642-24477-3 7.

[27] Petkos, G.—Papadopoulos, S.—Aiello, L.—Skraba, R.—Kompatsia-
ris, Y.: A Soft Frequent Pattern Mining Approach for Textual Topic Detection.
Proceedings of the 4th International Conference on Web Intelligence, Mining and
Semantics (WIMS ’14), 2014, Art. No. 25, 10 pp., doi: 10.1145/2611040.2611068.

[28] Gaglio, S.—Lo Re, G.—Morana, M.: Real-Time Detection of Twitter Social
Events from the User’s Perspective. 2015 IEEE International Conference on Commu-
nications (ICC), 2015, pp. 1–6, doi: 10.1109/icc.2015.7248487.

[29] Huang, J.—Peng, M.—Wang, H.: Topic Detection from Large Scale of Microblog
Stream with High Utility Pattern Clustering. Proceedings of the 8th Workshop on
Ph.D. Workshop in Information and Knowledge Management, 2015, pp. 3–10, doi:
10.1145/2809890.2809894.

[30] Choi, H.-J.—Park, C. H.: Emerging Topic Detection in Twitter Stream Based
on High Utility Pattern Mining. Expert Systems with Applications, Vol. 115, 2019,
pp. 27–36, doi: 10.1016/j.eswa.2018.07.051.

[31] Aiello, L. M.—Petkos, G.—Martin, C.—Corney, D.—Papadopoulos, S.—
Skraba, R.—Göker, A.—Kompatsiaris, I.—Jaimes, A.: Sensing Trend-
ing Topics in Twitter. IEEE Transactions on Multimedia, Vol. 15, 2013, No. 6,
pp. 1268–1282, doi: 10.1109/tmm.2013.2265080.

[32] Xie, W.—Zhu, F.—Jiang, J.—Lim, E.-P.—Wang, K.: TopicSketch: Real-Time
Bursty Topic Detection from Twitter. IEEE Transactions on Knowledge and Data
Engineering, Vol. 28, 2016, No. 8, pp. 2216–2229, doi: 10.1109/tkde.2016.2556661.

[33] Zhang, L.—Wu, Z.—Bu, Z.—Jiang, Y.—Cao, J.: A Pattern-Based Topic De-
tection and Analysis System on Chinese Tweets. Journal of Computational Science,
Vol. 28, 2018, pp. 369–381, doi: 10.1016/j.jocs.2017.08.016.

[34] Hofmann, T.: Probabilistic Latent Semantic Indexing. Proceedings of the 22nd

Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (SIGIR ’99), 1999, pp. 50–57, doi: 10.1145/312624.312649.

https://doi.org/10.1145/2500853.2500860
https://doi.org/10.1145/3066166
https://doi.org/10.1145/2911451.2911519
https://doi.org/10.1007/978-3-642-24477-3_7
https://doi.org/10.1145/2611040.2611068
https://doi.org/10.1109/icc.2015.7248487
https://doi.org/10.1145/2809890.2809894
https://doi.org/10.1016/j.eswa.2018.07.051
https://doi.org/10.1109/tmm.2013.2265080
https://doi.org/10.1109/tkde.2016.2556661
https://doi.org/10.1016/j.jocs.2017.08.016
https://doi.org/10.1145/312624.312649

1358 M.M. Mojiri, R. Ravanmehr

[35] Blei, D. M.—Ng, A. Y.—Jordan, M. I.: Latent Dirichlet Allocation. Journal of
Machine Learning Research, Vol. 3, 2003, pp. 993–1022.

[36] Ahuja, A.—Baghudana, A.—Lu, W.—Fox, E. A.—Reddy, C. K.: Spatio-
Temporal Event Detection from Multiple Data Sources. In: Yang, Q., Zhou, Z. H.,
Gong, Z., Zhang, M. L., Huang, S. J. (Eds.): Advances in Knowledge Discovery and
Data Mining (PAKDD 2019). Springer, Cham, Lecture Notes in Computer Science,
Vol. 11439, 2019, pp. 293–305, doi: 10.1007/978-3-030-16148-4 23.

[37] Huang, Y.—Li, Y.—Shan, J.—Huang, Y.—Li, Y.—Shan, J.: Spatial-
Temporal Event Detection from Geo-Tagged Tweets. ISPRS International Journal of
Geo-Information, Vol. 7, 2018, No. 4, Art. No. 150, 21 pp., doi: 10.3390/ijgi7040150.

[38] Gupta, M.—Gupta, P.: Research and Implementation of Event Extraction from
Twitter Using LDA and Scoring Function. International Journal of Information Tech-
nology, Vol. 11, 2019, No. 2, pp. 365–371, doi: 10.1007/s41870-018-0206-0.

[39] Yan, X.—Guo, J.—Lan, Y.—Xu, J.—Cheng, X.: A Probabilistic Model for
Bursty Topic Discovery in Microblogs. Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI ’15), 2015, pp. 353–359.

[40] Mehrotra, R.—Sanner, S.—Buntine, W.—Xie, L.: Improving LDA Topic
Models for Microblogs via Tweet Pooling and Automatic Labeling. Proceedings of
the 36th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’13), 2013, pp. 889–892, doi: 10.1145/2484028.2484166.

[41] Montgomery, D. C.—Jennings, C. L.—Kulahci, M.: Introduction to Time Se-
ries Analysis and Forecasting. Second Edition. Wiley, 2015.

[42] Petrović, S.: Real-Time Event Detection in Massive Streams. Ph.D. Thesis, Uni-
versity of Edinburgh, 2012.

[43] Sakaki, T.—Okazaki, M.—Matsuo, Y.: Earthquake Shakes Twitter Users:
Real-Time Event Detection by Social Sensors. Proceedings of the 19th Inter-
national Conference World Wide Web (WWW ’10), 2010, pp. 851–860, doi:
10.1145/1772690.1772777.

[44] Sequiera, R.—Lin, J.: Finally, a Downloadable Test Collection of Tweets.
Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’17), 2017, pp. 1225–1228, doi:
10.1145/3077136.3080667.

[45] Teh, Y. W.—Newman, D.—Welling, M.: A Collapsed Variational Bayesian In-
ference Algorithm for Latent Dirichlet Allocation. In: Schölkopf, B., Platt, J., Hoff-
man, T. (Eds.): Advances in Neural Information Processing Systems 19 (NIPS 2006),
2006, pp. 1353–1360.

https://doi.org/10.1007/978-3-030-16148-4_23
https://doi.org/10.3390/ijgi7040150
https://doi.org/10.1007/s41870-018-0206-0
https://doi.org/10.1145/2484028.2484166
https://doi.org/10.1145/1772690.1772777
https://doi.org/10.1145/3077136.3080667

Event Detection in Twitter Using Multi Timing Chained Windows 1359

Mohammad Mahdi Mojiri received his B.Sc. degree in soft-
ware engineering from the University of Kashan, Iran, in 2008
and his M.Sc. degree in software engineering from the Central
Tehran Branch, Islamic Azad University, Tehran in 2017. His
research interests include data mining, social network analysis,
and stream processing.

Reza Ravanmehr graduated in computer engineering from the
Shahid Beheshti University, Tehran, in 1996. After that, he
gained M.Sc. and Ph.D., both in computer engineering from the
Islamic Azad University, Science and Research Branch, Tehran,
in 1999 and 2004, respectively. His main research interests are
distributed/parallel systems, large-scale data management sys-
tems, and social network analysis. He is a faculty member of
the Computer Engineering Department at the Central Tehran
Branch, Islamic Azad University, since 2001.

	1_4505-Article Text-13802-1-10-20210520
	2_4657-Article Text-13803-1-10-20210520
	3_5110-Article Text-13804-1-10-20210520
	4_5118-Article Text-13805-1-10-20210520
	5_5210-Article Text-13806-1-10-20210520
	6_5188-Article Text-13807-1-10-20210520
	7_5255-Article Text-13808-1-10-20210520
	8_5357-Article Text-13809-1-10-20210520
	9_4863-Article Text-13810-1-10-20210520

