
Computing and Informatics, Vol. 39, 2020, 881–906, doi: 10.31577/cai 2020 5 881

OPTIMAL FEATURE SUBSET SELECTION
BASED ON COMBINING DOCUMENT FREQUENCY
AND TERM FREQUENCY FOR TEXT
CLASSIFICATION

Thirumoorthy Karpagalingam, Muneeswaran Karuppaiah

Department of Computer Science and Engineering
Mepco Schlenk Engineering College, Sivakai
Tamilnadu, India
e-mail: {kthirumoorthy, kmuni}@mepcoeng.ac.in

Abstract. Feature selection plays a vital role to reduce the high dimension of the
feature space in the text document classification problem. The dimension reduction
of feature space reduces the computation cost and improves the text classification
system accuracy. Hence, the identification of a proper subset of the significant
features of the text corpus is needed to classify the data in less computational time
with higher accuracy. In this proposed research, a novel feature selection method
which combines the document frequency and the term frequency (FS-DFTF) is used
to measure the significance of a term. The optimal feature subset which is selected
by our proposed work is evaluated using Naive Bayes and Support Vector Machine
classifier with various popular benchmark text corpus datasets. The experimental
outcome confirms that the proposed method has a better classification accuracy
when compared with other feature selection techniques.

Keywords: Feature selection, text classification, document frequency, term fre-
quency

1 INTRODUCTION

Nowadays millions of million users contribute a huge amount of information in the
form of unstructured text data: movie/product reviews and feedbacks, social media
tweets, and personal blogs are stored in the WWW repository. The organization
of those unstructured text documents is a challengeable task. Text classification is

882 T. Karpagalingam, M. Karuppaiah

used to organize those documents in a proper way and to extract the information
from that unstructured text corpus. The text classification is a supervised learning
algorithm, which uses the training data associated with class labels to assign the
text document to the appropriate categories [25, 32]. Text classification is used
in topic detection [4], spam e-mail filtering [14, 8], e-mail classification [10, 41],
author identification [7, 34] and web page classification [2, 6]. The atomic element
or indivisible unit of the text document set is called a feature or word or term.
The text classification system uses the vector space model to represent the text.
The text corpus D is a set of unstructured text documents and is denoted as D =
{d1, d2, d3, . . . , dn}. Features are extracted from the text corpus and are denoted
as T = [t1, t2, t3, . . . , tm]. Each document di, 1 < i < n is represented as a feature
vector 〈wi1, wi2, wi3, . . . , wim〉 where wij denotes the frequency of feature tj appearing
in document di [1, 23]. The typical Document Term Matrix (DTM) is generally of
sparse in nature and is shown in Table 1.

Doc t1 t2 . . . ti . . . tm
d1 w11 w12 w1i w1m

d2 w21 w22 w2i w2m
...
dn wn1 wn2 wni wnm

Table 1. Document term matrix

The high dimension of the feature space may contain the uninformative/irrele-
vant features (noise features), which reduce the accuracy of the classification sys-
tem [40]. The uninformative feature (noise feature) has no information about the
category. For example, if a word appears in all the text documents in the text cor-
pus, that word is not at all useful to predict the class label. In order to reduce the
dimension of the feature space as well as to improve the accuracy in text classifica-
tion problems, feature selection plays a vital role [5, 11, 12, 13, 17, 9, 16]. Let F be
the feature set having ‘f’ number of features, then we can coin the 2f − 1 (except
empty set) number of different subsets of features. If we work with all the subsets,
it would increase the computing cost. Feature selection is a process to select the
optimal best feature subset space from the original feature space [33]. There are two
types of feature selection methods:

1. Filter-based and

2. Wrapper-based.

Filter based feature selection method uses the various scoring methodologies to
assign the importance score to each feature, and top-N features are selected based on
the relevance score. Filter based methods are independent of classification models.
Computationally the filter methods are faster. The wrapper methods [15, 3, 39]
are based on attribute subset selection. The wrapper-based methods depend on the

Feature Selection Based on Combining Document Frequency and Term Frequency 883

classification model and search algorithms. The hybrid feature selection [12, 36]
method uses both filter-based and wrapper-based method.

The rest of the paper is organized as follows: Section 2 briefly describes various
feature selection approaches. Section 3 focuses on the proposed feature selection
method. The classifiers used in the experiments are discussed in Section 4. The
experimental results from the various datasets are discussed in Section 5 followed
by the concluding remarks in Section 6.

2 RELATED WORK

The primary goals of the feature selection methods are to select the most appropriate
features and ignore the irrelevant and redundant features [31, 21, 22]. Many feature
selection algorithms are proposed for feature selection in text classification [18, 19].
In this section, we will discuss the existing feature selection methods, including
Document Frequency (DF), Balanced Accuracy (ACC2), Distinguishing Feature
Selector (DFS), Normalized Difference Measure (NDM), and Mutual Information
(MI), which all are based on document frequency, and Information Gain (IG) is
based on entropy methods. The document frequency in the collection of various
scenarios is described in the contingency Table 2. Let Ck and Ck be two differ-
ent categories: k (positive class) and other than “k” categories (negative class).
Also, let the term ti and ti represent the presence and absence of the given term,
respectively.

Terms/Category ti (Presence of the Term) ti (Absence of the Term)

CK (belongs to) tp fn

CK (does not belong to) fp tn

Table 2. Contingency table

tp: true positive count denotes the number of documents, which contain the
term ti and those documents belong to the category Ck (positive class)

fn: false negative count denotes the number of documents, which do not contain
the term ti and those documents belong to the category Ck (positive class)

fp: false positive count denotes the number of documents, which contain the
term ti and those documents do not belong to the category Ck (negative class)

tn: true negative count denotes the number of documents, which do not contain
the term ti and those documents do not belong to the category Ck (negative
class)

The brief summary of preliminary notations, which are used in this work, is
shown in Table 3.

884 T. Karpagalingam, M. Karuppaiah

Notation Values Description

K number of Category in the dataset
N tp + fn + fp + tn number of documents in dataset
Ni tp + fp number of documents containing term ti
Nk tp + fn number of documents belonging to category Ck
Nik tp number of documents containing term ti and belong-

ing to Ck
P (ti)

Ni
N probabilities of presence of the term ti

P(ti)
(N−Ni)

N probabilities of absence of the term ti
P (Ck)

Nk
N probability of class Ck

P (Ck|ti) Nik
Ni

conditional probabilities of class Ck given presence of
term ti

P (Ck|ti) fn
(N−Ni)

conditional probabilities of class Ck given absence of
term ti

P (ti|Ck) Nik
Nk

conditional probabilities of the presence of term ti
given class Ck

P (ti|CK) fp
(N−Nk)

conditional probability of the presence of term ti given
class other than Ck

P (ti|Ck) fn
Nk

conditional probability of absence of term ti given class
Ck

tfij term frequency (occurrence) of term ti in the docu-
ment dj

tfi
∑N

j=1 tfij term frequency (occurrence) of term ti in the entire
dataset

tfik term frequency (occurrence) of term ti in the Category
Ck

µi
tfi
N mean term frequency of term ti in the entire dataset

µik
tfik
Nk

mean term frequency of term ti in the Category Ck

σi

√∑N
j=1(tfij−µi)2

N standard deviation of term frequency of term ti in the
entire dataset

σik see Equation (13) standard deviation of term frequency of term ti in the
Category Ck

Table 3. Preliminary notation

2.1 Document Frequency (DF)

Document Frequency (DF) [26, 38, 28] of the term ‘t’ is the simplest feature selec-
tion method and is based on the number of documents containing term ‘t’. The DF
method considers that the rare frequency terms are non-informative for text catego-
rization. It ignores the impact on category information. This method considers the
impact on the positive class and ignores the negative class. The document frequency

Feature Selection Based on Combining Document Frequency and Term Frequency 885

of the term ‘t’ is calculated as follows:

DF(t) = tp + fp. (1)

2.2 Balanced Accuracy (ACC2)

Accuracy is one of the feature ranking metric, which considers the difference between
true positives and false positives of a term, and it supports strong positive features.
Balanced Accuracy (ACC2) [11, 30] is a variant of accuracy which ranks the features
based on the absolute difference of the true positive rate (tpr) and false positive rate
(fpr). The tpr and fpr of the term ‘t’ are calculated as follows:

tpr(t) =
tp

tp + fn
, (2)

fpr(t) =
fp

tn + fp
. (3)

Balanced Accuracy ignores the influence of term frequency, which uses the absolute
difference between tpr and fpr as follows:

ACC2(t) = |tpr(t)− fpr(t)|. (4)

2.3 Information Gain (IG)

Information Gain (IG) [28, 24] is an entropy-based evaluation technique, which is
used in machine learning applications. It refers to the difference between the infor-
mation entropy produced by the presence and absence of a term in the document.
The expression for IG is as follows:

IG(ti) = −
K∑
k=1

P (Ck) logP (Ck)

+ P (ti)
K∑
k=1

P (Ck|ti) logP (Ck|ti) (5)

+ P (ti)
K∑
k=1

P (Ck|ti) logP (Ck|ti).

2.4 Mutual Information (MI)

Mutual Information (MI) [28, 27] is a measure between two random variables, which
quantifies the amount of information gained about one variable through another

886 T. Karpagalingam, M. Karuppaiah

variable. The computation of mutual information for a given term ti is given
as

MI(ti, Ck) = log2

P (ti|Ck)
P (ti)

, (6)

MI(ti) =
K∑
k=1

P (Ck) ∗MI(ti, Ck). (7)

2.5 Distinguishing Feature Selector

Uysal and Gunal [37] proposed the probabilistic based feature selection scheme as
a Distinguishing Feature Selector (DFS). DFS assigns the high score to the term,
which frequently occurs in one of the categories and does not occur in the other
categories, is distinctive; A term which frequently occurs in all the class is irrelevant;
it must be assigned with a low score. DFS ignores the significance of term frequency
information in their scoring mechanism. DFS can be formulated

DFS(ti) =
K∑
k=1

P (Ck|ti)
1 + P (ti|Ck) + P (ti|Ck)

. (8)

DFS score of the feature lies between 0.5 and 1.0. The most discriminating terms
have an importance score that is close to 1.0 and the least discriminating terms are
assigned with the significance score is 0.5.

2.6 Normalized Difference Measure (NDM)

NDM algorithm [30] uses the ACC2 value divided by the minimum of tpr and fpr to
indicate the importance of the feature. The value of NDM is estimated as follows:

NDM(t) =
|tpr(t)− fpr(t)|

min(tpr(t), fpr(t))
. (9)

If min(tpr, fpr) = 0, then to avoid divide by zero exception, it is replaced by small
value. NDM method ignores the influence of term frequency. In addition, NDM
equally ranks the terms having equal weight value regardless of the value of |tpr−fpr|.

All of the above-mentioned feature selection schemes ignore the significance of
the term frequency. To illustrate the significance of term frequency, a sample data
is shown in 4, which consists of 10 documents, grouped under 3 categories {C1, C2,
C3}. There are seven distinct terms from the 10 documents and they are: {lion,
tiger, bear, goat, deer, horse, panda}. The following handwork experiments on the
sample dataset shows the significance of the term frequency.

Table 4 shows the Document Term Matrix (DTM) of the sample dataset.
Table 5 shows the importance score of above mentioned selection scheme.
List of issues for ignoring the term frequency:

Feature Selection Based on Combining Document Frequency and Term Frequency 887

Documents Category lion bear tiger goat deer horse panda

d1 C1 1 10 10 3 15 30 25

d2 C1 1 10 10 5 15 20 10

d3 C1 1 10 10 4 0 40 2

d4 C2 1 10 1 10 0 0 0

d5 C2 1 10 1 10 0 0 0

d6 C2 1 10 1 10 20 0 0

d7 C2 1 10 1 10 20 0 0

d8 C3 1 10 1 1 3 0 0

d9 C3 1 10 1 1 0 0 0

d10 C3 1 10 1 1 0 0 0

Table 4. Document term matrix of the sample dataset

Documents lion bear tiger goat deer horse panda

DF 10 10 10 10 5 3 3

ACC2 0 0 0 0 0.142 0.628 0.628

IG 0 0 0 0 0.049 0.881 0.881

MI 0 0 0 0 −0.05 0.52 0.52

DFS 0.5 0.5 0.5 0.5 0.516 1.0 1.0

NDM 0 0 0 0 0.38 6.286 6.286

Table 5. Importance scores of the term in sample dataset

• The terms ‘lion’, ‘tiger’, ‘bear’, ‘goat’ appeared in all the documents. The
existing feature selection method ACC2, NDM, IG and MI consider these terms
are useless. And DFS says that all the four (lion, tiger, bear, goat) are the same.
While comparing lion and tiger, tiger may contribute more to the category C1
also goat may contribute more to category C2 based on term frequency. So we
cannot provide the equal weightage to these terms.

• The terms ‘horse’ and ‘panda’ only appeared in the category C1. ACC2, NDM,
IG, DFS provide equal weightage. Based on the term frequency horse must have
highest significance score.

In order to address these problems, we combine the document frequency and
term frequency information to select the optimal feature subset.

3 PROPOSED WORK

The feature selection method assigns high significant scores to the more informative
features and lower significant scores to less informative/irrelevant features. The
above mentioned feature selection scheme ranks the feature based on how the term
contributes to the categorization based on document frequency. We propose the
new feature selection scheme which integrates the document frequency contribution
and term frequency contribution. The proposed feature selection method FS-DFTF

888 T. Karpagalingam, M. Karuppaiah

assigns the significance score based on the following:

• FS-DFTF assigns a high significance score to a term which frequently occurs in
a single category and does not occur in the other category, it is an informative
term.

• FS-DFTF assigns a low significance score to a term which frequently occurs in
all the categories, it is irrelevant feature.

We consider the term frequency distribution in two levels: i) the frequency of
the term between the category level, and ii) the frequency of the term within the
category level. The system design of our proposed work is depicted in Figure 1.

Figure 1. The architectural framework for text classification system employing FS-DFTF

In order to integrate the term frequency information, we are using the standard
deviation of term frequency and mean of term frequency at both levels (between
category level and within category level). The most informative feature must have
high mean frequency and less standard deviation of term frequency. Based on this,
we formulate the FS-DFTF as follows:

FS−DFTF(ti) =
K∑
k=1

(P (Ck) ∗ θ(ti, Ck) ∗ Φ(ti, Ck) ∗Ψ(ti, Ck)) (10)

where θ(ti, Ck) indicates the Document Frequency contribution of the term ti in
category Ck, Φ(ti, Ck) indicates term frequency contribution between the category
level, Ψ(ti, Ck) indicates term frequency contribution within the category level.

Feature Selection Based on Combining Document Frequency and Term Frequency 889

Document frequency contribution can be computed as follows:

θ(ti, Ck) =
P (Ck|ti)− P (Ck|ti)

1 + P (ti|Ck) + P (ti|Ck)
. (11)

In this work, we consider P (Ck|ti) = 0 if P (ti) = 0, to avoid division by zero
errors. The computed document frequency contribution θ(ti, Ck) over the sample
dataset is shown in Table 6.

P (Ck|ti) P (Ck|ti) P (ti|Ck) P (ti|Ck) θ(ti, Ck)
Term C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

lion 0.3 0.4 0.3 0 0 0 0 0 0 1 1 1 0.15 0.2 0.15

bear 0.3 0.4 0.3 0 0 0 0 0 0 1 1 1 0.15 0.2 0.15

tiger 0.3 0.4 0.3 0 0 0 0 0 0 1 1 1 0.15 0.2 0.15

goat 0.3 0.4 0.3 0 0 0 0 0 0 1 1 1 0.15 0.2 0.15

deer 0.399 0.4 0.199 0.199 0.4 0.399 0.333 0.5 0.666 0.429 0.5 0.571 0.114 0 −0.089

horse 1 0 0 0 0.571 0.429 0 1 1 0 0.5 0.429 1 −0.229−0.176

panda 1 0 0 0 0.571 0.429 0 1 1 0 0.5 0.429 1 −0.229−0.176

Table 6. Document frequency contribution θ(ti, Ck) over the sample dataset

Term frequency contribution between the category levels can be computed as
follows:

Φ(ti, Ck) =

{
Nik

Ni
∗ tfik

tfi
, σi > 0,

0, otherwise.
(12)

If the standard deviation term frequency of the term ti is zero (σi = 0) then the
term ti appears in all the document with equal term frequency. For the classification
task, that term ti is not useful. Hence, we can say that Φ(ti, Ck) = 0. The computed
term frequency contribution between the category levels Φ(ti, Ck) over the sample
dataset is shown in Table 7.

Ni
Nik tfi

tfik σi
Φ(ti, Ck)

Term C1 C2 C3 C1 C2 C3 C1 C2 C3

lion 10 3 4 3 10 3 4 3 0 0 0 0

bear 10 3 4 3 100 30 40 30 0 0 0 0

tiger 10 3 4 3 37 30 4 3 4.35 0.243 0.043 0.024

goat 10 3 4 3 55 12 40 3 4.09 0.065 0.290 0.016

deer 5 2 2 1 73 30 40 3 8.98 0.164 0.219 0.008

horse 3 3 0 0 90 90 0 0 15.24 1.0 0 0

panda 3 3 0 0 37 37 0 0 8.11 1.0 0 0

Table 7. Term frequency contribution between the category level Φ(ti, Ck) over the sample
dataset

890 T. Karpagalingam, M. Karuppaiah

The Term Frequency contribution within the category level can be computed as
follows:

Ψ(ti, Ck) =
1

σik
∗

 Nik

Nk
∗ µik

max{j=1,2,...,m}

{
Njk

Nk
∗ µjk

}
 (13)

where σik =

√∑N
j=1(tfij−µik)2∗Ijk

Nk
, Ijk =

{
1, dj ∈ Ck
0, otherwise

, m is the number of distinct

terms present in the Category Ck. This part represents, how much the term fre-
quency of term ti contributes to the category Ck while comparing other terms within
a category. If σik is zero then the term ti appears in all the document of category
Ck with equal term frequency. In that case, we may ignore the σik component of
feature ti. So,

Ψ(ti, Ck) =

Nik

Nk
∗ µik

max{j=1,2,...,m}

{
Njk

Nk
∗ µjk

} , if σik = 0. (14)

If the standard deviation of term frequency of the term is zero (σi = 0) then the
term ti present in all the document with equal term frequency. That term is a not
useful for classification task. So we can say that Φ(ti, Ck) = 0 and Ψ(ti, Ck) = 0.
The computed term frequency contribution within the category levels Ψ(ti, Ck) over
the sample dataset is shown in Table 8.

Nik µik σik Ψ(ti, Ck)

Term C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

lion 3 4 3 1 1 1 0 0 0 0 0 0

bear 3 4 3 10 10 10 0 0 0 0 0 0

tiger 3 4 3 10 1 1 0 0 0 0.333 0.1 0.1

goat 3 4 3 4 10 1 1 0 0 0.13 1 0.1

deer 2 2 1 10 10 1 8.660 11.547 1.732 0.222 0.5 0.033

horse 3 0 0 30 0 0 10 0 0 1 0 0

panda 3 0 0 12.333 0 0 11.676 0 0 0.411 0 0

Table 8. Term frequency contribution within the category level Ψ(ti, Ck) over the sample
dataset

Finally, the FS-DFTF score of given sample datadet is shown in Table 9.

Term lion bear tiger goat deer horse panda

FS-DFTF 0 0 0.004 0.023 0.001 0.3 0.123

FS-DFTF Rank 6 6 4 3 5 1 2

Table 9. FS-DFTF score of the sample dataset

In order to show the working principles of FS-DFTF, the sample dataset and
related results are shown in the above mentioned Tables 4, 5, 6, 7, 8, 9. The real

Feature Selection Based on Combining Document Frequency and Term Frequency 891

performance of FS-DFTF on the popular benchmark datasets are presented briefly
in the experimental work section.

3.1 The Pseudo Procedure for the FS-DFTF

Algorithm 1 describes the process of proposed work.

Algorithm 1: feature selection using FS-DFTF

Input:
D: Dataset with class label
f : Number of features to be selected

Output: Fbest: selected f features
1 D← textPreProcessing(D)
2 T : [t1, t2, t3, . . . , tm]← Tokenizer(D) // m-numbers of unique features in D
3 for each category Ck in D
4 P (Ck) = computeClassProbability(D)
5 end
6 for each term ti in T
7 for each category Ck in D
8 θ(ti, Ck) = computeDFContribution(D) // use eqn.(10)
9 Φ(ti, Ck) = computeTFContributionBetweenCategoryLevel(D) // use

eqn.(11)
10 Ψ(ti, Ck) = computeTFContributionWithinCategoryLevel(D) // use

eqn.(12)
11 end
12 FS DFTF(ti) = computeFSDFTF() //use eqn.(13)
13 end
14 Fbest = SortAndSelect(FS DFTF, f)
15 return Fbest

Line 1 shows the preprocessing. The preprocessing steps are lower casings,
removing punctuations, numbers, stop words and finally stemming. Line 2 tokenize
the entire dataset to find the unique feature list. Lines 3–13 compute the FS-DFTF
score of each term ti in the feature list. Line 14 sorts the feature based on FS-DFTF
importance score value and selects the top ‘f ’ feature.

4 DATASET AND EXPERIMENTAL SETUP

In this section, we briefly discuss the datasets, classification algorithm and the eval-
uation metric to evaluate the performance of the proposed feature selection measure
for text classification.

892 T. Karpagalingam, M. Karuppaiah

4.1 Dataset

In this work, we have experimented with four distinct datasets (WebKB, SMS, BBC
News and 10Newsgroups) used for the assessment of our proposed feature selection
method [dataset1]. WebKB is a collection of web pages collected by the World Wide
Knowledge Base. These pages were collected from computer science departments of
various universities in 1997. The web pages are classified as various classes: student,
faculty, staff, department, course, project, and other. For the experimental works
we chose the class label (project, course, faculty, student) documents. Table 10 de-
scribes the properties of WebKB dataset. SMS Dataset is a collection of SMS, which
is labeled as Spam or Ham. It contains 5 574 labeled SMS message. Description of
the SMS dataset is shown in Table 11. BBC Dataset contains 2 225 text documents
from the BBC news website, which are classified into five categories (business, enter-
tainment, politics, sport, tech), Table 12 shows the document distribution of BBC
dataset. Newsgroups Dataset: The documents of Newsgroups dataset contains ap-
proximately 15 000 news documents, which are manually classified into 20 groups.
In this work we have experimented with ten categories. News document distribution
among the selected categories is shown in Table 13.

S. No Category Training Docs Testing Docs Total Docs

1 project 336 168 504
2 course 620 310 930
3 faculty 750 374 1 124
4 student 1 097 544 1 641

Total 2 803 1 396 4 199

Table 10. WebKB dataset

S. No Category Training Docs Testing Docs Total Docs

1 Spam 436 311 747
2 Ham 2 838 1 989 4 827

Total 3 274 2 300 5 574

Table 11. SMS dataset

4.2 Classifier Used

In this proposed research, we have used the Naive Bayes (NB) and Support Vector
Machine classifiers to classify the unstructured documents. The primary idea of NB
classifier [5, 31, 35] is to use the joint probabilities of the terms and class labels of

1 dataset: http://ana.cachopo.org/datasets-for-single-label-text-
categorization

http://ana.cachopo.org/datasets-for-single-label-text-categorization
http://ana.cachopo.org/datasets-for-single-label-text-categorization

Feature Selection Based on Combining Document Frequency and Term Frequency 893

S. No Category Training Docs Testing Docs Total Docs

1 Business 281 229 510
2 Entertainment 223 163 386
3 Politics 219 198 417
4 Sport 292 219 511
5 Tech 210 191 401

Total 1 225 1 000 2 225

Table 12. BBC dataset

S. No Category Training Docs Testing Docs Total Docs

1 rec. autos 594 395 989
2 rec. motorcycles 598 398 996
3 rec. sport. baseball 597 397 994
4 rec. sport. hockey 600 399 999
5 sci. crypt 595 396 991
6 sci. electronics 591 393 984
7 sci. med 594 396 990
8 sci. space 593 394 987
9 soc. religion. christian 598 398 996

10 talk. politics. guns 545 364 909
Total 5 905 3 930 9 835

Table 13. 10Newsgroup dataset

the training set to determine the class label of a given unknown document. Given
the document dj, the probability with each category Ck is computed as follows:

P (Ck|dj) =
P (dj|Ck)
P (dj)

∗ P (Ck). (15)

The class label for the document dj, can be evaluated by,

Label(dj) = max
k=1,2,...,K

{P (Ck|dj)}. (16)

Support vector machine (SVM) is one of the best supervised learning algorithm
which is used for classification and regression [10, 18, 19, 22, 29, 20]. SVM finds
a hyper-plane or set of hyper-planes to separate the classes in the high dimensional
space. The main objective of SVM is to find the decision boundary that is maximally
away from any data point. SVM classifier finds the maximum margin hyper plane,
which separate the two classes and the border of hyper-plane is defined by support
vectors.

894 T. Karpagalingam, M. Karuppaiah

4.3 Evaluation Metric

There are four standard evaluation measures namely Accuracy, Precision, Recall,
F-Score that are used to evaluate the proposed feature selection model for classifying
the unstructured documents [28]. True positives (TP) are instances when the actual
category of the tuple was positive and the predicted is also positive. True negatives
(TN) are instances when the actual category of the tuple was negative and predicted
is also negative. False positives (FP) are instances when the actual category of the
tuple was negative and predicted is positive. False negatives (FN) are instances
when the actual category of the tuple was positive and predicted as negative. The
accuracy of a classification model is calculated as how much percentage of testing
dataset documents are accurately classified.

Accuracy =
TP + TN

TP + FP + TN + FN
. (17)

The Precision (P) is a measure of exactness. It refers what percentage of tuples
classified as positive are actually positive.

Precision =
TP

TP + FP
. (18)

The Recall (R) is a measure of completeness. It refers what percentage of positive
tuples are classified as positive are actually positive.

Recall =
TP

TP + FN
. (19)

The F-Score (F) is defined as the weighted harmonic mean of the Precision and
Recall.

F =
2 ∗ Precision ∗ Recall

Precision + Recall
. (20)

5 RESULTS

In this section, a deep analysis is carried out to compare the FS-DFTF feature selec-
tion scheme against various filter based feature selection methods (DF, ACC2, IG,
MI, DFS, and NDM) in terms of classifier accuracy, precision, recall and F-score.
We have taken the measurement of experiments using a computer equipped with
2.30 GHz, Intel Core i5 processor and 8 GB RAM memory. The experiments are
conducted with features of varying sizes such as 10, 50, 100, 200, 300, 500 and
1 000. We have used Python 3.7.3 for programming and matplotlib library to plot
the performance graph. The performance of the proposed work FS-DFTF is shown
in Figures 2, 3, 4, 5 and Tables 14, 15, 16, 17, 18, 19, 20, 21 on the above men-
tioned dataset respectively. In all the graphs, the X-axis represents the number of
selected features and the Y-axis represents the corresponding classifier performance

Feature Selection Based on Combining Document Frequency and Term Frequency 895

in terms of accuracy. In most experimental results, the proposed method shows
better accuracy than other contrast ones.

5.1 Performance Comparisons on the WebKB Dataset

The accuracy of the NB classifier and SVM classifier on the WebKB dataset are
shown in Figures 2 a) and 2 b), respectively. According to Figure 2, the proposed
FS-DFTF method surpasses the individual performance of all other methods in
terms of accuracy using Naive Bayes classifier and SVM classifier. For the WebKB
dataset, the optimum feature size is 200 with an accuracy of 89.18 % for NB classifier
and 87.97 % for SVM classifiers. We observe that the accuracy curve of FS-DFTF is
higher than that of other methods for both Naive Bayes and linear SVM classifiers.

Table 14 shows the Precision, Recall and F-Score of Naive Bayes classifier using
FS-DFTF, MI, DFS, DF, ACC2, IG and NDM on the Webkb dataset when top 200
features are selected in feature space. The results show that FS-DFTF method has
a higher number of instances correctly classified (1 245 instances over 1 396) than
the six existing techniques and it improves the classification performance.

Algorithm Precision Recall F1 Score
Accuracy in %

(Correctly
Classified Docs)

Error Rate in %
(Incorrectly

Classified Docs)

DF 0.74 0.73 0.73 72.7 % (1 015) 27.3 % (381)
ACC2 0.74 0.73 0.73 72.99 % (1 019) 27.01 % (377)
IG 0.83 0.83 0.83 82.52 % (1 152) 17.48 % (244)
MI 0.84 0.83 0.83 83.17 % (1 161) 16.83 % (235)
DFS 0.86 0.85 0.86 85.46 % (1 193) 14.54 % (203)
NDM 0.86 0.86 0.86 85.89 % (1 199) 14.11 % (197)
FS-DETF 0.89 0.89 0.89 89.18 % (1 245) 10.82 % (151)

Table 14. Performance of FS-DFTF on WebKB dataset using NB classifier

Table 15 shows the Precision, Recall and F-Score of SVM classifier using FS-
DFTF, MI, DFS, DF, ACC2, IG and NDM on the Webkb dataset when top 200 fea-
tures are selected in feature space. The results show that FS-DFTF method has
a higher number of instances correctly classified (1 228 instances over 1 396) than
the six existing techniques and it improves the classification performance.

5.2 Performance Comparisons on the SMS Dataset

Figure 3 shows the experimental results of text classification on the SMS dataset
using NB and SVM classifiers. The curves in the figures indicate the various feature
selection scheme. It can be seen from Figure 3 a) that the performance of FS-
DFTF using the NB classifier is better than all other feature selection scheme. Also,
Figure 3 b) shows that the performance of the proposed work using the SVM classifier
has the highest accuracy while comparing other feature selection scheme. For the

896 T. Karpagalingam, M. Karuppaiah

a) NB classifier

b) SVM classifier

Figure 2. Accuracy comparison for WebKb dataset using a) NB classifier b) SVM classifier

Algorithm Precision Recall F1 Score
Accuracy in %

(Correctly
Classified Docs)

Error Rate in %
(Incorrectly

Classified Docs)

DF 0.74 0.73 0.73 72.92 % (1 018) 27.08 % (378)
ACC2 0.77 0.75 0.76 75.21 % (1 050) 24.79 % (346)
IG 0.81 0.8 0.8 80.16 % (1 119) 19.84 % (277)
MI 0.83 0.82 0.82 82.02 % (1 145) 17.98 % (251)
DFS 0.84 0.84 0.84 83.52 % (1 166) 16.48 % (194)
NDM 0.87 0.86 0.87 86.46 % (1 207) 13.54 % (189)
FS-DETF 0.88 0.88 0.88 87.97 % (1 228) 12.03 % (168)

Table 15. Performance of FS-DFTF on WebKB dataset using SVM classifier

Feature Selection Based on Combining Document Frequency and Term Frequency 897

SMS dataset, the optimum feature size is 300 with an accuracy of 97.78 % for NB
classifier and 95.04 % for SVM classifiers.

a) NB classifier

b) SVM classifier

Figure 3. Accuracy comparison for SMS dataset using a) NB classifier b) SVM classifier

While selecting top 300 features in feature space, the Precision, Recall and
F-Score of Naive Bayes classifier using FS-DFTF, MI, DFS, DF, ACC2, IG and
NDM on the Webkb dataset is shown in Table 16. The results show that FS-DFTF
method has a higher number of instances correctly classified (2 249 instances over
2 300) than the six existing techniques and it improves the classification perfor-
mance.

Table 17 shows the Precision, Recall and F-Score of SVM classifier using FS-
DFTF, MI, DFS, DF, ACC2, IG and NDM on the SMS dataset when top 300 fea-
tures are selected in feature space. The results show that FS-DFTF method has

898 T. Karpagalingam, M. Karuppaiah

Algorithm Precision Recall F1 Score
Accuracy in %

(Correctly
Classified Docs)

Error Rate in %
(Incorrectly

Classified Docs)

DF 0.95 0.94 0.95 94.27 % (2 168) 5.74 % (132)
ACC2 0.96 0.95 0.95 94.78 % (2 180) 5.21 % (120)
IG 0.96 0.95 0.95 95.0 % (2 185) 5.0 % (115)
MI 0.97 0.96 0.96 96.0 % (2 208) 4.0 % (92)
DFS 0.97 0.97 0.97 97.04 % (2 232) 2.96 % (68)
NDM 0.97 0.97 0.97 97.18 % (2 235) 2.82 % (65)
FS-DETF 0.98 0.98 0.98 97.78 % (2 249) 2.22 % (51)

Table 16. Performance of FS-DFTF on SMS dataset using NB classifier

a higher number of instances correctly classified (2 186 instances over 2 300) than
the six existing techniques and it improves the classification performance.

Algorithm Precision Recall F1 Score
Accuracy in %

(Correctly
Classified Docs)

Error Rate in %
(Incorrectly

Classified Docs)

DF 0.92 0.88 0.89 88.09 % (2 026) 11.91 % (274)
ACC2 0.93 0.90 0.91 89.91 % (2 068) 10.09 % (232)
IG 0.93 0.91 0.91 90.52 % (2 082) 9.48 % (218)
MI 0.94 0.91 0.92 91.39 % (2 102) 8.61 % (198)
DFS 0.94 0.92 0.93 92.48 % (2 127) 7.52 % (173)
NDM 0.95 0.93 0.94 93.3 % (2 146) 6.7 % (154)
FS-DETF 0.96 0.95 0.95 95.04 % (2 186) 4.96 % (114)

Table 17. Performance of FS-DFTF on SMS dataset using SVM classifier

5.3 Performance Comparisons on the BBC Dataset

The accuracy of the NB classifier and SVM classifier on the BBC dataset are shown
in Figures 4 a) and 4 b), respectively. According to Figure 4, the proposed FS-DFTF
method surpasses the individual performance of all other methods in terms of ac-
curacy using Naive Bayes classifier and SVM classifier. For the BBC dataset, the
optimum feature size is 200 with an accuracy of 96.2 % for NB classifier and 94.6 %
for SVM classifiers. We observe that the accuracy curve of FS-DFTF is higher than
that of other methods for both Naive Bayes and linear SVM classifiers.

Table 18 shows the Precision, Recall and F-Score of Naive Bayes classifier us-
ing FS-DFTF, MI, DFS, DF, ACC2, IG and NDM on the BBC dataset when top
200 features are selected in feature space. The results show that FS-DFTF method
has a higher number of instances correctly classified (962 instances over 1 000) than
the six existing techniques and it improves the classification performance.

Table 19 shows the Precision, Recall and F-Score of SVM classifier using FS-
DFTF, MI, DFS, DF, ACC2, IG and NDM on the BBC dataset when top 200 fea-

Feature Selection Based on Combining Document Frequency and Term Frequency 899

a) NB classifier

b) SVM classifier

Figure 4. Accuracy comparison for BBC dataset using a) NB classifier b) SVM classifier

Algorithm Precision Recall F1 Score
Accuracy in %

(Correctly
Classified Docs)

Error Rate in %
(Incorrectly

Classified Docs)

DF 0.8 0.8 0.8 80.2 % (802) 19.8 % (19.8)
ACC2 0.91 0.91 0.91 90.8 % (908) 9.2 % (92)
IG 0.92 0.92 0.92 92.3 % (92.3) 7.7 % (77)
MI 0.93 0.93 0.93 93.1 % (931) 6.9 % (69)
DFS 0.93 0.93 0.93 92.7 % (927) 7.3 % (73)
NDM 0.94 0.94 0.94 93.9 % (939) 6.1 % (61)
FS-DETF 0.96 0.96 0.96 96.2 % (962) 3.8 % (38)

Table 18. Performance of FS-DFTF on BBC News corpus using NB classifier

900 T. Karpagalingam, M. Karuppaiah

tures are selected in feature space. The results show that FS-DFTF method has
a higher number of instances correctly classified (946 instances over 1 000) than the
six existing techniques and it improves the classification performance.

Algorithm Precision Recall F1 Score
Accuracy in %

(Correctly
Classified Docs)

Error Rate in %
(Incorrectly

Classified Docs)

DF 0.83 0.83 0.83 83.4 % (834) 16.6 % (166)
ACC2 0.88 0.88 0.88 88.0 % (880) 12.0 % (120)
IG 0.89 0.89 0.89 89.4 % (894) 10.6 % (106)
MI 0.9 0.9 0.9 89.5 % (895) 10.5 % (105)
DFS 0.92 0.92 0.92 91.6 % (916) 8.4 % (84)
NDM 0.93 0.93 0.93 92.9 % (929) 7.1 % (71)
FS-DETF 0.95 0.95 0.95 94.6 % (946) 5.4 % (54)

Table 19. Performance of FS-DFTF on BBC News corpus using SVM classifier

5.4 Performance Comparisons on the 10Newsgroup Dataset

Figure 5 shows the experimental results of text classification on the 10Newsgroup
dataset using NB and SVM classifiers. The curves in the figures indicate the various
feature selection scheme. It can be seen from Figure 5 a) that the performance of
FS-DFTF using the NB classifier is better than all other feature selection scheme.
Also, Figure 5 b) shows that the performance of the proposed work using the SVM
classifier has the highest accuracy while comparing other feature selection scheme.
For the SMS dataset, the optimum feature size is 300 with an accuracy of 89.16 %
for NB classifier and 86.77 % for SVM classifiers.

While selecting top 200 features in feature space, the Precision, Recall and
F-Score of Naive Bayes classifier using FS-DFTF, MI, DFS, DF, ACC2, IG and NDM
on the 10Newsgroup dataset is shown in Table 20. The results show that FS-DFTF
method has a higher number of instances correctly classified (3 504 instances over
3 930) than the six existing techniques and it improves the classification performance.

Table 21 shows the Precision, Recall and F-Score of SVM classifier using FS-
DFTF, MI, DFS, DF, ACC2, IG and NDM on the 10Newsgroup dataset when top
200 features are selected in feature space. The results show that FS-DFTF method
has a higher number of instances correctly classified (3 410 instances over 3 930) than
the six existing techniques and it improves the classification performance.

6 VALIDITY THREATS

In this section, we discuss the validity threats for our proposed filter based feature
selection scheme. We have identified two validity threats:

Feature Selection Based on Combining Document Frequency and Term Frequency 901

a) NB classifier

b) SVM classifier

Figure 5. Accuracy comparison for 10Newsgroup dataset using a) NB classifier b) SVM
classifier

Algorithm Precision Recall F1 Score
Accuracy in %

(Correctly
Classified Docs)

Error Rate in %
(Incorrectly

Classified Docs)

DF 0.73 0.73 0.73 72.70 % (2 857) 27.30 % (1 073)
ACC2 0.73 0.73 0.73 73.03 % (2 870) 26.97 % (1 060)
IG 0.83 0.83 0.83 82.54 % (3 244) 17.46 % (686)
MI 0.83 0.83 0.83 83.23 % (3 271) 16.77 % (659)
DFS 0.85 0.85 0.85 85.44 % (3 358) 14.56 % (572)
NDM 0.86 0.86 0.86 85.90 % (3 376) 14.10 % (554)
FS-DETF 0.89 0.89 0.89 89.16 % (3 504) 10.84 % (426)

Table 20. Performance of FS-DFTF on 10Newsgroup dataset using NB classifier

902 T. Karpagalingam, M. Karuppaiah

Algorithm Precision Recall F1 Score
Accuracy in %

(Correctly
Classified Docs)

Error Rate in %
(Incorrectly

Classified Docs)

DF 0.74 0.74 0.74 74.02 % (2 909) 25.98 % (1 021)
ACC2 0.8 0.8 0.8 79.97 % (3 143) 20.03 % (787)
IG 0.82 0.82 0.82 81.65 % (3 209) 18.35 % (721)
MI 0.83 0.83 0.83 82.54 % (3 244) 17.46 % (686)
DFS 0.84 0.84 0.84 83.59 % (3 285) 16.41 % (645)
NDM 0.86 0.86 0.86 85.57 % (3 363) 14.43 % (567)
FS-DETF 0.87 0.87 0.87 86.77 % (3 410) 13.23 % (520)

Table 21. Performance of FS-DFTF on 10Newsgroup dataset using SVM classifier

Less or no contribution of term frequency (TF) to the text corpus. The
Sarcasm headlines dataset2 is a collection of sarcastic headlines. It contains
more than 25 000 headlines. These headlines are classified into two categories
(Sarcastic, Non sarcastic). In this text corpus, each document is a news headline
which contains non repeated words. As a result, the term frequency (TF) does
not contribute to assign the significance score to a term.

Computational cost. Even though, the performamce of the proposed FS-DFTF
feature selection scheme outperformed the other feature selection scheme, the
proposed method takes more computation time. Because, the proposed work
uses both DF contribution and TF contribution to assign the significance score
to each term which incurs some additional computational cost.

7 CONCLUSION

In this work, we propose a new filter based feature selection scheme which com-
bines the document frequency and term frequency of the term. The performance of
the proposed work FS-DFTF was investigated against well known filter based fea-
ture selection techniques using various well known benchmark datasets, two popular
classification algorithms and four performance evaluation measures. The results of
an in-depth experimental analysis noticeably indicate that FS-DFTF based feature
selection scheme is better than other filter techniques.

Acknowledgement

The authors would like to thank the Management and Principal of Mepco Schlenk
Engineering College (Autonomous), Sivakasi for providing us the state-of-the-art
facilities to carry out this proposed research work in the Mepco Research Centre in
collaboration with Anna University Chennai, Tamil Nadu, India.

2 https://www.kaggle.com/rmisra/news-headlines-dataset-for-sarcasm-

detection

https://www.kaggle.com/rmisra/news-headlines-dataset-for-sarcasm-detection
https://www.kaggle.com/rmisra/news-headlines-dataset-for-sarcasm-detection

Feature Selection Based on Combining Document Frequency and Term Frequency 903

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no conflict of
interest.

REFERENCES

[1] Aggarwal, C. C.—Zhai, C.: A Survey of Text Classification Algorithms. In: Ag-
garwal, C., Zhai, C. (Eds.): Mining Text Data. Springer US, Boston, MA, 2012,
pp. 163–222, doi: 10.1007/978-1-4614-3223-4 6.

[2] Anagnostopoulos, I.—Anagnostopoulos, C.—Loumos, V.—Kayafas, E.:
Classifying Web Pages Employing a Probabilistic Neural Network. IEE Proceedings –
Software, Vol. 151, 2004, No. 3, pp. 139–150, doi: 10.1049/ip-sen:20040121.

[3] Banati, H.—Bajaj, M.: Firefly Based Feature Selection Approach. IJCSI Interna-
tional Journal of Computer Science Issues, Vol. 8, 2011, No. 4, pp. 473–480.

[4] Bracewell, D. B.—Yan, J.—Ren, F.—Kuroiwa, S.: Category Classifica-
tion and Topic Discovery of Japanese and English News Articles. In: Seda, A.,
Boubekeur, M., Hurley, T., Mac an Airchinnigh, M., Schellekens, M., Strong, G.
(Eds.): Proceedings of the Irish Conference on the Mathematical Foundations of Com-
puter Science and Information Technology (MFCSIT 2006). Electronic Notes in Theo-
retical Computer Science, Vol. 225, 2009, pp. 51–65, doi: 10.1016/j.entcs.2008.12.066.

[5] Chen, J.—Huang, H.—Tian, S.—Qu, Y.: Feature Selection for Text Classifi-
cation with Näıve Bayes. Expert Systems with Applications, Vol. 36, 2009, No. 3,
Part 1, pp. 5432–5435, doi: 10.1016/j.eswa.2008.06.054.

[6] Chen, R. C.—Hsieh, C. H.: Web Page Classification Based on a Support Vector
Machine Using a Weighted Vote Schema. Expert Systems with Applications, Vol. 31,
2006, No. 2, pp. 427–435, doi: 10.1016/j.eswa.2005.09.079.

[7] Cheng, N.—Chandramouli, R.—Subbalakshmi, K. P.: Author Gender Iden-
tification from Text. Digital Investigation, Vol. 8, 2011, No. 1, pp. 78–88, doi:
10.1016/j.diin.2011.04.002.

[8] Dada, E. G.—Bassi, J. S.—Chiroma, H.—Abdulhamid, S. M.—
Adetunmbi, A. O.—Ajibuwa, O. E.: Machine Learning for Email Spam
Filtering: Review, Approaches and Open Research Problems. Heliyon, Vol. 5, 2019,
No. 6, Art. No. e01802, doi: 10.1016/j.heliyon.2019.e01802.

[9] Dasgupta, A.—Drineas, P.—Harb, B.—Josifovski, V.—Mahoney, M. W.:
Feature Selection Methods for Text Classification. Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’07), ACM, 2007, pp. 230–239, doi: 10.1145/1281192.1281220.

[10] Drucker, H.—Wu, D.—Vapnik, V. N.: Support Vector Machines for Spam Cat-
egorization. IEEE Transactions on Neural Networks, Vol. 10, 1999, No. 5, pp. 1048–
1054, doi: 10.1109/72.788645.

[11] Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for
Text Classification. Journal of Machine Learning Research, Vol. 3, 2003, No. 1,
pp. 1289–1305.

https://doi.org/10.1007/978-1-4614-3223-4_6
https://doi.org/10.1049/ip-sen:20040121
https://doi.org/10.1016/j.entcs.2008.12.066
https://doi.org/10.1016/j.eswa.2008.06.054
https://doi.org/10.1016/j.eswa.2005.09.079
https://doi.org/10.1016/j.diin.2011.04.002
https://doi.org/10.1016/j.heliyon.2019.e01802
https://doi.org/10.1145/1281192.1281220
https://doi.org/10.1109/72.788645

904 T. Karpagalingam, M. Karuppaiah

[12] Günal, S.: Hybrid Feature Selection for Text Classification. Turkish Journal of Elec-
trical Engineering and Computer Sciences, Vol. 20, 2012, No. Sup. 2, pp. 1296–1311.

[13] Gunal, S.—Edizkan, R.: Subspace Based Feature Selection for Pattern
Recognition. Information Sciences, Vol. 178, 2008, No. 19, pp. 3716–3726, doi:
10.1016/j.ins.2008.06.001.

[14] Günal, S.—Ergin, S.—Gülmezoğlu, M. B.—Gerek, Ö. N.: On Feature Ex-
traction for Spam E-Mail Detection. In: Gunsel, B., Jain, A. K., Tekalp, A. M.,
Sankur, B. (Eds.): Multimedia Content Representation, Classification and Secu-
rity (MRCS 2006). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 4105, 2006, pp. 635–642, doi: 10.1007/11848035 84.

[15] Gunal, S.—Gerek, O. N.—Ece, D. G.—Edizkan, R.: The Search for Optimal
Feature Set in Power Quality Event Classification. Expert Systems with Applications,
Vol. 36, 2009, No. 7, pp. 10266–10273, doi: 10.1016/j.eswa.2009.01.051.

[16] Guru, D. S.—Suhil, M.—Pavithra, S. K.—Priya, G. R.: Ensemble of Feature
Selection Methods for Text Classification: An Analytical Study. In: Abraham, A.,
Muhuri, P. K., Muda, A. K., Gandhi, N. (Eds.): Intelligent Systems Design and Ap-
plications (ISDA 2017). Springer, Cham, Advances in Intelligent Systems and Com-
puting, Vol. 736, 2018, pp. 337–349, doi: 10.1007/978-3-319-76348-4 33.

[17] Guyon, I.—Elisseeff, A.: An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, Vol. 3, 2003, pp. 1157–1182.

[18] Hsu, C. W.—Lin, C. J.: A Comparison of Methods for Multiclass Support Vector
Machines. IEEE Transactions on Neural Networks, Vol. 13, 2002, No. 2, pp. 415–425,
doi: 10.1109/72.991427.

[19] Huang, C. L.—Wang, C. J.: A GA-Based Feature Selection and Parameters Op-
timization for Support Vector Machines. Expert Systems with Applications, Vol. 31,
2006, No. 2, pp. 231–240, doi: 10.1016/j.eswa.2005.09.024.

[20] Joachims, T.: Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. In: Nédellec, C., Rouveirol, C. (Eds.): Machine Learn-
ing (ECML ’98). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 1398, 1998, pp. 137–142, doi: 10.1007/bfb0026683.

[21] Kohavi, R.—John, G. H.: Wrappers for Feature Subset Selection. Artificial Intel-
ligence, Vol. 97, 1997, No. 1-2, pp. 273–324, doi: 10.1016/s0004-3702(97)00043-x.

[22] Kumar, M. A.—Gopal, M.: A Comparison Study on Multiple Binary-Class SVM
Methods for Unilabel Text Categorization. Pattern Recognition Letters, Vol. 31, 2010,
No. 11, pp. 1437–1444, doi: 10.1016/j.patrec.2010.02.015.

[23] Lan, M.—Tan, C. L.—Su, J.—Lu, Y.: Supervised and Traditional Term
Weighting Methods for Automatic Text Categorization. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 31, 2009, No. 4, pp. 721–735, doi:
10.1109/tpami.2008.110.

[24] Lee, C.—Lee, G. G.: Information Gain and Divergence-Based Feature Selection
for Machine Learning-Based Text Categorization. Information Processing and Man-
agement, Vol. 42, 2006, No. 1, pp. 155–165, doi: 10.1016/j.ipm.2004.08.006.

https://doi.org/10.1016/j.ins.2008.06.001
https://doi.org/10.1007/11848035_84
https://doi.org/10.1016/j.eswa.2009.01.051
https://doi.org/10.1007/978-3-319-76348-4_33
https://doi.org/10.1109/72.991427
https://doi.org/10.1016/j.eswa.2005.09.024
https://doi.org/10.1007/bfb0026683
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1016/j.patrec.2010.02.015
https://doi.org/10.1109/tpami.2008.110
https://doi.org/10.1016/j.ipm.2004.08.006

Feature Selection Based on Combining Document Frequency and Term Frequency 905

[25] Lewis, D. D.—Ringuette, M.: A Comparison of Two Learning Algorithms for
Text Categorization. Third Annual Symposium on Document Analysis and Informa-
tion Retrieval, Las Vegas, NV, US, 1994, pp. 81–93.

[26] Li, B.—Yan, Q.—Xu, Z.—Wang, G.: Weighted Document Frequency
for Feature Selection in Text Classification. 2015 International Conference on
Asian Language Processing (IALP), Suzhou, China, 2016, pp. 132–135, doi:
10.1109/IALP.2015.7451549.

[27] Liu, H.—Sun, J.—Liu, L.—Zhang, H.: Feature Selection with Dynamic Mu-
tual Information. Pattern Recognition, Vol. 42, 2009, No. 7, pp. 1330–1339, doi:
10.1016/j.patcog.2008.10.028.

[28] Manning, C. D.—Raghavan, P.—Schütze, H.: Introduction to Information Re-
trieval. Cambridge University Press, USA, 2008.

[29] Mesleh, A. M.—Kanaan, G.: Support Vector Machine Text Classification System:
Using Ant Colony Optimization Based Feature Subset Selection. 2008 International
Conference on Computer Engineering and Systems, Cairo, Egypt, 2008, pp. 143–148,
doi: 10.1109/icces.2008.4772984.

[30] Rehman, A.—Javed, K.—Babri, H. A.: Feature Selection Based on a Normalized
Difference Measure for Text Classification. Information Processing and Management,
Vol. 53, 2017, No. 2, pp. 473–489, doi: 10.1016/j.ipm.2016.12.004.

[31] Kim, S.-B.—Han, K.-S.—Rim, H.-C.—Myaeng, S.-H.: Some Effective Tech-
niques for Naive Bayes Text Classification. IEEE Transactions on Knowledge and
Data Engineering, Vol. 18, 2006, No. 11, pp. 1457–1466, doi: 10.1109/tkde.2006.180.

[32] Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Com-
puting Surveys, Vol. 34, 2002, No. 1, pp. 1–47, doi: 10.1145/505282.505283.

[33] Shang, W.—Huang, H.—Zhu, H.—Lin, Y.—Qu, Y.—Wang, Z.: A Novel Fea-
ture Selection Algorithm for Text Categorization. Expert Systems with Applications,
Vol. 33, 2007, No. 1, pp. 1–5, doi: 10.1016/j.eswa.2006.04.001.

[34] Stamatatos, E.: Author Identification: Using Text Sampling to Handle the Class
Imbalance Problem. Information Processing and Management, Vol. 44, 2008, No. 2,
pp. 790–799, doi: 10.1016/j.ipm.2007.05.012.

[35] Su, J.—Sayyad-Shirabad, J.—Matwin, S.: Large Scale Text Classification Us-
ing Semi-Supervised Multinomial Naive Bayes. Proceedings of the 28th International
Conference on Machine Learning (ICML 2011), Bellevue, Washington, USA, 2011,
pp. 97–104.

[36] Thirumoorthy, K.—Muneeswaran, K.: Optimal Feature Subset Selection Using
Hybrid Binary Jaya Optimization Algorithm for Text Classification. Sādhanā, Vol. 45,
2020, No. 1, Art. No. 201, pp. 1–13, doi: 10.1007/s12046-020-01443-w.

[37] Uysal, A. K.—Gunal, S.: A Novel Probabilistic Feature Selection Method for
Text Classification. Knowledge-Based Systems, Vol. 36, 2012, pp. 226–235, doi:
10.1016/j.knosys.2012.06.005.

[38] Xu, Y.—Wang, B.—Li, J.—Jing, H.: An Extended Document Frequency Met-
ric for Feature Selection in Text Categorization. In: Li, H., Liu, T., Ma, W. Y.,
Sakai, T., Wong, K. F., Zhou, G. (Eds.): Information Retrieval Technology (AIRS

https://doi.org/10.1109/IALP.2015.7451549
https://doi.org/10.1016/j.patcog.2008.10.028
https://doi.org/10.1109/icces.2008.4772984
https://doi.org/10.1016/j.ipm.2016.12.004
https://doi.org/10.1109/tkde.2006.180
https://doi.org/10.1145/505282.505283
https://doi.org/10.1016/j.eswa.2006.04.001
https://doi.org/10.1016/j.ipm.2007.05.012
https://doi.org/10.1007/s12046-020-01443-w
https://doi.org/10.1016/j.knosys.2012.06.005

906 T. Karpagalingam, M. Karuppaiah

2008). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4993,
2008, pp. 71–82, doi: 10.1007/978-3-540-68636-1 8.

[39] Yang, J.—Honavar, V.: Feature Subset Selection Using a Genetic Algorithm.
IEEE Intelligent Systems and Their Applications, Vol. 13, 1998, No. 2, pp. 44–49,
doi: 10.1109/5254.671091.

[40] Wu, Y.—Zhang, A.: Feature Selection for Classifying High-Dimensional Numer-
ical Data. Proceedings of the 2004 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2004), 2004, Vol. 2, pp. II–II, doi:
10.1109/cvpr.2004.1315171.

[41] Yu, B.—Zhu, D.-H.: Combining Neural Networks and Semantic Feature Space
for Email Classification. Knowledge-Based Systems, Vol. 22, 2009, No. 5, pp. 376–381,
doi: 10.1016/j.knosys.2009.02.009.

Thirumoorthy Karpagalingam received his M.E. degree
from the Arulmigu Kalasalingam College of Engineering,
Krishnankoil, Tamilnadu, India and his B.E. degree from the
Kamaraj College of Engineering and Technology, India. He
worked as Assistant Professor in Computer Science and Engi-
neering Department of the Mepco Schlenk Engineering College,
Sivakasi for 12 years and currently he is pursuing Ph.D. in Mepco
Schlenk Engineering College, Sivakasi, India under Anna Uni-
versity, Chennai, India. His research areas include text mining.
His publications have appeared in various leading journals and
conferences.

Muneeswaran Karuppaiah is presently Senior Professor in
the Department of Computer Science and Engineering at Mepco
Schlenk Engineering College, Sivakasi, India. He completed his
doctorate in M.S. University, Tirunelveli, India, his post gradu-
ate degree from PSG College of Technology, Coimbatore, India
and Bachelor degree from Thiagarajar College of Engineering,
Madurai, India. He has nearly 33 years of teaching experience.
He has published nearly 52 papers in reputed international jour-
nals with 531 citations and 95 papers in international and na-
tional conferences. He has published a book “Compiler Design”

in Oxford University Press. He is also a life member of organizations such as the Computer
Society of India (CSI), Indian Society for Technical Education (ISTE) and Institution of
Electronics and Telecommunication Engineers (IETE).

https://doi.org/10.1007/978-3-540-68636-1_8
https://doi.org/10.1109/5254.671091
https://doi.org/10.1109/cvpr.2004.1315171
https://doi.org/10.1016/j.knosys.2009.02.009

Computing and Informatics, Vol. 39, 2020, 907–924, doi: 10.31577/cai 2020 5 907

HIERARCHICAL TEXT CLASSIFICATION
USING CNNS WITH LOCAL APPROACHES

Milan Krendzelak, Frantisek Jakab

Technical University of Košice
Faculty of Electrical Engineering and Informatics
Department of Computers and Informatics
Letná 9, 040 01 Košice, Slovakia
e-mail: krendzelak.m@gmail.com, frantisek.jakab@tuke.sk

Abstract. In this paper, we discuss the application of convolutional neural net-
works (CNNs) for hierarchical text classification using local top-down approaches.
We present experimental results implementing a local classification per node ap-
proach, a local classification per parent node approach, and a local classification
per level approach. A 20Newsgroup hierarchical training dataset with more than
20 categories and three hierarchical levels was used to train the models. The exper-
iments involved several variations of hyperparameters settings such as batch size,
embedding size, and number of available examples from the training dataset, includ-
ing two variation of CNN model text embedding such as static (stat) and random
(rand). The results demonstrated that our proposed use of CNNs outperformed
flat CNN baseline model and both the flat and hierarchical support vector machine
(SVM) and logistic regression (LR) baseline models. In particular, hierarchical
text classification with CNN-stat models using local per parent node and local per
level approaches achieved compelling results and outperformed the former and lat-
ter state-of-the-art models. However, using CNN with local per node approach for
hierarchical text classification underperformed and achieved worse results. Further-
more, we performed a detailed comparison between the proposed hierarchical local
approaches with CNNs. The results indicated that the hierarchical local classifica-
tion per level approach using the CNN model with static text embedding achieved
the best results, surpassing the flat SVM and LR baseline models by 7 % and 13 %,
surpassing the flat CNN baseline by 5 %, and surpassing the h-SVM and h-LR
models by 5 % and 10 %, respectively.

Keywords: Hierarchical text classification, convolutional neural network, local top-
down approach

Mathematics Subject Classification 2010: 68-U01

908 M. Krendzelak, F. Jakab

1 INTRODUCTION

Various methods exist for solving the hierarchical text classification (HTC) task,
which is primarily based on how hierarchical relationships are utilized. Flat clas-
sification treats a flattened taxonomy as a set of unique classes that represent its
hierarchy. Therefore, a binary classifier is usually trained for each class to discrimi-
nate it from the remaining classes. Although the flat classification approach is well
known for its efficiency and simplicity when handling small-sized and well-balanced
datasets, its performance suffers when the dimensions of the classes to be predicted
not only increase but also become hierarchically interdependent. Due to the invoca-
tion of binary classifiers for all trained nodes, computation becomes time-consuming
and costly [1].

The application of hierarchically organized categories into a taxonomy has be-
come the most frequent method of organizing large quantities of data. For instance,
enterprise customer care, product knowledge bases, online self-help centers, and
e-learning systems. The most frequent strategy is to flatten a taxonomy so that
all training datasets belong only to leaf classes. However, organizing the train-
ing datasets in this way does not mimic real-world examples very effectively. The
connection between classes is lost because of the flattening process; thus, it is not
possible to forecast the parent category of a new case [2].

However, in the context of HTC hierarchical relationships between parent and
children elements, derived from a taxonomy of classes, should be considered either for
training or predicting phases or both. In this case, the difference between different
approaches to tackle the HTC task is the way the training dataset is leveraged.
Currently, there are well-known hierarchical approaches known as local and global
approaches. A hierarchical local approach is further divided into a local per node
approach, local per parent node approach, and a local per level approach. Then
the local approach involves splitting the hierarchical structure into several smaller
structures for training local learning models; the global approach consumes the entire
hierarchy of classes at once for training the global learning model [3].

2 RELATED WORK

There is a number of studies that focus on solving hierarchical text classification.
For example, a well-known hierarchical top-down approach with level-based support
vector machine models for text classification has been suggested by Sun and Lim [4].
Similarly, Sokolov et al. proposed a model for ontology term forecasting by explicitly
simulating a construction hierarchy using kernel techniques for structured output [8].
Cerri et al. proposed an approach for hierarchical multi-label text classification that
involves training a multi-layer perceptron for each level of the classification hier-
archy [9]. The predictions generated by a neural network in a given level serve as
inputs to the neural network responsible for the forecast in the following level. Their
method was evaluated against several datasets with promising results.

Hierarchical Text Classification Using CNNs with Local Approaches 909

Within the context of neural networks, Kurata et al. proposed a strategy for ini-
tializing neural networks’ hidden output by considering multi-label co-occurrence.
Their method treats a number of neurons in the final hidden layer as committed
neurons for every pattern of tag co-occurrence [10]. In addition, there have been
several important studies that proposed the inclusion of multi-label co-occurrence
into loss functions, such as pairwise standing loss by Zhang and Zhou [11]. Further-
more, in more recent work, Nam et al. [12] reported that binary cross-entropy can
outperform pairwise ranking reduction by minding rectified linear units (ReLUs) for
nonlinearity.

3 LOCAL CLASSIFICATION APPROACHES

The hierarchical local classification approach deals with the local cross-section of
hierarchically organized classes in order to consider information about parent-child
and sibling relationships during the training phase. Based on different methods of
applying the cross-section to local information extraction, the local classification
approach is further divided into three subcategories.

3.1 Local Classifier per Node

The local classifier per node (LCN) approach dictates that a binary classifier ψn

is learned for each node n ∈ N except for the root node R in the hierarchy H,
as illustrated in Figure 1. The dashed squares represent binary classifiers that are
assembled into top–down manner execution.

Figure 1. Local classifier per node

The training of a binary classifier at a node is performed by feeding the model
with positive and negative examples. With respect to the LCN, all examples belong-
ing to the nth node and its descendants are considered positive training examples,
while examples belonging to the nth node siblings and their descendants are consid-

910 M. Krendzelak, F. Jakab

ered negative examples. The binary classifier is formulated as follows:

N∑
i=1

L (wl, x(i), y(i)) + λ||wl||22. (1)

This classifier attempts to minimize the weight vectors for each label l, where
λ > 0 is the penalty parameter, L denotes the loss function (e.g., hinge loss or
logistic loss), and ||22 denotes the squared `2-norm. To predict an unknown test
instance, the algorithm generally proceeds in a top-down manner, starting at the
root and recursively selecting the best children until it reaches a terminal node that
belongs to the set of leaf categories L , which is the final predicted node.

The strategy described above is the one most commonly found in the literature.
However, there exist additional strategies with different fine-tuning methods for
annotating training data to differentiate among positive and negative examples.

3.2 Local Classifier per Parent Node

The local classifier per parent node (LCPN) approach states that a multi-class clas-
sifier is learned for each parent node p ∈ N in the hierarchy H , as illustrated in
Figure 2. The dashed squares in the figure represent multi-class classifiers.

Figure 2. Local classifier per node

Like the LCN, the goal of the LCPN is to learn classifiers that can effectively
discriminate between siblings. To train the classifier at each parent node N , we
use the examples from its descendants, in which each of the children categories
C(N) of parent node N corresponds to different classes. The multi-class classifier is
formulated as follows:

minimize
1

N

N∑
i=1

ξi + λ

L∑
l=1

||wl||22, (2)

Hierarchical Text Classification Using CNNs with Local Approaches 911

assuming that

wT
li
x(i)− wT

l x(i) ≥ 1− ξi, ∀l ∈ L− li,∀i ∈ [1, 2, ..., N]

and
wT

li
x(i)− wT

l x(i) >= 1− ξi.

This classifier attempts to minimize the weight vectors, where λ > 0 is the
penalty parameter, L denotes the loss function (e.g., hinge loss or logistic loss), ξi
denotes the slack variables, and ||22 denotes the squared `2-norm.

3.3 Local Classifier per Level

In the local classifier per level (LCL) approach, a multi-class classifier is learned for
every level in the hierarchy, as illustrated in Figure 3. To train the classifier at each
level, examples from the nodes are used individually for each level along with its
descendants. It should be noted that nodes at the same level do not overlap and
correspond to distinct classes. Prediction is performed by selecting the best node at
each level in the hierarchy.

Figure 3. Local classifier per level

Because classifiers at each level make independent predictions, it is possible that
this approach may result in vertical inconsistency in prediction. For this strategy to
be useful, a post-processing measure is employed to solve inconsistent predictions,
if necessary.

4 HIERARCHICAL PERFORMANCE EVALUATION

4.1 Flat Evaluation Metrics

As metrics, we use the standard micro-F1 (µF1) score and macro-F1 (MF1) score
to evaluate the performance of various methods. To compute µF1, we sum the
category-specific true positives (TPc), false positives (FPc), and false negatives

912 M. Krendzelak, F. Jakab

(FNc). Then, the definition shall be for different categories define micro-F1 as
follows:

µF1 =
2 P R

P +R
(3)

where P is precision and R is recall, defined as follows:

P =

∑
c∈L TPc∑

c∈L (TPc+FPc)

, (4)

R =

∑
c∈L TPc∑

c∈L (TPc+FNc)

. (5)

The MF1 score, which gives equal weight to all categories so that the average
score is not skewed in favor of the larger categories, is defined as follows:

MF1 =
1

|L |
∑
cinL

2PcRc

Pc +Rc

(6)

where |L | is the number of leaf categories, and Pc and Rc are defined as follows:

Pc =
TPc

TPc + FPc

, (7)

Rc =
TPc

TPc + FNc

. (8)

4.2 Hierarchical Evaluation Metrics

With respect to HTC performance, hierarchical metrics should consider the hier-
archical distance between the true class and predicted class. The principle is to
penalize misclassification differently from flat metrics, which penalize each misclas-
sified example equally. Generally, misclassifications that are closer to the actual
class are penalized less than misclassifications which are further from it with respect
to the hierarchy.

The hierarchical metrics include the hierarchical F1 (hF1) score, hierarchical
precision P (hP), hierarchical recall R (hR), and tree-induced error (TE), which
are defined as follows:

hF1 =
2 hP hR

hP + hR
, (9)

TE =
1

N

N∑
i=1

δ(ŷi, yi) (10)

Hierarchical Text Classification Using CNNs with Local Approaches 913

where hP and hR are defined as follows:

hP =

∑N
i=1 |A(ŷi) ∩ A(yi)|∑N

i=1 |A(ŷi)|
, (11)

hR =

∑N
i=1 |A(ŷi) ∩ A(yi)|∑N

i=1 |A(yi)|
. (12)

Here, A(ŷi) and A(yi) are the set of ancestors of the predicted and true labels,
respectively, including the class itself but not the root node. δ(ŷi, yi) represents the
length of the undirected path between categories ŷi and yi in the tree.

5 TOP-DOWN HIERARCHICAL ENSEMBLE

A top-down ensemble of prediction evaluation is one of the most efficient approaches
for solving the HTC task with binary classifiers, either implemented as CNN, SVN or
LR models [8]. The principle of this approach is to recursively evaluate a prediction
from the top of the hierarchy down to the leaf, traversing each node on the path,
as illustrated in Algorithm 1. At each step, the node with the highest prediction
score is selected. This process repeats recursively until the last leaf node is reached,
which corresponds to a certain class and is usually located at the bottom.

Result: Repeat recursively until last leaf node is reached
initialization n := Root;
while n /∈ L do

n := arg maxq∈C(n) fq(x);
end
return n;

Algorithm 1: Local top-down approach

Top-down methods are popular for large-scale problems due to their computa-
tional advantages when only a subset of classes in the appropriate path is considered
in the prediction phase. In addition, these methods minimize problems related to
prediction inconsistencies because the best child node is selected at each level of the
path. Top-down methods have been successfully utilized to resolve HTC problems
either for learning or training and prediction phases.

A major disadvantage of top-down technique that results in poor classification
performance is error propagation, namely, the compounding of errors from misclas-
sifications at higher levels that cannot be corrected at the next lower levels. This
problem can be relieved to a certain extent by shifting the hierarchy to temper the
level of deformation. It is important to note that this top-down technique is applied
only for binary classifiers.

914 M. Krendzelak, F. Jakab

6 CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) have been adopted from the field of computer
vision, in which they have been shown to provide state-of-the-art results with default
baseline hyperparameter settings.

Figure 4. Convolution neural network (CNN)

Let xi ∈ Rk be the k-dimensional word vector relevant to the ith word in a sen-
tence. A sentence of length n (padded if required) is represented as follows:

x1:n = x1 ⊕ x2 ⊕ . . . xn (13)

where ⊕ is the concatenation operator. Furthermore, let xi:i+j refer to the con-
catenation of words xi, xi+1, . . . xi+j. Applying a filter w ∈ Rhk in strides defines
a convolution operation, which is applied to a selected window of h terms to compute
a new feature. Therefore, feature ci is produced for each window of words xi:i+h−1
as follows:

ci = f(w xi:i+h−1 + b). (14)

Let b ∈ R be a bias and f a non-linear function, for example, a hyperbolic tangent
or relu function. Then, a filter is used to stride through each possible window in the
given sentence {x1:h, x2:h+1, . . . xn−h+1:n} to create a feature map, such as

c = [c1, c2, c3, . . . cn−h+1] (15)

where c ∈ Rn−h+1. Thereafter, a max-overtime pooling operation is applied over
the set of feature maps to select a maximum value C = max{c} as the feature. The
general principle is to be able to capture the most important set of features for all
feature maps.

The above process describes how one feature is extracted from one filter. How-
ever, the model uses multiple filters, typically with varying window sizes, to extract
multiple features. Therefore, these features form next to the last layer, which is
directly followed by a fully connected softmax layer whose output is the probability
distribution over the labels.

Hierarchical Text Classification Using CNNs with Local Approaches 915

6.1 Convolution

A 1D convolution is an operation between a vector of weights m, where m ∈ Rm, and
a vector of input sequences s, where s ∈ Rs. Vector m is the filter of the convolution.
Let s be an input sentence and si ∈ R be a single feature value associated with the
ith word in a sentence. Then, a 1D convolution produces the dot product of vector
m with each n-gram in the sentence s to obtain another sequence c as follows:

cj = mTSj−m+1:j. (16)

Equation (16) describes two possible types of convolution – narrow and wide –
depending on the range of index j. The narrow type of convolution requires that
s ≥ m, and yields a sequence c ∈ Rs−m+1 with j ranging from m to s. The wide type
of convolution does not constrain m or s, and yields sequence c ∈ Rs+m−1, where
index j ranges from 1 to s+m− 1. Values si outside of the range are considered to
be zero, where i < 1 or i > s.

Figure 5. Narrow and wide convolutional layers

The result of a narrow convolution is a subsequence of the results of the wide
convolution. The two types of one-dimensional convolutions are illustrated in Fig-
ure 5. The trained weights in filter m correspond to a linguistic feature that learns
to recognize a particular class of n-grams. These n-grams have size n ≤ m, where m
is the width of the filter. Applying the weights m in a wide convolution has several
advantages over applying them in a narrow convolution. A wide convolution ensures
that all weights in the filter reach the entire sentence, including words at margins
and paddings.

6.2 Feature Selection

One of the advantages of a CNN over other neural networks is that it is designed to
automatically extract features from the given text corpora. It does so by applying
convolutional layers in a specific, predefined manner as described in Section 6.1.
These extracted feature maps are more efficient and less error-prone than manually
constructed ones. In addition, they ensure a high level of accuracy in capturing the
most important details for given examples of text data.

In general, convolution layers can be considered a feature extractor whose output
is fed into a fully connected layer for the purpose of simple decision-making, such
as classification or ranking. Because a CNN creates local features for each word in

916 M. Krendzelak, F. Jakab

a sentence, it is possible to combine or stack features to produce a global feature
vector. Several aspects of a CNN’s ability to create and extract text features are as
follows:

• A CNN internally creates features that can be extracted and used as input for
other custom-defined internal layers or external models.

• A CNN automatically creates features that do not rely on a hand-crafted process.
It adapts well to the specifics of a training dataset in a supervised manner.

• A hierarchy of local features is considered during feature creation; therefore, the
CNN captures the context effectively.

Figure 6. Conceptual diagram of experimental CNN for local per level classification

7 EXPERIMENTAL SETUP

To provide a comprehensive assessment of the use of CNNs for hierarchical text
classification using local approaches, we conducted three independent experiments
and observed, measured, and compared the outcomes.

It should be noted that the following constrains were taken into consideration
and applied throughout the experimentation:

• The training dataset outlined in Figure 7 was used; thus, the results could be
compared with each other and with previously reported applications of h-SVM
and h-LR models using identical local approaches operated in a top-down fash-
ion.

Hierarchical Text Classification Using CNNs with Local Approaches 917

• The same variation of the CNN baseline model was used; thus, the outcome did
not depend on the model specifics, but rather on the effectiveness of the local
approach as a strategy.

• For all experiments in this study, we used 300-dimensional word vectors trained
by Mikolov et al. on roughly 100 billion words from Google News.

7.1 Training Dataset

The 20Newsgroup dataset contained an average of 20 000 e-news items from more
than 20 different categories hierarchically ordered with three hierarchical levels. The
total training dataset contained 11 314 examples.

Figure 7. 20Newsgroup training dataset hierarchy

The category size corresponded to the number of available examples per category,
as outlined in Table 1. The training data was preprocessed, aggregated for each
hierarchy level, and counted for the number of available examples per category.

7.2 CNN Variants

One difference among the many recent studies on word-based CNNs for text classifi-
cation is the choice of using pretrained or end-to-end learned word representations.
In our experiments, we used two variants of the CNN baseline model that differed
in the initialization of embedding.

• CNN-rand which learns the text embedding from scratch during the training.

• CNN-stat which is initialized with pretrained word2vec.

918 M. Krendzelak, F. Jakab

7.3 Hyperparameters and training

• Optimizer. For all experiments, we trained our model’s parameters with the
Adam optimizer initialized with a learning rate of 0.001.

• Batch sizes. We experimented with different batch sizes, such as 64, 128, and
192, as we wished to observe the impact of different values on model performance.

• Embedding sizes. The default embedding size was 128. However, to obtain
an improved understanding of how this hyperparameter value affects perfor-
mance, we experimented with additional settings, such as 256 and 300.

• Number of filters and their sizes. The presented CNN model contained three
convolutional layers, each with three different filters. Each filter had a size of 3,
4, and 5.

8 EXPERIMENTS WITH LOCAL APPROACHES

8.1 LCN Experiment

The hierarchical LCN approach consists of binary classifiers, and each classifier is
built independently for each node. In this case, all categories listed in Table 1 are
considered nodes. For each node, we trained one CNN classifier. In total, we had
27 CNN classifiers corresponding to 27 categories.

Category Size Category Size

comp 2 936 alt-atheism 480
comp.graphics 584 soc-religion 599
comp.os 591 sci 2 373
comp.windows 593 sci.crypt 595
comp.sys 1 168 sci.electronics 591
comp.sys.ibm 590 sci.med 594
comp.sys.mac 578 sci.space 593
rec 2 389 talk 1 952
rec.autos 594 talk.religion-misc 377
rec.motorcycles 598 talk.politics 1 575
rec.sport 1 197 talk.politics.guns 546
rec.sport.baseball 597 talk.politics.mideast 564
rec.sport.hockey 600 talk.politics.misc 465
misc-forsale 585 TOTAL 11 314

Table 1. 20Newsgroup text analysis of training dataset

To perform prediction, top-down sequential evaluation was performed, and at
each node, a binary decision was made regarding which classifier to execute next
in the evaluation chain. The training dataset for each node was carefully manually
crafted in such a way that all examples belonging to the nth node and its descendants

Hierarchical Text Classification Using CNNs with Local Approaches 919

were considered positive training examples and examples belonging to the siblings
of the nth node and their descendants were considered negative examples.

8.2 LCPN Experiment

The hierarchical LCPN was implemented as a multi-class classifier for each parent
node in the given taxonomy. For our experiment, the nodes that were considered
are listed in Table 2.

Parent Node Size Classes

ROOT 11 314 comp, rec, sci, talk, misc-forsale, alt-atheism, soc-religion
comp 2 936 comp.graphics, comp.os, comp.windows, comp.sys
comp.sys 1 168 comp.sys.ibm, comp.sys.mac
rec 2 389 rec.autos, rec.motocycles, rec.sport
rec.sport 1 197 rec.sport.baseball, rec.sport.hockey
sci 2 373 sci.crypt, sci.electronics, sci.med, sci.space
talk 1 952 talk.religion-misc, talk.politics
talk.politics 1 575 talk.politics.guns, talk.politics.mideast, talk.politics.misc

Table 2. Training data for LCPN

We trained eight independent multi-class CNN classifiers for each parent node,
including the ROOT node. Each classifier learned from the subset of training data
created in such a way that only examples belonging to the parent nodes and their
descendants child nodes were selected as positive examples. We did not feed negative
examples into the model because neural networks are usually trained with positive
examples.

8.3 LCL Experiment

The hierarchical LCL was implemented as a multi-class classifier for every level in
the given taxonomy. We thus had three levels, as listed in Table 3. Each level
contained only nodes belonging to a certain hierarchical level.

We trained each of the three multi-class CNN classifiers for every level. A pre-
diction evaluation was performed in a top-down fashion starting from the first level
and iterating through the remainder of the levels. Training of the level-based classi-
fier was performed by feeding the model with examples from the descendant nodes
belonging to their level-based parents.

The conceptual diagram of CNN model with LCL approach is listed in Figure 6.
It can be observed that this model implements only 3 multi-class classifiers, each
classifier represents exactly one of the hierarchical levels as listed in Table 3 in such
way that there is no overlap among categories and different levels.

The final dense layer in CNN baseline contains a single node for each target
class in the model. However, in order to represent LCL approach using CNN, the
baseline model dense layer is modified and implemented 3 fully-connected layers.

920 M. Krendzelak, F. Jakab

Level Size Category

1 11 314 alt-atheism, comp, rec, misc-forsale, soc-religion-christian,
sci, talk

2 9 650 comp.graphics, comp.os, comp.sys, comp.windows,
rec.autos, rec.motorcycles, rec.sport, sci.crypt,
sci.electronics, sci.med, sci.space, talk.religion-misc,
talk.politics

3 3 940 comp.sys.ibm, comp.sys.mac, rec.sport.baseball,
rec.sport.hockey, talk.politics.guns, talk.politics.mideast,
talk.politics.misc

Table 3. LCL training datset

9 EVALUATION OF EXPERIMENTS

To determine the effects of using CNN models in hierarchical text classification, we
performed multiple tests to experiment with a different set of hyperparameters. We
conducted three major experiments with the proposed hierarchical local approaches
and compared our results with available flat LR and SVM baseline models and
state-of-the-art models, such as h-LR and h-SVM. One of our goals was to demon-
strate that CNNs can be successfully used for solving hierarchical text classification
problems in a more effective and simplified manner than existing methods.

Figure 8. Benchmark of experimental CNN-rand and CNN-stat using LCN, LCPN and
LCL with h-LR and h-SVM using LCN, LCPN and LCL

Of the proposed methods, we determined that the LCN hierarchical approach
was the most complex. We observed that different variations of examples with
different dataset sizes had a direct impact on the accuracy of the binary classifier.
It thus requires additional effort during the pre-processing phase to prepare positive

Hierarchical Text Classification Using CNNs with Local Approaches 921

and negative training examples arbitrarily selected from the dataset. Moreover, top-
down prediction requires the evaluation of the final prediction to be proceeded in
a node-chained manner, emulating the path of a hierarchical taxonomy. There is no
mechanism available in the baseline model to mitigate the error propagated from
the previous node prediction.

Our empirical observations of the LCPN approach indicated that it was less
complex than the previous LCN approach mentioned above. The LCPN requires
the construction of only eight multi-class classifiers whose predictions are chained in
a top-down fashion to perform hierarchical prediction. Training a multi-class neural
network is quite different than training a binary classifier. We observed that for this
approach, less effort was required during the pre-processing of the training examples
required to train a model with hierarchically categorical classes. This was due to
the fact that a CNN is capable of consuming raw training data and does not require
positive and negative samples.

Figure 9. Benchmark of experimental CNN-stat and CNN-rand using LCN, LCPN and
LCL with flat LR, SVM, and CNN baseline models

We found that the best results were achieved by using the LCL approach im-
plemented by CNN-stat model with a hF1 score of 0.911 trained with a dataset of
size 10 500. For the CNN-rand model using LCL approach, the best results were
achieved with a hF1 score of 0.906. However, we observed that the latter model,
CNN-rand, required more training data to tune its performance and was unable to
outperform CNN-stat.

922 M. Krendzelak, F. Jakab

10 CONCLUSION

In this study, we proposed a novel application of a CNN for solving the hierarchical
text classification problem using hierarchical local classification approaches. We
demonstrated that hierarchical local approaches with CNN models achieved results
superior to those of the flat LR and SVM baseline, which results were reported by
Song et al. [14]. Moreover, additionally, experimental results achieved by proposed
use of CNNs surpassed flat CNN baseline model by 5 %, which results were reported
by Prakhya et al. [15].

The results confirmed that the CNN-stat LCL approach achieved the best results
among the tested local approaches, furthermore, outperforming flat SVM baseline
model by 7 % and flat LR baseline model by 13 %. In regards to h-SVM and h-LR
models, these were outperformed by CNN-stat LCL approach by 5 % and h-LR by
10 %, as can be observed in Table 9. Moreover, the CNN-stat LCL approach required
only 3 multi-class CNN classifiers, compared to 27 binary classifiers required by LCN
approach and 8 multi-class classifiers required by LCL approach.

Additionally, we observed that the CNN-stat model, which has the text embed-
ding layer initialized with pre-trained word2vec, outperformed the CNN-rand model
most of the time, except only observed once. This is due primarily to the fact that
pre-trained text embedding has a more precise and comprehensive representation
of words than a randomly initialized embedding layer learned during the training
phase.

REFERENCES

[1] Zimek, A.—Buchwald, F.—Frank, E.—Kramer, S.: A Study of Hierarchical
and Flat Classification of Proteins. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics, Vol. 7, 2010, No. 3, pp. 563–571, doi: 10.1109/tcbb.2008.104.

[2] Babbar, R.—Partalas, I.—Gaussier, E.—Amini, M. R.: On Flat Versus Hi-
erarchical Classification in Large-Scale Taxonomies. In: Burges, C. J. C., Bottou, L.,
Welling, M., Ghahramani, Z., Weinberger, K. Q. (Eds.): Advances in Neural Infor-
mation Processing Systems 26 (NIPS 2013), Vol. 2, 2013, pp. 1824–1832.

[3] Krendzelak, M.—Jakab, F.: Approach for Hierarchical Global All-In Classifi-
cation with Application of Convolutional Neural Networks. 2018 16th International
Conference on Emerging eLearning Technologies and Applications (ICETA 2018),
2018, pp. 317–322, doi: 10.1109/iceta.2018.8572074.

[4] Sun, A.—Lim, E.—Ng, W.: Performance Measurement Framework for Hierarchical
Text Classification. Journal of the American Society for Information Science and
Technology, Vol. 54, 2003, No. 11, pp. 1014–1028, doi: 10.1002/asi.10298.

[5] Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research, Vol. 7, 2006, No. 1, pp. 1–30.

https://doi.org/10.1109/tcbb.2008.104
https://doi.org/10.1109/iceta.2018.8572074
https://doi.org/10.1002/asi.10298

Hierarchical Text Classification Using CNNs with Local Approaches 923

[6] Dumais, S.—Chen, H.: Hierarchical Classification of Web Content. Proceedings of
the 23rd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’00), 2000, pp. 256–263, doi: 10.1145/345508.345593.

[7] Wang, K.—Zhou, S.—He, Y.: Hierarchical Classification of Real-Life Documents.
Proceedings of the 2001 SIAM International Conference on Data Mining, 2001, doi:
10.1137/1.9781611972719.22.

[8] Sokolov, A.—Funk, C.—Graim, K.—Verspoor, K.—Ben-Hur, A.: Com-
bining Heterogeneous Data Sources for Accurate Functional Annotation of Proteins.
BMC Bioinformatics, Vol. 14, 2013, No. 3, Art. No. S10, doi: 10.1186/1471-2105-14-
s3-s10.

[9] Cerri, R.—Barros, R. C.—de Carvalho, A. C. P. L. F.: Hierarchical Multi-
Label Classification Using Local Neural Networks. Journal of Computer and System
Sciences, Vol. 80, 2014, No. 1, pp. 39–56, doi: 10.1016/j.jcss.2013.03.007.

[10] Kurata, G.—Xiang, B.—Zhou, B.: Improved Neural Network-Based Multi-Label
Classification with Better Initialization Leveraging Label Cooccurrence. Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2016, pp. 521–526, doi:
10.18653/v1/n16-1063.

[11] Zhang, M. L.—Zhou, Z. H.: Multilabel Neural Networks with Applications to
Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and
Data Engineering, Vol. 18, 2006, No. 10, pp. 1338–1351, doi: 10.1109/tkde.2006.162.

[12] Nam, J.—Kim, J.—Mencia, E. L.—Gurevych, I.—Fürnkranz, J.: Large-
Scale Multi-Label Text Classification – Revisiting Neural Networks. In: Calders, T.,
Esposito, F., Hüllermeier, E., Meo, R. (Eds.): Machine Learning and Knowledge
Discovery in Databases (ECML PKDD 2014). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 8725, 2014, pp. 437–452, doi: 10.1007/978-3-662-
44851-9 28.

[13] Kim, Y.: Convolutional Neural Networks for Sentence Classification. Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1746–1751, doi: 10.3115/v1/d14-1181.

[14] Song, Y.—Roth, D.: On Dataless Hierarchical Text Classification. AAAI Publica-
tions, Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec, Canada,
2014, pp. 1579–1585.

[15] Prakhya, S.—Venkataram, V.—Kalita, J.: Open Set Text Classification Us-
ing Convolutional Neural Networks. International Conference on Natural Language
Processing, USA, 2017.

https://doi.org/10.1145/345508.345593
https://doi.org/10.1137/1.9781611972719.22
https://doi.org/10.1186/1471-2105-14-s3-s10
https://doi.org/10.1186/1471-2105-14-s3-s10
https://doi.org/10.1016/j.jcss.2013.03.007
https://doi.org/10.18653/v1/n16-1063
https://doi.org/10.1109/tkde.2006.162
https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.3115/v1/d14-1181

924 M. Krendzelak, F. Jakab

Milan Krendzelak is Tech Lead of Web Solutions Engineers
team at Google Inc. that delivers innovative solutions to help
drive revenue and make Google’s global sales field more effi-
cient. As Web Solutions Engineer, his responsibilities include
prototyping proofs of concept, developing and supporting tools,
and enhancing core products to meet the needs of his sales field.
He earned a master of computer science degree in 2004 at the
Department of Computers and Informatics at the Technical Uni-
versity of Košice, Slovakia. Currently, he is continuing his Ph.D.
research in Hierarchical Text Classification at the Department

of Computers and Informatics at the Technical University of Košice, Slovakia. He has
published more than six scientific publications.

Frantisek Jakab is Director of the University Science Park
TECHNICOM and Head of the Computer Networks Laboratory
(www.cnl.sk) that he created during his career at the Depart-
ment of Computers and Informatics at the Technical University
of Košice, Slovakia. He graduated from the Faculty of Com-
puter Science and Electrical Engineering at the St. Petersburg
Institute of the Electrical Engineering in the field of System En-
gineering (Russian Federation). Main areas of his research ac-
tivities: computer networks, which is a new form of multimedia-
based communication (video conferences, IP streaming). He is

renowned author of more than 200 scientific publications and textbooks.

www.cnl.sk

Computing and Informatics, Vol. 39, 2020, 925–951, doi: 10.31577/cai 2020 5 925

ASYNCHRONOUS SPIKING NEURAL P SYSTEMS
WITH MULTIPLE CHANNELS AND SYMBOLS

Wenmei Yi, Zeqiong Lv, Hong Peng∗

School of Computer and Software Engineering
Xihua University, Chengdu, 610039, China
e-mail: wenmeiyee@foxmail.com, ph.xhu@hotmail.com

Xiaoxiao Song, Jun Wang

School of Electrical Engineering and Electronic Information
Xihua University, Chengdu, 610039, China
e-mail: wj.xhu@hotmail.com

Abstract. Spiking neural P systems (SNP systems, in short) are a class of dis-
tributed parallel computation systems, inspired from the way that the neurons
process and communicate information by means of spikes. A new variant of SNP
systems, which works in asynchronous mode, asynchronous spiking neural P systems
with multiple channels and symbols (ASNP-MCS systems, in short), is investigated
in this paper. There are two interesting features in ASNP-MCS systems: multiple
channels and multiple symbols. That is, every neuron has more than one synaptic
channels to connect its subsequent neurons, and every neuron can deal with more
than one type of spikes. The variant works in asynchronous mode: in every step,
each neuron can be free to fire or not when its rules can be applied. The com-
putational completeness of ASNP-MCS systems is investigated. It is proved that
ASNP-MCS systems as number generating and accepting devices are Turing uni-
versal. Moreover, we obtain a small universal function computing device that is an
ASNP-MCS system with 67 neurons. Specially, a new idea that can solve “block”
problems is proposed in INPUT modules.

Keywords: Membrane computing, spiking neural P systems, asynchronous sys-
tems, multiple channels, multiple symbols, Turing universality

926 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

1 INTRODUCTION

Abstracted from the structure and functioning of living cells as well as the coop-
eration of cells in tissue, organs and biological nervous systems, membrane com-
puting is a class of distributed and parallel computation systems [1, 2], known as
P systems. There are three main types of P systems: cell-like P systems, tissue-
like P systems and neural-like P systems. Abstracted from distinct biological cell
mechanisms, a lot of P systems and variants have been proposed, for example,
tissue-like P systems [3], population P systems [4], P colonies [5], spiking neural
P systems [6], and the latest works can be found on the membrane computing
website (http://ppage.psystems.eu). In terms of computational theory, most of
P systems have been proven to be Turing universal, and some NP-hard problems
have been solved in a feasible time [7, 8, 9, 10, 11]. Moreover, there are a various
of applications of P systems, for instance, ecology and structural biology [12, 13],
function optimization [14], machine learning [15, 16, 17], image and signal process-
ing [18, 19, 20, 21, 22, 23].

Spiking neural P systems (SNP systems, in short) were first proposed by Ionescu
et al. [6], inspired by the way of transmitting and exchanging information, by
means of spikes, between neurons. SNP systems are also a class of distributed
and parallel computation systems. Directed graphs are used to express SNP sys-
tems, where the nodes are the neurons and the arcs are used to denote the synapses
between these neurons. Each SNP system consists of two components: data and
rules. The data is denoted by the number of spikes contained in it and is evolved
by rules. There are two forms of rules: spiking rule and forgetting rule. Spik-
ing rule has the form E/ac → ap, where E is a regular expression over {a}, c
is the number of spikes consumed by the rule and p is the number of the pro-
duced spikes, and c ≥ p ≥1. The semantics of spiking rule can be explained as
follows. Suppose that neuron σ has a spiking rule E/ac → ap and contains n
spikes satisfying an ∈ L(E). The neuron fires and consumes c spikes, and then
it produces p spikes and sends them to all subsequent neurons connected with it.
Forgetting rule has the form as → λ, where s ≥ 1. If forgetting rule as → λ
is applied in the neuron, then s spikes are removed from it and no spike is pro-
duced.

Most SNP systems work in synchronous mode. A global clock is assumed for the
synchronization of all neurons, and all neurons in the systems work in parallel, and
the rules in each neuron are applied sequentially. When there are more than one
rules can be applied in a neuron, one of them must be chosen non-deterministically
and applied.

Generally, there are three main research topics:

1. theoretical works,

2. application and

3. simulation systems.

http://ppage.psystems.eu

Asynchronous SNP-MCS Systems 927

Many variants of SNP systems were proposed, for example, SNP systems with as-
trocytes [24, 25], SNP systems with anti-spikes [26], SNP systems with weights [27],
SNP systems with thresholds [28], SNP systems with rules on synapses [29, 30,
31], SNP systems with multiple channels [32, 33], coupled neural P systems [34],
dynamic threshold neural P systems [35], SNP systems with polarizations [36],
SNP system with inhibitory rules [37], dendrite P systems [38], nonlinear SNP
systems [39], and so on. In addition, several working modes have been investi-
gated, such as asynchronous mode [40], asynchronous mode with local synchro-
nization [41], and sequential mode [42]. Turing universality is one of computa-
tional theory of SNP systems. SNP systems and variants can be considered as
four devices: number generating/accepting devices, function computing devices
as well as language generating devices. In universality investigation, register ma-
chines are often regarded as standard model, because it has been proven that reg-
ister machines can compute/accept any Turing computable number set and ob-
tain a small universal function computing device. Therefore, by simulating regis-
ter machines, it has been proven that most variants of SNP systems are Turing
universal [43, 44]. Moreover, fuzzy logic was introduced into SNP systems to pro-
pose a variety of fuzzy spiking neural P systems [45, 46], which have been applied
in fault diagnosis [47, 48, 49, 50]. In addition, a number of simulation systems
have been developed, for example, P-Lingua [51] and SNP system simulator on
GPU [52].

It is no doubt that the synchronization plays a vital role in the proof of above
results, however, the assumption of global clock is rather natural from a neurobio-
logical point of view. Therefore, SNP systems working in non-synchronous modes
have received much attention in the recent years, especially, in asynchronous mode.
The SNP systems working in asynchronous mode are called asynchronous SNP sys-
tems (ASNP systems, in short). In asynchronous mode, the global clock is removed
and every neuron is not obligatory to use its rules. Therefore, each neuron is free to
choose time to fire without any time restriction when its rules are available. New
spikes that are received from adjacent neurons may cause the rules to no longer be
available. In this case, the computation will continue to work under the new configu-
ration. The result of the computation is no longer relevant with the distance in time
because of the asynchronous working mode. Thus, the total number of spikes, which
is sent out to the environment, is regarded as the result of the computation. Cav-
aliere et al. [40] provided a specific description about asynchronization and proved
that asynchronous SNP systems with extended rules are equivalent with Turing ma-
chines. After that, several asynchronous SNP systems have been investigated, such
as asynchronous SNP systems with local synchronization [41], asynchronous SNP
systems with rules on synapses [53], asynchronous SNP systems with structural plas-
ticity [54] and asynchronous SNP systems with anti-spikes [55]. These asynchronous
systems have been proven to be Turing universal. In addition, Cavaliere et al. [56]
investigated the decidability and undecidability of asynchronous SNP systems. The
language generating problems of asynchronous SNP systems have been discussed in
Zhang et al. [57].

928 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

This work discusses a new variant of SNP systems, which works in asynchronous
mode and has two interesting features (multiple channels and multiple symbols),
asynchronous spiking neural P systems with multiple channels and symbols (ASNP-
MCS systems, in short). ASNP-MCS systems are different from the existing asyn-
chronous SNP systems in the following two aspects:

1. Every neuron in ASNP-MCS systems has one or more synaptic channels, thus,
different sets of subsequent neurons can be connected with it. It is suitable for
ASNP-MCS systems, because of the multiple channels feature, to characterize
higher-order dynamic systems.

2. More than one symbols are considered in ASNP-MCS systems. Therefore, the
rules in ASNP-MCS systems are extended to handle these multiple symbols. It
is also suitable for ASNP-MCS systems, due to the multiple symbols feature, to
simulate some complicated systems with different parts.

This work investigates the computational power of ASNP-MCS systems. By
simulating register machine, it is proven that ASNP-MCS systems as number gen-
erating/accepting devices are Turing universal. In addition, we construct an ASNP-
MCS system with 67 neurons as a small universal function computing device. The
result can be interpreted as the reason that the loss of computational power caused
by removing synchronization can be offset by the use of multiple channels and mul-
tiple symbols.

The remainder of this paper is organized as follows. In Section 2, we review some
basic mathematical knowledge that will be useful for investigation of universality.
The definition of ASNP-MCS systems and an illustrative examples are given in
Section 3. In Section 4, we first discuss the computational power of ASNP-MCS
systems as number generating/accepting devices, and then we construct a small
universal ASNP-MCS system for computing functions. Finally, conclusions and
future work are drawn in Section 5.

2 PRELIMINARIES

It is assumed that readers have some knowledge with formal language theory and
membrane computing. Basic notions and notations are reviewed in this section.

For an alphabet O, the set of all finite strings of symbols from O is denoted by
O∗, and the set of all nonempty strings over O is denoted by O+; the empty string
is denoted by λ.

A regular expression over an alphabet O is defined as follows:

1. λ and each a ∈ O is a regular expression;

2. if E1 and E2 are regular expressions over O, then (E1)(E2), (E1)
⋃

(E2) and
(E1)

+ are regular expressions over O, and

3. nothing else is a regular expression over O.

Asynchronous SNP-MCS Systems 929

With each regular expression E we associate with a language L(E), defined in the
following way:

1. L(λ) = {λ} and L(a) = {a}, for all a ∈ O;

2. L((E1)
⋃

(E2)) = L(E1)
⋃
L(E2), L((E1)(E2)) = L(E1)L(E2), and L((E1)

+) =
(L(E1))

+, for all regular expressions E1, E2 over O.

When writing a regular expression, unnecessary parentheses can be omitted. We
can simply write E+

⋃
{λ} as E∗.

A register machine, which is a construct M = (m,H, l0, lh, I), can be used to
prove the universality of ASNP-MCS systems, where m is the number of registers,
H is the set of instruction labels, l0 is the starting label, lh is the halting label
(assigned to instruction HALT), and I is the set of instructions. Each label from H
corresponds to an instruction from I. There are instructions of three forms:

1. li : (ADD(r), lj, lk) (add 1 to register r then go non-deterministically to one of
the instructions with labels lj, lk).

2. li : (SUB(r), lj, lk) (if register r is non-zero, then subtract 1 from it and go to
the instruction with label lj; otherwise, go to the instruction with label lk).

3. lh : HALT (the halting instruction).

It is well-known that a register machine M can generate/accept any Turing
computable number set (denoted by NRE).

Number n can be generated by register machine in the following way. The reg-
ister machine starts with all registers empty (for example, storing the number zero).
What instruction activated first is the instruction with label l0. Then, the subse-
quent instructions are processed in order. If the register machine reaches the halting
instruction, then the computation is completed, and the result of the computation
is the number n stored in the first register r0. We denote by Ngen(M) the set of all
numbers generated by M .

The register machine M can also accept the numbers. We denote by Nacc(M)
the set of numbers accepted by M . Its working mechanism can be illustrated as
follows. At the beginning, all registers are empty except the first register, and
a number is introduced into the first register. In accepting mode, register machine is
deterministic, meaning that li : (ADD(r), lj) is used to substitute li : (ADD(r), lj, lk)
as the ADD instruction.

Functions of form f : Nk → N can be computed by register machines. It
works as follows: at the beginning, all registers are empty and k parameters are
introduced into k specific registers; register machine M starts with instruction l0,
and then continues a series of computations until it reaches the halting instruction
lh. The computed function value will be stored in a specific register r when the
system halts. In computing mode, M is deterministic, where ADD instructions
have the form li : (ADD(r), lj).

Korec [58] introduced a small universal register machine, Mu = (8, H, l0, lh, I),
for computing functions, shown in Figure 1. The register machine contains 8 registers

930 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

and 23 instructions. By introducing numbers g(x) and y into registers 1 and 2,
respectively, the register machine Mu can compute function ϕx(y) = Mu(g(x), y),
where g is a recursively function for all natural numbers x and y. When register
machine Mu halts, the number stored in the register 0 is the computed function
value.

In this work, we will discuss the universality of ASNP-MCS systems as function
computing devices by means of register machine Mu as a standard model.

l0: (SUB(1),l1,l2) l1: (ADD(7),l0) l2: (ADD(6),l3)

l3: (SUB(5),l2,l4) l4: (SUB(6),l5,l3) l5: (ADD(5),l6)

l6: (SUB(7),l7,l8) l7: (ADD(1),l4) l8: (SUB(6),l9,l0)

l9: (ADD(6),l10) l10: (SUB(4),l0,l11) l11: (SUB(5),l12,l13)

l12: (SUB(5),l14,l15) l13: (SUB(2),l18,l19) l14:(SUB(5),l16,l17)

l15: (SUB(3),l18,l20) l16: (ADD(4),l11) l17: (ADD(2),l21)

l18: (SUB(4),l0,lh) l19: (SUB(0),l0,l18) l20: (ADD(0),l0)

l21: (ADD(3),l18) lh:HALT

Figure 1. A small universal register machine Mu

3 ASYNCHRONOUS SPIKING NEURAL P SYSTEMS
WITH MULTIPLE CHANNELS AND SYMBOLS

3.1 Definition

Definition 1. An ASNP-MCS system, of degree m ≥ 1, is a construct:

Π = (O,L, σ1, σ2, . . . , σm, syn, in, out)

where

1. O = {a1, a2, . . . , ak} is the alphabet (a1, a2, . . . , ak denote k types of spikes,
respectively);

2. L = {1, 2, . . . , N} is the alphabet of channel labels;

3. σ1, . . . , σm are neurons, of the form σi = (~ni, Li, Ri), 1 ≤ i ≤ m, where

(a) ~ni = (ni1, ni2, . . . , nik) is a k-dimensional vector, where nij ≥ 0 is the initial
number of spikes of jth type aj contained in neuron σi, 1 ≤ j ≤ k;

(b) Li ⊆ L is a finite set of channel labels used in neuron σi;

(c) Ri is a finite set of rules of the following two forms:

i Spiking rule E/ac11 a
c2
2 · · · a

ck
k → ap11 a

p2
2 · · · a

pk
k (l), where E is a regular

expression over O, and cj ≥ 0, pj ≥ 0 (1 ≤ j ≤ k), c1 + c2 + · · · + ck ≥
p1 + p2 + · · ·+ pk ≥ 1, l ∈ Li;

ii Forgetting rule as11 a
s2
2 · · · a

sk
k → λ, where sj ≥ 0 (1 ≤ j ≤ k) and s1 +s2 +

· · · + sk ≥ 1, with the restriction that for each rule E/ac11 a
c2
2 · · · a

ck
k →

ap11 a
p2
2 · · · a

pk
k (l) of type (i) from Ri, we have as11 a

s2
2 · · · a

sk
k 6∈ L(E);

Asynchronous SNP-MCS Systems 931

4. syn = {(i, j, l)} ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} × L with (i, i, l) 6∈ syn for ∀1 ≤
i ≤ m and ∀l ∈ L (synapse connections);

5. in indicates the input neuron of the system;

6. out indicates the output neuron of the system.

There is only one single type of spikes, denoted by symbol a, in SNP systems,
while ASNP-MCS systems proposed in this work have several distinct types of spikes,
denoted by symbols a1, a2, . . . , ak, and these multiple symbols can be interpreted
as electrical signals with distinct frequencies. The number of spikes in every neuron
in an SNP system is denoted by a natural number. However, since there are spikes
of k types in an ASNP-MCS system, a k-dimensional vector, ~ni = (ni1, ni2, . . . , nik),
is considered to indicate the number of each neuron. If nij > 0, one or more spikes
of type aj are contained in the neuron σi. If nij = 0, there is no spike of type aj in
the neuron σi.

An ASNP-MCS system can be represented by a directed graph, where the nodes
are used for labeling m neurons and the arcs are used for denoting the synapses be-
tween these neurons. The connection relationships between m neurons are described
by syn = {(i, j, l)} ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m}×L, meaning that neuron σi con-
nects neuron σj via channel (l) .

Since ASNP-MCS systems work in asynchronous mode, the use of rules in
neurons is not obligatory, which means that a rule can be used immediately or
also can be used later if the spikes in the neuron enable the rule. If the num-
ber of spikes in the neuron has been changed before using the rule, such as new
spikes coming, and the present rule can not be used any more, then the com-
putation continues in the new circumstance. Notice that the produced spikes in
the neuron will be sent immediately when the neuron applies the rule in a later
step.

Spiking rules and forgetting rules also exist in ASNP-MCS systems. What is
the meaning of spiking rules of form (i) can be explained as follows. The rule
E/ac11 a

c2
2 · · · a

ck
k → ap11 a

p2
2 · · · a

pk
k (l) in neuron σi can be applied at some time with

the condition of an1
1 a

n2
2 · · · a

nk
k ∈ L(E). When neuron σi fires, cj spikes of type aj

are consumed (thus nj − cj spikes of type aj are remained), and pj spikes of type
aj are produced, 1 ≤ j ≤ k. The spikes generated by neuron σi are sent to the
subsequent neurons via channel (l). The semantics of forgetting rules of form (ii)
can be described as follows. If the spikes in neuron σi are exactly sj spikes of type
aj, 1 ≤ j ≤ k, then the rule as11 a

s2
2 · · · a

sk
k → λ can be enabled, which means that all

sj spikes of type aj are removed from neuron σi.

We use the following m×k matrix to describe the initial configuration in ASNP-
MCS systems,

C0 =

n11 n12 · · · n1k

n21 n22 · · · n2k

· · · · · · · · · · · ·
nm1 nm2 · · · nmk

m×k

932 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

where nij is the initial number of spikes of type aj contained in neuron σi, i =
1, 2, . . . ,m, j = 1, 2, . . . , k. Besides, the similar m × k matrix also can describe
the configuration at any time t during the computation. The transitions among
configurations can be therefore defined. One can define a computation with the
sequence of transitions starting from the initial configuration. When there is no rule
which can be applied and no “block” condition happened, the computation halts.

In SNP systems, we can associate any computation (halting or not) with a spike
train: the sequence of zeros and ones describing the behavior whether the output
neuron spikes. Since ASNP-MCS systems work in asynchronous mode, zeros sent
out by the output neuron are normal. Thus, we define the result of a computation
as the number of ones sent out by the output neuron starting from the initial config-
uration. We denote by Ngen(Π) the set of numbers generated by Π, where subscript
gen indicates that the present system works in generating mode. We denote by
NgenASNP-MCSnm the family of all sets Ngen(Π) computed by ASNP-MCS systems
with at most m neurons and at most n rules in every neuron.

An ASNP-MCS system Π can work in accepting mode. There is no output
neuron any more. Instead, the input neuron is added to receive a spike train from
the environment. The system Π begins the computation by reading a spike train
from the environment, and 3Tn spikes of type a is stored in a specific neuron. Denote
by Nacc(Π) the set of numbers accepted by system Π, where subscript acc represents
that the system works in accepting mode. Denote by NaccASNP-MCSnm the family
of all sets Nacc(Π) accepted by ASNP-MCS systems, which have at most m neurons
and at most n rules in every neuron.

3.2 An Example

An example is provided to explain the differences between an SNP-MCS system and
an ASNP-MCS system, shown in Figure 2. SNP-MCS system works in synchronous
mode, while ASNP-MCS system works in asynchronous mode. There are three
neurons, σ1, σ2 and σ3, labeled by 1, 2 and 3 in Figure 2. Neuron σ1 has the spikes
of two types (type a and type b), and it has only one synaptic channel labeled by (1).
Neuron σ3 contains the spikes of two types, however, it has two different synaptic
channels, labeled by (1) and (2). There is only one type of spikes, type a, and
a single synaptic channel labeled by (1) in neuron σ2. Neuron σ1 starts with a spike
of type a, and neuron σ3 starts with a spike of type b. What the mainly difference
between an SNP-MCS system and an ASNP-MCS system is their working mode.

In the synchronous mode, since neuron σ1 initially has a spike of type a and
neuron σ3 initially has a spike of type b, the spikes enable rule a → b(1) and
rule b → a(1) in neurons σ1 and σ3, respectively. Thus, two rules can be applied
simultaneously. Neuron σ1 sends a spike of type b to neuron σ3 via channel (1).
Neuron σ3 emits a spike of type a to neuron σ1 through channel (1). When neuron
σ1 receives a spike of type a from neuron σ3, it can apply rule a → b(1) again.
Similarly, neuron σ3 also receives a spike of type b from neuron σ1 and it can apply
its rule b → a(1), too. Therefore, the two neurons simultaneously fire again and

Asynchronous SNP-MCS Systems 933

(1)
2

1
a

a→b(1)

3

b

b→a(1)

b
2
→a(2)

(2)

(1)
(1)

a→a(1)

Figure 2. An example of spiking neural P systems with multiple channels and symbols

exchange a spike with each other. Repeatedly, in every step, neurons σ1 and σ3 will
exchange a spike, and no spike is sent to the environment. Therefore, there is no
result of the computation.

For the ASNP-MCS system that works in the asynchronous mode, when the
number of spikes in a neuron enables its rule, the neuron can fire its rule at some
time, sooner or later. Here, the rules in neurons σ1 and σ3 are available separately,
but neurons σ1 and σ3 are free to choose a time to fire. Thus, there are three
cases.

Case 1: Neuron σ1 fires before neuron σ3. At first, rule a→ b(1) in neuron σ1 can
be applied, which means that neuron σ1 sends a spike of type b to neuron σ3.
The number of spikes in neuron σ3 has been changed to two spikes of type b,
after receiving a spike sent by neuron σ1. Thus, rule b2 → a(1) can be applied.
At a later time, neuron σ3 fires and sends a spike of type a to neuron σ2 through
channel (2). Rule a→ a(1) in neuron σ2 can be applied when it receives a spike,
and neuron σ2 sends a spike of type a to the environment. In this case, only
one single spike is sent to the environment. Therefore, the computation result
of the system is 1.

Case 2: Neuron σ1 fires later than neuron σ3. Since there is a spike of type b in
neuron σ3, rule b→ a(1) can be applied, and neuron σ1 receives a spike of type
a from neuron σ3 via channel (1). The number of spikes in neuron σ1 are two
now and there is no rule can be applied, thus the computation is blocked. We
can know that there is no any output, thus no any computation result.

Case 3: Neurons σ1 and σ3 fire together. In this case, the running of an ASNP-
MCS system is the same with the situation in synchronous mode at the first
round. So, after the first round, the number of spikes in every neuron is back
to its available state and no spike is sent out. Then, neurons σ1 and σ3 face
a choice again: who want to fire first? And there are also three choices:

934 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

1. If it is the Case 1, neuron σ1 fires before neuron σ3, then a spike will be sent
from the system and the computation will halt. Hence, the final result of
the computation is 1;

2. If it is the Case 2, neuron σ1 fires later than neuron σ3, then there will be
no result in the second round and the computation will be blocked;

3. If it is the Case 3, which means that the two neurons fire together, no spike
will be sent to the environment and the numbers of spikes in neurons σ1 and
σ3 will be back to their available state again.

And then there will be also the three choices again at the next round. The
above situation is repeated again. Therefore, if the neurons choose Case 3 at
the second round, the final computation result of the system will be one of the
following three results: generating the result (number 1), blocked and infinitive
repeat.

From the description above, we know that ASNP-MCS systems, which work in
the asynchronous mode, have more nondeterministic results compared with SNP-
MCS systems.

4 UNIVERSALITY RESULTS

In this section, we will discuss the Turing universality of asynchronous spiking neural
P systems with multiple channels and symbols (ASNP-MCS systems, in short) as
number generating/accepting devices and function computing devices. We prove
the universality by simulating the register machine. The systems proposed can
generate/accept any sets of recursively enumerable numbers (the family of sets of
recursively enumerable numbers is denoted by NRE) and any recursively enumerable
computational function.

We construct an ASNP-MCS system Π to simulate register machine M and the
result computed by M is presented by the number of spikes that the output neuron
sends to the environment. Without loss of generality, two symbols, a and b, are
considered in Π, thus O = {a, b}. INPUT module, ADD module, SUB module and
FIN module are constructed to simulate instructions of M , shown in Figures 3, 4,
5, 6, 7 and 8. If tr is the number of all SUB instructions that act on the same
register r, a constant is defined as follows:

T = 8 ∗max {tr|0 ≤ r ≤ 7} = 8 ∗ t5 = 8 ∗ 4 = 32.

The following rule is used to activate instruction neurons: when instruction neurons
σli , σlj and σlk receive 3T spikes of type b, they will be activated and execute the
corresponding operations. In the process of the computation, the content of register
r is coded by the number of spikes in neuron σr through the following way: if there
is a number n(≥ 0) in register r, then neuron σr has 3Tn spikes of type a, vice
versa.

Asynchronous SNP-MCS Systems 935

Rule b3T → aψ(p)(q) is a formal spiking expression, used in INPUT, ADD, SUB
and FIN modules. It works as follows. When the rule is available, the neuron
consumes 3T spikes of type b and sends ψ(p) spikes of type a to the subsequent
neurons connected with the neuron, where the rule uses channel (q). We define the
function ψ(p) on the sets of instruction symbols as follows:

ψ(p) =

3T, if p is an ADD instruction;

2T + s, if p is ith SUB instruction in all SUB instructions on register r;

1, if p is the output instruction.

In this paper, we use the following way to define the value of s in the SUB
instructions which act on the same register r:

• If the instruction is the first SUB instruction in register r, then s = 1;

• If the instruction is the second SUB instruction in register r, then s = 2;

• If the instruction is the third one in register r, then s = 4;

• If the instruction is the forth one, then s = 9.

For example, there are four SUB instructions acted on register 5 in universal reg-
ister machine Mu, l3 : (SUB(5), l2, l4), l11 : (SUB(5), l12, l13), l12 : (SUB(5), l14, l15),
l14 : (SUB(5), l16, l17). Therefore, because the first SUB instruction in register 5 is
instruction l3 : (SUB(5), l2, l4), the function is ψ(p) = 2T + 1. The second SUB in-
struction is instruction l11 and its function is ψ(p) = 2T + 2. Similarly, the function
of the third SUB instruction, l12 : (SUB(5), l14, l15), is ψ(p) = 2T + 4. The function
of the forth SUB instruction l14 is ψ(p) = 2T + 9.

4.1 ASNP-MCS Systems as Number Generating Devices

Theorem 4.1. NgenASNP-MCS3
∗ = NRE.

Proof. It is only proven that NRE ⊆ NgenASNP-MCS3
∗, because it is obvious for

conclusion NgenASNP-MCS3
∗ ⊆ NRE. To this aim, we characterize NRE by a non-

deterministic register machine M working in generating mode.
In order to prove this conclusion, we construct an ASNP-MCS system Π1 to

simulate the register machine M . The system consists of three parts, ADD module,
SUB module and FIN module, which simulate ADD instruction, SUB instruction
and halting instruction, respectively.

1. ADD module, simulating li : (ADD(r), lj, lk).

The ADD module is shown in Figure 3. Suppose that we simulate instruction
li : (ADD(r), lj, lk) at some time, which means that neuron σli has 3T spikes
of type b and no any spikes are in other neurons except those associated with
registers. The rule b3T → a3T (1) in neuron σli is applied at some time and then
neuron σli sends 3T spikes of type a to neurons σr and σli1 . When neuron σr

936 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

lk

(2)

(1)
li b3T→a3T(1) r

li1

lj

(1)

(1)

a3T→b3T(1)
a3T→b3T(2)

Figure 3. A nondeterministic ADD module

receives the spikes from neuron σli , number 1 is added into the corresponding
register. Two rules in neuron σli1 become available after it receives the spikes
from neuron σli , but one of the two rules can be applied non-deterministically.
If rule a3T → b3T (1) is applied, neuron σlj will receive 3T spikes of type b via
channel (1). If rule a3T → b3T (2) is applied, neuron σli1 will send the spikes to
neuron σlk through channel (2).

As can be seen from above, ADD module can correctly simulate ADD instruc-
tion: starting from 3T spikes of type b in neuron σli , 3T spikes of type a are
added in neuron σr (meaning that the corresponding register r is added by 1),
and one of two instruction neurons, σlj and σlk , receives 3T spikes of type b
non-deterministically.

(b2T)+bq→λ

for q≥0

a2T+sb2T+s→b3T(1)

a2T+sb3T→b3T(2)

(2)

(1)

li

lj

b3T→a2T+s(1)

r

(1)

lk

a2T+s(a3T)+/a5T+s→b2T+s(1)

a2T+s→b2T+s(2)

(1)

(2)

(1) (1)

(b2T)+bq→λ

for q≥0

a2T+sb2T+s→b3T(1)

a2T+sb3T→b3T(2)

li1 li2

(1)

(2)

Figure 4. SUB module

Asynchronous SNP-MCS Systems 937

2. SUB module, simulating li : (SUB(r), lj, lk).

This module is shown in Figure 4. Suppose that a SUB instruction is simulated
at some time, 3T spikes of type b are in neuron σli and no spike is in other
neurons except neuron σr (i.e., the multiple of 3Tth spikes in neuron σr is the
number in the corresponding register r). The SUB instruction works as follows.
At some time, neuronσli fires, and then 3T spikes of type b are consumed and
2T+s spikes of type a are produced, and the generated spikes are sent to neurons
σr, σli1 and σli2 via channel (1). Neuron σr fires, at a later time, according to
the number of spikes in it:

(a) If there are several spikes in neuron σr, indicating that the number in register
r is not zero, then rule a2T+s(a3T)+/a5T+s → b2T+s(1) can be applied;

(b) If there is no spike in neuron σr, indicating that the number in register r is
0, then rule a2T+s → b2T+s(2) can be applied. There are the following two
cases.

Case 1: If several spikes are in neuron σr (i.e., the number in register r is
greater than 0), then, at a later time, rule a2T+s(a3T)+/a5T+s → b2T+s(1)
can be applied. Therefore, neuron σr consumes 5T + s spikes of type a and
produces 2T + s spikes of type b, and then it sends the produced spikes to
neuron σli1 by channel (1). As a result, neuron σli1 has 2T + s spikes of type
a sent by neuron σli and 2T + s spikes of type b sent by neuron σr. Hence,
rule a2T+sb2T+s → b3T (1) can be applied. At a later time, neuron σli1 fires
and transmits 3T spikes of type b to neuron σli2 . Neuron σli2 receives 2T + s
spikes of type a sent by neuron σli and 3T spikes of type b sent by neuron
σli1 . So, rule a2T+sb3T → b3T (2) is enabled. At some time, neuron σli2 fires
and emits 3T spikes of type b to neuron σlj .

Case 2: If no spike is in neuron σr, indicating that the number in register r is 0,
then, at a later time, rule a2T+s → b2T+s(2) is applied to send 2T + s spikes
of type b to neuron σli2 via channel (2). Except from receiving 2T + s spikes
of type b, neuron σli2 also receives 2T + s spikes of type a from neuron σli .
Therefore, the spikes in the neuron enable rule a2T+sb2T+s → b3T (1). Then,
at some time, the rule in neuron σli2 is applied to send 3T spikes of type b to
neuron σli1 . With 2T + s spikes of type a and 3T spikes of type b in neuron
σli1 , rule a2T+sb3T → b3T (2) can be used at a later time. Therefore, neuron
σli1 sends 3T spikes of type b to neuron σlk via channel (2).

Note that there is interference between SUB modules and other modules, which
means that the same register could be operated by different instructions. Here
an example is provided to illustrate this question: instructions l11 : (SUB(5), l12,
l13) and l12 : (SUB(5), l14, l15), for instance, all act on the register 5. The SUB
modules that act on the same register, register 5 here, all will receive the spikes
via channel (1) (the number in register is not null) or via channel (2) (the num-
ber in register is 0) from neuron σr. Specifically, suppose that instruction l11

938 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

is activated, so the corresponding neurons in SUB module of instruction l11 is
activated (active neurons, in short), too. Other instructions, like l12 here, are
non-activated, so the corresponding neurons in SUB modules of other instruc-
tions, no instruction l11, are also not activated (passive neurons for short). In-
struction l11 is the second SUB instruction of register 5. Therefore, the function
of its sets of instruction symbols is ψ(p) = 2T + s = 2T + 2. So, neuron σr will
send 2T + 2 spikes of type b to the following neurons which are also connected
with register 5 through channel (1) if register 5 contains numbers. This means,
not only active neuron σl111 (neuron σli1 connects with neuron σr via channel (1)
in the module of l11) but also passive neuron σl121 (neuron σli1 connects with
neuron σr via channel (1) in the module of l12) as well as other passive neurons
that are connected with neuron σr via channel (1) can receive the spikes. For
active neurons, the spikes received are exactly they want. However, the passive
neurons receive the spikes in a wrong way and cannot refuse to accept them
because of the interference between neurons, so we called these spikes, “wrong
spikes”.

We can find that, if neurons σli1 or σli2 receive the “wrong spikes” before the
instruction is activated, then the rule (b2T)+ → bq, q ≥ 0, can be applied, and
neurons σli1 or σli2 will remove the “wrong spikes”. There is also a possible
situation that there still are “wrong spikes” until the instruction is activated.
Therefore, when SUB module of active instruction starts running, neuron σli
emits the spikes to neurons σli1 and σli2 , and no rule in the two neurons can be
used because of the “wrong spikes”. If the “wrong spikes”, new or not, cause
that no rule can be applied in neurons σli1 or σli2 , then the computation is
blocked. Since the system works asynchronously, another “bad” situation must
be considered. Specifically, before the new computation starts, there are still
several “wrong spikes” that are not removed in last computation. In this case,
the new computation will be blocked, too, when neuron σli sends the spikes by
its rule. When the computation is blocked, no spike is sent out. No error results
appear in this situation and the output is the computation result when the
system finally reaches instruction lh. Therefore, the system correctly simulates
the SUB instruction of register machine M .

a(a3T)+/a3T→a(1)
(1)

lh

b3T→a(1)

out

(1)

1

Figure 5. FIN module

3. FIN module, outputting the computation result.

Figure 5 shows this module. Suppose that the computation of M stops at some
time, meaning that M receives the halting instruction. For system Π1, this
indicates neuron σlh receives 3T spikes of type b. Thus, rule b3T → a(1) in

Asynchronous SNP-MCS Systems 939

neuron σlh can be applied at a later time, and then a spike of type a is sent to
the output neuron by channel (1). After receiving the spike from neuron σlh ,
neuron σout transmits a spike of type a to the environment constantly when it
fires continually, until the moment no rule can be applied in the output neuron.
The number of spikes sent to the environment is the results of the computation.

From the description of working modules in system Π1, we know that the register
machine M can be correctly simulated by system Π1 with at most two kinds of spikes
and at most three rules in each neuron. Therefore, the theorem holds. �

4.2 ASNP-MCS Systems as Number Accepting Devices

Theorem 4.2. NaccASNP-MCS3
∗ = NRE.

Proof. Like the proof of Theorem 4.1, we construct an ASNP-MCS system Π2 to
simulate a deterministic register machine M , M = (m,H, l0, lh, I). There are three
parts in system Π2: INPUT module, deterministic ADD module and SUB module.
The INPUT module is used to input a spike train from the environment, shown in
Figure 6. Spike train a2T (a3T)nbT can be read by neuron σin from the environment,
and then 3Tn spikes of type a are stored in neuron σ1, where the multiple of 3T
spikes of type a is n, indicating that the accepted number is n. At some time, neuron
σin reads 2T spikes of type a and several groups of 3T spikes of type a from the
environment. Therefore, rule a2T (a3T)+/a3T → a3T (1) can be applied from reading
the first 3T spikes of type a to receiving last ones. As a result, neuron σin sends 3T
spikes of type a to neuron σ1 via channel (1) once the rule is applied. When neuron
σ1 receives 3T spikes of type a from neuron σin, the number in register is added
by 1. There are two cases before neuron σin reads T spikes of type b.

in

a2T(a3T)+/a3T→a3T(1)
a2TbT(a3T)+/a3T→a3T(1)

a2TbT→b3T(2)

1 l0

(2)(1)

a2T(a3T)nbT

Figure 6. INPUT module

Case 1: Though 3Tn spikes of type a have been read from the environment, there
are still several groups of 3T spikes of type a in neuron σin because of the

940 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

asynchronous mode. After T spikes of type b in spike train are received, rule
a2T (a3T)+bT/a3T → a3T (1) becomes available. Since neuron σin has read all
spikes in the spike train, no new spike comes. Thus, the rule can be applied at
a later time and neuron σin will send the spikes to neuron σ1 every time as the
rule is applied. When all 3Tn spikes of type a are stored in neuron σ1, turn to
Case 2.

Case 2: 3Tn spikes of type a are all stored in neuron σ1. When T spikes of type b
are read or when T spikes of type b have already been in neuron σ1 (the situation
that Case 1 turns to Case 2), there are only 2T spikes of type a and T spikes
of type b left in neuron σin. Hence, rule a2T bT → b3T (2) can be applied at some
time, and 3T spikes of type b will be sent to neuron σl0 via channel (2).

Therefore, neuron σ1 receives 3Tn spikes of type a, which means that the number
stored in register 1 is n. Besides, since neuron σl0 receives 3T spikes of type b, the
system starts to simulate the initial instruction l0 of M .

We also can get something more. Neuron σ1 will receive 3Tn spikes of type a
and neuron σl0 will receive 3T spikes of type b after neuron σin reads the spike train,
a2T (a3T)+bT , from the environment, which means the result of the computation can
be gotten normally without “block” situation.

When a register machine works in accepting mode, its ADD instruction of form
li : (ADD(r), lj) is deterministic. The deterministic ADD module is shown in Fig-
ure 7. Since 3T spikes of type b are in neuron σli , then the neuron fires at a later
time and transmits 3T spikes of type a to neurons σli1 and σr via channel (1). The
number of spikes in neuron σr is added by 3T , which indicates that the number of
the corresponding register is added by 1. After receiving 3T spikes of type a from
neuron σli , neuron σli1 applies the rule, at a later time, to converse 3T spikes of
type a to 3T spikes of type b and sends the generated spikes to neuron σlj . With 3T
spikes of type b in neuron σlj , the system starts to simulate the instruction lj of M .

li b3T→a3T(1)

a3T→b3T(1)li1

r
(1)

(1)

lj

(1)

Figure 7. A deterministic ADD module

SUB module remains unchanged, shown in Figure 4. FIN module is removed,
but the system remains neuron σlh . Since neuron σlh has 3T spikes of type b, the
computation of M reaches instruction lh and halts.

Asynchronous SNP-MCS Systems 941

Based on the discussion above, an ASNP-MCS system with at most three rules
in each neuron can correctly simulate the register machine working in accepting
mode and no “block” happens in INPUT module. Therefore, the theorem holds. �

4.3 ASNP-MCS Systems as Small Universal Function Computing Devices

(1) (2)

in

a2T(a3T)+/a3T→a3T(1)
a2T(a3T)+(b3T)+/a3T→a3T(1)
a2TbT(a3T)+(b3T)+/a3T→a3T(1)

a2T(b3T)+/b3T→b3T(2)
a2TbT(b3T)+/b3T→b3T(2)

a2TbT→a3T(2)

1

l02

(2)(1)

(b3T)+/b3T→a3T(1)
a3T(b3T)+/b3T→a3T(1)

a3T→b3T(2)

a2T(a3T)g(x)(b3T)ybT

li1

Figure 8. INPUT module

In this section, we will investigate the Turing universality of ASNP-MCS systems
as function computing devices. The universality of ASNP-MCS systems will be
proved by simulating a small universal register machine Mu.

Theorem 4.3. There is a small universal ASNP-MCS system with 67 neurons for
computing functions.

Proof. We construct an ASNP-MCS system Π3, including INPUT module, ADD
module, SUB module and FIN module, to simulate a small universal register machine
Mu. The ADD module is the same with ADD module working in accepting mode,
shown in Figure 7. The SUB module is the same with SUB module that works in
accepting mode, shown in Figure 4. The FIN module is the same with FIN module
working in accepting mode, shown in Figure 5. However, the INPUT module is
different from INPUT module that works in accepting mode.

942 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

The INPUT module, shown in Figure 8, is used for reading a spike train
a2T (a3T)g(x)(b3T)ybT from the environment and introducing 3Tg(x) spikes of type
a to neuron σ1 and 3Ty spikes of type a to neuron σ2. At some moment, neuron σin
reads 2T spikes of type a and several groups of 3T spikes of type a from the envi-
ronment. Thus, rule a2T (a3T)+/a3T → a3T (1) can be applied from first 3T spikes
of type a to last ones coming. Notice that neuron σin is free to choose to fire or
not once the rule is activated by the spikes in neuron σin. If neuron σin fires, then
3T spikes of type a are produced and the produced spikes are sent to neuron σ1 by
channel (1). If not, neuron σin goes on reading the next spike in the spike train.
Before the first 3T spikes of type b come into neuron σin, indicating that 3Tg(x)
spikes of type a already have been read, rule a2T (a3T)+/a3T → a3T (1) in neuron σin
can be:

1. No execution, which means that 3Tg(x) spikes of type a are still remained in
neuron σin;

2. Partial execution, meaning that some groups of 3T spikes of type a are still in
neuron σin;

3. Total execution (no 3T spikes of type a in neuron σin). Hence, there are two
cases before the first 3T spikes of type b are received: remaining groups of 3T
spikes of type a or not.

The two cases are considered as follows.

Case 1: All the 3Tg(x) spikes of type a are stored in neuron σ1 by the execution
of the rule and there are only 2T spikes of type a left in neuron σin. At the
period of time when neuron σin reads the following groups of 3T spikes of type
b, rule a2T (b3T)+/b3T → b3T (2) is enabled. Thus, neuron σin fires, at some time,
and then it sends 3T spikes of type b to neuron σli1 . There are two situations
when neuron σin has read all the spikes in the spike train. The two cases are as
follows.

1. All the 3Ty spikes of type b are sent to neuron σli1 by the rule. There are
2T spikes of type a and T spikes of type b left in neuron σin. Therefore, rule
a2T bT → a3T (2) can be applied at a later time. Then, neuron σin transmits
3T spikes of type a to neuron σli1 via channel (2).

2. Several groups of 3T spikes of type b are remained in neuron σin. The
spikes in neuron σin enable rule a2T bT (b3T)+/b3T → b3T (2). Thus, the rule
can be applied whenever the rule is available. After all the 3Ty spikes of
type b are sent to neuron σli1 , rule a2T bT → a3T (2) in neuron σin can be
enabled. Finally, neuron σin sends 3T spikes of type a to neuron σli1 through
channel (2).

Case 2: There are still some groups of 3T spikes of type a in neuron σin. After neu-
ron σin reads the next groups of 3T spikes of type b, rule a2T (a3T)+(b3T)+/a3T →
a3T (1) can be applied. Then, neuron σin fires at some time, sending 3T spikes of

Asynchronous SNP-MCS Systems 943

type a to neuron σ1 through channel (1). At the period of time from reading the
first 3T spikes of type b to last ones coming, rule a2T (a3T)+(b3T)+/a3T → a3T (1)
or rule a2T (b3T)+/b3T → b3T (2) can be applied according to the number of spikes
in the neuron. If all 3Tg(x) spikes of type a are stored in neuron σ1, rule
a2T (b3T)+/b3T → b3T (2) can be enabled. If not, rule a2T (a3T)+(b3T)+/a3T →
a3T (1) can be applied. There are also three situations after T spikes of type b
are read. The three cases are as follows.

1. If all the 3Tg(x) spikes of type a are stored in neuron σ1 and 3Ty spikes of
type b are sent to neuron σli1 , then turn to Case 1 (1).

2. If all the 3Tg(x) spikes of type a are stored in neuron σ1 and 3Ty spikes of
type b are not sent to neuron σli1 , then turn to Case 1 (2).

3. If there are still several groups of 3T spikes of type a in neuron σin, then rule
a2T bT (a3T)+(b3T)+/a3T → a3T (1) can be used until no groups of 3T spikes of
type a are left. Then, turn to Case 1 (2).

After all the 3Tg(x) spikes of type a are stored into neuron σ1, 3Ty spikes of type
b also will be sent to neuron σli1 sequentially. Thus, rule (b3T)+/b3T → a3T (1) in
neuron σli1 can be applied between the period of time that several groups of 3T
spikes of type b are received. Neuron σli1 fires at some time, consuming 3T spikes of
type b, producing 3T spikes of type a and transmitting the produced spikes to neuron
σ2. Notice that neuron σli1 is free to fire or not. There are two cases according to
the number of spikes in neuron σli1 after 3T spikes of type a are received by the
neuron.

1. All the 3Ty spikes of type b in neuron σli1 are processed by rule (b3T)+/b3T →
a3T (1), which means that neuron σ2 received 3Ty spikes of type a (the corre-
sponding number in register 2 is y). Then, rule a3T → b3T (2) can be applied,
at a later time, and neuron σli1 sends 3T spikes of type b to neuron σl0 via
channel (2).

2. There are still some groups of 3T spikes of type b in neuron σli1 . Thus, rule
a3T (b3T)+/b3T → a3T (1) can be used at a later time. Turn to (1) unless all the
3Ty spikes of type b are changed as 3Ty spikes of type a and stored in neuron σ2.

When neuron σl0 receives 3T spikes of type b, the system starts to simulate
initial instruction σl0 of M .

In conclusion, the spikes in neuron σin are processed as follows. When there
are some groups of 3T spikes of type a in neuron σin, rule a2T (a3T)+/a3T → a3T (1)
or rule a2T (a3T)+(b3T)+/a3T → a3T (1) or rule a2T bT (a3T)+(b3T)+/a3T → a3T (1) can
be used first in order to store all the 3Tg(x) spikes of type a in neuron σ1. Then
all the 3Ty spikes of type b in neuron σin are passing into neuron σli1 by rule
a2T (b3T)+/b3T → b3T (2) or rule a2T bT (b3T)+/b3T → b3T (2). When all this is done,
neuron σin finally sends 3T spikes of type a to neuron σli1 . Besides, the spikes in
neuron σli1 are processed as follows. 3Ty spikes of type a are sent to neuron σ2 first
by rule (b3T)+/b3T → a3T (1) or rule a3T (b3T)+/b3T → a3T (1) in neuron σli1 . When

944 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

there are only 3T spikes of type a left in neuron σli1 , rule a3T → b3T (2) can be
applied and the neuron emits 3T spikes of type b to neuron σl0 .

All in all, we can find that 3Tg(x) spikes of type a will be stored in neuron σ1
and 3Ty spikes of type a will be stored in neuron σ2 after neuron σin reads the spike
train a2T (a3T)g(x)(b3T)ybT from the environment. And finally, neuron σl0 will receive
3T spikes of type b. This means there is no “block” situation in this INPUT module.

A total of 67 neurons are used in this system: 8 neurons for 8 registers; 23
neurons for 23 instruction labels; 1 auxiliary neuron for each ADD module, 9 in
total; 2 auxiliary neurons for each SUB module, 26 in total; INPUT module uses
1 auxiliary neuron.

From the description above, we know that ASNP-MCS systems with 67 neurons
can correctly simulate register machine Mu working in computing mode. Therefore,
Theorem 4.3 holds. �

5 CONCLUSIONS AND FUTURE WORK

In this work, we investigated a variant of SNP systems working in the asynchronous
mode, asynchronous spiking neural P systems with multiple channels and symbols
(ASNP-MCS systems for short). Different from regular SNP systems, ASNP-MCS
systems work in the asynchronous mode: neurons are free to fire when their rules
can be applied; if the coming of new spikes causes the rules to be unavailable, the
computation will continue in the new configuration. Different from the existing
asynchronous SNP systems, ASNP-MCS systems have two interesting characters:
multiple channels and multiple symbols. We proved that ASNP-MCS systems as
number generating and accepting devices are Turing universal. Then, we constructed
an ASNP-MCS system with 67 neurons as a small universal function computing
device.

Several open problems still need to be discussed. For example, how to avoid the
“block” situation in asynchronous systems. In the existing work, Song et al. [41]
provided a scheme for solving this problem with the mode of “synchronization”. This
paper has made some attempt to deal with this “block” problem. The features of
multiple channels and multiple symbols can give some help, in accepting/computing
mode, to solve the “block” situation in INPUT module. Some issues remain to
investigate: Can the “block” be solved in SUB module? Is there a small universal
ASNP-MCS system with less neurons?

From the perspective of application, ASNP-MCS systems are the distributed
and parallel computation systems working in the asynchronous mode and have the
feature of multiple channels and the power of dealing with multiple symbols. In
this work, only the discussion of Turing universality of the systems was in our
focus. In the future, we will consider the application of ASNP-MCS systems in
complex problems, for example, high-order dynamic systems and social network in
real-world.

Asynchronous SNP-MCS Systems 945

Acknowledgments

This work was partially supported by the National Natural Science Foundation of
China (No. 62076206), and the Research Foundation of the Education Department
of Sichuan Province (No. 17TD0034), China.

REFERENCES

[1] Păun, G.: Computing with Membranes. Journal of Computer and System Sciences,
Vol. 61, 2000, No. 1, pp. 108–143, doi: 10.1006/jcss.1999.1693.

[2] Păun, G.—Rozenberg, G.—Salomaa, A.: The Oxford Handbook of Membrane
Computing. Oxford University Press, New York, 2010.

[3] Freund, R.—Păun, G.—Pérez-Jiménez, M. J.: Tissue P Systems with Chan-
nel States. Theoretical Computer Science, Vol. 330, 2005, No. 1, pp. 101–116, doi:
10.1016/j.tcs.2004.09.013.

[4] Bernardini, F.—Gheorghe, M.: Population P Systems. Journal of Universal
Computer Science, Vol. 10, 2004, No. 5, pp. 509–539, doi: 10.3217/jucs-010-05-0509.

[5] Cienciala, L.—Ciencialová, L.: Some New Results of P Colonies with
Bounded Parameters. Natural Computing, Vol. 17, 2018, No. 2, pp. 321–332, doi:
10.1007/s11047-016-9591-0.

[6] Ionescu, M.—Păun, G.—Yokomori, T.: Spiking Neural P Systems. Fundamenta
Informaticae, Vol. 71, 2006, No. 2, pp. 279–308.

[7] Ciencialová, L.—Csuhaj-Varjú, E.—Kelemenová, A.—Vaszil, G.: Vari-
ants of P Colonies with Very Simple Cell Structure. International Journal of
Computers Communications and Control, Vol. 4, 2009, No. 3, pp. 224–233, doi:
10.15837/ijccc.2009.3.2430.

[8] Păun, G.—Pérez-Jiménez, M. J.: Solving Problems in a Distributed Way in Mem-
brane Computing: dP Systems. International Journal of Computers Communications
and Control, Vol. 5, 2010, No. 2, pp. 238–250, doi: 10.15837/ijccc.2010.2.2478.

[9] Song, B.—Pan, L.: The Computational Power of Tissue-Like P Systems
with Promoters. Theoretical Computer Science, Vol. 641, 2016, pp. 43–52, doi:
10.1016/j.tcs.2016.05.022.

[10] Valencia-Cabrera, L.—Orellana-Mart́ın, D.—Mart́ınez-Del-
Amor, M. A.—Riscos-Núñez, A.—Pérez-Jiménez, M. J.: Computational
Efficiency of Minimal Cooperation and Distribution in Polarizationless P Sys-
tems with Active Membranes. Fundamenta Informaticae, Vol. 153, 2017, No. 1-2,
pp. 147–172, doi: 10.3233/fi-2017-1535.

[11] Zhang, X.—Liu, Y.—Luo, B.—Pan, L.: Computational Power of Tissue P Sys-
tems for Generating Control Languages. Information Sciences, Vol. 278, 2014, No. 10,
pp. 285–297, doi: 10.1016/j.ins.2014.03.053.

https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1016/j.tcs.2004.09.013
https://doi.org/10.3217/jucs-010-05-0509
https://doi.org/10.1007/s11047-016-9591-0
https://doi.org/10.15837/ijccc.2009.3.2430
https://doi.org/10.15837/ijccc.2010.2.2478
https://doi.org/10.1016/j.tcs.2016.05.022
https://doi.org/10.3233/fi-2017-1535
https://doi.org/10.1016/j.ins.2014.03.053

946 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

[12] Garćıa-Quismondo, M.—Nisbet, I. C. T.—Mostello, C.—Reed, M. J.:
Modeling Population Dynamics of Roseate Terns (Sterna dougallii) in the North-
west Atlantic Ocean. Ecological Modelling, Vol. 368, 2018, pp. 298–311, doi:
10.1016/j.ecolmodel.2017.12.007.

[13] Gheorghe, M.—Manca, V.—Romero-Campero, F. J.: Deterministic and
Stochastic P Systems for Modelling Cellular Processes. Natural Computing, Vol. 9,
2010, No. 2, pp. 457–473, doi: 10.1007/s11047-009-9158-4.

[14] Zhang, G.—Rong, H.—Neri, F.—Pérez-Jiménez, M. J.: An Optimization
Spiking Neural P System for Approximately Solving Combinatorial Optimiza-
tion Problems. International Journal of Neural Systems, Vol. 24, 2014, No. 5,
Art. No. 1440006, pp. 1–16, doi: 10.1142/s0129065714400061.

[15] Peng, H.—Shi, P.—Wang, J.—Riscos-Núñez, A.—Pérez-Jiménez,
M. J.: Multiobjective Fuzzy Clustering Approach Based on Tissue-Like Mem-
brane Systems. Knowledge-Based Systems, Vol. 125, 2017, pp. 74–82, doi:
10.1016/j.knosys.2017.03.024.

[16] Peng, H.—Wang, J.—Pérez-Jiménez, M. J.—Riscos-Núñez, A.: An Unsuper-
vised Learning Algorithm for Membrane Computing. Information Sciences, Vol. 304,
2015, No. 20, pp. 80–91, doi: 10.1016/j.ins.2015.01.019.

[17] Peng, H.—Wang, J.—Shi, P.—Pérez-Jiménez, M. J.—Riscos-Núñez, A.:
An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy
Clustering Problems. International Journal of Neural Systems, Vol. 26, 2016, No. 3,
Art. No. 1650004, pp. 1–17, doi: 10.1142/s0129065716500040.

[18] D́ıaz-Pernil, D.—Berciano, A.—Peña-Cantillana, F.—Gutiérrez-
Naranjo, M. A.: Segmenting Images with Gradient-Based Edge Detection
Using Membrane Computing. Pattern Recognition Letters, Vol. 34, 2013, No. 8,
pp. 846–855, doi: 10.1016/j.patrec.2012.10.014.

[19] D́ıaz-Pernil, D.—Gutiérrez-Naranjo, M. A.—Peng, H.: Membrane Comput-
ing and Image Processing: A Short Survey. Journal of Membrane Computing, Vol. 1,
2019, pp. 58–73, doi: 10.1007/s41965-018-00002-x.

[20] Wang, J.—Shi, P.—Peng, H.: Membrane Computing Model for IIR Filter Design.
Information Sciences, Vol. 329, 2016, pp. 164–176, doi: 10.1016/j.ins.2015.09.011.

[21] Li, B.—Peng, H.—Wang, J.—Huang, X.: Multi-Focus Image Fusion
Based on Dynamic Threshold Neural P Systems and Surfacelet Transform.
Knowledge-Based Systems, Vol. 196, 2020, Art. No. 105794, pp. 1–12, doi:
10.1016/j.knosys.2020.105794.

[22] Li, B.—Peng, H.—Luo, X.—Wang, J.—Song, X.—Pérez-Jiménez, M. J.—
Riscos-Núñez, A.: Medical Image Fusion Method Based on Coupled Neural P Sys-
tems in Nonsubsampled Shearlet Transform Domain. International Journal of Neural
Systems, Vol. 31, 2021, No. 1, Art. No. 2050050, doi: 10.1142/S0129065720500501.

[23] Li, B.—Peng, H.—Wang, J.: A Novel Fusion Method Based on Dynamic Thresh-
old Neural P Systems and Nonsubsampled Contourlet Transform for Multi-Modality
Medical Images. Signal Processing, Vol. 178, 2021, Art. No. 107793, pp. 1–13, doi:
10.1016/j.sigpro.2020.107793.

https://doi.org/10.1016/j.ecolmodel.2017.12.007
https://doi.org/10.1007/s11047-009-9158-4
https://doi.org/10.1142/s0129065714400061
https://doi.org/10.1016/j.knosys.2017.03.024
https://doi.org/10.1016/j.ins.2015.01.019
https://doi.org/10.1142/s0129065716500040
https://doi.org/10.1016/j.patrec.2012.10.014
https://doi.org/10.1007/s41965-018-00002-x
https://doi.org/10.1016/j.ins.2015.09.011
https://doi.org/10.1016/j.knosys.2020.105794
https://doi.org/10.1142/S0129065720500501
https://doi.org/10.1016/j.sigpro.2020.107793

Asynchronous SNP-MCS Systems 947

[24] Pan, L.—Wang, J.—Hoogeboom, H. J.: Spiking Neural P Systems with
Astrocytes. Neural Computation, Vol. 24, 2012, No. 3, pp. 805–825, doi:
10.1162/neco a 00238.

[25] Păun, G.: Spiking Neural P Systems with Astrocyte-Like Control. Journal of Uni-
versal Computer Science, Vol. 13, 2007, No. 11, pp. 1707–1721.

[26] Pan, L.—Păun, G.: Spiking Neural P Systems with Anti-Spikes. International
Journal of Computers Communications and Control, Vol. 4, 2009, No. 3, pp. 273–282,
doi: 10.15837/ijccc.2009.3.2435.

[27] Wang, J.—Hoogeboom, H. J.—Pan, L.—Păun, G.—Pérez-Jiménez, M. J.:
Spiking Neural P Systems with Weights. Neural Computation, Vol. 22, 2010, No. 10,
pp. 2615–2646, doi: 10.1162/neco a 00022.

[28] Zeng, X.—Zhang, X.—Song, T.—Pan, L.: Spiking Neural P Systems with
Thresholds. Neural Computation, Vol. 26, 2014, No. 7, pp. 1340–1361, doi:
10.1162/neco a 00605.

[29] Peng, H.—Chen, R.—Wang, J.—Song, X.—Wang, T.—Yang, F.—Sun, Z.:
Competitive Spiking Neural P Systems with Rules on Synapses. IEEE Transactions
on NanoBioscience, Vol. 16, 2017, No. 8, pp. 888–895, doi: 10.1109/tnb.2017.2783890.

[30] Song, T.—Pan, L.—Păun, G.: Spiking Neural P Systems with Rules
on Synapses. Theoretical Computer Science, Vol. 529, 2014, pp. 82–95, doi:
10.1016/j.tcs.2014.01.001.

[31] Song, T.—Pan, L.: Spiking Neural P Systems with Rules on Synapses Working
in Maximum Spiking Strategy. IEEE Transactions on NanoBioscience, Vol. 14, 2015,
No. 4, pp. 465–477, doi: 10.1109/TNB.2015.2402311.

[32] Peng, H.—Yang, J.—Wang, J.—Wang, T.—Sun, Z.—Song, X.—Lou, X.—
Huang, X.: Spiking Neural P Systems with Multiple Channels. Neural Networks,
Vol. 95, 2017, pp. 66–71, doi: 10.1016/j.neunet.2017.08.003.

[33] Song, X.—Wang, J.—Peng, H.—Ning, G.—Sun, Z.—Wang, T.—Yang, F.:
Spiking Neural P Systems with Multiple Channels and Anti-Spikes. Biosystems,
Vol. 167–170, 2018, pp. 13–19, doi: 10.1016/j.biosystems.2018.05.004.

[34] Peng, H.—Wang, J.: Coupled Neural P Systems. IEEE Transactions on Neu-
ral Networks and Learning Systems, Vol. 30, 2019, No. 6, pp. 1672–1682, doi:
10.1109/TNNLS.2018.2872999.

[35] Peng, H.—Wang, J.—Pérez-Jiménez, M. J.—Riscos-Núñez, A.: Dynamic
Threshold Neural P Systems. Knowledge-Based Systems, Vol. 163, 2019, pp. 875–884,
doi: 10.1016/j.knosys.2018.10.016.

[36] Wu, T.—Păun, A.—Zhang, Z.— Pan, L.: Spiking Neural P Systems with Po-
larizations. IEEE Transactions on Neural Networks and Learning Systems, Vol. 29,
2018, No. 8, pp. 3349–3360, doi: 10.1109/TNNLS.2017.2726119.

[37] Peng, H.—Li, B.—Wang, J.—Song, X.—Wang, T.—Valencia-Cabrera,
L.—Pérez-Hurtado, I.—Riscos-Núñez, A.—Pérez-Jiménez, M. J.: Spiking
Neural P Systems with Inhibitory Rules. Knowledge-Based Systems, Vol. 188, 2020,
Art. No. 105064, pp. 1–10, doi: 10.1016/j.knosys.2019.105064.

https://doi.org/10.1162/neco_a_00238
https://doi.org/10.15837/ijccc.2009.3.2435
https://doi.org/10.1162/neco_a_00022
https://doi.org/10.1162/neco_a_00605
https://doi.org/10.1109/tnb.2017.2783890
https://doi.org/10.1016/j.tcs.2014.01.001
https://doi.org/10.1109/TNB.2015.2402311
https://doi.org/10.1016/j.neunet.2017.08.003
https://doi.org/10.1016/j.biosystems.2018.05.004
https://doi.org/10.1109/TNNLS.2018.2872999
https://doi.org/10.1016/j.knosys.2018.10.016
https://doi.org/10.1109/TNNLS.2017.2726119
https://doi.org/10.1016/j.knosys.2019.105064

948 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

[38] Peng, H.—Bao, T.—Luo, X.—Wang, J.—Song, X.—Riscos-Núñez, A.—
Pérez-Jiménez, M. J.: Dendrite P Systems. Neural Networks, Vol. 127, 2020,
pp. 110–120, doi: 10.1016/j.neunet.2020.04.014.

[39] Peng, H.—Lv, Z.—Li, B.—Luo, X.—Wang, J.—Song, X.—Wang, T.—
Pérez-Jiménez, M. J.—Riscos-Núñez, A.: Nonlinear Spiking Neural P Systems.
International Journal of Neural Systems, Vol. 30, 2010, No. 10, Art. No. 2050008,
pp. 1–17, doi: 10.1142/S0129065720500082.

[40] Cavaliere, M.—Ibarra, O. H.—Păun, G.—Egecioglu, O.—Ionescu, M.—
Woodworth, S.: Asynchronous Spiking Neural P Systems. Theoretical Computer
Science, Vol. 410, 2009, No. 24-25, pp. 2352–2364, doi: 10.1016/j.tcs.2009.02.031.

[41] Song, T.—Pan, L.—Păun, G.: Asynchronous Spiking Neural P Systems with
Local Synchronization. Information Sciences, Vol. 219, 2013, No. 10, pp. 197–207,
doi: 10.1016/j.ins.2012.07.023.

[42] Song, T.—Pan, L.—Jiang, K.—Song, B.—Chen, W.: Normal Forms for Some
Classes of Sequential Spiking Neural P Systems. IEEE Transactions on NanoBio-
science, Vol. 12, 2013, No. 3, pp. 255–264, doi: 10.1109/tnb.2013.2271278.

[43] Pan, L.—Păun, G.—Zhang, G.—Neri, F.: Spiking Neural P Systems with Com-
munication on Request. International Journal of Neural Systems, Vol. 27, 2017, No. 8,
Art. No. 1750042, pp. 1–13, doi: 10.1142/s0129065717500423.

[44] Zhang, X.—Pan, L.—Păun, A.: On The Universality of Axon P Systems. IEEE
Transactions on Neural Networks and Learning Systems, Vol. 26, 2015, No. 11,
pp. 2816–2829, doi: 10.1109/tnnls.2015.2396940.

[45] Peng, H.—Wang, J.—Pérez-Jiménez, M. J.—Wang, H.—Shao, J.—
Wang, T.: Fuzzy Reasoning Spiking Neural P System for Fault Diagnosis. Infor-
mation Sciences, Vol. 235, 2013, No. 20, pp. 106–116, doi: 10.1016/j.ins.2012.07.015.

[46] Wang, J.—Shi, P.—Peng, H.—Pérez-Jiménez, M. J.—Wang, T.: Weighted
Fuzzy Spiking Neural P Systems. IEEE Transactions on Fuzzy Systems, Vol. 21, 2013,
No. 2, pp. 209–220, doi: 10.1109/tfuzz.2012.2208974.

[47] Peng, H.—Wang, J.—Ming, J.—Shi, P.—Pérez-Jiménez, M. J.—Yu, W.—
Tao, C.: Fault Diagnosis of Power Systems Using Intuitionistic Fuzzy Spiking Neural
P Systems. IEEE Transactions on Smart Grid, Vol. 9, 2018, No. 5, pp. 4777–4784,
doi: 10.1109/tsg.2017.2670602.

[48] Peng, H.—Wang, J.—Shi, P.—Pérez-Jiménez, M. J.—Riscos-Núñez, A.:
Fault Diagnosis of Power Systems Using Fuzzy Tissue-Like P Systems. Integrated
Computer-Aided Engineering, Vol. 24, 2017, No. 4, pp. 401–411, doi: 10.3233/ica-
170552.

[49] Wang, T.—Zhang, G.—Zhao, J.—He, Z.—Wang, J.—Pérez-Jiménez, M. J.:
Fault Diagnosis of Electric Power Systems Based on Fuzzy Reasoning Spiking Neural
P Systems. IEEE Transactions on Power Systems, Vol. 30, 2015, No. 3, pp. 1182–1194,
doi: 10.1109/TPWRS.2014.2347699.

[50] Wang, J.—Peng, H.—Yu, W.—Ming, J.—Pérez-Jiménez, M. J.—Tao, C.—
Huang, X.: Interval-Valued Fuzzy Spiking Neural P Systems for Fault Diagnosis
of Power Transmission Networks. Engineering Applications of Artificial Intelligence,
Vol. 82, 2019, pp. 102–109, doi: 10.1016/j.engappai.2019.03.014.

https://doi.org/10.1016/j.neunet.2020.04.014
https://doi.org/10.1142/S0129065720500082
https://doi.org/10.1016/j.tcs.2009.02.031
https://doi.org/10.1016/j.ins.2012.07.023
https://doi.org/10.1109/tnb.2013.2271278
https://doi.org/10.1142/s0129065717500423
https://doi.org/10.1109/tnnls.2015.2396940
https://doi.org/10.1016/j.ins.2012.07.015
https://doi.org/10.1109/tfuzz.2012.2208974
https://doi.org/10.1109/tsg.2017.2670602
https://doi.org/10.3233/ica-170552
https://doi.org/10.3233/ica-170552
https://doi.org/10.1109/TPWRS.2014.2347699
https://doi.org/10.1016/j.engappai.2019.03.014

Asynchronous SNP-MCS Systems 949

[51] Maćıas, L. F.—Pérez-Hurtado, I.—Garćıa-Quismondo, M.—Valencia-
Cabrera, L.—Pérez-Jiménez, M. J.—Riscos-Núñez, A.: A P-Lingua Based
Simulator for Spiking Neural P Systems. In: Gheorghe, M., Păun, G., Rozenberg, G.,
Salomaa, A., Verlan, S. (Eds.): Membrane Computing (CMC 2011). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 7184, 2012, pp. 257–281, doi:
10.1007/978-3-642-28024-5 18.

[52] Cabarle, F. G. C.—Adorna, H.—Mart́ınez, M. A.: A Spiking Neural P System
Simulator Based on CUDA. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A.,
Verlan, S. (Eds.): Membrane Computing (CMC 2011). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 7184, 2012, pp. 87–103, doi: 10.1007/978-
3-642-28024-5 8.

[53] Song, T.—Zou, Q.—Liu, X.—Zeng, X.: Asynchronous Spiking Neural P Systems
with Rules on Synapses. Neurocomputing, Vol. 151, 2015, Part 3, pp. 1439–1445, doi:
10.1016/j.neucom.2014.10.044.

[54] Cabarle, F. G. C.—Adorna, H. N.—Pérez-Jiménez, M. J.—Song, T.: Spik-
ing Neural P Systems with Structural Plasticity. Neural Computing and Applications,
Vol. 26, 2015, No. 8, pp. 1905–1917, doi: 10.1007/s00521-015-1857-4.

[55] Song, T.—Liu, X.—Zeng, X.: Asynchronous Spiking Neural P Systems with
Anti-Spikes. Neural Processing Letters, Vol. 42, 2015, No. 3, pp. 633–647, doi:
10.1007/s11063-014-9378-1.

[56] Cavaliere, M.—Egecioglu, O.—Ibarra, O. H.—Ionescu, M.—Păun, G.—
Woodworth, S.: Asynchronous Spiking Neural P Systems: Decidability and Unde-
cidability. In: Garzon, M. H., Yan, H. (Eds.): DNA Computing (DNA 2007). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4848, 2007, pp. 246–255,
doi: 10.1007/978-3-540-77962-9 26.

[57] Zhang, X.—Zeng, X.—Pan, L.: On Languages Generated by Asynchronous
Spiking Neural P Systems. Theoretical Computer Science, Vol. 410, 2009, No. 26,
pp. 2478–2488, doi: 10.1016/j.tcs.2008.12.055.

[58] Korec, I.: Small Universal Register Machines. Theoretical Computer Science,
Vol. 168, 1996, No. 2, pp. 267–301, doi: 10.1016/s0304-3975(96)00080-1.

https://doi.org/10.1007/978-3-642-28024-5_18
https://doi.org/10.1007/978-3-642-28024-5_8
https://doi.org/10.1007/978-3-642-28024-5_8
https://doi.org/10.1016/j.neucom.2014.10.044
https://doi.org/10.1007/s00521-015-1857-4
https://doi.org/10.1007/s11063-014-9378-1
https://doi.org/10.1007/978-3-540-77962-9_26
https://doi.org/10.1016/j.tcs.2008.12.055
https://doi.org/10.1016/s0304-3975(96)00080-1

950 W. Yi, Z. Lv, H. Peng, X. Song, J. Wang

Wenmei Yi received her B.Sc. degree in computer science from
Sichuan Police College, Luzhou, China in 2016. She is currently
pursuing her M.Sc. degree with School of Computer and Soft-
ware Engineering, Xihua University, Chengdu, China. Her cur-
rent research interests include membrane computing and ma-
chine learning.

Zeqiong Lv received her B.Sc. degree in computer science from
Xihua University, Chengdu, China, in 2018. She is currently
pursuing her M.Sc. degree with School of Computer and Soft-
ware Engineering, Xihua University, Chengdu, China. Her cur-
rent research interests include membrane computing and ma-
chine learning.

Hong Peng received his Ph.D. degree in signal and informa-
tion processing from the University of Electronic Science and
Technology of China, Chengdu, China in 2010. He has been
Professor with School of Computer and Software Engineering
since 2005. His research interests include membrane computing,
machine learning, image processing.

Xiaoxiao Song received his Ph.D. degree in electrical engineer-
ing from the Chongqing University, Chongqing, China in 2010.
He is currently Associate Professor with School of Electrical and
Information Engineering, Xihua University, China. His research
interests include membrane computing and image processing.

Asynchronous SNP-MCS Systems 951

Jun Wang received her Ph.D. degree in electrical engineer-
ing from the Southwest Jiaotong University, Chengdu, China
in 2006. She was Lecturer with the Sichuan College of Science
and Technology, China, from 1991 to 2003. She was Associate
Professor with the Xihua University, China, from 1998 to 2003.
Since 2004 she has been Professor with the School of Electri-
cal and Information Engineering. Her research interests include
electrical automation, intelligent control, and membrane com-
puting.

Computing and Informatics, Vol. 39, 2020, 952–972, doi: 10.31577/cai 2020 5 952

A MAPREDUCE ALGORITHM
FOR MINIMUM VERTEX COVER PROBLEMS
AND ITS RANDOMIZATION

Morikazu Nakamura, Daiki Kinjo, Takeo Yoshida

Faculty of Engineering
University of the Ryukyus
Okinawa 903-0213, Japan
e-mail: morikazu@ie.u-ryukyu.ac.jp

Abstract. MapReduce is a programming paradigm for large-scale distributed infor-
mation processing. This paper proposes a MapReduce algorithm for the minimum
vertex cover problem, which is known to be NP-hard. The MapReduce algorithm
can efficiently obtain a minimal vertex cover in a small number of rounds. We show
the effectiveness of the algorithm through experimental evaluation and compari-
son with exact and approximate algorithms which demonstrates a high quality in
a small number of MapReduce rounds. We also confirm from experimentation that
the algorithm has good scalability allowing high-quality solutions under restricted
computation times due to increased graph size. Moreover, we extend our algorithm
to randomized one to obtain a good expected approximate ratio.

Keywords: MapReduce, minimum vertex cover, Hadoop, optimization, algorithm
design, randomized algorithm

1 INTRODUCTION

MapReduce is a programming paradigm introduced by Google [1] as a promising
software platform for large-scale distributed information processing. MapReduce
uses functional programming and is composed of mappers for per-record compu-
tation and reducers for results aggregation [2]. MapReduce platforms can be im-
plemented on a large number of commodity computers or computer clusters which
provides scalability and fault tolerance – the most important characteristics required

A MapReduce Algorithm for MVC Problems and Its Randomization 953

for large-scale distributed processing [3, 4]. The number of processing nodes can be
easily increased to handle growing large data.

Spark is another distributed computing platform for big-data analysis [5]. Com-
pared to Hadoop, a well-known MapReduce platform, Spark’s in-memory computa-
tion is high-speed [6, 7]. On the other hand, Hadoop was designed for efficiency in
cost and time. This mechanism, based on an enormous volume of data on several
storage nodes leads to outstanding scalability with lower costs, even though the real-
time computation is sacrificed. Although Hadoop and Spark are often compared,
their roles are differentiated, and they can coexist mutually [6, 7].

Large graphs are often used for modeling various real life objects, systems, and
services, for example, road networks, relations among SNS (social network service)
members, citation networks of research papers, the hyperlink structure of web pages,
and various relations among pieces of digital content on the Internet. The number
of vertices in such graphs may be several million, hundreds of millions, several bil-
lion, or even more. For such huge graphs, structured data mining requires graph
algorithms such as breadth-first search (BFS), depth-first search (DFS), minimum
spanning tree (MST), or shortest path problem (SPP). Traditional computing plat-
forms and paradigms are not suited to this task because they are insufficiently
scalable. Therefore, MapReduce algorithms for graph problems are an important
research field [8, 9, 10, 11, 12, 13, 14, 15]. Many application areas of this topic are
expected in engineering, biology, and the medical sciences [16, 17]. Several MapRe-
duce programming platforms have been so far developed [13, 14, 15, 18, 19, 20]
that provide APIs for graph operations and show how to implement some basic al-
gorithms, such as page ranking, SPP, and MST, by using those APIs. There are
also MapReduce algorithms for the maximum clique problem [21], the maximum
cover problem [22], the maximum flow problem [23], and the shortest-path prob-
lem [24].

The minimum vertex cover problem (MVC) is a basic problem in graph the-
ory, and it is well known to be computationally intractable, that is, NP-hard [25].
Approximate solutions with a two-approximation ratio can be easily constructed
from maximal matching, and then the approximation factor has been slightly im-
proved [26, 27].

We propose a MapReduce algorithm for MVC, a greedy algorithm that dras-
tically improves the solution quality compared to maximal matching-based algo-
rithms. In our previous works, we presented the first version of the algorithm with-
out detailed experimental evaluation and deep discussion [28]. Moreover, in this
paper we extend the original algorithm into randomized one to avoid the worst case
solution quality happened in specific situations.

In [32], MapReduce algorithms for well-known problems are proposed, where
they show the theoretical approximation ratio is two for the minimum vertex cover
problem. On the other hand, our first algorithm may lead to solutions of worse
quality for special cases than the MapReduce algorithm in the literature. However
our randomized version can overcome such worst case situation and obtain solutions
with expected approximation ratio 4/3. Moreover we show by experimental eval-

954 M. Nakamura, D. Kinjo, T. Yoshida

uations that obtained solutions are quite better than the expected approximation
ratio.

The remainder of the paper is organized as follows. In Section 2, we briefly
give some basic background on graphs, MVC and MapReduce. In Section 3, we
propose our MapReduce algorithm for MVC and show its correctness. In Section 4,
we perform a computational experiment to evaluate our proposal. In Section 5,
a randomized MapReduce algorithm is presented. Finally, in Section 6, we conclude
the paper with some remarks.

2 PRELIMINARIES

This section explains some graph notations, the definition of a minimum vertex
cover, and a basic background on MapReduce for the readability of the remaining
paper.

2.1 Graphs

Graphs are denoted by a 2-tuple G = (V,E) with vertex set V and edge set E, where
the elements of E are 2-element subsets of V. If each edge in E has an orientation
(that is, a direction), the graph becomes a directed graph and is shown as ~G =

(V, ~E). Figure 1 a) shows the graph G = (V,E) where V={v1, v2, v3, v4, v5} and
E = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v3, v5)}. Figure 1 b) shows a directed graph
whose underlying graph is the graph in (a).

v
3

v
5

v
4

v
2

v
1

v
3

v
5

v
4

v
2

v
1

(a) Undirected Graph (b) Directed Grapha) Undirected graph

v
3

v
5

v
4

v
2

v
1

v
3

v
5

v
4

v
2

v
1

(a) Undirected Graph (b) Directed Graphb) Directed graph

Figure 1. Graph

The degree d(v) of a vertex v is the number of edges connected to v. In the case
of directed graphs, the in-degree din(v) and the out-degree dout(v) of a vertex v are
defined as the number of incoming and outgoing edges, respectively. Examples are
d(v1) = 2, d(v2) = 3 in Figure 1 a) and din(v2) = 1 and dout(v2) = 2 in Figure 1 b).
A matching M of a graph G = (V,E) is a subset of E such that no pair of edges in
M shares a vertex. A matching is maximal if adding any edge not in M results in
no longer being a matching. A vertex cover VC of a graph G = (V,E) is a set of

A MapReduce Algorithm for MVC Problems and Its Randomization 955

vertices such that each edge in E is incident to at least one vertex in VC. For ex-
ample, in Figure 1, {(v1, v3), (v2, v5)} is a maximal matching and {v2, v3} is a vertex
cover. More detailed information on graphs can be referred to the literature [31, 30].

2.2 Minimum Vertex Cover Problem

The minimum vertex cover problem is a classical graph problem and is known to
be NP-hard. The problem is formulated for an input graph G = (V,E) with the
vertex set V = {1, 2, . . . , n} and the edge set E = {(v, u)|v and u ∈ V} as an integer
programming problem.

MVC (Integer Programming):

min
∑
v∈V

xv (1)

s.t.

xu + xv ≥ 1,∀(u, v) ∈ E, (2)

xv ∈ {0, 1}. (3)

For the problem, a factor-2 approximate solution can be obtained from a max-
imal matching constructed by a simple greedy algorithm. Figure 2 gives an ap-
proximate solution. The dotted edges express a maximal matching. We can easily
confirm that all endpoints of the dotted edges, the vertices with bold lines, comprise
a vertex cover of the graph. The approximation factor is no more than two since
the minimum vertex cover should include at least one endpoint of each edge in the
matching.

Figure 2. Approximation solution based on maximal matching

2.3 MapReduce Model

MapReduce is a framework for large-scale distributed computing based on the well-
known master-slave parallel processing pattern [1]. MapReduce programs are com-
posed of map operations and reduce operations. Map operations play a role in the

956 M. Nakamura, D. Kinjo, T. Yoshida

per-record computation and Reduce operations in the results aggregation. In Map
operations, the master divides the input data into multiple data sets and assigns
these sets to worker nodes. Note that the input data can be stored beforehand in
distributed data storage near worker nodes to reduce the overhead incurred by data
division and assignment. Each worker processes the assigned data according to the
map operation and returns the output to its master node. In Reduce operations,
the master lets workers collect the outputs of the map operations and combine them
to form the answer to the problem. Workers perform these operations in parallel,
taking key–value pairs as processing primitives. The MapReduce processing can be
formally explained as follows.

For sets of the input key–value pairs U i
0, i = 0, 1, . . . ,m − 1, the MapReduce

program performs the following steps.

For t = 1, 2, 3, . . . , T do

1. Execute Map: Input each pair (k, v) in U i
t−1 to mapper Mi, i = 0, 1, . . . ,m−1

and the mapper performs the Map operation. Each mapper generates a sequence
of pairs, (k1, v1), (k2, v2), . . . , as the result. Let us denote the multiset of key–
value pairs generated by Mi at tth round by Û i

t , used in Shuffle step.

2. Shuffle: For each k, let Vk,i be the multiset of values vj such that (k, vj) ∈ Û i
t .

The MapReduce system constructs the multiset Vk,i from Û i
t .

3. Execute Reduce: For each k, input k and some arbitrary permutation of Vk,i

to reducer Ri, i = 0, 1, . . . , r−1 and perform the Reduce operation. The reducer
generates a sequence of key–value pairs (k, v′1), (k, v′2), . . . , as the result. Let
U i
t , i = 0, 1, . . . ,m − 1 be the multiset of key–value pairs generated by Rj,

j = 0, 1, . . . , r − 1.

MapReduce is a promising platform for distributed large-scale computation.
However, algorithms for MapReduce are quite different from ordinary algorithms
we have used. Therefore, we need to design suitable algorithms for the platform.

3 MAPREDUCE ALGORITHM FOR MVC

In this section we propose a MapReduce algorithm for the minimum vertex cover
problem. Algorithm 1 shows a pseudocode for the algorithm, MapReduceMVC.

Before going to the explanation, we introduce some notations. Functions N :
V→ 2|V| and d : V→ {0, . . . , |V| − 1} return the set of the vertices neighboring v
and degree of v, v ∈ V, respectively. Function index : V→ {1, . . . , |V|} returns the
index of v.

A relation ≺ on V and directed graphs induced by ≺ is defined as follows:

Definition 1. Let G be an undirected graph with vertex set V and edge set E.
Let us denote by v ≺ u the relation such that (d(v), index(v)) is smaller than
(d(u), index(u)) in the lexicographical order on {0, . . . , |V | − 1} × {1, . . . , |V |}.

A MapReduce Algorithm for MVC Problems and Its Randomization 957

Algorithm 1 Pseudocode for MapReduce algorithm

1: procedure MapReduceMVC:
2: – – STEP1:
3: V C[v]← true, for all v;
4: Adj[v]← true, for all v;
5: – – STEP2:
6: if v is source then
7: V C[v]← false;
8: end if
9: repeat

10: – – STEP3:
11: if V C[u] = true, for all u ∈ N(v) then
12: Adj[v]← true;
13: else
14: Adj[v]← false;
15: end if
16: – – STEP4:
17: if V C[v] = true and Adj[v] = true and ∃u ∈ N(v), Adj[u] = false then
18: V C[v]← false;
19: end if
20: if V C[v] = false and Adj[v] = false then
21: Let Nf be {u|u ∈ N(v), V C(u) = false};
22: if u ≺ v,∃u ∈ Nf then
23: V C[v]← true;
24: end if
25: end if
26: until No modification is taken place in STEP4
27: – – STEP5:
28: xv ← 1 if V C[v] = true, otherwise xv ← 0, for all v ∈ V;

Definition 2. For an undirected graph G = (V,E), its directed graph induced by

≺, ~G = (V, ~E), is constructed by orienting each edge (v, u) ∈ E from v to u when
v ≺ u.

The following lemma is straightforwardly obtained from the definition since the
relation ≺ is transitive.

Lemma 1. Let ~G = (V, ~E) be the directed graph induced by ≺ for a given undi-

rected graph G = (V,E). Then ~G is an acyclic graph.

Definition 3. For an acyclic directed graph ~G = (V, ~E), v ∈ V is called a source
if din(v) = 0.

Figure 3 shows an example of the edge orientation, where the number in each
vertex v represents index(v). Figure 3 b) shows the directed graph constructed from

958 M. Nakamura, D. Kinjo, T. Yoshida

0

12

3

45

6

7 8

9

a) Undirected Graph

0

12

3

45

6

7 8

9

b) Directed Graph

Figure 3. Example of edge orientation

the undirected graph in Figure 3 a). The vertices 0, 3, 5, 6, 8, and 9 are sources of
the acyclic graph. In MapReduceMVC, each worker node can compute the relation
≺ between the assigned vertex and its neighbors since workers know the index and
the degree of all the neighbors.

Arrays of boolean variables V C[v] and Adj[v] indicate whether or not v is in
the vertex cover and whether or not all the neighbor vertices of v are in the cover,
respectively. At the end of the algorithm (Line 28), a vertex cover is constructed by
collecting all vertices v such that V C[v] = true.

The algorithm is composed with five STEPs and each STEP corresponds to
one MapReduce operation. No worker can proceed to the next STEP (MapReduce
operation) before all the workers complete the current operation.

At STEP1 (Lines 3 and 4), V C[v] and Adj[v] are initialized to true for all the
vertices. Note that our algorithm initially adds all the vertices into the vertex cover,
then gradually excludes unnecessary vertices in STEP3 and 4.

STEP2 (Lines 6 to 8) sets V C[v] to false for each v if v is a source. Each source
vertex becomes a trigger to reduce the size of the vertex cover from the initial vertex
cover constructed at STEP1.

STEP3 (Lines 11 to 15) and STEP4 (Lines 17 to 25) are iteratively executed in
the repeat-until statement. STEP3 updates Adj[v] for all vertices. Adj[v] needs to
be updated whenever there is a neighbor u ∈ N(v) such that V C[u] was changed in
the previous iteration.

STEP4 is composed of two parts. The first part (Lines 17 to 19) is for improving
the vertex cover by attempting to decrease its size. The second part (Lines 20 to 25)
checks and maintains feasibility of the solution. No solution is feasible when there

A MapReduce Algorithm for MVC Problems and Its Randomization 959

exists a pair v and u such that (v, u) ∈ E, yet V C[v] = V C[u] = false. In such
case, V C[v] is set to true if u ≺ v, otherwise V C[u] is set to true to repair its
infeasibility.

a

b

c

d

e

f

a) C[v] and Adj[v] after STEP1

a

b

c

d

e

f

b) C[v] and Adj[v] after STEP2

a

b

c

d

e

f

c) C[v] and Adj[v] after STEP3

a

b

c

d

e

f

d) C[v] and Adj[v] after STEP4

a

b

c

d

e

f

e) C[v] and Adj[v] after STEP3

a

b

c

d

e

f
f) C[v] and Adj[v] after STEP4

Figure 4. Demonstration of MapReduceMVC for a line graph

Figure 4 shows a demonstration example where we depict the steps of the algo-
rithm when applied to a line graph with seven vertices. In the figure, a pair of letters
such as T T, T F, or F T (where T means true and F means false) below a vertex
corresponds to a pair of values of V C[v] and Adj[v]. Time proceeds from top to
bottom in the figure. The pair of boolean values at each vertex is initialized to T T
by STEP1 shown in Figure 4 a). Both vertices 1 and 7 are sources in this example,
and so become F T at STEP2. Figure 4 c) shows that Adj[v] becomes false for each
of vertices 2 and 6 since 1 and 7 are removed from the vertex cover at Figure 4 b).
In Figure 4 d), each of vertices 3 and 5 is removed from the vertex cover since Adj[v]
for 2 and 6 was changed to false. In Figure 4 e), Adj[v] for vertex 4 is updated.
Finally in (f), we confirmed no modification is performed where each vertex should
be either T F or F T. All vertices with T F are included in the vertex cover obtained
by the algorithm.

We show now the validity of our algorithm by the following lemma and theorem.

Lemma 2. MapReduceMVC completes its execution after the kth STEP4 if and
only if V C[v] = true and Adj[v] = false or V C[v] = false and Adj[v] = true, for
all v ∈ V at the end of the kth STEP3, where k is a natural number.

Proof.

Sufficiency: We assume the following condition holds: For all v ∈ V, V C[v] =
true and Adj[v] = false or V C[v] = false and Adj[v] = true after the kth

STEP3. Considering synchronous execution of MapReduce operations, Adj[v],
for all v ∈ V, has a correct value after STEP3, that is, Adj[v] = true when
V C[u] = true, for all u ∈ N[v], otherwise Adj[v] = false. At the kth STEP4,
V C[v] can be modified when V C[v] = true and Adj[v] = true or V C[v] = false

960 M. Nakamura, D. Kinjo, T. Yoshida

and Adj[v] = false but not otherwise. Therefore, no modification occurs at the
kth STEP4, so the algorithm can break the repeat condition and complete its
execution.

Necessity: We assume the algorithm stops its execution and there exists a node v
such that V C[v] = true and Adj[v] = true or V C[v] = false and Adj[v] = false.

(CASE1: Suppose that V C[v] = Adj[v] = true,∃v ∈ V.) for all u ∈ N[v],
V C[u] = true since Adj[v] = true and also for all u ∈ N[v], Adj[u] = true be-
cause the condition at STEP4 (Line 17) does not hold at the end of the algorithm.
By repeating the same consideration, we finally find that for all v ∈ V, V C[v] =
Adj[v] = true. However, according to Lemma 1, at STEP2 there exists at least
one source vertex v that lets V C[v] = false. Only Line 20 in STEP4 can change
V C[v] from false to true, and it is performed only when there exists a neighbor u
such that V C[v] = V C[u] = false. Moreover, only one side of both vertices v and
u can be changed from false to true according to the order relation ≺. Therefore
there should exist at least one vertex v such that V C[v] = false even if such sit-
uations occur successively on adjacent vertices. This situation contradicts the first
assumption.

(CASE2: Suppose that V C[v] = Adj[v] = false,∃v ∈ V.) There exists at least
one vertex u ∈ N(v) such that V C[u] = false since Adj[v] = false. Moreover,
Adj[u] = false because V C[v] = false. This situation holds the condition of the
second if statement in STEP4. Therefore, the algorithm cannot break the repeat-
until loop statement. This situation contradicts the first assumption. 2

Theorem 1. MapReduceMVC outputs a minimal vertex cover for a given graph.

Proof. From Lemma 2, for all v ∈ V, V C[v] = true and Adj[v] = false or V C[v] =
false and Adj[v] = true after the algorithm stops its execution. Therefore, the
output of the algorithm should generate a vertex cover since V C[u] = true for all
u ∈ N(v) when V C[v] = false. It is also obvious that no proper subset of the vertex
cover obtained by the algorithm can be a vertex cover, that is, it shows minimality.
2

4 EXPERIMENTAL EVALUATION

We implemented our MapReduce algorithm under Hadoop [3] and evaluated its
solution quality and the number of MapReduce rounds. For comparison purposes, we
developed a Hadoop program of the maximal matching-based vertex cover algorithm
described above.

Test graph data were randomly generated based on two topological characteris-
tics: random graphs and scale-free graphs. A graph is scale-free if its degree distri-
bution follows a power law. Scale-free graphs are known as a model often observed
in actual networks [29]. Random graphs with average degree d were generated such
that vertex degrees follow the Guassian distribution with average d and variance 1.

A MapReduce Algorithm for MVC Problems and Its Randomization 961

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 200 400 600 800 1000

A
p

p
ro

x
im

a
te

 R
a

ti
o

Number of vertices

exact solution
degree 10
degree 30
degree 50
degree 70

Figure 5. Solution quality vs. graph size for random graphs (our proposal)

4.1 Solution Quality

We first evaluate the solution quality of our MapReduce algorithm by comparing it
with its maximal matching-based algorithm. The Gurobi optimizer, a commercial
solver, was used to obtain exact solutions but it could not exactly solve problem
instances of huge size random graphs within a reasonable time. We therefore eval-

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 200 400 600 800 1000

A
p

p
ro

x
im

a
te

 R
a

ti
o

Number of vertices

exact solution
degree 10
degree 30
degree 50
degree 70

Figure 6. Solution quality vs. graph size for random graphs (maximal matching-based
algorithm)

962 M. Nakamura, D. Kinjo, T. Yoshida

uated, for random graphs of size 100 to 1 000, the quality of approximate solutions
by comparing with that of exact solutions, while for random graphs with 1 000 to
10 000 vertices, we just compared both approximate algorithms, our proposal and
the maximal matching-based algorithm.

When it comes to scale-free graphs, the Gurobi optimizer was able to solve
problem instances of 1 000 000 vertices. This is because the exact algorithm can
drastically prune branches of the search tree for the power-law distribution of edge
degree in the scale-free graphs. Therefore, for scale-free graphs, we varied the num-
ber of vertices up to 1 000 000 to compare with exact solutions.

Figures 5 and 6, respectively, depict the solution quality of our algorithm and
that of the matching-based algorithm.

In the figures, the horizontal axis shows the number of vertices and the vertical
axis shows the approximate ratio compared to the exact solution. Here we take the
quality of the exact solution as 1. For the experiments, we varied the average degree
of a vertex from 10 to 70 and prepared ten different instances of each. Therefore,
the values in the figures show the average of ten executions. Figures 7 and 8 show
results for larger random graphs, where the curves express the size of the obtained
minimal vertex covers for each degree. These figures indicate that both algorithms
obtained lower quality solutions for smaller degrees of random graphs. That is,
loosely-coupled random graphs are harder to solve approximately than are tightly-
coupled ones. The results indicate that our algorithm can obtain quite good solutions
of less than 5 % approximate ratio, even for degree 10, while the approximate ratio
of the matching-based algorithm was more than 30 % in case of the degree 10.

For scale-free graphs, we compare both approximate algorithms with the exact
algorithm and depict the quality versus the graph size in Figure 9. The results
confirm that our algorithm performs very well also for scale-free graphs compared
to the matching-based algorithm.

Through experimental evaluation, we confirmed the effectiveness of our proposed
algorithm. From a quality point of view, our algorithm outperformed the maximal
matching-based algorithm. The maximal matching-based algorithm progressively
constructs a maximal matching, then generates a minimal vertex cover from the
maximal matching. The algorithm is based on a greedy policy for the maximality
of matching, but not for the minimality of the vertex cover. In contrast, our algo-
rithm focuses on minimizing the size of the vertex cover. Our algorithm generates
an initial vertex cover that includes only |V | − |Sources| vertices, and then removes
unnecessary vertices step-by-step in a greedy manner. This direct greedy operation
greatly improves the solution quality as compared with the maximal matching-based
algorithm.

4.2 Number of Rounds

Instead of measuring real computation time of MapReduce operations, we usually
evaluate the number of rounds of MapReduce operations. Actual computation time
is much more understandable for performance evaluations, but it strongly depends

A MapReduce Algorithm for MVC Problems and Its Randomization 963

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

S
iz

e
 o

f
O

b
ta

in
e

d
 V

e
rt

e
x
 C

o
v
e

r

Number of vertices

degree 10
degree 30
degree 50
degree 70

Figure 7. Results for large random graphs (our proposal)

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

S
iz

e
 o

f
O

b
ta

in
e

d
 V

e
rt

e
x
 C

o
v
e

r

Number of vertices

degree 10
degree 30
degree 50
degree 70

Figure 8. Results for large random graphs (maximal matching-based algorithm)

on conditions of the computing platform, such as the number of processing nodes,
cpu spec, memory size, network architecture, and traffic situation. Therefore, the
number of rounds becomes the most reliable factor by which to evaluate the compu-
tation time of MapReduce programs. In our experiment, we measured the number
of rounds of two approximate algorithms. Figures 10 and 11 respectively depict
the number of rounds used in our algorithm and the maximal matching-based algo-
rithm for random graphs. Figure 12 compares the number of rounds for scale-free
graphs.

964 M. Nakamura, D. Kinjo, T. Yoshida

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 200000 400000 600000 800000 1e+06

A
p

p
ro

x
im

a
te

 R
a

ti
o

Number of vertices

exact solution
our proposal

maximal matching

Figure 9. Solution quality vs. graph size for scale-free graphs (our proposal)

The results indicate that our algorithm requires relatively few rounds, compared
to the maximal matching-based algorithm. The real computation time is propor-
tional to the number of rounds in the experiment and the curves of the number of
rounds are almost constant with respect to the number of vertices. Therefore, our
algorithm has good scalability regarding graph size.

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

N
u

m
b

e
r

o
f
ro

u
n

d
s

Number of vertices

degree 10
degree 30
degree 50
degree 70

Figure 10. Number of rounds vs. graph size for random graphs (our proposal)

A MapReduce Algorithm for MVC Problems and Its Randomization 965

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000

N
u

m
b

e
r

o
f
ro

u
n

d
s

Number of vertices

degree 10
degree 30
degree 50
degree 70

Figure 11. Number of rounds vs. graph size for random graphs (maximal matching-based
algorithm)

5 RANDOMIZED MAPREDUCEMVC

MapReduceMVC is not always highly efficient. We consider here a special class
of graphs, called k-flower graphs for which our original MapReduceMVC may not
output good quality of solutions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200000 400000 600000 800000 1e+06

N
u

m
b

e
r

o
f
ro

u
n

d
s

Number of vertices

our proposal
maximal matching

Figure 12. Number of rounds vs. graph size for scale-free graphs

966 M. Nakamura, D. Kinjo, T. Yoshida

Definition 4. A graph G = (V,E) is called a k-flower graph when V = {v0, v1, v2,
. . . , v3·(k−1)+3} and E = ∪ki=1{(v0, v3·(i−1)+1), (v3·(i−1)+1, v3·(i−1)+2), (v3·(i−1)+2,
v3·(i−1)+3), (v3·(i−1)+3, v0)}.

Definition 5. For k-flower graph G = (V,E), the vertex v0 is called center ver-
tex and subgraph G(i) = (V(i),E(i)), i = 1, 2, . . . , k, is called a petal of k-flower
graph G where V(i) = {v0, v3·(i−1)+1, v3·(i−1)+2, v3·(i−1)+3}, E(i) = {(v0, v3·(i−1)+1),
(v3·(i−1)+1, v3·(i−1)+2), (v3·(i−1)+2, v3·(i−1)+3), (v3·(i−1)+3, v0)}.

Figure 13 depicts 3-flower graph and its exact and the worst case vertex covers,
where the vertices colored in red denote the vertices in the obtained vertex cover and
the number beside a vertex shows its index. Figures 13 a) and 13 b) represent the
exact solution and the worst case solution obtained by our MapReduce algorithm,
respectively. From the definition, we can easily prove that the size of the optimal
solution and the worst case solution for k-flower graphs are

|VCbest| = k + 1, (4)

|VCworst| = 2 · k + 1, (5)

respectively. Therefore, the approximation ratio for k-flower graphs is

|VCworst|
|VCbest|

=
2 · k + 1

k + 1
≈ 2. (6)

1

2

3 4

8

7

6 59

10

1

2 3

4

(a) Optimal Solution (b) Worst Case Solution
a) Optimal solution

1

2

3 4

8

7

6 59

10

1

2 3

4

(a) Optimal Solution (b) Worst Case Solution
b) Worst case solution

Figure 13. Solution example for 3-flower graphs

Randomized algorithms allow us to avoid the worst case solution, where we uti-
lize only randomized index function in our MapReduceMVC. Our algorithm requires
the construction of a directed graph for the input graph by the edge orientation

A MapReduce Algorithm for MVC Problems and Its Randomization 967

Figure 14. All patterns of randomized index

based on the lexicographical order on (≺, index). In k-flower graphs, the edge ori-
entation depends on the index values of the terminal vertices since all the vertices
except for the center vertex have degree 2. This is the reason why it is hard for our
original MapReduceMVC to solve k-flower graphs.

Let us calculate the expected size of minimal vertex covers to be obtained by the
randomized MapReduceMVC for k-flower graphs. Figure 14 shows all the patterns
of indexing for one petal of a k-flower graph, where a, b, and c express the index
value for the corresponding vertex. The vertex with the smallest index number out
of a, b, and c should be a source which can not be in the final vertex cover. The
vertices colored in red are in the vertex cover. From the figures, the expected value
of the number of vertices in VC per petal except for the vertex v0, E(|VC(petal)|
is

E(|VC(petal)|) = 1 · 2

3
+ 2 · 1

3
=

4

3
. (7)

Since v0 is in VC only when the indexing is either a > c > b or c > a > b for all the
petals, the expected value for the center vertex in VC, E(|VC(v0)| is

E(|VC(v0)|) = 1−
(

1

3

)k

. (8)

968 M. Nakamura, D. Kinjo, T. Yoshida

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5000 10000 15000 20000 25000 30000

A
p

p
ro

x
im

a
te

 R
a

ti
o

Number of vertices

Optimum Solution
Obtained Solution(Randomized)

Worst Case Solution

Figure 15. Solution quality of randomized MapReduceMVC for k-flower graphs

Therefore, the expected value of |VC| is

E(|VC|) = k · E(|V C(petal)|) (9)

=
4

3
· k + 1−

(
1

3

)k

. (10)

The expected approximation ratio is as follows:

E

(
|VC|
|VCbest|

)
=

4
3
· k + 1−

(
1
3

)k
k + 1

≈ 4

3
. (11)

To confirm the validity of the expected approximate ratio, we performed an ex-
periment. Figure 15 shows the average curves of the approximate ratio in which we
solved MVC for k-flower graphs 20 times by the Randomized MapReduceMVC with
varying the number of vertices. From the figures, our randomized MapReduceMVC
could achieve the same approximate ratio as the one we calculated in (11). Our
randomized algorithm can be easily implemented since we just need to introduce
a randomized index function to the original one.

Theorem 2. RandomizedMapReduceMVC outputs a minimal vertex cover with
the expected approximate ratio 4/3 for k-flower graphs.

6 CONCLUSION

We proposed a MapReduce algorithm for the minimum vertex cover problem and
proved its validity. We performed an experimental evaluation of our proposal and

A MapReduce Algorithm for MVC Problems and Its Randomization 969

measured the quality of solutions and the number of rounds of MapReduce op-
erations. We observed that our algorithm could generate a reasonable quality of
approximate solutions compared to the exact algorithm for random graphs with 100
to 1 000 vertices and scale-free graphs with 1 000 to 1 000 000 vertices. We also com-
pared our algorithm with the well-known maximal matching-based minimum vertex
cover algorithm, and our algorithm outperformed it not only in terms of solution
quality but also in terms of computation time.

Finally we introduced a class of graphs, k-flower graphs, which it is hard for our
algorithm to solve, and we have proposed a randomized version of MapReduceMVC.
Just by using the randomized index function, our algorithm can obtain the expected
approximate ratio 4/3 for k-flower graphs.

REFERENCES

[1] Dean, J.—Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Proceedings of the 6th Symposium on Operating System Design and Implemen-
tation (OSDI ’04), 2004, pp. 137–150.

[2] Karloff, H.—Suri, S.—Vassilvitskii, S.: A Model of Computation for MapRe-
duce. Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, 2010, pp. 938–948, doi: 10.1137/1.9781611973075.76.

[3] Holmes, A.: Hadoop in Practice. Manning Publications Co., Greenwich, 2012.

[4] Guhther, N. J.—Puglia, P.—Tomasette, K.: Hadoop Superlinear Scalability.
Communications of the ACM, Vol. 58, 2015, No. 4, pp. 46–55, doi: 10.1145/2719919.

[5] Apache Spark. https://spark.apache.org/.

[6] Ketu, S.—Mishra, P.K.—Agarwal, S.: Performance Analysis of Distributed
Computing Frameworks for Big Data Analytics: Hadoop vs. Spark. Computación
y Sistemas, Vol. 24, 2020, No. 2, pp. 669–689, doi: 10.13053/cys-24-2-3401.

[7] Mostafaeipour, A.—Jahangard Rafsanjani, A.—Ahmadi, M.—Arockia
Dhanraj, J.: Investigating the Performance of Hadoop and Spark Platforms
on Machine Learning Algorithms. The Journal of Supercomputing, Vol. 77, 2021,
pp. 1273–1300, doi: 10.1007/s11227-020-03328-5.

[8] Lin, J.—Schatz, M.: Design Patterns for Efficient Graph Algorithms in MapRe-
duce. Proceedings of the Eighth Workshop on Mining and Learning with Graphs.
2010, pp. 78–85, doi: 10.1145/1830252.1830263.

[9] Warashina, T.—Aoyama, K.—Sawada, H.—Hattori, T.: Efficient K-Nearest
Neighbor Graph Construction Using MapReduce for Large-Scale Data Sets. IEICE
Transactions on Information and Systems, Vol. E97.D, 2014, No. 12, pp. 3142–3154,
doi: 10.1587/transinf.2014edp7108.

[10] Devi, N. S.—Mane, A.C.—Mishra, S.: Computational Complexity of Minimum
P4 Vertex Cover Problem for Regular and K1, 4-Free Graphs. Discrete Applied Math-
ematics, Vol. 184, 2015, pp. 114–121, doi: 10.1016/j.dam.2014.10.033.

https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/2719919
https://spark.apache.org/
https://doi.org/10.13053/cys-24-2-3401
https://doi.org/10.1007/s11227-020-03328-5
https://doi.org/10.1145/1830252.1830263
https://doi.org/10.1587/transinf.2014edp7108
https://doi.org/10.1016/j.dam.2014.10.033

970 M. Nakamura, D. Kinjo, T. Yoshida

[11] Guruswami, V.—Sachdeva, S.—Saket, R.: Inapproximability of Minimum Ver-
tex Cover on k-Uniform k-Partite Hypergraphs. SIAM Journal on Discrete Mathe-
matics, Vol. 29, 2013, No. 1, pp. 36–58, doi: 10.1137/130919416.

[12] Lattanzi, S.—Moseley, B.—Suri, S.—Vassilvitskii, S.: Filtering: A Method
for Solving Graph Problems in MapReduce. Proceedings of the 23rd Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’11), 2011,
pp. 85–94, doi: 10.1145/1989493.1989505.

[13] Plimpton, S. J.—Devine, K.D.: MapReduce in MPI for Large-Scale Graph
Algorithms. Parallel Computing, Vol. 37, 2011, No. 9, pp. 610–632, doi:
10.1016/j.parco.2011.02.004.

[14] Malewicz, G.—Austern, M.H.—Bik, A. J. C.—Dehnert, J. C.—Horn, I.—
Leiser, N.—Czajkowski, G.: Pregel: A System for Large-Scale Graph Processing.
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’10), 2010, pp. 135–146, doi: 10.1145/1807167.1807184.

[15] Kambatla, K.—Rapolu, N.—Jagannathan, S.—Grama, A.: Asynchronous
Algorithms in MapReduce. Proceedings of 2010 IEEE International Conference
of Cluster Computing, Heraklion, Greece, 2010, pp. 245–254, doi: 10.1109/clus-
ter.2010.30.

[16] Bellettini, C.—Camilli, M.—Capra, L.—Monga, M.: State Space Explo-
ration of RT Systems in the Cloud. Cornell University Library, arXiv:1203.6806
[cs.SE], 2012, 6 pp.

[17] Taylor, R.C.: An Overview of the Hadoop/MapReduce/HBase Framework and Its
Current Applications in Bioinformatics. BMC Bioinformatics, Vol. 11, 2010, No. S1,
doi: 10.1186/1471-2105-11-s12-s1.

[18] Liang, F.—Lu, X.: Accelerating Iterative Big Data Computing Through MPI.
Journal of Computer Science and Technology, Vol. 30, 2015, No. 2, pp. 283–294, doi:
10.1007/s11390-015-1522-5.

[19] Yu, W.K.—Wang, Y.D.—Que, X.Y.—Xu, C.: Virtual Shuffling for Efficient
Data Movement in MapReduce. IEEE Transactions on Computers, Vol. 64, 2015,
No. 2, pp. 556–568, doi: 10.1109/tc.2013.216.

[20] Kang, U.—Tsourakakis, C. E.—Faloutsos, C.: PEGASUS: Mining Peta-Scale
Graphs. Knowledge and Information Systems, Vol. 27, 2011, No. 2, pp. 303–325, doi:
10.1007/s10115-010-0305-0.

[21] Wu, B.—Yang, S.—Zhao, H.—Wang, B.: A Distributed Algorithm to Enumer-
ate All Maximal Cliques in MapReduce. Proceedings of the 2009 Fourth International
Conference on Frontier of Computer Science and Technology, 2009, pp. 45–51, doi:
10.1109/fcst.2009.30.

[22] Chierichetti, F.—Kumar, R.—Tomkins, A.: Max-Cover in Map-Reduce. Pro-
ceedings of the 19th International Conference on World Wide Web (WWW ’10), 2010,
pp. 231–240, doi: 10.1145/1772690.1772715.

[23] Halim, F.—Yap, R.H.C.—Wu, Y.: A MapReduce-Based Maximum-Flow Al-
gorithm for Large Small-World Network Graphs. Proceedings of the 2011 31st In-
ternational Conference on Distributed Computing Systems, 2011, pp. 192–202, doi:
10.1109/icdcs.2011.62.

https://doi.org/10.1137/130919416
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1016/j.parco.2011.02.004
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/cluster.2010.30
https://doi.org/10.1109/cluster.2010.30
https://doi.org/10.1186/1471-2105-11-s12-s1
https://doi.org/10.1007/s11390-015-1522-5
https://doi.org/10.1109/tc.2013.216
https://doi.org/10.1007/s10115-010-0305-0
https://doi.org/10.1109/fcst.2009.30
https://doi.org/10.1145/1772690.1772715
https://doi.org/10.1109/icdcs.2011.62

A MapReduce Algorithm for MVC Problems and Its Randomization 971

[24] Kumar, P.—Singh, A.K.: MapReduce Algorithm for Single Source Shortest Path
Problem. International Journal of Computer Network and Information Security (IJC-
NIS), Vol. 12, 2020, No. 3, pp. 11–21, doi: 10.5815/ijcnis.2020.03.02.

[25] Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R. E.,
Thatcher, J. W., Bohlinger, J. D. (Eds.): Complexity of Computer Computations.
Springer, Boston, MA, The IBM Research Symposia Series, 1972, pp. 85–103, doi:
10.1007/978-1-4684-2001-2 9.

[26] Karakostas, G.: A Better Approximation Ratio for the Vertex Cover Problem.
In: Caires, L., Italiano, G. F., Monteiro, L., Palamidessi, C., Yung, M. (Eds.):
Automata, Languages and Programming (ICALP 2005). Springer, Berlin, Heidel-
berg, Lecture Notes in Computer Science, Vol. 3580, 2005, pp. 1043–1050, doi:
10.1007/11523468 84.

[27] Bar-Yehuda, R.—Even, S.: A Local-Ratio Theorem for Approximating the
Weighted Vertex Cover Problem. In: Ausiello, G., Lucertini, M. (Eds.): Annals
of Discrete Mathematics 25. North-Holland Mathematics Studies, Vol. 109, 1985,
pp. 27–45, doi: 10.1016/s0304-0208(08)73101-3.

[28] Kinjo, D.—Nakamura, M.: A MapReduce Algorithm for Minimum Vertex Cover
Problem. Proceedings of International Technical Conference on Circuits and Systems,
Computers and Communications, 2013, pp. 505–508.

[29] Li, L.—Doyle, J. C.—Willinger, W.—Alderson, D.: Towards a Theory of
Scale-Free Graphs: Definition, Properties, and Implications. Internet Mathematics,
Vol. 2, 2005, No. 4, pp. 431–523, doi: 10.1080/15427951.2005.10129111.

[30] Bondy, J.A.—Murty, U. S.R.: Graph Theory with Applications. Elsevier Science
Publishing, 1976.

[31] Diestel, R.: Graph Theory. Second Edition. Springer-Verlag, New York, 2000.

[32] Harvey, N. J.A.—Liaw, C.—Liu, P.: Greedy and Local Ratio Algorithms in the
MapReduce Model. Proceedings of the 30th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA ’18), 2018, pp. 43–52, doi: 10.1145/3210377.3210386.

https://doi.org/10.5815/ijcnis.2020.03.02
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/11523468_84
https://doi.org/10.1016/s0304-0208(08)73101-3
https://doi.org/10.1080/15427951.2005.10129111
https://doi.org/10.1145/3210377.3210386

972 M. Nakamura, D. Kinjo, T. Yoshida

Morikazu Nakamura received his B.E. and M.E. degrees from
the University of the Ryukyus in 1989 and 1991, respectively,
and D.E. degree from Osaka University in 1996. He is currently
Professor in the area of computer science and intelligent systems,
Faculty of Engineering, University of the Ryukyus, Japan. His
research interests include theory and applications on mathemat-
ical systems. He is a member of IEICE and IEEE.

Daiki Kinjo received his B.E. and M.E. degrees in information
engineering from the University of the Ryujyus in 2012 and 2014,
respectively. He is currently Engineer in KLab Inc. His research
interests include distributed computing, network computing, and
data analysis.

Takeo Yoshida received his B.E. and M.E. degrees in electrical
engineering from the Nagaoka University of Technology and the
D.E. degree in electrical engineering from the Tokyo Metropoli-
tan University in 1991, 1993 and 1997, respectively. He is cur-
rently Assistant Professor in the Department of Engineering,
University of the Ryukyus, Japan. His research interests include
dependable computing, VLSI design, and graph theory. He is
a member of IEEE and IPSJ.

Computing and Informatics, Vol. 39, 2020, 973–993, doi: 10.31577/cai 2020 5 973

DEEP LSTM WITH GUIDED FILTER
FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Yanhui Guo, Fuli Qu∗, Zhenmei Yu∗, Qian Yu

School of Data and Computer Science
Shandong Women’s University
2399 Daxue Road, Changqing District
Jinan, China
e-mail: {guoyanhui03, qufuli23}@163.com, {zhenmei yu,

yuqian}@sdwu.edu.cn

Abstract. Hyperspectral image (HSI) classification has been a hot topic in the
remote sensing community. A large number of methods have been proposed for HSI
classification. However, most of them are based on the extraction of spectral feature,
which leads to information loss. Moreover, they rarely consider the correlation
among the spectrums. In this paper, we see spectral information as a sequential
data which should be relevant to each other. We introduce long short-term memory
(LSTM) model, which is a typical recurrent neural network (RNN), to deal with
HSI classification. To tackle the problem of overfitting caused by limited labeled
samples, regularization strategy is introduced. For unbalance in different classes, we
improve LSTM by weighted cost function. Also, we employ guided filter to smooth
the HSI that can greatly improve the classification accuracy. And we proposed
a method for modeling hyperspectral sequential data, which is very useful for future
research work. Finally, the experimental results show that our proposed method
can improve the classification performance as compared to other methods in three
popular hyperspectral datasets.

Keywords: Recurrent neural network, long short-term memory, guided filter, hy-
perspectral image classification

∗ Corresponding authors

974 Y. Guo, F. Qu, Z. Yu, Q. Yu

1 INTRODUCTION

Remote sensors can acquire hyperspectral images, which has hundreds of spectral
data channels of the same pixel. The detailed spectral information can increase the
recognition of materials, so as to improve the classification accuracy of materials.
HSI classification has generated considerable attention and has been widely used in
various areas including land cover, environmental protection, and agriculture. How-
ever, there are still two key issues that need to be addressed, curse of dimensionality
and limited number of labeled training samples.

It is generally known that the task of HSI classification is to categorize the
pixels into one of several classes by their spectral features. A large number of pixel-
wise classifiers have been proposed to deal with the HSI classification, including
random forests [7], k-Nearest Neighbor [19], support vector machine (SVM) [20],
and sparse representation [4]. However, most of these traditional methods suffer
from the Hughes phenomenon [18]. To solve the aforementioned problem, feature
extraction and feature selection are adopted in these methods. Generally, principal
component analysis (PCA) [8] and independent component analysis (ICA) [22] are
common methods in feature extraction. Band selection [9] or subspace projection
techniques [1] are widely adopted in classification of spectral patterns. Although
these methods have improved classification accuracy, both feature extraction and
subspace projection can lead to information loss and cannot make full use of hyper-
spectral features.

In recent years, deep learning has made promising progresses in many fields.
Deep learning based methods also are adopted in HSI classification, including the
autoencoder [3, 16], convolutional neural network (CNN) [2] and deep belief network
(DBN) [5]. The paper [3] proposed a deep learning framework for HSI classification.
Autoencoder learns to reconstruct the input vector and reduce the dimension of
spectrum. Then a multi-class logistic regression was used to classify the HSI. CNN
uses extensive parameter-sharing to tackle the curse of dimensionality and also clas-
sifies hyperspectral data directly in the spectral domain. Hu et al. [17] proposed
a five-layers network, which can achieve better classification performance. Chen
et al. [2] proposed a regularized 3-D CNN-based feature extraction model to extract
efficient spectral-spatial features for HSI classification. Additionally, spectral-spatial
classification was proposed by many researchers which combines spatial context with
spectral information. However, this research is beyond the scope of this paper.

Autoencoder and CNN model obtain better classification accuracy in hyperspec-
tral image, owing to their feature representation. Yet, there is a large number of
parameters to be trained in the CNN model. For a hyperspectral image with only
a small number of labeled samples, the advantages of CNN model cannot be fully
realized. Moreover, all the aforementioned methods view the spectrum as a vector,
and can result in information loss. The spectrum of a pixel is regarded as inde-
pendent of each other. A pixel is considered a point in an orderless feature space.
However, hyperspectral data is seen as a continuing spectra sequences in continu-
ous spectrum bands. Recurrent neural network is a typical deep learning model for

Deep LSTM with Guided Filter for Hyperspectral Image Classification 975

solving sequential problems. RNN parameters are less, which is more suitable for
the case of fewer training sets than CNN. So, we make use of a recurrent neural
network (RNN) to characterize the sequential property for classifying the HSI.

Unlike object recognition, it is difficult to train a RNN model for reaching
a steady state. We introduce guided filter to smooth the HSI, which greatly im-
proves the HSI classification accuracy. Other filters (bilateral filter, joint bilateral
filter) also can be used to smooth the noise. We adopt guided filter due to the ability
to preserve edge information and gradient. The detailed steps are as follows:

1. We adopted a recurrent neural network (LSTM) for HSI classification. It is
a very novel idea to regard spectral information as an ordered series. We learn
the correlation between spectrums and LSTM, which is useful for HSI classifi-
cation.

2. In order to improve the classification accuracy, we employ the guided filter to
smooth HSI. Guided filter can denoise the image and preserve the edge of the
image. So, it can greatly improve the classification accuracy.

3. Since the labeled samples are limited, deep learning model tends to overfit. To
solve it, we adopt some regularization strategies, such as L2 regularization and
dropout.

4. To address the problem of unbalance of the samples in different classes, we
implemented a weighted cost function, which can improve the average accuracy
of the classification.

5. The proposed methods are applied on two widely used hyperspectral datasets.
We do compared experiments with SVM classifier and Autoencoder for three
evaluation metrics.

The rest of this paper is organized as follows. Section 2 describes the related
methodology and work. Section 3 gives the analysis of HSI classification and the
proposed model in detail. Section 4 shows the results of the experiment, which is
followed by conclusions in Section 5.

2 RELATED METHODOLOGY AND WORK

This section presents the principle of LSTM and guided filter, which is the foundation
of this paper.

2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) are a family of neural networks for processing
sequential data, and have been successfully applied in many fields, such as natural
language processing [21], speech recognition [12], image recognition [13], etc. RNN
consists of an input layer, a hidden layer, and an output layer. Unlike traditional
neural networks, there are links between hidden layer units. Given an input sequence

976 Y. Guo, F. Qu, Z. Yu, Q. Yu

x = (x1, x2, . . . , xT), a standard RNN computes the hidden vector sequence h =
(h1, h2, . . . , hT) and output vector sequence y = (y1, y2, . . . , yT) by iterating the
following equations from t = 1 to T :

ht = g(Wxhxt +Whhht−1 + bh), (1)

yt = Whyht + by (2)

where the W denotes weight matrices (e.g., Wxh is input-hidden weight matrix),
the b denotes bias vectors (e.g., by is output bias vector) and g is the hidden layer
function. Generally, g is a bounded function such as a logistic sigmoid function or
a hyperbolic tangent function.

While RNN is focused on sequential relationship, and has made promising pro-
gresses in many fields, it still encounters difficulty in dealing with long-term se-
quential data since the gradients tend to vanish. An improved RNN model, named
long short-term memory (LSTM) [11], is proposed for the above problem. The key
to LSTM is the cell state, which takes the former state and current data as input.
LSTM consists of five parts, including input gate, output gate, forget gate, cell input
and cell output. The calculation process is as follows.

First, we compute the values for the input gate it, and the candidate value C̃t

for the states of the memory cells at time t:

it = σ(Wixt + Uiht−1 + bi), (3)

C̃t = tanh(Wicxt + Ucht−1 + bc). (4)

Then, we compute the forget gate activation ft at time t:

ft = σ(Wfxt + Ufht−1 + bf). (5)

Given the value of the input gate activation it, the forget gate activation ft and
the candidate state value C̃t, we can compute the memory cells’ new state Ct:

Ct = it ∗ C̃t + ft ∗ Ct−1. (6)

Finally, we can compute the value of their output gates and their outputs:

ot = σ(Woxt + Uoht−1 + VoCt + bo), (7)

ht = ot ∗ tanh(Ct) (8)

where xt is the input to the memory cell layer at time t, W , U and V denote the
weight matrices, b is bias vector, σ is the activation function.

Deep LSTM with Guided Filter for Hyperspectral Image Classification 977

2.2 Guided Filter

Guided filter1 was proposed for the first time by He [15]. Guided filter is widely
used in noise reduction, image abstraction, etc. Given a guidance I and an input
image p, we can obtain an output image q by guided filter. Generally, q is a linear
transform of I in a window ωk centered at the pixel k. If the radius of k is r, the
size of local window ωk is (2r + 1)× (2r + 1).

qi = akIi + bk,∀i ∈ ωk (9)

where ak is linear coefficient and bk is a bias. From the model, it is obvious that
∇q = a∂I, which means that the filtering output q will have similar edge with
guidance image I.

To obtain the coefficient and bias, a cost function for minimizing the term of
mean error in the window ωk is applied as follows:

E(ak, bk) = Σi∈ωk
((akIi + bk − pi)2 + εa2k). (10)

Here, ε is a regularization parameter which could affect the blurring for the guided
filter. According to the literal [10], formula (10) leads to a solution as follows.

ak =

1
|ω|
∑

i∈ωk
Iipi − µkp̄k

σ2
k + ε

, (11)

bk = p̄k − akµk (12)

where µk and σ2
k are the mean and variance of I in ωk, |ω| is the number of pixels

in the local window, and p̄k is the mean of p in the window. After obtaining the
coefficient ak, bk, we can compute the filtering output qi. Through the above process,
we can get a linear transform image q.

3 THE ANALYSIS AND MODELING OF HSI CLASSIFICATION

3.1 The Analysis of HSI Spectrums

LSTM model is better at dealing with sequence data. We analyze the feature of HSI
from two dimensions. One is whether spectral information has sequence character-
istics. The other is whether the spectral information of different classes is separable.
We selected three categories in the KSC dataset (Figure 1). We can see that the
hyperspectral data have sequence characteristics and have different spectral charac-
teristics between each other to classify. This is the assumption based on which we
examine the proposed idea in this paper.

1 http://kaiminghe.com/eccv10/index.html

http://kaiminghe.com/eccv10/index.html

978 Y. Guo, F. Qu, Z. Yu, Q. Yu

Figure 1. Spectral data of the 3 classes selected from KSC dataset with 176 channels

3.2 The Proposed Method of HSI Classification

We proposed a novel LSTM model for HSI classification with guided filter. First,
we obtain a color guidance image from the original HSI by PCA method. Then, we
filter the original HSI by guidance image. Finally, filtered HSI was classified by the
improved LSTM model. The process is shown in Figure 2.

Figure 2. Framework of HSI classification by the proposed method

3.2.1 Filtering the HSI with Guided Filter

From Figure 1 (especially class-1), we can see that the regularity with spectral data
is obvious. That is, materials in the same class have similar waveforms. However,
there is still a lot of noise, inconsistent with the overall trend. Just like class-7, the
right of the waveform is of some confusion. To solve this problem, we introduce
guided filter to smooth the noises. Guided filter is an edge-preserving filter, which
can be used for edge-aware smoothing. In this paper, the spectral data in Figure 1
were converted into the data in Figure 3 by guided filter. As Figure 3 shows, the
spectral data is more obvious after filtering. The implementation of the method is
as follows.

Deep LSTM with Guided Filter for Hyperspectral Image Classification 979

Figure 3. Spectral data of the 3 classes selected from KSC dataset with 176 channels after
filtering

First, we need to obtain a guidance image by Principal Component Analysis
(PCA). We take the first three principal components as a color guidance image.
Given a dataset D = {d1, d2, . . . , dS}, we adopt PCA to obtain the following result.
Here di is the information of the ith band, and S denotes the number of bands.

[p1, p2, . . . , pS] = PCA(D). (13)

So, the guidance image is G = [p1, p2, p3]. Then, based on the formula (3), (4),
using input image d1 and guidance image G, we can get the filtering output u1. By
the same way, we can yield all the di which construct a new hyperspectral image
U = {u1, u2, . . . , uS}.

3.2.2 LSTM Model for HSI Classification

The limited number of training samples makes the overfitting a serious problem. To
tackle this problem, a regularization strategy based on L2 regularization and dropout
is utilized. Meanwhile, HSI samples are in unbalance. The number of samples in
some categories is large while in other categories it is small. Previous experiments
show that the accuracy of category with the small size is worse than that with
the large size. To handle this problem, we implement the weighted cost function,
increasing the penalties of small sample misclassification. So, the cross-entropy cost
function of LSTM network develops into the following formula:

Loss(T, Y) = −
n∑

i=1

C∑
c=1

wc ∗ tic ∗ log

(
yic +

λ

2
‖W‖2

)
(14)

where n and C denote the number of samples and categories, respectively. λ is
a coefficient of the regularization. We use gradient descent method to learn it. tic is
a true classification label for ith sample in the test set. When the ith sample belongs
to the class c, tic value is one, otherwise, tic value is zero. yic is a predicted value of
ith sample, which has the same definition with tic. wc is the weighted term, obtained

980 Y. Guo, F. Qu, Z. Yu, Q. Yu

by the following formula:

wc = 1 +
nmax − nc

nmax

× θ (15)

where nmax denotes the number of the largest class, the nc denotes the number of
c-class. θ is a parameter which needs to be learnt.

In addition to the improvements mentioned above, the LSTM model is affected
by many other factors, such as normalization, modeling, and optimization function,
etc. We investigated the influence of different normalization methods on the HSI
classification accuracy. We adopt min-max normalization to normalize the raw data
to [0, 1]. The normalization formula is xnorm = (x−xmin)/(xmax−xmin), where x de-
notes the raw data, xmin and xmax are minimum and maximum values, respectively.
Experimental results show that the normalization in the spectral data of a pixel is
better than that of the spectral band.

Optimization algorithm is the heart of machine learning, which affects the con-
vergence and optimization of the algorithm. We also found that the Adam is faster
and better than the stochastic gradient descent (SGD) optimization method.

Moreover, the network structure of the LSTM model plays an important role in
the HSI classification, including input nodes, steps, and hidden layer nodes. We only
discuss the influence of input nodes and steps, in this section. Hidden layer nodes
are discussed in Section 4. Taking Indian Pines dataset as an example, we study
the influence of the number of different input nodes on the classification accuracy.
Parameters of the input node and step are set by the following groups, including
(2, 100), (5, 40), (8, 25), (10, 20). In which, the product of the number of input
nodes and steps is equal to the numbers of bands. The overall accuracy of different
modeling methods can be seen from Figure 4. Although (2, 100) looks better at the
result, it takes longer training time due to having more time steps. Considering the
stability and convergence, we choose (5,40) as the experimental modeling method.

Figure 4. Accuracy of different modeling methods

Deep LSTM with Guided Filter for Hyperspectral Image Classification 981

4 EXPERIMENTS AND RESULTS

All our programs are implemented using Python 2 language and Tensorflow 1.0
library. We implemented all the methods on our PC with 32 GB memory and
8-core CPUs. LSTM methods and AE methods were implemented with a GTX1060
GPU for acceleration. In the following section, we first show the experimental setup,
and then describe the experimental process and results in detail.

4.1 Experimental Setup

4.1.1 Datasets

Three hyperspectral data, including Indian Pines and Kennedy Space Center (KSC),
are employed to evaluate the effectiveness of the proposed method. The Indian Pines
dataset was gathered by Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
sensor over the Indian Pines test site in Northwest Indiana. This dataset consists of
145×145 pixels with 200 spectral bands in the wavelength range from 0.4 to 2.5µm.
In this scene, there are 16 categories to be classified, including woods, grass-pasture,
etc.

KSC data was also collected by the AVIRIS sensor, acquired in 224 bands of
10 nm with center wavelengths from 0.4 to 2.5µm. After removing water absorption
and low SNR bands, 175 bands were used for the analysis. There are 13 categories
to be classified.

Salinas scene was collected by the 224-band AVIRIS sensor over Salinas Valley,
and it is characterized by high spatial resolution. It contains 512 × 217 pixels in
all. We also discarded the 20 water absorption bands and selected 200 bands for
experiments.

Detailed information of categories and samples is shown in Table 1.

4.1.2 Evaluation Metrics

To evaluate the performance of different HSI classification algorithms, we apply
three widely used quality indexes, including the overall accuracy (OA), the average
accuracy (AA), and the kappa coefficient (KA). OA shows the number of hyperspec-
tral pixels that are classified correctly, divided by the number of all test samples.
AA is the mean of the classification accuracies of all classes. KA is a statistical
measurement of agreement, based on the confusion matrix of different classes. If we
have a confusion matrix M , where mij is the element in row i, column j. OA, AA
and KA also can be computed by formulas (16), (17), (18), where N and C denote
the number and classes of samples.

982 Y. Guo, F. Qu, Z. Yu, Q. Yu

No.
Indian Pines KSC Salinas

Categories smp Categories smp Categories smp

C1 Alfalfa 46 Scrub 761 Brocoli G W 1 2 009
C2 Corn-N 1 428 Willow swamp 243 Brocoli G W 2 3 726
C3 Corn-M 830 CP hammock 256 Fallow 1 976
C4 Corn 237 CP/Oak 252 Fallow R P 1 394
C5 Grass-M 483 Slash pine 161 Fallow smooth 2 678
C6 Grass-T 730 Oak/Broadleaf 229 Stubble 3 959
C7 Grass-P-M 28 Hardwood 105 Celery 3 579
C8 Hay-W 478 Graminoid 431 Grapes untrained 11 271
C9 Oats 20 Spartina 520 Soil V D 6 203
C10 Soybean-N 972 Cattail marsh 404 Corn S G W 3 278
C11 Soybean-M 2 455 Salt marsh 419 Lettuce R 4wk 1 068
C12 Soybean-C 593 Mud flats 503 Lettuce R 5wk 1 927
C13 Wheat 205 Water 927 Lettuce R 6wk 916
C14 Woods 1 265 Lettuce R 7wk 1 070
C15 Build-G-T-D 386 Vinyard untrained 7 268
C16 Stone-S-T 93 Vinyard V T 1 807

Total 10 249 Total 5 211 Total 54 129

Table 1. Categories and samples of three datasets

OA =

∑C
i=1mii

N
, (16)

AA =

∑C
i=1

mii

mii

N
, (17)

KA =
N
∑C

i=1mii −
∑C

i=1mi+m+i

N2 −
∑C

i=1mi+m+i

. (18)

4.2 Influence Factors of the Experiments

4.2.1 Analysis of Sampling Proportion

The proportion of sampling is an important factor affecting the training model.
Indian Pines dataset was taken as a case. We exacted samples as training set at the
ratio of 5 %, 10 %, 15 %, 20 %, 25 %, and 30 %. We tested three methods including
SVM, Autoencoder, and general LSTM, on the above six cases. The experimental
results are shown in Figure 5. It illustrates the changes in the accuracy over the
proportion from 5 % to 30 %. The increasement of SVM and Autoencoder methods
become slow gradually. However, LSTM seems to have a large increase to promote.
This shows that LSTM is more dependent on sample size. This is consistent with
the fact that deep learning requires a large number of training samples. In order to

Deep LSTM with Guided Filter for Hyperspectral Image Classification 983

accommodate less labeled samples, we choose 10 % as the experimental ratio in this
paper.

Figure 5. Analysis of sampling proportion in Indian Pines

4.2.2 Analysis on the Number of Hidden Layer Nodes and Iterations

How many iterations does the LSTM model need to reach a stable state? What is
the number of hidden nodes to achieve the best classification accuracy? Experiments
are done on three datasets. The number of hidden layer nodes are set by 100, 150,
200, 250, and 300, respectively. The results of LSTM with different hidden nodes on
three datasets are shown in Figure 6. We can see from the chart, when the number
of nodes is 200, the accuracy is the best on Indian Pines dataset. For Kennedy
Space Center (KSC) dataset, the number of hidden nodes is 150 for the best result.
Salinas dataset choose 200 hidden nodes for our experiment, which is not affected
by the number of hidden nodes.

Figure 6. Accuracy of LSTM with different nodes on three datasets

The results of LSTM with different hidden nodes on Indian Pines are shown
in Figure 7. It is clear that the accuracy grows sharply for the first one thousand

984 Y. Guo, F. Qu, Z. Yu, Q. Yu

iterations. They get stable after three thousand iterations. So, we set the number
of iterations to 3 × 103 in the following experiments. Surprisingly, we found that
the less nodes the hidden layer has, the slower the initial growth rate is, which is
different from our expectations. Another finding is that the network structure with
fewer nodes is more prone to underfitting and is more unstable than that with more
nodes.

Figure 7. Accuracy of LSTM with different nodes on three datasets

4.3 Experimental Results

To examine the effectiveness of our proposed methods, we do experiments on three
widely used datasets. Ten percent of the dataset is taken as training set, and the
remaining 90 % as the test set. In this section, the proposed methods are compared
with two widely used classification methods, SVM [20] and autoencoder [3], which
are typical examples of traditional methods and deep learning methods, respectively.

4.3.1 Experiment on Indian Pines Dataset

Parameter Settings. In this experiment, we use libSVM2 designed by Lin [6].
The libSVM has two mainly parameters C and g to be set. The C and g are
determined by cross validation. C changes from 10−2 to 104, g ranges from 2−1 to 24.
The parameters of SVM are set by the same way in the following two experiments.

The Autoencoder 3 is based on radius r and regularization parameter ε. Radius r
is used to express the range of smooth. ε is used to control the degree of smooth.
We set r = 3 and ε = 0.001 in this paper. It has the same settings on next two
experiments. So, we do not represent them anymore in the following sections.

LSTM, RG-LSTM and GF-LSTM has the same network structure in our experi-
ments. They have three layers, including input layer, hidden layer and output layer,

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm
3 https://github.com/hantek/deeplearn_hsi

http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/hantek/deeplearn_hsi

Deep LSTM with Guided Filter for Hyperspectral Image Classification 985

which are set to 5, 200, and 16, respectively. The step of LSTM is 40. The number
of training is set to 5× 103. RG-LSTM and GF-LSTM have two extra parameters.
They are weight coefficient θ and regularization coefficient λ, which are set to 10−2

and 10−3, respectively. Besides, radius r and regularization parameter ε of guided
filter are two important parameters for GF-LSTM. In our previous work [14], the
performance of methods is the best when radius r is set to 3 on Indian Pines. In
this experiment, we set r = 3 and ε = 10−3.

Experimental Results. To evaluate our methods, we compared the performance
of the methods using the quantitative index of OA, AA and KA. The detailed per-
formance of these methods is shown in Table 2. It can be seen from Table 2 that the
OA results of SVM and Autoencoder are better than LSTM by 4 %. LSTM with
regularization and weight (RG-LSTM) has improved the classification accuracy of
LSTM, which is better than SVM and Autoencoder. Obviously, LSTM with guided
filter (GF-LSTM) outperforms all the above methods on all the indexes. Especially
in the OA index, GF-LSTM reaches 90.15 %, which is 10 % higher than other meth-
ods. Also, overall classification maps of different methods are illustrated in Figure 8.
It can be seen from this figure that the proposed methods (RG-LSTM, GF-LSTM)
achieve better classification performance than other compared approaches. Besides,
the classification results of C9 are poor, especially with Autoencoder. That is be-
cause the sample size of C9 is only 20. This explains that sample size has a greater
impact on Autoencoder.

For all the methods, the value of OA is higher than that of AA, which means
that the class with large samples has a better performance than that with small
samples. This problem is more serious in the LSTM. Compared the LSTM, RG-
LSTM and GF-LSTM are improved by regularization strategy, which has partly
solved the problem of unbalance.

a) Ground truth b) SVM c) Autoencoder d) LSTM e) RG-LSTM f) GF-LSTM

Figure 8. Qualitative results on Indian Pines dataset

4.3.2 Experiment on KSC Dataset

Parameter Settings. For this dataset, there are 4 layers for Autoencoder in-
cluding two hidden layers. Each hidden layer has 60 nodes. The iteration of pre-
training is set to 33× 102. Compared to Indian Pines, the hidden layer is reduced,
and the iteration is increased. That is because there are too few samples of KSC

986 Y. Guo, F. Qu, Z. Yu, Q. Yu

SVM Autoencoder LSTM RG-LSTM GF-LSTM

C1 83.33 70.52 60.71 76.92 91.30
C2 76.34 74.50 66.53 70.44 84.95
C3 71.73 70.17 73.31 78.14 86.84
C4 48.68 53.77 47.49 50.90 64.63
C5 87.38 85.05 82.34 79.86 90.61
C6 95.06 95.50 89.45 93.05 99.23
C7 86.66 90.00 80.00 68.75 74.71
C8 99.02 95.62 98.75 99.74 100.00
C9 52.63 30.56 52.63 48.57 51.67
C10 75.38 79.41 67.71 74.01 86.00
C11 83.97 69.16 77.56 89.75 93.00
C12 71.12 87.36 69.23 77.33 76.96
C13 93.75 93.07 87.66 88.44 95.59
C14 94.26 94.83 95.22 90.95 98.36
C15 59.77 88.73 55.58 73.23 85.24
C16 86.79 77.48 73.02 91.67 88.00

OA 81.01 81.48 77.02 81.76 90.15
AA 79.12 78.94 74.46 77.99 87.19
KA 78.29 77.29 74.20 79.17 88.24

Table 2. Classification accuracy of methods on the Indian Pines dataset (%)

dataset. Other parameters of Autoencoder are the same as the previous experi-
ment.

For LSTM model, we set three layers to train, input layer, hidden layer and
output layer. The size of hidden layer is 150, and the input size is 5. The size of
time step in the KSC dataset is 35. That is, how many times it carries out the
forecast. For the RG-LSTM and GF-LSTM, we set coefficient of the regularization
λ = 10−4, and weight coefficient θ = 10−2. The other settings are the same as the
previous experiment.

Experimental Results. The KSC dataset only has about 5 thousand samples.
This makes the results different from the previous experiment. The qualitative
results are indicated in Figure 9. The results of different methods are shown in
Table 3. It can be seen from Table 3, comparing the OA results of SVM, Au-
toencoder and LSTM, SVM is the best, followed by LSTM, and Autoencoder is
the worst, which is 10 % worse than the other two methods. It can be attributed
to the small sample size, which makes Autoencoder not fully trained. However,
SVM is more suitable for small sample classification. The improved LSTM (RG-
LSTM, GF-LSTM) is better than the first three method at OA, AA, and KA.
In particular, OA of GF-LSTM increases by 10 % compared with other methods.
All these prove that our proposed methods are very effective for HSI classifica-
tion.

Deep LSTM with Guided Filter for Hyperspectral Image Classification 987

Comparing OA and AA for all the methods, we can see that the gap of Au-
toencoder is the biggest, which means that Autoencoder is greatly affected by the
sample size and sample imbalance. LSTM is less affected by sample imbalance than
SVM and Autoencoder. Let us take a look at the classification results of C7, which
has the least samples. Autoencoder only has an accuracy about 10.47 %, and LSTM
has an accuracy about 57.94 %. With regluarization and weighted cost function, the
accuracy of C7 upgrades to 78.79 % by RG-LSTM. Then, with the guided filter, the
accuracy is up to 100 % by GF-LSTM, which effectively solves the small size and
imbalance of the samples.

a) Ground truth b) SVM c) Autoencoder

d) LSTM e) RG-LSTM f) GF-LSTM

Figure 9. Qualitative results on KSC dataset

4.3.3 Experiment on Salina Dataset

Parameter Settings. For this dataset, there are still 6 layers for Autoencoder as
Indian Pines has. Each hidden layer has 60 nodes. Other parameters of Autoencoder
are the same as the previous experiment in Indian Pines dataset.

For LSTM model, we set three layers to train, input layer, hidden layer and
output layer. The size of hidden layer is 200, and the input size is 5. The size
of time step is 40. That is, how many times it carries out the forecast. We set
coefficient of the regularization λ = 10−4, and weight item θ = −1× 10−2.

Experimental Results. The last experiment is performed on the Salinas dataset,
which is the biggest one we have chosen. The qualitative results are shown in

988 Y. Guo, F. Qu, Z. Yu, Q. Yu

SVM Autoencoder LSTM RG-LSTM GF-LSTM

C1 95.59 89.49 90.43 100.00 100.00
C2 73.39 72.94 74.76 71.30 87.20
C3 92.23 27.15 80.08 78.91 98.48
C4 65.47 21.12 61.85 73.10 82.72
C5 76.24 43.38 66.67 72.85 84.03
C6 58.76 24.60 61.39 75.01 97.41
C7 64.58 10.47 57.94 78.79 100.00
C8 79.30 61.92 83.62 90.34 95.58
C9 84.01 78.40 87.91 98.01 100.00
C10 96.87 76.35 83.25 84.87 89.69
C11 85.45 98.90 93.28 94.92 96.41
C12 92.09 58.88 87.78 87.33 90.53
C13 100.0 99.75 98.86 95.87 99.66

OA 87.38 71.86 86.06 88.46 95.48
AA 81.84 58.72 84.37 85.12 93.98
KA 85.87 68.51 79.06 87.08 94.94

Table 3. Classification accuracy of methods on the KSC dataset (%)

Figure 10. It is apparent from this figure that the GF-LSTM obtains the best
results, which has the fewest noise points. The detailed results are illustrated in
Table 4. All the methods perform well on this dataset. The worst is about 87.4 %
by Autoencoder. The OA results of LSTM, RG-LSTM, GF-LSTM are all over 90 %,
especially GF-LSTM reaches 98.15 %, outperforming other methods greatly. It can
be seen that LSTM with guided filter can significantly improve the classification
accuracy.

Comparing AA and OA, we see interesting phenomena that the results of AA are
higher than those of OA, which is different from the previous two experiments. This
means that when the sample size reaches a certain extent, increasing the sample
does not improve the classification accuracy. The gap between AA and OA for
Autoencoder is bigger than with other methods. Maybe the number of samples
is the main influence factor of Autoencoder. LSTM has better robustness than
SVM and Autoencoder. LSTM with regularization (RG-LSTM) can improve the
imbalance to some extent. Then, LSTM with guided filter, the results are further
improved, whose OA and AA are consistent. Take C8 for example, which is the
biggest category, the accuracy is 79.47 % by LSTM. However, the accuracy is up
to 88.25 % by RG-LSTM (with regluarization and weighted cost function), and the
accuracy reach the highest 97.75 % by GF-LSTM (with guided filter).

From the three experiments we can reach the conclusion that Autoencoder is
greatly affected by the sample size. It cannot obtain good results if the size is too
large or too small. SVM and LSTM have better robustness. LSTM performs better
than SVM on big dataset. RG-LSTM solves the problem of small size and unbal-
ance of samples to a certain extent. GF-LSTM outperforms all the methods at all

Deep LSTM with Guided Filter for Hyperspectral Image Classification 989

a) Ground truth b) SVM c) Autoencoder d) LSTM e) RG-LSTM f) GF-LSTM

Figure 10. Qualitative results on Salinas dataset

the datasets for all indexes. So, GF-LSTM is an effective way to HSI classifica-
tion.

SVM Autoencoder LSTM RG-LSTM GF-LSTM

C1 99.94 99.27 99.34 100.00 100.00
C2 99.24 99.75 99.17 100.00 99.85
C3 92.16 95.36 98.49 98.34 99.70
C4 97.22 99.58 99.15 97.77 99.33
C5 98.62 94.67 99.44 99.53 99.32
C6 100.0 99.97 99.86 99.97 99.86
C7 98.93 99.80 99.14 99.20 99.23
C8 80.13 97.13 79.47 88.25 97.75
C9 99.54 99.94 98.95 98.98 99.91
C10 84.39 94.77 96.36 98.67 99.01
C11 85.38 92.03 96.29 97.32 99.59
C12 96.35 100.00 98.45 99.09 99.94
C13 94.97 99.87 95.24 95.00 100.00
C14 94.20 95.63 91.28 96.68 96.31
C15 63.83 18.38 70.67 75.76 93.37
C16 96.15 97.61 94.80 95.38 96.45

OA 88.09 87.40 90.30 91.88 98.15
AA 92.57 92.74 94.76 96.23 98.72
KA 86.65 85.85 89.09 90.89 97.93

Table 4. Classification accuracy of methods on the Salinas dataset (%)

990 Y. Guo, F. Qu, Z. Yu, Q. Yu

4.3.4 Analysis of Time Cost

In order to compare time cost with the same platform, we reproduced SVM and
Autoencoder methods for three datasets. We take the average running time of five
times as the time cost, and the results are shown in Table 5. We can see that the
running time of LSTM and its improved models are more expensive than SVM and
Autoencoder on Indian Pines. For other datasets, LSTM and its improved models
are better than SVM on running time cost. Although time cost of Autoencoder is
the best, the classification accuracy is the worst. SVM is more sensitive to the size
of data, and its running cost will rise rapidly when the amount of data increases.
Autoencoder, LSTM, RG-LSTM and GF-LSTM are not particularly sensitive to
data size, which is mainly affected by the number of model parameters.

SVM Autoencoder LSTM RG-LSTM GF-LSTM

Indian Pines 4.011 0.234 4.4548 4.4098 4.4706
KSC 28.507 1.517 1.5554 1.5748 1.5868
Salinas 38.464 0.928 22.5939 23.6033 23.2382

Table 5. Time cost of methods on three datasets

5 CONCLUSION

We proposed a guided filter based LSTM model for HSI classification, under the as-
sumption that the spectral data can be regarded as an ordered sequence. To tackle
the problem of unbalance and limited labeled samples, we introduce weighted cost
function and regularization strategy. Compared with SVM classifier and Autoen-
coder model, the proposed model could achieve higher accuracy at all the experi-
mental datasets, with a 10 % samples to train.

Our work is an exploration of using LSTM for HSI classification. The modeling
of HSI classification by LSTM can be a useful reference for further research. It is
noteworthy that we only take into account the spectral data in this paper, therefore,
some spatial-spectral techniques can be employed to improve the LSTM model for
classification in the future.

Acknowledgements

This research was funded by the Science and Technology Project for the Universi-
ties of Shandong Province (grant No. J18KB171), Open Research Fund of Shandong
Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong
Center for Disease Control and Prevention (grant No. 2017KEYLAB01), Shandong
Women’s University High Level Scientific Research Project Cultivation Fund (grants
No. 2020GSPGJ08 and 2019GSPGJ07), Discipline Talent Team Cultivation Pro-
gram of Shandong Women’s University (grant No. 1904).

Deep LSTM with Guided Filter for Hyperspectral Image Classification 991

REFERENCES

[1] Bioucas-Dias, J. M.—Nascimento, J. M. P.: Hyperspectral Subspace Identifica-
tion. IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 2008, No. 8,
pp. 2435–2445, doi: 10.1109/tgrs.2008.918089.

[2] Chen, Y.—Jiang, H.—Li, C.—Jia, X.—Ghamisi, P.: Deep Feature Extrac-
tion and Classification of Hyperspectral Images Based on Convolutional Neural Net-
works. IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 2016, No. 10,
pp. 6232–6251, doi: 10.1109/tgrs.2016.2584107.

[3] Chen, Y.—Lin, Z.—Zhao, X.—Wang, G.—Gu, Y.: Deep Learning-Based Clas-
sification of Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, Vol. 7, 2014, No. 6, pp. 2094–2107, doi: 10.1109/js-
tars.2014.2329330.

[4] Chen, Y.—Nasrabadi, N. M.—Tran, T. D.: Hyperspectral Image Classification
via Kernel Sparse Representation. IEEE Transactions on Geoscience and Remote
Sensing, Vol. 51, 2013, No. 1, pp. 217–231, doi: 10.1109/TGRS.2012.2201730.

[5] Chen, Y.—Zhao, X.—Jia, X.: Spectral-Spatial Classification of Hyperspectral
Data Based on Deep Belief Network. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, Vol. 8, 2015, No. 6, pp. 2381–2392, doi:
10.1109/TGRS.2012.2201730.

[6] Chang, C. C.—Lin, C. J.: LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology, Vol. 2, 2011, No. 3, Art. No. 27,
doi: 10.1145/1961189.1961199.

[7] Dalponte, M.—Ørka, H. O.—Gobakken, T.—Gianelle, D.—Næsset, E.:
Tree Species Classification in Boreal Forests with Hyperspectral Data. IEEE Trans-
actions on Geoscience and Remote Sensing, Vol. 51, 2013, No. 5, pp. 2632–2645, doi:
10.1109/TGRS.2012.2216272.

[8] Fauvel, M.—Chanussot, J.—Benediktsson, J. A.: Kernel Principal Compo-
nent Analysis for the Classification of Hyperspectral Remote Sensing Data over
Urban Areas. EURASIP Journal on Advances in Signal Processing, Vol. 1, 2009,
Art. No. 783194, doi: 10.1155/2009/783194.

[9] Feng, J.—Jiao, L. C.—Zhang, X.—Sun, T.: Hyperspectral Band Selection
Based on Trivariate Mutual Information and Clonal Selection. IEEE Transactions
on Geoscience and Remote Sensing, Vol. 52, 2014, No. 7, pp. 4092–4105, doi:
10.1109/tgrs.2013.2279591.

[10] Hastie, T.—Tibshirani, R.—Friedman, J.: The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Vol. 1, Springer Series in Statistics, New
York, 2001.

[11] Graves, A.: Supervised Sequence Labelling. Supervised Sequence Labelling with
Recurrent Neural Networks. Springer, Berlin, Heidelberg, Studies in Computational
Intelligence, Vol. 385, 2012, pp. 5–13, doi: 10.1007/978-3-642-24797-2 2.

[12] Graves, A.—Mohamed, A.-r.—Hinton, G.: Speech Recognition with Deep
Recurrent Neural Networks. 2013 IEEE International Conference on Acoustics,

https://doi.org/10.1109/tgrs.2008.918089
https://doi.org/10.1109/tgrs.2016.2584107
https://doi.org/10.1109/jstars.2014.2329330
https://doi.org/10.1109/jstars.2014.2329330
https://doi.org/10.1109/TGRS.2012.2201730
https://doi.org/10.1109/TGRS.2012.2201730
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1109/TGRS.2012.2216272
https://doi.org/10.1155/2009/783194
https://doi.org/10.1109/tgrs.2013.2279591
https://doi.org/10.1007/978-3-642-24797-2_2

992 Y. Guo, F. Qu, Z. Yu, Q. Yu

Speech and Signal Processing, Vancouver, BC, Canada, 2013, pp. 6645–6649, doi:
10.1109/icassp.2013.6638947.

[13] Gregor, K.—Danihelka, I.—Graves, A.—Rezende, D. J.—Wierstra, D.:
DRAW: A Recurrent Neural Network for Image Generation. arXiv preprint
arXiv:1502.04623, 2015.

[14] Guo, Y.—Cao, H.—Han, S.—Sun, Y.—Bai, Y.: Spectral-Spatial Hyperspectral
Image Classification with k-Nearest Neighbor and Guided Filter. IEEE Access, Vol. 6,
2018, pp. 18582–18591, doi: 10.1109/access.2018.2820043.

[15] He, K.—Sun, J.—Tang, X.: Guided Image Filtering. In: Daniilidis, K., Mara-
gos, P., Paragios, N. (Eds.): Computer Vision – ECCV 2010. Springer, Berlin, Heidel-
berg, Lecture Notes in Computer Science, Vol. 6311, 2010, pp. 1–14, doi: 10.1007/978-
3-642-15549-9 1.

[16] Hinton, G. E.—Salakhutdinov, R. R.: Reducing the Dimensionality of Data
with Neural Networks. Science, Vol. 313, 2006, No. 5786, pp. 504–507, doi:
10.1126/science.1127647.

[17] Hu, W.—Huang, Y.—Wei, L.—Zhang, F.—Li, H.: Deep Convolutional Neural
Networks for Hyperspectral Image Classification. Journal of Sensors, Vol. 2015, 2015,
Art. No. 258619, doi: 10.1155/2015/258619.

[18] Hughes, G.: On the Mean Accuracy of Statistical Pattern Recognizers. IEEE
Transactions on Information Theory, Vol. 14, 1968, No. 1, pp. 55–63, doi:
10.1109/tit.1968.1054102.

[19] Ma, L.—Crawford, M. M.—Tian, J.: Local Manifold Learning-Based k-Nearest-
Neighbor for Hyperspectral Image Classification. IEEE Transactions on Geo-
science and Remote Sensing, Vol. 48, 2010, No. 11, pp. 4099–4109, doi:
10.1109/tgrs.2010.2055876.

[20] Melgani, F.—Bruzzone, L.: Classification of Hyperspectral Remote Sensing Im-
ages with Support Vector Machines. IEEE Transactions on Geoscience and Remote
Sensing, Vol. 42, 2004, No. 8, pp. 1778–1790, doi: 10.1109/TGRS.2004.831865.

[21] Mikolov, T.—Karafiát, M.—Burget, L.—Černocký, J.—Khudanpur, S.:
Recurrent Neural Network Based Language Model. Eleventh Annual Conference
of the International Speech Communication Association (INTERSPEECH 2010),
Makuhari, Chiba, Japan, 2010, pp. 1045–1048.

[22] Wang, J.—Chang, C.-I.: Independent Component Analysis-Based Dimensional-
ity Reduction with Applications in Hyperspectral Image Analysis. IEEE Transac-
tions on Geoscience and Remote Sensing, Vol. 44, 2006, No. 6, pp. 1586–1600, doi:
10.1109/tgrs.2005.863297.

https://doi.org/10.1109/icassp.2013.6638947
https://doi.org/10.1109/access.2018.2820043
https://doi.org/10.1007/978-3-642-15549-9_1
https://doi.org/10.1007/978-3-642-15549-9_1
https://doi.org/10.1126/science.1127647
https://doi.org/10.1155/2015/258619
https://doi.org/10.1109/tit.1968.1054102
https://doi.org/10.1109/tgrs.2010.2055876
https://doi.org/10.1109/TGRS.2004.831865
https://doi.org/10.1109/tgrs.2005.863297

Deep LSTM with Guided Filter for Hyperspectral Image Classification 993

Yanhui Guo received his B.Sc. degree in information manage-
ment and information system from the Xi’an University of Fi-
nance and Economics, Xi’an, China in 2006, and his M.Sc. de-
gree in computer software and theory from the Shaanxi Normal
University, Xi’an, China in 2009, then he received his Ph.D. de-
gree with the School of Computer Science of Shaanxi Normal
University in 2020. Since 2009, he has been with the School of
Information Technology, Shandong Women’s University, Jinan,
China, where he is currently Professor. His research interests
include computer vision and machine learning.

Fuli Qu received her Master’s degree in computational mathe-
matics at Shandong University. She is Assistant Professor at the
Institute of Data Science and Computing. Her research focuses
on numerical methods of differential equations. She published
her thesis at applied mathematics and mechanics.

Zhenmei Yu received her M.Sc. degree from the School of Man-
agement Science and Engineering at Shandong Normal Univer-
sity. She is now Professor at the School of Data and Computer
Science, Shandong Women’s University. Her main research in-
terests include machine learning and artificial intelligence.

Qian Yu is currently Associate Professor in the School of Data
and Computer Science, Shandong Women’s University, China.
She received her Ph.D. degree from the Department of Computer
Science of Nanjing University in 2020. Her research interests
include computer vision and medical image analysis.

Computing and Informatics, Vol. 39, 2020, 994–1021, doi: 10.31577/cai 2020 5 994

DETERMINING THE RELATIVE IMPORTANCE
OF PERSONALITY TRAITS IN INFLUENCING
SOFTWARE QUALITY AND TEAM PRODUCTIVITY

Nosheen Qamar

Department of Computer Science and Information Technology
University of Lahore
Lahore, Pakistan
&
Department of Computer Science
National University of Computer and Emerging Sciences
Lahore, Pakistan
e-mail: nosheen.qamar@cs.uol.edu.pk

Ali Afzal Malik

Department of Computer Science
National University of Computer and Emerging Sciences
Lahore, Pakistan
e-mail: ali.afzal@nu.edu.pk

Abstract. Software projects are almost always team efforts and successful projects
involve well-formed and well-composed teams. Past studies have revealed that per-
sonality contributes to effective team composition and, therefore, project success.
Yet despite its importance, only a couple of empirical studies have quantitatively
evaluated the impact of personality on software quality and team productivity. Our
previous study was an effort in this direction. In that study, we proposed a met-
ric called Team Homogeneity Index and evaluated its impact on software quality
and team productivity for two phases (implementation and testing) of the software
development life cycle. This study is a continuation of our previous work. In this
study, we replicate our experiment on three different phases of software development
life cycle (i.e. analysis and design, implementation, and testing). We also determine
the weights for all five personality traits using input from the industry and propose

Determining the Relative Importance of Personality Traits . . . 995

an improved version of Team Homogeneity Index called Weighted Team Homogene-
ity Index. Finally, we conduct a comparative analysis of Team Homogeneity Index
and Weighted Team Homogeneity Index to determine whether weights assigned to
personality traits make any difference. Our findings reveal that weights do make
a difference and Weighted Team Homogeneity Index is more strongly correlated
than Team Homogeneity Index for almost all of the teams, especially those com-
posed of practitioners, in the three different phases of Software Development Life
Cycle.

Keywords: Personality traits, social aspects of software engineering, software de-
veloper, software quality, team homogeneity, team productivity

1 INTRODUCTION

The modern society progressively demands quality and productivity in all aspects of
life. In every field, including software development, people are ready to adopt new
approaches to improve product quality. Software quality refers to the degree to which
all attributes of a software system appropriately fulfill its requirements [15]. Software
development productivity, on the other hand, is defined as the functional value of
developed software in relation to the cost and labor consumed while developing that
software [43].

As reported by Pressman and Maxim [34], software is designed and developed
by the people for the people and maintains a connection between them. People are
considered as an important factor in influencing the success or failure of software
projects [6]. According to DeMarco and Lister, software projects fail mostly because
of incompetent teams [14].

Software teams depend on communication, negotiation, collaboration, and ad-
ministrative skills to make a project successful [6]. Therefore, appropriate compo-
sition of teams is crucial. However, despite the significance of team composition
most of the previous studies have focused on technical aspects instead of human,
personality, and psychological factors [24].

Only some researchers [6, 14, 24] have investigated the importance of human
factors in software development. Their investigations have focused on team members
and tasks performed by them to achieve a successful project. Past research [4, 9,
11] has demonstrated that a positive relation exists between personality and team
performance.

Personality is defined as attributes and characteristics which make an individual
unique [30]. It can be studied by using various popular personality models, such as
Myers-Briggs Type Indicator (MBTI) [28], Keirsey Temperament Sorter (KTS) [22],
and Five-Factor Model (FFM) also called “Big Five” model [26]. The first two mod-
els revolve around personality types while the third is based on personality traits
(i.e. human characteristics in diverse dimensions [28]). MBTI, a commonly used

996 N. Qamar, A.A. Malik

model, employs four components of a character, i.e. Sensing/Instinct, Extraver-
sion/Introversion, Judging/Perceiving, and Thinking/Feeling, while KTS uses four
temperaments namely Idealist, Guardian, Artisan, and Rational.

FFM quantifies character using the five personality traits described below [26]:

Openness: An individual with this trait is keen to explore new things and loves
creative ideas. In addition, he or she has the power to handle diverse situations
in the right manner.

Conscientiousness: Individuals with this trait think and plan everything consci-
entiously. They prefer to predict the situation and plan accordingly. Once they
plan their milestones, they stick to them with great effort and responsibility.

Extraversion: People with this trait are lively, energetic, cheerful, assertive, social,
and have extraordinary communication skills.

Agreeableness: People with this trait are trustworthy and have a warm frame of
mind. They are always ready to assist others and are of a kind heart.

Neuroticism: Individuals with this trait are inclined to get discouraged, stressed,
irritated, and disappointed more frequently.

A number of researchers have conducted qualitative analyses to evaluate the
impact of personality on project quality and team productivity [4, 6, 9, 11, 14, 24,
34, 46]. To the best of our knowledge, only two studies have quantitatively measured
the team personality and that too by using a measure of central tendency (i.e. mean)
which is not always considered a good representative of a dataset. Our previous
research [35] was the first study that quantified the notion of team homogeneity
using a measure of spread thereby taking data variation and dispersion into account.
In that research, we proposed a new metric called Team Homogeneity Index (THI).
We also conducted experiments to evaluate the impact of THI on software quality
and team productivity during the implementation and testing phases of SDLC.

The aim of this study is to extend our previous research by replicating our ex-
periment with more students in addition to engaging practitioners during software
analysis and design, implementation, and testing phases of SDLC to check whether
our previous results are generalizable. Furthermore, we have introduced an im-
proved version of THI called Weighted Team Homogeneity Index (WTHI) which
uses weights for each of the five personality traits. This improvement is in line with
previous research [4, 5, 8, 29] which shows that all traits are not equally important
for the software industry. These weights have been obtained by conducting a survey
of the Pakistani software industry. Moreover, we have performed a comparative
analysis of THI and WTHI with respect to their influence on software quality and
team productivity.

Our hypotheses for this research are:

HA0: THI will have no or rather negative relationship with team productivity.

HA1: Teams with higher values of THI will be more productive.

Determining the Relative Importance of Personality Traits . . . 997

HB0: THI will have no or negative relationship with the quality of software.

HB1: Teams with higher values of THI will produce better quality software.

HC0: WTHI will have no or negative relationship with team productivity.

HC1: Teams with higher values of WTHI will be more productive.

HD0: WTHI will have no or negative relationship with the quality of software.

HD1: Teams with higher values of WTHI will produce better quality software.

HE0: WTHI will be no better in predicting the productivity of teams than THI.

HE1: WTHI will be better in predicting productivity of teams than THI.

HF0: WTHI will be no better in predicting the quality of software than THI.

HF1: WTHI will be better in predicting the quality of software than THI.

The rest of this paper is structured as follows. Section 2 provides a brief summary
of related work. The process of determination of weights and calculation of WTHI
is described in Section 3. Section 4 describes the assessment criteria while Section 5
provides the details of our experiment. Section 6 discusses the results achieved and
Section 7 highlights the threats to the validity of our research. Major conclusions
and directions for future work are summarized in Section 8.

2 RELATED WORK

The influence of personality on software teams has been discussed several times in
various studies conducted in both industrial and academic environments. In these
studies, the main focus was on understanding how much personality influences the
performance of a team [4, 7, 9, 11, 13, 24]. The process of assembling a team
on the basis of the attributes of its members is known as team composition [25].
These attributes include their experience, demographics, expertise, and other factors
regarding their individual personalities [25].

It has been perceived that some individuals can be more productive than oth-
ers [27, 43]. Similarly, some team members contribute more to the quality of the
product as compared to other members. Therefore, it makes a lot of sense to focus
on how to create viable teams which can proficiently and effectively develop high
quality products [37, 46].

Findings from existing studies show that team composition considerably af-
fects the performance of a team [8]. Some studies recommend that a team should
comprise of different personality types to enhance the team’s performance [20, 32].
Other studies suggest that a team composed of the same personality types performs
better [23, 29].

Different studies have used different personality models to assess the personal-
ity of software development teams and have assessed the impact of personality on
software quality and team productivity. For example, Rutherfoord [38], Golra and
Lam [17], and Sfetsos et al. [42] used KTS as personality assessment tool. Their

998 N. Qamar, A.A. Malik

results indicated that diverse teams perform better because they communicated and
collaborated more as compared to homogeneous teams.

Capretz [10] conducted a survey involving 100 professionals using MBTI person-
ality model. Results revealed that people having diverse skills and personalities form
better teams. Peslak [31] also conducted a survey with 55 students. He concluded
that extraversion, thinking, and judging personality characteristics positively corre-
late with project success. Furhtermore, Karn et al. [21], Choi et al. [12], and Poonam
and Yasser [33] also used MBTI for personality assessment. Results of [21] revealed
that homogeneous teams proved to be highly cohesive and, hence, performed well
whereas the results of [12] indicated that the teams with diverse groups were more
productive than alike and apposite pair groups. [33] indicated that the performance
of pairs working remotely was affected by personality traits.

Walle and Hannay [45] conducted a survey with 88 professionals using FFM
personality model. Their results indicated that personality attributes contribute to
the collaboration of a team. Later, Salleh et al. [39, 41, 40] used FFM as personality
assessment tool in their experiments with 453 students. Their findings showed that
Conscientiousness and Neuroticism traits have no significant impact on students’
performance whereas a positive correlation was found between openness and teams’
performance. Yilmaz et al. [47] also conducted a survey involving 216 professionals.
They concluded that practitioners were found to be more extrovert and effective
teams were observed to be emotionally more stable.

Acuña et al. [4] calculated team personality by taking the average of personality
score of each team member. A positive correlation between the quality of software
product and extraversion was found. In 2015, Acuña et al. [5] repeated the same
experiment at a larger scale and the results of this experiment were the same as
of the first experiment [4]. Furthermore, a positive correlation between product
quality and high participative safety and task orientation climate perceptions was
observed.

Earlier, we conducted an empirical study [35] to assess the impact of our newly
proposed metric, THI, on software quality and team productivity. Our results re-
vealed that THI has a positive impact on different quality factors and team produc-
tivity for software implementation and testing phases of SDLC.

3 DETERMINATION OF WEIGHTS AND CALCULATION OF WTHI

As shown in Figure 1, determination of weights is now the first step of our research
methodology. To determine the weights of the five personality traits, we conducted
a survey [2] of the Pakistani software industry by engaging all members of the Pak-
istan Software Houses Association (P@sha). A total of 107 professionals belonging
to 49 different companies participated in our survey.

Figure 2 shows detailed information about the work experience, rank, and role of
these respondents. It also shows the commonly used software development process in
the respondent’s companies. Figure 2 a) shows that around 50 % of respondents had

Determining the Relative Importance of Personality Traits . . . 999

Figure 1. Research methodology (adapted from [35])

four or more years of work experience. This indicates that the input was given by
experienced professionals. Figure 2 b) reveals that more than 10 % of the respondents
held top management positions like CEO, vice president, and directors in their
respective companies. Around 40 % of respondents were playing the role of a team
lead or project manager (see Figure 2 c)). It is clear from Figure 2 d), that almost
half of the companies represented by these respondents were using Scrum.

Figure 3 shows the frequency of different weights on a scale of 1 to 5 with
1 being least important and 5 being most important provided by respondents for
each of the five personality traits. The final value of the weight for each personality
trait was calculated by using the arithmetic mean of the weights provided by the
respondents. These final values are shown in Figure 4. This figure shows that
Openness was considered the most important while Neuroticism was considered
the least important personality trait in influencing the software quality and team
productivity.

The quantification of THI is a six-step process. The quantification of WTHI
also follows the same steps except that it uses weights obtained from the industry
(see Figure 4). The complete quantification process is described in Table 1. Figure 5

1000 N. Qamar, A.A. Malik

a) Work experience b) Rank in company

c) Role in company d) Process model (commonly followed)

Figure 2. Survey respondents’ information

Figure 3. Frequency of weights for each personality trait

shows a detailed worked-out example of calculating WTHI for a five-members team
using these steps.

4 ASSESSMENT CRITERIA

4.1 Assessment Criteria for Analysis and Design Phase

Table 2 lists the criteria (adapted from [19]) used to evaluate the quality of the
analysis and design models produced by the teams. The quality of these models

Determining the Relative Importance of Personality Traits . . . 1001

Sr. Step Description

1 Identification and Normalization of
Personality Scores

Identification: 50-item test from
IPIP [16]
Normalization: Min-Max

2 Calculation of Individual Heterogene-
ity (find the heterogeneity between the
score of one team member and the
scores of all other team members)

H = |pk − qk|

where
H = Heterogeneity
pk = one team member
qk = other team member

3 Calculation of Overall Heterogeneity
(divide the sum of all the weighted
heterogeneity by the no. of traits)

For WTHI, actual weights (Fig-
ure 4) were used
For THI, a weight of 1 for all the traits
was used

OH = 1/n

(
n∑

k=1

wk|pk − qk|

)

where
OH = Overall Heterogeneity
n = total number of personality
traits
wk = weight of the kth trait

4 Calculation of Mean (divide the sum
of the overall heterogeneity for all the
member-pairs with the total number of
member-pairs)

Mean = (x1 +x2 +x3 + · · ·+xn)/m

where
x1, x2, . . . , xn = OH of all member-
pairs
m = all member pairs (i.e. 10)

5 Calculation of Mean Absolute Error
(MAE) (subtract the overall hetero-
geneity of each member-pair from the
mean)

MAE = 1/m

m∑
k=1

|mean− xk|

where
MAE = Mean Absolute Error
x1, x2, . . . , xn = OH of all member-
pairs
m = all member pairs (i.e. 10)

6 Calculation of (W)THI (subtract the
MAE from 1)
Homogeneity lies between 0 to 1 where
0 indicates no homogeneity and 1 indi-
cates that the team is 100 % homoge-
neous

(W)THI = 1−MAE

Table 1. Quantification process of THI and WTHI

1002 N. Qamar, A.A. Malik

Figure 4. Final weights for each personality trait

was assessed using 24 different factors (grouped under four different categories).
The productivity of teams was evaluated using the percentage completeness (using
6 factors) of the analysis and design documents.

4.2 Assessment Criteria for Implementation Phase

Four different quality factors were used to assess the quality of implemented projects
i.e. Defect Density, Weighted Sum of Bugs (WSB), Maintainability Index (MI), and
Cyclomatic Complexity (CC). The productivity of teams during this phase was de-
termined by taking the ratio of project completeness (weighted sum of implemented
features expressed as a percentage and effort taken to complete the project. The
detailed assessment criteria for implementation phase are provided in [35].

4.3 Assessment Criteria for Testing Phase

The quality of testing was assessed by looking at Defects Uncovered (number of
failed test cases), Architectural Coverage (features tested divided by total features
of the project), and Test Case Conformity ((correct test case attributes/total test
case attributes) ∗ 100) (adapted from [36]). The detailed criteria are given in [35].

5 EXPERIMENT

In order to assess the utility of THI and WTHI in predicting software quality and
team productivity, we performed a formal experiment in which software quality and

Determining the Relative Importance of Personality Traits . . . 1003

Figure 5. WTHI calculation example (adapted from [35])

team productivity were dependent variables while THI and WTHI were independent
variables. Different steps of our experiment (shown in Figure 1) are described below.

5.1 Subjects’ Selection

This experiment was carried out in both academic and industrial environments.
From the industry, 35 professionals (33 male and 2 female) participated in this
experiment while from the academia, a total of 215 BS (Computer Science) students
(197 male and 18 female) participated. This experiment was carried out in three
different phases of the SDLC, i.e. analysis and design, implementation, and testing.
50 students studying the “Software Engineering” course participated in the analysis
and design phase, 90 students enrolled in the “Web Engineering” course participated
in the implementation phase, and 75 students registered in the “Software Testing”
course took part in the testing phase. The professionals’ teams worked on all of the
above three phases of SDLC.

1004 N. Qamar, A.A. Malik

Categories Factors

Completeness Functionality
Model Abstraction
Missing Operations
Strange Relationships
Missing Classes and Attributes
Functions Parameters and their Data Types

Understandability Complexity
Easy to Read
Class, Attributes, and Operations Names
Relationships Names
Number of Classes, Operations, and Attributes
Extra Information

Correctness Correctness of Data Flow and Layout
Correctness of Entities
Correctness of Relationships
Correctness of Operations
Correctness of Sequences
Correctness of Classes
Correctness of Attributes
Conformance to the Standards

Layout Good Class Name
Neat or Chaotic Structure
Classes with Similar Size
Classes Hierarchy and Alignment
Distance between Classes
Line Style (Overlapping, Crossing, and Bend)

Use of Relationships
at Appropriate Places

Number of Associations
Number of Aggregations
Number of Generalizations
Number of Compositions

Table 2. Analysis and design teams’ quality assessment criteria

5.2 Projects’ Selection

For professionals, a relatively large project (Online Job Portal) was selected. For
students, a comparatively small project (My Shop) was chosen. These same projects
were used for all three phases of SDLC.

5.3 Teams’ Formation

There were five members in each team of both professionals and students. To keep
professionals’ teams similar, it was ensured that each team’s average experience
was between 3–4 years. It was also made sure that educational qualification of every

Determining the Relative Importance of Personality Traits . . . 1005

professional was a bachelors degree in computer science and his/her age was between
24 and 30 years.

To keep students’ teams similar, we formed their teams using three buckets of
CGPA (i.e. bucket A: 3.00–4.00, bucket B: 2.50–3.00, and bucket C: 2.00–2.50) in
such a way that each team consisted of one member from bucket A, two members
from bucket B, and two from bucket C. Besides this, it was ensured that no more than
one female was assigned to a team and no more than one member in a team had some
previous experience related to software development (e.g. internship, freelancing
etc.).

5.4 Identification of Personality Traits

Personality traits of all individuals were identified [1] using a 50-item five-factor
personality test from the International Personality Item Pool (IPIP) [16].

5.5 Calculation of THI and WTHI

Data obtained in the previous step was used and processed further to compute THI
and WTHI. The calculation process of THI and WTHI is explained in detail in [35]
and Section 3, respectively.

5.6 Teams’ Training

A total of ten training sessions were conducted. There were two types of sessions:
a 30-minutes session before the personality assessment test and a 3-hours session be-
fore the start of the actual experiment. Two of these ten training sessions were con-
ducted for professionals (one 30-minutes session and one 3-hours training session).
Four training sessions were conducted for implementation teams (two 30-minutes
sessions and two 3-hours sessions) as there were 90 subjects and to maintain the
quality of training sessions they were divided into two groups. Similarly, two ses-
sions (one 30-minutes and one 3-hours) were conducted for each of the analysis and
design and testing teams. The agenda of training sessions included explanation of
personality test, discussion on Software Requirements Specification (SRS) document
provided to teams, guidelines related to experiment, and tutorial of the Time Keeper
tool [3] used to record time.

5.7 Projects’ Execution

After the successful completion of all the training sessions, the Online Job Portal
project was handed over to professionals’ teams for performing analysis and design,
implementation, and testing. The My Shop project was given to “Software Engi-
neering” students for analysis and design, “Web Engineering” students for imple-
mentation, and “Software Testing” students for testing. The maximum time given

1006 N. Qamar, A.A. Malik

to professionals for all three phases combined was 8 weeks (each professional was
required to work maximum of 5–6 hours per week). An agreement was reached with
the associated software houses that they will have the ownership of the developed
projects and we will be allowed to use the project data/documents for research. In
the case of students, the time given for analysis and design and implementation of
the project was two and four weeks, respectively. Two working days were given for
testing.

6 RESULTS AND DISCUSSION

6.1 Analysis and Design Phase

Table 3 shows the details related to the analysis and design models created by the
teams. Column 5 contains the scores of models’ (class, entity-relationship, data flow,
activity, and sequence) overall understandability on a scale of 1 to 10, where 1 means
the model is very difficult to understand and 10 means the model is very easy to
understand. Overall understandability is calculated by taking the average of the
models’ individual understandability scores. Column 6 contains the models’ over-
all correctness scores where 1 denotes least correct and 10 represents most correct.
Overall correctness is calculated by averaging the models’ individual correctness
scores. Column 7 contains the models’ overall layout scores (obtained by averaging
the individual scores). Column 8 contains the average number of relationships (gen-
eralization, association, aggregation, and composition) used at appropriate places.
Productivity of analysis and design teams appears in the last column.

Figure 6 shows the impact of THI and WTHI on analysis and design teams’
models’ quality. Figures 6 a) and 6 b) depict the relationship between THI or WTHI
and understandability for both students’ and professionals’ teams. It can be seen
that the understandability scores get higher with an increase in the values of THI
and WTHI. This supports our hypotheses HB1 and HD1. WTHI seems to have
a stronger impact on understandability for students’ teams (supporting HF1) but,
for professionals’ teams, the impact of WTHI on understandability is not relatively
strong (HF0 cannot be rejected).

Figures 6 c), 6 d), 6 e) and 6 f) compare the impact of THI and WTHI on stu-
dents’ and professionals’ models’ correctness scores, layout scores, and appropriately
used relationships, respectively. The upward slopes of all trend-lines indicate that
correctness, layout and appropriately used relationships have a positive correlation
with THI and WTHI supporting our HB1 and HD1 hypotheses. Since WTHI has
a stronger impact on correctness, layout, and relationships (as compared to THI),
HF1 is also supported for both students’ and professionals’ teams.

Figure 7 a) displays scatter plots with trend-lines that depict the impact of
THI and WTHI on the productivity of students’ teams. Figure 7 b) shows the
same for professionals’ teams. The trend-lines clearly indicate that the teams with
greater THI and WTHI values were more productive. This supports our HA1 and
HC1 hypotheses. It is worth noting that, for professionals, WTHI has a stronger

Determining the Relative Importance of Personality Traits . . . 1007

a) Impact of THI and WTHI on understandability
(students)

b) Impact of THI and WTHI on understandability
(professionals)

c) Impact of THI and WTHI on correctness (stu-
dents)

d) Impact of THI and WTHI on correctness (pro-
fessionals)

e) Impact of THI and WTHI on layout (students) f) Impact of THI and WTHI on layout (profession-
als)

g) Impact of THI and WTHI on relationship (stu-
dents)

h) Impact of THI and WTHI on relationship (pro-
fessionals)

Figure 6. Impact of THI and WTHI on analysis and design teams

1008 N. Qamar, A.A. Malik

Sr. Teams THI WTHI Und Cor Lay AUR Prod

1 Stu Team 1 0.874 0.579 6.6 5.6 6.4 1.8 7.487

2 Stu Team 2 0.932 0.743 7.4 6.6 8.4 5.5 10.667

3 Stu Team 3 0.927 0.723 7.2 6.6 7.0 3.0 8.800

4 Stu Team 4 0.902 0.620 6.0 5.8 6.8 2.8 7.111

5 Stu Team 5 0.875 0.569 7.0 6.2 5.6 3.5 7.595

6 Stu Team 6 0.917 0.712 8.2 7.6 8.4 4.5 7.805

7 Stu Team 7 0.805 0.312 5.0 4.8 5.4 1.0 6.593

8 Stu Team 8 0.832 0.443 6.2 5.4 6.8 2.5 6.344

9 Stu Team 9 0.875 0.570 6.8 6.8 6.4 2.8 7.865

10 Stu Team 10 0.873 0.559 6.2 6.0 5.8 3.8 7.564

11 Pro Team 1 0.885 0.614 5.8 6.2 6.4 5.3 2.818

12 Pro Team 2 0.899 0.678 7.2 8.0 7.6 8.5 3.381

13 Pro Team 3 0.777 0.232 4.4 5.2 4.8 3.3 2.625

14 Pro Team 4 0.920 0.737 5.8 7.6 6.4 6.0 3.733

15 Pro Team 5 0.855 0.491 6.4 5.0 5.8 4.3 2.695

16 Pro Team 6 0.876 0.553 6.0 6.2 6.0 5.0 2.895

17 Pro Team 7 0.853 0.522 5.4 5.4 5.6 5.0 2.917

AUR = Appropriately Used Relationships, Cor = Correctness, Lay = Layout,
Prod = Productivity, Pro = Professionals, Stu = Students, Und = Understandability

Table 3. Results of analysis and design phase

positive relationship with productivity. This indicates the contribution of weights
assigned and supports the hypothesis HE1 for professionals. In the case of students,
hypothesis HE0 cannot be rejected.

a) Impact of THI and WTHI on productivity (stu-
dents)

b) Impact of THI and WTHI on productivity (pro-
fessionals)

Figure 7. Impact of THI and WTHI on analysis and design teams’ productivity

Determining the Relative Importance of Personality Traits . . . 1009

6.2 Implementation Phase

The results of the implementation phase also appear favorable. Table 4 provides
the data related to the quality of implemented projects and productivity of teams.
Weighted sum of bugs (WSB) is provided in column 5 and Defect Density is given
in column 6. Maintainability Index (MI) and Cyclomatic Complexity are provided
in the last two columns. The last two columns contain the values for productivity
and FP productivity of implementation teams.

Sr. Teams THI WTHI WSB DD MI CC P FP

1 Stu Team 1 0.932 0.743 48 0.009 73.330 2.3 0.47 0.96

2 Stu Team 2 0.863 0.501 98 0.023 78.235 1.7 0.37 0.68

3 Stu Team 3 0.906 0.673 64 0.013 61.235 1.5 0.35 0.79

4 Stu Team 4 0.849 0.464 99 0.025 53.255 2.6 0.30 0.58

5 Stu Team 5 0.893 0.620 89 0.028 63.425 1.7 0.32 0.48

6 Stu Team 6 0.891 0.613 70 0.020 67.036 2.5 0.30 0.50

7 Stu Team 7 0.872 0.552 92 0.041 45.651 1.6 0.32 0.30

8 Stu Team 8 0.908 0.675 58 0.016 43.392 2.8 0.40 0.52

9 Stu Team 9 0.833 0.426 140 0.057 60.424 3.9 0.25 0.35

10 Stu Team 10 0.889 0.609 97 0.043 47.235 2.3 0.38 0.34

11 Stu Team 11 0.863 0.508 93 0.043 64.936 2.6 0.36 0.36

12 Stu Team 12 0.895 0.649 91 0.026 55.456 2.2 0.37 0.67

13 Stu Team 13 0.900 0.696 85 0.026 76.253 1.9 0.33 0.46

14 Stu Team 14 0.866 0.511 91 0.026 61.436 1.6 0.33 0.50

15 Stu Team 15 0.919 0.655 87 0.023 77.219 1.5 0.29 0.56

16 Stu Team 16 0.847 0.440 114 0.075 57.945 2.5 0.26 0.24

17 Stu Team 17 0.932 0.782 91 0.016 79.548 2.3 0.41 0.85

18 Stu Team 18 0.785 0.232 146 0.062 52.235 4.5 0.21 0.337

19 Pro Team 1 0.885 0.614 131 0.016 72.050 4.8 0.31 0.95

20 Pro Team 2 0.899 0.678 123 0.013 78.820 4 0.43 0.95

21 Pro Team 3 0.777 0.232 156 0.021 66.040 5.6 0.28 0.74

22 Pro Team 4 0.920 0.737 106 0.012 85.670 2.6 0.42 0.95

23 Pro Team 5 0.855 0.491 173 0.020 77.890 4.9 0.28 0.92

24 Pro Team 6 0.876 0.553 133 0.016 69.390 4.7 0.29 0.90

25 Pro Team 7 0.853 0.522 138 0.016 76.650 4.9 0.29 0.91

CC = Cyclomatic Complexity, DD = Defect Density, Pro = Professionals,
MI = Maintainability Index, Stu = Students, WSB = Weighted Sum of Bugs,
P = Productivity, FP = Function Point Productivity

Table 4. Results of implementation phase

Figure 8 shows the impact of THI and WTHI on the quality of implemented
projects. Figures 8 a), 8 b), 8 c) and 8 d) depict the impact on the weighted sum of
bugs and defect density of implemented projects. The descending slopes of trend-
lines clearly support HB1 and HD1 and indicate that the teams with higher THI

1010 N. Qamar, A.A. Malik

and WTHI values developed software with lower weighted bugs and defect density.
It is also evident from these figures that HF1 is supported for professionals only.

The effects of THI and WTHI on maintainability index and cyclomatic complex-
ity are shown in Figures 8 e), 8 f), 8 g) and 8 h). The upward sloping trend-lines for
maintainability index and downward slopping trend-lines for cyclomatic complexity
indicate that the teams with greater THI and WTHI values developed projects with
greater maintainability and lower complexity. Hence, these figures support our HB1
and HD1 hypotheses. HF1, again, is supported for professionals only.

Figure 9 shows scatter plots with trend-lines that depict the relationship of THI
and WTHI with productivity and FP productivity. These upward sloping trend-
lines for productivity and FP productivity indicate that teams with higher values
of THI and WTHI are more productive. These findings support our HA1 and HC1
hypotheses. In the case of professionals’ teams only, R2 values for WTHI are greater
than those for THI for both FP productivity and productivity. Thus, hypothesis
HE1 is supported for professionals only.

6.3 Testing Phase

The details regarding the testing are presented in Table 5. Figure 10 shows the
impact of THI and WTHI on quality of testing. It is clear from these upward sloping
trend-lines in Figures 10 a) and 10 b) that THI and WTHI have a positive correlation
with architectural coverage. Hence, hypotheses HB1 and HD1 are supported for both
students’ and professionals’ teams. HF1 is supported for professionals’ teams only.

Figures 10 c), 10 d), 10 e) and 10 f) show scatter plots with associated trend-lines
that display the impact of THI and WTHI on total number of defects uncovered by
testing teams and conformity to provided test case template. Clearly, teams with
higher values of THI and WTHI uncovered more defects and followed the given
test case template more strictly. Hence, HB1 and HD1 are supported. HF1 is also
supported for both types of teams.

Figure 11 shows the relationships between THI and productivity and WTHI and
productivity of testing teams. It is clear from this figure that the teams with greater
THI and WTHI values appear more productive. These values support our HA1 and
HC1 hypotheses. In the case of professionals’ teams only, the R2 values for WTHI
are greater than those for THI. This shows that hypothesis HE1 is supported for
professionals’ teams only.

Our research focuses on the impact of team homogeneity (i.e. WTHI) on team
productivity and software quality. Our results imply that human factors (i.e. per-
sonality aspects or team homogeneity) should be taken into consideration while
assigning jobs to existing employees or hiring new personnel. WTHI can help the
software industry managers during the team composition process. Our results in-
dicate that teams with higher values of THI and WTHI are more productive and
produced better quality software. Our results also reveal that WTHI is more strongly
correlated with software quality and team productivity for professionals’ teams in
comparison with THI. The results of the industry survey conducted to determine

Determining the Relative Importance of Personality Traits . . . 1011

a) Impact of THI and WTHI on weighted sum of
bugs (students)

b) Impact of THI and WTHI on weighted sum of
bugs (professionals)

c) Impact of THI andWTHI on defect density (stu-
dents)

d) Impact of THI and WTHI on defect density
(professionals)

e) Impact of THI and WTHI on cyclomatic com-
plexity (students)

f) Impact of THI and WTHI on cyclomatic com-
plexity (professionals)

g) Impact of THI and WTHI on maintainability
index (students)

h) Impact of THI and WTHI on maintainability
index (professionals)

Figure 8. Impact of THI and WTHI on implemented projects’ quality

1012 N. Qamar, A.A. Malik

a) Impact of THI and WTHI on productivity (stu-
dents)

b) Impact of THI and WTHI on productivity (pro-
fessionals)

c) Impact of THI and WTHI on FP productivity
(students)

d) Impact of THI and WTHI on FP productivity
(professionals)

Figure 9. Impact of THI and WTHI on productivity of implementation teams

the weights of personality traits show that “Openness to Experience”, “Agreeable-
ness”, and “Conscientiousness” are the top three most important traits whereas the
“Neuroticism” is the least important trait.

6.4 Hypotheses Testing

We have investigated our null hypotheses based on one-way analysis of variance
(ANOVA) test [18] to analyze the significant difference between independent and
dependent variables for students’ and professionals’ teams. THI and WTHI are
our independent variables whereas different components of team productivity and
software quality are our dependent variables. A threshold p-value of 0.05 was
used.

Table 6 provides the details of the 60 hypothesis tests (30 for THI and 30 for
WTHI) we have conducted using the IBM SPSS tool [44] for different factors of
software quality and team productivity. It can be seen that in the case of pro-
ductivity during the analysis and design phase, the null hypothesis (HA0) can be
rejected for both students’ and professionals’ teams. For almost all of the quality
factors considered for analysis and design models, hypotheses (HB1 and HD1) can
be accepted. The only exception is understandability (for both THI and WTHI in
case of professionals). Similarly, for team productivity during the implementation

Determining the Relative Importance of Personality Traits . . . 1013

Sr. Teams THI WTHI AC DU TCC Prod

1 Stu Team 1 0.808 0.328 37.255 5 83.239 1.508

2 Stu Team 2 0.850 0.444 50.980 6 84.244 1.898

3 Stu Team 3 0.905 0.680 60.784 8 91.364 2.952

4 Stu Team 4 0.873 0.577 35.294 6 86.898 1.552

5 Stu Team 5 0.827 0.386 27.451 4 85.795 0.950

6 Stu Team 6 0.883 0.585 50.980 4 90.385 2.122

7 Stu Team 7 0.799 0.312 19.608 2 80.519 0.654

8 Stu Team 8 0.825 0.396 29.412 5 87.190 1.136

9 Stu Team 9 0.896 0.664 47.059 7 92.375 1.691

10 Stu Team 10 0.807 0.337 23.529 3 88.462 1.371

11 Stu Team 11 0.903 0.650 23.529 5 89.744 2.200

12 Stu Team 12 0.888 0.611 39.216 6 87.500 2.139

13 Stu Team 13 0.862 0.507 33.333 5 90.476 2.061

14 Stu Team 14 0.856 0.478 33.333 4 84.921 1.789

15 Stu Team 15 0.878 0.563 37.255 5 90.705 1.818

16 Pro Team 1 0.885 0.614 111.765 12 91.390 1.606

17 Pro Team 2 0.899 0.678 131.373 16 93.006 1.775

18 Pro Team 3 0.777 0.232 70.588 11 88.060 1.059

19 Pro Team 4 0.920 0.737 101.961 17 94.921 2.306

20 Pro Team 5 0.855 0.491 82.353 11 87.619 1.331

21 Pro Team 6 0.876 0.553 111.765 12 93.704 1.755

22 Pro Team 7 0.853 0.522 100.000 3 91.870 1.709

AC = Architectural Coverage , DU = Defects Uncovered , Pro = Professionals,
Prod = Productivity, TCC = Test Case Conformity, Stu = Students

Table 5. Results of testing phase

phase null hypothesis (HA0) is rejected for productivity and FP productivity in all
cases except for the productivity of professionals’ teams (for THI).

In case of quality factors during the implementation phase, we cannot reject
the null hypothesis HB0 only for the weighted sum of bugs (for THI in case of
professionals) and maintainability index (for both THI and WTHI). For the testing
phase, the results are more promising for both productivity and quality. The null
hypothesis cannot be rejected only for THI in the case of professionals’ teams’ defects
uncovered. Out of 60 tests, we are unable to reject the null hypotheses for just
8 cases. Furthermore, in 5 out of those 8 cases overall, null hypotheses are rejected
for only professionals’ teams for THI. This shows the importance of using weights
especially for professionals’ teams.

7 THREATS TO VALIDITY

Despite the fact that our results seem promising, some factors may threaten their
validity. First of all, in the case of students, subjects’ competence, intelligence,

1014 N. Qamar, A.A. Malik

a) Impact of THI and WTHI on architectural cov-
erage (students)

b) Impact of THI and WTHI on architectural cov-
erage (professionals)

c) Impact of THI and WTHI on defects uncovered
(students)

d) Impact of THI and WTHI on defects uncovered
(professionals)

e) Impact of THI and WTHI on test case (stu-
dents)

f) Impact of THI and WTHI on test case (profes-
sionals)

Figure 10. Impact of THI and WTHI on testing teams’ test cases’ quality

learning ability, degree of friendship, previous domain knowledge, programming ex-
perience, interest in programming, and gender can influence team’s productivity
and quality of projects. To avoid these threats, we formulated teams by making
three buckets of CGPA (I. 3 or above, II. 2.50 to 3.00, III. 2.00 to 2.50) and ran-
domly selected one member from bucket I and two members each from buckets II
and III. At most one member with some previous experience was part of a single
team. Also, there was no more than one female member in each team. Moreover,

Determining the Relative Importance of Personality Traits . . . 1015

a) Impact of THI and WTHI on productivity (stu-
dents)

b) Impact of THI and WTHI on productivity (pro-
fessionals)

Figure 11. Impact of THI and WTHI on productivity of testing teams

it was made sure that the average CGPA of teams was within a specific range (i.e.
2.50 to 2.80).

In the case of professionals, level of experience, academic qualifications, and
domain exposure can affect team productivity and project quality. These threats
were mitigated by making sure that every team member has a Bachelors degree in
Computer Science. Furthermore, the average experience of a team was kept between
3 to 4 years and no more than one female member was assigned to a team.

Last, but not the least, the selection of different projects for each iteration of
a specific phase of SDLC could have made our results incomparable. We avoided
this threat by selecting the same project for all iterations of the experiment for each
phase of SDLC. Moreover, using the same project for professionals as well as students
could have compromised team productivity and project quality. We eliminated this
threat by selecting a relatively more complex project for professionals. This helped
us in avoiding threats to external validity thereby making our results generalizable
to both academic and industrial environments.

8 CONCLUSIONS AND FUTURE WORK

In this research we introduced a new metric called WTHI (derived from THI). A sur-
vey was conducted in the Pakistani software industry and weights were determined
for all five personality factors. The impact of THI and WTHI was compared for
analysis and design, implementation, and testing phases of SDLC in academic and
industrial environments.

The results of this study reveal that teams with greater values of THI and WTHI
performed better in almost all the phases of SDLC. A positive correlation of team
productivity and software quality was observed with both THI and WTHI. These
results also indicate that, as compared to THI, WTHI is more strongly correlated
with team productivity and software quality for all the productivity and quality
factors in the case of teams comprising professionals.

1016 N. Qamar, A.A. Malik

Sr. Dependent Variables Sub F THI (Sig) F WTHI (Sig)

Analysis and Design Phase

1
Productivity

Stu 11.99 0.01 11.34 0.01
2 Pro 7.45 0.04 8.62 0.03

3
Understandability

Stu 13.45 0.01 20.43 0.00
4 Pro 5.37 0.07 5.11 0.07

5
Correctness

Stu 12.79 0.01 15.90 0.00
6 Pro 7.11 0.04 7.96 0.04

7
Layout

Stu 8.83 0.02 9.69 0.01
8 Pro 10.58 0.02 11.92 0.02

9
Relationships

Stu 10.00 0.01 11.25 0.01
10 Pro 5.53 0.05 6.83 0.04

Implementation Phase

11
Productivity

Stu 24.33 0.00 26.21 0.00
12 Pro 5.02 0.08 6.12 0.05

13
FP Productivity

Stu 11.48 0.00 11.01 0.00
14 Pro 25.69 0.00 28.05 0.00

15
Weighted Sum of Bugs

Stu 38.01 0.00 31.79 0.00
16 Pro 5.68 0.06 6.58 0.05

17
Defect Density

Stu 23.80 0.00 23.00 0.00
18 Pro 17.86 0.01 23.36 0.00

19
Cyclomatic Complexity

Stu 11.97 0.00 9.84 0.01
20 Pro 11.02 0.02 11.27 0.02

21
Maintainability Index

Stu 3.06 0.10 2.68 0.12
22 Pro 5.92 0.06 6.68 0.05

Testing Phase

23
Productivity

Stu 24.92 0.00 20.39 0.00
24 Pro 17.87 0.01 19.23 0.01

25
Architectural Coverage

Stu 17.25 0.00 15.18 0.00
26 Pro 7.39 0.04 8.27 0.03

27
Defects Uncovered

Stu 12.61 0.00 13.65 0.00
28 Pro 5.79 0.06 7.26 0.04

29
Test Case confirmity

Stu 15.98 0.00 17.82 0.00
30 Pro 7.98 0.04 8.32 0.03

Sig. = Significance of F or p-value, Sub = Subject, Pro = Pro, Stu = Students

Table 6. Results of ANOVA tests

Future work in this direction may focus on evaluating the impact of WTHI on
other phases of SDLC such as requirements engineering and maintenance. It would
also be interesting to replicate this experiment using more complex projects and
larger team sizes (i.e. more than five members in a team). Last, but not the least,
other personality models (e.g. MBTI, KTS, etc.) may also be used to determine
team homogeneity.

Determining the Relative Importance of Personality Traits . . . 1017

REFERENCES

[1] Personality Test Based on Five Factor Model.

[2] A Study on Personality Traits’ Rating.

[3] Time Keeper.

[4] Acuña, S. T.—Gómez, M.—Juristo, N.: How Do Personality, Team Pro-
cesses and Task Characteristics Relate to Job Satisfaction and Software Quality?
Information and Software Technology, Vol. 51, 2009, No. 3, pp. 627–639, doi:
10.1016/j.infsof.2008.08.006.

[5] Acuña, S. T.—Gómez, M. N.—Hannay, J. E.—Juristo, N.—Pfahl, D.: Are
Team Personality and Climate Related to Satisfaction and Software Quality? Ag-
gregating Results from a Twice Replicated Experiment. Information and Software
Technology, Vol. 57, 2015, pp. 141–156, doi: 10.1016/j.infsof.2014.09.002.

[6] Acuña, S. T.—Juristo, N.: Assigning People to Roles in Software Projects.
Software: Practice and Experience, Vol. 34, 2004, No. 7, pp. 675–696, doi:
10.1002/spe.586.

[7] Barroso, A. S.—Madureira, J. S.—Soares, M. S.—do Nascimento,
R. P. C.: Influence of Human Personality in Software Engineering – A Systematic
Literature Review. Proceedings of the 19th International Conference on Enterprise In-
formation Systems (ICEIS), 2017, Vol. 1, pp. 53–62, doi: 10.5220/0006292000530062.

[8] Bell, S. T.: Deep-Level Composition Variables as Predictors of Team Performance:
A Meta-Analysis. Journal of Applied Psychology, Vol. 92, 2007, No. 3, pp. 595–612,
doi: 10.1037/0021-9010.92.3.595.

[9] Bradley, J. H.—Hebert, F. J.: The Effect of Personality Type on Team Perfor-
mance. Journal of Management Development, Vol. 16, 1997, No. 5, pp. 337–353, doi:
10.1108/02621719710174525.

[10] Capretz, L. F.: Personality Types in Software Engineering. International Journal
of Human-Computer Studies, Vol. 58, 2003, No. 2, pp. 207–214, doi: 10.1016/s1071-
5819(02)00137-4.

[11] Capretz, L. F.—Ahmed, F.: Making Sense of Software Development and Personal-
ity Types. IT Professional, Vol. 12, 2010, No. 1, pp. 6–13, doi: 10.1109/mitp.2010.33.

[12] Choi, K. S.—Deek, F. P.—Im, I.: Exploring the Underlying Aspects of Pair Pro-
gramming: The Impact of Personality. Information and Software Technology, Vol. 50,
2000, No. 11, pp. 1114–1126, doi: 10.1016/j.infsof.2007.11.002.

[13] Cruz, S.—da Silva, F. Q. B.—Capretz, L. F.: Forty Years of Research on Per-
sonality in Software Engineering: A Mapping Study. Computers in Human Behavior,
Vol. 46, 2015, pp. 94–113, doi: 10.1016/j.chb.2014.12.008.

[14] DeMarco, T.—Lister, T.: Peopleware: Productive Projects and Teams. Third
Edition. Addison-Wesley, 2013.

[15] Galin, D.: Software Quality Assurance: From Theory to Implementation. Pearson
Education India, 2004.

[16] Goldberg, L. R.—Johnson, J. A.—Eber, H. W.—Hogan, R.—
Ashton, M. C.—Cloninger, C. R.—Gough, H. G.: The International
Personality Item Pool and the Future of Public-Domain Personality Mea-

https://doi.org/10.1016/j.infsof.2008.08.006
https://doi.org/10.1016/j.infsof.2014.09.002
https://doi.org/10.1002/spe.586
https://doi.org/10.5220/0006292000530062
https://doi.org/10.1037/0021-9010.92.3.595
https://doi.org/10.1108/02621719710174525
https://doi.org/10.1016/s1071-5819(02)00137-4
https://doi.org/10.1016/s1071-5819(02)00137-4
https://doi.org/10.1109/mitp.2010.33
https://doi.org/10.1016/j.infsof.2007.11.002
https://doi.org/10.1016/j.chb.2014.12.008

1018 N. Qamar, A.A. Malik

sures. Journal of Research in Personality, Vol. 40, 2006, No. 1, pp. 84–96, doi:
10.1016/j.jrp.2005.08.007.

[17] Gorla, N.—Lam, Y. W.: Who Should Work with Whom? Building Effective Soft-
ware Project Teams. Communications of the ACM, Vol. 47, 2004, No. 6, pp. 79–82,
doi: 10.1145/990680.990684.

[18] James, G.—Witten, D.—Hastie, T.—Tibshirani, R.: An Introduction to
Statistical Learning. Springer Texts in Statistics Book Series, Vol. 103, 2013, doi:
10.1007/978-1-4614-7138-7.

[19] Karasneh, B.—Stikkolorum, D.—Larios, E.—Chaudron, M.: Quality As-
sessment of UML Class Diagrams. Proceedings of the MODELS Educators Sympo-
sium 2015, Ottawa, Canada, 2015. CEUR Workshop Proceedings, Vol. 1555, 2015.

[20] Karn, J.—Cowling, T.: A Follow Up Study of the Effect of Personality on the
Performance of Software Engineering Teams. Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering (ISESE ’06), 2006,
pp. 232–241, doi: 10.1145/1159733.1159769.

[21] Karn, J. S.—Syed-Abdullah, S.—Cowling, A. J.—Holcombe, M.: A Study
Into the Effects of Personality Type and Methodology on Cohesion in Software
Engineering Teams. Behaviour and Information Technology, Vol. 26, 2007, No. 2,
pp. 99–111, doi: 10.1080/01449290500102110.

[22] Keirsey, D.—Bates, M.: Please Understand Me: Character and Temperament
Types. Prometheus Nemesis Books, Del Mar, CA, 1978.

[23] Kichuk, S. L.—Wiesner, W. H.: The Big Five Personality Factors and Team Per-
formance: Implications for Selecting Successful Product Design Teams. Journal of
Engineering and Technology Management, Vol. 14, 1997, No. 3-4, pp. 195–221, doi:
10.1016/s0923-4748(97)00010-6.

[24] Lenberg, P.—Feldt, R.—Wallgren, L. G.: Behavioral Software Engineering:
A Definition and Systematic Literature Review. Journal of Systems and Software,
Vol. 107, 2015, pp. 15–37, doi: 10.1016/j.jss.2015.04.084.

[25] Levine, J. M.—Moreland, R. L.: Progress in Small Group Research. An-
nual Review of Psychology, Vol. 41, 1990, No. 1, pp. 585–634, doi: 10.1146/an-
nurev.ps.41.020190.003101.

[26] McCrae, R. R.—John, O. P.: An Introduction to the Five-Factor Model and
Its Applications. Journal of Personality, Vol. 60, 1992, No. 2, pp. 175–215, doi:
10.1111/j.1467-6494.1992.tb00970.x.

[27] Meyer, A. N.—Fritz, T.—Murphy, G. C.—Zimmermann, T.: Software De-
velopers’ Perceptions of Productivity. Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (FSE 2014), 2014,
pp. 19–29, doi: 10.1145/2635868.2635892.

[28] Myers, I. B.—McCaulley, M. H.—Quenk, N. L.—Hammer, A. L.: MBTI
Manual: A Guide to the Development and Use of the Myers-Briggs Type Indica-
tor. Third Edition. Consulting Psychologists Press, Palo Alto, CA, 1998.

[29] Peeters, M. A.—Van Tuijl, H. F.—Rutte, C. G.—Reymen, I. M.: Personality
and Team Performance: A Meta-Analysis. European Journal of Personality, Vol. 20,
2006, No. 5, pp. 377–396, doi: 10.1002/per.588.

https://doi.org/10.1016/j.jrp.2005.08.007
https://doi.org/10.1145/990680.990684
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1145/1159733.1159769
https://doi.org/10.1080/01449290500102110
https://doi.org/10.1016/s0923-4748(97)00010-6
https://doi.org/10.1016/j.jss.2015.04.084
https://doi.org/10.1146/annurev.ps.41.020190.003101
https://doi.org/10.1146/annurev.ps.41.020190.003101
https://doi.org/10.1111/j.1467-6494.1992.tb00970.x
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1002/per.588

Determining the Relative Importance of Personality Traits . . . 1019

[30] Pervin, L. A.—John, O. P.: Handbook of Personality: Theory and Research. Sec-
ond Edition. Elsevier, 1999.

[31] Peslak, A. R.: The Impact of Personality on Information Technology Team
Projects. Proceedings of the 2006 ACM SIGMIS CPR Conference on Computer
Personnel Research: Forty Four Years of Computer Personnel Research: Achieve-
ments, Challenges and the Future (SIGMIS CPR ’06), 2006, pp. 273–279, doi:
10.1145/1125170.1125233.

[32] Pieterse, V.—Kourie, D. G.—Sonnekus, I. P.: Software Engineering Team Di-
versity and Performance. Proceedings of the 2006 Annual Research Conference of
the South African Institute of Computer Scientists and Information Technologists
on IT Research in Developing Countries (SAICSIT ’06), 2006, pp. 180–186, doi:
10.1145/1216262.1216282.

[33] Poonam, R.—Yasser, C. M.: An Experimental Study to Investigate Personality
Traits on Pair Programming Efficiency in Extreme Programming. 2018 5th Interna-
tional Conference on Industrial Engineering and Applications (ICIEA), IEEE, 2018,
pp. 95–99, doi: 10.1109/iea.2018.8387077.

[34] Pressman, R. S.: Software Engineering: A Practitioner’s Approach. Sixth Edition.
Palgrave Macmillan, 2005.

[35] Qamar, N.—Malik, A. A.: Birds of a Feather Gel Together: Impact of Team
Homogeneity on Software Quality and Team Productivity. IEEE Access, Vol. 7, 2019,
pp. 96827–96840, doi: 10.1109/access.2019.2929152.

[36] Qamar, N.—Malik, A. A.: Evaluating the Impact of Pair Testing on Team Pro-
ductivity and Test Case Quality – A Controlled Experiment. Pakistan Journal of
Engineering and Applied Sciences, Vol. 25, 2019, pp. 80–88.

[37] Richardson, I.—Casey, V.—McCaffery, F.—Burton, J.—Beecham,
S.: A Process Framework for Global Software Engineering Teams. Informa-
tion and Software Technology, Vol. 54, 2012, No. 11, pp. 1175–1191, doi:
10.1016/j.infsof.2012.05.002.

[38] Rutherfoord, R. H.: Using Personality Inventories to Help Form Teams for Soft-
ware Engineering Class Projects. ACM SIGCSE Bulletin, Vol. 33, 2001, No. 3,
pp. 73–76, doi: 10.1145/507758.377486.

[39] Salleh, N.—Mendes, E.—Grundy, J.: The Effects of Openness to Experience on
Pair Programming in a Higher Education Context. 2011 24th IEEE-CS Conference on
Software Engineering Education and Training (CSEE & T), IEEE, 2011, pp. 149–158,
doi: 10.1109/cseet.2011.5876082.

[40] Salleh, N.—Mendes, E.—Grundy, J.—Burch, G. S. J.: The Effects of Neu-
roticism on Pair Programming: An Empirical Study in the Higher Education Con-
text. Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM ’10), 2010, Art. No. 22, 10 pp., doi:
10.1145/1852786.1852816.

[41] Salleh, N.—Mendes, E.—Grundy, J.—Burch, G. S. J.: An Empirical Study of
the Effects of Conscientiousness in Pair Programming Using the Five-Factor Personal-
ity Model. Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE ’10), 2010, Vol. 1, pp. 577–586, doi: 10.1145/1806799.1806883.

https://doi.org/10.1145/1125170.1125233
https://doi.org/10.1145/1216262.1216282
https://doi.org/10.1109/iea.2018.8387077
https://doi.org/10.1109/access.2019.2929152
https://doi.org/10.1016/j.infsof.2012.05.002
https://doi.org/10.1145/507758.377486
https://doi.org/10.1109/cseet.2011.5876082
https://doi.org/10.1145/1852786.1852816
https://doi.org/10.1145/1806799.1806883

1020 N. Qamar, A.A. Malik

[42] Sfetsos, P.—Stamelos, I.—Angelis, L.—Deligiannis, I.: An Experimen-
tal Investigation of Personality Types Impact on Pair Effectiveness in Pair Pro-
gramming. Empirical Software Engineering, Vol. 14, 2009, No. 2, Art. No. 187, doi:
10.1007/s10664-008-9093-5.

[43] Sudhakar, G. P.—Farooq, A.—Patnaik, S.: Measuring Productivity of Soft-
ware Development Teams. Serbian Journal of Management, Vol. 7, 2012, No. 1,
pp. 65–75, doi: 10.5937/sjm1201065s.

[44] IBM SPSS Statistics.

[45] Walle, T.—Hannay, J. E.: Personality and the Nature of Collaboration in Pair
Programming. 2009 3rd International Symposium on Empirical Software Engineer-
ing and Measurement, Lake Buena Vista, FL, USA, IEEE, 2009, pp. 203–213, doi:
10.1109/esem.2009.5315996.

[46] Yilmaz, M.—O’Connor, R. V.—Clarke, P.: Effective Social Productivity Mea-
surements During Software Development – An Empirical Study. International Jour-
nal of Software Engineering and Knowledge Engineering, Vol. 26, 2016, No. 3,
pp. 457–490, doi: 10.1142/s0218194016500194.

[47] Yilmaz, M.—O’Connor, R. V.—Colomo-Palacios, R.—Clarke, P.: An Ex-
amination of Personality Traits and How They Impact on Software Development
Teams. Information and Software Technology, Vol. 86, 2017, pp. 101–122, doi:
10.1016/j.infsof.2017.01.005.

https://doi.org/10.1007/s10664-008-9093-5
https://doi.org/10.5937/sjm1201065s
https://doi.org/10.1109/esem.2009.5315996
https://doi.org/10.1142/s0218194016500194
https://doi.org/10.1016/j.infsof.2017.01.005

Determining the Relative Importance of Personality Traits . . . 1021

Nosheen Qamar is currently working as Assistant Professor at
the Department of Computer Science and Information Technolo-
gy, the University of Lahore, Lahore, Pakistan. She received her
Ph.D. degree in computer science from the National University
of Computer and Emerging Sciences (FAST-NUCES), Lahore,
Pakistan in 2020. Before joining the University of Lahore, she
has gained 7 years of industry experience with last job title as
Software Development Manager. Her research interests include
software engineering, design patterns, software teams, project
management, empirical software engineering, and requirements
engineering.

Ali Afzal Malik is currently working as Assistant Professor
and Head of the Computer Science Department of the National
University of Computer and Emerging Sciences (FAST-NUCES).
He started his professional career in 2003 working as Software
Engineer in Techlogix – a well-reputed Pakistani software house.
After receiving the prestigious Fulbright scholarship in 2005, he
obtained M.S. and Ph.D. degrees in computer science from the
University of Southern California (USC), Los Angeles, USA in
2007 and 2010, respectively. He was awarded the Office of In-
ternational Services (OIS) Academic Achievement Award twice

(2007 and 2010) during his stay at USC. His research paper on the quantitative aspects
of requirements elaboration was given the best paper award in SBES 2008 (Sao Paulo,
Brazil). Before joining FAST-NUCES in 2013, he has held an adjunct faculty position at
the Lahore University of Management Sciences (LUMS) and a full-time faculty position
at the University of Central Punjab (UCP). He has undertaken research in software cost
estimation at two of the world’s leading research centers in software engineering i.e. USC’s
Center for Systems and Software Engineering (CSSE) and Institute of Software, Chinese
Academy of Sciences (ISCAS). His current research work focuses on areas such as empir-
ical software engineering, requirements engineering, and software cost estimation. He is
a senior member of IEEE.

Computing and Informatics, Vol. 39, 2020, 1022–1060, doi: 10.31577/cai 2020 5 1022

FORMAL VERIFICATION OF UML MARTE
SPECIFICATIONS BASED ON A TRUE
CONCURRENCY REAL TIME MODEL

Nadia Chabbat

LAAS Laboratory, Department of Computer Science
University of Badji Mokhtar, Annaba, Algeria
e-mail: lydia.chab@hotmail.fr

Djamel Eddine Saidouni, Radja Boukharrou

MISC Laboratory, Department of Computer Science
University of Abdelhamid Mehri, Constantine 2, Algeria
e-mail: {djamel.saidouni, radja.boukharrou}@univ-constantine2.dz

Salim Ghanemi

LAAS Laboratory, Department of Computer Science
University of Badji Mokhtar
Annaba, Algeria
e-mail: ghanemisalim@univ-annaba.dz

Abstract. For critical embedded systems the formal validation and verification is
required. However, the real-time model checking suffers from problems of state-
space explosion and clock explosion. The aim of this paper is to ensure an improve-
ment of the Modeling and Analysis of Real-Time Embedded systems (MARTE),
which is de facto standard, with formal semantics for verification finality. There-
fore, we propose an operational method for translating UML sequence diagrams
with MARTE annotations to Time Petri nets with Action Duration specifications
(DTPN). Based on true concurrency semantics, the semantics of these specifications
are defined in terms of Duration Action Timed Automata (daTA).

Formal Verification of UML MARTE Based on a Real Time Model 1023

Keywords: Real-time embedded system, UML MARTE, DTPN, duration action
timed automata, parallel computing, sequence diagram, formal verification

1 INTRODUCTION

Real-time embedded systems solve behaviors constrained by time. These systems
provide a specific function in a much larger system within time consideration [1, 2].
The design of such systems is associated with time constraints specification. Real-
time embedded systems are often critical and require the modeling of real-time
response at the functional level. The assessment of such systems may be achieved
through verification and validation processes based on robust formal approaches to
meet the required timed constrained functional system properties.

Several studies have proposed a model-based engineering approaches that of-
fer advanced modeling mechanisms such as UML (Unified Modeling Language) [3].
MARTE is an OMG UML profile dedicated for modeling and analysis of real-time
embedded systems [4, 5]. MARTE specifies concepts for characterizing UML ele-
ments in order to model software and hardware platforms, resources, and quantita-
tive characteristics such as execution time. However, once the software is modeled,
the difficulty lies in the expression of appropriate properties and formal checks. In
order to meet these requirements, formal analytical approaches have been developed
so to integrate or extend formal models in the designing process of real-time embed-
ded systems developed with MARTE. Both works presented in [6, 7] use the Time
Petri Net analyzer [8] (TINA) model-checking tool to verify temporal properties on
structural and behavioral diagrams specified in MARTE.

Some work, as [9, 10], extended a formal language in order to take into consider-
ation time aspects. In [9], the discrete-time of Promela language has been extended
by a variable, named “timer”, that corresponds to the discrete-time “countdown”.
However, the extended model is difficult to use for representing the coincidence
clock tickings. Another work, presented in [10], proposes an extension of Promela
language with discrete-time to allow the verification by SPIN model checker [11].

In [12], an interesting approach has been proposed. It interprets parallel ac-
tivities, modeled in MARTE sequence diagrams, by parallel transitions in a Petri
net like specification. More precisely, the specification is written in timed colored
Petri nets with inhibitor arcs model (TCPNIA) [13]. In the later work, the duration
of an activity is integrated as a constraint interval associated with the correspond-
ing transition of the Petri net. To verify some properties, TCPNIA specification
is translated to a Timed Automata [14, 15] in order to use some existing model
checker tools as SMV [16]. However, this approach only expresses activity duration
without considering latency, delay and congestion time specification. Since Timed
Automata is based on interleaving semantics, there is no way to express the parallel
execution of two activities. To overcome such limitation, it is possible to interpret
each activity having a non-null duration by two sequential transitions modeling the

1024 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

activity’s start and end events. Though this solution is correct, it presents some
serious inconvenience. In fact, larger number of transitions in the Petri net specifi-
cation leads to a significant clock number increase in the associated timed automata.
Indeed, the number of zones, respectively regions, in the zone graph, respectively
region graph, is exponential to the number of clocks [15]. Thus, this leads to the
state space combinatorial explosion problem [17, 18, 19].

In our proposed approach, Time Petri Nets with action Duration (DTPN) spec-
ification model is used as a semantics model of MARTE SD specification [20]. In
fact, DTPN has a true concurrency semantics and considers both timing constraints
and duration of actions. The true concurrency semantics allows the consideration
of activities duration without using the split technique. The underlying semantics
model is a Durational Action Timed Automaton (daTA) [21].

This paper defines an operational method for translating MARTE SD specifi-
cations to DTPNs ones. As a consequence, on one hand, the transformation leads
to a small DTPN specification and on the other hand, the verification of a DTPN
specification is based on its daTA corresponding model, which allows the reuse of
clocks. So, this lead to reduce, in some case avoid the problem of the combinatorial
explosion of the number of graph states, which is one of the main limitations of
applying model-checking methods on industrial-sized models and, to reduce of the
verification time, that is often exponential for large-size systems.

The rest of this paper is structured as follows: In Section 2, we present prelimi-
nary definitions of MARTE sequence diagrams, Time Petri Nets with action dura-
tion and durational action timed automata. Section 3 defines the formal semantics
of MARTE sequence diagrams and formal translation rules of basic elements and
some combined fragments. In Section 4, we present a case study to better illustrate
the interest of the proposed approach, as well as its implementation in practice.
Section 5 discusses the advantages of the proposed approach with related works.
Finally, Section 6 gives some conclusions and perspectives of this work.

2 PRELIMINARY DEFINITIONS

2.1 MARTE Sequence Diagrams

The UML sequence diagram is a form of interaction diagram. It allows the de-
scription of a specific interaction in terms of participating objects and sequence
of messages exchanged along progress to perform desired activity. Graphically, an
interaction is composed by two lifelines and a message. A lifeline represents an
instance corresponding to a particular object that participates in the interaction.
The events along a lifeline are, in general, partially ordered, the order in which
these events will occur. A message represents a communication that transmits in-
formation between objects or an object and its environment. A message specifies
the kind of a communication between objects as synchronous or asynchronous and
notes the occurrences of the sending event at the sender and the receiving event at
the receiver level. In this work, we will focus on the order and type of messages,

Formal Verification of UML MARTE Based on a Real Time Model 1025

synchronous, asynchronous and reply. Additionally, we will take into consideration
the timing constraints imposed on transmitted messages between objects involved
in the interaction.

A sequence diagram describes only a fragment of the system behavior. The
complete behavior of the system can be expressed by a set of sequence diagrams to
specify all possible interactions. An interaction is a behavior unit that focuses on
the observable transmissions of information between connected objects over time.
Each interaction may be caused by actions executed by communicated objects. As
defined in [22]: an action takes a set of inputs and converts them into a set of
outputs, though either or both sets may be empty. For examples, an action can be
a call operation, send signal, receive signal, write variable or read variable. The
execution of actions can result by an event as a call or a signal event.

To get more complex interactions, combined fragments technique may be used.
A combined fragment consists of an operator and a number of operands. Depending
on the used operator, the number of operands is defined. For example, break, opt,
loop, assert, ref and neg operators have one operand. Most other operators like alt,
seq and par, have more than one operand. Fragments and their operators can be
inductively combined for describing complex interactions.

In order to enrich UML models with annotations related to time (values and
timing constraints), the UML MARTE profile provides basic and advanced time
modeling concepts, such as stereotypes, which allow the consideration of temporal
behaviors. This profile is intended to replace the existing UML SPT Profile (Schedu-
lability, Performance and Time) [23], that is incompatible with UML 2 and MDA
standards [24].

Figure 1 shows the different concepts in a sequence diagram used for specifying
time and timing constraints in UML MARTE profile. These elements are defined
in the SimpleTime package of CommonBehaviors. TimeObservation is a reference
to an instant of time, while DurationObservation is a reference to a duration of an
execution. TimeConstraints can be in the form of duration, as well as some instants
of time; sequence diagram supports both. DurationConstraint defines a Constraint
that refers to a duration interval, which defines the range between two duration.
A duration defines a value specification that specifies the temporal distance between
two time instants. Timing constraints are expressed between a pair of braces. The
annotations in color are not part of the model, they are used to specify model
elements. More details about this system example can be found in [25].

2.2 Time Petri Nets with Action Duration

Time Petri Nets with Action Duration can be considered as a generalization of
Merlin’s TPNs [27], T-TdPNs [28] and P-TdPN [29]. The basic idea of DTPN
is to associate two date’s min and max with each transition that define its firing
interval (temporal interval). Although the firing of a transition is instantaneous,
the execution duration of the action associated to this transition may have non-
null duration. For example, let t be a transition associated to the action which

1026 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Time
Observation

Duration
Observation

Duration
Constraint

Time
Constraint

Tag in the
stereotype

Exgigue

Possibility of referring
occurrences

sd DataAcquistion

:Sensor:Controller

@t0

@t3

act()

acquire() {d1≤(1,ms)}

{[d1..3*d1]}

@t2

constr1={ (t0[i+1] t0[i]) > (100,ms) }
constr2={ t3 < t2 + (30,ms) }

start() {jitter(t0)<(5,ms)}

{ [t1..t1+(8,ms)] }

&d1

sendData(data) { [(0,ms)..(10,ms)] }

Figure 1. Time and timing constraints illustration [26]

has a duration d. If θ is the enabling date of t then the firing of t will be in the
time interval [θ + min, θ + max]. The firing of t marks the start of execution of the
associated action. Figure 2 a) shows an example of a time Petri nets with action
duration.

[1,3], 2

𝑎 [1,2], 3

𝑏

{𝐺 = 1 ≤ 𝑥 ≤ 2}

{𝐷 = 𝑥 ≤ 2}

{𝐺 = 4 ≤ 𝑥 ≤ 6}
𝑏, 𝑥

𝑠0 {𝑥 0}

𝑎, 𝑥

{𝑥 3}𝑠1

𝑠2 {𝑥 2}

{𝐷 = 𝑥 ≤ 6}

(a) DTPN (b) daTAa) DTPN

[1,3], 2

𝑎 [1,2], 3

𝑏

{𝐺 = 1 ≤ 𝑥 ≤ 2}

{𝐷 = 𝑥 ≤ 2}

{𝐺 = 4 ≤ 𝑥 ≤ 6}
𝑏, 𝑥

𝑠0 {𝑥 0}

𝑎, 𝑥

{𝑥 3}𝑠1

𝑠2 {𝑥 2}

{𝐷 = 𝑥 ≤ 6}

(a) DTPN (b) daTAb) daTA

Figure 2. DTPN and its corresponding daTA automata

A place of a DTPN corresponds to two sets: a set of available tokens or free
tokens and a set of unavailable tokens or bound tokens. Unavailable tokens, put on
the right side of a place, are bound to the firing of transitions associated to actions
that are currently running. In a DTPN, an unavailable token becomes available if
the end of execution of the action associated to the transition that produced this
token is reached. A token in place p at the time ϑ becomes available (in the left
side of p) at the time ϑ+ d. Thus, the token is bound to the firing of the transition
during the interval [ϑ, ϑ+ d[and it becomes free at the time ϑ+ d.

Formal Verification of UML MARTE Based on a Real Time Model 1027

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

3
𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

(a) (b) (c)
a)

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

3
𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

(a) (b) (c)
b)

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

3
𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

(a) (b) (c)
c)

Figure 3. Marked DTPN

In Figure 3 a), the token in place P1 is not bound to any transition. This token
is called free. In the case when the transition would be fired, it could be argued that
the action associated to the firing of t1 has started its execution. This is marked by
the presence of the token in place P2 (Figure 3 b)). Thus, the token in place P2 is
bound to the firing of t1, but after completion of the action a, i.e. after 3 units of
time, this token will become free (Figure 3 c)). In a place, the set of free tokens will
be denoted by FT , while bound tokens set will be denoted by BT .

Definition 1. Let T be a non-negative temporal domain, like Q+ or R+.

Definition 2. Let Act be a finite set of actions, i.e. an alphabet. A Time Perti
Net with action Duration (DTPN) on T and of support Act is a tuple 〈P, T,B, F, λ,
SI,Γ〉, such that:

• Q = 〈P, T,B, F 〉 is Perti net, where P is a set of places, T is set of transitions
such that P ∩ T = ∅;

• B : P × T → N is a backward incidence function such that B(pi, tj) represents
arc weight from tj to pi;

• F : P ×T → N is a forward incidence function such that F (pi, tj) represents arc
weight from pi to tj;

• λ : T → Act ∪ {τ} is a labelling function of a DTPN . If λ(t) ∈ Act then t is
called observable or external;

• SI : T → T × T ∪ {∞} is a function that associates to each transition a static
firing interval;

• Γ : Act→ D is a function that associates to each action its static duration.

I is the set of all intervals of a DTPN such that I(t) = [min,max] is the interval
associated to the transition t. We denote by ↓I(t) = min and ↑I(t) = max , two
functions which give respectively the lower and upper bound of an interval.

As commonly in use in the literature, we write ◦t (resp. t◦) to denote the set
of places such that ◦t = (p ∈ P/B(p, t) > 0 (resp. t◦ = {p ∈ P/F (p, t) > 0}), and
◦p (resp. p◦) to represent the set of transitions such that ◦p = {t ∈ T/F (p, t) > 0}

1028 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

(resp. p◦ = {t ∈ T/B(p, t) > 0}). Noting that marked DTPN is a tuple 〈PN,M0〉,
such that PN = 〈P, T,B, F, λ, SI,Γ〉 is a DTPN, and M0 is its initial marking,
where ∀p ∈ P : M(p) ∈ N.

2.3 Durational Action Timed Automata

Durational action Timed Automata (daTA) is structurally a subclass of timed au-
tomata [14, 15, 30]. However, the difference to be underlined is the one concerning
the semantics associated with the model. The daTA model [21, 31] is a timed model
defined by a timed transition system based on a true-concurrency semantics, express-
ing parallel behaviors and supporting at the same time timing constraints, explicit
actions duration, structural and temporal non-atomicity of actions i.e., actions may
be divisible and of non-null duration.

The daTA model supports the notions of urgency and deadlines as timing con-
straints of the system. An action duration is expressed by a duration condition
associated to states of the model. On the other hand, timing constraints, due to
restrictions on the enabling domain of an action, are expressed by the enabling con-
straint G (for Guard) and by urgency constraint D (for Deadline) at the level of
daTA transitions. In addition, a transition represents only the start of an action,
end of execution is captured by the corresponding duration expressed at the level
of target state. On the target state, a timed expression manifests that the action is
potentially in execution.

From operational point of view, with each action a clock is associated which
is reset at the start of the action. This clock will be used in the construction of
the timing constraints as guards of the transitions. Figure 2 b) shows the structure
of the corresponding daTA to DTPN of Figure 2 a). This daTA is composed of
three states and two transitions labelled with two actions a and b of durations 3 and
2 units of time, respectively. From the initial state S0 of the illustrative daTA, the
execution of action a leads to a reset of clock x associated with it. The expression
x ≥ 3 in state S2 represents a duration condition on action a and means that a is
potentially in execution until the clock x reaches the value 3. The action a does
not wait for the end of any other action, so the clock designated by x is used in the
enabling domain of this action.This enabling domain will be expressed by the guard
and the deadline on the clock x as (1 ≤ x ≤ 2) and (x ≤ 2). Below, we define the
timed domain modeling clocks of daTA.

Definition 3. Let H be a set of clocks with non-negative values (within a time
domain H, like Q+ or R+). The set Φt(H) of temporal constraints γ over H is
γx ∼ t, where x is a clock in H, ∼∈ {=, <,>,≤,≥} and t ∈ T. Fx is used to
indicate a constraint of the form x ∼ t. A valuation v for H is a function which
associates to each x ∈ H a value in T. The valuation v for H satisfies a temporal
constraint γ over H iff γ is true by using clock values given by v. For I ⊆ H, [I → 0]
indicates the valuation for H which assigns 0 value to each x ∈ I, and agrees with
v over the other clocks of H. The set of all valuations for H is noted Ξ(H). The

Formal Verification of UML MARTE Based on a Real Time Model 1029

satisfaction relation |= for temporal constraints is defined over the set of valuations
for H by (v |= x ∼ t) ⇔ (v(x) ∼ t) such that v ∈ Ξ(H). 2T

fn is used to denote the
set of finite subsets of a set T.

Definition 4. A daTA is a tuple 〈S, Ls, s0,H, TD〉 of the support Act, where:

• S is a finite set of states;

• Ls : S → 2
Φ

t(H)

fn is a function which assigns to each state s the set F of ending
condition (duration conditions) of actions possibly in execution in s;

• s0 ∈ S is the initial state, such that Ls(s0) = ∅;
• H is a finite set of clocks;

• TD ⊆ S × 2
Φ

t(H)

fn × 2
Φ

t(H)

fn × Act ×H× S is the set of transitions.

A transition (s,G,D, a, x, s′) represents a switch from state s to state s′ by
starting execution of action a and resetting clock x. G is the corresponding guard,
which must be satisfied to fire the transition. D is the corresponding deadline which
requires, at the moment of its satisfaction, that action a must occur.

(s,G,D, a, x, s′) can be written s
G,D,a,x−−−−→ s′. Figure 2 b) shows the structure of

the corresponding daTA to DTPN of Figure 2 a).

Definition 5. The semantics of a daTA A = 〈S, Ls, s0, H, TD〉 is defined by asso-
ciating with it an infinite transition system SA over Act ∪ T. A state of SA, viewed
as a configuration, is a pair 〈s, v〉 such that s is a state of A and v is a valuation
for H. A configuration 〈s0, v0〉 is initial if s0 is the initial state of A and ∀x ∈ H,
v0(x) = 0. Two types of transitions between SA configurations are possible, and
which correspond respectively to time passing (Rules (1) and (2)) and the launching
of a transition from A (Rule (3)):

d ∈ T ∀d′ ≤ d, v + d′ 2 D

〈s, v〉 d−→ 〈s, v + d〉
, (1)

ε ∈ T v + ε � D ∧ ε ∈ η
〈s, v〉 ε−→ 〈s, v + ε〉

, (2)

(s,G,D, a, x, s′) ∈ TD v � G

〈s, v〉 a−→ 〈s′, [{x} 7→ 0]v〉
. (3)

In Rule (2), η corresponds to the smallest real quantity of time in which no
action occurs [31]. In Rule (3), D = ∨i∈IDi, where {(s,Gi, Di, ai, x, si)}i∈I is the set
of all transitions stemming from state s. Indeed, whenever a Di holds, time cannot
progress regardless of the other Di.

In order to guarantee that at least a transition could be drawn starting from
a state if time cannot progress any more within this state, the formula Di ⇒ Gi

must be satisfied.

1030 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Remark 1. For urgency domains, we require that deadline can be only of the form
x ≤ t or x < t.

3 TRANSLATION OF MARTE SEQUENCE DIAGRAMS TO DTPN

This paper proposes a translation of a high-level model written in MARTE SD to-
wards a specific formal time model that is DTPN. Figure 4 gives a general overview
of the approach. The approach will follow two main steps. In the first step, MARTE
sequence diagrams are formalized. The translation method is developed in the sec-
ond step. It is defined inductively starting from the basic elements.

Formel Specification
UML MARTE (DTPN)

Intermediate Formel
Model (daTA)

NO
(Counter-Example)

YES

Region Graph

Proprerty
specification in
temporal logics

Model Checker

Kripke Structure

Zone Graph

Model-based Verification

Interpreter

Figure 4. Verification process

3.1 Formalisation

Sequence diagrams are semi-formal notation, in other words the syntax and se-
mantics notations are open to different interpretations. In the literature, there
are several research papers that address the formal formalization of sequence dia-
grams [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Among these works, the approach of [41]
is an interesting one as a formal translation. In this work, the authors have defined
formal rules for the translation of an UML sequence diagram to a corresponding
coloured Petri nets. Nevertheless, the transmission processing between two com-
municating objects in the sequence diagram is specified as a single transition with
an abstraction to the different primitives of communication, i.e. sending process,
transmitting and receiving process. In addition, this approach models the transmis-
sion without further consideration of any details in relation with its execution like
latency and time of execution.

Formal Verification of UML MARTE Based on a Real Time Model 1031

To overcome these limitations and in order to consider timing constraints and
duration of execution, we propose a formal translation of MARTE sequence diagrams
to Time Petri nets with action duration model. Besides the formal translation and
the timing consideration, we investigate the parallel execution specification. For
this purpose, the true-concurrency semantics based DTPN model is used to obtain
durational action Timed Automata (daTA) (semantics representation) [42, 43]. In
daTA, both true concurrency and action duration are considered. This structure
allows the verification of properties related to parallel evolution of actions within
timing constraints. We note that some properties related to reachability may be
checked by means of KRONOS and UPPAAL like tools [43, 44]. However, for
properties dealing with true concurrency behaviors, FOCOVE model checker may
be used [45].

So, in the proposed approach, we follow the same formalization principle pro-
posed in [41] with some differences. In fact, on one hand the transmission primitives
specification between communicating parties is defined and in another hand the for-
malization is made inductive by associating a DTPN specification to each event and
defining the translation of composite interaction in terms of its DTPN corresponding
sub-elements. Also, we specify timing constraints, like latency, and execution dura-
tion of each action separately in order to model transmission process under timing
constraints.

3.2 Formal Definitions

In formal terms, we define the MARTE sequence diagrams as follows:

Definition 6. MARTE SD = (N,O,E,<g,M,Act,D, Tc, λ, S, T,Pre,Post , Cf)
where:

• N is a set of diagram names;

• O is a finite set of objects;

• E =
⋃

i∈O Ei is a set of events such that Ei

⋂
Ej = ∅ for any i 6= j ∈ O;

• <g=< ∪{
⋃

i,j∈O,i6=j <i,j}

– <=
⋃

i∈O is a set of partial orders on events of Ei such that ∀i ∈ O,<i⊆
Ei × Ei;

– <i,j defines an order between events e, e′ such that ∀(e, e′) ∈<i,j, e ∈ Oi, and
e′ ∈ Oj or e ∈ Oj and e′ ∈ Oi and e precedes e′.

• M is a finite set of message labels;

• Act is a set of actions. Each action a ∈ Act can be launched by event. Accord-
ing to the specification context, we can distinguish different kinds of actions.
Examples for actions are synchronous sending (Sysen) or asynchronous sending
a message (Asysen), synchronous receiving (Syrec) or asynchronous receiving

1032 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

a message (Asyrec), sending reply (Sreply), Receiving reply (Rreply), transmis-
sions of message, activities or any behavior to be executed in the system.

Act = {Sysen,Asysen, Syrec,Asyrec, Sreply ,Rreply ,Activity1, . . . ,Activityn,

Trans1, . . . ,Transn};

• Dc : Act → T is a function that associates to each action a duration which may
be null;

• Tc : E → T× T is a function that associates a time interval to each event such
that ∀e ∈ Ei, T c(e) = [d, d+ t] which means that event e should be executed in
the time interval [d, d+ t];

• λ : E → Act is a labelling function which associates an action name to each
event. For each event e ∈ Ei, e may be defined by 3-uple 〈e,D(λ(e)), T c(e)〉.

• S is the set of all the possible states with S =
⋃

Oi∈O Si where Si is the set of
states of an object Oi. Si =

⋃
e∈Ei

Se, such that:

– ∀e ∈ E, Se = {s0
e, s

1
e};

– If e ∈ E is associated to the sending action then Se = {s0
e, s

1
e, s

out
e };

– If e ∈ E is associated to the receiving action then Se = {s0
e, s

1
e, s

in
e }.

Similarly to events, different objects cannot share the states, Si ∩ Sj = ∅ for
Oi 6= Oj ∈ O;

• T is a set of transitions, such that for each transition t ∈ T is associated to
an event e ∈ E and is of the form 〈e,D(λ(e)), T c(e)〉. The arcs linking states to
transitions are labeled by the Pre function, whereas the arcs linking transitions
to states are labeled by the Post function;

• Pre : N → 2S×T is an input function associating for each diagram sd, a set of
arcs, where (s, t) ∈ Pre(sd) defines the arc from s to t;

• Post : N → 2S×T is an output function associating for each diagram sd, a set of
arcs, where (s, t) ∈ Post(sd) defines the arc from t to s.

For a given diagram sd:

– The set of input arcs of transition t ∈ T is denoted ◦t = {(s, t) ∈ Pre(sd) |
s ∈ S};

– The set of output arcs of transition t ∈ T is denoted t◦ = {(s, t) ∈ Post(sd) |
s ∈ S};

– The set of input arcs of state s ∈ S is denoted ◦s = {(s, t) ∈ Pre(sd) | t ∈ T};
– The set of output arcs of state s ∈ S is denoted s◦ = {(s, t) ∈ Post(sd) |
t ∈ T};

• CF is a combined fragment defined by a type of operator and one or more
operands.

Formal Verification of UML MARTE Based on a Real Time Model 1033

– Type = {seq , alt , par , opt , break , loop, ref , strict , critical , neg , assert , ignore,
consider};

– Op is a finite set of operands;

– Guard is a boolean or temporal expression which associates a guard to
an operator or to a combined fragment;

– Frag is a set of nested combined fragments inside the nth operands of the
mth interaction fragments.

3.3 MARTE SD to DTPN Transformation

In the next lines, we present the translation rules and we explain through examples
the translation between the input elements of the MARTE sequence diagram to the
output elements of DTPN. Considering the different types of transmission between
communicating objects, duration of the desired activities to be executed and the
timing constraints imposed on the sending and receiving transmitted messages. By
using DTPN, the action durations are fixed once and for all at the enabling moment
of the system. The case where actions have durations chosen from an interval [m,M]
is not considered. Also, we note that the TimeConstraint stereotype presented in
Section 2 is expressed by time interval [min,max].

3.3.1 Basic Elements

Definition 7. For a given diagram sd, let 〈e1, d1, tc1〉 and 〈e2, d2, tc2〉 be two differ-
ent transitions corresponding to a given transmission, such that:

• If Oi, Oj ∈ O and i 6= j such that e1 ∈ Ei and e2 ∈ Ej, then the transitions
represent an external evolution between both objects Oi and Oj. It is said an
inter-objects transmission;

• If ∃Oi ∈ O such that e1, e2 ∈ Ei and e1 < e2, and @e3 ∈ Ei such that e1 < e3 <
e2, then the transitions represent a local evolution in the object Oi. It is said
an intra-objects transmission. In such case, d1 = d2 = 0 and tc1 = tc2 = [0, 0].

Inter-objects transmission.

• Synchronous transmission: Synchronous transmissions are used when the
sender waits for a response from the receiver to continue its operations. A syn-
chronous transmission blocks the progression of the operations of its sender until
the receiver gets its message (weak synchronization) or until the sender receives
the response (strict synchronization).

Let us consider the example of Figure 5 which shows a synchronous transmission
and its reply. In the following paragraph, we detail how various elements of
this sequence diagram (source model) are translated to the elements of DTPN
(destination model).

1034 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

In Figure 5, the Synchronous transmission represents an interaction between
two objects O1 and O2 associated to both events e1 and e2 necessarily different.
The translation of this transmission to an equivalent DTPN is based on the
interpretation of each event and its associated action in the diagram with taking
into account the two states (before and after) of this event. To construct the
DTPN, we split the synchronous transmission in two principal steps:

1. sending the synchronous transmission and

2. receiving the synchronous transmission reply.

𝑶𝟏 𝑶𝟐

Synch

𝑠𝑒1
0

𝑠𝑒4
1

𝑒1, 2, [1,4]

𝑒4, 3, [3,4]

𝑒1𝑒2, 3, [1,3]

𝑒3𝑒4, 2, [1,3]

𝑒2, 2, [1,4]

𝑒3, 3, [3,4]

𝑠𝑒2
0

𝑠𝑒3
1

Reply

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒2

𝑖𝑛

𝑠𝑒3
𝑜𝑢𝑡𝑠𝑒4

𝑖𝑛

𝑠𝑒1
1 = 𝑠𝑒4

0 𝑠𝑒2
1 = 𝑠𝑒3

0

Figure 5. Synchronous transmission

Step 1:

1. Object O1 launches a transmission sending operation at event e1 to object
O2, which is constrained by the time interval [1, 4] and duration equal to
two units of time. The event e1 is translated to a Petri net transition te1
constrained by the time interval [1, 4] and an action of duration 2 units of
time. The two states (before and after) of event e1 are translated to the
two places s0

e1
, s1

e1
. Also, we add the arcs that relate place to transition

or transition to place. This translation is illustrated by Figure 6 a).
2. Object O2 receives the transmission action at event e2, with duration

equal to 2 which may be delayed by 4 units of time. Since, the constraint
interval [1, 4] is considered. The corresponding DTPN is represented by
Figure 6 b).

3. For representing the intermediate transmission action between object O1

and object O2, we create an event named e1e2 and two states soute1 , sine2 .
The event e1e2 models the action, which takes in our case a duration
between 4 and 6 units of time. For considering this characteristic, we
consider the constraint interval [1, 3] and a duration of the transmission
action equal to 3 units of time. Figure 6 c) shows the corresponding
DTPN.

Formal Verification of UML MARTE Based on a Real Time Model 1035

𝑶𝟏

𝑠𝑒1
0

𝑡𝑒1,𝑎 [1,4], 2

𝑠𝑒1
1

𝑶𝟐

𝑠𝑒2
0

𝑡𝑒2 , 𝑏 [1,4], 2

𝑠𝑒2
1

𝑠𝑒1
𝑜𝑢𝑡

𝑡𝑒1𝑒2 , 𝑐

𝑠𝑒2
𝑖𝑛

[1,3], 3

(b)(a) (c)
a)

𝑶𝟏

𝑠𝑒1
0

𝑡𝑒1,𝑎 [1,4], 2

𝑠𝑒1
1

𝑶𝟐

𝑠𝑒2
0

𝑡𝑒2 , 𝑏 [1,4], 2

𝑠𝑒2
1

𝑠𝑒1
𝑜𝑢𝑡

𝑡𝑒1𝑒2 , 𝑐

𝑠𝑒2
𝑖𝑛

[1,3], 3

(b)(a) (c)
b)

𝑶𝟏

𝑠𝑒1
0

𝑡𝑒1,𝑎 [1,4], 2

𝑠𝑒1
1

𝑶𝟐

𝑠𝑒2
0

𝑡𝑒2 , 𝑏 [1,4], 2

𝑠𝑒2
1

𝑠𝑒1
𝑜𝑢𝑡

𝑡𝑒1𝑒2 , 𝑐

𝑠𝑒2
𝑖𝑛

[1,3], 3

(b)(a) (c)
c)

Figure 6. Elementary synchronous transmission corresponding DTPNs

4. After adding the arcs relating the three subnets DTPN models two sub-
nets are related to two subnets, the complete resulting construction of
this step is given by Figure 7.

𝑶𝟏 𝑶𝟐

𝑡𝑒1,𝑎

𝑠𝑒2
0

𝑠𝑒1
𝑜𝑢𝑡

𝑡𝑒1𝑒2, 𝑐

𝑠𝑒2
𝑖𝑛

[1,4],2

[1,3], 3

𝑡𝑒2, 𝑏
[1,4],2

𝑠𝑒2
1

𝑠𝑒1
0

𝑠𝑒1
1

Figure 7. Sending transmission corresponding DTPN

Formally, S and T are the least sets verifying the following construction
conditions:

– Let {te1 , te1e2 , te2} = {〈e1, 2, [1, 4]〉, 〈e1e2, 3, [1, 3]〉, 〈e2, 2, [1, 4]〉} be a set
of transitions modeling a synchronous transmission between objects O1

and O2.
– Let e1 ∈ E1 and e2 ∈ E2 be two events, such that λ(e1) = Sysen and
λ(e2) = Syrec, with (e1, e2) ∈<i,j, {s0

e1
, s1

e1
, soute1

, s0
e2
, s1

e2
, sine2} ⊆ S and

{te1 , te2 , te1e2} ⊆ T , then:

◦te1 = {s0
e1
};

t◦e1 = {s1
e1
, soute1
};

◦te2 = {sine2 , s
0
e2
};

t◦e2 = {s1
e2
};

1036 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

◦te1e2 = {soute1
};

t◦e1e2 = {sine2}.

Step 2: Due to its similarity with the sending transmission in step1, it is pos-
sible to apply the same translation scheme in this step. As a consequence
of the transmission reception by object O2, this later responses by executing
the behavior that is matched to that transmission action.

1. After the transmission processing, object O2 sends the transmission reply
at event e3 back to object O1. The event e3 is characterized by a duration
equal to 3 units of time and time interval [3, 4]. This is represented by
the following DTPN (Figure 8 a)).

𝑶𝟏

(b)(a) (c)

𝑡𝑒3,𝑑 [3,4],3

𝑠𝑒3
0

𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡

𝑡𝑒3𝑒4 , 𝑓

𝑠𝑒4
𝑖𝑛

[1,3], 2

𝑶𝟐

𝑡𝑒4 , 𝑒 [3,4],3

𝑠𝑒4
0

𝑠𝑒4
1

a)

𝑶𝟏

(b)(a) (c)

𝑡𝑒3,𝑑 [3,4],3

𝑠𝑒3
0

𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡

𝑡𝑒3𝑒4 , 𝑓

𝑠𝑒4
𝑖𝑛

[1,3], 2

𝑶𝟐

𝑡𝑒4 , 𝑒 [3,4],3

𝑠𝑒4
0

𝑠𝑒4
1

b)

𝑶𝟏

(b)(a) (c)

𝑡𝑒3,𝑑 [3,4],3

𝑠𝑒3
0

𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡

𝑡𝑒3𝑒4 , 𝑓

𝑠𝑒4
𝑖𝑛

[1,3], 2

𝑶𝟐

𝑡𝑒4 , 𝑒 [3,4],3

𝑠𝑒4
0

𝑠𝑒4
1

c)

Figure 8. Elementary transmission reply corresponding DTPNs

2. Objects respond to messages that are generated by objects executing
communication actions. The object O1 receives transmission reply at
event e4, which has 3 units of time as duration and [3, 4] as timing con-
straint. The corresponding DTPN is illustrated by Figure 8 b).

3. For modeling the reply transmission action between sending action at
event e3 and receiving action at event e4, we create an event named e3e4

and two states soute3
, sine4 . This event takes in this case a duration between 3

and 5 units of time. Since then we consider the constraint interval [1, 3]
and a duration of the action equal to 2 units of time. The corresponding
DTPN model is shown in Figure 8 c).

4. At this stage, the arcs to compose the three subnet DTPNs models are
added. The complete resulting model is shown by Figure 9.

At last, the result of translation of the example in Figure 5 is depicted by
Figure 10.

Formally, S and T are the least sets verifying the following construction condi-
tions:

Formal Verification of UML MARTE Based on a Real Time Model 1037

𝑶𝟏 𝑶𝟐

𝑡𝑒4, 𝑒

𝑠𝑒3
0 =𝑠𝑒2

1

𝑠𝑒4
𝑖𝑛

𝑡𝑒3𝑒4, 𝑓

𝑠𝑒3
𝑜𝑢𝑡

[3,4],3

[1,3], 2

[3,4],3

𝑠𝑒3
1

𝑠𝑒4
0 =𝑠𝑒1

1

𝑠𝑒4
1

𝑡𝑒3,𝑑

Figure 9. Transmission reply corresponding DTPN

𝑶𝟐𝑶𝟏

𝑠𝑒1
0

𝑡𝑒1,𝑎 [1,4], 2

𝑠𝑒2
0

𝑡𝑒2 , 𝑏[1,4], 2
𝑡𝑒1 𝑒2 , 𝑐

[1,3], 3
𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡𝑠𝑒4

0 =𝑠𝑒1
1

𝑡𝑒4 , 𝑒 [3,4], 3

𝑠𝑒4
1 𝑠𝑒4

𝑖𝑛
𝑠𝑒3
𝑜𝑢𝑡

𝑠𝑒3
0 =𝑠𝑒2

1

[3,4], 3

𝑠𝑒3
1

𝑡𝑒3𝑒4 , 𝑓 𝑡𝑒3 ,𝑑

[1,3], 2

Figure 10. Synchronous transmission corresponding DTPN

– Let {te3 , te3e4 , te4} = {〈e3, 3, [3, 4]〉, 〈e3e4, 2, [1, 3]〉, 〈e4, 3, [3, 4]〉} be a set of
transitions which models a transmission reply between the two objects O1

and O2.

– Let e3 ∈ E2 and e4 ∈ E1 be two events, such that λ(e3) = Sreply and λ(e4) =
Rreply with (e3, e4) ∈<i,j, {s0

e3
, s1

e3
, soute3

, s0
e4
, s1

e4
, sine4} ⊆ S and {te3 , te4 , te3e4}

⊆ T , then:

◦te3 = {s1
e2
};

t◦e3 = {s1
e3
, soute3
};

◦te4 = {sine4 , s
1
e1
};

t◦e4 = {s1
e4
};

◦te3e4 = {soute3
};

t◦e3e4 = {sine4}.

1038 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

• Asynchronous transmission: Asynchronous transmission is used when the
sender does not need to wait for response from receiver, it continues its execution
after sending the message. The basic functionality is the same as the synchronous
transmission. We consider the sequence diagram in Figure 11, which shows the
transmission of an asynchronous message between objects O1 and O2 at events e
and e′.

𝑶𝟏 𝑶𝟐

Asynch

𝑠𝑒′
1

𝑠𝑒
0

𝑠𝑒
1

𝑠𝑒′
0

𝑒, [1,3] 𝑒′, [2,3]
𝑒𝑒′, 2, [1,4]𝑠𝑒

𝑜𝑢𝑡 𝑠𝑒′
𝑖𝑛

Figure 11. Asynchronous transmission

1. The event e in object O1, represents the sending action, which is instanta-
neous and with timing constraint [1, 3]. The event e is interpreted as a Petri
net transition te constrained by the time interval [1, 3], its two states are
translated to places s0

e and s1
e. Moreover, we add the arcs linking places to

transitions. This translation is represented by Figure 12 a).

𝑶𝟏

𝑠𝑒
0

𝑠𝑒
1

[1,3]𝑡𝑒 ,𝑎

𝑶𝟐

𝑠𝑒′
0

𝑡𝑒′ ,𝑏 [2,3]

𝑠𝑒′
1

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[1,4], 2

(b)(a) (c)
a)

𝑶𝟏

𝑠𝑒
0

𝑠𝑒
1

[1,3]𝑡𝑒 ,𝑎

𝑶𝟐

𝑠𝑒′
0

𝑡𝑒′ ,𝑏 [2,3]

𝑠𝑒′
1

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[1,4], 2

(b)(a) (c)
b)

𝑶𝟏

𝑠𝑒
0

𝑠𝑒
1

[1,3]𝑡𝑒 ,𝑎

𝑶𝟐

𝑠𝑒′
0

𝑡𝑒′ ,𝑏 [2,3]

𝑠𝑒′
1

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[1,4], 2

(b)(a) (c)
c)

Figure 12. Elementary asynchronous transmission corresponding DTPNs

2. The receiving action in object O2 is represented by the event e′ and the
reception message should be in time interval between 2 and 3 units of time.
The interpretation of this part can be represented by the DTPN given in
Figure 12 b).

3. For representing the asynchronous transmission operation between sending
action and receiving action, we add an event named ee′ between both events
e and e′ that takes in our case a duration between 3 and 6 units of time.
Hence, we consider the constraint interval [1, 4] and a duration of the action
equal to 2 units of time. Figure 12 c) illustrates the corresponding resulting
DTPN.

Formal Verification of UML MARTE Based on a Real Time Model 1039

4. To ensure asynchronous transmission between objects O1 and O2 we add two
arcs, the first arc from transition te to input state of transition tee′ and the
second arc connects the output state of this last transition to transition te′ .

As shown in Figure 13, we obtain the complete DTPN associated to the sequence
diagram of Figure 11.

𝑶𝟏 𝑶𝟐

𝑠𝑒
0

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[1,3]

[1,4], 2

𝑡𝑒′ ,𝑏
[2,3]

𝑠𝑒′
1

𝑡𝑒 ,𝑎

Figure 13. Asynchronous transmission corresponding DTPN

Formally, S and T are the least sets verifying the following construction condi-
tions:

– Let {te, tee′ , te′} = {〈e, 0, [1, 3]〉, 〈ee′, 2, [1, 4]〉, 〈e′, 0, [2, 3]〉} be a set of transi-
tions which models an asynchronous transmission between two objects O1

and O2.

– Let e ∈ E1 and e′ ∈ E2 be two events, such that λ(e) = Asysen, λ(e′) =
Asyrec with (e, e′) ∈<i,j, {s0

e, s
1
e, s

out
e , s0

e′ , s
1
e′ , s

in
e′ } ⊆ S and (te, te′ , tee′) ⊆ T ,

then:

◦te = {s0
e};

t◦e = {s1
e, s

out
e };

◦te′ = {sine′ , s0
e′};

t◦e′ = {s1
e′};

◦tee′ = {soute };

t◦ee′ = {sine′ }.

Intra-objects transmission.
An intra-objects transmission is a self-transmission in sequence diagram where the
sender and receiver objects of a message are the same. In this transmission, if two
events e and e′ belong to the same object Oi, then the event e′ immediately follows
the event e with no other event in between, Figure 14 a) shows such an example.

1040 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

𝑶𝟏 𝑶𝟐

𝑠𝑒
0

𝑠𝑒′
0 =𝑠𝑒

1

𝑠𝑒′
1

𝑒

𝑒′

𝑒𝑒′, [0,2], 3

𝑶𝟏

𝑠𝑒
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

[0,0],0

[0,0],0

𝑡𝑒 ,𝑎

𝑡𝑒′ ,𝑏

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒′
1

(a) (b)a)

𝑶𝟏 𝑶𝟐

𝑠𝑒
0

𝑠𝑒′
0 =𝑠𝑒

1

𝑠𝑒′
1

𝑒

𝑒′

𝑒𝑒′, [0,2], 3

𝑶𝟏

𝑠𝑒
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

[0,0],0

[0,0],0

𝑡𝑒 ,𝑎

𝑡𝑒′ ,𝑏

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒′
1

(a) (b)b)

Figure 14. Intra-objects transmission and its corresponding DTPN

In the sequence diagram, sending and receiving actions at events e and e′ are
instantaneous and without timing constraints, d1 = d2 = 0, ct1 = ct2 = [0, 0]. The
transmission action at event ee′ has 3 units of time during the interval [0, 2]. In the
following, we show how this is mapped to an equivalent DTPN.

1. In object O1, the sending action at event e is translated to Petri net transition
te without duration and timing constraint. Both states of this event e are trans-
lated to two Petri net places s0

e and s1
e with two arcs, each one relates a place to

the transition te. Figure 15 a) shows this construction.

𝑶𝟏

𝑠𝑒
0

𝑡𝑒 ,𝑎

𝑠𝑒
1

[0,0]

𝑶𝟏

𝑠𝑒′
0

𝑠𝑒′
1

[0,0]𝑡𝑒′ ,𝑏

𝑶𝟏

𝑠𝑒
1

𝑠𝑒′
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

(b)(a) (c)a)

𝑶𝟏

𝑠𝑒
0

𝑡𝑒 ,𝑎

𝑠𝑒
1

[0,0]

𝑶𝟏

𝑠𝑒′
0

𝑠𝑒′
1

[0,0]𝑡𝑒′ ,𝑏

𝑶𝟏

𝑠𝑒
1

𝑠𝑒′
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

(b)(a) (c)b)

𝑶𝟏

𝑠𝑒
0

𝑡𝑒 ,𝑎

𝑠𝑒
1

[0,0]

𝑶𝟏

𝑠𝑒′
0

𝑠𝑒′
1

[0,0]𝑡𝑒′ ,𝑏

𝑶𝟏

𝑠𝑒
1

𝑠𝑒′
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

(b)(a) (c)c)

Figure 15. Elementary intra-objects transmission corresponding DTPNs

Formal Verification of UML MARTE Based on a Real Time Model 1041

2. The receiving action at event e′ in object O1 has the same characteristics of the
sending action at event e. A similar construction can be made by using two
places s0

e′ and s1
e′ , and a transition te′ with two arcs, each one relates a place to

the transition te′ (see Figure 15 b)).

3. For modeling the transmission action operation between sending action and
receiving action in a same object O1, we add an event named ee′ relating both
events e and e′ that takes in our case a duration between 3 and 5 units of time.
For taking into account this characteristic we consider the constraint interval
[0, 2] and a duration of the action associated to the transition tee′ equal to 3.
The corresponding DTPN in Figure 15 c). The transmission action at event ee′

is translated a Petri net transition tee′ with a duration and a timing constraint.
The two places of this transition are the output place s1

e of transition te and
the input place s0

e′ of transition te′ . In addition, two arcs are created, each one
relates a place to the transition tee′ .

4. For connecting transmission action operation with the two previous parts of
intra-objects transmission, we will add two arcs, the first arc from the output
place s1

e of transition te to the transition tee′ and the second arc from the tran-
sition tee′ to the input place s0

e′ of transition te′ . The final corresponding DTPN
is shown in Figure 14 b).

Formally, S and T are the least sets verifying the following construction condi-
tions:

• Let {te, tee′ , te′} = {〈e, 0, [0, 0]〉, 〈ee′, 3, [0, 2]〉, 〈e′, 0, [0, 0]〉} be a set of transitions
modeling intra-objects transmission in O1.

• Let e, e′ ∈ E1, be two events, such that λ(e) = Activity and λ(e′) = Activity
with ∀(e, e′) ∈<, {s0

e, s
1
e, s

0
e′ , s

1
e′} ⊆ S and {te, te′ , tee′} ⊆ T , then:

◦te = {s0
e};

t◦e = {s1
e};

◦te′ = {s1
e′};

t◦ee′ = {s1
e′};

◦tee′ = {s1
e};

t◦ee′ = {s0
e′}.

In the different cases of transmission, inter-objects and intra-objects each object
in the sequence diagram has a single initial state and a single final state as defined
as follows:

• A state s is said an initial iff ◦s = ∅.
• A state s is said a final iff s◦ = ∅.

1042 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

3.3.2 Combined Fragments

Combined fragments are one important kind of Interactions, which are used to
create interactions that are more complex. A combined fragment is defined by an
interaction operator with its operands. The operands of a combined fragment can
have guards on them as in alternative behavior (alt) and iterative behavior (loop).
The guards of the operands are given by boolean expressions (boolean condition or
temporal condition).

In UML MARTE profile, we can specify the time constraints on a combined
fragment or on an operand using the tag “execTime” in the stereotype <<Re-
sourceUsage>>. According to the MARTE SD specification context, the time con-
straint interval [a, b] associated to this stereotype can take the following values:
∀a, b ∈ R∗

• if the execution of an operand or a combined fragment is urgent then the time
interval [a, b] = [0, 0] or [a, b] = [t, t′] with t = t′;

• if the execution of an operand or a combined fragment is not urgent then the
time interval [a, b] = [0,∞[;

• if execution of an operand or a combined fragment is specified with latency then
the time interval [a, b] = [v, v + t] with a ≥ 0 and a ≤ b.

In this subsection, we give the translation rules of the most used combined frag-
ments such as weak sequencing behavior (seq), strict sequencing behavior (strict),
parallel behavior (par), alternative behavior (alt), optional behavior (opt) and iter-
ative behavior (loop). The combined fragment operands are transformed to DTPN
subnets using previous translation rules and then integrated to the resulting DTPN.

Weak sequencing combined fragments.
Weak sequencing combined fragments defined by “seq” operator, contain two or more
operands. It represent a weak sequencing between the behaviors of its operands. If
no other operator is present on a diagram, then weak sequencing should be applied
to the Interaction fragments. Figure 16 shows such an example.

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1;

2. To synchronize all the operands that will be get involved in the execution of
the weak interaction, the transition t0fi is created. An arc connecting the initial
place s0

fi
to the transition t0fi is added;

3. Using the previous translation rules, the two DTPN subnets corresponding to
the two operands in weak combined fragments are generated;

4. Since, the purpose of this operator is to allow the execution of only one operand,
in other words, the operands are executed in mutual exclusion. In Petri net
terms, the transitions related to the operands should be in conflict. So, the
place named LP is created and connected to the two initial transitions of the
two DTPN subnets;

Formal Verification of UML MARTE Based on a Real Time Model 1043

𝑶𝟏 𝑶𝟐

𝑠𝑒4
0

𝑠𝑒1
0

𝑠𝑒3
0

𝑠𝑒2
0

𝑒1, [0,2] 𝑒2, [1,3]

𝑒1𝑒2, 1,2 ,2𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒2

𝑖𝑛

𝑠𝑒4
1

𝑠𝑒3
1

𝑒3, [0,2] 𝑒4, [1,3]

𝑒3𝑒4, 1,2 ,2𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑶𝟑

𝑠𝑒2
1𝑠𝑒1

1

Seq

Figure 16. Weak sequencing combined fragments

5. The final transition t1fi is created and connected to the last place of every DTPN
subnet;

6. The place s1
fi

corresponding to the final place of the DTPN is created and con-
nected, as an output place, to the final transition t1fi . The equivalent DTPN of
weak sequencing combined fragments is given by Figure 17.

𝑠𝑒3
0𝑠𝑒1

0

1,2 , 2

𝑡𝑒4, 𝑒, [1,3]

𝑠𝑒2
0

𝑡𝑒2 ,𝑏, 1,3 𝑡𝑒1,𝑎, [0,2]

𝑠𝑒2
1

𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒1

1 𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
0

𝑠4
1

𝑡𝑒3𝑒4, 𝑓𝑡𝑒1𝑒2 , 𝑐

1,2 , 2

𝑡𝑒3,𝑑, 0,2

𝑡 𝑓𝑖
0

𝑠 𝑓𝑖
0

𝑡 𝑓𝑖
1

𝑠 𝑓𝑖
1

𝐿𝑃

Figure 17. Weak sequencing combined fragments corresponding DTPN

1044 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Strict sequencing combined fragments.
Strict sequencing combined fragments are defined by “strict” operator, encloses two
or more operands. The operands behaviors must occur in a given order. The
order within each operand is preserved. This combined fragments is illustrated by
Figure 18.

Strict

𝑶𝟏 𝑶𝟐

𝑠𝑒4
0

𝑠𝑒1
0

𝑠𝑒3
0

𝑠𝑒2
0

𝑒1, [0,2] 𝑒2, [1,3]
𝑒1𝑒2, 1,2 ,2𝑠𝑒1

𝑜𝑢𝑡 𝑠𝑒2
𝑖𝑛

𝑠𝑒4
1

𝑠𝑒3
1

𝑒3, [0,2] 𝑒4, [1,3]
𝑒3𝑒4, 1,2 ,2𝑠𝑒3

𝑜𝑢𝑡 𝑠𝑒4
𝑖𝑛

𝑶𝟑

𝑠𝑒2
1𝑠𝑒1

1

Figure 18. Strict sequencing combined fragments

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1;

2. The initial transition t0fi is created and connected, as output transition to the
initial place s0

fi
;

3. Using the translation rules explained in the previous section, the two operands
in strict combined fragments are translate to the two DTPN subnets. An arc
connecting the last transition of the first DTPN subnet to the initial place of
the second DTPN subnet is created;

4. The final transition t1fi of the strict combined fragments is generated and an arc
connecting the final place of second subnet to the final transition t1fi of the strict
fragment is added;

5. The final place s1
fi

of strict fragment is created and an arc connecting the transi-
tion t1fi to the place s1

fi
is added. Figure 19 illustrates the complete construction

of the DTPN corresponding to the strict combined fragments.

Parallel combined fragments.
A combined fragment of “par” type is used to specify the concurrent behavior of
real-time systems. It describes a parallel execution of the behaviors related to dif-
ferent operands. The behaviors of these operands can be interleaved in any way.
However, each operand behavior preserves its predefined order. Figure 20 shows an
example of parallel execution of elements Operand-1 and Operand-2 with a global
time constraint associated to the execution parallel combined fragments. Object O1

Formal Verification of UML MARTE Based on a Real Time Model 1045

𝑠𝑒3
0𝑠𝑒1

0

1,2 , 2

𝑡𝑒4, 𝑒, [1,3]

𝑠𝑒2
0

𝑡𝑒2 ,b, 1,3
𝑡𝑒1,𝑎, [0,2]

𝑠𝑒2
1

𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒1

1 𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
0

𝑠4
1

𝑡𝑒3𝑒4, 𝑓𝑡𝑒1𝑒2 , 𝑐

1,2 , 2

𝑡𝑒3,𝑑,

0,2

𝑡 𝑓𝑖
0

𝑠 𝑓𝑖
0

𝑡 𝑓𝑖
1

𝑠 𝑓𝑖
1

2

Figure 19. Strict sequencing combined fragments corresponding DTPN

launches concurrently two asynchronous transmission operations. Consequently, the
corresponding receiving operations in object O2 may happen concurrently too. The
objects O1 and O2 can continue their execution according to the timing constraint
of the parallel combined fragment.

Operand-1

«ResourceUsage»
{execTime=[(2,ms,min),
(5,ms,max)]}

𝑶𝟏 𝑶𝟐

𝑠𝑒4
0

𝑠𝑒1
0

𝑠𝑒3
0

𝑠𝑒2
0

𝑒1, [0,2] 𝑒2, [1,3]

𝑒1𝑒2, 1,2 ,2𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒2

𝑖𝑛

𝑒3, [0,2] 𝑒4, [1,3]

𝑒3𝑒4, 1,2 ,2𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
1𝑠𝑒3

1

𝑠𝑒2
1𝑠𝑒1

1

Operand-2

Par

Figure 20. Parallel combined fragments

To detail the translation rules of this fragment type, let us consider the sequence
diagram of Figure 20.

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1. This marking
place is used in the evaluation of the firing condition of the connected transitions;

1046 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

2. For synchronizing all the operands involved in the parallel combined fragments
execution, the transition t0fi is created. It is instantaneous and with zeroed
time constraint (d = 0, tc = 0). An arc connecting the initial place s0

fi
to the

transition t0fi is then added;

3. Using the translation rules explained in previous section two DTPN subnets
DTPN − 1 and DTPN − 2 are generated, which correspond respectively to
Operand-1 and Operand-2. Note that places s0

e1
and s0

e3
have no marking since

they become a non initial places (M(s0
e1

) = 0, M(s0
e3

) = 0). The starting
transition t0fi is then connected to these places;

4. For synchronizing all operands involved in output of the parallel combined frag-
ments, the final transition t1fi is created. It has the time interval [2, 5] as a timing
constraint. This transition is connected then, as output transition to each last
place of every DTNP subnet (s1

e2
, s1

e4
). So, the final transition t1fi can only be

fired when each operand in the combined fragments reaches its final state (one
token in its final place);

5. The place s1
fi

corresponding to the final state of the parallel combined fragments
is created. The final transition t1fi is then connected to this place. The resulting
DTPN of this parallel combined fragments is given by Figure 21.

𝑠𝑒3
0𝑠𝑒1

0

1,2 , 2

𝑡𝑒4, 𝑒,

[1,3]

𝑠𝑒2
0

𝑡𝑒2 , 𝑏,

1,3
𝑡𝑒1,𝑎, [0,2]

𝑠𝑒2
1

𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒1

1 𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
0

𝑠4
1

𝑡𝑒3𝑒4, 𝑓𝑡𝑒1𝑒2 , 𝑐

1,2 , 2

𝑡𝑒3,d, 0,2

𝑡 𝑓𝑖
0

𝑠 𝑓𝑖
0

𝑡 𝑓𝑖
1

𝑠 𝑓𝑖
1

2,5

0,0

Figure 21. Parallel combined fragments corresponding DTPN

Alternative combined fragments.

Alternative combined fragments defined by “alt” operator, represents a choice of be-
havior in a fragment. This operator implements a non deterministic choice between

Formal Verification of UML MARTE Based on a Real Time Model 1047

Operand-1

𝑶𝟏 𝑶𝟐

𝑠𝑒4
0

𝑠𝑒1
0

𝑠𝑒3
0

𝑠𝑒2
0

𝑒1, [0,2] 𝑒2, [1,3]

𝑒1𝑒2, 1,2 ,2𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒2

𝑖𝑛

𝑒3, [0,2] 𝑒4, [1,3]

𝑒3𝑒4, 1,2 ,2𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
1𝑠𝑒3

1

𝑠𝑒2
1𝑠𝑒1

1

Operand-2

Alt

[cond1]

[cond2]

Figure 22. Alternative combined fragments

operands that have their constraints evaluated to true. Figure 22 shows an example
of an alternative fragment with two operands.

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1;

2. Two conflicting transitions t1fi and t2fi are generated. In this manner, that only
one of the operands is selected, even the transitions guards are both evaluated
as true. Two arcs connecting both transitions t1fi and t2fi to the initial place s0

fi

are added;

3. Using the translation rules explained in the previous section, two DTPN subnets
DTPN − 1 and DTPN − 2 are generated, which correspond respectively to
Operand-1 and Operand-2. The previous transitions t1fi and t2fi are connected
by two arcs to the initials places s0

e1
and s0

e3
, respectively, which launch the

executions of internal operands (Operand-1 and Operand-2);

4. For representing the output for each DTPN subnet, two final transitions t3fi and
t4fi are generated. These transitions are then related, as an output transitions
to the final places s1

e2
and s1

e4
, which are associated to sub DTPN-1 and sub

DTPN-2, respectively;

5. The final place s1
fi

of DTPN is created and connected to it as the output place
to the two final transitions t3fi and t4fi . Figure 23 shows the complete structure
of the equivalent DTPN to the alternative combined fragments.

Optional combined fragments.
Optional combined fragments, defined by the operator “opt”, contain only one
operand which is executed according to a guard condition or a state value. Fig-
ure 24 a) gives an example illustrating this operator.

Optional combined fragments is semantically equivalent to the alternative com-
bined fragments. So, it is translated as a simplification of alternative combined
fragments with only one operand, considered where the condition evaluation is true.
Figure 24 b) shows the corresponding DTPN specification.

1048 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

𝑠𝑒3
0𝑠𝑒1

0

1,2 , 2

𝑡𝑒4, 𝑒,

[1,3]

𝑠𝑒2
0

𝑡𝑒2 , 𝑏,

1,3
𝑡𝑒1,𝑎, [0,2]

𝑠𝑒2
1

𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒1

1 𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
0

𝑠𝑒4
1

𝑡𝑒3𝑒4, 𝑓𝑡𝑒1𝑒2 , 𝑐

1,2 , 2

𝑡𝑒3,d, 0,2

𝑡 𝑓𝑖
1

𝑠 𝑓𝑖
0

𝑡 𝑓𝑖
3

𝑠 𝑓𝑖
1

𝑡 𝑓𝑖
2

𝑡 𝑓𝑖
4

Figure 23. Alternative combined fragments corresponding DTPN

[cond]

𝑶𝟏 𝑶𝟐

𝑠𝑒
0 𝑠𝑒′

0

𝑒, [0,2] e′, [1,3]

𝑒𝑒′, 1,2 , 2𝑠𝑒
𝑜𝑢𝑡 𝑠𝑒′

𝑖𝑛

𝑠𝑒′
1𝑠𝑒

1

Opt

(b)(a)

𝑶𝟐 𝑶𝟏

𝑡𝑒′ ,𝑏

𝑠𝑒
0

𝑠𝑒′
𝑖𝑛

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒
𝑜𝑢𝑡

[0,2]

[1,2], 2

[1,3]

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒′
1

𝑡𝑒 ,𝑎

𝑡𝑓𝑖
0

𝑠𝑓𝑖
0

𝑡𝑓𝑖
1

𝑠𝑓𝑖
1

𝑡𝑓𝑖
0′

a)

[cond]

𝑶𝟏 𝑶𝟐

𝑠𝑒
0 𝑠𝑒′

0

𝑒, [0,2] e′, [1,3]

𝑒𝑒′, 1,2 , 2𝑠𝑒
𝑜𝑢𝑡 𝑠𝑒′

𝑖𝑛

𝑠𝑒′
1𝑠𝑒

1

Opt

(b)(a)

𝑶𝟐 𝑶𝟏

𝑡𝑒′ ,𝑏

𝑠𝑒
0

𝑠𝑒′
𝑖𝑛

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒
𝑜𝑢𝑡

[0,2]

[1,2], 2

[1,3]

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒′
1

𝑡𝑒 ,𝑎

𝑡𝑓𝑖
0

𝑠𝑓𝑖
0

𝑡𝑓𝑖
1

𝑠𝑓𝑖
1

𝑡𝑓𝑖
0′

b)

Figure 24. Optional combined fragments and its corresponding DTPN

We can see that in the resulting DTPN, the transition t0fi is possible only if
a guard condition is true. Otherwise, the transition t1fi ends the behavior.

Loop combined fragments.

Iterative combined fragments, denoted by “loop” operator, have only one operand.
It defines a recursive behaviour with a guard condition. The guard may either indi-
cate a number of repetitions ([min,max]) that should be executed or a boolean
expression. Figure 25 a) shows an example representing a loop combined frag-
ments.

Formal Verification of UML MARTE Based on a Real Time Model 1049

[cond]

𝑶𝟏 𝑶𝟐

𝑠𝑒
0 𝑠𝑒′

0

𝑒, [0,2] e′, [1,3]

𝑒𝑒′, 1,2 , 2𝑠𝑒
𝑜𝑢𝑡 𝑠𝑒′

𝑖𝑛

𝑠𝑒′
1𝑠𝑒

1

Loop

(b)(a)

𝑶𝟏 𝑶𝟐

𝑡𝑒 ,𝑎

𝑠𝑒′
0

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[0,2]

[1,2], 2

[1,3]

𝑠𝑒′
1

𝑠𝑒
0

𝑠𝑒
1

𝑡𝑒′ ,𝑏

𝑡𝑓𝑖
0

𝑠𝑓𝑖
0

𝑡𝑓𝑖
1

𝑠𝑓𝑖
1

𝑡𝑓𝑖
0′

a)

[cond]

𝑶𝟏 𝑶𝟐

𝑠𝑒
0 𝑠𝑒′

0

𝑒, [0,2] e′, [1,3]

𝑒𝑒′, 1,2 , 2𝑠𝑒
𝑜𝑢𝑡 𝑠𝑒′

𝑖𝑛

𝑠𝑒′
1𝑠𝑒

1

Loop

(b)(a)

𝑶𝟏 𝑶𝟐

𝑡𝑒 ,𝑎

𝑠𝑒′
0

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[0,2]

[1,2], 2

[1,3]

𝑠𝑒′
1

𝑠𝑒
0

𝑠𝑒
1

𝑡𝑒′ ,𝑏

𝑡𝑓𝑖
0

𝑠𝑓𝑖
0

𝑡𝑓𝑖
1

𝑠𝑓𝑖
1

𝑡𝑓𝑖
0′

b)

Figure 25. Loop combined fragments and its corresponding DTPN

The translation process follows the following steps:

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1;

2. Two initial transitions t0fi and t1fi are generated. These transitions allow the
guard evaluation that serves as a constraint for the combined fragments;

3. Two arcs connecting the initial place s0
fi

to both transitions t0fi and t1fi are
added;

4. Using the translation rules detailed in the previous section, the DTPN subnet
corresponding to the loop operand is created;

5. Since, the purpose of this operator is to repeat the execution of the loop operand
until the loop guard is evaluated to false, the transition t0

′

fi
is created and con-

nected to the initial place s0
fi

of the loop fragment. The final place s1
e′ of DTPN

subnet is then connected to the transition t0
′

fi
;

6. For considering the case when the boolean expression associated to the tran-
sition t1fi is evaluated to false, the final place s1

fi
is created and connected to

the transition t1fi as an output place. Figure 25 represents the resulting DTPN
structure of the loop combined fragments in Figure 25 b).

4 CASE STUDY

In order to illustrate our approach, for modeling and analysis of real-time embedded
systems, we propose to use an interaction fragment of a real case study which is
an elevator controller system. We consider two elevators used in a building composed
of many floors. The interest of this application is to consider the case of two parallel
activities with a non-null duration. These activities correspond to the elevators
moves between two different floors at the same time. The elevators are controlled
by only one elevator controller system.

1050 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Specification.
Assume that two users are at two different floors. At a given instant, each one
requests an elevator. For instance, User-1 is at the first floor while User-2 is at the
seventh floor. It is also assumed that User-1 wants to go to the seventh floor, and
User-2 wants to go to the first floor.

Since our study focused on parallel activities modeling, we assume that the
elevators are parked at floor one and seven, respectively, where their doors are open
and the users are inside them. Both users pushed simultaneously the floor button to
be visited in the button panel. The elevator controller must move the two elevators
in parallel to the requested floors.

To simplify the study, we abstract from elevator system components partici-
pating in the interaction which does not affect the study purpose, like cabin, floor
sensor and door.

Once the elevator controller has received two requests at the same time, it creates
and activates two processes in parallel Elevator1 and Elevator2 (two instances).
Elevator1 and Elevator2 are responsible for the move of the first elevator and the
second elevator, respectively.

Two time aspects are taken into consideration, the first one concerns the execu-
tion duration of actions and the second one concerns the timing constraints. In the
example, the elevator movement action takes 3 units of time (d = 3 000 ms) and the
action execution may be delayed and executed in the time interval [0, 10].

Figure 26 shows the sequence diagram representing the time aspects and the
interactions between the principal objects involved in the elevator request function-
ality, with a global time constraint (tc = [10, 30]) associated.

Button2 Elevator Controller

𝑒3, [0,10]

Elevator1 Elevator2Button1

𝑒5, [0,10]

𝑒6, [0,10]

𝑒11, [0,10]

𝑒12, [0,10]

𝑒9, [0,10]

𝑒4, [0,10]

𝑒10, [0,10]

𝑒7, 0,10 𝑒8, [0,10]

𝑒1𝑒2, 0,10

𝑒5𝑒6, 0,10

𝑒7𝑒8, 0,1

𝑒9𝑒10, [0,10]

𝑒11𝑒12, 0,10

Move1()
{d3=(3000,ms)}

Move2()
{d6=(3000,ms)}

𝑒1, 0,10 𝑒2, 0,10

Request2() {d5=(10,ms)}

Request1() {d2=(10,ms)}

PressB1 {d1=(20,ms)}

PressB2() {d4=(20,ms)}

𝑒3𝑒4, 0,10

𝑠𝑒1
1

𝑠𝑒3
1

𝑠𝑒7
0

𝑠𝑒12
1

𝑠𝑒1
0 𝑠𝑒2

0

𝑠𝑒7
0

𝑠𝑒6
1

𝑠𝑒4
0

𝑠𝑒5𝑒6
0 = 𝑠𝑒5

1

𝑠𝑒5
0 = 𝑠𝑒4

1

𝑠𝑒3
0 = 𝑠𝑒2

1

𝑠𝑒8
0

𝑠𝑒9
1

𝑠𝑒10
0

𝑠𝑒11
0 = 𝑠𝑒10

1

𝑠𝑒9
0 = 𝑠𝑒8

1

𝑠𝑒5𝑒6
1 = 𝑠𝑒6

0

𝑠𝑒11𝑒12
0 = 𝑠11

1

𝑠𝑒11𝑒12
1 = 𝑠12

0

«ResourceUsage»
{execTime=[(10,ms,
min),(30,ms,max)]}

Par

Figure 26. Interactions between objects for the request an elevator

Formal Verification of UML MARTE Based on a Real Time Model 1051

To apply the translation method over the previous sequence diagram, first, we
annotate the sending and receiving time events of the transmitted messages be-
tween objects. The set of Time events is Et = {e1, e2, . . . , e10, e12}. Events repre-
senting the intermediate transmissions (colored by red) with their associated du-
ration and timing constraints are also added. Hence, Et = {e1, e2, . . . , e11, e12} ∪
{e1e2, e3e4, e5e6, . . . , e11e12}. For each object involved in the interaction, two state
(colored by blue) to each event on its lifeline is associated, then S = {s0

e1
, s1

e1
, s0

e2
, . . . ,

s1
e12
}. Similarly, states are associated to timed events. They correspond to interme-

diate transmissions in the sequence diagram. Hence, S = {s0
e1
, s1

e1
, . . . , s0

e12
, s1

e12
} ∪

{soute1
, sine2 , . . . , s

in
e12
}.

The translations method detailed in Section 3 can now be applied on the se-
quence diagram. Figure 27 depicts the complete construction of the equivalent
DTPN.

te1,a

te2,c,[0,10],0

te3,d

te3e4,e

te4,f,[0,10],0

te5e6,move

te5,g

te6,j

te10,p,[0,10],0

te11e12,move

te11,q

te12,s

te8,m,[0,10],0

te9,n

te9e10,o

s1e6

[0,10],0

[0,10],10

[0,10],0

[0,10],3000

[0,10],0

[10,30],0

[0,10],0

[0,10],0

[0,10],0

[0,10],3000

[0,10],10

[0,10],0

[0,10],0

[0,10],20

=

=

, start

, end

=

=

[0,10],20
te1e2,b

te7,k

te7e8 ,

[0,10],0

Figure 27. DTPN specification corresponding to sequence diagram for requesting an ele-
vator

According to Figure 27, the initial place of the DTPN is s0
fi

with the initial
marking M(s0

fi
) = 1. The final place is s1

fi
. The initial transition is t0fi with time

constraint [0, 0]. The final transition is t1fi with time constraint [2, 5]. The places
corresponding to the states are P = {s0

e1
, s1

e1
, s0

e2
, . . . , s1

e12
, soute1

, sine2 , . . . , s
in
e12
} and the

events corresponding to the Petri net transitions are T = {te1 , te2 , . . . , te11 , te12}.

1052 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

In the resulting DTPN, the firing of transitions is bound to a time interval. The
transition firing represents action launching which has an explicit duration.

Verification.
To investigate the verification and validation of real time embedded systems, we opt
for the operational semantics developed in [20] to generate a semantics model to
DTPN specification. The true-concurrency semantics based DTPN model is used to
obtain the durational action Timed Automata (daTA) depicted in Figure 28. The
resulting daTA has 42 states and 68 transitions; it is generated automatically using
a tool integrated into FOCOVE environment [45]. For this reason, we represent only
a fragment of the graph. This structure allows the verification of properties related
to parallel evolution of actions as shown in the different states of resulting daTA. As
an example, state s36 is labelled within duration conditions set {x ≥ 3 000 ms, y ≥
3 000 ms}. In this state, actions Move1 and Move2 can comply in parallel, and each
one can finish only if its clock reaches a value equal to its duration.

Note that we have used just two clocks (x and y) to specify all actions of the
case study because we have at most two actions in execution at a given time. This
is possible due to the dynamic creation of clocks with the reuse of free clocks.

The model checking is mainly based upon the region graph and zone graph
algorithms on daTA. The model checking complexity on TA, as daTA, is exponential
in the number of clocks. We can observe that using true-concurrency semantics based
DTPN, the generated daTA has a lower number of clocks. We can then apply CTL
model checking to check some properties.

5 DISCUSSION AND RELATED WORKS

The transformation of MARTE sequence diagrams to formal specifications, for the
formal verification, has been investigated in several approaches like [46, 47, 48, 49,
50, 51], but a few approaches as [12, 52, 53] have taken into consideration time spec-
ification in the transformation process. Previous works just deal with the flowing of
events in sequence diagrams with implicit expression of time and consider only inter-
leaving semantics. On the contrary, we have proposed a translation approach that
supports at the same time timing constraints, explicit actions durations, urgency
and structural and temporal non-atomicity of actions. Thus, our approach is done
to a true concurrency-based real time formal specification models (DTPN and daTA
models). The use of daTA’s structures as semantics allows firstly, to express concur-
rent and parallel behaviors in a natural way, i.e. to distinguish between sequential
and parallel runs of actions. Therefore, with non-null duration under timing con-
straints. This is not the case of the interleaving semantics. Secondly, resetting the
state clocks which are used to specify time and timing constraints. Therefore, this
will lead to reducing the verification time which is often exponential for large size
RTES, and to reducing the number of states and transitions in the graph without
loss of information, and then escaping from the explosion of the underlying graph.

Formal Verification of UML MARTE Based on a Real Time Model 1053

𝑥 ≥ 0,𝑦 ≥ 0

𝑥 ≥ 0,
𝑦 ≥ 3000

𝑥 ≥ 3000,
𝑦 ≥ 3000

𝑥 ≥ 0,𝑦 ≥ 0𝑥 ≥ 20 𝑦 ≥ 20

𝑥 ≥ 0 𝑦 ≥ 0

𝑥 ≥ 0

𝑥 ≥ 0

𝑥 ≥ 3000,
𝑦 ≥ 0

𝑥 ≥ 0

𝒔𝟎

𝒔𝟏

𝒔𝟐

𝒔𝟓
𝒔𝟒

𝒔𝟑

𝒔𝟔

𝒔𝟑𝟔

𝒔𝟑𝟗 𝒔𝟒𝟎

𝒔𝟒𝟏

𝒔𝟒𝟐

𝑠𝑡𝑎𝑟𝑡, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10}
𝐷={𝑥 ≤ 10}

𝑘,𝑦
𝐺={0 ≤ 𝑦 ≤ 10}
𝐷={𝑦 ≤ 10}

ℓ,𝑦
𝐺={0 ≤ 𝑦 ≤ 10}
𝐷={𝑦 ≤ 10}

𝑠, 𝑥
𝐺={3000 ≤ 𝑥 ≤ 3010}
𝐷={𝑥 ≤ 3010}

𝑎, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10}
𝐷={𝑥 ≤ 10}

𝑏, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10}
𝐷={𝑥 ≤ 10} 𝑘,𝑦

𝐺={0 ≤ 𝑦 ≤ 10}
𝐷={𝑦 ≤ 10}

𝑎, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10}

𝐷={𝑥 ≤ 10}

𝑠, 𝑥
𝐺={3000 ≤ 𝑥 ≤ 3010}

𝐷={𝑥 ≤ 3010}

𝑗,𝑦
𝐺={3000 ≤ 𝑦 ≤ 3010}

𝐷={𝑦 ≤ 3010}

𝑗,𝑦
𝐺={3000 ≤ 𝑦 ≤ 3010}

𝐷={𝑦 ≤ 3010}

𝑒𝑛𝑑, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10,0 ≤ 𝑦 ≤ 10}
𝐷={𝑥 ≤ 10,𝑦 ≤ 10}

Figure 28. Fragment of daTA corresponding to DTPN

In the proposed method, we borrowed the idea of associating states to events
of the sequence diagram as made in [41]. However, the translation method of [41]
considers the sequence diagram as a whole entity, in comparison with our translation
method, as a set of rules defined to make the translation method inductive. The
translation rules start by considering elementary component, which are the events
in the sequence diagram. Hence, for each composed component, a translation rule
is defined inductively using the translation result of its sub-components. In this
manner, a construction of a tool implementing the method may easily be done. As
an example, Figure 29 a) shows the asynchronous message events that represent the
moments in which the actions send or receive. In terms of the Petri net, each event
(e, e′, e′′) is translated to a transition, an input place and an output place as shown
in Figure 29 b).

In [12], authors interpreted parallel activities, modeled in MARTE sequence
diagram, by parallel transitions in TCPNIA specification under an interleaving se-
mantics. In this approach, only the execution occurrence duration is modeled. It
is specified by a time interval associated to a transition of TCPNIA. In our pro-
posed method, start occurrence, finish occurrence, message occurrence (complete
UML name, message occurrence specification), which represent sending and receiv-
ing event, and invoking or receiving of operation calls, are considered.

1054 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

(b)(a)

𝑒
𝑒’

𝑒′′

𝑡𝑒′

𝑡𝑒′′𝑡𝑒

𝑝1

𝑝2

𝑝5

𝑝6𝑝3 𝑝4

a) (b)(a)

𝑒
𝑒’

𝑒′′

𝑡𝑒′

𝑡𝑒′′𝑡𝑒

𝑝1

𝑝2

𝑝5

𝑝6𝑝3 𝑝4

b)

Figure 29. Asynchronous message translating

On the other hand, the proposed works assumed action atomicity hypothesis
imposed by the interleaving semantics which handle parallel behaviors as their com-
bined sequential evolution. For more clarification, let us consider the example of
Figure 30 b). Using the method proposed in [12], these parallel activities are trans-
lated to the TCPNIA specification of Figure 30 c).

[2,3], 3 𝑡3 [1,3], 3

𝑝1

𝑝2 𝑝4

𝑝3

𝑡2

𝑡1

𝑝5

𝑎, 𝑥𝑏,𝑦

𝑆0

{∅}

𝑏,𝑦𝑎, 𝑥

{𝑥 3}

{𝑥 3,𝑦 3} 𝑆3

𝑆1 𝑆2

𝑆4

{𝑦 3}

{𝑥 3,𝑦 3}

(b) DTPN(a) daTA (c) TCPNIA

[2,3]Start 𝑡2 𝑡3 start[1,3]

[4,6]

𝑝1

𝑝4

𝑝2

𝑝3

𝑝5

𝑝6

𝑝7

𝑡1

end 𝑡2 𝑡3 end

𝐺 = {2 ≤ 𝑥 ≤ 3} 𝐺 = {1 ≤ 𝑦 ≤ 3}

𝐺 = {2 ≤ 𝑥 ≤ 3}𝐺 = {1 ≤ 𝑦 ≤ 3} [5,6]

a)

[2,3], 3 𝑡3 [1,3], 3

𝑝1

𝑝2 𝑝4

𝑝3

𝑡2

𝑡1

𝑝5

𝑎, 𝑥𝑏,𝑦

𝑆0

{∅}

𝑏,𝑦𝑎, 𝑥

{𝑥 3}

{𝑥 3,𝑦 3} 𝑆3

𝑆1 𝑆2

𝑆4

{𝑦 3}

{𝑥 3,𝑦 3}

(b) DTPN(a) daTA (c) TCPNIA

[2,3]Start 𝑡2 𝑡3 start[1,3]

[4,6]

𝑝1

𝑝4

𝑝2

𝑝3

𝑝5

𝑝6

𝑝7

𝑡1

end 𝑡2 𝑡3 end

𝐺 = {2 ≤ 𝑥 ≤ 3} 𝐺 = {1 ≤ 𝑦 ≤ 3}

𝐺 = {2 ≤ 𝑥 ≤ 3}𝐺 = {1 ≤ 𝑦 ≤ 3} [5,6]

b)

[2,3], 3 𝑡3 [1,3], 3

𝑝1

𝑝2 𝑝4

𝑝3

𝑡2

𝑡1

𝑝5

𝑎, 𝑥𝑏,𝑦

𝑆0

{∅}

𝑏,𝑦𝑎, 𝑥

{𝑥 3}

{𝑥 3,𝑦 3} 𝑆3

𝑆1 𝑆2

𝑆4

{𝑦 3}

{𝑥 3,𝑦 3}

(b) DTPN(a) daTA (c) TCPNIA

[2,3]Start 𝑡2 𝑡3 start[1,3]

[4,6]

𝑝1

𝑝4

𝑝2

𝑝3

𝑝5

𝑝6

𝑝7

𝑡1

end 𝑡2 𝑡3 end

𝐺 = {2 ≤ 𝑥 ≤ 3} 𝐺 = {1 ≤ 𝑦 ≤ 3}

𝐺 = {2 ≤ 𝑥 ≤ 3}𝐺 = {1 ≤ 𝑦 ≤ 3} [5,6]

c)

Figure 30. Generating models

For the verification of the required properties, the specification of Figure 30 c)
is translated to a Timed Automata. Since the transition execution is instantaneous,
there is no way to observe the parallel execution of the two activities. As a solution
for such situation, it is possible to interpret each activity having a non-null duration
by two sequential transitions modeling the start and the end of the activity. As
shown in Figure 30 c), the activity duration is captured in the intermediate state
conditioning the execution of the ending transition by the elapsed time. We notice
that the composed system may be in the state where the two start transitions are
executed before executing the end transitions. Such state captures the parallelism

Formal Verification of UML MARTE Based on a Real Time Model 1055

between the two activities however, such methods augment the number of states,
transitions and clocks, which contributes to the state space explosion problem of
zone graph corresponding to the Timed Automata specification. As an alternative,
the use of DTPN and daTA is an interesting solution (Figure 30 a)).

As a consequence, we remark that the number of transitions of each structure
is comparable respectively of those of Figure 30 a). Another advantage concerns
the construction of the set of clocks. In our context, a clock is created dynamically
during the generation of the semantics models with the reuse of free clocks. On
the contrary, other models like Timed Automata, Petri Nets with Deadlines and
Time Petri Nets manage [15, 54, 55, 56], at the beginning of modeling, a finite and
constant number of clocks recording to the number of actions to execute.

6 CONCLUSION

In this paper, we proposed an operational method for translating MARTE SD spec-
ifications to DTPN specifications. As it has been mentioned previously, MARTE
SD allows the specification of several kind of behaviors like concurrency, time con-
straints and action duration. Since, DTPN formal specification model is a true
concurrency based semantics, it allows the consideration of the last three behavior
characteristics in both syntactic and semantics levels. This latter arguments is the
sole motivation of our work. The use of daTA structures as semantics allows prop-
erties formal verification, particularly those related to parallel evolution of actions
that have non-null duration and under timing constraints. Properties related to
reachability may be checked by means of KRONOS and UPPAAL tools, and prop-
erties dealing with true concurrency behaviours may be checked using FOCOVE
model checker.

In this paper, the translation method has been explained by considering sev-
eral examples. As for the perspectives of this work, we suggest that it is applied
on realistic real-time embedded systems. It could be either integrated to an ex-
isting environment system and/or a computer-aided software engineering model
checker. It could also be part of a separate formal specification and verification
tool. Alternatively, it would be useful to develop a full TCTL model-checker for
DTPNs related to MARTE SD specification without passing by Timed Automaton
like structures.

REFERENCES

[1] Lee, I.—Leung, J. T.—Son, S.: Handbook of Real-Time and Embedded Systems.
New York, Chapman and Hall/CRC, 2008, doi: 10.1201/9781420011746.

[2] Gomes, L.—Fernandes, J. M.: Behavioral Modeling for Embedded Systems and
Technologies: Applications for Design and Implementation. Information Science Ref-
erence, 2010.

https://doi.org/10.1201/9781420011746

1056 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

[3] Rayner, M.—Hockey, B. A.—Chatzichrisafis, N.—Farrell, K.: OMG Uni-
fied Modeling Language Specification. Version 1.3, © 1999 Object Management
Group, Inc., 2005.

[4] Gérard, S.: MARTE: A New Standard for Modeling and Analysis of Real-Time
and Embedded Systems. Proceedings of Euromicro Conference on Real-Time Systems
(ECRTS ’07), Pisa, Italy, 2007.

[5] OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems, OMG Document Number: Ptc. 2008.

[6] Ge, N.—Pantel, M.—Crégut, X.: Time Properties Dedicated Transformation
from UML-MARTE Activity to Time Transition System. ACM SIGSOFT Software
Engineering Notes, Vol. 37, 2012, No. 4, pp. 1–8, doi: 10.1145/2237796.2237807.

[7] Ge, M. N.—Cregut, X.: A Framework Dedicated to Time Properties Verification
for UML-MARTE Specifications. 2012.

[8] Berthomieu, B.—Vernadat, F.: Time Petri Nets Analysis with TINA. Third In-
ternational Conference on the Quantitative Evaluation of Systems (QEST ’06), 2006,
pp. 123–124, doi: 10.1109/QEST.2006.56.

[9] Bošnački, D.—Dams, D.: Integrating Real Time into Spin: A Prototype Im-
plementation. In: Budkowski, S., Cavalli, A., Najm, E. (Eds.): Formal Description
Techniques and Protocol Specification, Testing and Verification (PSTV 1998, FORTE
1998). Springer, Boston, MA, IFIP – The International Federation for Information
Processing, Vol. 6, 1998, pp. 423–438, doi: 10.1007/978-0-387-35394-4 26.

[10] Bošnački, D.—Dams, D.: Discrete-Time Promela and Spin. In: Ravn, A. P.,
Rischel, H. (Eds.): Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 1998). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 1486, 1998, pp. 307–310, doi: 10.1007/bfb0055359.

[11] Holzmann, G. J.: The Model Checker SPIN. IEEE Transactions on Software Engi-
neering, Vol. 23, 1997, No. 5, pp. 279–295, doi: 10.1109/32.588521.

[12] Yang, N.—Yu, H.—Sun, H.—Qian, Z.: Modeling UML Sequence Diagrams Us-
ing Extended Petri Nets. Telecommunication Systems, Vol. 51, 2012, No. 2-3, pp. 147-
158, doi: 10.1007/s11235-011-9424-5.

[13] Yang, N.-H.—Yu, H.-Q.: Modeling and Verification of Embedded Systems Using
Timed Colored Petri Net with Inhibitor Arcs. Journal of East China University of
Science and Technology, Vol. 36, 2010, No. 3, pp. 411–417.

[14] Alur, R.—Dill, D.: Automata for Modeling Real-Time Systems. In: Pater-
son, M. S. (Ed.): Automata, Languages, and Programming (ICALP 1990). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 443, 1990, pp. 322–335,
doi: 10.1007/bfb0032042.

[15] Alur, R.—Dill, D. L.: A Theory of Timed Automata. Theoretical Computer
Science, Vol. 126, 1994, No. 2, pp. 183–235, doi: 10.1016/0304-3975(94)90010-8.

[16] McMillan, K. L.: Symbolic Model Checking. Kluwer Academic Publishers, 1993,
doi: 10.1007/978-1-4615-3190-6.

[17] Courcoubetis, C.—Yannakakis, M.: Minimum and Maximum Delay Problems
in Real-Time Systems. Formal Methods in System Design, Vol. 1, 1992, No. 4,
pp. 385–415, doi: 10.1007/bf00709157.

https://doi.org/10.1145/2237796.2237807
https://doi.org/10.1109/QEST.2006.56
https://doi.org/10.1007/978-0-387-35394-4_26
https://doi.org/10.1007/bfb0055359
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/s11235-011-9424-5
https://doi.org/10.1007/bfb0032042
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/bf00709157

Formal Verification of UML MARTE Based on a Real Time Model 1057

[18] Gardey, G.—Roux, O. H.—Roux, O. F.: State Space Computation and Analysis
of Time Petri Nets. Theory and Practice of Logic Programming, Vol. 6, 2006, No. 3,
pp. 301–320, doi: 10.1017/s147106840600264x.

[19] Bouyer, P.—Fahrenberg, U.—Larsen, K. G.—Markey, N.—Ouak-
nine, J.—Worrell, J.: Model Checking Real-Time Systems. In: Clarke, E., Hen-
zinger, T., Veith, H., Bloem, R. (Eds.): Handbook of Model Checking. Springer,
Cham, 2018, pp. 1001–1046, doi: 10.1007/978-3-319-10575-8 29.

[20] Belala, N.—Saidouni, D. E.—Boukharrou, R.—Chaouche, A. C.—Sera-
oui, A.—Chachoua, A.: Time Petri Nets with Action Duration: A True
Concurrency Real-Time Model. International Journal of Embedded and Real-
Time Communication Systems (IJERTCS), Vol. 4, 2013, No. 2, pp. 62–83, doi:
10.4018/jertcs.2013040104.

[21] Saidouni, D. E.—Belala, N.: Actions Duration in Timed Models. International
Arab Conference on Information Technology (ACIT), 2006.

[22] Micskei, Z.—Waeselynck, H.: UML 2.0 Sequence Diagrams’ Semantics. LAAS
Technical Report No. 08389, 37, 2008.

[23] OMG: UML Profile for Schedulability. Performance, and Time Specification, Vol. 1,
2005.

[24] Siegel, J. M.: Model Driven Architecture (MDA), MDA Guide Rev. 2.0. Object
Management Group, Tech. Rep. ORMSC/14-06-0, 2014.

[25] OMG Unified Modeling Language™ (OMG UML). 2013.

[26] André, C.: MARTE Time and Time Constraints Models and Their Applications.
2011.

[27] Merlin, P.: A Study of the Recoverability of Computer Systems. Ph.D. Thesis,
Computer Science Department, University of California, 1974.

[28] Ramchandani, C.: Analysis of Asynchronous Concurrent Systems by Petri Nets
(No. MAC-TR-120). Massachusetts Institute of Technology, Cambridge Project Mac,
1974.

[29] Sifakis, J.: Use of Petri Nets for Performance Evaluation in Measuring Modelling
and Evaluating Computer Systems. 1977.

[30] Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D. (Eds.): Computer Aided
Verification (CAV 1999). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 1633, 1999, pp. 8–22, doi: 10.1007/3-540-48683-6 3.

[31] Belala, N.: Modèles de Temps et Leur Intérêt à la Vérification
Formelle des Systèmes Temps-Réel. Doctoral Dissertation. 2010, doi:
10.13140/RG.2.2.25932.21129.

[32] Störrle, H.: Trace Semantics of Interactions in UML 2.0. Journal of Visual Lan-
guages and Computing, 2004.

[33] Cavarra, A.—Küster-Filipe, J.: Formalizing Liveness-Enriched Sequence Di-
agrams Using ASMs. In: Zimmermann, W., Thalheim, B. (Eds.): Abstract State
Machines 2004. Advances in Theory and Practice (ASM 2004). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 3052, 2004, pp. 62–77, doi:
10.1007/978-3-540-24773-9 6.

https://doi.org/10.1017/s147106840600264x
https://doi.org/10.1007/978-3-319-10575-8_29
https://doi.org/10.4018/jertcs.2013040104
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.13140/RG.2.2.25932.21129
https://doi.org/10.1007/978-3-540-24773-9_6

1058 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

[34] Cengarle, M. V.—Knapp, A.: UML 2.0 Interactions: Semantics and Refinement.
Proceedings of the 3rd International Workshop Critical Systems Development with
UML (CSDUML ’04), 2004, pp. 85–99.

[35] Eichner, C.—Fleischhack, H.—Meyer, R.—Schrimpf, U.—Stehno, C.:
Compositional Semantics for UML 2.0 Sequence Diagrams Using Petri Nets. In:
Prinz, A., Reed, R., Reed, J. (Eds.): SDL 2005: Model Driven. Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 3530, 2005, pp. 133–148, doi:
10.1007/11506843 9.

[36] Haugen, Ø.—Husa, K. E.—Runde, R. K.—Stølen, K.: STAIRS Towards For-
mal Design with Sequence Diagrams. Software and Systems Modeling, Vol. 4, 2005,
No. 4, Art. No. 355, doi: 10.1007/s10270-005-0087-0.

[37] Küster-Filipe, J.: Modelling Concurrent Interactions. Theoretical Computer
Science, Vol. 351, 2006, No. 2, pp. 203–220, doi: 10.1016/j.tcs.2005.09.068.

[38] Hammal, Y.: Branching Time Semantics for UML 2.0 Sequence Diagrams. In:
Najm, E., Pradat-Peyre, J. F., Donzeau-Gouge, V. V. (Eds.): Formal Techniques
for Networked and Distributed Systems (FORTE 2006). Springer, Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 4229, 2006, pp. 259–274, doi:
10.1007/11888116 20.

[39] Fernandes, J. M.—Tjell, S.—Jorgensen, J. B.—Ribeiro, O.: Designing
Tool Support for Translating Use Cases and UML 2.0 Sequence Diagrams into
a Coloured Petri Net. Sixth International Workshop on Scenarios and State Machines
(SCESM ’07: ICSE Workshops 2007), IEEE, 2007, doi: 10.1109/scesm.2007.1.

[40] Harel, D.—Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML
Sequence Diagrams. Software and Systems Modeling, Vol. 7, 2008, No. 2, pp. 237–252,
doi: 10.1007/s10270-007-0054-z.

[41] Bowles, J.—Meedeniya, D.: Formal Transformation from Sequence Diagrams to
Coloured Petri Nets. 2010 Asia Pacific Software Engineering Conference, IEEE, 2010,
pp. 216–225, doi: 10.1109/apsec.2010.33.

[42] Bouneb, M.—Saidouni, D. E.—Ilie, J. M.: Hierarchical System Design Using
Refinable Recursive Petri Net. Computing and Informatics, Vol. 37, 2018, No. 3,
pp. 635–655, doi: 10.4149/cai 2018 3 635.

[43] Daws, C.—Olivero, A.—Tripakis, S.—Yovine, S.: The Tool KRONOS. In:
Alur, R., Henzinger, T. A., Sontag, E. D. (Eds.): Hybrid Systems III (HS 1995).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1066, 1995,
pp. 208–219, doi: 10.1007/bfb0020947.

[44] Larsen, K. G.—Pettersson, P.—Yi, W.: UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer, Vol. 1, 1997, No. 1-2, pp. 134–152,
doi: 10.1007/s100090050010.

[45] Säıdouni, D. E.—Benamira, A.—Belala, N.—Arfi, F.: FOCOVE: Formal
Concurrency Verification Environment for Complex Systems. AIP Conference Pro-
ceedings, Vol. 1019, 2008, pp. 375–380, doi: 10.1063/1.2953008.

[46] Ejnioui, A.—Otero, C. E.—Qureshi, A. A.: Formal Semantics of Interactions in
Sequence Diagrams for Embedded Software. 2013 IEEE Conference on Open Systems
(ICOS), Kuching, Malaysia, 2013, pp. 106–111, doi: 10.1109/icos.2013.6735057.

https://doi.org/10.1007/11506843_9
https://doi.org/10.1007/s10270-005-0087-0
https://doi.org/10.1016/j.tcs.2005.09.068
https://doi.org/10.1007/11888116_20
https://doi.org/10.1109/scesm.2007.1
https://doi.org/10.1007/s10270-007-0054-z
https://doi.org/10.1109/apsec.2010.33
https://doi.org/10.4149/cai_2018_3_635
https://doi.org/10.1007/bfb0020947
https://doi.org/10.1007/s100090050010
https://doi.org/10.1063/1.2953008
https://doi.org/10.1109/icos.2013.6735057

Formal Verification of UML MARTE Based on a Real Time Model 1059

[47] Saputra, A. B.—Basuki, T. A.—Tirtawangsa, J.: Transformation of UML 2.0
Sequence Diagram into Coloured Petri Nets. 2014 International Conference of Ad-
vanced Informatics: Concept, Theory and Application (ICAICTA), IEEE, 2014,
pp. 243–248, doi: 10.1109/icaicta.2014.7005948.

[48] Meedeniya, D.—Bowles, J.—Perera, I.: SD2CPN: A Model Transformation
Tool for Software Design Models. 2014 International Computer Science and Engineer-
ing Conference (ICSEC), IEEE, 2014, pp. 354–359, doi: 10.1109/icsec.2014.6978222.

[49] Zafar, N. A.: Formal Specification and Verification of Few Combined Fragments of
UML Sequence Diagram. Arabian Journal for Science and Engineering, Vol. 41, 2016,
No. 8, pp. 2975–2986, doi: 10.1007/s13369-015-1999-9.

[50] Meedeniya, D.—Perera, I.—Bowles, J.: Tool Support for Transforming Unified
Modelling Language Sequence Diagram to Coloured Petri Nets. Maejo International
Journal of Science and Technology, Vol. 10, 2016, No. 3, pp. 272–283.

[51] Soares, J. A. C.—Lima, B.—Faria, J. P.: Automatic Model Transformation from
UML Sequence Diagrams to Coloured Petri Nets. Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development – Volume 1:
AMARETTO, 2018, pp. 668–679, doi: 10.5220/0006731806680679.

[52] Menad, N.—Dhaussy, P.—Drey, Z.—Mekki, R.: Towards a Transformation
Approach of Timed UML MARTE Specifications for Observer-Based Formal Verifi-
cation. Computing and Informatics, Vol. 35, 2016, No. 2, pp. 338–368.

[53] Andrade, V. C.—Peres, L. M.—Del Fabro, M. D.: Handling Global and Local
Time and Energy Constraints of Sequence Diagrams. 2018 UKSim-AMSS 20th Inter-
national Conference on Computer Modelling and Simulation (UKSim), IEEE, 2018,
pp. 73–78, doi: 10.1109/uksim.2018.00025.

[54] Laroussinie, F.—Markey, N.—Schnoebelen, P.: Model Checking Timed Au-
tomata with One or Two Clocks. In: Gardner, P., Yoshida, N. (Eds.): CONCUR
2004 – Concurrency Theory. Springer, Berlin, Heidelberg, Lecture Notes in Com-
puter Science, Vol. 3170, 2004, pp. 387–401, doi: 10.1007/978-3-540-28644-8 25.

[55] Cassez, F.—Roux, O. H.: Structural Translation from Time Petri Nets to Timed
Automata. Journal of Systems and Software, Vol. 79, 2006, No. 10, pp. 1456–1468,
doi: 10.1016/j.jss.2005.12.021.

[56] D’Aprile, D.—Donatelli, S.—Sangnier, A.—Sproston, J.: From Time Petri
Nets to Timed Automata: An Untimed Approach. In: Grumberg, O., Huth, M.
(Eds.): Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2007). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4424,
2007, pp. 216–230, doi: 10.1007/978-3-540-71209-1 18.

https://doi.org/10.1109/icaicta.2014.7005948
https://doi.org/10.1109/icsec.2014.6978222
https://doi.org/10.1007/s13369-015-1999-9
https://doi.org/10.5220/0006731806680679
https://doi.org/10.1109/uksim.2018.00025
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1016/j.jss.2005.12.021
https://doi.org/10.1007/978-3-540-71209-1_18

1060 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Nadia Chabbat received her B.Eng. degree from the University of Badji Mokhtar, Anna-
ba, Algeria in 2005. In July 2014, she received her M.Sc. degree in computer science
from the University of Badji Mokhtar, Annaba, Algeria. Her research domain is formal
specification and verification of real-time embedded systems.

Djamel Eddine Saidouni received his B.Eng. degree from the University of Mentouri,
Constantine, Algeria, in 1990. He received his Ph.D. in theoretical computer science from
the University of Paul Sabatier, Toulouse, France in 1996. His domain research is the
formal specification and verification of complex distributed and real time systems.

Radja Boukharrou is currently Associate Professor in the Faculty of New Technolo-
gies of Information and Communication at University of Constantine 2, Algeria. She
holds her Ph.D. in computer science from Constantine 2 University. Her current research
interests include formal modeling and verification, security and privacy in IoT systems,
blockchain technology.

Salim Ghanemi graduated as Computer Science Engineer in June 1981 from Constantine
University, Algeria. In December 1982, he received his Master degree in computer science
from Aston University, Birmingham, England. In November 1987, he publicly discussed
his Ph.D. research in the parallel and distributed programming at Loughborough Uni-
versity, Loughborough, England. From September 1988 till now, he has assumed several
teaching and supervising research positions at many universities: Badji Mokhtar Univer-
sity, Annaba, Algeria, Philadelphia University, Amman, Jordan and King Saud University
at Riyadh, Kingdom of Saudi Arabia. He has many scientific publications on several
topics. In his main research focus is parallel programming, image processing, real time
processing and formal verification. At present, he is the Head of a research team working
on parallel processing on SoC, a project group attached to the Embedded Systems Labo-
ratory at Badji Mokhtar Annaba, LASE. He occupied several administrative duties such
as the Head of the Computer Science Department and the Vice Dean of the Engineering
Science Faculty.

Computing and Informatics, Vol. 39, 2020, 1061–1081, doi: 10.31577/cai 2020 5 1061

MOVING TARGET DETECTION
BASED ON AN ADAPTIVE LOW-RANK
SPARSE DECOMPOSITION

Jiang Chong

School of Information Science and Engineering
Hunan Women’s University
410004 Changsha, China
e-mail: jessiejch@qq.com

Abstract. For the exact detection of moving targets in video processing, an adap-
tive low-rank sparse decomposition algorithm is proposed in this paper. In the pa-
per’s algorithm, the background model and the solved frame vector are first used to
construct an augmented matrix, then robust principal component analysis (RPCA)
is used to perform a low-rank sparse decomposition on the enhanced augmented ma-
trix. The separated low-rank part and sparse noise correspond to the background
and motion foreground of the video frame, respectively, the incremental singular
value decomposition method and the current background vector are used to update
the background model. The experimental results show that the algorithm can deal
with complex scenes such as light changes and background motion better, and the
algorithm’s delay and memory consumption can be reduced effectively.

Keywords: Detection of moving objects, low-rank, sparse decomposition, adaptive
robust, principal component analysis

Mathematics Subject Classification 2010: 68U10

1 INTRODUCTION

The important source of people’s knowledge is from image information in the world.
In many occasions, the transmitted information in images is richer, truer and more
specific than other forms of information. The cooperation between the human eye

1062 J. Chong

and the brain enables people to acquire, process, and understand visual informa-
tion. Humans use vision to perceive external environmental information efficiently.
In fact, according to statistics of some foreign scholars, about 80 % of the external
information, which is obtained by humans, comes from images which are taken by
the eyes. If computers are to be intelligent, as the main carrier for humans to obtain
external information, our vision must be able to process image information. Espe-
cially in recent years, image data processing with large capacity (such as graphics,
images and video) has been widely used in medical, transportation and industrial
automation fields.

Most images in nature are constantly changing simulated images. In daily life,
the moving targets in these images are often more concerned about us, such as
pedestrians, vehicles, and other moving objects. Moving object detection is a popu-
lar direction in computer vision and digital image processing, and it is widely used
in robot navigation, intelligent video surveillance, industrial detection, aerospace
and many other fields. Therefore, moving object detection has become a research
hotspot in theory and application in recent years. Moving object detect is an im-
portant branch of image processing and computer vision, and it is also a core part
of intelligent monitoring systems. The purpose is how to quickly and accurately
detect moving targets in surveillance video, that is, moving targets are extracted
from sequence images.

The detection of moving targets is the most basic and very important step in
video processing. The accurate detection of moving targets is of great significance
for tracking, classifying, understanding and analyzing the behavior of subsequent
moving targets. In recent years, many scholars have conducted many studies on the
detection of moving targets. However, the detection of moving targets faces many
challenges, such as multi-mode background interference, lighting changes, and cam-
era shake. They are still research hotspots and difficulties in the field of computer
vision.

The representative algorithms include optical flow method, frame difference
method and background modeling method in the research of moving target de-
tection. The optical flow method can detect and track moving targets without prior
knowledge of the background, but there are problems such as high complexity of the
algorithm and sensitivity to illumination changes. In the frame difference method,
the moving target contour is obtained by performing differential operations on two
adjacent frames in the video image sequence. The algorithm is simple and easy to
implement, but it depends on the selected inter-frame time interval. The idea of
the background modeling method is to establish a background model, and the video
frame is detected with the background model to determine the motion foreground.
Compared with the optical flow method and the frame difference method, it has the
advantages of less calculation, faster speed, and higher precision. The core of the
background modeling method is how to build a model, how to update the model
properly to deal with the changes of the background itself.

At present, although there is a large number of moving object detection al-
gorithms, due to the complexity and variability of the actual environment, these

Moving Target Detection 1063

algorithms are not all very robust. The faced problems and difficulties can be sum-
marized as follows:

1. Model initialization problem: During the background initialization training pe-
riod, because high-quality background models have not been obtained, it often
leads to false detection of moving targets;

2. Camouflage phenomenon: Some moving targets may be extremely similar to the
background, it may cause the moving targets to be indistinguishable from the
background;

3. Illumination change: It is divided into sudden change and gradation of light.
The background model should be able to adapt to the gradual change of light in
the outdoor environment during the day; correspondingly, the background model
can also be adapted to the indoor environment where the lights are suddenly
turned on. In short, the change of light will strongly affect the background
model, which will most likely cause false detection;

4. Foreground hole phenomenon: When the moving target has a large number of
regions with the same color, the internal changes of these regions may lead to
inaccurate detection, some internal regions of the foreground are misjudged as
the background;

5. Dynamic background: The most common is the leaf shake, of course, water
ripples, small target shake;

6. Suddenly stopped moving targets: After some moving objects enter the scene,
they stop in the scene. Obviously, the moving target in this case should be
identified as the background;

7. Shadow: The shadow of the moving target and the original shadow of the back-
ground area can be detected;

8. Noise interference: Noise interference basically belongs to the low data quality, it
is caused by the video image which is transmitted or compressed by the webcam;

9. Camera shake: Under some conditions, wind will cause camera shake;

10. Camera self-adjustment: At present, many cameras have automatic control func-
tions, such as lighting control, white balance, and zoom-in and zoom-out func-
tions.

2 RELATED WORKS

Computer vision applications based on videos often require the detection of moving
objects in their first steps. Background subtraction is then applied in order to
separate the background and the foreground. Background subtraction is surely
among the most investigated field in computer vision providing a big amount of
publications. Most of them concern the application of mathematical and machine
learning models to be more robust to the challenges met in videos. However, the

1064 J. Chong

ultimate goal is that the background subtraction methods developed in research
could be employed in real applications like traffic surveillance. There is often a gap
between the current methods used in real applications and the current methods in
fundamental research. In addition, the videos evaluated in large-scale datasets are
not exhaustive in the way that they only covered a part of the complete spectrum
of the challenges met in real applications [1].

Background modeling is a technique for extracting moving objects in video se-
quences. The different foreground sgmentation methods are categorized based on
the way of obtaining the reference frame. The different approaches can be catego-
rized into basic modeling, statistical modeling, clustering algorithms, methods based
on fuzzy modeling, neural and neuro-fuzzy methods, etc.

Neural network methods train networks for a specific amount of video frames,
allowing it to update its weights in order to model the background. Recently, the
most common background subtraction methods are based on deep neural networks.
The convolutional Neural Networks (CNN) was introduced to perform the segmen-
tation task [2]. The benefit of this approach is that foreground objects segmentation
can be achieved independently to the temporal characteristics. CNN can achieve
the segmentation with only spatial characteristics because the incoming examples
are independent. The pertinent features are selected using CNNs and transmit-
ted into a classifier to segment moving objects. Finally, a median filter and or
a fully connected framework are applied. Lim et al. introduced an approach based
on a triplet CNN for a multistage background feature embedding using an encoder-
decoder model [3]. A pre-trained convolutional network, VGG-16 Net is adapted un-
der a triplet framework in the encoder part to incorporate an image in multiple scales
into the feature space. Only a few training samples are used. The network takes an
RGB image in three different scales and generates a foreground segmentation proba-
bility mask for the corresponding image. In the period of 2018–2019, numerous deep
learning models either based on auto-encoder [4, 5, 6] and CNNs [7, 37, 9, 10, 11]
have been proposed. However, all these methods are supervised and have been
trained on ground truth video frames of datasets and tested on the same types of
videos.

The representative work of the background modeling method is as follows: Gaus-
sian mixed model (GMM) was proposed by Stauffer et al. [12], multiple Gaussian
models were used to fit the multi-peak state of pixel brightness changes, and it
has better illumination robustness. The non-parametric kernel density estimation
(KDE) was proposed by Elgammal et al. [13], it does not need to assume the type
of the probability density function in advance, and multiple background samples
were used to estimate the probability density of pixels. The algorithm can effec-
tively suppress shadows, but there exists a large cache size, difficulty in selecting
core bandwidth, etc. The codebook model were used proposed by Kim et al. [14],
CodeBook of a multiple codeword was established for each pixel, multi-modal back-
ground can be detected in real time, there is good global illumination robustness.
However, the memory consumption of the algorithm is large. The self-organizing
background subtraction (SOBS) was proposed by Maddalena et al. [15, 16], it draws

Moving Target Detection 1065

on the characteristics of neural networks, a pixel in the background model is mapped
to multiple locations in the model. The relevance of pixel neighbors’ domain space
is used in the updating method. The VIBE (visual background extractor) model-
ing method was proposed by Barnich et al. [17], a random sampling strategy was
used to initialize the background model, and the background model is updated with
a second random sampling method. This airspace information propagation mech-
anism enables the algorithm to deal with camera shake, the real-time performance
of the algorithm is also high. Pixelmann adaptive segmentation (PBAS) was pro-
posed by Hofmann et al. [18], the idea of cybernetics is introduced. The foreground
judgment threshold and background model update rate change adaptively, there is
high recognition accuracy in the algorithm, but it takes more time to calculate and
set multiple thresholds. In short, these algorithms based on statistical models treat
each pixel as an independent, unrelated individual, without excavating the inherent
nature of high-dimensional data.

In recent years, compressive sensing has received a great deal of attention as
a new signal sampling theory [19], and it has been widely used in data compression,
pattern recognition, and wireless communication. Compressed sensing is a signal
sparse in a certain transform domain. The signal is sampled at a sampling rate
much lower than the Nyquist frequency. The observation matrix is used to linearly
project the high-dimensional sparse signal to a low-dimensional subspace. By solving
the optimization problem, the original signal with high probability is reconstructed
from the subspace. A low-rank representation can be seen as a generalization of
compressed sensing in two-dimensional data [20]. The rank of the matrix is used as
a sparse measure. Compared with the traditional subspace learning model, sparse
representation has better robustness to data containing outliers and strong noise.
In sparse representation, the robust principal component analysis (RPCA) is also
known as low rank and sparse matrix decomposition[21, 22], it mainly considers how
to recover low rank data from observations that are subject to large sparse noise
pollution observations. Taking into account the low rank of the background and the
sparseness of the motion foreground, Candes et al. first applied the low-rank sparse
decomposition to background modeling [23]. In this method, the moving target and
the background area can be separated effectively from the monitoring video sequence
without an independent training stage. The premise of the algorithm is to assume
that the background is almost or completely stationary. Subsequent researchers
also launched a series of studies based on this method of moving target detection
algorithms. DECOLOR algorithm combines RPCA with motion recognition [24]
and it combines Markov random field (MRF) a priori. Noise and small background
motion can be eliminated effectively in the smoothness of MRF, but the foreground
area will be “Smooth” and result in the loss of details of the moving target. Gao et al.
proposed the block sparse RPCA [25]. First the low-rank sparse decomposition of
the sampled samples was performed to obtain the outlines block, and then the second
decomposition was performed to obtain the moving target. Liu et al. introduced the
concept of structured sparse in considering the spatial correlation of outliers, and
low-rank sparse decomposition is used with different regularization parameters for

1066 J. Chong

each pixel group [26]. Bouwmans et al. summarized and evaluated the technique of
decomposition into Low-rank [27].

When RPCA is applied to moving target recognition, the above algorithms are
improved from different perspectives. However, they all have the following problems:

1. All vectors of the video are vectorized and loaded into memory once, when the
number of video frames is relatively more, it will cause memory overflow;

2. They do not take into account complex changes such as changes in light, back-
ground motion in the actual video surveillance environment, and poor robust-
ness.

3 RPCA APPLIED TO BACKGROUND SUBTRACTION
A SHORT OVERVIEW

3.1 Matrix Approaches

In many practical applications, the given data matrix D tends to be low-rank or
approximately low-rank, the random amplitude is arbitrarily large, but the error of
sparse distribution destroys the low rank of the original data. Therefore, matrix D
can be decomposed into the sum of two matrices, that is, D = A + E, where
matricesA and E are unknown, andA is a low-rank matrix. When the noise obeys an
independent and identically distributed Gaussian distribution, the classical principal
component analysis (PCA) can be used to obtain the optimal matrix A [28], that
is, the following optimization problem is solved:

min ||D − A|| s.t. rank(A) ≤ k (1)

wherein, rank(·) represents the rank of the matrix, and || · || represents the 2 norm.
Classical PCA can be effectively solved by singular value decomposition, but it is
limited to cases where noise N0 is small and independent of Gaussian distribution.
Candes et al. proposed RPCA to solve the problem of E, it is sparse and large
noise [23]. That is, matrix E in the above model is a sparse matrix with arbitrary
amplitude. The RPCA model is shown in Equation (2), where || · ||0 represents
0 norm.

min(rank(A, ||E||0) s.t. D = A+ E. (2)

Introducing the regularization parameter λ, this bi-objective optimization problem
is transformed into a single-objective optimization problem:

min rank(A) + λ||E||0 s.t. D = A+ E. (3)

In Equations (2) and (3), the objective functions includes rank(A) and ||E||0, it is
non-linear non-convex combined optimization functions, and its solution is an NP-
Hard problem. Since the matrix norm || · ||∗ of the matrix is the envelope of its rank,

Moving Target Detection 1067

the 0 norm and the 1 norm of the matrix can be equivalent under certain conditions,
so the convex relaxation of the matrix is the following optimization problem:

min ||A||∗ + λ||E||1 s.t. D = A+ E. (4)

3.2 Tensor Approaches

The convex optimization problem shown in Equation (3) is also called principal
component pursuit (PCP). Candes et al. prove that as long as the singular vector
distribution of the low-rank matrix A is reasonable and the non-zero elements of the
sparse matrix are evenly distributed, then the PCP can recover the original low-rank
matrix A from any unknown error with a probability close to unity [23].

Robust Principal Component Analysis (RPCA) is a modification of the widely
used statistical procedure of principal component analysis (PCA) which works well
with respect to grossly corrupted observations. A number of different approaches
exist for Robust PCA, including an idealized version of Robust PCA, which aims to
recover a low-rank matrix A from highly corrupted measurements D = A+ E [23].
RPCA can be applied to video surveillance, face recognition, collaborative filtering
and other aspects. In video surveillance, each frame of the video is vectorized and
successively arranged into a matrix. The stable background part corresponds to the
low-rank part of the matrix, and the motion foreground can be used as a sparse
noise part. Therefore, PCP can be used to detect moving targets in a smooth
background.

This decomposition in low-rank and sparse matrices can be achieved by tech-
niques such as Principal Component Pursuit method (PCP) [23], Stable PCP [29],
Quantized PCP [30], Block based PCP [31], and Local PCP [32]. Then, opti-
mization methods are used such as the Augmented Lagrange Multiplier Method
(ALM [33]), Alternating Direction Method (ADM [34]), Fast Alternating Minimiza-
tion (FAM [35]) or Iteratively Reweighted Least Squares (IRLS [36]), Real-time Ro-
bust Principal Components Pursuit [37], Memory-efficient dynamic robust PCA [38],
Incremental Principal Component Pursuit [39], Spatio-temporal Sparse Subspace
Clustering [40], Double-constrained RPCA [41], ARF and OR-PCA Background
Subtraction [42].

In addition to the matrix segmentation technique used in target detection, there
are Tensors Decomposition techniques. In mathematics, tensors are geometric ob-
jects that describe linear relations between geometric vectors, scalars, and other
tensors. Elementary examples of such relations include the dot product, the cross
product, and linear maps. Geometric vectors, often used in physics and engineering
applications, and scalars themselves are also tensors. A more sophisticated example
is the Cauchy stress tensor T, which takes a direction v as input and produces the
stress T(v) on the surface normal to this vector for output, thus expressing a rela-
tionship between these two vector. With Tensors Decomposition as target detection,
people study some effective methods, such as Outlier-Robust Tensor PCA [43], Ten-
sor Based Low-Rank and Saliently Fused-Sparse Decomposition [44], Online Stochas-

1068 J. Chong

tic Tensor Decomposition [45], Stochastic Decomposition into Low Rank and Sparse
Tensor [46].

4 ADAPTIVE LOW RANK SPARSE
DECOMPOSITION ALGORITHM

Compared with the moving object detection algorithm based on pixel background
modeling, the advantage of RPCA is that it can separate the moving foreground
area from the background area effectively without a separate training stage. But
the premise of the algorithm is to assume that the background is almost or com-
pletely static. However, this assumption is difficult to establish in most of the real
monitoring scenarios. And Equation (4) is used to accurately separate the fore-
ground and the background, you need to load a larger number of video frames. If
the number of frames is too small, slow moving objects are recognized as part of
the background. Since the time complexity of the singular value decomposition is
O(m3) (D ∈ Rm×n) in the RPCA solution, the time cost of the algorithm rises
in a cubic order with the increase of m, and loading and solving a large number
of video frames cause that a low Rank-sparse decomposition has high latency in
moving target recognition.

Based on this, an adaptive low-rank sparse decomposition algorithm is proposed
in this paper. Through the partial loading and iterative updating of the video frame,
the memory occupancy can be reduced while the accuracy of the detection effect
can be effectively guaranteed, and the motion target detection delay can be reduced.
The algorithm framework is shown in Figure 1.

Figure 1. Algorithm framework

Robust PCA considers such a problem: the general data matrix D contains
structural information and also contains noise. Then this matrix can be decomposed
into two matrices D = A+E, A is low rank (due to a certain amount of structural

Moving Target Detection 1069

information inside causing a linear correlation between rows or columns), E is sparse
(containing noise, here is the foreground (moving image) , it is sparse). Robust PCA
is to decompose a matrix D into a matrix with as low a rank as possible and a matrix
as sparse as possible. D consists of original image sequence frames, its each column
is an image pixel. Ab is the column subset of A (image background). D consists of
original image sequence frames, its each column is an image pixel. Ab is the column
subset of A (image background). The implementation of the algorithm in Figure 1
is described below.

4.1 Dynamic Designer Motion Simulation

In order to reduce delay of the algorithm, we consider processing a small number
of video frames at a time. However, in order to ensure the accuracy of the motion
foreground and background separation, A still needs a large number of columns to
guarantee the low rank of || · ||∗. Therefore, an augmented matrix is composed of
the calculated background vector and the background vector to be calculated [47].

If the background vector of the first k frames of video has been obtained, as-
suming that bj represents the background vector of the jth frame of video, where
j ∈ [1, k],n is the total number of pixels per frame, the following background matrix
is obtained: Ab = [b1, b2, . . . , bk] ∈ Rn×k.

The augmented background matrix Â is composed of Ab and A, where A ∈ Rn×m

is the background matrix of m new frames to be calculated: Â = [Ab, A] ∈ Rn×(k+m).
Therefore, ||A||∗ in the model is shown in Equation (4), it can be replaced by

||Â||∗.

4.2 Low Dimensional Background Modeling and Model Solving

Since the time complexity of optimizing the augmented low-rank matrix Â is O(k+
m)3, as the new frame is continuously processed, its time cost increases in a cubic
order. Therefore, it is very necessary to perform dimensionality reduction on Ab, that
is to project Ab into a low-dimensional subspace. Let this subspace be Asub ∈ Rn×p

in order, a new augmented matrix [Asub, A] ∈ Rn×(p+m)(p� k) is obtained. In other
words, the goal is to find an optimal solution Asub, that makes the nuclear norm of
[Asub, Anew] closest to Âaug, the optimization problem of Equation (5) is obtained:

Asub = arg min |||Â||∗ − ||[Asub, Anew]||∗|. (5)

First, Singular Value Decomposition (SVD) is performed on Ab, the main features
of the high dimensional matrix is extracted to construct Asub:

Ab = UDV T . (6)

In Equation (6), D ∈ Rn×k is a diagonal matrix which is composed of singular
values of Ab; U ∈ Rn×n is a matrix which is composed of left singular vectors;

1070 J. Chong

V ∈ Rk×k is a matrix which is composed of right singular vectors. Selecting the
first P largest singular values of D, it constitutes a diagonal matrix Dp ∈ p× p, and
selecting the top P column of U , it constitutes a matrix Up ∈ n × p, which results
in a low-dimensional subspace Asub:

Asub = UpDp. (7)

The variables of the model (4) is replaced to obtain the model (8):

min ||[Asub, A]||∗ + λ||E||1 s.t. D = A+ E. (8)

Considering the efficiency of the implementation, the inexact Lagrange multiplier
method (inexact ALM) is used to solve the above optimization problem [33, 34]. In
Equation (8), the augmented matrix of the kernel norm term consists of known and
unknown columns. It is necessary to introduce a new variable to replace the aug-
mented matrix, and the variable splitting method is used to separate the objective
function into: Z = [Asub, A].

Augmented Lagrangian functions are built for the above optimization problem
to be solved:

L(Z,E, Y) = ||Z||∗ + λ||E||1+ < Y,D − Z − E > +µ||D − Z − E||2F/2

where Y is a Lagrangian multiplier; µ||D − Z − E||2F/2 is a penalty function term,
and µ is a penalty function factor. Repeat the iteration of the following update
formula until convergence:

Zk+1 = arg min
Z
L(Z,Ek+1, Yk, µk) = D1/µk(D − Zk+1 + Yk/µk),

Ek+1 = arg min
E
L(Zk+1, E, Yk, µk) = S1/µk(D − Ek+1 + Yk/µk).

Among them, Sτ (x) is a soft threshold operator, Sτ (x) = sgn(x)×max(|x| − τ, 0);
Dτ (x) is a singular value threshold operator, Dτ (x) = USτ (Σ)V∗ (X = UΣV∗ indi-
cates singular value decomposition for X). The convergence condition is ||D − Z −
E||F ≤ σ||D||F , where σ = 10−7 [24].

4.3 Background Model Updates

In order to obtain a new background model, it is used to process the next batch
of frames, after each calculation, it is necessary to use the currently obtained A to
update Ab. This article uses the incremental SVD method to update Ab [48].

Ab ≈ UpDpV
T
p , [U

new, Dnew] = svd([ωbAb, ωaA])

≈ svd[ωbUpDpV
T
p , ωaA] = svd[ωbUpDp, ωaA] = svd[ωbAsub, ωaA].

Moving Target Detection 1071

A new background model Anewb is obtained:

Anewsub = Unew
p Dnew

p (9)

werein, Unew
p is composed of the first P columns of Unew; Dnew

p is a diagonal matrix
which are composed of P largest singular values. ωa and ωb are the weights of the
control updating speed (ωa, ωb ∈ [0, 1]). The larger ωa, the faster the updating of
the background model; the larger ωb, the slower the updating of the background
model, so the multimode scenes with complex backgrounds can choose ωa > ωb.
At the same time, the matrix V does not need to be calculated in the above for-
mula operation, which effectively reduces the time complexity when updating the
model.

5 EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

The experimental simulation hardware environment is: Intel Core i3 dual-core pro-
cessor, clocked at 3.4 GHz, and main memory is 4 GB. The software environment is:
Window10 operating system, Matlab R2018a.

5.1 Experiments on CDnet and Wallflower Datasets

The test data selects the standard video libraries CDnet and Wallflower for mo-
tion target detection. CDnet 2014 includes 11 series of basic scenes, dynamic back-
grounds, camera shakes, etc. Wallflower includes 7 scenes such as motion background
and lighting gradient. At the same time, the data set also gives the groundtruth
of each frame segmentation foreground, which facilitates the comparative analysis
of the algorithm. Two scenes, Running and Highway, were selected. The following
algorithm was compared with the GMM algorithm, the PCP algorithm, and the
DECOLOR algorithm. Figure 2 shows the motion foreground recognition effect of
each algorithm.

Figure 2. Experiment results of 4 algorithms in different scenes

The running scene of the first row in Figure 2 is a single-moving target. The mo-
tion scene in a simple background gives the experimental results of the 17th frame.

1072 J. Chong

The GMM algorithm uses multiple Gaussian models to fit the changes in pixel val-
ues. The identified motion foreground contours are more detailed, but there are
holes in the right and left arms of the motion object. The DECOLOR algorithm
uses the MRF to remove noise and small background motions, but it makes the mo-
tion foreground smooth and loses contour details. Both the PCP and the method
of this paper can completely identify the motion prospects. The second line High-
way is a complex scene with multiple moving objects and multi-modal backgrounds
coexisting with light changes. The branches are shaken in the upper left corner,
that are the sports background. In the figure, the video frame 76 is taken in the
truncated light. Obviously, the speed of updating the background model of GMM
cannot adapt to the sudden change of light, leading to a large area of misjudg-
ment. The DECOLOR algorithm is robust to sudden changes in light, but due
to the loss of contour details, it leads to adhesion of the two motion foregrounds.
Although the PCP algorithm can accurately identify all the moving targets, it mis-
takenly identifies the branches that are sloshing in the upper-left corner as motion
foreground, because the PCP algorithm assumes that the background is completely
stationary. The method in this paper is able to cope with sudden light changes
and multi-mode background disturbances, and it has the best recognition effect
in this scene. Because the inexact Lagrangian multiplier method is used for opti-
mization, for the running scenes with relatively simple background and foreground,
the algorithm can achieve convergence with 33 iterations, and the complex scene
with multiple moving targets has a complex background. It takes 71 iterations
to achieve convergence. That is, the simpler the scene, the faster the algorithm
converges.

In quantitative analysis of the algorithm, the indicators are recall (Re), accuracy
(precision, Pr) and comprehensive performance (F-measure, F1). Among them, TP
(true positive) indicates true positive, that is, the number of pixels are correctly
detected as the front sight; FN (false negative) indicates false negative, that is, the
number of pixels are detected as background points by mistake; FP (false positive)
indicates false positive, that is, the number of pixels are detected as the previous
sighting mistake.

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F-measure =
2× Precision× Recall

Precision + Recall
.

Table 1 gives a quantitative comparison of the performance parameters of each
algorithm in the two scenarios. It can be seen that the introduction of an adaptive
process in the PCP algorithm significantly improves the ability of the algorithm to
handle complex backgrounds.

Moving Target Detection 1073

Algorithm Scene Re Pr F1

GMM Running 0.69 0.82 0.87
Highway 0.62 0.42 0.5

DECOLOR Running 0.82 0.76 0.79
Highway 0.83 0.71 0.77

PCP Running 0.89 0.88 088
Highway 0.87 0.79 0.83

Adaptive PCP Running 0.9 0.87 0.88
Highway 0.9 0.88 0.89

Table 1. Comparison of average performance

Note: GMM is Gaussian mixed model; PCP is principal component pursuit;
The entire process of DECOLOR is detecting contiguous outliers in the low-rank
representation.

Figure 3 compares the time efficiency of PCP and Adaptive PCP. Experimental
results show that by loading part of the video frame and singular value decomposition
of the background model, the delay of the algorithm is effectively reduced. At the
same time, since the PCP algorithm needs to load all the frames at once. Compared
to the Running (180× 144× 42 frames) scene, Highway scenes with a low resolution
but a large total number of frames (160 × 112 × 119 frames) require more average
processing time. While Adaptive PCP loads the video frames to be calculated in
batches, the average processing time of a single frame is inversely proportional to
the resolution of the video.

5.2 Experiments on the VOT2014 Dataset

In order to intuitively compare the experimental results of the algorithm, the two
running and highway modes with no lower resolution and fewer frames are selected.
If we choose the PETS2006 scene of the dataset (320 × 240 × 1 200 frames), the
memory overflow will occur in the traditional PCP algorithm, and the algorithm
can still obtain the detection result. Figure 4 shows the foreground detection result
of the 740th frame of the scenario.

The algorithm has been implemented. We have tested the algorithm with both
simulated and actual sequences of images of vehicles in different landscapes. The
system can detect and track targets in real-time. We achieved the frame rate of
4 frames/second for detection and 15 frames/second for tracking of 100× 90 pixels
target in 352 × 288 pixels video frames. We tested the proposed algorithm with
wide variety of image sequence. Figure 5 shows some results for detection of various
objects in arbitrary background. As it is shown the algorithm has successfully
detected the targets. In Figure 6 the tracking results for a vehicle are shown. In
this example, the tracked vehicle turns over the road and its shape and size change.
As it shown in the pictures both the size and the shape of the vehicle varies but
our tracking algorithm can successfully track it. Results showed the accuracy of

1074 J. Chong

Figure 3. Comparison of running time between PCP and Adaptive PCP

Figure 4. Detection result of 740th frame of this paper method

the method in detecting and tracking of moving objects. Comparison of results
generated by the proposed method with those of other methods showed that more
reliable results could be obtained using the proposed method in real-time.

Further, the experimental data is taken from the VOT2014 dataset (https:
//www.votchallenge.net/vot2014/dataset.html) [49]. In order to ensure the
effectiveness and stability of the algorithm, the moving target is selected here, where
the dataset name is jogging. Detect and track the moving object with the largest
moving area in the first 22 frames of video of each data set. This video is a video of
the movement of two joggers. The feature is that the background is relatively single,

https://www.votchallenge.net/vot2014/dataset.html
https://www.votchallenge.net/vot2014/dataset.html

Moving Target Detection 1075

Figure 5. Various targets are detected in the detection algorithm

Figure 6. Tracking a vehicle while it turns over and changes its size and shape

but the two targets appear too close to each other. At this time, they are treated
as a moving target for tracking and detection. The first five frames are shown in
Figure 7. The experimental results show that the background of the entire video is
relatively stable. When using the algorithm in this article to track two joggers, the
target is almost marked in the ellipse.

6 CONCLUSIONS

In this paper, an adaptive low-rank sparse decomposition algorithm is proposed
or it is known as adaptive principal component pursuit (A-PCP). First, a part of
video frames are loaded, and the initial background Ab is obtained by low-rank
sparse decomposition, and singular value decomposition is performed to obtain
a low-dimensional subspace Asub, Asub connects with a new number of frames of the
calculated video background vector, an augmented low-rank matrix is constructed.
Then, a low-rank sparse decomposition of the objective function containing Â results
in a new low-rank background matrix A. Finally, the low-dimensional background

1076 J. Chong

a) Current frame image b) Background extracted
by the algorithm in this
paper

c) Sports targets of inter-
est

Figure 7. Jogging target tracking effect map

Moving Target Detection 1077

is updated with the current A model Asub, the above process is repeated until all
frames are processed.

This adaptive low-rank sparse decomposition algorithm is applied to the de-
tection of moving targets in intelligent video surveillance. In the algorithm, the
background model Ab is established by low-rank sparse decomposition, and it is
reduced to the low-dimensional space Asub. The background of the new frame is
obtained by performing low-rank sparse decomposition on the augmented matrix
containing Asub, and then the current background vector is used to update the
background model. In this paper, an adaptive process is introduced in the tradi-
tional PCP algorithm, experiments show that the robustness of the algorithm is
improved to complex backgrounds, and it can achieve better detection results. At
the same time, compared to the PCP algorithm, all frame vectors are loaded at
once, this adaptive update mechanism can improve the robustness of the algorithm.
The mechanism of partially loading video frames can also reduce the delay of the al-
gorithm and avoid memory overflow at the same time, thus the overall performance
of moving target recognition is improved.

Acknowledgements

The project is supported by the Scientific Research Fund of Hunan Provincial Edu-
cation Department (No. 16C0804, Research on Personalized Push Algorithm of Un-
structured Education Resources Based on Mobile Micro-Lectures), China.

REFERENCES

[1] Garcia-Garcia, B.—Bouwmans, T.—Rosales Silva, A. J.: Background
Subtraction in Real Applications: Challenges, Current Models and Future
Directions. Computer Science Review, Vol. 35, 2020, Art. No. 100204, doi:
10.1016/j.cosrev.2019.100204.

[2] Babaee, M.—Dinh, D. T.—Rigoll, G.: A Deep Convolutional Neural Network
for Video Sequence Background Subtraction. Pattern Recognition, Vol. 76, 2018,
pp. 635–649, doi: 10.1016/j.patcog.2017.09.040.

[3] Lim, L. A.—Keles, H. Y.: Foreground Segmentation Using Convolutional Neural
Network for Multiscale Feature Encoding. Pattern Recognition Letters, Vol. 112,
2018, pp. 256–262, doi: 10.1016/j.patrec.2018.08.002.

[4] Choo, S.—Seo, W.—Jeong, D.—Cho, N. I.: Multi-Scale Recurrent Encoder-
Decoder Network for Dense Temporal Classification. 2018 24th International Con-
ference on Pattern Recognition (ICPR), Beijing, China, 2018, pp. 103–108, doi:
10.1109/icpr.2018.8545597.

[5] Choo, S.—Seo, W.—Jeong, D.—Cho, N. I.: Learning Background Subtraction
by Video Synthesis and Multi-Scale Recurrent Networks. In: Jawahar, C., Li, H.,
Mori, G., Schindler, K. (Eds.): Computer Vision – ACCV 2018. Springer, Cham,

https://doi.org/10.1016/j.cosrev.2019.100204
https://doi.org/10.1016/j.patcog.2017.09.040
https://doi.org/10.1016/j.patrec.2018.08.002
https://doi.org/10.1109/icpr.2018.8545597

1078 J. Chong

Lecture Notes in Computer Science, Vol. 11366, 2018, pp. 357–372, doi: 10.1007/978-
3-030-20876-9 23.

[6] Gracewell, J.—John, M.: Dynamic Background Modeling Using Deep Learn-
ing Autoencoder Network. Multimedia Tools and Applications, Vol. 79, 2020,
pp. 4639–4659, doi: 10.1007/s11042-019-7411-0.

[7] Yang, Y.—Zhang, T.—Hu, J.—Xu, D.—Xie, G.: End to End Background
Subtraction via a Multi-Scale Spatio-Temporal Model. IEEE Access, Vol. 7, 2019,
pp. 97949–97958, doi: 10.1109/access.2019.2930319.

[8] Qiu, M.—Li, X.: A Fully Convolutional Encoder-Decoder Spatial-Temporal
Network for Real-Time Background Subtraction. IEEE Access, Vol. 7, 2019,
pp. 85949–85958, doi: 10.1109/access.2019.2925913.

[9] Minematsu, T.—Shimada, A.—Uchiyama, H.—Taniguchi, R.: Analytics of
Deep Neural Network-Based Background Subtraction. MDPI Journal of Imaging,
Vol. 4, 2018, No. 6, Art. No. 78, 19 pp., doi: 10.3390/jimaging4060078.

[10] Garćıa-González, J.—Ortiz-de-Lazcano-Lobato, J. M.—Luque-
Baena, R. M.—López-Rubio, E.: Background Modeling by Shifted Tilings
of Stacked Denoising Autoencoders. In: Ferrández Vicente, J., Álvarez-Sánchez, J.,
de la Paz López, F., Toledo Moreo, J., Adeli, H. (Eds.): From Bioinspired Systems
and Biomedical Applications to Machine Learning (IWINAC 2019). Springer,
Cham, Lecture Notes in Computer Science, Vol. 11487, 2019, pp. 307–316, doi:
10.1007/978-3-030-19651-6 30.

[11] Garćıa-González, J.—Ortiz-de-Lazcano-Lobato, J. M.—Luque-
Baena, R. M.—Molina-Cabello, M. A.—López-Rubio, E.: Foreground
Detection by Probabilistic Modeling of the Features Discovered by Stacked Denois-
ing Autoencoders in Noisy Video Sequences. Pattern Recognition Letters, Vol. 125,
2019, pp. 481–487, doi: 10.1016/j.patrec.2019.06.006.

[12] Stauffer, C.—Grimson, W. E. L.: Adaptive Background Mixture Models for
Real-Time Tracking. Proceedings of the 1999 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Fort Collins, USA, Vol. 2, 1999,
pp. 246–252, doi: 10.1109/cvpr.1999.784637.

[13] Elgammal, A. M.—Harwood, D.—Davis, L. S.: Nonparametric Model for Back-
ground Subtraction. In: Vernon, D. (Ed.): Computer Vision – ECCV 2000. Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1843, 2010, pp. 751–767,
doi: 10.1007/3-540-45053-x 48.

[14] Kim, K.—Chalidabhongse, T.—Harwood, D.—Davis, L.: Real-Time
Foreground-Background Segmentation Using Codebook Model. Real-Time Imaging,
Vol. 11, 2005, No. 3, pp. 172–185, doi: 10.1016/j.rti.2004.12.004.

[15] Maddalena, L.—Petrosino, A.: A Self-Organizing Approach to Background Sub-
traction for Visual Surveillance Applications. IEEE Transactions on Image Process-
ing, Vol. 17, 2008, No. 7, pp. 1168–1177, doi: 10.1109/tip.2008.924285.

[16] Maddalena, L.—Petrosino, A.: The SOBS Algorithm: What Are the Lim-
its? Proceedings of the 2012 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition Workshops, Providence, USA, 2012, pp. 21–26, doi:
10.1109/CVPRW.2012.6238922.

https://doi.org/10.1007/978-3-030-20876-9_23
https://doi.org/10.1007/978-3-030-20876-9_23
https://doi.org/10.1007/s11042-019-7411-0
https://doi.org/10.1109/access.2019.2930319
https://doi.org/10.1109/access.2019.2925913
https://doi.org/10.3390/jimaging4060078
https://doi.org/10.1007/978-3-030-19651-6_30
https://doi.org/10.1016/j.patrec.2019.06.006
https://doi.org/10.1109/cvpr.1999.784637
https://doi.org/10.1007/3-540-45053-x_48
https://doi.org/10.1016/j.rti.2004.12.004
https://doi.org/10.1109/tip.2008.924285
https://doi.org/10.1109/CVPRW.2012.6238922

Moving Target Detection 1079

[17] Barnich, O.—Van Droogenbroeck, M.: ViBe: A Universal Background Sub-
traction Algorithm for Video Sequences. IEEE Transactions on Image Processing,
Vol. 20, 2011, No. 6, pp. 1709–1724, doi: 10.1109/tip.2010.2101613.

[18] Hofmann, M.—Tiefenbacher, P.—Rigoll, G.: Background Segmentation with
Feedback: The Pixel-Based Adaptive Segmenter. Proceedings of the 2012 IEEE Com-
puter Society Conference on Computer Vision Pattern Recognition Workshops, 2012,
pp. 38–43, doi: 10.1109/cvprw.2012.6238925.

[19] Donoho, D. L.: Compressed Sensing. IEEE Transactions on Information Theory,
Vol. 52, 2006, No. 4, pp. 1289–1306, doi: 10.1109/tit.2006.871582.

[20] Candès, E. J.—Romberg, J. K.—Tao, T.: Stable Signal Recovery from Incom-
plete and Inaccurate Measurements. Communications on Pure and Applied Mathe-
matics, Vol. 59, 2006, No. 8, pp. 1207–1223, doi: 10.1002/cpa.20124.

[21] Vaswani, N.—Zahzah, E.: Robust PCA and Robust Subspace Tracking. Preprint,
Arxiv 2017.

[22] Bouwmans, T. et al.: Robust PCA via Principal Component Pursuit: A Review for
a Comparative Evaluation in Video Surveillance. Special Issue on Background Models
Challenge, Computer Vision and Image Understanding (CVIU), Vol. 122, 2014, No. 2,
pp. 22–34, doi: 10.1016/j.cviu.2013.11.009.

[23] Candès, E. J.—Li, X. D.—Ma, Y.—Wright, J.: Robust Principal Component
Analysis? Journal of the ACM (JACM), Vol. 58, 2011, No. 3, Art. No. 11, 37 pp.,
doi: 10.1145/1970392.1970395.

[24] Zhou, X. W.—Yang, C.—Yu, W. C.: Moving Object Detection by Detecting
Contiguous Outliers in the Low-Rank Representation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 35, 2013, No. 3, pp. 597–610, doi:
10.1109/tpami.2012.132.

[25] Gao, Z.—Cheong, L. F.—Wang, Y. X.: Block-Sparse RPCA for Salient Motion
Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36,
2014, No. 10, pp. 1975–1987, doi: 10.1109/tpami.2014.2314663.

[26] Liu, X.—Zhao G. Y.—Yao J. W.—Qi, C.: Background Subtraction Based on
Low-Rank and Structured Sparse Decomposition. IEEE Transactions on Image Pro-
cessing, Vol. 24, 2015, No. 8, pp. 2502–2514, doi: 10.1109/tip.2015.2419084.

[27] Bouwmans, T.—Sobral, A.—Javed, S.—Jung, S. K.—Zahzah, E.: Decom-
position into Low-Rank Plus Additive Matrices for Background/Foreground Separa-
tion: A Review for a Comparative Evaluation with a Large-Scale Dataset. Computer
Science Review, Vol. 23, 2017, pp. 1–71, doi: 10.1016/j.cosrev.2016.11.001.

[28] Jolliffe, I. T.: Graphical Representation of Data Using Principal Components.
Chapter 5. In: Jolliffe, I. T.: Principal Component Analysis. Springer, New York,
Springer Series in Statistics, 2010, pp. 41–64, doi: 10.1007/978-1-4757-1904-8 5.

[29] Wright, J.—Peng, Y.—Ma, Y.—Ganesh, A.—Rao, S.: Robust Principal
Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices by Convex
Optimization. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A.
(Eds.): Advances in Neural Information Processing Systems 22 (NIPS 2009). 2009,
9 pp.

https://doi.org/10.1109/tip.2010.2101613
https://doi.org/10.1109/cvprw.2012.6238925
https://doi.org/10.1109/tit.2006.871582
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1016/j.cviu.2013.11.009
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1109/tpami.2012.132
https://doi.org/10.1109/tpami.2014.2314663
https://doi.org/10.1109/tip.2015.2419084
https://doi.org/10.1016/j.cosrev.2016.11.001
https://doi.org/10.1007/978-1-4757-1904-8_5

1080 J. Chong

[30] Becker, S.—Candes, E.—Grant, M.: TFOCS: Flexible First-Order Methods for
Rank Minimization. Low-Rank Matrix Optimization Symposium, SIAM Conference
on Optimization, 2011.

[31] Tang, G.—Nehorai, A.: Robust Principal Component Analysis Based on Low-
Rank and Block-Sparse Matrix Decomposition. 2011 45th Annual Conference on
Information Sciences and Systems (CISS 2011), Baltimore, MD, USA, 2011, doi:
10.1109/ciss.2011.5766144.

[32] Wohlberg, B.—Chartrand, R.—Theiler, J.: Local Principal Component
Pursuit for Nonlinear Datasets. International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2012), Kyoto, Japan, 20102, pp. 3925–3928, doi:
10.1109/icassp.2012.6288776.

[33] Lin, Z.—Chen, M.—Wu, L.—Ma, Y.: The Augmented Lagrange Multiplier
Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv preprint
arXiv:1009.5055, 2010.

[34] Yuan, X.—Yang, J.: Sparse and Low-Rank Matrix Decomposition via Alternating
Direction Methods. Pacific Journal of Optimization, Vol. 9, 2009, No. 1, pp. 1–11.

[35] Rodŕıguez, P.—Wohlberg, B.: Fast Principal Component Pursuit Via Alternat-
ing Minimization. IEEE International Conference on Image Processing (ICIP 2013),
Melbourne, Australia, 2013, pp. 69–73, doi: 10.1109/icip.2013.6738015.

[36] Guyon, C.—Bouwmans, T.—Zahzah, E.: Moving Object Detection via Robust
Low Rank Matrix Decomposition with IRLS Scheme. In: Bebis, G. et al. (Eds.):
Advances in Visual Computing (ISVC 2012). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 7431, 2012, pp. 665–674, doi: 10.1007/978-3-642-
33179-4 63.

[37] Qiu, C.—Vaswani, N.: Real-Time Robust Principal Components’ Pursuit. 2010
48th Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), 2010, pp. 591–598, doi: 10.1109/allerton.2010.5706961.

[38] Narayanamurthy, P.—Vaswani, N.: MEDRoP: Memory-Efficient Dynamic Ro-
bust PCA. Preprint, December 2017, arXiv:1712.06061v1.

[39] Rodriguez, P.—Wohlberg, B.: Incremental Principal Component Pursuit for
Video Background Modeling. Journal of Mathematical Imaging and Vision, Vol. 55,
2016, No. 1, pp. 1–18, doi: 10.1007/s10851-015-0610-z.

[40] Javed, S.—Mahmood, A.—Bouwmans, T.—Jung, S. K.: Background-
Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering. IEEE
Transactions on Image Processing, Vol. 26, 2017, No. 12, pp. 5840–5854, doi:
10.1109/tip.2017.2746268.

[41] Sobral, A.—Bouwmans, T.—Zahzah, E.: Double-Constrained RPCA Based on
Saliency Maps for Foreground Detection in Automated Maritime Surveillance. ISBC
2015 Workshop conjunction with AVSS 2015, Karlsruhe, Germany, 2015, pp. 1–6,
doi: 10.1109/avss.2015.7301753.

[42] Javed, S.—Bouwmans, T.—Jung, S. K.: Combining ARF and OR-PCA Back-
ground Subtraction of Noisy Videos. In: Murino, V., Puppo, E. (Eds.): Image Ana-
lysis and Applications – ICIAP 2015. Springer, Cham, Lecture Notes in Computer
Science, Vol. 9280, 2015, pp. 340–351, doi: 10.1007/978-3-319-23234-8 32.

https://doi.org/10.1109/ciss.2011.5766144
https://doi.org/10.1109/icassp.2012.6288776
https://doi.org/10.1109/icip.2013.6738015
https://doi.org/10.1007/978-3-642-33179-4_63
https://doi.org/10.1007/978-3-642-33179-4_63
https://doi.org/10.1109/allerton.2010.5706961
https://doi.org/10.1007/s10851-015-0610-z
https://doi.org/10.1109/tip.2017.2746268
https://doi.org/10.1109/avss.2015.7301753
https://doi.org/10.1007/978-3-319-23234-8_32

Moving Target Detection 1081

[43] Zhou, P.—Feng, J.: Outlier-Robust Tensor PCA. 2017 IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI,
USA, 2017, pp. 3938–3946, doi: 10.1109/cvpr.2017.419.

[44] Hu, W.—Yang, Y.—Zhang, W.—Xie, Y.: Moving Object Detection Us-
ing Tensor Based Low-Rank and Saliently Fused-Sparse Decomposition. IEEE
Transactions on Image Processing, Vol. 26, 2017, No. 2, pp. 724–737, doi:
10.1109/tip.2016.2627803.

[45] Sobral, A.—Javed, S.—Jung, S. K.—Bouwmans, T.—Zahzah, E.: Online
Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video
Sequences. 2015 IEEE International Conference on Computer Vision Workshop (IC-
CVW), Santiago, Chile, 2015, pp. 946–953, doi: 10.1109/iccvw.2015.125.

[46] Javed, S.—Bouwmans, T.—Jung, S. K.: Stochastic Decomposition into Low
Rank and Sparse Tensor for Robust Background Subtraction. 6th International Con-
ference on Imaging for Crime Prevention and Detection (ICDP 2015), 2015, doi:
10.1049/ic.2015.0105.

[47] Yang, F.—Jiang, H.—Shen Z. W.—Deng, W.—Metaxas, D.: Adaptive Low
Rank and Sparse Decomposition of Video Using Compressive Sensing. Proceedings of
the 2013 IEEE International Conference on Image Processing, Melbourne, Australia,
2013, pp. 1016–1020, doi: 10.1109/icip.2013.6738210.

[48] Brand, M.: Fast Low-Rank Modifications of the Thin Singular Value Decompo-
sition. Linear Algebra and Its Applications, Vol. 415, 2006, No. 1, pp. 20–30, doi:
10.1016/j.laa.2005.07.021.

[49] Li, W.—Li, X.: Multiple Object Tracking Based on Modified Algorithm of GMMCP
Tracker. IEEE International Conference on Signal and Image Processing (ICSIP),
2017, pp. 11–15, doi: 10.1109/siprocess.2016.7888214.

Jiang Chong received her Bachelor’s degree in computer scien-
ce and technology from Hunan University in 2002. Then she
obtained her Master’s degree and her Ph.D. in computer appli-
cation technology from Central South University in Changsha,
China. Now she is Researcher at the School of Computer Scien-
ce and Engineering, Hunan Women’s University, China. Her
research interests include machine learning, digital image and
video processing directions.

https://doi.org/10.1109/cvpr.2017.419
https://doi.org/10.1109/tip.2016.2627803
https://doi.org/10.1109/iccvw.2015.125
https://doi.org/10.1049/ic.2015.0105
https://doi.org/10.1109/icip.2013.6738210
https://doi.org/10.1016/j.laa.2005.07.021
https://doi.org/10.1109/siprocess.2016.7888214

Computing and Informatics, Vol. 39, 2020, 1082–1098, doi: 10.31577/cai 2020 5 1082

IMPROVED DEEP FOREST MODE
FOR DETECTION OF FRAUDULENT
ONLINE TRANSACTION

Mian Huang

The Key Laboratory of Embedded System
and Service Computing of Ministry of Education
Tongji University
Shanghai, China
e-mail: net-cn@163.com

Lizhi Wang, Zhaohui Zhang∗

School of Computer Science and Technology
Donghua University
Shanghai, China
e-mail: lizhi wang2769433@163.com, zhzhang@dhu.edu.cn

Abstract. As the rapid development of online transactions, transaction frauds
have also emerged seriously. The fraud strategies are characterized by specializa-
tion, industrialization, concealment and scenes. Anti-fraud technologies face many
challenges under the trend of new situations. In this paper, aiming at sample imbal-
ance and strong concealment of online transactions, we enhance the original deep
forest framework to propose a deep forest-based online transaction fraud detection
model. Based on the BaggingBalance method we propose, we establish a global
sample imbalance processing mechanism to deal with the problem of sample imbal-
ance. In addition, the autoencoder model is introduced into the detection model to
enhance the representation learning ability. Via the three-month real online trans-
actions data of a China’s bank, the experimental results show that, evaluating by
the metric of precision and recall rate, the proposed model has a beyond 10 % im-
provement compared to the random forest model, and a beyond 5 % improvement
compared to the original deep forest model.

Keywords: Deep forest, online transaction, fraud detection, autoencoder

∗ Corresponding author

Improved Deep Forest Mode for Detection of Fraudulent Online Transaction 1083

1 INTRODUCTION

Under the general trend of Internet finance, digital technologies such as big data
and artificial intelligence (AI) are widely used in the financial field, and the volume
and potential development of financial markets are gradually enlarged. At the same
time, the risk of exposure is also increasing, and frauds are endless [1]. According to
statistics [2], China’s fraudulent employees exceed 1.5 million, and the raised annual
output value reaches 100 billion in 2017. The financial institutions that use Internet
financial technology to carry out financial business are one of the main targets of
the attack. The risk control of digital finance faces enormous challenges.

At the background, detecting fraudulent transaction patterns precisely is a high-
ly important research direction in the field of online transaction fraud detection. The
traditional expert rule-driven fraud detection technologies require a lot of manual
operations, have a high application cost and low efficiency, while the traditional anti-
fraud technologies consider simple transaction dimensions, thus they are difficult to
form a multi-dimensional user portrait for the user. The online transactions have
strong real-time performance, large amount of data, and fraud is characterized by
small amount and high frequency. It is challenging for traditional anti-fraud methods
to precisely detect fraudulent online transactions.

At present, a large number of machine learning (ML) – based research are widely
used in the field of fraud detection, including decision trees [3], support vector ma-
chines (SVM) [3], naive bayes [4], random forest (RF) [4,5] and other ML algorithms.
ML technology learns existing fraud strategies and explores potential fraud strategies
by learning historical transaction information for online transactions, then precisely
detects online transactions with fraudulent possibilities. In addition, some research
about deep learning (DL) techniques are gradually being used in fraud detection
tasks.

DL techniques [6] such as convolutional neural networks (CNN) and recurrent
neural networks (RNN) have achieved excellent performance in many popular tasks,
such as image recognition [7], natural language processing [8], and so on. DL tech-
niques excel in processing high-dimensional data and nonlinear feature space inputs,
which are common in fraud detection tasks. On this basis, some studies begin to
introduce DL for fraud detection, and use its powerful representation learning abil-
ity to solve the problem of online transaction fraud detection. A research from
McKinsey concluded that it is a promising solution to apply DL techniques for the
problem of financial fraud detection [9]. However, using only ML techniques or DL
techniques does not completely solve the problem of fraud detection [10]. Therefore,
integrating the advantages of ML and DL for fraud detection tasks has also become
one of the research directions.

Deep forest (multi-Grained Cascade Forest, gcForest) is a novel decision tree
ensemble method, which may open the door towards an alternative to deep neural
networks for many tasks [11]. By creating a cascade forest structure, the method
could enable its representation learning. At the same time, its multi-scanning struc-
ture could enhance its representational learning ability. From another perspective,

1084 M. Huang, L. Wang, Z. Zhang

gcForest is a learning framework that integrates ML and DL techniques. The multi-
scanning structure uses the idea of 1D and 2D convolution similar to CNN to estab-
lish representation learning. Based on the idea of stacking, cascade forest structure
ensembles the RF model [12] and the completely random forest model [13] as base
classifiers.

In this paper, we propose an improved gcForest-based online transaction fraud
detection model. In view of the problems in online transaction fraud detection, on
the one hand, we add the autoencoder DL model [7] to the multi-scanning struc-
ture to enhance its representation learning ability, because autoencoder could pro-
duce more concise unsupervised representations, which is proved to be a robust
algorithm [14]. At the same time, we use XGBoost (eXtreme Gradient Boosting)
model [15] to replace the completely random forest base classifiers in cascade for-
est structure. By combining with the proposed BaggingBalance method, a global
sample imbalance processing mechanism is established. XGBoost is a scalable end-
to-end tree boosting system [15], which is used widely to achieve state-of-art results
on many ML competitions [16]. By combining the above methods, we enhance the
original gcForest framework, then establish a detection model for online transaction
fraud. The main contributions of this paper are summarized as follows:

• Apply gcForest model and improve the model for fraud detection in online trans-
actions. Based on the accumulated experience of ML in fraud detection tasks
in recent years, and with the excellent representation learning ability demon-
strated by DL, the structure of the original gcForest is improved for the online
transaction fraud detection task, and the experiment result shows the proposed
model is superior to RF model and the original gcForest model.

• Aiming at the data characteristics of online transactions, the multi-scanning
structure of the original gcForest is enhanced. Autoencoder model with excel-
lent representation learning ability is introduced to enhance the model’s feature
learning of online transactions.

• The BaggingBalance method is proposed to deal with the sample imbalance
problem in online transactions on the data input. At the same time, the XG-
Boost model is introduced in the cascade forest structure. Combined with the
two, a global sample imbalance processing mechanism is established.

In the remainder of the paper, Section 2 describes some related work about status
quo of the online transaction fraud detection. Section 3 introduces the methodology
proposed in this paper. The data information and experimental results are discussed
in Section 4. Finally, conclusion and future work are presented.

2 RELATED WORK

Nowadays, with the continuous development of Internet finance, online transaction
fraud detection has become a hot research topic, including credit card fraud de-

Improved Deep Forest Mode for Detection of Fraudulent Online Transaction 1085

tection, mobile payment fraud detection, B2C (Business-to-Customer) transaction
fraud detection and so on.

The ML-based fraud detection algorithm is widely used in the field of online
transaction fraud detection, including supervised learning model and unsupervised
learning model. The supervised learning models establish a fraud detection model
based on historical transaction data after manual investigation to determine whether
a new transaction is fraudulent. For example, Shiyang Xuan et al. [5] learn the be-
havior patterns of normal and abnormal transactions via two kinds of RFs, where
the two RFs have different base classifiers, and evaluate their performance on credit
card transactions. While unsupervised learning models typically treat identified
outliers as detected fraudulent transactions using outlier detection or anomaly de-
tection techniques. In 2014, Olszewski [17] uses the self-organizing map (SOM)
method to build a user behavior model to look for outliers that deviate from normal
user behavior for fraud detection. ML-based detection algorithms have the advan-
tages of learning known fraud patterns and detecting potential new fraud strate-
gies. However, the methods of supervised learning strongly rely on the correctness
of the original labels and the need to deal with the existing sample imbalance.
Unsupervised learning is very sensitive to the overlapping distribution of normal
transactions and fraudulent transactions, which often leads to a serious decline in
accuracy [18].

With the excellent performance of DL technology in many classification tasks,
DL technology is introduced in the field of online transaction fraud detection. In
2016, Kang Fu et al. [19] propose a CNN-based fraud detection framework, which
could learn fraud behavior patterns via transaction data and show its excellent per-
formance compared with some state-of-art methods. In 2017, Jingdong Finance’s
Shuhao Wang et al. [20] present CLUE framework, a novel DL-based transaction
fraud detection system. By using neural network based embedding and RNN, the
system achieves over 3 times improvement over the existing fraud detection ap-
proaches on real production data for eight months. In 2018, Zhaohui Zhang et al. [21]
apply CNN for the task of online transaction fraud detection by constructing an in-
put feature sequencing layer to obtain various input feature patterns, the proposed
method outperforms the existing CNN model. At the same year, Abhimanyu Roy
et al. [22] deeply study the application of DL technologies in credit card fraud de-
tection tasks, and solve the common problems in fraud by using high-performance
distributed cloud computing environment, while providing a parameter adjustment
framework for DL topology. However, although DL technology can acquire more
sequential information between transactions, it is insufficient for DL to just learn
feature information within a single transaction, which can be well learned by ML
technologies. But only using ML methods would attenuate the sequential learning
ability of detection models [10].

In recent years, the online transaction fraud detection field starts to apply de-
tection techniques that combine the advantages of ML and DL. In 2017, Xurui Li
et al. [10] propose a novel “within-between-within” (WBW) sandwich-structured
sequence learning architecture by integrating ensemble and DL methods, and intro-

1086 M. Huang, L. Wang, Z. Zhang

duce attention mechanism to further enhance its performance. In the same year,
Zahra Kazemi and Houman Zarrabi [23] use deep autoencoder model and softmax
network to learn credit card transaction information and establish a fraud detec-
tion model, where results show the advantages of proposed method comparing to
state-of-art methods.

In this work, based on the framework of the original gcForest, we improve the
model for the online transaction fraud detection task. Introducing the autoencoder
model into the multi-scanning structure enables the detection model a stronger rep-
resentation learning ability on the input of the cascade forest, which could better
handle the strong concealment of online transaction fraud patterns. While estab-
lishing a global sample imbalance processing mechanism, which could deal with the
problem of sample imbalance in online transaction fraud detection. On this basis, we
propose an improved gcForest-based method for online transaction fraud detection.

3 METHODOLOGY

3.1 Improved gcForest Framework for Detecting Fraudulent
Online Transaction

The improved gcForest-based online transaction fraud detection framework can be
seen in Figure 1, including the multi-scanning and the cascade forest. The cascade
forest structure uses XGBoost as the base classifier to replace the completely ran-
dom forest model in the original gcForest. As for the multiscanning structure, it
introduces the autoencoder model into the original structure to enhance representa-
tional learning, then reconstruct a multi-scanning structure based on autoencoder
combined with sample imbalance processing method BaggingBalance.

Figure 1. Improved gcForest framework for detecting fraudulent online transaction

As shown in Figure 1, assuming that the features number of initial input is M,
there are n autoencoders for multi-scanning structure. For training samples with
size N , an autoencoder obtains its hidden layer output representation vector H
through the BaggingBalance method. the vector H will be used to train the first
level of the first layer of the cascade forest. The same operation is performed on

Improved Deep Forest Mode for Detection of Fraudulent Online Transaction 1087

the other n − 1 autoencoders, and the obtained hidden layer output vectors are
respectively used to train the second level to kth level of the first layer of the cascade
forest.

Repeat the same operations for every initial training transaction sample. The
expanded feature vector adds the class vectors generated by the previous level, which
are used to train the second and third layers of the cascaded forest, respectively,
and this process is repeated until the convergence of the model performance. In
other words, the final model is actually a ensemble of deep forest, each of which is
composed of multiple levels, as shown in Figure 1, with each layer corresponding to
a hidden layer vector representation of an autoencoder.

3.2 BaggingBalance: A Method for Processing Sample Imbalance

BaggingBalance is a sample imbalance processing method based on the idea of Bag-
ging [24], by under-sampling operation of raw data at the data input layer, and
randomly selecting attribute features, thus obtaining different sampling data sets.

Specifically, the original data set is first divided into a majority class training set
Dmajor and a minority class training set Dminor based on bootstraping [24]. Sampling
the majority class training sets produces a data set Dsample: each time randomly pick
a sample from the majority class dataset Dmajor, copy it into Dsample, and then put
the sample back into the initial dataset Dmajor. It is possible to enable the sample
sampled at the next sampling via the step. Different from self-sampling, the times of
this process is repeatedly executed is the sample size |Dminor| of the minority training
set Dminor, instead of the size of |Dmajor| of majority class training set Dmajor.

In addition, unlike Bagging, which only differs by sample perturbation, the
BaggingBalance method also introduces the randomness of attribute features, which
is similar to the idea of RF, i.e., the attribute feature perturbation is added at the
same time, which will improve the generalization performance of final model.

The process of BaggingBalance algorithm is Algorithm 1.

Algorithm 1 BaggingBalance

Input: The majority training set, Dmajor, the minority training set, Dminor, the
feature space, F, the number of sampling training set, k, and number of features
randomly selected, mfeature

Output: k sample training sets, D = {D1, D2, . . . , Dk};
D = [];
for i = 0 to k do

Sampling Dmajor to get sampled data set Dsample, where |Dsample| = |Dminor|;
Randomly extract feature subset Fsample from feature space F, where

|Fsample| = mfeature;
Di = {Dsample,Fsample}

end forreturn D;

1088 M. Huang, L. Wang, Z. Zhang

3.3 New Multi-Scanning Structure Using Autoencoder

In the original gcForest algorithm, the multi-scanning structure [11] uses the sliding
window technique to process the original features. The vectors obtained by each
sliding are processed by the RF model and completely random forest model to obtain
the class vector, and then all the class vectors are concatenated as a transformation
feature vector, which is passed as an input feature vector to the cascade forest for
classification.

However, the sliding window-based method has its own limitations. As men-
tioned in the proposed paper [11], the multi-scanning structure has a good effect on
data with sequence relationship or spatial relationship. Because the sliding window
method can only slide linearly, thus there is a great demand for the feature space
arrangement of the raw data. Specifically, the sliding window is qualified to process
the feature vectors with sequence relationship, but there is no strong sequence rela-
tionship between the original feature vectors in each online transaction, even in an
out-of-order feature space status. In addition, the reconstructed feature vector gen-
erated by the original structure is completely composed of the class vectors, which
cannot fully map the feature space of the original data.

Figure 2. New multi-scanning structure using autoencoder

Therefore we reconstruct the multi-scanning structure by introducing autoen-
coder algorithm and the BaggingBalance method, and propose a new multi-scanning
structure using autoencoder, which is shown in Figure 2.

On the one hand, based on the BaggingBalance method we proposed, the orig-
inal input data is double-randomly sampled in the sample space and the feature

Improved Deep Forest Mode for Detection of Fraudulent Online Transaction 1089

space, and several different sampling training sets are obtained. Through the in-
troduction of randomness, the disorder of the online transaction feature space is
considered while dealing with the problem of sample imbalance. Through the ran-
dom feature selection, the random combination of different transaction attributes
in the original feature space can be realized, and the internal relationship between
the fraud patterns and the transaction feature space in online transaction can be
deeply explored. This is also reason that why randomness exists in many ML algo-
rithms.

On the other hand, the autoencoder model is introduced in the multi-scanning
structure to further enhance the representation learning ability of the fraud detec-
tion model. Autoencoder has proven to be a robust algorithm which can be used
in several applications and the main advantage is to extract best features for data
analysis [23]. The sampling training set obtained by the BaggingBalance method is
used as input to train the autoencoder model, and the hidden layer output repre-
sentation vector of the trained autoencoder is extracted as a new modified feature
vector, which is transmitted as input to the cascade forest model for model training.
Compared with the class vector generated by RF model and completely random
forest model, the hidden layer output representation vector obtained by the autoen-
coder is a better expression of the original input feature space. What is more, it
is more concise and effective, and more fully reflects the distribution of the original
feature space.

The overall process flow of the multi-scanning structure using autoencoder is
summarized as shown in Algorithm 2.

Algorithm 2 The process flow of the multi-scanning structure using autoencoder

Input: The majority training set, Dmajor, the minority training set, Dminor, the
feature space, F, the number of initialized autoencoders, k, the number of features
randomly selected, mfeature, and the number of iterations of the autoencoder, iters

Output: output expression vector of k autoencoders in hidden layer, H =
{H1, H2, . . . , Hk};
H = [];
for each AutoEncoderi in k autoencoders do

Sampling Dmajor to get sampled data set Dsample, where |Dsample| = |Dminor|;
Randomly extract feature subset Fsample from feature space F, where

|Fsample| = mfeature;
for t = 0 to iters do

training AutoEncoderi by TrainAutoencoder(Dmajor,Dminor,Fsample);
end for
get Hi;
push Hi to H;

end forreturn H;

1090 M. Huang, L. Wang, Z. Zhang

4 EXPERIMENTS

4.1 Datasets and Indicators

Experimental data comes from real online transaction data of a China’s bank, in-
cluding three-month B2C transaction records (from April 2017 to June 2017). There
are original 67 available transaction attributes, and there are more than 70 000 trans-
actions labeled as fraudulent transactions in historical data. In this paper, we use
transaction data of the first two months as a training set to train the improved
gcForest-based online transaction fraud detection model. The last months trans-
action data is used as the testing set to evaluate the performance of the detection
model. Last but not least, precision rate and recall rate is used to evaluate the
performance of the proposed model.

Predicted
Real

True Fraud True Normal

Predicted Fraud TP FP

Predicted Normal FN TN

Table 1. Confusion matrix

As shown in Table 1, because it is a fraudulent transaction interception, the
focus of the model should be on fraudulent transactions, so the confusion matrix
is slightly modified. TP (True Positive) is the number of fraudulent transactions
judged as fraudulent transactions by the model. FP (False Positive) is the number
of normal transactions that are judged as fraudulent transactions by the model. TN
(True Negative) is the number of normal transactions that are judged as normal
transactions by the model. FN (False Negative) is the number of fraudulent trans-
actions that are judged as normal transactions by the model. Then, 3 indicators in
Table 2 will serve to evaluate the performance.

Indicator Name Calculation Method

Accuracy (TP + TN)/(TP + TN + FP + FN)

Precision TP/(TP + FP)

Recall TP/(TP + FN)

Table 2. Indicator calculation method

As shown in Table 2, in fraud detection, the accuracy rate refers to the ratio
of the number of correct transactions predicted by the detection model to the total
electronic transactions. Accuracy is the most commonly used performance metric
in classification tasks, which is suitable for both binary classification tasks and
multi-classification tasks. However, it cannot meet the needs of fraud detection
tasks because this indicator cannot accurately measure the performance of fraud
detection models due to the imbalance of samples in fraud detection. On this basis,
the concepts of precision and recall are proposed, matching with precision and recall

Improved Deep Forest Mode for Detection of Fraudulent Online Transaction 1091

respectively in machine learning. Therefore, the application of precision rate and
recall rate in fraud detection task can reflect the performance and effect of the model
in electronic transaction fraud detection.

4.2 Model Evaluation

1. Selection of the Number of Autoencoder: In the framework of improved gcForest-
based online transaction fraud detection, the selection of the autoencoders’ num-
ber, i.e., the selection of the number of sample datasets in BaggingBalance, is
a problem worth studying. Because the data distribution and feature distribu-
tion of sampling datasets generated by the BaggingBalance method tend to be
very different due to the randomness of sample selection and feature selection.
These datasets will be used as the input of the autoencoder model to train the
model, and produce various hidden layer poor model performance. If there are
too many autoencoders, overfitting will occur, which leads to the worse gener-
alization ability of the model and the degraded performance.

2. Performance of the Fraud Detection Model: After determining the number of
autoencoders, this section conducts an experimental study on the performance
of the proposed fraud detection model. The RF model and the original gcForest
model are selected as the comparison model. The test was extracted from the
online transaction data of June 2017 which are divided into five subsets including
the first 10 days, the first 15 days, the first 20 days, the first 25 days and the
first 30 days.

Based on the above considerations, this section of the experiment selects the
transaction data of the first two months as the training sets and tests it on the
transaction data of the first 10 days, the first 20 days and the entire month in June.
X-axis is the number of autoencoders which is considered in the ranges from 1 to 10.
Figures 3 a), 3 b), 3 c) show the results of fraud detection models via the different
autocoders’ number, which are tested on the online transaction data for the first
10 days, the first 20 days and the entire month of June. From the above experimental
results, the number of autoencoders should not be too large, and should not be too
small, generally taking 4 to 6. If the number is too small, the dataset generated
by BagingBalance is small in size and cannot fully reflect the original data space,
resulting in insufficient learning of the original data and output representation, which
has a great influence on the final detection effect of the model.

In addition, to verify the effectiveness of the introduced autoencoder in the
model, we also evaluate the performance of the original cascaded forest structure
with an autoencoder in this section. In this model, we input the raw online transac-
tion data, pass them into the autoencoder and obtain the hidden layer output rep-
resentation vector, which will be as the input of original cascaded forest structure.
From Figures 4 a), 4 b) we can conclude that compared with the original gcForest
model, the introduction of the autoencoder has its effectiveness. At the same time,

1092 M. Huang, L. Wang, Z. Zhang

a) Data set of the first 10 days b) Data set of the first 20 days

c) Data set of the whole month

Figure 3. Evaluation on the number of autoencoders

the results also show that the improved gcForest with multi-autoencoders based on
BaggingBalance is superior to ones with an autoencoder.

Based on the last experimental result, this section initializes the number of
autoencoders to 5. Figure 4 a) shows the precision rate on different models in the
five test sets, and Figure 4 b) shows the recall rate on different models in the five
test sets. It can be seen that the proposed model has a beyond 10 % improvement
compared to RF model, a beyond 5 % improvement compared to the original gcForest
model.

a) The precision rate of different models b) The recall rate of different models

Figure 4. The performances of different models on various sample sets

Improved Deep Forest Mode for Detection of Fraudulent Online Transaction 1093

4.3 System Implementation

In order to verify the comprehensive performance of the model, a fraud detection
subsystem was built. Based on the fraud detection model based on deep forest pro-
posed in this paper, the system realized two functions of offline model training and
simulated real-time electronic transaction fraud detection to verify the application
and effectiveness of the detection model.

For the model off-line training module, the functions of data extraction, data
preprocessing, feature differentiation and model training of the deep forest model
are completed. The realization of this part of functions in order to make the training
model process from data extraction to result analysis can be completed at the system
end, convenient for users to control the training process of the model.

For the function of simulating real-time electronic transaction fraud detection
module, the detection, interception and release of real-time transaction data are
completed. The work of this part is to deploy the trained deep learning model into
the system. The system passes the received electronic transaction into the detection
model for detection. If the detection is normal, the transaction will be released. If
the transaction is identified as fraudulent by the model, it will be intercepted.

After configuring the service based on the deep forest fraud detection model,
the model will start running to prevent and monitor the risks of real-time electronic
transaction data streams entering the system. The interactive page design for real-
time risk control monitoring is shown in Figure 5. This part shows the real-time
detection results after real-time transaction data enters the group behavior fraud
detection subsystem and the performance analysis and visualization of the running
detection model. The detection result display part displays basic information such as
the user account of the current transaction, the user’s name, the time of the transac-
tion and the interception of the detection model. At the same time, the intercepted
electronic transactions are displayed in detail to analyze the characteristics of the
intercepted transactions, as shown in Figure 6.

At the same time, the simulated real-time electronic transaction fraud detection
function counts the real-time detection performance indicators of the fraud detection
model which can display the detection effect of the model in real time and is also
beneficial to analyze the specific application of the model. Figure 7 shows the
number of intercepted electronic transactions of the detection model. While Figure 8
shows the performance indicators of the detection model running in the system,
including hit rate, recall rate, accuracy rate and interference rate.

This chapter designs and implements a B/S-based group behavior fraud detec-
tion subsystem. The system mainly includes two functional modules: offline model
training function and real-time detection of simulated electronic transactions. On
the one hand, the offline model training module is used to access the API inter-
face of the data storage platform of the hierarchical diagnosis and treatment cloud
platform to obtain the historical transaction data of electronic transactions as the
original training set. At the same time, the model parameters are set through visual
interactive operations to realize electronic transactions based on deep forests.

1094 M. Huang, L. Wang, Z. Zhang

Figure 5. Transaction risk monitoring page

Figure 6. The set of transactions that the model identifies as fraudulent

Fraud model training and visualization. On the other hand, the real-time
detection function of simulating electronic transactions is used to obtain the
implementation transaction data stream of the risk control subsystem of the
financial risk control platform and the detection model trained by the offline
model training function is used to perform the real-time transaction data stream.

Real-time detection of fraudulent transactions and analysis of detection
effects. By building a group behavior fraud detection subsystem, the devel-
opment complexity of developers is reduced and the application value of the
detection model proposed in this article is verified.

Improved Deep Forest Mode for Detection of Fraudulent Online Transaction 1095

Figure 7. Each module intercepts the number of releases

Figure 8. The model detects trade indicators in real time

5 CONCLUSION

This paper establishes an online transaction fraud detection model based on im-
proved gcForest. BaggingBalance, a sample imbalance processing method based on
Bagging, is proposed to rebalance the datasets and construct a global sample un-
balance processing mechanism with XGBoost used in cascade forest. Based on this,
autoencoder algorithm is introduced to the multi-scanning structure, further en-
hancing the representational learning ability of the model. The experimental results
show a superior fraud detection performance of the proposed model on real bank
online transaction data. Furthermore, this paper is another exploration about using
the advantage of ML techniques and DL techniques. There are more possibilities for
combining more ML models and DL models to detect online fraudulent transactions.

1096 M. Huang, L. Wang, Z. Zhang

Acknowledgement

This work was supported by the Natural Science Foundation of Shanghai (No. 19ZR-
1401900) and the Shanghai Science and Technology Innovation Action Plan Project
(No. 19511101300).

REFERENCES

[1] Jingdong Financial Research Institute: Digital Finance Anti-Fraud White Paper.
Available from: http://finance.qq.com/original/caijingzhiku/yzzk12.html,
May 2018.

[2] Security Alliance of E-Commerce Ecosystem: 2017 E-Commerce Ecological Secu-
rity White Paper. Available from: https://www.saee.org.cn/pc/newsContent/

news20170726, July 2017.

[3] Sahin, Y.—Duman, E.: Detecting Credit Card Fraud by Decision Trees and Sup-
port Vector Machines. International MultiConference of Engineers and Computer
Scientists, Vol. 1, 2011, pp. 442–447, doi: 10.1109/inista.2011.5946108.

[4] Alowais, M. I.—Soon, L.K.: Credit Card Fraud Detection: Personalized or Ag-
gregated Model. Third FTRA International Conference on Mobile, Ubiquitous, and
Intelligent Computing, June 2012, pp. 114–119, doi: 10.1109/music.2012.27.

[5] Xuan, S.—Liu, G.—Li, Z.—Zheng, L.—Wang, S.—Jiang, C.: Random For-
est for Credit Card Fraud Detection. 15th International Conference on Networking,
Sensing and Control, March 2018, pp. 1–6, doi: 10.1109/icnsc.2018.8361343.

[6] LeCun, Y.—Bengio, Y.—Hinton, G.E.: Deep Learning. Nature, Vol. 521, 2015,
pp. 436–444, doi: 10.1038/nature14539.

[7] Krizhevsky, A.—Sutskever, I.—Hinton, G.E.: ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira, F., Burges, C. J. C., Bottou, L.,
Weinberger, K. Q. (Eds.): Advances in Neural Information Processing Systems 25
(NIPS 2012), 2012.

[8] Sutskever, I.—Vinyals, O.—Le, V.Q.: Sequence to Sequence Learning with
Neural Networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Wein-
berger, K. Q. (Eds.): Advances in Neural Information Processing Systems 27 (NIPS
2014), Vol. 2, 2014, pp. 3104–3112.

[9] Corbo, J.—Giovine, C.—Wigley, C.: Applying Analytics in Financial Institu-
tions Fight Against Fraud. McKinsey Analytics, April 2017. Available from: https:
//www.mckinsey.com/businessfunctions/mckinsey-analytics/our-insights/

applying-analytics-infinancial-institutions-fight-against-fraud, re-
trieved February 2018.

[10] Li, X.—Yu, W.—Luwang, T.—Zheng, J.—Qiu, X.—Zhao, J. et al.: Transac-
tion Fraud Detection Using GRU-Centered Sandwich-Structured Model. 2018 IEEE
22nd International Conference on Computer Supported Cooperative Work in Design,
November 2017, pp. 467–472, doi: 10.1109/cscwd.2018.8465147.

[11] Zhou, Z.—Feng, J.: Deep Forest: Towards an Alternative to Deep Neural Net-
works. Proceedings of the Twenty-Sixth International Joint Conference on Arti-

http://finance.qq.com/original/caijingzhiku/yzzk12.html
https://www.saee.org.cn/pc/newsContent/news20170726
https://www.saee.org.cn/pc/newsContent/news20170726
https://doi.org/10.1109/inista.2011.5946108
https://doi.org/10.1109/music.2012.27
https://doi.org/10.1109/icnsc.2018.8361343
https://doi.org/10.1038/nature14539
https://www.mckinsey.com/businessfunctions/mckinsey-analytics/our-insights/applying-analytics-infinancial-institutions-fight-against-fraud
https://www.mckinsey.com/businessfunctions/mckinsey-analytics/our-insights/applying-analytics-infinancial-institutions-fight-against-fraud
https://www.mckinsey.com/businessfunctions/mckinsey-analytics/our-insights/applying-analytics-infinancial-institutions-fight-against-fraud
https://doi.org/10.1109/cscwd.2018.8465147

Improved Deep Forest Mode for Detection of Fraudulent Online Transaction 1097

ficial Intelligence (IJCAI 2017), February 2017, pp. 3553–3559, doi: 10.24963/ij-
cai.2017/497.

[12] Breiman, L.: Random Forests. Machine Learning, Vol. 45, 2001, No. 1, pp. 5–32,
doi: 10.1023/A:1010933404324.

[13] Liu, F.—Ting, K.—Yu, Y.—Zhou, Z.: Spectrum of Variable-Random Trees.
Journal of Artificial Intelligence Research, Vol. 32, 2008, pp. 355–384, doi:
10.1613/jair.2470.

[14] Dong, M.—Yao, L.—Wang, X.—Benatallah, B.—Huang, C.—Ning, X.:
Opinion Fraud Detection via Neural Autoencoder Decision Forest. Pattern Recogni-
tion Letters, Vol. 132, 2020, pp. 21–29, doi: 10.1016/j.patrec.2018.07.013.

[15] Chen, T.—Guestrin, C.: XGBoost: A Scalable Tree Boosting System. Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.

[16] Nielsen, D.: Tree Boosting with XGBoost – Why Does XGBoost Win “Every”
Machine Learning Competition? Master’s Thesis, Norvegian University of Science
and Technology (NTNU), Trondheim, 2016.

[17] Olszewski, D.: Fraud Detection Using Self-Organizing Map Visualizing the
User Profiles. Knowledge-Based Systems, Vol. 70, 2014, pp. 324–334, doi:
10.1016/j.knosys.2014.07.008.

[18] Dal Pozzolo, A.: Adaptive Machine Learning for Credit Card Fraud Detection.
Ph.D. Thesis, Université Libre de Bruxelles, December 2015.

[19] Fu, K.—Cheng, D.—Tu, Y.—Zhang, L.: Credit Card Fraud Detection Using
Convolutional Neural Networks. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K.,
Lee, M., Liu, D. (Eds.): Neural Information Processing (ICONIP 2016). Springer,
Cham, Lecture Notes in Computer Science, Vol. 9949, 2016, pp. 483–490, doi:
10.1007/978-3-319-46675-0 53.

[20] Wang, S.—Liu, C.—Gao, X.—Qu, H.—Xu, W.: Session-Based Fraud Detection
in Online E-Commerce Transactions Using Recurrent Neural Networks. In: Altun, Y.
et al. (Eds.): Machine Learning and Knowledge Discovery in Databases (ECML
PKDD 2017). Springer, Cham, Lecture Notes in Computer Science, Vol. 10536, 2017,
pp. 241–252, doi: 10.1007/978-3-319-71273-4 20.

[21] Zhang, Z.—Zhou, X.—Zhang, X.—Wang, L.—Wang, P.: A Model Based
on Convolutional Neural Network for Online Transaction Fraud Detection. Secu-
rity and Communication Networks, Vol. 2018, 2018, Art. No. 5680264, 9 pp., doi:
10.1155/2018/5680264.

[22] Roy, A.—Sun, J.—Mahoney, R.—Alonzi, L.—Adams, S.—Beling, P.:
Deep Learning Detecting Fraud in Credit Card Transactions. 2018 Systems and
Information Engineering Design Symposium (SIEDS), 2018, pp. 129–134, doi:
10.1109/SIEDS.2018.8374722.

[23] Kazemi, Z.—Zarrabi, H.: Using Deep Networks for Fraud Detection in the Credit
Card Transactions. 2017 IEEE 4th International Conference on Knowledge-Based En-
gineering and Innovation (KBEI), 2017, pp. 630–633, doi: 10.1109/kbei.2017.8324876.

[24] Breiman, L.: Bagging Predictors. Machine Learning, Vol. 24, 1996, No. 2,
pp. 123–140, doi: 10.1007/bf00058655.

https://doi.org/10.24963/ijcai.2017/497
https://doi.org/10.24963/ijcai.2017/497
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1613/jair.2470
https://doi.org/10.1016/j.patrec.2018.07.013
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.knosys.2014.07.008
https://doi.org/10.1007/978-3-319-46675-0_53
https://doi.org/10.1007/978-3-319-71273-4_20
https://doi.org/10.1155/2018/5680264
https://doi.org/10.1109/SIEDS.2018.8374722
https://doi.org/10.1109/kbei.2017.8324876
https://doi.org/10.1007/bf00058655

1098 M. Huang, L. Wang, Z. Zhang

Mian Huang received the M.Sc. degree from Lanzhou Uni-
versity of Technology, Lanzhou, China in 2008, and now he is
pursuing the Eng.D. degree from Tongji University, Shanghai,
China. His current research interests include network security
and identity authentication.

Lizhi Wang is an M.Sc. candidate at the Donghua University.
His research area includes machine learning, deep learning, and
cloud computing.

Zhaohui Zhang obtained his Bachelor’s degree in computer
science from Anhui Normal University, Wuhu, China in 1994. He
obtained his Ph.D. in computer science from Tongji University,
Shanghai, China in 2007. From 1994 to 2015, he worked in Anhui
Normal University as Professor. Since 2015 he has been working
as Professor in the School of Computer Science and Technology,
Donghua University, Shanghai, China. His research interests
include big data intelligent processing and behavior analysis.

Computing and Informatics, Vol. 39, 2020, 1099–1116, doi: 10.31577/cai 2020 5 1099

FAULT TOLERANCE IN REVERSIBLE LOGIC
CIRCUITS AND QUANTUM COST OPTIMIZATION

Kamaraj Arunachalam

Department of Electronics and Communication Engineering
Mepco Schlenk Engineering College
Sivakasi, Tamilnadu, India
e-mail: kamarajvlsi@gmail.com

Marichamy Perumalsamy

Department of Electronics and Communication Engineering
PSR Engineering College
Sivakasi, Tamilnadu, India
e-mail: pmarichamy@psr.edu.in

Kaviyashri K. Ponnusamy

Department of Electronics and Communication Engineering
Mepco Schlenk Engineering College
Sivakasi, Tamilnadu, India
e-mail: kaviyashrikp@gmail.com

Abstract. Energy dissipation is a prominent factor for the very large scale inte-
grated circuit (VLSI). The reversible logic-based circuit was capable to compute the
logic without energy dissipation. Accordingly, reversible circuits are an emerging
domain of research based on the low value of energy dissipation. At nano-level
design, the critical factor in the logic computing paradigm is the fault. The pro-
posed methodology of fault coverage is powerful for testability. In this article, we
target three factors such as fault tolerance, fault coverage and fault detection in
the reversible KMD Gates. Our analysis provides good evidence that the minimum
test vector covers the 100 % fault coverage and 50 % fault tolerance in KMD Gate.

1100 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

Further, we show a comparison between the quantum equivalent and controlled V
and V + gate in all the types of KMD Gates. The proposed methodology mentions
that after controlled V and V + gate based ALU, divider and Vedic multiplier have
a significant reduction in quantum cost. The comparative results of designs such as
Vedic multiplier, division unit and ALU are obtained and they are analyzed showing
significant improvement in quantum cost.

Keywords: KMD Gate, controlled V and V + gate, ALU, divider and Vedic mul-
tiplier

1 INTRODUCTION

Launder proved that any irreversible or conventional computation will dissipate
KTln2 Joules (k is Boltzmann’s constant and T is the temperature) of heat since
it loses bit information from input to output transition [1]. Bennett introduced
a logically reversible computing machine [2].

In reversible logic, the energy dissipation during computation is null, since it
has a bijective mapping between input and output. The reversible logic circuits are
constructed using a distinguished well-defined library of gates. Good reversible logic
circuits must be well optimized in terms of quantum cost (QC), constant input (CI),
garbage output (GO) and logical calculations (LC) [3]. The reversible logic circuits
are established in quantum cellular automata and optical computation.

The testing of circuits will guarantee the perfect operation. Generally, two
major classification of testing: which are online and offline. Testable circuits have
their challenges such as test data minimization, low-level signals, variety of fault
models [4].

Initially, reversible logic gates/circuits testing in online/offline over the bench-
mark circuits have been done in [5]. It has been extended towards defining the per-
formance measure parameters like Missing Gate, Cell fault, Stuck-at Fault. Also,
two testable reversible gates R1 and R2 are presented for online testing [6].

Thereafter, many researchers had contributed to the reversible fault tolerant
architectures such as adders, ALU and floating-point units. Variety of Adders (CSA,
RCA, BCD and CLA) are constructed using ZCG, LCG, MIG, Fredkin and F2G
parity preserving gates. It is observed that the parity preserving gates provides
improved performance in the various adder structures [7]. In RUG gate fault pattern
based Fault tolerance is analyzed and it has 52.2 of average fault tolerance on faults.
An ALU has been constructed using this reversible gate [8].

Moreover, the synthesis of reversible circuits is a significant part of optimizing
performance measures. The quantum reversible circuits are obtained for the ba-
sic gates. The quantum circuits can be derived from mapping them to the NCV
library [9]. Also, fault models and various approaches towards test pattern genera-
tion are discussed here in [9].

Fault Tolerance in Reversible Logic-Quantum Cost 1101

In this paper, the fault coverage, fault tolerance and fault detection test vector
for the KMD Gates are discussed. Then arithmetic and logic circuit, floating-point
division and Vedic multipliers are constructed using KMD Gates. These reversible
circuits are optimized in quantum cost using the behavioral model of integrated
qubit optimization [10].

The rest of the paper is organized as follows: Section 2 deals with fundamental
fault models in reversible logic with an example. Section 3 describes the methods
used to reduce the quantum cost in detail; then in Section 4 fault tolerance in
KMD Gates is checked. Thereafter, in Section 5, quantum cost optimization in
arithmetic circuits such as ALU, division and Vedic multiplier is elaborated. Finally,
the conclusion is presented with future scope.

2 PRELIMINARIES OF FAULT MODELS IN REVERSIBLE LOGIC

Faults are any types of imperfection in a system that affects the functional behavior
of a system either permanently or temporarily. The fault is caused either by manual
or environmental factors. A fault model describes the type of fault that occurred
in the system and it identifies the target of testing. There are many types of fault
methods [4]:

• Stuck-at fault,

• Bridging fault,

• Missing gate fault,

• Cell fault,

• Cross-point fault.

2.1 Stuck-At Fault

In the stuck-at fault model, the fault occurred in a circuit when any wire fixed on
a value ‘0’ or ‘1’, called as stuck-at 0 or stuck-at 1 fault, respectively. Total number
of stuck-at faults can be obtained, as shown in Equation (1) [4]

2

(
N +

m∑
i=1

gi

)
(1)

where gi represents the size of the N th gate of the circuit, N represents the total
number of wires and m represents the number of gates in the circuit.

2.2 Minimum Test Vectors

The minimum test vectors are the test vectors covering maximum faults occurring
in the reversible circuit.

1102 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

2.3 Fault Coverage

It is defined as the ratio of the actual number of detected faults to the total number
of faults present in the circuits [11]. Based on fault coverage, the efficiency of the
testing techniques can be explained as in [11, 12].

fault coverage = (number of detected fault)/(number of detectable fault).

2.4 Fault Tolerance

Fault tolerance is the property of the system that permits a system to work con-
tinuously even in the failure of some of its components. The reversible gates with
parity preservation are also known as fault tolerant gates [13].

2.5 Controlled V and Controlled V + Gates

The V gate is the square root of NOT gate and the V + gate is the Hermitian
conjugate of the V gate [3, 10]. The V and V + gates have the following proper-
ties [5, 6]:

V × V = NOT,

V × V + = V + × V = I, (2)

V + × V + = NOT.

In order to construct a truth table for V and V + gates, the properties of these
gates are used, as proposed in Equation (2) [3]. This equation shows that when two
V gates or two V + gates are in series it is equal to a NOT gate. Likewise, when one
V and V+ gates are in series, its logical equivalent is identity.

3 QUANTUM COST OPTIMIZATION IN KMD GATES

The Quantum Cost of the reversible logic gate/circuit can be reduced by remov-
ing the redundant gates in the quantum equivalent circuits and/or combining the
gates in the controlled V and V + Structure. At first, the quantum equivalent
gate/circuit is obtained from Toffoli-Fredkin Code using the desired expression of
the gate/circuit. Then it is decomposed into controlled V and V + gate. It is a com-
position of 2× 2 and 1× 1 gate of the reversible gate/circuit. The Quantum cost is
the sum of the number of 2×2 and 1×1 gates present in the decomposed structure.
It is then applied with integrated qubit optimization to remove the redundant gates
in the decomposed V and V +. The process is repeated until further optimization is
not possible. The complete process flow graph is shown in Figure 1.

The quantum cost of some of the configurations of the V and V + structure is
one as shown in Table 1. So, in the controlled V and V + structure, wherever these
combinations are present it would be considered as one quantum cost. For example,

Fault Tolerance in Reversible Logic-Quantum Cost 1103

Figure 1. Process flow chart of quantum cost reduction of reversible circuit

Figure 2. a) C-NOT gates, b) C-NOT gate using controlled V gate

The two controlled-V gates are used instead of single NOT gate. In Figure 2 a)
the quantum cost is 3, by rearranging or restructuring using controlled-V gates
the quantum cost is reduced to 2. By using this method the quantum cost of any
circuit can be reduced. Also, the controlled V and V + structures have a reduction
in quantum cost in reversible gates and circuits according to the integrated qubit
rules [10] are shown in Table 1.

Also, when either two consecutive NOT gate or consecutive controlled V and
V + gate is present the quantum cost will be zero [3], as shown in Figure 3.

Figure 3. Equivalent circuit having quantum cost as zero

1104 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

Table 1. Quantum structure of reversible gates with quantum cost = 1 [10]

Using the above two principles the quantum cost of the KMD Gates [14, 15] are
optimized as follows.

3.1 KMD Gate1

It is a 3 × 3 gate. In quantum circuit A, B, C represents the input and P, Q, R
represents the output. Here in Figure 4 c), there is 9 number of 2 × 2 gates, but
according to the constraints [10, 17], the two qubits can be combined. Therefore the
quantum cost is 8.

3.2 KMD Gate2

It is a 3 × 3 gate. In quantum circuit A, B, C represents the input and P, Q, R
represents the output. Here in Figure 5 c), there is 10 number of 2 × 2 gates, but

Fault Tolerance in Reversible Logic-Quantum Cost 1105

Figure 4. a) Block diagram, b) quantum equivalent, c) V and V + gate realization

according to the constraints [10, 17], the two qubits can be combined. Therefore the
quantum cost is 9.

Figure 5. a) Block diagram, b) quantum equivalent, c) V and V + gate realization

3.3 KMD Gate3

It is a 4× 4 gate. In the quantum circuit, A, B, C, D represents the input and P, Q,
R, S represents the output. Here in Figure 6 c), there is 9 number of 2×2 gates, but
according to the constraints [10, 17], the two qubits can be combined. Therefore the
quantum cost is 8.

3.4 KMD Gate4

It is a 5 × 5 gate. In the quantum circuit, A, B, C, D, E represents the input and
P, Q, R, S, T represents the output. Here in Figure 7 b) there is 24 number of 2× 2
gates, but according to rules the two constructive CNOT gate has quantum cost as
zero (i.e., canceled). Therefore the quantum cost is 20.

The controlled V and V + have a reduction in the quantum cost of reversible
gates according to the integrated qubit rules stated in Table 1 using the concepts
of [10, 17]. The minimized quantum cost is shown in Table 2. In KMD Gates the
quantum cost is reduced in the range of 10 % to 16.67 %.

1106 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

Figure 6. a) Block diagram, b) quantum equivalent, c) V and V + gate realization

Figure 7. a) Block diagram, b) V and V + gate realization

4 FAULT TOLERANCE IN KMD GATES AND CIRCUITS

A reversible gate is said to be parity preserving when the result of XOR opera-
tion on input vectors Iv = I1, I2, . . . , In is the same as that of the XOR opera-
tion on output vectors Ov = O1, O2, . . . , On, as represented in Equation (3) [7].

Table 2. Comparison between quantum equivalent circuit and controlled-V and V +

Fault Tolerance in Reversible Logic-Quantum Cost 1107

I1 ⊕ I2 ⊕ · · · ⊕ In−1 ⊕ In = O1 ⊕O2 ⊕ · · · ⊕On−1 ⊕On. (3)

The test vectors of the circuit or gate are identified using fault table analysis.
Using this table, an input capable of covering the maximum number of fault is
chosen as the Test vector. A set of test vectors which covers all the fault is known
as Test set [13]. This test set is used to check the functionality of the reversible gate
whether it is good or faulty. Fault coverage and fault tolerance are estimated for
the reversible gate/circuit as shown in Figure 8.

Figure 8. Fault tolerance analysis flow chart

The fault table of the KMD Gate1 is shown in Table 3. The ‘*’ indicates the
possible faults that can be detected using the corresponding input test vector. The
minimum test vectors to detect all the possible faults are identified from the fault
table.

Table 3. Fault table of KMD Gate1

1108 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

4.1 Minimum Test Vectors

000 – a/1b/0c/0d/1e/0f/1g/1h/0i/0j/1k/1l/1,

011 – a/1b/1c/0d/0e/0f/1g/0h/0i/0j/0k/0l/0,

111 – a/0b/1c/1d/0e/1f/0g/0h/1i/1j/0k/1l/1.

Here, the three minimum test vectors cover the entire fault in the KMD Gate1.
Thus, to detect the fault in the gate;

Test Vector = 000, 011, 111.

4.2 Fault Coverage

After removing redundancy from the above minimum test vectors, the possible num-
ber of faults can be detected:

000 – A/1B/0C/0P/1Q/1R/1 = 6/12,

011 – Q/0R/0 = 2/12,

111 – A/0B/1C/1P/0 = 4/12.

Table 4. Fault coverage table of KMD Gate1

Hence, all the faults in the KMD Gate1 can be found using the three Test vectors
(000, 011 and 111) and their cumulative fault coverage is 100 % as from Table 4.
The average fault tolerance of KMD Gate1 is 50 % as shown in Table 5.

Fault Tolerance in Reversible Logic-Quantum Cost 1109

Table 5. Fault tolerant table of KMD Gate1

Similarly, it is possible to found out Test vector, fault coverage and fault toler-
ance for the KMD Gate2, KMD Gate3 and KMD Gate4 as in Table 6. From the
table, it is observed that the fault coverage is 100 % for all the KMD Gates and
average fault tolerance is approximately 50 %.

The complete processing steps for all the four KMD Gates are made available
at online repository (https://github.com/kamarajvlsi/Reversible_Logic).

Table 6. Fault analysis of KMD Gates

5 QUANTUM COST OPTIMIZATION IN ARITHMETIC CIRCUITS

5.1 Arithmetic and Logic Unit

The arithmetic and logic unit constructed in the [14] using the KMD Gates per-
forms 18 distinct operations. The architecture consists of logic gates, adders and
multiplexers, as shown in Figure 9. It has a minimum number of control signals
and the integrated architecture performs both arithmetic and logical operations in
the same structure. In that, two approaches were followed; one is constructing ALU

https://github.com/kamarajvlsi/Reversible_Logic

1110 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

using KMD Gates alone and another is using KMD, Toffoli and Fredkin Gates. In
both approaches, parity preservation is maintained.

Figure 9. ALU architecture [14]

The overall quantum cost of the integrated ALU is reduced, after applying In-
tegrated qubit optimization as shown in Table 7.

Table 7. Quantum cost of ALU before and after controlled-V and V + gate realization

5.2 Floating Point Division Unit

The floating-point (FP) operation is a time consuming one in the processor. In [15]
a floating-point division unit is proposed with IEEE 754 single-precision format
using a non-restoring algorithm. The n-bit FP division consists of the multiplexer,
parallel adder and registers. The multi-function register performs, serial-in, parallel
in and hold operations as shown in Figure 10.

The percentage of improvement in quantum cost after V and V + structure op-
timization is shown in Tables 8 and 9.

Fault Tolerance in Reversible Logic-Quantum Cost 1111

Figure 10. Fault-tolerant floating-point division unit [15]

Table 8. Quantum cost of the division unit before and after controlled-V and V + gate
realization (for n-bit)

1112 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

Table 9. Quantum cost of the division unit (1–256 bits)

5.3 Vedic Multiplier (VM)

The 2× 2 Vedic multiplier can be constructed using 4 AND gates and 2 half adder,
as shown in Figure 11. A 2-bit multiplication of two numbers A.B could be carried
out in the following manner, as shown in Equation (4). The logical expression of
the 2 × 2 Vedic multiplier final product is

P0 = A0.B0,

P1 = (A1.B0) ⊕ (A0.B1),

P2 = (A0.A1.B0.B1) ⊕ (A1.B1),

P3 = A0.A1.B0.B1. (4)

The AND gates are constructed using the KMD Gate2 and half adder structure
is constructed using KMD Gate3. By fixing C = 0 and D = B in the KMD Gate3
the half adder circuit is obtained and the results are taken from P and R in the
output side [16].

The quantum cost of the 4× 4 Vedic multiplier as shown in Figure 11 is 84 and
the constant input is 48. Here the output other than P0, P1, . . . , P7 is considered
as the garbage output [16]. In order to reduce the quantum cost of the circuit, the
controlled V and V+ gate realization is performed as shown in Table 10. After
applying integrated qubit principles, the quantum cost of the 4-bit VM is reduced
by 10 % and it has an impact on the total cost reduction as 7.4 %.

The complete process and methodology, functional descriptions, simulations in
QCA environment and analysis procedure are made available in online repository
(https://github.com/kamarajvlsi/Reversible_Logic).

6 CONCLUSION

Reversible logic based computing systems consume ideally zero power dissipation.
At nano-metric circuit design, the fault detection and fault-tolerant are significant

https://github.com/kamarajvlsi/Reversible_Logic

Fault Tolerance in Reversible Logic-Quantum Cost 1113

Figure 11. The hardware structure of 4-bit Vedic multiplier [16]

parameters. In the proposed methodology, it has been focused on fault tolerance,
fault coverage and fault detection in the reversible KMD Gates. Our analysis pro-
vides evidence that minimum test vectors cover the 100 % fault coverage and 50 %
fault tolerance in KMD Gates. Further, comparisons between the quantum equiv-
alent and controlled V -V + gate for all the types of KMD Gates are shown. The

Table 10. Quantum cost of the Vedic multiplier before and after controlled V and V +

gate realization

1114 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

controlled V-V+ has been applied to ALU, division and multiplier. It has been ob-
served that the quantum cost has reduced 8–13 %, 9.8 % and 10 % in ALU, floating
point division and Vedic multiplier, respectively. It has a good impact on the total
cost reduction of 4.5–5.8 % and 7.4 % in ALU and Vedic multiplier. So, we conclude
that the quantum cost of the reversible logic circuit can be reduced by applying
controlled V –V + on them. Further, this work can be incorporated in a processor
design in a nano-metric level.

REFERENCES

[1] Landauer, R.: Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development, Vol. 5, 1961, No. 3, pp. 183–191, doi:
10.1147/rd.53.0183.

[2] Bennett, C.H.: Logical Reversibility of Computation. IBM Journal of Research
and Development, Vol. 17, 1973, No. 6, pp. 525–532, doi: 10.1147/rd.176.0525.

[3] Misra, N.K.—Sen, B.—Wairya, S.—Bhoi, B.: Testable Novel Parity-Preserving
Reversible Gate and Low-Cost Quantum Decoder Design in 1D Molecular-QCA. Jour-
nal of Circuits, Systems, and Computers, Vol. 26, 2017, No. 9, Art. No. 1750145,
pp. 1–26, doi: 10.1142/s0218126617501456.

[4] Gaur, H.M.—Singh, A.K.—Ghanekar, U.: Offline Testing of Reversible Logic
Circuits: An Analysis. Integration. VLSI Journal, Vol. 62, 2018, pp. 50–67, doi:
10.1016/j.vlsi.2018.01.004.

[5] Al Mamun, M. S.—Mondal, P.K.—Prodhan, U.K.: A Novel Approach for
Designing Online Testable Reversible Circuits. International Journal of Engineering
Research and Development, Vol. 5, 2012, No. 2, pp. 39–44.

[6] Gaur, H.M.—Singh, A.K.—Ghanekar, U.: A Review on Online Testability
for Reversible Logic. Procedia Computer Science, Vol. 70, 2015, pp. 384–391, doi:
10.1016/j.procs.2015.10.041.

[7] Valinataj, M.—Mirshekar, M.—Jazayeri, H.: Novel Low-Cost and Fault-
Tolerant Reversible Logic Adders. Computers and Electrical Engineering, Vol. 53,
2016, pp. 56–72, doi: 10.1016/j.compeleceng.2016.06.008.

[8] Sasamal, T.N.—Mohan, A.—Singh, A.K.: Efficient Design of Reversible Logic
ALU Using Coplanar Quantum-Dot Cellular Automata. Journal of Circuits, Sys-
tems, and Computers, Vol. 27, 2018, No. 2, Art. No. 1850021, pp. 1–19, doi:
10.1142/S0218126618500214.

[9] Wille, R.—Chattopadhyay, A.—Drechsler, R.: From Reversible Logic to
Quantum Circuits: Logic Design for an Emerging Technology. 2016 IEEE Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), 2016, pp. 268–274, doi: 10.1109/samos.2016.7818357.

[10] Lewandowski, M.—Ranganathan, N.—Morrison, M.: Behavioral Model
of Integrated Qubit Gates for Quantum Reversible Logic Design. IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), 2013, pp. 194–199, doi:
10.1109/isvlsi.2013.6654658.

https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1142/s0218126617501456
https://doi.org/10.1016/j.vlsi.2018.01.004
https://doi.org/10.1016/j.procs.2015.10.041
https://doi.org/10.1016/j.compeleceng.2016.06.008
https://doi.org/10.1142/S0218126618500214
https://doi.org/10.1109/samos.2016.7818357
https://doi.org/10.1109/isvlsi.2013.6654658

Fault Tolerance in Reversible Logic-Quantum Cost 1115

[11] Misra, N.K.—Wairya, S.—Sen, B.: Design of Conservative, Reversible Se-
quential Logic for Cost Efficient Emerging Nano Circuits with Enhanced Testa-
bility. Ain Shams Engineering Journal, Vol. 9, 2018, No. 4, pp. 2027–2037, doi:
10.1016/j.asej.2017.02.005.

[12] Thilak, K.R.—Gayathri, S.: Fault Coverage Analysis Using Fault Model and
Functional Testing for DPM Reduction. IEEE International Conference on Emerg-
ing Research in Electronics, Computer Science and Technology (ICERECT), 2015,
pp. 76–81, doi: 10.1109/erect.2015.7498991.

[13] Babu, H.M.H.—Mia, M. S.: Design of a Compact Reversible Fault Toler-
ant Division Circuit. Microelectronics Journal, Vol. 51, 2016, pp. 15–29, doi:
10.1016/j.mejo.2016.01.003.

[14] Kamaraj, A.—Marichamy, P.: Design of Integrated Reversible Fault-Tolerant
Arithmetic and Logic Unit. Microprocessors and Microsystems, Vol. 69, 2019,
pp. 16–23, doi: 10.1016/j.micpro.2019.05.009.

[15] Kamaraj, A.—Marichamy, P.: Design of Fault-Tolerant Reversible Floating
Point Division. Journal of Microelectronics, Electronic Components and Materials,
Vol. 48, 2018, No. 3, pp. 161–171.

[16] Kamaraj, A.—Marichamy, P.: Design of Fault-Tolerant Reversible Vedic Multi-
plier in Quantum Cellular Automata. Journal of the National Science Foundation of
Sri Lanka, Vol. 47, 2020, No. 4, pp. 371–382, doi: 10.4038/jnsfsr.v47i4.9677.

[17] Thapliyal, H.—Ranganathan, N.: Design of Reversible Sequential Circuits Op-
timizing Quantum Cost, Delay, and Garbage Outputs. ACM Journal on Emerging
Technologies in Computer Systems, Vol. 6, 2010, No. 4, Art. No. 14, pp. 1–31, doi:
10.1145/1877745.1877748.

https://doi.org/10.1016/j.asej.2017.02.005
https://doi.org/10.1109/erect.2015.7498991
https://doi.org/10.1016/j.mejo.2016.01.003
https://doi.org/10.1016/j.micpro.2019.05.009
https://doi.org/10.4038/jnsfsr.v47i4.9677
https://doi.org/10.1145/1877745.1877748

1116 K. Arunachalam, M. Perumalsamy, K.K. Ponnusamy

Kamaraj Arunachalam received his B.E. degree in electron-
ics and communication engineering from Bharathiar University,
Coimbatore, Tamil Nadu, India in 2003. He completed his post
graduation from Anna University, Chennai in the field of VLSI
Design in 2006. Currently he is in the position of Assistant
Professor in the Department of Electronics and Communication
Engineering, Mepco Schlenk Engineering College, Sivakasi, In-
dia. He has completed his Ph.D. at Anna University, Chennai.
His research interests include digital circuits and logic design, re-
versible logic and synthesis and advanced computing techniques.

During his 14 years of teaching career, he has published 21 papers in international journals
and 23 papers in national and international conferences. He has filed 2 patents and was
granted with 1 copyright. He is a member of IETE and ISTE.

Marichamy Perumalsamy obtained his B.E. degree from
PSG College of Technology, Coimbatore, M.E. degree from the
College of Engineering, Guindy (CEG) – Anna University, Chen-
nai in 1993, and his Ph.D. from the Indian Institute of Technol-
ogy, Kharagpur, India in 2002. He has more than 34 years of
service in teaching. He worked in the National Engineering Col-
lege, Kovilpatti, India, Nizwa College of Technology, Sultanate
of Oman. Currently he is working as Dean in P.S.R. Engineer-
ing College, Sivakasi, Tamilnadu, India. He has published more
than 28 papers in various international journals. His areas of

interest include cellular mobile communication and green networks. He has a Life Time
Membership in ISTE.

Kaviyashri K. Ponnusamy was awarded her undergraduate
degree in the field of electronics and communication engineering
from Kamaraj College of Engineering and Technology, Virudhu-
nagar, Tamil Nadu, India in 2017, and a post graduate degree
from Mepco Schlenk Engineering College, Sivakasi in the field
of VLSI design in 2019. She is working as Assistant Professor
in the Department of Electronics and Communication Engineer-
ing, M.A.M. College of Engineering, Trichy, India. Her research
interests include digital circuits and logic design. She has pub-
lished 2 papers in national and international conferences and

1 paper in an international journal.

