
Computing and Informatics, Vol. 39, 2020, 617–621, doi: 10.31577/cai 2020 4 617

PREFACE TO THE SPECIAL ISSUE
ON PROVIDING COMPUTING SOLUTIONS
FOR EXASCALE CHALLENGES

Dieter Kranzlmüller

Munich Network Management Team (MNM-Team)
Ludwig-Maximilians-Universität
Munich, Germany
&
Leibniz Supercomputing Centre (LRZ)
Bavarian Academy of Sciences and Humanities
Garching, Germany
e-mail: kranzlm@mnm-team.org

Maximilian Höb

Munich Network Management Team (MNM-Team)
Ludwig-Maximilians-Universität
Munich, Germany
e-mail: hoeb@mnm-team.org

Today, as we expect the appearance of the first supercomputer with exascale ca-
pabilities, some tough questions remain to be solved. A main challenge of the
upcoming exascale era will appear around the ability to process extremely large
datasets of several peta- and exabytes effectively and efficiently. This needs to be
addressed with new management and architectural approaches, focusing on modu-
lar, integrated and light-weight solutions, which enable end-users across all scientific
domains to utilize these future supercomputing systems. This special issue gives an
overview on approaches focusing of these challenges and exacting applications, re-
quiring exascale-ready compute and data services.

In their paper Bobák et al. [2] present an exascale reference architecture as
a layered framework to overcome exascale challenges, developed within the PRO-
CESS project1. Their modular and service-oriented approach enables low-overhead

1 www.process-project.eu

www.process-project.eu

618 D. Kranzlmüller, M. Höb

usage of the underlying HPC, cloud or accelerated-based infrastructure, completely
abstracted to end-users and simplifying the configuration, deployment and data-
handling process.

Data management will be a major part of this work – the building block of
any successful ecosystems. All services about processing multiple sources of dis-
tributed data must be smart, since more and more data sets are geographically
spread across also various administrative domains. Cushing et al. [5] propose a scal-
able, programmable and easy to deploy data infrastructure supporting data-intensive
applications.

Together with data management, future systems need to implement efficient
deployment and computing services. Meizner et al. [10] detail their scalable com-
puting platform, enabling complex workflow deployments on heterogeneous systems.
Their evaluation includes data intensive applications, showing the ability of the ap-
proach. One of those applications is based on observation data from the LOFAR
radio telescope. Madougou et al. [9] describe their simple point-and-click-reduction
of the complex workflow to compute calibrated sky maps out of the LOFAR obser-
vations. This workflow relies on efficient data movement and makes use of the data
infrastructure presented above.

Based on extremely large digital images of tumor tissue, histopathology evolved
to a computational and storage demanding application. Graziani et al. [7] present
a modular, containerized pipeline for the detection of tumor regions in digital spec-
imens of breast lymph nodes with deep learning models. The three independent
layers of this pipeline were evaluated on different computing resources accessible
through the services described in [5] and [10].

Having a much deeper dive into HPC systems, supercomputers face not only
efficiency challenges across different systems, but also inside single clusters. Par-
allel applications demand efficient distributed memory access to achieve large-scale
performance. To decrease the complexity of implementing scientific applications,
Gschwandtner et al. [8] propose a programming interface with the ease of shared
memory programming models.

As Data analysis gains more importance as more data is available while to-
day’s systems are capable of processing more data. This can be seen not only on
HPC clusters, but also on cloud resources. To assist end-users building scientific,
cloud-based data analytic pipelines, Baranowski et al. [3] present the Cookery frame-
work.

Bystrov et al. [4] investigate the performance of haemodynamic flow computa-
tions on a cloud infrastructure, focusing on the parallel performance analysis, energy
consumption and virtualization overhead of the software service based on the AN-
SYS Fluent platform. Such evaluations are crucial to guarantee an efficient overall
system usage and enable other domains to execute their applications also on such
large-scale systems.

One such application is the calculation of the Levenshtein distance between two
strings like the DNA, which was known as a sequential-only application. To make
use of the ecosystem presented before, it requires a scalable parallel implementation.

Preface – Providing Computing Solutions for Exascale Challenges 619

Sadiq and Yousaf [6] introduce a distributed, parallel algorithm to calculate the
Levenshtein distance.

Combining all these software and middleware oriented approaches, it is manda-
tory to consider the actual hardware resources available. Berberich et al. [1] provide
an overview on the European HPC landscape and introduce a pan-European HPC
portal collecting all information and facilitate access to the portfolio of services
offered across Europe.

The collection of papers presented in this special issue provides some valuable
solutions for using the future exascale supercomputers effectively and efficiently.
However, at the same time, many aspects are useful on smaller systems as well and
demonstrate the utilization of today’s technology, such as for example containers,
for applications in science and research. It is clear that the exascale threshold is
a merely artificial construct. The true challenge stems from the ever increasing com-
putational performance, and the necessity of scaling applications efficiently. Under
this perspective, the tools and applications presented here demonstrate what is pos-
sible with today’s technology, and even more, and the mindset needed to utilize the
supercomputing systems tomorrow.

Acknowledgment

We would like to thank Dr. Ladislav Hluchy, the Editor-in-Chief of Computing and
Informatics (CAI) for his timely advice on this special issue. A big thanks also
goes to Viera Jablonska, the CAI journal editorial assistant for her great support in
publication of the special issue. This work has only be possible through the support
of the European Commission within the EU project PROCESS, under the grant
agreement No. 777533.

REFERENCES

[1] Berberich, F.—Liebmann, J.—Teodor, V.—Nominé, J.-P.—Pineda, O.—
Segers, P.: European HPC Landscape. Computing and Informatics, Vol. 39, 2020,
No. 4, pp. 622–643, doi: 10.31577/cai 2020 4 622.

[2] Bobák, M.—Hluchý, L.—Habala, O.—Tran, V.—Cushing, R.—
Valkering, O.—Belloum, A.—Graziani, M.—Müller, H.—
Madougou, S.—Maassen, J.: Reference Exascale Architecture (Extended
Version). Computing and Informatics, Vol. 39, 2020, No. 4, pp. 644–677, doi:
10.31577/cai 2020 4 644.

[3] Baranowski, M.—Belloum, A.—Cushing, R.—Valkering, O.: Cookery:
A Framework for Creating Data Processing Pipeline Using Online Services. Comput-
ing and Informatics, Vol. 39, 2020, No. 4, pp. 678–694, doi: 10.31577/cai 2020 4 678.

[4] Bystrov, O.—Kačeniauskas, A.—Pacevič, R.—Starikovičius, V.—
Maknickas, A.—Stupak, E.—Igumenov, A.: Performance Evaluation of Parallel

https://doi.org/10.31577/cai_2020_4_622
https://doi.org/10.31577/cai_2020_4_644
https://doi.org/10.31577/cai_2020_4_678

620 D. Kranzlmüller, M. Höb

Haemodynamic Computations on Heterogeneous Clouds. Computing and Informat-
ics, Vol. 39, 2020, No. 4, pp. 695–723, doi: 10.31577/cai 2020 4 695.

[5] Cushing, R.—Valkering, O.—Belloum, A.—Souley, M.—Bobak, M.—
Habala, O.—Tran, V.—Graziani, M.—Müller, H.: Process Data Infrastruc-
ture and Data Services. Computing and Informatics, Vol. 39, 2020, No. 4, pp. 724–756,
doi: 10.31577/cai 2020 4 724.

[6] Sadiq, M. U.—Yousaf, M. M.: Distributed Algorithm for Parallel Edit Distance
Computation. Computing and Informatics, Vol. 39, 2020, No. 4, pp. 757–779, doi:
10.31577/cai 2020 4 757.

[7] Graziani, M.—Eggel, I.—Deligand, F.—Bobák, M.—Andrearczyk, V.—
Müller, H.: Breast Histopathology with High-Performance Computing and Deep
Learning. Computing and Informatics, Vol. 39, 2020, No. 4, pp. 780–807, doi:
10.31577/cai 2020 4 780.

[8] Gschwandtner, P.—Jordan, H.—Thoman, P.—Fahringer, T.: AllScale
API. Computing and Informatics, Vol. 39, 2020, No. 4, pp. 808–837, doi:
10.31577/cai 2020 4 808.

[9] Madougou, S.—Spreeuw, H.—Maassen, J.: Processing Radio Astronomical
Data Using the PROCESS Software Ecosystem. Computing and Informatics, Vol. 39,
2020, No. 4, pp. 838–859, doi: 10.31577/cai 2020 4 838.

[10] Meizner, J.—Nowakowski, P.—Kapala, J.—Wojtowicz, P.—Bubak, M.—
Tran, V.—Bobák, M.—Höb, M.: Towards Exascale Computing Architecture and
Its Prototype: Services and Infrastructure. Computing and Informatics, Vol. 39, 2020,
No. 4, pp. 860–880, doi: 10.31577/cai 2020 4 860.

https://doi.org/10.31577/cai_2020_4_695
https://doi.org/10.31577/cai_2020_4_724
https://doi.org/10.31577/cai_2020_4_757
https://doi.org/10.31577/cai_2020_4_780
https://doi.org/10.31577/cai_2020_4_808
https://doi.org/10.31577/cai_2020_4_838
https://doi.org/10.31577/cai_2020_4_860

Preface – Providing Computing Solutions for Exascale Challenges 621

Dieter Kranzlm�uller is Chairman of the Board of Directors
at Leibniz Supercomputing Centre of the Bavarian Academy of
Sciences and Humanities. In 2008 he joined the Board of Direc-
tors at LRZ and became Full Professor of computer science at
the Chair for Communication Systems and System Program-
ming at Ludwig-Maximilians-Universität Munich (LMU). His
scientific focus lies in e-infrastructures, including network and
IT management, grid and cloud computing, as well as in high
performance computing, virtual reality and visualisation. He
graduated from the Johannes Kepler University Linz, Austria.

Having spent a number of years working in the IT industry, he returned to academia to
work at the universities of Reading and TU Dresden, and to act as deputy director of the
EGEE project at CERN in Geneva. He is truly internationally oriented and is a member
of many European and international organizations in the field of IT.

Maximilian H�ob is Associate Scientist in the Munich Net-
work Management Team at Ludwig-Maximilians-University Mu-
nich and Co-Coordinator of the PROCESS project, in which he
also contributes to two Use Cases in the area of data manage-
ment and agricultural simulation based on the Copernicus data
sets. His research focuses on large scale system architectures and
performance-aware containerization of HPC applications.

Computing and Informatics, Vol. 39, 2020, 622–643, doi: 10.31577/cai 2020 4 622

EUROPEAN HPC LANDSCAPE

Florian Berberich

PRACE aisbl and Jülich Supercomputing Center
Forschungszetrum Jülich GmbH
52428 Jülich, Germany
e-mail: f.berberich@fz-juelich.de

Janina Liebmann, Veronica Teodor

Jülich Supercomputing Center
Forschungszetrum Jülich GmbH
52428 Jülich, Germany
e-mail: {j.liebmann, v.teodor}@fz-juelich.de

Jean-Philippe Nominé

ETP4HPC and Commissariat à l’Énergie Atomique et aux Énergies Alternatives
DAM, DIF
91297 Arpajon, France
e-mail: Jean-Philippe.NOMINE@cea.fr

Oriol Pineda

PRACE aisbl and Barcelona Supercomputing Center
Carrer de Jordi Girona, 29, 31
08034 Barcelona, Spain
e-mail: oriol.pineda@bsc.es

Philippe Segers

PRACE aisbl and Grand Équipement National de Calcul Intensif
6 bis rue Auguste Vitu
75015 Paris, France
e-mail: philippe.segers@genci.fr

European HPC Landscape 623

Abstract. This paper provides an overview on the European HPC landscape sup-
ported by a survey, designed by the PRACE-5IP project, accessing more than 50 of
the most influential stakeholders of HPC in Europe. It focuses at Tier-0 systems on
the European level providing high-end computing and data analysis resources. The
different actors are presented and their provided services are analyzed in order to
identify overlaps and gaps, complementarity and opportunities for collaborations.
A new pan-European HPC portal is proposed in order to get all information on one
place and facilitate access to the portfolio of services offered by the European HPC
communities.

Keywords: European Commission, EC, European, high performance computing,
HPC, ecosystem, exascale, services, platform, EuroHPC, PRACE, ETP4HPC, CoE

Mathematics Subject Classification 2010: 68-00

1 INTRODUCTION

The European Commission (EC) recognised the need for an EU-level policy in High-
Performance Computing (HPC) to optimise the national and European investments
in the field and to coordinate the entire HPC ecosystem. To this end, on 15 Febru-
ary 2012 the EC strategy on HPC was published in the communication “High Per-
formance Computing: Europe’s place in a Global Race” [1]. Acknowledging the
importance of HPC for society, science and industry the communication announced
a joint European effort in order to increase the investments in HPC and promoting
European HPC technology. This strategy is taking shape, with the creation of the
EuroHPC Joint Undertaking (JU) [2].

As no single member state alone has the financial and human resources to de-
velop a sustainable exascale1 HPC ecosystem, within the European Data Initiative
(EDI) subpart of the Digital Single Market (DSM) strategy [3], the EC has step
by step increased the investment in HPC significantly [4], supporting with various
projects and initiatives the three HPC pillars, as shown in Figure 1: Technologies,
Infrastructure and Applications with a strong pan-European coordination. More-
over, a strong HPC ecosystem has been identified as mandatory to leverage the full
potential of data in Europe, along with the need for providing more open data,
coping with interoperability issues and fragmentation of access to data and digital
services.

Back in time, first computers were supercomputers, by definition, the most pow-
erful systems of their time, when computers were huge machines, dedicated to solve
a specific industrial or academic problem that could not be addressed without them,

1 Exascale: HPC systems at the scale of 1018 floating-point operation per second. US,
Japan and China investments for exascale are of the order of one billion e each, to acquire
these systems near 2020.

624 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

Pan European
Coordination

Widening usage and skills,
International cooperation,

Federation of
supercomputing services

Technologies
European Exascale

development

Infrastructure
Best HPC for
Science and
Industry

Applications
Excellence in HPC

applications

Figure 1. HPC ecosystem pillars

from the first Turing machine to the systems used for the Manhattan project [7]
(Oak Ridge National Laboratory [9], one of the leading pre-exascale computing cen-
tre being a direct spin-off of this early development of supercomputing). In these
early years, the three pillars worked together in each single project, designing the
technology and the infrastructure to support it at the same time. The same peo-
ple worked at the application to solve their problem with the system designed for
that. It is only in a second phase that the industry diverged, with one branch that
kept addressing the biggest problems of its time, on dedicated systems with specific
technologies, a niche but also a strategic market. The second branch, mainstream,
evolved to solve problems for a wider market, from industry to office applications,
and eventually became the mass market that it is now.

With the rise of the information technology industry, computers becoming a huge
mass market, HPC industry partially moved from specific technologies, especially on
processor, to general purpose processors, when the number of parallel cores increased
and it became more efficient to assemble many general purpose processors than
fewer specific ones. Of course, other parts of a supercomputer still needed specific
components, with higher performance than mass market components, such as the
interconnect, because a supercomputer is much more than just many processors.
But from that point on, HPC was not anymore the biggest driver of processor and
chips technology, even if the processors used for supercomputers were still the high-
end of technology providers, the portfolio of products was not anymore designed for
them.

European HPC Landscape 625

Nowadays, there is a clear distinction between Infrastructure, Application and
Technology providers. But for the last miles of the exascale run, with the small lever-
age HPC could have on the whole information technology market, the co-design is
more important than ever. A coordination is needed, especially at the European
level missing the same intrinsic coordination as seen in the USA, China, Japan or
other key players in the exascale league. Some specific coordination, research and
innovation actions are needed at the European level to articulate the interaction of
these actors in the most efficient way. Coordination will be also of the upper im-
portance for future quantum computing technologies, which will be closely related
to HPC but who will need the development of a new paradigm of the algorithm to
solve problems in a way that takes advantage of the specificity of quantum theory,
with the strength and weakness of their transposition to the computing industry.
Efficiency will ultimately derive from the coordination of these three pillars. This
article analyses the current situation, presents the three pillars of the HPC ecosys-
tem, their services, with their overlaps and gaps, complementarity and opportunity
for collaborations, and proposes a high-level service architecture.

2 THREE PILLARS OF THE HPC ECOSYSTEM

The European HPC Strategy is based on three pillars: Technologies, Infrastructure
and Applications. Each organisation, project or initiative is linked to at least one
of those pillars. These three pillars have the objective to serve the European HPC
user community through a user-driven approach, with the relevant European HPC
communities and user groups adequately represented in each of the pillars. The
individual actors are described briefly in this section.

EuroHPC Joint Undertaking (JU) [2] was founded on 28 October 2018. Eu-
roHPC JU will permit the EU and participating countries to coordinate their efforts
and share resources with the objective of deploying in Europe a world-class super-
computing infrastructure and a competitive innovation ecosystem in supercomput-
ing technologies, applications and skills. A good overview on the European exascale
projects, (FETHPC and Centre of Excellence (CoE)) is provided by the European
High-Performance Computing Handbook 2018 with an update 2019 [6].

This schematic view of a complex ecosystem of stakeholders should not be seen
as something static, with homogeneous pillars and some formally established re-
lation between them, but more like a dynamic “n-body” interactions, with con-
stantly evolving needs and offers of these pillars. Actors are constantly interacting
between these pillars, with some of them playing active roles on more than one pil-
lar. To provide one short example, Technologies are evaluated through benchmarks
of Applications, representative of typical workload of HPC Infrastructure, and co-
design is part of the HPC culture with overlaps and complementarity among the
pillars.

In addition to the three classical pillars also the convergence of simulation and
big data workloads – due to the deluge of data coming from next generation scien-

626 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

tific instruments (satellites, (radio)telescopes, accelerators, microscopes, sequencers,
etc.) – are becoming more and more important. The same development is being
monitored in the case of Internet of Things (IoT), social media and large scale simu-
lations (massive 3D simulations, multi-scale and multi-physics coupled simulations,
ensemble/optimisation/scenario studies, uncertainties quantification, etc.).

A HPC infrastructure tailored to treat these large amount of data will be also
indispensable for machine learning (ML) or artificial intelligence (AI). Data are in-
volved in all three pillars. The Technologies pillar will develop systems designed
especially for I/O or AI, the Infrastructure pillar will provide access to systems
suitable for AI, and in the Applications pillar ML and AI algorithms will be imple-
mented in codes [19, 26, 28, 30, 31]. Quantum computing, still at an early stage of
industrial development, could also be represented by such three pillars, with promis-
ing development of technologies providing prototypes of bigger scale at a rapid pace.
The work on the application side to reframe problems in a way that can be han-
dled by quantum system is a very new field, in addition to the simulation of future
quantum computer (with their specific “speed” of calculation but also their spe-
cific “error rate” related to the statistical nature of a quantum computation result).
And lastly, the usefulness of such new technologies will be highly dependent on their
implementation into existing or new infrastructure to be able to provide access to
end-users.

2.1 Infrastructure

2.1.1 Partnership for Advanced Computing in Europe (PRACE)

The development of the European HPC ecosystem was initiated and pursued by
the Partnership for Advanced Computing in Europe (PRACE) and its 26 partners
in the past ten years. PRACE is supported by the PRACE member states and
through the EU by a series of implementation phase (IP) projects [24]. Over the
last decade, PRACE and its partners have given national HPC ecosystems a com-
mon European umbrella which is recognised as an ESFRI Landmark since 2016.
PRACE was founded in 2010 as the European HPC infrastructure, with an invest-
ment above 400 million Euros from four hosting members for its first phase (ES,
DE, FR, IT), with the objective of developing a persistent and pan-European HPC
facility. In the second funding period of PRACE five European countries (with
the addition of CH) committed to host leading-edge supercomputers on the highest
performance level in Europe. Subsequent investments from all PRACE members
(from 26 countries) and contributions from the EC have allowed the infrastructure
to provide a continuous set of services, based on a peer-review process assessment
of scientific excellence, awarding more than 25 billion core hours more than 700
research projects led by investigators from 40 different countries, from academia
and industry. This large computing capacity has been complemented by high-level
quality training and strong user support programmes (including support to SMEs),
in order to foster the development of a solid HPC community in Europe.

European HPC Landscape 627

PRACE, with a governance structure that includes the Scientific Steering Com-
mittee (SSC) and the Industrial Advisory Committee (IAC), underlined the urgent
need for more compute cycles, and huge demands in terms of memory/storage ca-
pacities and performance in the recent Scientific Case 2018-2026 [11]. Also the need
for new approaches, i.e. scaling via ensembles, deep learning, and statistical models
are expressed.

In relation to EuroHPC JU, PRACE published its Position Paper: PRACE in
the EuroHPC Era [10] which defines its current and proposed future services for the
European HPC ecosystem. The following services encompass the PRACE offer:

1. Peer Review Access to HPC systems,

2. Support for industry (including SMEs),

3. Enabling of HPC applications,

4. Services for universities and user communities,

5. HPC training,

6. Promotion of HPC careers-gender balance,

7. Operational HPC services,

8. HPC procurement and prototyping support,

9. Dissemination and documentation for HPC services.

Many of the PRACE services (1–5) are also reflected in the different fields (see
Figure 2) we defined for classification of the European HPC Landscape:

1. HPC Policy,

2. HPC Technology,

3. HPC Computing Services,

4. HPC Training,

5. HPC Application Enabling and User Support,

6. HPC Research.

Only HPC policy and HPC technology are not directly included in the PRACE
position paper, because PRACE is not providing HPC policy and direct HPC tech-
nology, even if it provides some evaluation of technologies and guidance through
a series of white papers and best practice guides [22, 23], illustrating the strong
interaction already in place between those pillars.

2.1.2 GÉANT

GÉANT develops, delivers and promotes advanced network and associated e-infra-
structure services for research and education, supporting open collaboration and
knowledge-sharing amongst its members and the wider research and education com-
munity. The GÉANT Association BV [8] is owned by its core membership of the

628 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

European National Research and Education Network (NREN) organisations. Since
coordinating pan-European research and education (R & E) networking on behalf of
Europe’s NRENs the GÉANT’s role has evolved to that of a true services innova-
tor, incorporating network planning, procurement, building and operation, as well as
coordination of research programmes and development of innovative services. Work-
ing with NREN partners and the EC, the high-speed networks that they build and
operate connect NRENs to each other and to the rest of the world, enabling scien-
tists, academics, innovators and students to collaborate, regardless of their location.
HPC current and future new exascale usages highly depend on the integration of
core HPC services with data and network services.

2.2 Applications

The importance of a strong HPC applications ecosystem has been periodically
highlighted by the PRACE SSC [11] and PRACE User Forum. This has been
acknowledged by the EC [1] through the large funding allocated to this pillar. Ap-
plications are the core intellectual properties of many communities, a strong as-
set for European research, both in academic and industrial fields where Europe
has often acquired a leading position worldwide. To coordinate the needed ef-
fort, Centres of Excellence in computing applications (CoEs) have been designed
to address specific needs of communities (weather and climate, material science,
medicine, etc.) or transverse needs (industry, algorithm, etc.). After a first selec-
tion of CoEs in 2015, the European Commission reviewed the communities sup-
ported by awarding a second generation of nine CoEs in 2018 [13], then an ad-
ditional extra group of four in 2019 [32]. These cover a wide collection of scien-
tific domains, including bioinformatics, biomedical sciences, climate sciences, en-
ergy and engineering, materials, social sciences and solid earth, as well as the
transversal topic of computing performance, each of them covered by one CoE.
The second generation of CoEs builds on the success of the first selection, and will
highly contribute to strengthen Europe’s leadership in HPC applications through
their associated services, such as: developing, optimising (if needed re-designing)
and scaling HPC application codes towards peta- and exascale computing; test-
ing, validating and maintaining codes and managing the associated data; qual-
ity assurance; co-design of hardware, software and codes; consultancy to industry
and SMEs; research in HPC applications; and addressing the skills gap in com-
putational science. The FocusCoE project [33] supports the CoEs to more effec-
tively fulfil their role within the ecosystem and ensure that extreme scale appli-
cations result in tangible benefits for addressing scientific, industrial or societal
challenges.

This strong contribution to the applications pillar is further enhanced by the
highly specific application developments of FETHPC projects and EPI (European
Processor Initiative) [8], and with code-enabling activities of PRACE-IP projects
and PRACE High Level Application Support Teams (HLSTs) [25]. Beside of that,
new usage domains for HPC are developing, such as Humanities or Artificial In-

European HPC Landscape 629

telligence, with different needs and constraints, requiring innovative ways to access
resources.

2.3 Technology

The ETP4HPC Association [14] was created in 2012, to be the voice of the HPC
suppliers and promote HPC technologies development, and in particular to prepare
input and R & D recommendations to the EC in this area. In 2014 a “contrac-
tual Public Private Partnership” in HPC (cPPP) was signed between the EC and
ETP4HPC association [13]. A significant fraction of the funding provisioned un-
der this cPPP was assigned to a series of calls on HPC technology R & D [14]: the
so-called FETHPC calls (part of the “Future and Emerging Technologies” branch
of the successive H2020 Work Programmes). Between 2014 and 2018, 32 FETHPC
projects were selected with a total funding of approximately 175 Me. Meant to
develop HPC systems hardware and software building blocks in the areas of HPC
node architecture, system and middleware, programming environment and tools, the
FETHPC projects already produced a number of innovations and prototypes [15, 16],
co-developed between technology suppliers (large companies or SMEs), research or-
ganisations and end users, sometimes leveraging other innovations dedicated to the
wider market of data centres as a whole.

The ETP4HPC Strategic Research Agenda [13], updated every 2 years since
2013, has been the main source of advice and influence regarding the FETHPC calls
contents. ETP4HPC also actively participates in the overall EU HPC ecosystem
development. ETP4HPC members are technology suppliers and research organisa-
tions.

In addition, in 2017–2018 the EC also implemented an important new call to
establish a Framework Partnership Agreement on European low-power micropro-
cessor technologies to establish a stable and structured partnership between the EC
and committed institutions and organisations. The EPI consortium was selected to
co-design, develop and bring to the market a European low-power microprocessor,
one of the core elements needed for the development of the European supercom-
puters with exascale capacity [18, 8]. The co-design aspect of EPI is a key factor
to provide a next generation of processors that fully harvest the benefits of energy
efficiency for relevant European applications.

Two years after its establishment, the EuroHPC JU [2] is now being implemented
and ramping up. EuroHPC JU is taking over from the HPC cPPP to continue the
HPC R & D funding towards exascale, from 2019 onward, more strongly coordinating
the follow-ups of FETHPC and EPI projects. Members of the EuroHPC JU are the
EC, 32 EU member and associated states, and the private members ETP4HPC
and the BDVA (Big Data Value Association [30]). ETP4HPC is represented in the
EuroHPC Research and Innovation Advisory Group (RIAG).

The outcomes of the cPPP phase – 2014–2018 – have been documented by the
annual Progress Monitoring Reports (PMRs [27]). The 2018 PMR (published in
the end of summer 2018) summarises this 4-year period of joint support of HPC

630 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

technologies and applications by H2020. In particular positive effects are observed
regarding job creation (both in research and HPC supply industry in Europe), intel-
lectual property creation, and private companies extra investments – which leverage
the public funding effort in initial R & D in order to productise solutions and bring
them to the market. A number of European SMEs in particular have been clearly
benefitting from H2020 funding and correlatively augmented their staff, business
and turnover.

Since the EC funded CoEs as well as FETHPC projects, it also supported the
evolution and improvement of many HPC applications, in addition to many inno-
vative hardware and software building blocks for HPC solutions. This helped CoEs
contribute to evolutions of community codes (in terms of features and/or portability
and/or performance improvement and scaling).

These efforts are now smoothly continued in the EuroHPC Research & Innova-
tion Pillar from 2019 onward.

2.4 Pan-European Coordination

EuroHPC JU already set up two R & I work plans, for 2019 and 2020, the first two
years of EuroHPC functioning in the context of Horizon 2020 framework programme.
We describe the related calls for projects below. Since EuroHPC R & I Pillar en-
compasses all aspects not related to Infrastructure procurements and operations, we
can find in these work plans a mix of calls that are related to either Technologies or
Applications ecosystem pillars: The EuroHPC JU Workplan 2019 [34] encompassed
two sets of calls for proposals:

1. Towards Extreme Scale Technologies and Applications which has two facets
(a technologies call with support for hardware and software building blocks, and
two calls relating to applications).

2. Innovating and Widening the HPC use and skills base has two calls on the users
and skills we relate to the Applications pillar.

Regarding the “Towards Extreme Scale Technologies and Applications” call [35]:

• Nine selected projects addressing the topic 1, extreme scale computing and data
driven technologies, are expected to address performance and efficiency of future
exascale systems.

• Five selected proposals address the call topic 2, HPC and data centric environ-
ments and application platforms, and will focus on the development of energy-
efficient HPC software. The projects are expected to demonstrate significant
use cases and pilot systems.

• Five selected proposals address the call topic 3, industrial software codes for
extreme scale computing environments and applications, and are expected to
further develop, adapt and optimise HPC software for applications in the Euro-
pean industry.

European HPC Landscape 631

With funding from the EuroHPC JU, EuroCC and CASTIEL projects will build
a European network of 33 national HPC competence centres. The two projects will
bridge the existing HPC skills gaps while promoting cooperation and the implemen-
tation of best practices across Europe. Each of the 33 national competence centres,
which will be part of the EuroCC network, will act locally to map available HPC
competencies and identify existing knowledge gaps [38].

The EuroHPC JU work plan 2020 has three main dimensions:

1. Two so-called pilot calls which are clearly related to Technologies pillar, with
a system-wide vision, typically meant to integrate building blocks (previously
developed or developed in the course of the new projects).

2. An EPI follow-up call, clearly a Technologies pillar aspect, compute hardware
oriented.

3. A future call on Education and Training, on the side of Applications pillar
addressing widening usage and skills.

EuroHPC work plan 2020 then planned different calls, two of them now being
closed [37]:

1. Advanced pilots towards the European supercomputers,

2. A pilot on quantum simulator.

More generally, EuroHPC private members (ETP4HPC and BDVA) are sus-
taining the development and updates of their research agendas, together with the
HPC wider ecosystem and leading stakeholders and representative entities such as
PRACE, CoE representatives, AIOTI [28], and also with international collabora-
tions (such as BDEC [30]). Taking into account not only Big Data but also AI and
IoT trends in advanced computing is a necessity. The point is to develop HPC both
towards extreme scale (exascale and beyond) and also to extend its use and insert it
in a digital continuum from edge to cloud and bigger centralised but interconnected
HPC centres. ETP4HPC and BDVA help the communities express recommenda-
tions and priorities towards EuroHPC Advisory Groups, and it is Governing Board
which eventually decides on R & I funding.

3 ANALYSIS OF THE HPC LANDSCAPE

3.1 Summit

An HPC Ecosystem Summit was organised by PRACE on 14 May 2019 during the
EuroHPC Summit Week 2019 in Poznan, Poland. The summit was attended by more
than 50 representatives from the European Commission, PRACE, GÉANT, CoE
and FETHPC projects, EXDCI and ETP4HPC, among others. The objective of this
summit was to present current activities and discuss future roles and responsibilities
of the key European HPC stakeholders within the landscape. The outcome of this

632 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

summit was expected to furnish a vision of the architecture and integration of the
HPC services with European Open Science Cloud (EOSC) [29], EDI, data services,
etc. for the communities. The discussion during this summit allowed to clarify the
results of a preparatory survey and to define further stratification actions.

3.2 Survey

To prepare for the HPC Ecosystem Summit, a dedicated survey with 10 questions
was sent to 81 contacts (coordinators of CoEs, FETHPC projects, EuroHPC JU,
ETP4HPC, BDVA, GÉANT, FocusCoE, EPI, EOSC, EUDAT, OpenAire, eInfra-
Central, EXDCI). For bigger projects or umbrella organisations only the coordinator
of the project or organisation was contacted. The contacts were asked in more de-
tail to indicate which of the three pillars they are part of, if they would be able
to attend the HPC Ecosystem Summit in order to take part of the discussions, to
indicate their specific domain and include a list of their services. Moreover, they
were asked to indicate possible overlap and collaboration with other initiatives or
organisations. The main part of the survey was the self-evaluation of the current
actors concerning their role in the European HPC landscape provided through the
answers to the following matrix, as shown in Figure 2.The HPC EcosystemMatrix

Developer Coordinator Provider User/Beneficiary Enabler

HPC Policy
HPC Technology
(industry, hard &

soft)
HPC Computing

Services
HPC Training

HPC Application
Enabling and User

Support
HPC Research

• Developer: institution in charge of preparing materials for
the development activity

• Coordinator: institution in charge of collecting materials from
developers and of coordinating their implementation

• Provider: institution in charge of providing the services to
execute the activity

• User/beneficiary: institution that benefits from the activity
• Enabler: institution that enables the activity by providing the

necessary services that are not part of the core of the
activity

Figure 2. Self evaluation matrix of the role in the European HPC landscape

3.3 Services

3.3.1 HPC Policy

EuroHPC JU is developing the policy in terms of funding and the main guidelines.
The Research and Innovation Advisory Group (RIAG) and the Infrastructure Ad-
visory Group (INFRAG) are the information gathering bodies in the EuroHPC JU.
This will include inputs from PRACE, ETP4HPC and from CoE and FETHPC
projects, as shown in Figure 3 a).

European HPC Landscape 633

3.3.2 HPC Technology

The provision of HPC technology should be driven by the FETHPC projects and the
European Processor Initiative (EPI) with the goal to develop European technology
for exascale computing. Surprisingly, only some FETHPC projects see themselves
as HPC technology provider. However, 80 % of the FETHPC projects declared to
develop HPC technology. Some CoEs also indicated a contribution to the HPC
technology, since there are some of them with a co-design approach, see Figure 3 b).
A detailed analysis has been done by the EXDCI-2 project [5].

0

20

40

60

80

100
e‐infra Central

EPI

ETP4HPC

EXDCI

FETHPC

PRACECoE

EOSC

GEANT

EUDAT

HBP

HPC Policy

a)

0

20

40

60

80

100
CoE

e‐infra Central

EPI

ETP4HPC

EXDCI

PRACEEOSC

GEANT

FETHPC

EUDAT

HBP

HPC Technology

b)

Figure 3. Provision of a) HPC Policy and b) HPC Technology in % of positive responses
in the respective stakeholder groups

3.3.3 HPC Computing Service

The provision of HPC Computing Service refers to making available HPC resources
for testing, scaling and production. PRACE via its members is the major European
HPC resources provider, as shown in Figure 4 a). Additionally, EOSC and Human
Brain Project (HBP) also presented themselves as resource providers. Indeed, EOSC
provides access to existing services that are compliant with EOSC rules, though at
a lower scale compared to PRACE resources. The FENIX [40] federated set of
e-infrastructure services also provides access to HPC resources infrastructure via
the ICEI project (Interactive Computing E-Infrastructure for the Human Brain
Project – HBP), funded by the EC in the context of the Framework Partnership
Agreement of the flagship project HBP. The distinguishing characteristic of this e-
infrastructure is that data repositories and scalable supercomputing systems are in
close proximity and well integrated, providing a generic e-infrastructure for HPC,
driven by its scientific use-cases and usable by other scientific communities, such as
the ones from EOSC, but also future ones such as the one from the Square Kilometer

634 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

Area telescope project SKA [42]. This is also a good example of coordinated action,
using state of the art HPC, storage and network technologies to build an application
layer that helps user to access a portfolio of HPC services in a convenient way.

3.3.4 HPC Training

The results from the survey showed a significant number of contributors to HPC
Training services, including PRACE, HBP, EOSC, CoE and FETHPC projects. In
Figure 4 b) the percentage of the received positive answers is shown. While the
trainings from HBP, EOSC and FETHPC were identified as independent and com-
plementary, a potential overlap was identified between the training offer of PRACE
and that of the CoEs. This had been already identified in previous discussions and
through the FocusCoE coordination action, where a decision was taken to focus
PRACE training on general and cross-disciplinary HPC topics, while CoEs would
focus on topical trainings.

In order to make all training offers well-known, they are collected and will be
made available in a centralised European portal [41]. This will be based on a joint
training database, to be fed with training offers from all national and European
actors; this database will be shared and will include categories to allow searching
for specific trainings.

0

20

40

60

80

100
CoE

e‐infra Central

EPI

ETP4HPC

EXDCi

FETHPCPRACE

EOSC

GEANT

EUDAT

HBP

HPC Computing Services

a)

0

20

40

60

80

100
CoE

e‐infra Central

EPI

ETP4HPC

EXDCI

FETHPCPRACE

EOSC

GEANT

EUDAT

HBP

HPC Training

b)

Figure 4. Provision of a) HPC Computing Service and b) HPC Training in % of positive
responses in the respective stakeholder groups

3.3.5 HPC Application Enabling and User Support

The survey showed again a significant number of actors contributing to HPC Appli-
cation Enabling and User Support activities, as presented in Figure 5 a). After the

European HPC Landscape 635

discussion, it was concluded that this item required further stratification according
to the additional dimensions of support levels and targeted users.

HPC support is classified in four levels depending on the scope of the support
provided, which ranges from short helpdesk support to long-term refactorization
support, including horizontal performance analysis by the POP CoE. While some
overlap could initially be identified in medium-term support (level 2 and level 3) be-
tween the PRACE HLST [25] programme and CoEs, this was discriminated through
their target users.

Similarly to training, the available support catalogue will be collected and made
available in a centralised EU portal managed by PRACE. Further analysis on this
service will be carried out by the PRACE-6IP project.

3.3.6 HPC Research

The survey showed that research in HPC is mainly executed by the actors in the
HPC pillar of applications, that is CoE and FETHPC projects. This would include
also EPI when one considers research in HPC technology. However EPI indicated
HPC Research as Developer and not as Provider.

0

20

40

60

80

100
CoE

e‐infra Central

EPI

ETP4HPC

EXDCI

FETHPCPRACE

EOSC

GEANT

EUDAT

HBP

HPC Support

a)

0

10

20

30

40

50

60
CoE

e‐infra Central

EPI

ETP4HPC

EXDCI

FETHPCPRACE

EOSC

GEANT

EUDAT

HBP

HPC Research

b)

Figure 5. Provision of a) HPC User Support and b) HPC Research in % of positive re-
sponses in the respective stakeholder groups

3.4 Link to Other e-Infrastructures

PRACE is preparing for the use of HPC and data resources by other infrastructures
and e-infrastructures. With the increasing amount of data traditional workflows
will have to be changed in order to cope with the data. This is especially true
for large scale scientific instruments, e.g. CERN or the SKA telescope. In order

636 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

to tackle this aspect, CERN, SKAO, GÉANT and PRACE formed a pioneering
collaboration (officially signed in July 2020 [39]) that works to help realise the full
potential of the coming new generation of HPC technology. During the initial pe-
riod of 18 months, the collaboration is developing a benchmarking test suite and
a series of common pilot “demonstrator” systems such as training, authenticated
workflows, benchmarking and data access. The activity of these demonstrators has
been kicked-off in September 2020 with a joint meeting of all the four leading re-
search organisations.

The European Open Science Cloud (EOSC) has been designed to increase the
value of scientific data assets by making them easily available to a greater number
of researchers, across disciplines (interdisciplinarity) and borders (EU added value),
and to reduce the costs of scientific data management, while ensuring adequate pro-
tection of information/personal data according to applicable EU rules. EOSC is
one of the major actions of the Communication on a “European Cloud Initiative”
of April 2016 [3]. The European Open Science Cloud will offer 1.7 million Euro-
pean researchers and 70 million professionals in science and technology a virtual
environment with open and seamless services for storage, management, analysis and
re-use of research data, across borders and scientific disciplines by federating ex-
isting scientific data infrastructures, today scattered across disciplines and member
states. Part of EOSC’s mission is to join the existing and emerging data infras-
tructures. To be part of EOSC, the infrastructure should comply with the rules
of participation that define the rights, obligations and accountability of its various
actors.

As one of its underlying layers, PRACE is not formally part of the EOSC but is
compliant with main rules of participation, working on a referenced joint service cat-
alogue, enabling users to find and access the HPC resources also in the EOSC. While
new complementary ways to access converged HPC and AI resources in Europe are
foreseen (such as AI4EU [19]) to respond to new usage models, the allocation of
large resources in HPC and also in other fields of science will probably still be based
on a peer-review process assessing scientific excellence, which is not contradictory
with EOSC rules. In addition, it is planned also to integrate EOSC training in the
HPC in Europe portal (see the next section) and make the training offers accessible
also for EOSC and HPC ecosystem.

4 NEXT STAGE – HPC PORTAL

In order to facilitate the access to HPC resources and other linked services, the
conclusions from the analysis of the HPC landscape have been used to shape a new
European HPC services portal. This portal will serve as a central HPC services
database gathering the offers and services of all European HPC actors. The new
HPC in Europe portal will classify the elements collected according to three different
criteria:

• Service nature: HPC Access, Training and Events, Support, Applications, Tech-

European HPC Landscape 637

nology and Documentation.

• Target: Research, Industry (with a dedicated section for SMEs), Skills develop-
ment, HPC Communities and General Public (including stakeholders and policy
makers).

• Maturity level: from basic/beginner to advanced/experienced.

This structure will facilitate the navigation through the entire European HPC
services catalogue and provide a clear access to all of them. The objective of the
portal is to collect and display the first level of information, that is, a short but clear
description of each service and the most relevant constrains (e.g.: dates, eligibility),
in order to guide HPC users to the services that meet their needs. The portal will
also include import and fetching capabilities, in order to feed and fetch the services
from all other HPC European providers. The descriptors and categories of each
service will be agreed with the major stakeholders.

The HPC in Europe portal [41] has been designed to be complementary to the
classification of HPC services and related activities according to different target
audiences (i.e. researchers, students, industry and projects) available in the EXDCI
portal [21]. The difference between both portals is the scope of the services and the
level of information provided. Both portals might be merged in the future. The
details and current status of the portal strategic development is summarised herein:

• The elements within the different service natures have been further categorised
based on the feedback received from the HPC stakeholders during the workshops
organised to this effect. The category tree is being tested with real services
provided by these same stakeholders.

• A number of highlights have been selected to appear on the front page of the
portal to give a direct access to the related services.

• A dedicated Training section will offer a joint catalogue of HPC trainings pro-
vided by all training providers in Europe including PRACE, CoEs, EOSC,
FETHPC projects and HBP, and also national training offers; this will be fur-
ther enhanced with training materials for different user levels and links to other
related training portals worldwide.

• Likewise, all European HPC Application Enabling and User Support services
will also be collected and displayed in a dedicated section, including different
categories for support levels and target users.

• An interactive map will display in a graphical manner all European HPC sys-
tems, CoEs and Competence Centres and training opportunities. This will allow
the users of the portal to find easily the resources and competences needed based
on their location across Europe.

• The portal will incorporate a light and independent branding, not directly re-
lated to any of the HPC stakeholders. All contributors will be equally acknow-
ledged in a dedicated section. These two measures will illustrate the neutral
position of this portal towards the European HPC ecosystem.

638 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

• FocusCoE and CASTIEL recently joined PRACE in making all their services
visible on the HPC in Europe portal while still maintaining the projects identi-
ties.

Figure 6. HPC portal

The portal will be complemented with information related to the three European
HPC pillars of Infrastructure, Applications and Technologies, and further enhanced
with related use cases and other HPC documentation.

The final structure of the portal includes 33 categories to further stratify the
services in the six natures defined, as follows:

European HPC Landscape 639

• HPC access: Access to HPC systems, Cloud computing, Complementary HPC
access, Development and benchmark access, Prototype HPC Access and Euro-
pean HPC systems.

• Training and events: Training events, HPC events, On-demand training offers,
Online training, Training materials, Academic programmes, Mobility and men-
toring.

• Support: High-level HPC support, Domain-specific support, Support to Indus-
try.

• Applications: European Centres of Excellence in HPC, Simulation services, Con-
sulting services, Prototyping services, Benchmarking services.

• Technology: Software developments, Hardware developments, HPC prototyping.

• Documentation: Map of HPC systems, White Papers and BPGs, Use cases
and Success Stories, HPC Media, ETP4HPC, European Processor Initiative,
FETHPC projects results, Artificial Intelligence, Deep Learning, Machine Learn-
ing, Quantum Computing, Quantum Communication Initiative, Cyber Security.

A test version of the portal, including the work design is already available to
facilitate the fine tuning and final improvements before its final release. Figure 6
shows this design and structure.

5 CONCLUSIONS

After the analysis of the services of the different actors in the European HPC ecosys-
tem, it is clear that further coordination is needed at European level to leverage the
strong, but scattered, skills of European players, in order to compete with united
effort from USA, China or Japan on the race to exascale. To that end, the following
high-level service architecture is proposed:

• European HPC technologies will be developed by the FETHPC projects and
EPI. CoEs and PRACE will collaborate by providing user requirements and co-
designing the new technologies. In addition, PRACE will support in providing
access to the FETHPC prototypes and give the related infrastructure feedback
while CoEs and other users will provide end-user feedback.

• Access to HPC and AI resources of EuroHPC JU will be provided mainly by
PRACE through peer-review process for Grand-Challenge level of computation
or through EOSC portal for smaller computations, while network connectivity
will be provided by GÉANT. Other, more specific computing services, such as
Interactive Computing, scalable computing or virtual machine and data services,
along with authentication and authorisation services will be provided through
a federated way using FENIX.

• The wide offer of training in HPC will be provided by many actors, where
PRACE will focus on the general and cross-disciplinary training, leaving topical
training to the specialised communities and CoEs.

640 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

• Application enabling will be provided by PRACE as the first contact point, along
with high-level support to implementation through PRACE HLSTs. Long-term
support and specific support for codes of general interest will be provided by
the relevant CoEs. The POP CoE will provide transverse performance analysis
services.

This high-level provision of HPC services by PRACE, GÉANT, CoEs, EPI and
FETHPC projects will be complemented by the pool of national HPC services,
to be integrated within this architecture. The new HPC in Europe portal will
collect in this way the complete catalogue of HPC services throughout Europe, with
a special emphasis in computing, training and support services. Following a user-
driven approach, this will significantly increase the awareness for European HPC
resources and services, and strongly facilitate their access by all European audiences.
The important role of the EuroHPC JU will be acknowledged in the portal as well.

The Infrastructure Advisory Group (INFRAG) and Research and Innovation
Advisory Group (RIAG), two advisory groups of the Industrial and Scientific Board
of EuroHPC JU received the mission to work on the European HPC landscape. This
overview and analysis will be helpful in the discussion and definition.

Acknowlegment

This work was supported by the PRACE-5IP and PRACE-6IP projects co-funded by
the EUs Horizon 2020 research and innovation programme under grant agreements
EINFRA-730913 and 823767.

REFERENCES

[1] High Performance Computing: Europe’s Place in a Global Race. COM(2012), 45 Fi-
nal.

[2] Council Regulation (EU) 2018/1488. Available at: https://eurohpc-ju.europa.

eu/.

[3] European Cloud Initiative – Building a Competitive Data and Knowledge Economy
in Europe. COM(2016), 178 Final.

[4] Proposal for a Council Regulation on Establishing the European High Performance
Computing Joint Undertaking. COM(2020), 569 final, 18.9.2020.

[5] EXDCI-2 Deliverable D2.4: Report on Coordination of the Technology Research
Action in Europe. May 2020.

[6] European High-Performance Computing Handbook 2018. ETP4HPC and EXDCI,
2018. ISBN 9789082169492. Update available at: https://www.etp4hpc.eu/

pujades/files/ETP4HPC_Handbook_2019_web.pdf.

[7] Kelly, C. C.—Rhodes, R.: Manhattan Project: The Birth of the Atomic Bomb
in the Words of Its Creators, Eyewitnesses, and Historians. Black Dog & Leventhal,
2009.

https://eurohpc-ju.europa.eu/
https://eurohpc-ju.europa.eu/
https://www.etp4hpc.eu/pujades/files/ETP4HPC_Handbook_2019_web.pdf
https://www.etp4hpc.eu/pujades/files/ETP4HPC_Handbook_2019_web.pdf

European HPC Landscape 641

[8] https://www.european-processor-initiative.eu/.

[9] https://www.ornl.gov/.

[10] PRACE Position Paper: PRACE in the EuroHPC Era. 2019, available at: http:

//wwws.prace-ri.eu/about/positionpapers.

[11] The Scientific Case for Computing in Europe 2018–2026. PRACE Scientific Steer-
ing Committee, 2018. ISBN: 9789082169492. Available at: https://prace-ri.eu/

about/scientific-case/.

[12] https://www.geant.org.

[13] https://ec.europa.eu/digital-single-market/en/high-performance-

computing-contractual-public-private-partnership-hpc-cppp.

[14] https://www.etp4hpc.eu and https://www.etp4hpc.eu/cppp.html.

[15] https://www.etp4hpc.eu/news/156-2017-handbook-of-european-hpc-projects

.html.

[16] https://www.etp4hpc.eu/pujades/files/ETP4HPC_Annueal-Report-2018_web.

pdf.

[17] https://www.etp4hpc.eu/sra.htm.

[18] https://ec.europa.eu/digital-single-market/en/news/european-processor-

initiative-consortium-develop-europes-microprocessors-future-

supercomputers.

[19] https://www.ai4eu.eu/.

[20] http://www.hpc-portal.eu.

[21] https://exdci.eu/about-exdci/exdci-at-a-glance.

[22] https://www.prace-ri.eu/best-practice-guides/.

[23] https://www.prace-ri.eu/white-papers/.

[24] https://www.prace-ri.eu/public-deliverables.

[25] PRACE High Level Support Teams. Available at: http://www.prace-ri.eu/HLST.

[26] https://www.prace-ri.eu/IMG/pdf/D5.2_5ip.pdf.

[27] https://www.etp4hpc.eu/cppp-monitoring.html.

[28] https://aioti.eu.

[29] https://www.eosc-portal.eu/.

[30] http://www.bdva.eu/.

[31] https://www.exascale.org/bdec/.

[32] https://exdci.eu/collaboration/coe.

[33] https://www.focus-coe.eu/.

[34] https://eurohpc-ju.europa.eu/documents/.

[35] https://ec.europa.eu/digital-single-market/en/news/19-proposals-

selected-develop-world-class-supercomputing-ecosystem-europe.

[36] https://eurohpc-ju.europa.eu/closed_calls.html.

[37] https://eurohpc-ju.europa.eu/participate.html.

[38] https://ec.europa.eu/digital-single-market/en/news/eurocc-and-

castiel-two-new-projects-boost-european-hpc-knowledge-and-

opportunities.

https://www.european-processor-initiative.eu/
https://www.ornl.gov/
http://wwws.prace-ri.eu/about/positionpapers
http://wwws.prace-ri.eu/about/positionpapers
https://prace-ri.eu/about/scientific-case/
https://prace-ri.eu/about/scientific-case/
https://www.geant.org
https://ec.europa.eu/digital-single-market/en/high-performance-computing-contractual-public-private-partnership-hpc-cppp
https://ec.europa.eu/digital-single-market/en/high-performance-computing-contractual-public-private-partnership-hpc-cppp
https://www.etp4hpc.eu
https://www.etp4hpc.eu/cppp.html
https://www.etp4hpc.eu/news/156-2017-handbook-of-european-hpc-projects.html
https://www.etp4hpc.eu/news/156-2017-handbook-of-european-hpc-projects.html
https://www.etp4hpc.eu/pujades/files/ETP4HPC_Annueal-Report-2018_web.pdf
https://www.etp4hpc.eu/pujades/files/ETP4HPC_Annueal-Report-2018_web.pdf
https://www.etp4hpc.eu/sra.htm
https://ec.europa.eu/digital-single-market/en/news/european-processor-initiative-consortium-develop-europes-microprocessors-future-supercomputers
https://ec.europa.eu/digital-single-market/en/news/european-processor-initiative-consortium-develop-europes-microprocessors-future-supercomputers
https://ec.europa.eu/digital-single-market/en/news/european-processor-initiative-consortium-develop-europes-microprocessors-future-supercomputers
https://www.ai4eu.eu/
http://www.hpc-portal.eu
https://exdci.eu/about-exdci/exdci-at-a-glance
https://www.prace-ri.eu/best-practice-guides/
https://www.prace-ri.eu/white-papers/
https://www.prace-ri.eu/public-deliverables
http://www.prace-ri.eu/HLST
https://www.prace-ri.eu/IMG/pdf/D5.2_5ip.pdf
https://www.etp4hpc.eu/cppp-monitoring.html
https://aioti.eu
https://www.eosc-portal.eu/
http://www.bdva.eu/
https://www.exascale.org/bdec/
https://exdci.eu/collaboration/coe
https://www.focus-coe.eu/
https://eurohpc-ju.europa.eu/documents/
https://ec.europa.eu/digital-single-market/en/news/19-proposals-selected-develop-world-class-supercomputing-ecosystem-europe
https://ec.europa.eu/digital-single-market/en/news/19-proposals-selected-develop-world-class-supercomputing-ecosystem-europe
https://eurohpc-ju.europa.eu/closed_calls.html
https://eurohpc-ju.europa.eu/participate.html
https://ec.europa.eu/digital-single-market/en/news/eurocc-and-castiel-two-new-projects-boost-european-hpc-knowledge-and-opportunities
https://ec.europa.eu/digital-single-market/en/news/eurocc-and-castiel-two-new-projects-boost-european-hpc-knowledge-and-opportunities
https://ec.europa.eu/digital-single-market/en/news/eurocc-and-castiel-two-new-projects-boost-european-hpc-knowledge-and-opportunities

642 F. Berberich, J. Liebmann, V. Teodor, J.-P. Nominé, O. Pineda, P. Segers

[39] https://prace-ri.eu/cern-skao-geant-and-prace-to-collaborate-on-high-

performance-computing/.

[40] https://fenix-ri.eu/.

[41] https://www.hpc-portal.eu.

[42] https://www.skatelescope.org.

Florian Berberich works for the PRACE Project Management Office at Jülich Super-
computing Centre (JSC) since 2008. He obtained his Ph.D. in physics at the Technical
University of Dresden in 2002. He had worked as Post-Doc at the European Synchrotron
Radiation Facility, France before he became the assistant to the Board of Directors at
Forschungszentrum Jülich in 2004. Currently he is the project manager of the PRACE-
6IP project, PRACE Council Secretary and a member of the Board of Directors of PRACE
aisbl.

Janina Liebmann works for the PRACE Project Management Office as Project Assistant
for the PRACE-6IP project at JSC since 2017. She finished her education as an industrial
business management assistant at the EWE TEL GmbH, Germany, in June 2011. In 2016
she worked as a secretary at the Foundry Institute, RWTH Aachen.

Veronica Teodor is working for the PRACE Project Management Office at JSC, since
2012. She finished her law studies at the University of Transylvania Brasov, Romania in
June 2004 and multilingual communications at the University of Applied Science Cologne,
Germany in January 2009. Currently, she is the task leader for the organisational support
for PRACE 2 development in the PRACE-6IP project.

Jean-Philippe Nomin�e joined CEA HPC division in 1992, where he held different man-
aging positions in HPC software development. He has been involved in PRACE since its
preparation in 2007 and has coordinated CEA efforts in all PRACE PP/IP projects. He
was a member of PRACE aisbl Board of Directors in 2010–2011. He was then ETP4HPC
Office Manager between 2012 and 2019 and now he is a member of ETP4HPC Steering
Board, and of EuroHPC Research and Innovation Advisory Group (RIAG). At CEA he
manages HPC strategic collaborations (EU and international). He graduated from Ecole
Polytechnique (engineer degree) and obtained his Ph.D. from Université Pierre-et-Marie-
Curie (Paris, 1991).

https://prace-ri.eu/cern-skao-geant-and-prace-to-collaborate-on-high-performance-computing/
https://prace-ri.eu/cern-skao-geant-and-prace-to-collaborate-on-high-performance-computing/
https://fenix-ri.eu/
https://www.hpc-portal.eu
https://www.skatelescope.org

European HPC Landscape 643

Oriol Pineda is Director of Peer Review in PRACE, the Partnership for Advanced Com-
puting in Europe, and Senior Project Manager at the Barcelona Supercomputing Center
in Spain. He is responsible for monitoring the review process to access PRACE HPC
resources and for the management of the impact assessment methodology of PRACE. He
has an academic background, with a degree in organic chemistry, an M.Sc. in experimen-
tal chemistry and a Ph.D. in computational chemistry, from the University of Barcelona,
Spain.

Philippe Segers is overseeing GENCI’s contributions to the PRACE Implementation
Projects, he is a member of the Board of Director of PRACE aisbl, Management Board of
PRACE-nIP and PPI4HPC, and Technical Board of PRACE-nIP. He holds an Executive
MBA from NEOMA Business School and has an academic background in numerical mod-
eling of theoretical physics (University Paul Sabatier, Toulouse and University of Quebec
at Montreal – UQAM). He began his career at the EC Joint Research Centre (Ispra, Italy)
in 1999, moved to the scientific software industry and spent ten years in Program Man-
agement of R & D for EC and NATO projects. He was leading PRACE-3IP work-package
on Pre-Commercial Procurement (PCP), he is a co-leader of PRACE-nIP work-package
on the organisation of infrastructure and stakeholder management. He was represent-
ing PRACE within EOSCpilot project, and he is leading the GENCI contribution to the
Connecting Europe Facilities (CEF) project AQMO on air quality.

Computing and Informatics, Vol. 39, 2020, 644–677, doi: 10.31577/cai 2020 4 644

REFERENCE EXASCALE ARCHITECTURE
(EXTENDED VERSION)

Martin Bobák, Ladislav Hluchý, Ondrej Habala, Viet Tran

Institute of Informatics, Slovak Academy of Sciences
Dúbravská cesta 9, 845 07 Bratislava, Slovakia
e-mail: {martin.bobak, ladislav.hluchy, ondrej.habala,

viet.tran}@savba.sk

Reginald Cushing, Onno Valkering

Institute of Informatics, University of Amsterdam
Amsterdam, Netherlands
e-mail: {r.s.cushing, o.a.b.valkering}@uva.nl

Adam Belloum

Institute of Informatics, University of Amsterdam
Amsterdam, Netherlands
&
Netherlands eScience Center
Science Park 140, 1098 XG Amsterdam, The Netherlands
e-mail: a.s.z.belloum@uva.nl

Mara Graziani, Henning Müller

University of Applied Sciences of Western Switzerland
HES-SO Valais, 3960 Sierre, Switzerland
&
Department of Computer Science, University of Geneva
1227 Carouge, Switzerland
e-mail: {mara.graziani, henning.mueller}@hevs.ch

Reference Exascale Architecture 645

Souley Madougou, Jason Maassen

Netherlands eScience Center
Science Park 140, 1098 XG Amsterdam, The Netherlands
e-mail: {s.madougou, j.maassen}@esciencecenter.nl

Abstract. While political commitments for building exascale systems have been
made, turning these systems into platforms for a wide range of exascale applica-
tions faces several technical, organisational and skills-related challenges. The key
technical challenges are related to the availability of data. While the first exas-
cale machines are likely to be built within a single site, the input data is in many
cases impossible to store within a single site. Alongside handling of extreme-large
amount of data, the exascale system has to process data from different sources,
support accelerated computing, handle high volume of requests per day, minimize
the size of data flows, and be extensible in terms of continuously increasing data as
well as an increase in parallel requests being sent. These technical challenges are
addressed by the general reference exascale architecture. It is divided into three
main blocks: virtualization layer, distributed virtual file system, and manager of
computing resources. Its main property is modularity which is achieved by con-
tainerization at two levels: 1) application containers – containerization of scientific
workflows, 2) micro-infrastructure – containerization of extreme-large data service-
oriented infrastructure. The paper also presents an instantiation of the reference
architecture – the architecture of the PROCESS project (PROviding Computing so-
lutions for ExaScale ChallengeS) and discusses its relation to the reference exascale
architecture. The PROCESS architecture has been used as an exascale platform
within various exascale pilot applications. This paper also presents performance
modelling of exascale platform with its validation1.

Keywords: Exascale, architecture, validation

1 INTRODUCTION

New scientific instruments (e.g. distributed radio telescopes such as LOw-Frequency
ARray – LOFAR, Square Kilometre Array – SKA, space telescopes such as Coperni-
cus sentinels, etc.) are producing data at an accelerating pace. LOFAR observations
are stored in the long term archive (LTA) which is distributed over Amsterdam,
Jülich and Poznan. It currently contains around 30 PB of data and grows with 5
to 7 PB/year. SKA represents an even bigger challenge. It is expected that a raw

1 This is the extended version of our paper about the reference exascale architecture [3].

646 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

data will grow by zettabytes/year which will produce 130 to 300 PB/year of corre-
lated data. Copernicus sentinels also present an exascale challenge. They produce
approximately 7.5 PB of raw data each month.

Another significant amount of data is generated by branches that are digitized.
A typical example is medical science. The final report of the High Level Expert
Group on Scientific Data [15] describes it as follows: “In 2010, about 2.5 petabytes –
more than a million, billion data units – are stored away each year for mammograms
in the US alone. World-wide, some estimate, medical images of all kinds will soon
amount to 30 % of all data storage.”

With the rapid growth of data [9, 8] it is often required to migrate data to
a remote computation location [1]. Often the data structures are very complex
and are stored in a (geographically) distributed infrastructure. Those features are
so significant, that new approaches and methods need to be investigated. This
paper presents an architectural blueprint that allows the whole data and com-
pute infrastructure to draw maximal benefits from the emerging exascale capaci-
ties.

The main aim of this paper is to describe the reference architecture for exas-
cale systems which starts from the gathering of requirements to its application in
real world use cases. In the context of our work and of this paper, an exascale
system is one that uses exabytes of data or exaflops of computational power. The
design of the reference architecture is driven by the requirements analysis of the
various use cases which come from diverse scientific communities as well as from
industry. Through the generalisation of them, the reference architecture is pro-
posed.

This paper has the following structure:

• Section 2 represents the requirements analysis of the various exascale-related use
cases.

• Section 3 presents the reference exascale architecture.

• Section 4 describes the updated technology-based architecture of the PROCESS
Project.

Extended version: New exascale aspects were investigated more deeply. The
improvements focused on data transfer which was identified as the main bottleneck
of the PROCESS platform prototype. The problem is addressed by a dedicated
set of nodes – data transfer nodes. The second significant update is dedicated
to the optimization of computing resources management. The second prototype
of the PROCESS platform supports both cloud and HPC resources through dedi-
cated managers Cloudify for cloud resources and Rimrock for HPC resources. Last
but not least, Cloudify is successfully integrated with the European Open Science
Cloud.

Meanwhile, the performance modelling and PROCESS platform validation were
finished. The performance model assumes that typical exascale applications can be

Reference Exascale Architecture 647

modelled as pipelines consisting of the input data stage-in, processing and (result)
data stage-out steps. However, for workflows comprising several dynamically con-
figured and deployed components, the set of performance components need to be
able to analyse the execution in a more fine-grained manner.

The extended version has the following new sections:

• Section 5 presents the performance model.

• Section 6 describes experiments on the PROCESS platform prototype.

2 MOTIVATION

There are many research communities reaching the exascale threshold. This section
investigates requirements coming from the following communities2:

1. medical science,

2. astronomy, and

3. ancillary pricing [6].

The requirements coming from the communities can be divided into two groups:

1. computational requirements, and

2. accessing and storing of data sets (exceeding petabytes).

The two requirements categories are not completely isolated. Contrariwise, both
of them are interlaced which also creates new additional requirements. One of
them is distributed and/or parallel processing of data which is the consequence
of data amount generated by various simulations, and observations conducted by
the above mentioned exascale research communities coming from distributed data
sources and/or laboratories.

2.1 Exascale Learning on Medical Image Data

The medical use case focuses on automated cancer diagnostics and treatment plan-
ning. The aim is to study cancer detection, localisation and stage classification.
Cancer diagnostics is based on the automatic analysis of a biopsy or surgical tissue
specimens, which are captured by a high resolution scanner and stored in a multi-
resolution pyramid structure. The size of the data set is huge (up to PBs), since
it also includes tissue that is not relevant for cancer diagnosis (e.g. background,
stroma, healthy tissue, etc.).

The key components of this use case are focused on pattern recognition, sta-
tistical modelling and deep learning. Thus the core requirement is to support per-
forming dense linear algebra on distributed-memory HPC systems. Multiple GPU

2 They are part of the PROCESS project, http://process-project.eu/

http://process-project.eu/

648 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

computation libraries should be used to merge multiple CUDA kernels. Further-
more, top-level development of the deep models should be performed using the most
common machine learning and deep learning frameworks.

To process a huge amount of data (PBs and more), training needs to be dis-
tributed across different computing centres what requires automated detection of
the optimal model parameters, and efficient scheduling and monitoring of processes
to the available resources. The requirements analysis pointed out the need for con-
tainerization of the whole approach.

The typical requirement coming from this kind of data processing tasks is huge
amount of computing power [7, 11]. Extremely large datasets might be difficult to
download [14], and hospitals might require a high level of confidentiality. A gener-
alised solution, the “Evaluation as a Service” (EaaS) could be viewed as a “clean
slate” approach to deal with very large datasets, especially ones that require so-
phisticated access control e.g. due to privacy issues. In EaaS the data remains in
a central infrastructure and does not need to be moved.

Data acquired in conjunction with hospitals needs to be pseudonymised, thus
retaining a level of detail in the replaced data that should allow tracking back of the
data to its original state. In this way the ethical constraints related to the usage of
patient data will also be addressed.

2.2 LOFAR Use Case

Low Frequency Array (LOFAR) is a state-of-the-art radio telescope capable of
wide field imaging at low frequencies. It has been ingesting data into a long-term
archive (the LOFAR LTA) since 2012 and its volume is now expanding at a rate
of approximately 5–7 PB/year. Its current volume is about 28 PB. This consists
mostly of “Measurement Sets”, i.e. visibilities – correlated signals from LOFAR
stations.

The core requirement is the provision of a mechanism to run containerized work-
flows, thereby improving the portability and easy of use. Analysing the massive vol-
umes of data stored in the archive is an acute problem. The environment for selecting
the data and workflows has to be user-friendly, and it has to support launching the
workflows, monitoring the results and downloading outputs. The whole workflow
needs to be containerized by Docker or Singularity containers as workflow steps to
allow each step to use different analysis tools and dependences.

The platform must have a mechanism to run the workflows on suitable process-
ing hardware. While some parts of the workflow may run in parallel on relatively
simple compute nodes (24 cores, 8 GB memory, 100 GB scratch storage), other parts
currently run sequentially on a fat node with significant memory (256 GB or more,
3 TB scratch storage). The data management system has to be capable of efficiently
transporting the Measurement Sets from the archive locations in Amsterdam, Jülich
and Poznan to the processing locations.

The capability to horizontally scale to a significant number of compute resources
to run a large number of (independent) workflows at the same time is important.

Reference Exascale Architecture 649

Since processing the entire archive for a single science case already requires a signifi-
cant amount of core hours O(47 M), handling multiple science cases simultaneously
will require up to exascale resources.

2.3 Ancillary Pricing for Airline Revenue Management

The ancillary pricing use case concentrates on an analysis of current ancillary sales
and hidden sales pattern. This aim is tackled by machine learning approaches (e.g.
random forest and neural networks) for pricing of offered ancillaries.

The core requirement is a platform that is capable of storing the incoming an-
cillary data in a way that allows easy exploitation for airlines. On the one hand,
the platform should provide libraries for machine learning and quick processing for
the model learning, while on the other hand, storing the models in an efficient way
such that several hundred million ancillary pricing requests a day can be answered.
The platform needs to be capable to deal with the large passenger data sets that
airlines generate. It has to be based on a scalable architecture which has to fos-
ter the following features: handle large amount of data, handle data from different
sources, handle a high volume of requests per day, provide quick response times,
and be extensible in terms of continuously increasing data as well as an increase in
parallel requests being sent.

An average airline may handle approximately 100 million passengers per year
(the largest airlines carry up to twice as many passengers), each of whom will buy
on average 5 ancillaries. Each ancillary record can be several kilobytes in size, and
several years of data need to be processed. During processing, the size of the data
is further increased due to the specifics of the used algorithms.

The data do not only need to be stored, but have to provide efficient algo-
rithmic usage which means, on the one hand, the update of the model parameters
within a reasonable timeframe (e.g. within a nightly time slot). On the other hand,
this implies real-time responses with revenue-optimal prices upon customer request.
Tool-stack of the platform has to support Lambda Architecture principles especially
for historical data and further statistical analyses (e.g. applying mathematical and
statistical algorithms on consolidated data structure to identify an optimal reference
model, or applying variables of incoming requests on the optimal reference model to
compute probability, estimates and forecast). The platform has to also support pro-
cessing of ongoing data streams to keep the consolidated data structure up-to-date
(i.e. learning new data behaviour into reference data). Also distributed comput-
ing fundamentals has to be one of the core features (e.g. support of the Hadoop
ecosystem).

Ancillary data are personal data. However, they do not carry the strictest
privacy requirements, since the data do not contain names, addresses or credit
card information. However they may contain data that directly connect to a per-
son such as frequent traveller information. If using real data this has to be con-
sidered as confidential information provided by the involved airlines. Therefore
it has to comply with the “EU General Data Protection Regulation”, if appli-

650 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

cable. The software needs to be deployable on-site at the customer’s cloud ser-
vice.

3 REFERENCE EXASCALE ARCHITECTURE

After reviewing of all requirements coming from different user communities (such as
medicine, radio astronomy, airline revenue management, etc.), the main challenge
was to propose an architecture that is suitable for all of them. Their requirements
can be divided into three main groups:

1. virtualization requirements,

2. data requirements, and

3. computing requirements.

Virtualization requirements are very straightforwardly derived from application
platforms of our user communities – support of containers which offers a lightweight
virtualization approach which is similar to application packages. Its advantages in-
clude easy deployment and maintenance, flexibility, reliability, scalability, etc. Since
the users’ applications need to be deployed on various computing infrastructures,
portability and interoperability are very important features of every exascale-capable
platform.

The core data requirement is handling of exascale data sets or extreme data flows
which is not possible to manipulate and manage by a single data center nowadays. It
brings a very demanding and ambitious request – a data federation across multiple
data centers. It is also interlaced with metadata management (processing of such
data is impossible without their description – the metadata). The main challenge is
communication or data transmission in terms of data services. The exascale platform
has to support huge data transfers across the whole infrastructure.

The main computing requirement is supporting high-performance computing as
well as cloud computing which is able to offer accelerated computing also – a comput-
ing environment for the application containers. The other significant requirement is
performance optimization. The current trends in the scientific applications are the
following: high distribution across different research computing centers or nodes,
and a degree of parallelism and concurrency also increased. Those challenges need
to be taken into account during designing of computing management.

The proposed architecture is driven by modularity and scalability. These two
approaches are the most suitable for an environment in which the core features
are high distribution and massive parallelism. The modularity also enables to ex-
tend and adjust the platform, according to the needs of new user communities. It
gives flexibility in using its sub-modules in a way which exploits the heterogeneous
resources of exascale systems the most efficiently.

The aim of the proposed reference architecture is to characterize key attributes
and properties that have to be handled by every scientific application using exascale

Reference Exascale Architecture 651

data and computations. From altogether viewpoint, the reference exascale architec-
ture (see Figure 1) is divided into the following parts (from top to bottom):

Figure 1. Reference exascale architecture

Users of the scientific exascale applications (in yellow) – the exascale sys-
tem has to support functionalities required by its user communities. That also
means to support legacy applications in some cases (see the Copernicus use
case). According to the initial and updated requirements analysis, the best way
is to build it on containerization. All of the applications are stored in a con-
tainerized repository which is available to user communities. The users are
accessing the exascale platform through virtualized scientific portals which are
also containers providing a user friendly graphical interface. The proposed GUI
is easily templated and so modified according to the needs of its user community.
The containerization approach is flexible, scalable, reusable and ready to use.
Moreover, it does not require any special technical skills (especially, related to
integration – exascale data processing is often contingent on complex software
tools involving expert knowledge about its management) to make it run on the
resource infrastructure (see the LOFAR use case).

Virtualization layer (in blue) – is situated between the containerized application
repository and platform infrastructure managers. Interoperability of data and

652 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

computing infrastructure is the key and critical requirement of the exascale sys-
tems. To use both infrastructures in the most efficient way, we propose the
exascale reference architecture based on containerisation instead of virtual ma-
chines. The performance of the infrastructure as the whole is utilized in a better
way. It is caused by minimization of overheads (e.g. software duplications). Thus
virtualization layer based on containerization approach exploits the infrastruc-
ture resources in optimal way and also it supports the requirements from our
user communities. The main requirement coming from the users is supporting
of various application containers. According to a type of computing resources,
they can be divided into two groups:

1. HPC containers, and

2. cloud containers.

Thus the virtualization layer has to be capable to handle them in cooperation
with lower layers (data management and computing management).

Data management (in green) – requirements coming from the exascale scientific
applications could be divided into two main groups: distributed data federa-
tion, and metadata. It is very common that the exascale scientific applications
have highly complicated datasets that need to be handled and processed by rel-
evant systems. For that purpose, its file systems must have a module capable
to work with metadata. The metadata module has to be federated and dis-
tributed as well as the management system for the data infrastructure itself. At
this level of the infrastructure, the system architect has to be careful whether
the component will be containerized, or not. On the one hand, the exascale
system has to avoid overhead and latency (according to our experiments, it is
caused by needless duplication of software) thus we prefer containers to virtual
machines. However, on the other hand, all infrastructural services do not need
to be virtualized. For example, virtualization of HBase (through containers, or
virtual machines) is not necessary because it leads to dataset duplication in the
worst case or a performance overhead in the best case. Thus a better approach
is to support infrastructural services ecosystem through micro-services. Micro-
services serve as adapters and connectors to infrastructural services. They are
integrated into a containerized micro-infrastructure, which is customized accord-
ing to requirements coming from a use case and connecting them to a distributed
virtual file system. The micro-infrastructure allows for application-defined in-
frastructures with the main advantages being threefold: First, services can be
customized for the application; e.g., data staging service. Second, minimizing
global state management (a major scaling issue); e.g., instead of having one
global index for all files for all applications, have micro-infrastructures man-
age their own local indices and states. Third, micro-infrastructures are isolated
from each other, which increases security between users of different applica-
tions. The PROCESS distributed file system layer needs to be virtualized be-
cause it has to run on top of multiple file systems. Also, it is crucial that

Reference Exascale Architecture 653

access to a data storage federation is unified. Thus the virtual file system is
distributed.

Computing Management (in red) – this part of the infrastructure is related to
scheduling and monitoring computing resources. The infrastructure has to be
loaded as balanced as possible. Two kinds of resources was recognized as suit-
able for exascale scientific applications by our user communities, namely: high
performance computing (HPC) resources, and cloud resources. HPC manager
is based on a queuing approach. Manager of cloud resources is based on REST
API. Both types of resources are often enriched by support from high-throughput
resources or accelerated resources. For example, GPU utilization within machine
learning and deep learning application is very commonly required by those user
communities, however, the requirement is still quite hard to satisfy. Since clus-
ters build on CPUs can be used by every community, big clusters with strong
GPUs are not very common nowadays.

4 PROCESS ARCHITECTURE – AN EXAMPLE
OF A TECHNICAL EXASCALE ARCHITECTURE

The PROCESS project is one of exascale research projects funded by the European
Union’s Horizon 2020 research and innovation programme. One of its main out-
puts will be a modular software platform which will be capable to handle exascale
challenges coming from both scientific communities as well as industry.

The PROCESS architecture shows how the exascale platforms look in the real
world. It was introduced in [6] and extended by a micro-services approach which
is described in the following text. Micro-infrastructure3 is a very specialized and
autonomous set of services and adaptors which interact across the extreme large
data service-oriented infrastructure. Alongside the efficiency mentioned above, the
approach supports scalability, high adaptability, modularity, and straightforward
integration with the virtual layer. Since each use case has its own requirements and
dependences, modularity together with high adaptability are very important and
useful properties of every exascale environment.

The architecture is capable to support portals of external communities via REST
API. The LOFAR community is driving the development one of the PROCESS use
cases. The Netherlands eScience center extended the actual LOFAR portal towards
a usage in the EOSC context. Therefore, besides the selection of an observation also
a submission system was integrated.

This submission system connects via an API also to the PROCESS IEE, the
central part of all deployments to Cloud and HPC resources done by PROCESS.
To enable this communication, the PROCESS architecture had to be extended by
an IEE adapter to external sources (see Figure 2). Thereby, the IEE is able to list
all available pipelines defined for the LOFAR computations and deploy the entire
workflow.

3 The set of integrated micro-services.

654 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

As it can be seen, an astronomer uses the LOFAR portal as the entry point,
where an observation and configuration parameters are defined. Inside the por-
tal, the computation is started and will trigger a submission of the workflow via
IEE, which calls LOBCDER to stage in the data, deploy the container and makes
the output available. The addition of the API interface in the architecture was
necessary, since the LOFAR community is used to the existing portal. Therefore,
to not switch the user interface, the actual deployment is abstracted from the as-
tronomers.

The data services expose interaction points through a REST management API
where users can manage their private micro-infrastructure and a set of external
infrastructure endpoints such as WebDAV. The authorization to the web services is
ensured through tokens. Generation of the access tokens is achieved through a global
access and authorization service.

The PROCESS platform has dedicated set of nodes for data transfers – data
transfer nodes (DTNs). DTNs are special hardware nodes that are dedicated to the
transfer of data. Such nodes have high network bandwidth and sizable storage that
can be used as caches to transfer data at high speed between DTNs. Tuning of these
nodes and their connections often requires network experts. In our architecture, we
assume DTNs are available, pre-optimized and have some means to be programmed
e.g. having the ability to deploy containers onto the DTN. LOBCDER’s role is to
integrate DTNs through this programmability and be able to copy data to/from
DTNs.

Another typical characteristic of the exascale environment is handling of different
elements for processing, distribution, and management, which requires specific hard-
ware, or nodes. These requests are possible to satisfy by the micro-infrastructure
composed of dedicated nodes, or services addressing a particular request. Since
the requirements are handled by virtualization typically (abstracting details of the
hardware infrastructure, or the software stack), and so the micro-infrastructure of-
fers a natural solution.

Figure 2 depicts the changes of the initial PROCESS architecture [6, 2] needed
to involve the micro-infrastructure approach into the initial architecture. All the
changes are highlighted in magenta. The main change is a new way of accessing
data sources (through data adapters). The described approach also simplifies it. The
new version has one “branch” instead of two “branches” (one dedicated to pre/post
processing tools; e.g., DISPEL, and the other dedicated to pure data access through
the distributed virtual file system; e.g., LOBCDER). It also influences IEE (Jupyter
is a part of micro-infrastructure, thus the IEE needs only a plugin for it), and
LOBCDER (the data infrastructure management layer responsible for integration
of lower adjacent tools was added).

The PROCESS architecture is also a result of applying the reference exascale ar-
chitecture which represents the common features of the PROCESS platform (as well
as every exascale-related platform, or application). On its top users are interacting
with the platform through a secure access. IEE represents the environment for users,
however, security is out of the project scope. Therefore, this aspect is not inves-

Reference Exascale Architecture 655

Figure 2. PROCESS architecture. (The yellow “M” token represents connection with
a monitoring system. The PROCESS platform uses Zabbix as a monitoring agent.)

656 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

tigated anymore. The whole resource infrastructure is orchestrated by the virtual
layer. Below that layer a virtual file system alongside HPC and Cloud managers is
situated. The virtual file system is containerized through micro-infrastructure. The
main reason behind this decision is that the use cases have different requirements
(e.g. need to access various data sources). Micro-infrastructure containers are man-
aged by Kubernetes. Last but not least, HPC and Cloud managers. Both of them
have to be scheduled and users have to have information coming from monitoring
tools about their task as well as raw hardware infrastructure. Rimrock is used as
a unified environment for managing HPC resources, and Cloudify4 for managing of
cloud resources.

Cloudify can deploy VMs on any sites with OpenStack5 middleware, including
sites in EOSC-Hub Federated Cloud infrastructure6. It opens the door for users to
access computation resources and integration with the EOSC. For the full execution
of use cases on EOSC Federated Cloud, other components should be integrated with
EOSC-Hub, too, mainly user portal and data infrastructure.

5 PERFORMANCE MODELLING

Proposed performance model is measurement-based approach with extrapolation
through analytical modelling. First, the measurands are identified and measure-
ments are performed. In the next step a microbenchmark to evaluate these mea-
surands is developed. Finally, to predict the performance, we use these results to
create an analytical model that will allow us to extrapolate the performance based
on given measurements.

The performance model is based on generic performance modelling techniques
and a classification [5]7 developed within CRESTA project8. Table 1 defines four
main categories varying from raw measurements, over benchmarking and simulations
to complex analytical modelling with a large number of parameters.

Measurement: Both simple measurements as well as complex model measure-
ment values are the basis of success. In Section 2, we will define at which
points of the execution sequence meaningful measurements can be taken. Mea-
surement values are to deliver input data for further modelling and prediction
steps.

Microbenchmarking is used to identify performance bottlenecks in the architec-
ture and assists in debugging and verifying its correctness. The microbenchmark

4 Network Orchestration & Edge Networking — Cloudify: https://cloudify.co/.
5 Open Source Cloud Computing Infrastructure – OpenStack: https://www.

openstack.org/.
6 EGI Cloud compute: https://eosc-hub.eu/services/EGICloudCompute.
7 David Henty: Performance Modelling [online: https://materials.prace-ri.eu/

499/9/Performance_modelling.pdf]
8 CRESTA project (Collaborative Research Into Exascale Systemware, Tools and Ap-

plications) homepage: https://www.cresta-project.eu

https://cloudify.co/
https://www.openstack.org/
https://www.openstack.org/
https://eosc-hub.eu/services/EGI Cloud Compute
https://materials.prace-ri.eu/499/9/Performance_modelling.pdf
https://materials.prace-ri.eu/499/9/Performance_modelling.pdf
https://www.cresta-project.eu

Reference Exascale Architecture 657

Technique Description Purpose

Measurement running full applications
under various configura-
tions

determine how well appli-
cation performs

Microbenchmarking measuring performance of
primitive components of
application

provide insight into appli-
cation performance

Simulation running application or
benchmark on software
simulation

examine “what if” sce-
narios, e.g. configuration
changes

Analytical Modelling devising parameterized,
mathematical model that
represents the performance
of an application in terms
of the performance of
processors, nodes, and
networks

rapidly predict the ex-
pected performance of an
application on existing or
hypothetical machines

Table 1. Performance Modelling Approaches taken from David Henty: Performance
Modelling [online: https://materials.prace-ri.eu/499/9/Performance_modelling.

pdf] [5]

is a very simple application (validation or test pipeline) running through the
complete architecture and gathering first results.

Simulation and Analytical Modelling: Executing and measuring a given appli-
cation running on the proposed platform in different configurations and settings
forms the input dataset for this step. The goal of this step is to extrapolate
the behaviour and runtime of the application from the given observations. The
resulting model will allow for predictions of runtime behaviour beyond the con-
figuration scales measured, which gives us the chance to forecast the performance
on an exascale level.

5.1 Identification of Measurands

We stress that the hardware infrastructure such as computing, storage, and network
have a big impact on the performance of services. However, we have no real influence
on this part of the infrastructure. Therefore, our performance measurands focus on
the overhead introduced by the software services, but also measure all other relevant
numbers to identify relations between them.

In the absence of true exascale systems, our objective is to achieve exascale
by combining the power of geographically distributed data centres. Unfortunately,
the traditional configuration of compute centres is more optimized for inner data
transfer rather than for outside transfers. While technical solutions to optimize data-

https://materials.prace-ri.eu/499/9/Performance_modelling.pdf
https://materials.prace-ri.eu/499/9/Performance_modelling.pdf

658 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

transfers exist such as the Data Transfer Nodes 9 10 implementing those solutions
is beyond the scope of the paper. The data transfers are hidden by overlapping
data transfer with computing or use pre-fetching and caching to minimize the data
transfers.

Based on the use case requirements analysis, we can think of a typical appli-
cation as a pipeline of data processes which typically requires a data stage-in step
followed with an execution step, and finally a data stage-out step. The time re-
quired for stage-in and out is expected to be significant, because of the necessary
data movement between data centres.

T1: Configuration – The Interactive Execution Environment provides an end-
user web portal, where each run of any application needs to be configured.

T2: Deployment Strategy – Part of T2 is the time needed to decide on which
computing and storage sites the containers and their data will be deployed. It
also needs to initiate the required micro-architecture.

T3: Stage-In – Impact by the access to data services in data centre. However, if
the platform can make use of caching, proactive pre-fetching or pre-processing
we can reduce the impact of T3 on the overall execution performance.

T4: Container Selection – The workflow that has been defined in T1 specifies
a container that will be executed as well as its version. This version needs to be
fetched from the container repository and later deployed as a job in T5.

T5: Scheduling – The time a job spends in the queue of the compute resource.
This time can vary and will be hard to predict since it is affected by each compute
site’s scheduling system that is not in the scope of the paper. We may however
be able to estimate an upper bound on the queue waiting time that could be
added to the actual runtime prediction.

T6: Execution Time – T6 is the time a job takes from leaving the queue to
finishing its calculations on the compute resource. This time is determined
by the performance and scalability of the application on the selected compute
resource. To predict this time, an application specific performance model is
required.

T7: Stage-Out Strategy – After the job is done, it may have generated large
amounts of output data that needs to be transferred from the compute resource’s
scratch space back to the storage infrastructure. Based on the amount of data
and the specified workflow the data service needs to choose a suitable stage-out
strategy.

9 Building User-friendly Data Transfer Nodes https://www.delaat.net/posters/

pdf/2018-11-12-DTN-SURFnet.pdf
10 Pacific Research Platform https://bozeman-fiona-workshop.ucsd.edu/

materials/20180303-dart-dtn-strategic-asset-v1.pptx/view

https://www.delaat.net/posters/pdf/2018-11-12-DTN-SURFnet.pdf
https://www.delaat.net/posters/pdf/2018-11-12-DTN-SURFnet.pdf
https://bozeman-fiona-workshop.ucsd.edu/materials/20180303-dart-dtn-strategic-asset-v1.pptx/view
https://bozeman-fiona-workshop.ucsd.edu/materials/20180303-dart-dtn-strategic-asset-v1.pptx/view

Reference Exascale Architecture 659

T8: Stage-Out – With the appropriate stage-out strategy the output data now
needs to be transferred to the chosen storage resource.

Figure 3 shows a sequence diagram describing all the steps involved in the ex-
ecution of an application scenario. For each step we define the time corresponding
to its completion as follows:

Figure 3. Sequence diagram describing the steps involved in execution of a typical appli-
cation scenario

Table 2 summarises the various identified times, we will use as performance
measurands.

Using the identified performance measurands listed in Table 2 we propose
a three-step approach to the modelling and performance prediction of the PROCESS
infrastructure. First, we will show that the overhead of the PROCESS platform for
a deployment on one site (initializing the micro-infrastructure and scheduling) is
negligible. Second, since the deployment strategy of process is to deploy every

660 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

TX Name Description

T1 Configuration Time to configure the workflow for the application

T2 Deployment Strategy Time to select appropriate storage and computing
site

T3 Stage-In Time to transfer data from source to selected stor-
age site

T4 Container Selection Time to select specified container for the workflow
from repository

T5 Schedule Time the submitted job spends in queue

T6 Execution Time Time spent executing the job on the compute re-
source

T7 Stage-Out Strategy Time to select appropriate storage site for output

T8 Stage-Out Time to transfer result to storage site

Table 2. Description of our measurands

application containerized, we show the weak scaling capabilities of PROCESS by
deploying multiple containers with a split of the input data on one site. And third,
since the goal is to achieve an exascale system solution, we enable applications to
scale by splitting the data and deploying containers across multiple sites of PRO-
CESS.

We therefore describe three measurement scenarios:

Scenario 1: Single container – single site (Figure 4 a)). In this scenario we
measure the execution time of processing the input sequentially within one con-
tainer running. This container uses the maximal possible and available number
of compute resources PROCESS can use at one single site (e.g. use case 2 running
only at one cluster).

Scenario 2: Multiple containers – single site (Figure 4 b)). In the second
scenario we submit several containers on one cluster. Here, we either expect
a speedup, since the container in Scenario 1 eventually did not fully utilize
compute resources or the same runtime as before, since the overhead to deploy
more than one container in parallel should be minimal.

Scenario 3: Multiple containers – multiples sites (Figure 4 c)). This last
scenario will deploy several containers in parallel on two different sites with
an also split input data set. We expect a significant speedup since multiple
containers will be deployed on multiple sites.

After evaluating these scenarios and measurements, we will present a generic
performance model that allows to predict the scalability of the PROCESS infras-
tructure for a given application.

Reference Exascale Architecture 661

Figure 4. Three measurement scenarios: a) Single container – single site, b) Multiple
container – single site, c) Multiple container – multiple site. In all three scenarios Stage-In
and Stage-Out will downscale the system overall performances, unless we address the data
transfer over a wide area network.

5.2 Runtime Composition

Based on Figure 4 the total runtime of an application can be defined as follows:

Runtime = Overhead + DataTransfer + Scheduling + ExecutionTime,

Overhead = T1 + T2 + T4 + T7,

DataTransfer = T3 + T8,

Scheduling = T5,

ExecutionTime = T6.

The Overhead component contains all overhead directly related to the PRO-
CESS services. This includes selecting the appropriate resources for data access
and compute in the Execution Environment, configuring the micro-architecture of
LOBCDER for data access, fetching the application containers, and submitting the
application to the selected resource using Rimrock.

662 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

To support exascale it is important that this overhead is low per submitted
workflow and does not depend on the scale of the compute resources which are
targeted by PROCESS services. We expect that this overhead component is or-
ders of magnitude smaller than the other components and will therefore be negligi-
ble.

The DataTransfer , Scheduling and ExecutionTime components are mostly de-
termined by factors outside of the control of PROCESS services, such as network ca-
pacity, queue waiting times, and how well a workflow performs and scales on a given
resource. Nevertheless, to have an estimate of the data transfer and scheduling de-
lay is useful for selecting a resource to which a workflow should be submitted. If
execution time estimates are available, this selection may be improved further, and
a total runtime estimate may be provided to the user.

The DataTransfer component is mainly determined by two parts: the time
required by Dispel to perform pre-processing of the data (if any), and the time
required to transfer the resulting data volume given the end-to-end transfer capacity
between the storage and compute site. These two components may largely overlap
if the data pre-processing is simple and can be performed on the fly, but for complex
operations this may not be the case.

For the latter part, predicting large long-distance data transfers, a significant
amount of research has been performed in the last two decades. For example, [10] de-
scribes a model that predicts end-to-end data transfer times with high accuracy
based on logs of the Globus transfer service. Similarly, much research has been
done on estimating queue waiting times of HPC applications which dominates the
scheduling component. For example, [12] describes a model that provides estimates
with a high degree of accuracy and correctness for a large number of supercomputing
sites.

For PROCESS we will re-use this existing work to provide estimates for both
the data transfer and scheduling components of the model.

Predicting the execution time is highly application specific and must be done
separately for each of the use cases. It may be dependent on input datasets, ap-
plication parameters, number of resources used (number and type of cores, amount
and speed of memory, availability and type of GPUs, etc.).

Strong scalability of the use case applications is expected to be limited well below
exascale, as currently only few applications are able to exploit a petascale level. To
determine the limits of the strong scalability of the use case workflows, traditional
performance benchmarking of the applications can be used for representative input
data sets and parameters. To circumvent limits in strong scalability, we can exploit
weak scalability, where multiple workflows are running at the same time to process
different datasets. However, doing so may shift the bottleneck from the application
to other sources, such as the data service, or local storage on the resources. Such
limits can be discovered by performing weak scalability testing, both on a single site
and multiple sites.

Unfortunately, it requires a large effort to create a complete and accurate model
of the application behaviour for each of the use cases. Although users may be

Reference Exascale Architecture 663

willing to perform some testing in advance to tune their application, they are mostly
interested in obtaining application results. Therefore, highly accurate modelling of
the application workflows is not required, instead a rough estimate of the processing
time is generally enough.

We will initially assume the user will provide an estimate for the execution
time, as is customary on HPC systems. At a later stage, this estimate may be re-
fined based on easy to determine parameters, such as input data size and number
of resources used, which may be extracted from the logs of previous runs of the
workflow. A significant amount of research has been done on estimating application
execution time based on limited information. For example, [13] presents a technique
that predicts application runtimes based on historical information of “similar” appli-
cations. Search techniques are used to automatically determine the best definition of
similarity. In [4], a similar technique is used to fine tune the execution time estimate
provided by the user.

5.3 Benchmark Application

An artificial benchmark workflow will be created which allows configuration of the
different aspects of a workflow, such as the sizes and locations of in- and output data,
pre- or post-processing requirements, the number and type of compute resources
required, the execution time of the application, etc. This benchmark workflow can
be used to test the functionality or the PROCESS services, determine the initial
values of the model, and validate model predictions.

By choosing minimal values for data transfer and execution time (for example
0 bytes and 0 seconds) the lower bound for the runtime can be determined and
the overhead of the PROCESS services can be measured. By submitting large
numbers of such workflows, the scalability of the services themselves can be tested.
By choosing large values for data transfer an initial estimate of the data transfer
capacity between locations can be made.

Similarly, different pre-processing patterns can be tested, ranging from straight-
forward filtering or conversion to more complex operations such as mixing or trans-
positions, to create an initial estimate of the Dispel overhead. By varying the target
resources of the workflow, an initial estimate of the scheduling delays in different
locations can be made.

Once an initial model is available, this benchmark application can be used to
validate it by comparing the error rates of the predictions against actual measure-
ments. This will allow us to iteratively refine the model during the course of the
project.

5.4 Use Case Workflows

As explained above, strong and weak scalability tests may be performed on the use
case workflows to determine the limits to their scalability and the initial parame-
ters of the execution time models. Once these parameters are available, an initial

664 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

execution time model can be created, and its predictions can be verified using the
logs of subsequent workflow runs. Consistently measuring the workflow performance
and selected key parameters (such as input data size and type and number of re-
sources used) allows the model to be refined further. By default, a simple place-
holder model will be used by the PROCESS services. If necessary, a more detailed
use case specific model may be created for a use case and provided upon workflow
submission.

6 EXPERIMENTAL RESULTS

6.1 Overhead Measurements

Due to some integration issues preventing us from using certain resources, the over-
head measurements are performed for scenarios 1 and 2 and are presented together.
The measurements are taken on Prometheus and each value is the average of four
consecutive runs whenever possible. Indeed, not all runs lead to data usable for the
analysis. The benchmarking uses an event-based approach, where the state transi-
tions allow to extract event durations. Because of the polling required to extract the
events, most of the transitions are missed in normal operations, which is good from
a production point of view. Unfortunately, this leads to quite a small set of data
points for most of our performance analyses. Other overhead factors are measured
in addition to T2. The operational conditions of the tests impose frequent polling,
whose consequence is a dither of +/−5 seconds in the data, which are plotted in Fig-
ure 5 for T2 or submission delay. The main observation is that, except for an outlier
at container count 96, the overhead is small, almost constant and independent of the
number of containers. Indeed, both the submission and the scheduling delays (see
below) are not under the control of IEE; consequently, some jobs get stuck either
waiting for or in the queue of the job scheduler on the used HPC systems which
leads to occurrences of outliers.

In Figure 6 a) (left), the measured values of T2 are grouped by input data
size of 10 MB, 100 MB, 1 GB and 10 GB which are the test input data sizes. We
observe that up to 1 GB, the average value of T2 is quite small with little deviation
from that value. However, for the 10 GB batch, the average value has significantly
increased with a large standard deviation. This is due to the outlier at container
count 96 shown above. A plot without the outlier is shown in Figure 6 b) (right).
We can indeed observe that the average submission delays are close within the
2–3 seconds range. The only reason the 10 G batch is larger is because of an outlier
at container count 96 for this input data size.

We also measure other overhead factors including the initial directory building,
which creates a directory structure to hold the input data and the intermediary
results, and the implicit staging which involves transferring the output of one step
into the input directory of the subsequent step and a clean-up step removing the
above directory structure. While the first and last steps may happen on any data
processing infrastructure, the implicit staging is specific to IEE; consequently, this is

Reference Exascale Architecture 665

Figure 5. Submission delay (T2) behaviour in the PROCESS production prototype

Figure 6. Submission delay in IEE batched by the input data size

the only one we will consider here. The behaviour of the metric is shown in Figure 7
below. We observe that the implicit staging is of the same order of magnitude as
T2 but at a generally lower scale.

The cumulative behaviour of T2 and implicit staging is illustrated in the Fig-
ure 8 below. The principal observation is that the global overhead is moderate. It
culminates at 25 s at container count 384.

666 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

Figure 7. Implicit staging overhead behaviour in the PROCESS production prototype

Figure 8. Overall overhead (T2+implicit staging) behaviour in the PROCESS production
prototype

6.2 Scheduling Measurements

Overhead due to scheduling in IEE is measured as queueing times which are plotted
in Figure 9 in relation with the number of containers. The measurements are taken
in the same conditions as for the overhead and, each measurement is an average of
up to four measurements. We observe that scheduling does not harm PROCESS
performance as its overhead is the order of tens of seconds for most container counts.
A few of the jobs got stuck in the queue, spending there much longer time than
average. The job with container count 192 is one of these.

A complementary explanation of the scheduling behaviours is given in Figure 10.
Just as Figure 9 shows that T5 does not depend on the container count, Figure 10
shows it does not depend on the input data size neither. The delay batches for 1 GB

Reference Exascale Architecture 667

Figure 9. PROCESS scheduling overhead measurements from IEE

and 10 GB are both lower than that of 100 M, which is where the abovementioned
outlier happens to be.

Figure 10. Scheduling delay measurements in the PROCESS production prototype
batched by input size

6.3 Staging Measurements

We also evaluate the staging performance, although this is better done with the data
services inside the use cases. However, this gives us a glimpse of their performance
in the IEE context. In the latter, the most interesting is the stage-in duration
(T3) which involves real data transfer using the PROCESS data services, which
we report in Figure 11. The stage-out depends on the use case and for the test
or validation pipeline it does not involve data services and does not correspond to
any useful output. The obvious note is that T3 does not depend on the container
count, but rather on the input data size. Indeed, although the transfer durations
are almost indistinguishable for up to 1 GB, the transfer duration for 10 GB clearly

668 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

increases. This is expected as transfer time only depends on the input size and
network performance and conditions. The latter is probably responsible for the
important spread at container count 192.

Figure 11. Staging-in measurements in the IEE production prototype

6.4 Overhead Model and Projection

Using the collected measurement data, we model the behaviour of the platform
overhead using regression analysis to get insight into the data. However, because
of the occurrence of outliers here and there, we do use robust regression to down
weight extreme values. Modelling results for overhead are shown in Figure 12. The
linear model (equation: overhead (o) = 0.011 ∗ (number of containers (c)) + 20) of
the data shows a very slow variation of the overhead in function of the number of
containers, which is very important for PROCESS scalability. Although the very
small value of the slope implies that the increase is very slow, so we can consider
this overhead as practically constant and independent of the number of containers.
To put this in context, we can confidently assert that the overhead of processing
the entire LOFAR LTA archive (around 1 800 observations of 16 TB) would only be
about 40 seconds.

Figure 12 a) (left) plots the residual values for each observation and allows to
check whether the regression model is appropriate for the dataset. If it is, then the
values should be randomly scattered around the value y = 0. As this is what we
observe in Figure 12 b) (right), we are confident that our approach is appropriate.

Reference Exascale Architecture 669

Figure 12. PROCESS T2 overhead models

6.5 Scheduling Model and Projection

Similar to the general overhead, we use the measurements in Section 4 to model the
behaviour of the platform scheduling overhead. As illustrated in Figure 13, the IEE
model shows a moderate variation of the scheduling overhead proportionally to the
number of containers (o = 1.67 ∗ c + 160). The principal observation is that the
scheduling due to PROCESS creates some burden, the latter is moderate and is not
under the control of PROCESS services. Indeed, depending on the resources and
load on the used HPC clusters, some jobs get stuck in the workload management
system queues for unpredictable durations. And the more jobs, the more probable
some will get stuck.

6.6 Data Transfer Model and Projection

In Section 6.3, we showed that the staging performance is independent of the con-
tainer count. This is illustrated by the linear model of the staging delays in function
of the number of containers as a practically horizontal line in Figure 14.

We know that the staging (in and out) performance depends instead on the
input data size whose linear model is shown below in Figure 15. The equation of
the shown linear model is T3 = 0.032 ∗M + 39 where M is the size of the input data
in MB.

According to the linear model, it would take on average about 359 s to trans-
fer 10 GB of data which makes for an average speed of about 27.85 MB/s; at this
speed, it would take 574 506 283 seconds (or 18 years 79 days 9 hours 4 minutes and
43 seconds!) to stage in a full LOFAR observation of 16 TB.

670 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

Figure 13. PROCESS scheduling overhead models in the IEE production prototype

7 CONCLUSION

This paper presents the motivation for the exascale architecture coming from PRO-
CESS use cases. The medical use case represents a computationally intensive ap-
plication requiring accelerated computing. The LOFAR use case requires highly

Figure 14. PROCESS staging-in delay model in IEE

Reference Exascale Architecture 671

Figure 15. PROCESS staging-in delay model in IEE

effective exascale workflows for exascale datasets. The ancillary pricing use case
embodies exascale throughput requirements.

The reference architecture combines several design approaches (e.g. modularity,
service-oriented architectures) with computational paradigms (e.g. high-performance
computing, cloud computing, accelerated computing). Consequently, the reference
architecture is used within the PROCESS project as a blueprint for the PROCESS
architecture.

The paper laid down the foundations for the definition and use of a predictive
model based on clearly defined performance indicators and scenarios. We briefly
reviewed relevant approaches to performance modelling and devised an approach
for PROCESS based on a combination of measurements, micro benchmarking and
analytical modelling.

An analysis of the architectural components clearly identified the performance
indicators or measurands and the scenarios in which they are measured. Then,
the measurands were categorized into overhead, attributable to PROCESS, and
otherwise, including scheduling and staging. The main goal of the predictive model
was to verify that the overhead incurred by the PROCESS services is negligible
compared to the other cost factors and that these services are capable of scaling to
the exascale range.

The performance indicators were measured across different PROCESS service
prototypes and use cases. Each time, the three main categories (overhead, schedul-
ing and staging) of measurands are modelled and projections to the exascale realised.
Our results show that the overhead of the PROCESS platform is generally found
to be low, validating the architectural choices made for the project. The scheduling
overhead is generally shown to be moderate, but out of the control of the PROCESS
project. Finally, the last metric consistently shows that data staging is a bottleneck,

672 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

especially for use cases involving transfer of large datasets such as UC2. This data
transfer performance is highly dependent upon external components such as inter-
connection networks which are out of scope of PROCESS. Solutions for optimising
network performance such as data transfer nodes and FTS are being investigated
and implemented.

Acknowledgment

This work is supported by the “PROviding Computing solutions for ExaScale Chal-
lengeS” (PROCESS) project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 777533
and by the project APVV-17-0619 (U-COMP) “Urgent Computing for Exascale
Data” and by the VEGA project “New Methods and Approaches for Distributed
Scalable Computing” No. 2/0125/20.

REFERENCES

[1] Ashby, S.—Beckman, P.—Chen, J.—Colella, P.—Collins, B.—
Crawford, D.—Dongarra, J.—Kothe, D.—Lusk, R.—Messina, P. et al.:
The Opportunities and Challenges of Exascale Computing-Summary Report of the
Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee. U.S.
Department of Energy, Office of Science, 2010.

[2] Bobák, M.—Belloum, A. S. Z.—Nowakowski, P.—Meizner, J.—
Bubak, M.—Heikkurinen, M.—Habala, O.—Hluchý, L.: Exascale
Computing and Data Architectures for Brownfield Applications. 2018 14th In-
ternational Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), Huangshan, China, IEEE, 2018, pp. 461–468, doi:
10.1109/FSKD.2018.8686900.

[3] Bobák, M.—Hluchý, L.—-Belloum, A.—Cushing, R.—Meizner, J.—
Nowakowski, P.—Tran, V.—Habala, O.—Maassen, J.—Somosköi, B.
et al.: Reference Exascale Architecture. 2019 15th International Conference
on eScience (eScience), San Diego, CA, USA, IEEE, 2019, pp. 479–487, doi:
10.1109/eScience.2019.00063.

[4] Gaussier, E.—Glesser, D.—Reis, V.—Trystram, D.: Improving Backfilling
by Using Machine Learning to Predict Running Times. Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC ’15), Austin, TX, USA, IEEE, 2015, pp. 1–10, doi: 10.1145/2807591.2807646.

[5] Henty, D.—Holmes, D.—Booth, S.—Bethune, I.—Gibb, G.—Reid, F.:
Writing Scalable Parallel Applications with MPI @ EPCC 2017. 2016.

[6] Hluchý, L.—Bobák, M.—Müller, H.—Graziani, M.—Maassen, J.—
Spreeuw, H.—Heikkurinen, M.—Pancake-Steeg, J.—Spahr, S.—
vor dem Gentschen Felde, N. O.—Höb, M.—Schmidt, J.—
Belloum, A. S. Z.—Cushing, R.—Nowakowski, P.—Meizner, J.—
Rycerz, K.—Wilk, B.—Bubak, M.—Habala, O.—Šeleng, M.—

https://doi.org/10.1109/FSKD.2018.8686900
https://doi.org/10.1109/eScience.2019.00063
https://doi.org/10.1145/2807591.2807646

Reference Exascale Architecture 673

Dlugolinský, S.—Tran, V.—Nguyen, G.: Heterogeneous Exascale Computing.
In: Kovács, L., Haidegger, T., Szakál, A. (Eds.): Recent Advances in Intelligent
Engineering. Chapter 5. Springer, Cham, Topics in Intelligent Engineering and
Informatics, Vol. 14, 2020, pp. 81–110, doi: 10.1007/978-3-030-14350-3 5.

[7] Jimenez-del-Toro, O.—Otálora, S.—Andersson, M.—Eurén, K.—
Hedlund, M.—Rousson, M.—Müller, H.—Atzori, M.: Analysis of
Histopathology Images: From Traditional Machine Learning to Deep Learning. Chap-
ter 10. Biomedical Texture Analysis: Fundamentals, Tools and Challenges. Elsevier,
2017, pp. 281–314, doi: 10.1016/B978-0-12-812133-7.00010-7.

[8] Kune, R.—Konugurthi, P. K.—Agarwal, A.—Chillarige, R. R.—
Buyya, R.: The Anatomy of Big Data Computing. Software: Practice and
Experience, Vol. 46, 2016, No. 1, pp. 79–105, doi: 10.1002/spe.2374.

[9] Lee, J.-G.—Kang, M.: Geospatial Big Data: Challenges and Opportunities. Big
Data Research, Vol. 2, 2015, No. 2, pp. 74–81, doi: 10.1016/j.bdr.2015.01.003.

[10] Liu, Z.—Balaprakash, P.—Kettimuthu, R.—Foster, I.: Explaining Wide
Area Data Transfer Performance. Proceedings of the 26th International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC ’17), 2017,
pp. 167–178, doi: 10.1145/3078597.3078605.

[11] Montavon, G.—Samek, W.—Müller, K.-R.: Methods for Interpreting and Un-
derstanding Deep Neural Networks. Digital Signal Processing, Vol. 73, 2018, pp. 1–15,
doi: 10.1016/j.dsp.2017.10.011.

[12] Nurmi, D.—Brevik, J.—Wolski, R.: QBETS: Queue Bounds Estimation from
Time Series. In: Frachtenberg, E., Schwiegelshohn, U. (Eds.): Job Scheduling Strate-
gies for Parallel Processing (JSSPP 2007). Springer, Berlin, Heidelberg, Lecture Notes
in Computer Science, Vol. 4942, 2007, pp. 76–101, doi: 10.1007/978-3-540-78699-3 5.

[13] Smith, W.—Foster, I.—Taylor, V.: Predicting Application Run Times Us-
ing Historical Information. In: Feitelson, D. G., Rudolph, L. (Eds.): Job Scheduling
Strategies for Parallel Processing (JSSPP 1998). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 1459, 1998, pp. 122–142, doi: 10.1007/BFb0053984.

[14] Szegedy, C.—Liu, W.—Jia, Y.—Sermanet, P.—Reed, S.—Anguelov, D.—
Erhan, D.—Vanhoucke, V.—Rabinovich, A.: Going Deeper with Convolutions.
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015, pp. 1–9, doi: 10.1109/CVPR.2015.7298594.

[15] Wittenburg, P.—Van de Sompel, H.—Vigen, J.—Bachem, A.—
Romary, L.—Marinucci, M.—Andersson, T.—Genova, F.—Best, C.—Los,
W. et al.: Riding the Wave: How Europe Can Gain from the Rising Tide of Scientific
Data. Final Report of the High Level Expert Group on Scientific Data – A Submis-
sion to the European Commission, October 2010. http://ec.europa.eu/newsroom/
dae/document.cfm?doc_id=707.

https://doi.org/10.1007/978-3-030-14350-3_5
https://doi.org/10.1016/B978-0-12-812133-7.00010-7
https://doi.org/10.1002/spe.2374
https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.1145/3078597.3078605
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1007/978-3-540-78699-3_5
https://doi.org/10.1007/BFb0053984
https://doi.org/10.1109/CVPR.2015.7298594
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=707
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=707

674 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

Martin Bobak is Scientist at the Institute of Informatics, Slo-
vak Academy of Sciences in Bratislava, Slovakia, in the Depart-
ment of Parallel and Distributed Information Processing. He
started to work at the institute in 2013, defended his disser-
tation thesis at the institute in 2017, became Member of the
Scientific Board of the institute, and Guest Handling Editor in
the CC Journal Computing and Informatics. His field of re-
search is cloud computing and the architectures of distributed
cloud-based applications. He is the author of numerous scien-
tific publications and has participated in several European and
Slovak R & D projects.

Ladislav Hluch�y is the Head of the Parallel and Distributed
Information Processing Department, the Vice-Director of the In-
stitute of Informatics, Slovak Academy of Sciences (IISAS). He
received his M.Sc. and Ph.D. degrees, both in the computer sci-
ence. He is R & D project manager, work-package leader and
coordinator in a number of 4th, 5th, 6th, 7th and H2020 EU
IST RTD projects as well as Slovak national projects. His re-
search topics are focused on parallel and distributed comput-
ing, large scale applications, cluster/grid/cloud computing, ser-
vice oriented computing and knowledge oriented technology. His

highlighted research works are within EU IST RTD projects PROCESS H2020-777533
PROviding Computing solutions for ExaScale challengeS, DEEP-HybridDataCloud
H2020-777435, EOSC-Synergy H2020-857647, EOSC-hub H2020-777536, EGI-Engage
H2020-654142, EGI-InSPIRE FP7-261323, EGEE III FP7-222667, EGEE II FP6 RI-
031688, EGEE FP6 INFSO-RI-508833, REDIRNET FP7-607768, VENIS FP7-284984,
SeCriCom FP7-218123, Commius FP7-213876, ADMIRE FP7-215024, DEGREE FP6-
034619, INTAS FP6 06-1000024-9154, int.eu.grid FP6 RI-031857, K-Wf Grid FP6-511385,
MEDIGRID FP6 GOCE-CT-2003-004044, CROSSGRID FP5 IST-2001-32243, PELLU-
CID FP5 IST-2001-34519, ANFAS FP5 IST-1999-11676, SEIHPC, SEPP and HPCTI. He
is a member of IEEE, e-IRG, EGI Council, the Editor-in-Chief of the Current Contents
journal Computing and Informatics (CAI). He is also (co-)author of nearly 600 scientific
papers, contributions and invited lectures at international scientific conferences and work-
shops. He is a supervisor and consultant for Ph.D. study at the Slovak University of
Technology (STU) in Bratislava, the Comenius University (UK) in Bratislava, and the
Technical University of Košice (TUKE), Slovakia.

Reference Exascale Architecture 675

Ondrej Habala is Researcher at the Institute of Informat-
ics, Slovak Academy of Sciences, Bratislava, Slovakia. He has
been working in the Department of Parallel and Distributed
Information Processing since 2001. His interests are mainly
in data and metadata management in distributed computing,
as well as in distributed information systems in general and
focused on applications in environmental sciences and hydro-
meteorology. He has over the years participated in numerous
FP5, FP6, FP7, H2020 and national research projects and pro-
duced over 80 scientific publications.

Viet Tran is Senior Researcher at the Institute of Informatics,
Slovak Academy of Sciences (IISAS) in Bratislava. His primary
research fields are complex distributed information processing,
grid and cloud computing, system deployment and security. He
received his M.Sc. degree in informatics and information tech-
nology, Ph.D. degree in applied informatics from the Slovak Uni-
versity of Technology (STU) in Bratislava, Slovakia. He actively
participates in the preparations and solving a number of EU
IST RTD 4th, 5th, 6th, 7th FP and EU H2020 projects such as
PROCESS, DEEP-HybridDataCloud, EOSC-Hub and EOSC-

Synergy. He is the author or co-author of over 100 scientific publications.

Reginald Cushing is a PostDoc at the University of Amster-
dam in the Multiscale Networked Systems (MNS) group. His
research fields are in distributed systems with a focus on data
processing, federation, and scientific workflows.

Onno Valkering is Scientific Programmer in the Multiscale
Networked Systems (MNS) research group at the University of
Amsterdam, Holland. His interests are distributed data pro-
cessing, domain-specific languages, and privacy-preserving tech-
niques.

676 M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering et al.

Adam Belloum is Senior Researcher at the Computer Scien-
ce Department of the University of Amsterdam and Technology,
and Technical Lead working on optimized data handling at the
Dutch National eScience Center. He received his M.Sc. and
Ph.D. degrees from the Compiegne University of Technology,
France.

Mara Graziani is a third-year Ph.D. student with double affil-
iation at the University of Geneva and at the University of Ap-
plied Sciences of Western Switzerland. With her research, she
aims at improving the interpretability of machine learning sys-
tems for healthcare by a human-centric approach. She was a vis-
iting student at the Martinos Center, part of Harvard Medical
School in Boston, MA, USA to analyze the interaction between
clinicians and deep learning systems. From her background of
IT Engineering, she was awarded the Engineering Department
Award for completing the M.Phil. in machine learning, speech

and language at the University of Cambridge, UK in 2017.

Henning M�uller is Full Professor at the HES-SO Valais and
responsible for the eHealth unit of the school. He is also Pro-
fessor at the Medical Faculty of the University of Geneva and
has been on sabbatical at the Martinos Center, part of Harvard
Medical School in Boston, MA, USA to focus on research activ-
ities. He is the coordinator of the ExaMode EU project, was
the coordinator of the Khresmoi EU project, the scientific co-
ordinator of the VISCERAL EU project, and he is the initiator
of the ImageCLEF benchmark that has run medical tasks since
2004. He has authored over 500 scientific papers with more than

13 000 citations and is in the editorial boards of several journals.

Souley Madougou is an eScience engineer at the Netherlands
eScience Centre since December 2018. He is mainly involved in
the PROCESS project in which he contributes to the implemen-
tation of the LOFAR use case and the development and analysis
of PROCESS performance models. He previously worked in se-
veral eScience projects in the Netherlands. His research interests
include performance modelling on many-core architectures, par-
allel programming and provenance.

Reference Exascale Architecture 677

Jason Maassen is Technology Lead at the Netherlands eScien-
ce Center. He is involved in many of the projects at the center
which apply parallel and distributed programming to scientific
applications, ranging from high resolution climate modeling to
digital forensics. In addition, he guides internal software devel-
opment at the center and scouts for new software technology that
can be used in projects. In the past, he participated in many
research projects, such as EU FP5 GridLab, the Dutch Virtual
Labs for eScience, StarPlane, PROMM-GRID, COMMIT, and
H2020 PROCESS, where he worked on a range of topics related

to large scale distributed computing.

Computing and Informatics, Vol. 39, 2020, 678–694, doi: 10.31577/cai 2020 4 678

COOKERY: A FRAMEWORK FOR CREATING DATA
PROCESSING PIPELINE USING ONLINE SERVICES

Miko laj Baranowski

Multiscale Networked Systems (MNS), Institute of Informatics
University of Amsterdam
Amsterdam, Netherlands

Adam Belloum

Multiscale Networked Systems (MNS), Institute of Informatics
University of Amsterdam
Amsterdam, Netherlands
&
Netherlands eScience Center
Science Park 140, 1098 XG Amsterdam, The Netherlands
e-mail: a.s.z.belloum@uva.nl

Reginald Cushing, Onno Valkering

Multiscale Networked Systems (MNS), Institute of Informatics
University of Amsterdam
Amsterdam, Netherlands
e-mail: {r.s.cushing, o.a.b.valkering}@uva.nl

Abstract. With the increasing amount of data the importance of data analysis
in various scientific domains has grown. A large amount of the scientific data has
shifted to cloud based storage. The cloud offers storage and computation power.
The Cookery framework is a tool developed to build scientific applications using
cloud services. In this paper we present the Cookery systems and how they can be
used to authenticate and use standard online third party services to easily create
data analytic pipelines. Cookery framework is not limited to work with standard

Cookery: Creating Data Processing Pipeline Using Online Services 679

web services; it can also integrate and work with the emerging AWS Lambda which
is part of a new computing paradigm, collectively, known as serverless computing.
The combination of AWS Lambda and Cookery, which makes it possible for users in
many scientific domains, who do not have any program experience, to create data
processing pipelines using cloud services in a short time.

Keywords: Function-as-a-service (FaaS), serverless computing, AWS Lambda, do-
main specific languages (DSL)

1 INTRODUCTION

Cloud computing is getting a more and more prominent factor in life. People use
cloud services every day, sometimes without even knowing. Cloud services come in
a variety types like storage services, computation services, video streaming services
and much more. Dropbox [1] and Google Drive [2] are well-known examples of cloud
storage services that are widely used, with Dropbox claiming to have 600 million
users in 2020 [3]. On the other side, more people tend to use cloud services for busi-
ness purposes. Using cloud services, it is easier to collaborate across geographically
distributed locations. In the Harvard Business Review: Cloud Computing Comes of
Age [4], it is stated that cloud software greatly reduces the implementation time and
it does not need a big up-front investment. It is also stated that a cloud provider
could have an application up and running in five weeks, contrary to the 18 months
that it would take according to the IT-business. On the other hand, the same
review also shows that security of these cloud services is still the biggest barrier.
For a number of potential cloud service users from various scientific disciplines like
life sciences, health research, humanities, social sciences, environmental science, or
earth science taking advantage of these cloud services has become more difficult and
complex due to the many programming languages available and the documentations
that accompany the APIs (Application Programming Interfaces) being rather tech-
nical. Besides not all scientists can afford to setup their own server; hence the cloud
approach provides a very cost effective solution. They can buy some computing
time or storage somewhere in the cloud, which will be cheaper at the beginning as
opposed to buying a server. However, running a service on cloud resources comes
with some additional problems. There is a need to build a software infrastructure
to handle all the requests your application will receive. This is a long and tedious
job that not everybody can do. In order to make programming using cloud services
easier, Cookery has been developed in the context of Ph.D. research work at the
University of Amsterdam [6].

Cookery framework allows users to develop applications that can connect fea-
tures of multiple cloud service providers together. The Cookery approach is focused
on programming distributed systems through a domain specific language. This
approach is similar in terms of functionality to IFTTT (If This Then That) [5].

680 M. Baranowski, A. Belloum, R. Cushing, O. Valkering

IFTTT is a web-based service that allows its users to create chains of conditional
statements [25]. These chains contain triggers from cloud services that can invoke
actions in other cloud services. Thus, IFTTT can be used to automate a web-
application task. It will be useful to have the ability to extract, combine and exploit
the best features of their favorite online services. With this ability users can de-
velop applications that can automate their tasks, extend usability or simply give
the user easier access to their data. In order to achieve this goal, a proof of concept
will be developed in which the Cookery architecture is designed for optimal com-
bination of functionalities of multiple cloud service providers. Important features
of this architecture are the cloud service provider APIs, a server to handle authen-
tication, Jupyter Notebook for user interaction and of course the Cookery kernel
implementations itself.

Cookery enables scientists to combine multiple cloud applications in an easy way.
On top of that, Cookery uses its own Domain Specific Language (DSL) to make it
more accessible for users without any programming experience. The Cookery system
comes with a couple handy features to make using cloud application seamless and
easy to use, among interesting:

1. Cookery is integrated with the Jupyter notebook,
2. it implements the OAuth 2.0 protocol for a convenient authorization, and
3. it supports the use of AWS Lambda functions.

2 COOKERY

Cookery is a framework to make programming with other cloud applications easy [6].
Cookery makes it possible to combine cloud services using a high-level language.
This high-level language, or Cookery language, has the same syntax as English,
which makes it possible for users without any programming experience to easily
create applications pipeline. A closer look at Cookery shows that it is actually
composed of three layers, which can be seen in Figure 1.

• The first layer (Layer 1) is used by a user to create Cookery applications using the
Cookery DSL language. In this layer data processing pipeline can be defined and
modified, in this paper we will refer to the data processing tasks as “activities”.
This is the highest abstraction level, which requires the least programming skills.

• The second layer (Layer 2) is for developers and, as opposed to the previous layer,
this layer makes use of the Cookery Domain Specific Language (DSL). Layer 2
is used for defining and modifying actions, subjects and conditions. This layer
abstracts the infrastructure details from application domain programmers.

• The third and last layer (Layer 3) is the Cookery backend and is also intended
for developers. At this level, developers can implement protocols, which are for
the activities and data, and communication with execution environments. This
is the most lower layer offered by the Cookery framework.

Cookery: Creating Data Processing Pipeline Using Online Services 681

Programming a Cookery layer is composed of simple statements called activ-
ities that will be executed by the framework. These activities consist of other
elements, namely variables, actions, subjects and conditions. These elements all
have their own role within the Cookery language. Variables are optional. They
help to keep track of results of activities that could be referenced later using the
labels; this feature helps to create data flows. An action refers to its implemen-
tation in the Cookery DSL and it represents remote operations. Subjects rep-
resent the input or output of an application, also known as remote data. They
can, for example, be used for retrieving data from a cloud service. Both ac-
tions and subjects can be followed by arguments and both implementations are
divided between all three levels. Conditions are used with keywords, like if or
with, to separate them from the rest of an activity. Those are routines defined
in Cookery DSL and are meant to transform data before it is passed to an action.
This data can be retrieved in different ways, including from a remote location in
a subject or from a variable. Layer 2 helps to develop the Cookery DSL, which
allows Layer 1 users to use appropriate actions, subjects and conditions (Cook-
ery elements). These elements all consist of a name, a regular expression and
a Python routine. Cookery comes with a toolkit in order to make things easy.
The toolkit enables a user to execute Cookery applications, generate new projects
and evaluate expressions. More details about the Cookery language can be found
in [6].

Figure 1. User roles and layers in Cookery [6]. The first layer is for developing appli-
cations, with Cookery language, the second layer is for defining actions, subjects and
conditions using the Cookery DSL and the third layer is the back-end where protocols are
implemented.

It can also provide more sophisticated features as code completion and trans-
formation of rich objects (e.g., graphs). For languages that have Python bindings

682 M. Baranowski, A. Belloum, R. Cushing, O. Valkering

(such as Cookery) the implementation of a kernel is much simplified using a ker-
nel wrapper [26] which reuses the kernel machinery in IPython to create new ker-
nels.

In the next subsection we present how Cookery systems implement the authen-
tication and enable the use of AWS Lambda functions.

2.1 Authentication

Because Cookery Layer 1 users create data pipelines that can connect features of
multiple cloud service providers together, these services often require third party
access and involve payment. One of the main principles behind Cookery is that
the user of Cookery application pays for its execution, not the application devel-
oper. While it makes a fair model for ensuring application reusability, it requires
addressing a non-trivial issue of providing someone’s resources to already exist-
ing application. Among the commonly used authentication methods OAuth 2.0 is
one of the best option to enable third party access. The OAuth protocol provides
a generic framework to let a resource owner authorize a third party that wants
to access to its resources [14]. The widely used OAuth protocol is not yet fully
without flows [15], however it does provide the user with the best combination of
convenience and safety. OAuth does not expose the user to third party root access-
right threats, and keeps the user in control over granted permissions. At the same
time it brings a very convenient experience to the user because a minimal action
from the end-users is required. Cookery takes a role of an OAuth client, it re-
quests authorization from remote services and stores granted token for future use.
A token is a cryptographically signed piece of text that is handed by the service
to the client. Any future client to service communication can be done with the
token. The service validates the token on requests which authorizes the service
call. These limited time token can be given by the user to third party services so
that they can access your resources on your behalf. The user and the service can
decide to revoke the token thus blocking third party access. It can be successfully
used in very different use-cases presented in Section 3. We decided not to make
OAuth an essential nor required part of Cookery; it can be optionally used by layer
3 developers. Figure 2 shows how Cookery achieves OAuth authentication, Jupyter
Notebook interacts with programming languages through the kernel. It acts as a
middleman; it executes code given by Jupyter Notebook (provided by a user), ex-
ecutes it and handles results by transforming it to the form required by the target
service.

2.2 Serverless Computing – AWS Lambda

Amazon Lambda is a service that provides serverless application deployment, many
cloud service providers such as Google Cloud Functions [27] and Azure Functions [28]
have FaaS in their portfolio. However, due to the programming language limitations
of the other two (Google to JavaScript and Microsoft to JavaScript, C#, F#, and

Cookery: Creating Data Processing Pipeline Using Online Services 683

Figure 2. In this diagram of OAuth protocol flow [4], Cookery plays a role of a client
regardless how it is deployed (Jupyter notebook, local script or on serverless com-
puting platform such as Amazon Lambda). Resource owner can be understood as
Cookery user while, from technical perspective, Resource owner can be the same en-
tity as Authorization server. This, in turn, is a cloud service provider such as
Google Cloud, Amazon AWS, etc. – usually sharing the same API as Resource
Server.

scripting options: PHP, Bash, Batch, and PowerShell) we decided to experiment
first with Amazon Lambda with Python 3.6. Our aim is to provide IFTTT [2]
inspired functionality:

1. Deploy Cookery applications to Amazon Lambda with a single command. De-
ployment requires gathering all application sources including Cookery applica-
tion, Cookery framework sources and all its dependencies within one zip file and
upload it together with Lambda function specification (more details are given
in Section 2).

2. Allow specifying periodic invocations. Periodic invocations require a trigger.
Amazon Lambda supports several ways of triggering Lambda functions, we chose
to use Amazon Cloud Watch Events [8]. It allows scheduling Lambda invocations
with an arbitrary interval (more details are given in Section 2).

3. Enable connections to third-party cloud services. In order to enable connection
to third-party cloud services, Cookery application has to be authenticated. If
Cookery is used in an interactive mode – after invoking the code, user waits
for results – all the missing authorization can be asked on demand. In case of
serverless deployment, there are two components that have to be authenticated
at different time:

• Amazon Lambda service for application in order to deploy Cookery applica-
tion in Amazon Lambda.

• Protocols used in Cookery application during application execution on Ama-
zon Lambda.

684 M. Baranowski, A. Belloum, R. Cushing, O. Valkering

2.3 Scheduling

We will use AWS CloudWatch to schedule AWS Lambda functions, by creating
rules. The scheduling function needs fewer parameters than the deployment func-
tion, which makes it easier to implement. A user will need to specify the period with
which the function needs to be invoked. This period consists of a number and a pe-
riod specifier like minutes, hours or days. Cookery adds some constraints to make it
easier to work with a period. On top of that Cookery can also easily check if a rule
already exists. The Cookery interface for scheduling Lambda functions first checks
the given period and, with the rule name, checks whether this rule already exists.
When this is the case, it just adds the Lambda function as a target to the rule.
Because AWS regulates a limit of 5 targets per rule and a maximum of 100 rules,
it is always possible to add every Lambda function to a rule. Cookery has to ex-
plicitly add permission for the rule to invoke the Lambda function; otherwise AWS
will give an error. To add permission, the name of the rule is needed to acquire its
ARN. A simple Cookery API Call allows the users to deploy and schedule a Lambda
function using one API call, as shown in Listing 1.

cookery deploy
−−function name=...
−−file name=...
−−handler=...
−−every=... COOKERY PROJECT PATH

Options:
−−function name TEXT Name of the Function
−−file name TEXT Name of the file where the handler function can be found,
−−handler TEXT name of the handler function
−−every TEXT the interval to invoke the function m like 1,m, 1hm or 1d,
−−help show this message and exit

Listing 1. Cookery command line API Call to deploy and schedule AWS Lambda functions

3 APPLICATION

To illustrate how Cookery authenticate to remote services, we will use a very simple
proof of concept use case which consists in implementing a GitHub monitor that
takes a repository property (in this case commits) and monitors it for changes (Fig-
ure 3). Whenever a change is detected, it triggers an action (email notification).
The proof of concept application works with the Jupyter notebook, which is a web
application itself. With this proof of concept application users can easily automate
a GitHub related notification process.

The access to the repository is achieved by the implementation of an OAuth
authentication, which is explained in detail in Figure 2. This implementation gives
the user a convenient and secure authentication process. The monitoring works
via periodic calls by a recursive function. This function compares the newest

Cookery: Creating Data Processing Pipeline Using Online Services 685

Figure 3. Scheme of the proof of the concept application GitHub monitor. The complete
code implementing the GitHub monitor in GitHub [30]

commit with the latest monitored commit. If there is a difference between these
two commits, an action is triggered. Because of the interval base of the moni-
toring mechanism, it could happen that two commits are made in one interval.
When this happens only one notification gets send. The chance of this happening
can be reduced by decreasing the interval. However, this will increase the server
load.

Another variant of the GitHub monitor has been implemented using AWS Lam-
bda [10]. This version of GitHub monitor application makes use of the GitHub
REST API to get all the information while being authenticated with a GitHub
personal access token. The scopes of this token can be configured by the user,
like giving access to all private repositories, but not being able to delete them
or to change user data. Making authenticated requests gives the opportunity to
send 5 000 requests per hour to the API, while making unauthenticated requests
only gives us 60 requests per hour. This program first checks if the authenticated
user has access to the given repository. This is done by sending a request using
Python library urllib. The request is also needed to authenticate to GitHub by
adding a header with the personal access token to it, which can be seen in List-
ing 2.

cookerydef
make request (url):

request = urllib.request.Request(url)
request.add header(”Authorization”, ”token”+github token)
response = urllib.request.urlopen(request)
data = response.read().decode(”utf−8”)
return data

Listing 2. The function to make requests to GitHub with authentication using urllib

Implementation of the GitHub monitor with using AWS Lambda functions. The
complete code implementing the GitHub monitor using AWS Lambda is available

686 M. Baranowski, A. Belloum, R. Cushing, O. Valkering

cookery deploy
−− function name = ”github monitor”
−− file name = ”github monitor”
−− handler = ”github monitor.handle”
−− every = 5mn ”https://github.com/mikolajb/cookerylambda/blob/master/

github monitor/github monitor.py”

Listing 3. Cookery call to deploy and schedule the GitHub monitor AWS Lambda
Function

in GitHub [31]. When a GET request is sent to https://api.github.com/user/
repos, a response in JSON format is sent back, which can easily be deserialized
to a Python object, containing the list of accessible repositories. This way we can
examine every repository and check if the target repository is among them. A second
more specific request is send to get the list of all the commits, sorted by time, with
the last commit first. In the response, we can see how many additions and deletions
are made, and what the changes are in every file. This information will then be
put into the body of an email, which is sent with Gmail using the Python SMTP
library. The authentication of Gmail is done with an application key, just like with
GitHub.

As mentioned before, the Lambda functions are stateless and terminate after
5 minutes. This means that we cannot use any variables after termination, except
when we save them to a database or communicate them back. The way the GitHub
monitor works is thus the simplest. We have the same problem with giving the
repository to check. This information will be lost after termination and needs to
be given every time the function gets invoked. This is where the environmental
variables come in. They can be given to a Lambda function as key-value pair
and they will be the same for every invocation when deployed. This makes it also
possible to reuse the GitHub monitor to check another repository, without changing
the code.

3.1 Finding Life Trends Using Data Analysis in Cookery

The use case shows how to create a data pipeline in Cookery [11]. The use case is
about analyzing Gmail in order to visualize life trends. As pointed out in Section 2,
Cookery framework offers a separation between the creating of general function by
developers (Layer 2) and the creation of user-specific programs by the end-user
(Layer 1). The layers reduce the amount of code that the end-user has to write, but
still allow flexibility. Layer 1 is where the end-user will be interacting. The user will
combine already defined activities to create a Cookery program. The use case aims
to create in Cookery a data processing pipeline similar to Stephen Wolfram “The
Personal Analytics of My Life” [12]. In our case the personal analytics is limited to
analyzing the emails of one of the authors. The data analytics pipeline combines
a number of online services providing the initial data Gmail service, and Google

https://api.github.com/user/repos
https://api.github.com/user/repos

Cookery: Creating Data Processing Pipeline Using Online Services 687

analytics service. A visual representation of the data flow for the project is shown in
Figure 4. This means that Cookery and the data pipeline within the need to handle
data from multiple sources, some of which need to be stored to a file or be kept in
the program memory, and give visual results back to the user.

Figure 4. Finding life trends using data analysis in the Cookery data processing pipeline
which is composed of two third-party services (Gmail, Google analytics)

The data pipeline can be broken into three steps:

1. The authentication step using OAuth protocol (Figure 4 – C): The first step is
to register the application at Google in order to obtain the credentials. After
the registration, it is possible to download the “client secret”, which is stored on
client side; this part is similar to the previous case using the GitHub monitor.
Now that the application is known at the OAuth authentication server, we can
start writing code to interact with the servers. In this case the application is
limited to read emails and access the prediction API. The credentials are stored,
so this verification needs to be done only once. Unless the scopes get changed,
the credentials expire or the user retracts the permission.

2. The retrieval of individual emails from the server (Figure 4 – E): In this phase,
it is possible to specify the characteristics of the request to read the emails,
an example could be the label “INBOX” or “SENT”. In the list of arguments
of the request are the IDs of individual messages that were sent, which can be
retrieved by their ID. For the purpose of this example, we are interested in the
body of the email, the time and the date and the list of recipients, which are
formatted as “Alias – Email address” and grouped by their address field (TO,
CC, BCC).

3. Implement the machine learning API (Figure 4 – F): This was done in a similar
way as with the Gmail API. We focused on the pre-trained models of the API.
These models are used to analyze and predict the language of the emails. Google
made the models based on their data set. A body of a message is sent to the
servers, analyzed and returned to the Cookery system. The possible outcomes

688 M. Baranowski, A. Belloum, R. Cushing, O. Valkering

of the semantics analysis are positive, negative or neutral. The text of each
email is categorized as either English, Spanish or French. The complete code
implementing the data analysis workflow for the email analysis case is available
in GitHub. The user can specify how many months of email they would like to
analyze. All the incoming and outgoing emails are analyzed. For the incoming
emails we are only looking at the date and time and the number of emails. For
the outgoing emails we are interested in the date and time, the participants,
number of emails, semantics and languages. All this information was stored as
an object per email in a dictionary.

After Cookery finished analyzing emails, we visualized the dictionary of analyzed
emails. The visualization was done outside Cookery using Matplotlib [13]. The plot
is based on the last six month of author’s personal emails which contain 470 outgoing
and 1 200 incoming messages. The results based on the time stamp of the email and
the number of emails are shown in Figure 5 a), and the results of the sentiment
analysis are in Figure 5 b).

4 RELATED WORK

This research is focused on the combination of multiple systems; it has a lot of
similarity with IFTTT (If This Then That) [14]. IFTTT is a web-based service
that allows its users to create chains of conditional statements. These chains con-
tain triggers from cloud services that can invoke actions in other cloud services.
Thus, IFTTT can be used to automate web-application tasks. Examples are up-
loading photos to Dropbox that were received by email or automatically uploading
the same content to multiple social media streams. IFTTT is focused on simplic-
ity and therefore only supports one trigger action pair. Other IFTTT alternatives
Zapier [16], and Microsoft Flow [17] differ from that approach and offer support for
longer chains of trigger/actions pairs. Apart from offering longer chains, Zapier and
Microsoft Flow use the same concept for workflow automation as IFTTT. Cook-
ery differs from these services by its ability to implement any data transformation,
because it can be extended with all the functionalities that Python has to offer.

In the article “Serverless Computation with OpenLambda” [18] the authors show
that we have reached a new stage in the sharing model with FaaS. Technology has
progressed from only sharing the hardware, which is done with virtual machines like
VMWare, sharing the hardware and the operating system, as seen with containers
like Docker, to sharing the runtime of a system. The handler is started in a con-
tainer, which can only be used by the handler itself. Although multiple containers
run in the same run-time, communication between containers is not possible. Other
functions would then be able to intercept your functions and gain access to valuable
information. On the other hand, a user will have to recognize some places where per-
formance issues can arise. The readiness latency, the time it takes to start, restart
or resume a container, can have consequences for the overall performance [18]. And
there are more like the number of containers per memory (container density), pack-

Cookery: Creating Data Processing Pipeline Using Online Services 689

a) Number of emails per day

b) Sentiment of the last 470 emails sent

Figure 5. Outcome of the sentiment analysis of the inbox of the email account of one of
the authors

age support, cookies and sessions. A study has compared the cost, performance and
response time of different implementation architectures such as monolithic architec-
ture, micro-service architecture operated by the cloud customer and micro-service
operated by AWS Lambda. With the micro-service architecture a developer will try
to develop an application as a suite of small services [19], which all run their own pro-
cess. The results of this study show that a micro-service operated by AWS Lambda
is up to 77.08 % cheaper per million requests than the other two methods, while

690 M. Baranowski, A. Belloum, R. Cushing, O. Valkering

the response times are faster than the cloud customer operated micro-service archi-
tecture and about the same as the monolithic architecture [20]. There are multiple
online platforms that offer FaaS. Some examples are Google Cloud Function [21],
Microsoft Azure, AWS Lambda and IBM OpenWhisk [22]. AWS Lambda is chosen
for this project, because it is the only one to offer the service in combination with
Python.

5 CONCLUSIONS AND FUTURE WORK

The goal of the Cookery framework is to enable scientists with little programming
background to define a data analysis pipeline and execute it on online services pro-
vided by multiple cloud providers. To achieve this goal Cookery had to simplify
process of the authentication and authorization, allowing the users to focus only on
creating the data processing pipeline. In this paper, we described extension to the
Cookery systems that allow for connections with cloud services using the OAuth 2.0
protocol. We used the “life trends” example to demonstrate how to create a data
processing pipeline in Cookery using online services namely the Gmail service, and
Google analytics. When developing the “life trends” example using cloud services,
the only limitations we faced were related to the fact that we used a free version of
the Google analytics, the machine learning API has a “User rate limit”, which might
have an impact on the performance of the time critical data processing pipeline. In
the “life trends” example, we only made use of services from a single service provider
namely Google.

Our next goal is to build data processing pipeline using service from different
providers like AWS Amazon and Microsoft Azure. The first step toward this goal
is described in the paper; we have developed an extension to use AWS Lambda
services. In the future Cookery will be extended with more services from different
cloud providers, to create a broader framework and to enable more developers to
create applications. For example, an interesting extension would be with AWS
DynamoDB [23] or AWS RDS (Relational Database Service) [24] to make it easier
to create and manage databases using Cookery. When we combine databases with
the functions of AWS Lambda, we can create more complicated applications and
deploy them using Cookery. This also means that the toolkit of Cookery can be
extended with more services and functionalities in future projects.

An important extension, we are currently investigating as a potential easy to de-
velop light web application is the recently established Function-as-a-Service (FaaS).
In the FaaS approach a user only runs a function on an external server. This is also
called serverless computing, because you do not need a server for your application
anymore. You basically have the function running on a server in the cloud. A user
of the application provides the input and the function returns the output. This
makes it possible for smaller businesses to develop their own application without
buying servers. Developers also do not need a system administrator to maintain the
servers, they do not need to write a complete infrastructure that can scale with the

Cookery: Creating Data Processing Pipeline Using Online Services 691

demands of the applications and they do not need to handle all the administration.
So basically, applications can scale up rapidly without needing to start new servers.

Inline with the FaaS concept we are looking at integrating this work with the
idea of micro-infrastructures [29]. A micro-infrastructure is a dedicated network of
application specific containers that are hosted on Kubernetes clusters. The con-
tainers expose functionality as FaaS so it is a natural coupling with Cookery. The
added benefit of a micro-infrastructure is to define your own complex routines, pack-
age them in containers and expose them as FaaS. These can be placed closer to the
data, in cases where the data is not on the public cloud but on HPC resources.

This can be developed further into a full-stack approach. An ecosystem of de-
velopment tools would be used to capture isolated functionality at each level of the
technical stack. The orchestration of the entire stack, composed of these isolated
functionalities, can then be expressed using the DSL. Including, but not limited to,
setting up (private) networks, data transfers, running compute routines in the cloud
or on HPC clusters, and invoking remote web services. In the spirit of Cookery,
each tool would provide a different abstraction level, and targets a specific level
of the technical stack and/or user role. This will not only make the life easier of
the scientists, operating at the highest level of the stack, but also supports efforts
by engineers at the underlying levels of the stack. The low to non-existing cou-
pling between isolated functionalities also facilitates reusability and maintainability.
Moreover, functionality can easily be swapped out for a different version or an al-
ternative implementation. To ensure the valid coherence of a application, composed
of isolated functionality, the DSL can be extended with a type system. The type
system will validate the application composition before it is executed, identifying
interoperability issues at compile time. This prevents unnecessary costs, i.e. devel-
opment time and resource usage expenses, caused by running invalid applications.

Acknowledgment

The authors thank Michael van Mill, Timo Dobber, and Dennis Kruidenberg –
students at the University of Amsterdam who helped in implementing the three
extensions of the Cookery framework presented in this paper.

REFERENCES

[1] Dropbox. https://www.dropbox.com/.
[2] Google Drive. https://www.google.com/drive/.
[3] Dropbox Statistics, Users, Growth and Facts for 2020. https://saasscout.com/

dropbox-statistics/.
[4] Harvard Business Review Analytic Services. Cloud Computing Comes of Age. 2015.
[5] Ur, B.—Ho, M. P. Y.—Brawner, S.—Lee, J.—Mennicken, S.—Picard,

N.—Schulze, D.—Littman, M. L.: Trigger-Action Programming in the Wild:
An Analysis of 200 000 IFTTT Recipes. Proceedings of the 2016 CHI Conference on

https://www.dropbox.com/
https://www.google.com/drive/
https://saasscout.com/dropbox-statistics/
https://saasscout.com/dropbox-statistics/

692 M. Baranowski, A. Belloum, R. Cushing, O. Valkering

Human Factors in Computing Systems (CHI ’16), ACM, 2016, pp. 3227–3231, doi:
10.1145/2858036.2858556.

[6] Baranowski, M.—Belloum, A.—Bubak, M.: Cookery: A Framework for De-
veloping Cloud Applications. Proceedings of IEEE International Conference on High
Performance Computing and Simulation (HPCS), 2015, pp. 635–638, doi: 10.1109/H-
PCSim.2015.7237105.

[7] van Mill, M.: A Cookery Extension to Simplify Cloud Service Integrations. Bach-
elor Thesis. University of Amsterdam, 2017, https://esc.fnwi.uva.nlthesis/
centraal/files/f704994072.pdf.

[8] Low-Level Clients. http://boto3.readthedocs.io/en/latest/guide/clients.
html, visited on 04/20/2017.

[9] https://aws.amazon.com/s3/.
[10] Dobber, T.: Cookery in AWS Lambda. Bachelor Thesis. University of Amsterdam,

2017, https://esc.fnwi.uva.nl/thesis/centraal/files/f274795790.pdf.
[11] Kruidenberg, D.: Finding Life Trends Using Data Analysis in Cookery. Bach-

elor Thesis. University of Amsterdam, 2017, https://esc.fnwi.uva.nl/thesis/
centraal/files/f628826658.pdf.

[12] Wolfram, S.: The Personal Analytics of My Life. 2012, https://writings.
stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/.

[13] Python Package Matplotlib. https://matplotlib.org.
[14] Yang, F.—Manoharan, S.: A Security Analysis of the OAuth Protocol. 2013

IEEE Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM), IEEE, 2013, pp. 271–276, doi: 10.1109/PACRIM.2013.6625487.

[15] Lodderstedt, T.—McGloin, M.—Hunt, P.: OAuth 2.0 Threat Model and Se-
curity Considerations. Internet Engineering Task Force (IETF), 2013.

[16] https://zapier.com/developer/documentation/v2/#what-is-zapier.
[17] Getting Started with Microsoft Flow. https://www.windowscentral.com/

getting-started-microsoft-flow.
[18] Hendrickson, S.—Sturdevant, S.—Harter, T.—Venkataramani, V.—

Arpaci-Dusseau, A. C.—Arpaci-Dusseau, R. H.: Serverless Computation with
OpenLambda. Proceedings of the 8th USENIX Conference on Hot Topics in Cloud
Computing (HotCloud ’16), 2016, pp. 33–39.

[19] Fowler, M.—Lewis, J.: Microservices: A Definition of This New Architectural
Term. 2014, https://martinfowler.com/articles/microservices.html.

[20] Villamizar, M.—Garcés, O.—Ochoa, L.—Castro, H.—Salamanca, L.—
Verano, M.—Casallas, R.—Gil, S.—Valencia, C.—Zambrano, A.—
Lang, M.: Infrastructure Cost Comparison of Running Web Applications in the
Cloud Using AWS Lambda and Monolithic and Microservice Architectures. 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2016, pp. 179–182, doi: 10.1109/CCGrid.2016.37.

[21] Google Cloud Functions. https://Cloud.google.com/functions/.
[22] IBM OpenWhisk. https://developer.ibm.com/openwhisk/.
[23] AWS DynamoDB. https://aws.amazon.com/dynamodb/.

https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1109/HPCSim.2015.7237105
https://doi.org/10.1109/HPCSim.2015.7237105
https://esc.fnwi.uva.nl thesis/centraal/files/f704994072.pdf
https://esc.fnwi.uva.nl thesis/centraal/files/f704994072.pdf
http://boto3.readthedocs.io/en/latest/guide/clients.html
http://boto3.readthedocs.io/en/latest/guide/clients.html
https://aws.amazon.com/s3/
https://esc.fnwi.uva.nl/thesis/centraal/files/f274795790.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f628826658.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f628826658.pdf
https://writings.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
https://writings.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
https://matplotlib.org
https://doi.org/10.1109/PACRIM.2013.6625487
https://zapier.com/developer/documentation/v2/#what-is-zapier
https://www.windowscentral.com/getting-started-microsoft-flow
https://www.windowscentral.com/getting-started-microsoft-flow
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/CCGrid.2016.37
https://Cloud.google.com/functions/
https://developer.ibm.com/openwhisk/
https://aws.amazon.com/dynamodb/

Cookery: Creating Data Processing Pipeline Using Online Services 693

[24] AWS RDS. https://aws.amazon.com/rds/.
[25] IFTTT: About IFTTT. https://ifttt.com/about.
[26] Making Simple Python Wrapper Kernels. http://ipython.readthedocs.io/en/

stable/development/wrapperkernels.html.
[27] Google Cloud Functions Documentation. 2017, accessed: 11-Dec-2017, available at:

https://Cloud.google.com/functions/docs/.
[28] Microsoft Azure: Azure Functions. 2017, accessed: 11-Dec-2017, available at: https:

//azure.microsoft.com/en-us/services/functions/.
[29] Cushing, R.—Valkering, O.—Belloum, A.—de Laat, C.: Towards a New

Paradigm for Programming Scientific Workflows. 2019 15th International Confer-
ence on eScience (eScience), San Diego, USA, 2019, pp. 604–608, doi: 10.1109/e-
Science.2019.00083.

[30] https://github.com/mikolajb/cookery.
[31] https://github.com/mikolajb/cookery/tree/master/cookery.

https://aws.amazon.com/rds/
https://ifttt.com/about
http://ipython.readthedocs.io/en/stable/development/wrapperkernels.html
http://ipython.readthedocs.io/en/stable/development/wrapperkernels.html
https://Cloud.google.com/functions/docs/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://doi.org/10.1109/eScience.2019.00083
https://doi.org/10.1109/eScience.2019.00083
https://github.com/mikolajb/cookery
https://github.com/mikolajb/cookery/tree/master/cookery

694 M. Baranowski, A. Belloum, R. Cushing, O. Valkering

Miko laj Baranowski is Ph.D. student at the University of Amsterdam in the Multiscale
Networked Systems (MNS) group. His research fields are new paradigms in computer
language abstractions.

Adam Belloum is Senior Researcher at the Computer Science
Department of the University of Amsterdam and the technol-
ogy lead working on optimized data handling at Dutch National
eScience Center. He received his M.Sc. and Ph.D. degrees from
the Compiegne University of Technology, France.

Reginald Cushing is PostDoc at the University of Amsterdam
in the Multiscale Networked Systems (MNS) group. His research
fields are in distributed systems with a focus and data processing,
federation, and scientific workflows.

Onno Valkering is Scientific Programmer in the Multiscale
Networked Systems (MNS) research group, at the University of
Amsterdam (UvA). His interests are distributed data processing,
domain-specific languages, and privacy-preserving techniques.

Computing and Informatics, Vol. 39, 2020, 695–723, doi: 10.31577/cai 2020 4 695

PERFORMANCE EVALUATION OF PARALLEL
HAEMODYNAMIC COMPUTATIONS
ON HETEROGENEOUS CLOUDS

Oleg Bystrov, Arnas Kačeniauskas, Ruslan Pacevič
Vadimas Starikovičius, Algirdas Maknickas
Eugeniuš Stupak, Aleksandr Igumenov

Vilnius Gediminas Technical University
Saulėtekio 11, Vilnius 10223, Lithuania
e-mail: {oleg.bystrov, arnas.kaceniauskas, ruslan.pacevic,

vadimas.starikovicius, algirdas.maknickas, eugenius.stupak,

aleksandr.igumenov}@vgtu.lt

Abstract. The article presents performance evaluation of parallel haemodynamic
flow computations on heterogeneous resources of the OpenStack cloud infrastruc-
ture. The main focus is on the parallel performance analysis, energy consumption
and virtualization overhead of the developed software service based on ANSYS Flu-
ent platform which runs on Docker containers of the private university cloud. The
haemodynamic aortic valve flow described by incompressible Navier-Stokes equa-
tions is considered as a target application of the hosted cloud infrastructure. The
parallel performance of the developed software service is assessed measuring the par-
allel speedup of computations carried out on virtualized heterogeneous resources.
The performance measured on Docker containers is compared with that obtained
by using the native hardware. The alternative solution algorithms are explored in
terms of the parallel performance and power consumption. The investigation of
a trade-off between the computing speed and the consumed energy is performed by
using Pareto front analysis and a linear scalarization method.

Keywords: Cloud computing, parallel computing, haemodynamic flows, parallel
performance analysis, energy consumption, bi-objective optimization problem

Mathematics Subject Classification 2010: 68M14, 68M20, 65Y05

696 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

1 INTRODUCTION

In spite of noticeable recent achievements in medicine and technology, cardiovascu-
lar diseases are one of the leading causes of death in the world [1]. The heart is
a complex system governed by haemodynamics [2], structural dynamics and elec-
tromagnetics [3, 4]. The efforts to create fully coupled holistic models of the heart
valves have not been applied to a clinical patient-specific base yet. Present-day
in-vivo measurement techniques can only resolve large-scale features of the haemo-
dynamic cardiovascular flows [2]. Despite the progress in the numerical methods
and constantly increasing power of modern computers, the considered problem is still
highly challenging, owing to complex moving geometries, intrinsic flow unsteadiness,
very intense velocity gradients, simulation divergence and mesh dependent numeri-
cal solutions. Most of the performed haemodynamic analyses have been restricted
to non-physiological flow regimes, simplified solution domains, laminar flow simula-
tions and relatively coarse space discretization due to computational challenges [3].
Computational fluid dynamics (CFD) simulations [2, 5] of blood flow in geome-
tries extracted from medical images seem to be well suited for the patient-specific
analysis and are compatible with clinical routine [6]. The required level of detail
makes the patient-specific haemodynamic simulations of heart chambers computa-
tionally very expensive [3]. Naturally, to establish quantitative links between the
aortic valve flow patterns and cardiac disease, parallel computations have become
an obvious option for significantly increasing computational capabilities. Software
for complex biomechanical and haemodynamic computations is usually deployed as
an HPC solution [7].

Cloud computing is a distributed computing paradigm that has recently gained
great popularity as a platform for on-demand, high-availability and high-scalability
access to resources. Generally, clouds provide three levels of services [8]: Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS). Deployment of the software services (SaaS) for data preparation, high per-
formance computation and visualization on the cloud infrastructure increases the
mobility of users and achieves better exploitation because clouds feature flexible
management of resources. Thus, flexible cloud infrastructures and software services
are perceived as a promising avenue for future advances in the multidisciplinary area
of haemodynamic computations, such as numerical analysis of the patient-specific
aortic valve flows. However, cloud computing still lacks case studies and quantitative
comparison of performance in the case of specific applications. Most of evaluations of
virtualization overhead and performance of cloud services have been based on stan-
dard benchmarks [8], therefore, the impact of the numerical issues and algorithmic
aspects of haemodynamic applications on the performance of parallel computations
remains unclear. The growing demand for cloud services and modern computational
needs results in the development of large-scale IT infrastructures, which cause a con-
siderable increase in power consumption [9]. Power efficiency is a crucial factor in
the cloud computing environment. Green cloud computing is cloud computing with
the efficient use of power, which helps to reduce power consumption and carbon

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 697

emissions. Energy consumption varies significantly depending on the application,
workload, scheduling strategy and virtualization overhead. Power efficiency can be
reduced, when virtualization is used, contrary to physical resource deployment, to
grant all application requests [10]. In cloud computing, the problem of energy-
efficiency is still a challenge mainly because of the variety of applications that need
to be processed on cloud infrastructures and the demand for high performance.

The present article describes the efficiency analysis of parallel numerical al-
gorithms for performance- and energy-aware computations of the haemodynamic
aortic valve flows carried out on Docker containers of the heterogeneous cloud in-
frastructure. The aim of the presented research is to demonstrate that efficient
computations on heterogeneous clouds require the elaborate selection of numerical
solution algorithm and domain decomposition method that are highly dependent
on the considered application. Information provided by the synthetic benchmarks
usually performed on clouds does not include all important factors and it is not suf-
ficient for finding the best hardware setup. Therefore, the application specific tests
need to be performed before the production runs to optimize the parallel and energy
efficiency of computationally demanding applications. Other parts of the article are
arranged as follows: in Section 2, the related works are overviewed and discussed,
Section 3 describes the patient-specific aortic valve problem and Section 4 presents
the hosted cloud infrastructure and the developed software services. The parallel
performance analysis, energy consumption and solution of a bi-objective optimiza-
tion problem are discussed in Section 5, while the concluding remarks are presented
in Section 6.

2 THE RELATED WORKS

Cloud computing is becoming a natural solution to the problem of expanding compu-
tational needs due to its on-demand nature, low-cost and offloaded management [8].
For haemodynamic analysis, cloud computing and Linux containers can offer a con-
venient, scalable alternative to traditional methods of managing computational re-
sources.

There are different implementations of cloud software that organizations can
utilize for deploying their own private cloud. OpenStack is an open source cloud
management platform delivering an integrated foundation to create, deploy and scale
a secure and reliable public or private cloud [11]. Another popular cloud computing
framework, Eucalyptus [12], implements infrastructure services enabling users to run
and control virtual machine (VM) instances across a variety of physical resources.
Cloud computing makes the extensive use of virtual machines (VM) because they
allow workloads to be isolated and the resource usage to be controlled. Xen is primar-
ily a bare-metal, type-1 hypervisor which can be directly installed in the computer
hardware without the need for a host operating system [13]. Kernel Virtual Machine
(KVM) [13] is a feature of Linux that allows Linux to act as a type 1 hypervisor,
running an unmodified guest operating system inside a Linux process. Containers

698 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

present an emerging technology for improving the productivity and code portability
in the cloud infrastructures. Container-based virtualization was initially viewed as
a lightweight alternative to virtual machines. Rather than running a full operat-
ing system on virtual hardware, container-based virtualization modifies an existing
operating system to provide extra isolation. Container runtimes, such as LXC [14]
and Docker [15], largely abstract away the differences between the many operating
systems that users run. In many cases, Docker container images require less disk
space and I/O than the equivalent VM disk images due to the layered file system.
Thus, Docker has emerged as a standard runtime, image format, and build system
for Linux containers. HPC vendors have also begun integrating native support for
Docker. For example, IBM has added Docker container integration to Platform LSF
to run the containers on an HPC cluster [16]. Container computing has revolu-
tionized the way groups are developing, sharing, and running software and services.
Recently, container computing has gained traction in the HPC community through
enabling technologies like Docker, Charliecloud [17] and Singularity [18]. Container
runtimes, such as Singularity and Charliecloud, allow end-users to run containers in
environments, where standard Docker tools would not be feasible. Charliecloud [17]
employs the Linux user and mount namespaces to run industry-standard Docker
containers with no privileged operations or daemons on center resources. Singu-
larity [18] is a novel containerization technology that proposes quickly deployable
and transferable containers without encapsulating an entire OS inside the containers
images. Sauvanaud et al. [19] have investigated performance of big data applica-
tions based on Hadoop, performing scenarios on Singularity and Docker instances.
UberCloud application software containers have provided ANSYS Fluids and Struc-
tures software [20]. However, it is hardly possible to provide precise guidelines
regarding the optimal cloud platform and virtualization technology for each type
of research and application [8]. Moreover, the performance is a critical factor in
deciding whether or not containers are viable for scientific software.

The performance of virtual machines and lightweight containers has already re-
ceived some attention in the academic literature because they are crucial components
of the overall cloud performance. Seo et al. [21] have compared the performance of
containers and virtual machines for non-scientific software stacks deployed in the
cloud. In the research performed by Kačeniauskas et al. [22], the performance of the
private cloud infrastructure and virtual machines of KVM has been assessed test-
ing CPU, memory, hard disk drive, network and the software services for medical
engineering. The measured performance of the virtual resources has been close to
the performance of the native hardware measuring only the memory bandwidth and
disk I/O. Di Tommaso et al. [23] have compared the performance of some commonly
used genetics analysis software running natively and inside a container. Production
load for scientific experiments carried out on Docker containers has been investi-
gated by Mazzoni et al. [24]. Estrada et al. [25] have executed genomic workloads
on the KVM hypervisor, the Xen para-virtualised hypervisor and LXC containers.
Xen and Linux containers exhibited near-zero overhead. In the previous work of the
authors [26], the performance of the developed software services for haemodynamic

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 699

computations was measured on Xen hardware virtual machines, KVM virtual ma-
chines, Docker containers and compared with the performance achieved by using the
native hardware. Most of the discussed performance studies [23, 24, 25, 26] have
found negligible performance differences between a container and a native hardware.

Han et al. [27] have performed MPI-based NAS benchmarks on Xen and showed
that the measured overhead became higher when more cores were added. Strong
and weak scalability of the alternative parallel solvers for the aortic valve flows has
been examined in Rocks cluster [28], but virtualisation overhead and alternative
domain decomposition methods have not been considered. A study [29] on the use
of container-based virtualisation in HPC has revealed that Xen VM was slower than
LXC container by roughly of the factor of 2, while a native server and LXC container
had near-identical performance. Hale et al. [30] have shown that the performance
of Docker containers, when using the system MPI library for parallel solution of the
Poisson’s equation carried out by FEniCS software, was comparable to the native
performance. Mohammadi and Bazhirov [31] have performed the High Performance
Linpack benchmark on cloud computing infrastructures managed by Amazon Web
Services, Microsoft Azure, Rackspace, IBM SoftLayer and demonstrated that the
performance per single computing core on public cloud could be comparable to
modern traditional supercomputing systems. The authors of the present article
have performed the initial MPI-based benchmarks [32] on virtualized resources of
homogeneous OpenStack cloud infrastructure.

The pervasive use of cloud computing and the resulting rise in the number of
hosting centres have brought forth many concerns including the cost of power, as
well as peak power dissipation and cooling. One of the great challenges of cloud in-
frastructures is to manage system resources in an energy-efficient way. In computer
infrastructures, energy-efficiency can be enhanced at three different levels [33], such
as energy-efficient applications, energy-efficient hardware and power-aware resource
management. Energy-efficient applications are developed using the energy-efficient
algorithms [34], special lower level programming techniques, including dynamic volt-
age and frequency scaling [35], data reuse methodology [36], etc. However, manual
tuning of application for higher energy-efficiency remains a time consuming and chal-
lenging task. Low-power CPU, memory and other components of energy-efficient
hardware [37] can effectively support the static power management. The dynamic
power management employs load balancing techniques [38] and power-scalable hard-
ware components [35] to optimize energy consumption. Load balancing methodolo-
gies can be characterized as solving a trade-off between power supply and system
performance. Tseng and Figueira [39] have investigated power consumption of mul-
tithreaded processes on multicore machines and found that energy-optimal config-
uration was usually the most efficient solution in the case of CPU-bounded tasks.
Computations on several multicore nodes, communicating by MPI means, have not
been investigated. Pan et al. [40] have investigated power consumption and execu-
tion time of applications from NAS parallel benchmark suite on a power-scalable
cluster. However, the influence of virtualization layer has not been considered. In
virtualized cloud infrastructures, server consolidation and load balancing are some

700 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

of those techniques that have gained premier importance for power-aware resource
management [41]. Guo et al. [42] proposed heuristic algorithm for dynamic consoli-
dation of heterogeneous VMs based on the analysis of the historical data.

Power models and power management algorithms are necessary for system de-
signers to ensure that an application execution does not exceed the power constraints
of a system. Moreover, performance and energy models are required for application
developers to optimize time and energy consumption. The performance and en-
ergy profiles of real-life scientific applications on modern parallel architectures are
not smooth or monotonous and may deviate significantly from the shapes that al-
lowed traditional and state-of-the-art load balancing algorithms to minimize their
computation time. Lastovetsky and Manumachu [43] have proposed new model-
based methods and algorithms for minimization of time and energy of computations
for general shapes of performance and energy profiles of data parallel applications
observed on the homogeneous multicore clusters. Zhang et al. [44] introduced an
analytical hierarchy process based model to perform the decision-making for virtual
machine migration towards green cloud computing. The bi-objective optimization
problem for performance and energy for data-parallel applications on homogeneous
clusters has been formulated in [45]. Finally, the survey [46] concludes that there
exists no predictive model today truly and comprehensively capturing performance
and energy consumption of the highly heterogeneous and hierarchical architecture of
the modern HPC node. Moreover, computational performance and energy efficiency
of any non-trivial application is highly dependable on its specific features and the
selection of the best suitable numerical methods [47, 48, 49].

To the best of our knowledge, there are no reports in the literature on attempts
to optimize the parallel performance of real-life application on heterogeneous cloud
in terms of both consumed time and energy. The novelty of the presented research
is the extensive efficiency analysis, which evaluates the parallel speedup on hetero-
geneous cloud resources, virtualization overhead, a trade-off between the computing
speed and the consumed energy, performance of the applied domain decomposition
methods and application specific issues of the haemodynamic flows. The presented
study supports and advances the idea that time and energy performance models
need to be built as discrete functions of problem size, approximating the measured
data from application tests on the particular computing architecture. Such discrete
functions can be used as input for the performance and energy optimization of the
considered application on the particular architecture.

3 A TARGET APPLICATION

The aortic valve has a complex 3D geometry, which is composed of three leaflets and
Valsalva sinuses connected together through the commissures. The patient-specific
aortic valve geometry was represented by the developed 3D geometric model [50]
constructed from the parametric curves according to the obtained patient-specific
geometric parameters. The 3D images of the aortic valve of a human subject were

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 701

obtained by using the computer tomography equipment GE LightSpeed VCT in the
Cardiology and Angiology Centre of Vilnius University Hospital “Santaros Klinikos”.
The Medical Imaging Interaction Toolkit (MITK) [51] was employed to extract
the geometric parameters of the aortic valve from the obtained DICOM images
(Figure 1). Finally, the geometric model constructed according to the obtained
patient-specific geometric parameters was imported into the ANSYS Workbench for
mesh generation.

Figure 1. Extraction of the geometric parameters from DICOM images

The pulsatile flow of viscous incompressible fluid is described by the Navier-
Stokes equations [52] solved by the finite volume method. The systolic phase of the
cardiac cycle was simulated by applying at the inlet a time-dependent velocity of
the plug flow based on the clinical Doppler measurements. The measured velocity
reached the maximal value of 1.44 m/s during the phase of the peak systole t = 0.14 s,
while the simulation time interval of 0.36 s was considered. All simulations started
from a zero initial condition and the prescribed inflow was accelerated according
to the measured waveform. The no-slip boundary conditions were prescribed for
velocity on the aorta walls and leaflet surfaces. On the outlet, the prescribed pressure
and zero velocity gradient normal to the boundary were applied. The turbulence
intensity of 5 % and the hydraulic diameter equal to 0.018 m were specified on the
inlet. The density of the blood was set to ρ = 1 060 kg/m3. The dynamic viscosity
coefficient was µ = 0.004028 kg/ms. Other details of the applied numerical model
and references can be found in [53, 54].

Figure 2 shows flow vortices, illustrating the complexity of the 3D flow pattern
at t = 0.1636 s in the aortic sinuses. Figure 2 a) presents the results obtained by
using the k− ε turbulence model [53], while Figure 2 b) shows the data obtained by
using the k − ω turbulence model [53]. The velocity field was visualized by using
the streamlines coloured according to the pressure field. The developed vortices are
detached and move downstream in the ascending aorta as the flow starts to decel-
erate after passing the phase of the peak systole. It is worth noting that different

702 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

a) k − ε turbulence model b) k − ω turbulence model

Figure 2. Flow vortices at t = 0.1636 s in the aortic sinuses

vertex patterns can be obtained by using different turbulence models. The previous
research [54] had shown that the high Reynolds number k− ε turbulence model sig-
nificantly smoothed the vortex field. Thus, the shear-stress transport (SST) k − ω
model [53] is considered for the developed software service because it is more suit-
able for the simulation of relatively low Reynolds number turbulent flows past aortic
valve. Moreover, it can be concluded that the considered benchmark is rather com-
plex from the numerical point of view.

The way of coupling between the velocity and pressure is an essential part of
any numerical scheme for the solution of Navier–Stokes equations [52]. There are
two main strategies to perform the velocity-pressure coupling, either a segregated
or a coupled approach. In the segregated approach, equations for all variables in
the system are decoupled by using the fixed known values from the last iteration of
the other independent variables. The linear systems obtained after the discretiza-
tion can be solved separately for all variables. This approach has the advantage
of yielding small storage requirements and systems amenable to solution by clas-
sical iterative methods because of the standard structure and properties of system
matrices. Unfortunately, suppressed interlinkage between the partial differential
equations results in serious drawbacks, such as convergence deterioration and the
need for under-relaxation. The drawbacks of segregated schemes and tremendous
increase in the available computer memory have stimulated the search for coupled
solution algorithms [55]. The idea is to solve discretized momentum and pressure-
based continuity equations together in one system of linear equations. Retaining
the coupling between the momentum and pressure equations promotes the stability
and accelerates the convergence rates. Application of the coupled scheme is advised
when the quality of the mesh is poor, non-linear iterations are very expensive due
to the time-consuming physical models for constitutive relations, or if larger time
steps are required. However, for significantly reduced number of outer iterations of
coupled scheme, we pay a price with a solution of four times larger systems of linear
equations with non-standard matrices. There is a danger that the advantage of the
higher convergence rate will be countered by the increase in computational time in-
curred in the solution of the enlarged system of equations. Thus, the coupled [55, 5]
and PISO [56] schemes were considered as the alternative algorithms to investigate
the performance of the developed software service.

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 703

Simulations of the turbulent aortic valve flows are time consuming, therefore,
parallel computations have become an obvious option for significantly reducing com-
puting time. Domain decomposition approach and message passing technology were
used for parallel computations performed by ANSYS Fluent. The default option of
MPI library employed by ANSYS Fluent was IBM Platform MPI 9.1.4.2. Communi-
cation pattern was highly influenced by the applied domain decomposition method
because each process, working on its subdomain, mostly communicates with pro-
cesses, working on neighbouring subdomains. The most often the domain decom-
positions were performed by ParMETIS library. However, the alternative Cartesian
axes and cylindrical z-coordinate methods were also considered. Solving the largest
benchmark problem of 3.2 million cells on 5 nodes (20 cores) and performing the
domain decomposition by ParMETIS, 227 MB and 405 MB were transferred during
one iteration in the case of the coupled and PISO solution algorithms, respectively.
55 388 MB and 58 320 MB were transferred during the whole test run in the case of
the coupled and PISO schemes, respectively. The peak memory consumption of the
largest benchmark problem solved on one node reached 11.5 and 9.0 GB, in the case
of the coupled and PISO schemes, respectively. In the case of the largest benchmark
problem of 3.2 million finite volumes solved on 5 nodes (20 cores), the averaged CPU
utilization was equal to 99.84 % and 99.25 % for the coupled and PISO solution al-
gorithms, respectively. Thus, the initial investigation showed that performance of
haemodynamic computations might depend on the numerical solution algorithm,
the number of used nodes (cores) and the applied domain decomposition method.

4 CLOUD INFRASTRUCTURE AND THE DEVELOPED
SOFTWARE SERVICES

The university private cloud infrastructure based on OpenStack Stein version [11]
is hosted in Vilnius Gediminas Technical University. The deployed capabilities of
the OpenStack cloud infrastructure include Compute Service Nova, Networking
Service Neutron, Image Service Glance, Identity Service Keystone, Object Stor-
age Service Swift and Block Storage Service Cinder. The Ubuntu 18.04.3 LTS re-
lease was installed in the host nodes. Linux containers were managed with Docker
19.03.2, which created an abstraction layer between computing resources and the
services using them. The containers had the following characteristics: 4 cores,
31.2 GB RAM, 80 GB HDD and Ubuntu 18.04.3 LTS release. The cloud infras-
tructure is composed of several different types of nodes connected to 1 Gbps Eth-
ernet LAN. Hardware characteristics of faster nodes hosting the containers are
listed below: Intel®Core i7-6700 3.40 GHz CPU (4 cores), 32 GB DDR4 2 133 MHz
RAM and 1 TB HDD. Hardware characteristics of slower nodes are listed below:
Intel Core i7-4790 3.60 GHz CPU (4 cores), 32 GB DDR3 1 866 MHz RAM and
1 TB HDD.

The OpenStack cloud IaaS provides the platforms to develop and deploy soft-
ware services called SaaS (Figure 3). In the developed cloud infrastructure, only

704 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

Figure 3. The layers of cloud services

one virtualization layer is used to limit virtualization overhead. In the considered
implementation, OpenStack executes and manages Docker containers on bare metal
nodes. The cloud infrastructure is managed by using jclouds API [57] providing
unified access to EC2 services. The jclouds API binds HTTP/REST services to
synchronous and asynchronous Java APIs. Moreover, jclouds API supports 30 cloud
providers and cloud software stacks offering high portability. A user-friendly Cloud
Manager [26] has been developed by using jclouds. Monitoring of the running in-
stances, volumes and images is available for the user. SaaS jobs can be run by
the developed launchers and monitored by the Cloud Manager. The platform as
a service was provided on the basis of the popular numerical modelling software
ANSYS Fluent [53], which was widely used by researchers and engineers to solve
various CFD applications. ITK [58] was deployed on cloud infrastructure as PaaS
for developing medical image processing applications. ITK is a cross-platform,
open-source application development framework widely used for the development
of image segmentation and image registration software. ITK employs leading-edge
algorithms for registering and segmenting multidimensional data. A lot of soft-
ware tools and environments have been developed by using ITK to segment struc-
tures in 3D medical images. A Visualization Toolkit (VTK) [59] is deployed as the
platform for developing visualization software. The academic numerical software
developed by the university researchers usually lacks the required visualization ca-
pabilities, therefore, a wide variety of visualization algorithms provided by VTK can
fill this gap in the cloud infrastructure. The applications of the discussed toolkits
are platform independent, which is very attractive for heterogeneous cloud architec-
tures.

The SaaS layer contains software services developed on top of the provided plat-
forms (Figure 3). Software services were provided for performing medical image
segmentation to obtain the patient-specific geometry and to prepare the patient-
specific model of the aortic valve. The medical image segmentation was performed
and geometric parameters were obtained by using the MITK [51], which was based
on the ITK platform, but also used VTK. The software service ValveFlows was
developed by using ANSYS Fluent for computations of the patient-specific aortic

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 705

valves [26]. Computational results were visualized using the open-source ParaView
software [60] and the cloud visualization service VisLT [61] deployed on top of the
VTK platform. VisLT was supplemented with the developed middleware compo-
nent, which could reduce the communication between different parts of the cloud
infrastructure.

5 THE ANALYSIS OF PARALLEL PERFORMANCE
AND ENERGY CONSUMPTION

The presented analysis aims at investigating the parallel performance and energy
consumption of the developed software services for haemodynamic flow computa-
tions on Docker containers managed by the OpenStack cloud infrastructure. Ini-
tially, the considered benchmarks were solved on 5 nodes with 4 cores each, which
resulted in homogeneous virtual architecture of 5 Docker containers using 20 cores.
3 slower nodes with 4 cores each were added to perform computational experiments
on heterogeneous virtual resources, which resulted in 8 containers using 32 cores.
The following subsections present the results of the performed research on virtual-
ization overhead, parallel performance, the influence of the applied domain decom-
position methods, power consumption, energy-efficiency and a trade-off between the
computing time and the consumed energy.

5.1 Execution Time and Virtualization Overhead

First, the computational performance of the considered numerical algorithms and
overhead induced by the virtualization were investigated. The benchmark problem
was solved on 8 heterogeneous containers (8 nodes, 32 cores) using discrete meshes
of the increasing size of 0.8, 1.6 and 3.2 million cells. In Figure 4 a), execution
times obtained solving the benchmark on the OpenStack cloud are presented. In
accordance with our previous findings [28], the solution times obtained by using
the PISO numerical algorithm (P08, P16, P32) were shorter than those attained by
using the coupled numerical algorithm (C08, C16, C32).

In the present research, the size of virtualization overhead was also investigated.
In Figure 4 b), the percentage difference in performance between the native hard-
ware and the Docker containers is presented. It can be observed that the relative
time difference is smaller than 1 % for tests on one and two nodes, i.e. using 1, 4
and 8 processes. These findings are consistent with the results reported in the liter-
ature [23, 24, 26] and confirm the low overhead of the employed Docker containers.
However, the growth of the virtualization overhead can be observed, when the num-
ber of nodes for the solution of the fixed size problem is increased. It is worth noting
that the overhead obtained by using the coupled numerical algorithm is consistently
bigger. These effects were caused by the increasing part of the communication time
in the overall solution time. For the increasing number of parallel processes, the la-
tency of the network communication becomes more and more important, especially,

706 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

a) execution time

b) virtualization overhead

Figure 4. The performance of the developed cloud software service

for smaller size problems. On average, the measured latency of the native network
was 17.5µs, while that of the virtual network was 23.0µs, which revealed 24 % la-
tency increase. The increased latency of a virtual network has also been reported
in the literature [22].

5.2 Parallel Performance

At the next stage, the parallel scalability and efficiency of the considered algo-
rithms were studied by performing computations on heterogeneous cloud infrastruc-
ture.

In Figure 5, the parallel scalability results obtained on 5 faster homogeneous
nodes (20 cores totally) are presented. The parallel scalability is evaluated by using
parallel speedup values Sp = T1/Tp, where T1 and Tp are execution times measured

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 707

Figure 5. Speedup of parallel computation on homogeneous resources

by solving the benchmark problem with 1 and p processes, respectively. It can be
observed that the parallel PISO algorithm demonstrated significantly higher parallel
scalability and efficiency than the parallel coupled algorithm. As could be expected,
the parallel performance metrics (speedup and efficiency) were greater for a bigger
problem. This is in accordance with the theory of parallel algorithms. Noticeably,
the difference is more significant for the PISO algorithm, as the performance of the
coupled algorithm is bounded by the capacity of the network even for the problems
of a larger size. The parallel PISO algorithm shows even super-linear speedup due to
the cache effects associated with smaller working data sets for a fixed size problem
and the increasing number of the employed cores. It is interesting to note that, in
this study, the measured parallel performance metrics are much better than those
obtained in the previous research on OpenFOAM-based parallel solvers [47, 62].

In the present research, parallel computation tests were performed using virtu-
alized heterogeneous resources by adding up to 3 slower nodes. The performance
of the slower nodes was 12 % and 20 % lower according to Linpack and ValveFlows
benchmarks, respectively. Figure 6 presents the parallel speedup values measured
using heterogeneous cloud resources (8 nodes, 32 cores). The sequential time mea-
sured on one faster core is considered for calculation of speedup values. The largest
problem with 3.2 million cells was solved by using the coupled (Figure 6 a)) and
PISO (Figure 6 b)) algorithms. It is well-known that the parallel performance of
this type of numerical algorithms largely depends on the quality of the domain de-
composition. The domain decomposition method should not only ensure the load
balance between the parallel processes, but also minimize the amount of communi-
cations between the neighbouring regions. In this work, the performance of three
domain decomposition methods was investigated. The applied method from the
well-known ParMETIS library (the curve “Metis” in Figure 6) is based on the
parallel multilevel multiconstraint k-way graph partitioning [63]. The Cartesian
axes method (the curve “Cart” in Figure 6) uses the bisection of the domain per-

708 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

a) The coupled algorithm

b) The PISO algorithm

Figure 6. Speedup of parallel computation on heterogeneous resources

pendicular to all coordinate axes [53]. The cylindrical z-coordinate method (the
curve “Cyl-z” in Figure 6) bisects the domain only along the z cylindrical coordi-
nate [53].

It is worth noting that the performance results of all three domain decomposi-
tion methods were quite similar up to 20 cores (5 homogeneous nodes). However,
the addition of the first slower node was not beneficial. On the contrary, it caused
the decrease in the speedup, i.e. the increase in the solution time, which was sig-
nificant in most of the cases. This observation once more illustrated the critical
dependence of considered parallel application on the network performance. It also
should be noted that slower nodes are not only computationally slower, but have
42.5 % higher virtual network latency (40.0µs instead of 23.0µs) as well. However,
overall performance increase can be achieved by adding 2 or 3 slower nodes. In

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 709

this case, the heterogeneous nodes made 37.5 % of all resources, and a considerable
increase in speedup values was achieved.

The heterogeneous load was evaluated, assigning the relative weights to the
slower cores in the cases of using the Cartesian axes and the cylindrical z-coordinate
methods. The parallel performance was improved, but the observed increase in the
speedup was not significant (the curves “Cart-W” and “Cyl-z-W” in Figure 6). Par-
allel computations, using the domain decomposition performed by Metis, revealed
higher speedup values. Thus, the most important factor was the ability of the mul-
tilevel graph partitioning method to reduce the amount of communication between
the neighbouring regions in the case of a larger number of processes, the increased
data transfer and higher network latency.

5.3 Power Consumption

Figure 7 presents the averaged values of the consumed power in watts measured
by performing a synthetic CPU benchmark (the curve “CPU”), a synthetic mem-
ory benchmark (the curve “MEM”), the computations based on the coupled al-
gorithm (the curve “C32”) and the computations based on the PISO algorithm
(the curve “P32”). The power was measured by using the EnerGenie energy meter
EGM-PWM-LAN. The representative computational experiments were performed
10 times, and the standard deviations were computed. The results obtained by solv-
ing the benchmark problem with 3.2 million cells on 8 heterogeneous nodes (32 cores
totally) are shown in Figure 7. In agreement with our previous findings, power mea-
surements demonstrated that the PISO algorithm was better in utilizing the CPU
cores, i.e., it was more CPU-intensive than the coupled algorithm. Consequently,
the software service ValveFlows based on the PISO algorithm consumed more power
per fixed time interval, but solved the considered benchmark faster (Figure 4 a)).
The power difference became noticeable, when 8 processes (2 nodes) were employed.
However, it stabilized at around 20 W on average and did not grow further, in-
creasing the number of the employed nodes, as could be expected from the growing
differences in computational performance (Figures 5 and 6).

In Figure 7 b), the effects of heterogeneity are highlighted by showing the extrap-
olated power consumption levels for homogeneous hardware (the curves “CPU-H”,
“MEM-H”, “C32-H” and “P32-H”). These results show that slower nodes are also
less energy-efficient, which is in agreement with the values of thermal design power
provided by the CPU manufacturer. All these findings raise the question, whether
the observed increase in power consumption for the PISO algorithm and heteroge-
neous setup is compensated by the obtained computational performance gains, i.e.
the reduction in the execution time. Such questions will be addressed in terms of
energy-efficiency in the next section.

Another important problem associated with the influence of virtualization on the
changes in power consumption was also addressed in the present research. Figure 8
shows the relative difference in power consumption between the native hardware
and the OpenStack cloud, running the considered software based on the coupled

710 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

a) The global view

b) The zoomed view with highlighted effects of heterogeneity

Figure 7. Power consumption

algorithm. Up to 0.6 % difference could be observed in the results of the performed
benchmark. It is worth noting that the differences declined, when the number of
employed cores was increased. As can be seen from Figure 7 a), utilization of cores
decreased in comparison with the CPU benchmark and, consequently, the influence
of the virtualization on power consumption also declined. The standard deviation
was equal to 0.11 % and 0.08 % of the presented averaged values in the case of
1 node (4 cores) and 8 nodes (32 cores), respectively. Thus, the standard deviation
was smaller than the observed difference in power consumption between the native
hardware and OpenStack cloud in all considered cases.

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 711

Figure 8. The percentage difference in power consumption between the native hardware
and the OpenStack cloud

5.4 Energy-Efficiency

Using the results given in the previous sections, the best solution algorithm and
hardware setup in terms of the overall energy consumption can be found. The
consumed energy E, required to solve the considered problem, was computed as

E = P · Texec (1)

where P is the average power and Texec is the solution time. The consecutive energy
change ∆E, increasing the number of the employed cores (pi = 1, 4, · · · , 32), was
calculated by the formula

∆E = Epi−1
− Epi (2)

where Epi−1
is the energy required for the solution of the considered problem on

pi cores. The values of the consumed energy (1) are shown in Figure 9 a). It can be
observed that the parallel PISO algorithm consumed significantly less energy than
the parallel coupled algorithm. Thus, the PISO algorithm is superior in terms of
computational performance and energy-efficiency because less energy is required in
spite of a slightly higher instant power consumption.

As concerns the best hardware setup, the situation is more complicated. Fig-
ure 9 b) presents the values of the consecutive energy change calculated by the
formula (2). In terms of energy-efficiency, the most significant consecutive change
in the consumed energy occurs, when all 4 cores of a single node are used. The
observed energy reduction is equal to 45.1 % and 62.3 %, in the case of the largest
problem with 3.2 million cells, solved by using the coupled algorithm and the PISO
algorithm, respectively. This finding is in agreement with the current trends in the
design of modern processors, which is motivated by higher energy-efficiency. Further

712 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

a) energy

b) consecutive energy change

Figure 9. Energy consumption

analysis of the presented results reveals a significant jump in energy consumption
for the heterogeneous setup with one slower node, which is caused by the above-
discussed performance degradation (Figure 6). However, in most of the cases, the
increase in energy consumption for 8, 12, 16, and even 20 processes, is not signif-
icant. The question arises, whether it is rational to choose the optimal hardware
setup as a case of minimal energy consumption, when it is known that the additional
nodes cause a significant reduction in the solution time. To answer this question,
a bi-objective optimization problem needs to be considered.

5.5 The Solution of a Bi-Objective Optimization Problem

The choice of the optimal hardware setup needs to be taken in the presence of two
conflicting objectives or criteria: the solution time T and the consumed energy E.

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 713

This bi-objective optimization problem can be formulated as follows:

min
pi∈X

(T (pi), E(pi)) (3)

where X = {1, 4, 8, 16, 20, 24, 28, 32} is the set of feasible solutions. There are many
different approaches to deal with multi-objective optimization problems. For non-
trivial problems, no single solution exists, which simultaneously minimizes each
objective. A common approach is to find the Pareto optimal solutions, i.e., the so-
lutions that cannot be improved in any of the objectives without degrading at least
one of the objectives. The set of the Pareto optimal solutions is often called the
Pareto front. For the formulated bi-objective optimization problem (3), the Pareto
optimal solutions can be found from the scalar plot shown in Figure 10.

a) the problem with 1.6 million cells

b) the problem with 3.2 million cells

Figure 10. Pareto fronts, considering energy and computing time as objectives

714 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

Figure 10 demonstrates a clear domination of the parallel PISO algorithm over
the parallel coupled algorithm. The hardware setup with just one slower node
(pi = 24) is not the Pareto optimal in all presented cases. This result can be
expected from the previous analysis. It is worth noting that the homogeneous setup
with three fast nodes (pi = 12) is not the Pareto optimal in all four cases either.
This finding can be explained by a relatively less successful domain decomposition
produced by Metis for this number of processes. In terms of Pareto optimality,
all other hardware configurations cannot be excluded in all the considered cases ei-
ther. Other approaches, including subjective preferences of a decision maker, should
be considered to find a single solution to the formulated problem. Scalarization
can be considered as a popular approach to solve a multi-objective optimization
problem. The idea is to convert the original problem with multiple objectives to
a single-objective optimization problem, which is referred to as a scalarized prob-
lem. A proper scalarization method ensures the Pareto optimality of the obtained
solutions. In the case of the considered bi-objective optimization problem, linear
scalarization can be defined as follows:

min
pi∈X

(ωT T̂ (pi) + ωEÊ(pi)) (4)

where ωT and ωE are the weights of the normalized solution time objective T̂ (pi) and

the normalized consumed energy objective Ê(pi), respectively. The parameters of
the scalarization, ωT and ωE, are set by a decision maker, but should satisfy simple
conditions: ωT + ωE = 1, 1 ≥ ωT ≥ 0 and 1 ≥ ωE ≥ 0.

Figure 11. The application of linear scalarization method with various weights

The results of linear scalarization of the considered bi-objective optimization
problem (4) are shown in Figure 11. In the case of the largest problem with 3.2 mil-
lion cells solved by using the coupled algorithm, the curves TE-C32, T-C32 and
E-C32 represent the objective functions, with equal, solution time- and energy-
oriented weights, respectively. Other curves, TE-P32, T-P32 and E-P32, represent

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 715

the objective functions of the same problem solved by the PISO algorithm. Thus,
three representative sets of weights were considered in the work. The equal weights
(ωT = ωE = 0.5) resulted in optimal configurations based on 16 and 20 cores for
the coupled algorithm and the PISO algorithm, respectively. The energy-oriented
weights (ωT = 0.2, ωE = 0.8) gave the optimal hardware configuration based on
8 cores for both numerical algorithms. On the contrary, the solution time-oriented
weights (ωT = 0.8, ωE = 0.2) revealed the optimal configurations based on 20 homo-
geneous and 32 heterogeneous cores for the PISO algorithm and the coupled algo-
rithm, respectively. Various optimal hardware configurations obtained for different
numerical algorithms proved that the considered bi-objective optimization problem
was not trivial even for a simple set of hardware configurations and revealed some
challenges for decision-makers.

6 CONCLUSIONS

In this article, parallel performance and energy consumption analysis of the haemo-
dynamic computations performed using Docker containers of the heterogeneous
OpenStack cloud infrastructure is presented. Based on the performed investigation,
some observations and concluding remarks may be drawn as follows:

• Virtualization layer reduced computational performance of the developed soft-
ware services by less than 1 % in the case of one or two nodes used. Increasing the
number of the employed nodes caused an increase in the virtualization overhead
to 4.6 % of the benchmark time on the native hardware due to higher latency of
the virtual network.

• The employed virtualization has not significant influence to power consumption
of the performed computations. The largest measured difference was less than
0.6 % of the power consumed by running the benchmark on the native hard-
ware.

• The parallel PISO algorithm demonstrated significantly higher computational
performance and better parallel scalability than the parallel coupled algorithm
for the computations of the considered haemodynamic flows.

• Power measurements demonstrated that the PISO algorithm was more CPU
intensive and consumed more power per fixed time interval than the coupled
algorithm. However, the consumed energy analysis revealed that the PISO al-
gorithm required less energy to solve the considered problems due to higher
computational performance.

• The minimal amount of energy is required to solve the considered problems
using a single node with all cores employed. Energy consumption slightly in-
creased with the increasing number of the employed nodes until the degradation
of parallel performance became significant. The largest increase in the consumed
energy could be observed, when the first slower node was employed.

716 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

• Bi-objective optimization based on Pareto front analysis or using the linear
scalarization method could help to solve a trade-off between the computing time
and the consumed energy.

• The Pareto front analysis helped to detect inefficient hardware configurations.
The heterogeneous setup with a single slower node and the homogeneous setup
with less successful domain decomposition to 12 parts were not the Pareto op-
timal in all the considered cases.

• In the case of the considered application, linear scalarization with weights sug-
gested completely different hardware configurations for various subjective pref-
erences of a decision-maker.

• The conducted study demonstrated great challenges to the efficient use of the
heterogeneous cloud resources by the developed software service in the case of
the considered application. Optimal hardware configurations for single parallel
jobs were highly dependent on the network properties, the numerical algorithm
and the results of the applied domain decomposition method.

• The performed research has revealed that standard benchmarks can hardly pro-
vide comprehensive information required for time- and energy-efficient schedul-
ing of parallel haemodynamic computations. The preliminary specific bench-
marks are required to evaluate the parallel performance of the developed soft-
ware services and algorithmic aspects of the considered application.

REFERENCES

[1] Mendis, S.—Puska, P.—Norrving, B. (Eds.): Global Atlas on Cardiovascular
Disease Prevention and Control: Policies, Strategies and Interventions. World Health
Organization, World Heart Federation, World Stroke Organization, Geneva, 2011.

[2] Moosavi, M.-H.—Fatouraee, N.—Katoozian, H.—Pashaei, A.—Cama-
ra, O.—Frangi, A. F.: Numerical Simulation of Blood Flow in the Left Ventricle
and Aortic Sinus Using Magnetic Resonance Imaging and Computational Fluid Dy-
namics. Computer Methods in Biomechanics and Biomedical Engineering, Vol. 17,
2014, No. 7, pp. 740–749, doi: 10.1080/10255842.2012.715638.

[3] Marom, G.: Numerical Methods for Fluid-Structure Interaction Models of Aortic
Valves. Archives of Computational Methods in Engineering, Vol. 22, 2015, No. 4,
pp. 595–620, doi: 10.1007/s11831-014-9133-9.

[4] Tumonis, L.—Kačianauskas, R.—Kačeniauskas, A.—Schneider, M.: The
Transient Behavior of Rails Used in Electromagnetic Railguns: Numerical Investi-
gations at Constant Loading Velocities. Journal of Vibroengineering, Vol. 9, 2007,
No. 3, pp. 15–19.

[5] Kačeniauskas, A.—Rutschmann, P.: Parallel FEM Software for CFD Problems.
Informatica, Vol. 15, 2004, No. 3, pp. 363–378, doi: 10.15388/Informatica.2004.066.

https://doi.org/10.1080/10255842.2012.715638
https://doi.org/10.1007/s11831-014-9133-9
https://doi.org/10.15388/Informatica.2004.066

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 717

[6] Chnafa, C.—Mendez, S.—Nicoud, F.—Moreno, R.—Nottin, S.—
Schuster, I.: Image-Based Patient-Specific Simulation: A Computational Mod-
elling of the Human Left Heart Haemodynamics. Computer Methods in Biome-
chanics and Biomedical Engineering, Vol. 15, 2012, No. 1, pp. 74–75, doi:
10.1080/10255842.2012.713673.

[7] Bastrakov, S.—Meyerov, I.—Gergel, V.—Gonoskov, A.—Gorsh-
kov, A.—Efimenko, E.—Ivanchenko, M.—Kirillin, M.—Malova, A.—
Osipov, G.—Petrov, V.—Surmin, I.—Vildemanov, A.: High Performance
Computing in Biomedical Applications. Procedia Computer Science, Vol. 18, 2013,
pp. 10–19, doi: 10.1016/j.procs.2013.05.164.

[8] Sakellari, G.—Loukas, G.: A Survey of Mathematical Models, Simulation Ap-
proaches and Testbeds Used for Research in Cloud Computing. Simulation Modelling
Practice and Theory, Vol. 39, 2013, pp. 92–103, doi: 10.1016/j.simpat.2013.04.002.

[9] Sehdev, G. K.—Kumar, A.: Performance Evaluation of Power Aware VM Con-
solidation Using Live Migration. International Journal of Computer Network and
Information Security, Vol. 7, 2015, No. 2, pp. 67–76, doi: 10.5815/ijcnis.2015.02.08.

[10] Zakarya, M.—Gillam, L.: Energy Efficient Computing, Clusters, Grids and
Clouds: A Taxonomy and Survey. Sustainable Computing: Informatics and Systems,
Vol. 14, 2017, pp. 13–33, doi: 10.1016/j.suscom.2017.03.002.

[11] OpenStack. 2019, available at: https://www.openstack.org.

[12] Nurmi, D.—Wolski, R.—Grzegorczyk, C.—Obertelli, G.—Soman, S.—
Youseff, L.—Zagorodnov, D.: The Eucalyptus Open-Source Cloud-Computing
System. Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID ’09), Shanghai, China, 2009, pp. 124–131, doi:
10.1109/CCGRID.2009.93.

[13] Chierici, A.—Veraldi, R.: A Quantitative Comparison Between XEN and KVM.
Journal of Physics: Conference Series, Vol. 219, 2010, No. 4, Art. No. 042005,
pp. 1–10, doi: 10.1088/1742-6596/219/4/042005.

[14] LXC. 2019, available at: https://linuxcontainers.org.

[15] Docker. 2019, available at: https://www.docker.com.

[16] McMillan, B.—Chen, C.: High Performance Docking. Technical Report, 2014.

[17] Priedhorsky, R.—Randles, T.: Charliecloud: Unprivileged Containers for User-
Defined Software Stacks in HPC. Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’17), ACM,
2017, Art. No. 36, pp. 1–10, doi: 10.1145/3126908.3126925.

[18] Kurtzer, G. M.—Sochat, V.—Bauer, M. W.: Singularity: Scientific Contain-
ers for Mobility of Compute. PLoS ONE, Vol. 12, 2017, No. 5, Art. No. e0177459,
pp. 1–20, doi: 10.1371/journal.pone.0177459.

[19] Sauvanaud, C.—Dholakia, A.—Guitart, J.—Kim, C.—Mayes, P.: Big Data
Deployment in Containerized Infrastructures Through the Interconnection of Network
Namespaces. Software: Practice and Experience, Vol. 50, 2020, No. 7, pp. 1087–1113,
doi: 10.1002/spe.2793.

[20] ANSYS 18.0 Fluids and Structures. UberCloud, 2019, available at: https://www.

theubercloud.com/ansys-cloud.

https://doi.org/10.1080/10255842.2012.713673
https://doi.org/10.1016/j.procs.2013.05.164
https://doi.org/10.1016/j.simpat.2013.04.002
https://doi.org/10.5815/ijcnis.2015.02.08
https://doi.org/10.1016/j.suscom.2017.03.002
https://www.openstack.org
https://doi.org/10.1109/CCGRID.2009.93
https://doi.org/10.1088/1742-6596/219/4/042005
https://linuxcontainers.org
https://www.docker.com
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1002/spe.2793
https://www.theubercloud.com/ansys-cloud
https://www.theubercloud.com/ansys-cloud

718 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

[21] Seo, K.-T.—Hwang, H.-S.—Moon, I.-Y.—Kwon, O.-Y.—Kim, B.-J.: Perfor-
mance Comparison Analysis of Linux Container and Virtual Machine for Building
Cloud. Advanced Science and Technology Letters, Vol. 66, 2014, pp. 105–111.

[22] Kačeniauskas, A.—Pacevič, R.—Staškūnienė, M.—Šešok, D.—
Rusakevičius, D.—Aidietis, A.—Davidavičius, G.: Private Cloud Infrastruc-
ture for Applications of Mechanical and Medical Engineering. Information Technology
and Control, Vol. 44, 2015, No. 3, pp. 254–261, doi: 10.5755/j01.itc.44.3.7379.

[23] Di Tommaso, P.—Palumbo, E.—Chatzou, M.—Prieto, P.—Heuer, M. L.—
Notredame, C.: The Impact of Docker Containers on the Performance of Genomic
Pipelines. PeerJ, Vol. 3, 2015, Art. No. e1273, doi: 10.7717/peerj.1273.

[24] Mazzoni, E.—Arezzini, S.—Boccali, T.—Ciampa, A.—Coscetti, S.—
Bonacorsi, D.: Docker Experience at INFN-Pisa Grid Data Center. Journal of
Physics: Conference Series, Vol. 664, 2015, No. 2, Art. No. 022029, pp. 22–29, doi:
10.1088/1742-6596/664/2/022029.

[25] Estrada, Z. J.—Deng, F.—Stephens, Z.—Pham, C.—Kalbarczyk, Z.—
Iyer, R.: Performance Comparison and Tuning of Virtual Machines for Sequence
Alignment Software. Scalable Computing: Practice and Experience, Vol. 16, 2015,
No. 1, pp. 71–84, doi: 10.12694/scpe.v16i1.1061.

[26] Kačeniauskas, A.—Pacevič, R.—Starikovičius, V.—Maknickas, A.—
Staškūnienė, M.—Davidavičius, G.: Development of Cloud Services for Patient-
Specific Simulations of Blood Flows Through Aortic Valves. Advances in Engineering
Software, Vol. 103, 2017, pp. 57–64, doi: 10.1016/j.advengsoft.2016.01.013.

[27] Han, J.—Ahn, J.—Kim, C.—Kwon, Y.—Choi, Y.—Huh, J.: The Effect of
Multi-Core on HPC Applications in Virtualized Systems. In: Guarracino, M. R. et al.
(Eds.): Euro-Par 2010 Parallel Processing Workshops (Euro-Par 2010). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6586, 2011, pp. 615–623,
doi: 10.1007/978-3-642-21878-1 76.

[28] Starikovičius, V.—Kačeniauskas, A.—Maknickas, A.—Stupak, E.—
Pacevič, R.—Staškūnienė, M.—Davidavičius, G.: On Efficiency of Parallel
Solvers for the Blood Flow Through Aortic Valve. Mathematical Modelling and Ana-
lysis, Vol. 22, 2017, No. 5, pp. 601–616, doi: 10.3846/13926292.2017.1339642.

[29] Xavier, M. G.—Neves, M. V.—Rossi, F. D.—Ferreto, T. C.—Lange, T.—
De Rose, C. A. F.: Performance Evaluation of Container-Based Virtualization
for High Performance Computing Environments. 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, IEEE, 2013,
pp. 233–240, doi: 10.1109/PDP.2013.41.

[30] Hale, J.—Li, L.—Richardson, C. N.—Wells, G. N.: Containers for Portable,
Productive and Performant Scientific Computing. Computing in Science and Engi-
neering, Vol. 19, 2017, No. 6, pp. 40–50, doi: 10.1109/MCSE.2017.2421459.

[31] Mohammadi, M.—Bazhirov, T.: Comparative Benchmarking of Cloud Comput-
ing Vendors with High Performance Linpack. Proceedings of the 2nd International
Conference on High Performance Compilation, Computing and Communications
(HP3C), 2018, pp. 1–5, doi: 10.1145/3195612.3195613.

https://doi.org/10.5755/j01.itc.44.3.7379
https://doi.org/10.7717/peerj.1273
https://doi.org/10.1088/1742-6596/664/2/022029
https://doi.org/10.12694/scpe.v16i1.1061
https://doi.org/10.1016/j.advengsoft.2016.01.013
https://doi.org/10.1007/978-3-642-21878-1_76
https://doi.org/10.3846/13926292.2017.1339642
https://doi.org/10.1109/PDP.2013.41
https://doi.org/10.1109/MCSE.2017.2421459
https://doi.org/10.1145/3195612.3195613

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 719

[32] Staškūnienė, M.—Kačeniauskas, A.—Starikovičius, V.—Maknickas, A.—
Stupak, E.—Pacevič, R.: Parallel Simulation of the Aortic Valve Flows on the
OpenStack Cloud. Proceedings of the Fifth International Conference on Parallel,
Distributed, Grid and Cloud Computing for Engineering, 2017, Art. No. 16, doi:
10.4203/ccp.111.16.

[33] Valentini, G. L.—Lassonde, W.—Khan, S. U.—Min-Allah, N.—Mada-
ni, S. A.—Li, J.—Zhang, L.—Wang, L.—Ghani, N.—Kolodziej, J.—
Li, H.—Zomaya, A. Y.—Xu, C.-Z.—Balaji, P.—Vishnu, A.—Pinel, F.—
Pecero, J. E.—Kliazovich, D.—Bouvry, P.: An Overview of Energy Efficiency
Techniques in Cluster Computing Systems. Cluster Computing, Vol. 16, 2013, No. 1,
pp. 3–15, doi: 10.1007/s10586-011-0171-x.

[34] Albers, S.: Energy-Efficient Algorithms. Communications of the ACM, Vol. 53,
2010, No. 5, pp. 86–96, doi: 10.1145/1735223.1735245.

[35] Mishra, A.—Khare, N.: Analysis of DVFS Techniques for Improving the GPU
Energy Efficiency. Open Journal of Energy Efficiency, Vol. 4, 2015, No. 4, pp. 77–86,
doi: 10.4236/ojee.2015.44009.

[36] Al Hasib, A.—Natvig, L.—Kjeldsberg, P.—Cebrián, J.: Energy Efficiency
Effects of Vectorization in Data Reuse Transformations for Many-Core Processors.
Journal of Low Power Electronics and Applications, Vol. 7, 2017, No. 1, Art. No. 5,
21 pp., doi: 10.3390/jlpea7010005.

[37] Baun, C.: Performance and Energy-Efficiency Aspects of Clusters of Single Board
Computers. International Journal of Distributed and Parallel Systems, Vol. 7, 2016,
No. 2-4, pp. 13–22, doi: 10.5121/ijdps.2016.7402.

[38] Pinheiro, E.—Bianchini, R.—Carrera, E. V.—Heath, T.: Dynamic Cluster
Reconfiguration for Power and Performance. In: Benini, L., Kandemir, M., Ramanu-
jam, J. (Eds.): Compilers and Operating Systems for Low Power. Springer, Boston,
MA, 2003, pp. 75–93, doi: 10.1007/978-1-4419-9292-5 5.

[39] Tseng, C.—Figueira, S.: An Analysis of the Energy Efficiency of Multi-Threading
on Multi-Core Machines. International Conference on Green Computing, IEEE, 2010,
pp. 283–290, doi: 10.1109/GREENCOMP.2010.5598301.

[40] Pan, F.—Freeh, V. W.—Smith, D. M.: Exploring the Energy-Time Tradeoff in
High-Performance Computing. 19th IEEE International Parallel and Distributed Pro-
cessing Symposium, 2005, pp. 1–9, doi: 10.1109/IPDPS.2005.213.

[41] Choudhary, A.—Rana, S.—Matahai, K. J.: A Critical Analysis of Energy Effi-
cient Virtual Machine Placement Techniques and Its Optimization in a Cloud Com-
puting Environment. Procedia Computer Science, Vol. 78, 2016, pp. 132–138, doi:
10.1016/j.procs.2016.02.022.

[42] Guo, L.—Zhang, Y.—Zhao, S.: Heuristic Algorithms for Energy and Performance
Dynamic Optimization in Cloud Computing. Computing and Informatics, Vol. 36,
2017, No. 6, pp. 1335–1360, doi: 10.4149/cai 2017 6 1335.

[43] Lastovetsky, A.—Manumachu, R. R.: New Model-Based Methods and Algo-
rithms for Performance and Energy Optimization of Data Parallel Applications on
Homogeneous Multicore Clusters. IEEE Transactions on Parallel and Distributed
Systems, Vol. 28, 2017, No. 4, pp. 1119–1133, doi: 10.1109/TPDS.2016.2608824.

https://doi.org/10.4203/ccp.111.16
https://doi.org/10.1007/s10586-011-0171-x
https://doi.org/10.1145/1735223.1735245
https://doi.org/10.4236/ojee.2015.44009
https://doi.org/10.3390/jlpea7010005
https://doi.org/10.5121/ijdps.2016.7402
https://doi.org/10.1007/978-1-4419-9292-5_5
https://doi.org/10.1109/GREENCOMP.2010.5598301
https://doi.org/10.1109/IPDPS.2005.213
https://doi.org/10.1016/j.procs.2016.02.022
https://doi.org/10.4149/cai_2017_6_1335
https://doi.org/10.1109/TPDS.2016.2608824

720 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

[44] Zhang, L.—Ma, J.—Liu, T.—Wang, Y.—Lu, D.: AHP Aided Decision-Making
in Virtual Machine Migration for Green Cloud. Computing and Informatics, Vol. 37,
2018, No. 2, pp. 291–310, doi: 10.4149/cai 2018 2 291.

[45] Manumachu, R. R.—Lastovetsky, A.: Bi-Objective Optimization of Data-
Parallel Applications on Homogeneous Multicore Clusters for Performance and En-
ergy. IEEE Transactions on Computers, Vol. 67, 2018, No. 2, pp. 160–177, doi:
10.1109/TC.2017.2742513.

[46] O’Brien, K.—Pietri, I.—Reddy, R.—Lastovetsky, A.—Sakellariou, R.:
A Survey of Power and Energy Predictive Models in HPC Systems and Applica-
tions. ACM Computing Surveys, Vol. 50, 2017, No. 3, Art. No. 37, pp. 1–38, doi:
10.1145/3078811.

[47] Duran, A.—Celebi, M. S.—Piskin, S.—Tuncel, M.: Scalability of OpenFOAM
for Bio-Medical Flow Simulations. The Journal of Supercomputing, Vol. 71, 2015,
No. 3, pp. 938–951, doi: 10.1007/s11227-014-1344-1.

[48] Kačeniauskas, A.—Kačianauskas, R.—Maknickas, A.—Markauskas, D.:
Computation and Visualization of Discrete Particle Systems on gLite-Based Grid.
Advances in Engineering Software, Vol. 42, 2011, No. 5, pp. 237–246, doi:
10.1016/j.advengsoft.2011.02.007.

[49] Markauskas, D.—Kačeniauskas, A.: The Comparison of Two Domain Repar-
titioning Methods Used for Parallel Discrete Element Computations of the Hop-
per Discharge. Advances in Engineering Software, Vol. 84, 2015, pp. 68–76, doi:
10.1016/j.advengsoft.2014.12.002.

[50] Staškūnienė, M.—Kačeniauskas, A.—Maknickas, A.—Starikovičius, V.—
Stupak, E.—Pacevič, R.: Investigation of the Backflows and Outlet Boundary
Conditions for Computations of the Patient-Specific Aortic Valve Flows. Technology
and Health Care, Vol. 26, 2018, No. S2, pp. 553–563, doi: 10.3233/THC-182502.

[51] Wolf, I.—Nolden, M.—Böttger, T.—Wegner, I.—Schöbinger, M.—
Hastenteufel, M.—Heimann, T.—Meinzer, H.-P.—Vetter, M.: The MITK
Approach. The Insight Journal – 2005 MICCAI Open-Source Workshop, 2005. Avail-
able at: http://hdl.handle.net/1926/14.

[52] Acheson, D. J.: Elementary Fluid Dynamics. Oxford University Press, 1990.

[53] ANSYS: ANSYS Fluent Theory Guide. 2016.

[54] Stupak, E.—Kačianauskas, R.—Kačeniauskas, A.—Starikovičius, V.—
Maknickas, A.—Pacevič, R.—Staškūnienė, M.—Davidavičius, G.—
Aidietis, A.: The Geometric Model-Based Patient-Specific Simulations of Turbulent
Aortic Valve Flows. Archives of Mechanics, Vol. 69, 2017, No. 4-5, pp. 317–345.

[55] Chen, Z. J.—Przekwas, A. J.: A Coupled Pressure-Based Computational Method
for Incompressible/Compressible Flows. Journal of Computational Physics, Vol. 229,
2010, No. 24, pp. 9150–9165, doi: 10.1016/j.jcp.2010.08.029.

[56] Issa, R. I.: Solution of the Implicitly Discretised Fluid Flow Equations by Operator-
Splitting. Journal of Computational Physics, Vol. 62, 1986, No. 1, pp. 40–65, doi:
10.1016/0021-9991(86)90099-9.

[57] JClouds. 2019, available at: http://www.jclouds.org.

https://doi.org/10.4149/cai_2018_2_291
https://doi.org/10.1109/TC.2017.2742513
https://doi.org/10.1145/3078811
https://doi.org/10.1007/s11227-014-1344-1
https://doi.org/10.1016/j.advengsoft.2011.02.007
https://doi.org/10.1016/j.advengsoft.2014.12.002
https://doi.org/10.3233/THC-182502
https://doi.org/10.1016/j.jcp.2010.08.029
https://doi.org/10.1016/0021-9991(86)90099-9
http://www.jclouds.org

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 721

[58] Johnson, H.—McCormick, M.—Ibanez, L.: The ITK Software Guide. Insight
Software Consortium, 2014, 804 pp.

[59] Schroeder, W.—Martin, K.—Lorensen, B.: The Visualization Toolkit:
An Object-Oriented Approach to 3D Graphics. Kitware Inc., 2006, 528 pp.

[60] Kačeniauskas, A.—Pacevič, R.—Bugajev, A.—Katkevičius, T.: Efficient
Visualization by Using ParaView Software on BalticGrid. Information Technology
and Control, Vol. 39, 2010, No. 2, pp. 108–115.

[61] Pacevič, R.—Kačeniauskas, A.: The Development of VisLT Visualization Service
in OpenStack Cloud Infrastructure. Advances in Engineering Software, Vol. 103, 2017,
pp. 46–56, doi: 10.1016/j.advengsoft.2016.06.012.

[62] Starikovičius, V.—Čiegis, R.—Bugajev, A.: On Efficiency Analysis of the
OpenFOAM-Based Parallel Solver for Simulation of Heat Transfer in and Around
the Electrical Power Cables. Informatica, Vol. 27, 2016, No. 1, pp. 161–178, doi:
10.15388/Informatica.2016.80.

[63] Karypis, G.—Kumar, V.: Parallel Multilevel Series k-Way Partitioning Scheme
for Irregular Graphs. SIAM Review, Vol. 41, 1999, No. 2, pp. 278–300, doi:
10.1137/S0036144598334138.

Oleg Bystrov is Ph.D. student in informatics engineering at
the Vilnius Gediminas Technical University (VGTU), Lithua-
nia, and System Administrator at the Laboratory of Security of
Information Technologies. He received his M.Sc. in informat-
ics engineering from VGTU in 2010. His research interests in-
clude distributed and cloud computing, green computing, perfor-
mance evaluation, virtualization technologies, IaaS, OpenStack,
Docker, LXC, operating systems and networking.

Arnas Ka�ceniauskas is the Director of the Institute of Ap-
plied Computer Science of Vilnius Gediminas Technical Univer-
sity (VGTU), Lithuania, and the Chief Researcher at the Labo-
ratory of Parallel Computing. He also is Professor and Ph.D. su-
pervisor at the Department of Graphical Systems at VGTU. He
received his professorship in informatics engineering and Ph.D.
in mechanical engineering at VGTU. He is R & D Project Man-
ager, author and co-author of 34 scientific papers in journals
indexed in Clarivate Analytics WoS database. His research in-
terests include parallel, distributed, grid and cloud computing,

high-performance computing, performance of SaaS, Linux containers, CFD, haemodynam-
ics, coupled problems in multiphysics, GPGPU.

https://doi.org/10.1016/j.advengsoft.2016.06.012
https://doi.org/10.15388/Informatica.2016.80
https://doi.org/10.1137/S0036144598334138

722 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

Ruslan Pacevi�c is Associated Professor at the Department of
Graphical Systems of Vilnius Gediminas Technical University
(VGTU), Lithuania. He also is the postdoctoral research fellow
at the Department of Applied Informatics of Kaunas University
of Technology. He received his Ph.D. in informatics engineering
from VGTU in 2015. He is the co-author of several scientific pa-
pers and participant of several European and national research
projects. His research interests include distributed, grid and
cloud computing, development of SaaS and middleware compo-
nents, OpenStack, Eucalyptus, visualization software, GPGPU,
OpenCL.

Vadimas Starikovi�cius received his Ph.D. degree in math-
ematics from the Vilnius University, Lithuania in 2002. Cur-
rently, he is Professor at the Department of Mathematical Mod-
elling and the Head of Laboratory of Parallel Computing at Vil-
nius Gediminas Technical University, Lithuania. His current re-
search interests include parallel and distributed computing, per-
formance evaluation, numerical methods for solution of partial
differential equations. He has published over 24 refereed articles
in these areas.

Algirdas Maknickas is Senior Researcher at the Institute of
Mechanics and the Head of the Laboratory of Numerical Sim-
ulations of Vilnius Gediminas Technical University (VGTU),
Lithuania. He also is Professor and Ph.D. supervisor at the
Departments of Biomechanical Engineering and Mechanical and
Material Engineering at VGTU. He received his Ph.D. in me-
chanical engineering at VGTU. He is author and co-author of
23 articles and 16 proceeding papers in journals indexed in Clar-
ivate Analytics WoS database. His research interests include
biomechanical engineering, haemodynamics, geometric model-

ling, applications of high-performance computing, linear and non-linear continuum me-
chanics, coupled problems in multiphysics, artificial intelligence and computational com-
plexity, GPGPU.

Eugeniuš Stupak is Associated Professor at the Department
of Applied Mechanics of Vilnius Gediminas Technical Univer-
sity (VGTU), Lithuania. He received his Ph.D. in Mechanical
Engineering from VGTU in 2004. He is the co-author of seve-
ral scientific papers and participant of several national research
projects. His research interests include advanced mesh gener-
ation strategies, patient-specific modelling, solution of coupled
multiphysics problems.

Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 723

Aleksandr Igumenov is Lecturer in the Department of Infor-
mation Technologies at Vilnius Gediminas Technical University,
Lithuania. He received his Ph.D. in informatics engineering from
the Vilnius University in 2012. He is the author and co-author
of several scientific papers. His main research interests include
green and energy efficient computing, high-performance com-
puting, IoT and internet technologies, blockchain technologies,
global optimization.

Computing and Informatics, Vol. 39, 2020, 724–756, doi: 10.31577/cai 2020 4 724

PROCESS DATA INFRASTRUCTURE
AND DATA SERVICES

Reginald Cushing, Onno Valkering

Institute of Informatics, University of Amsterdam
Amsterdam, Netherlands
e-mail: {r.s.cushing, o.a.b.valkering}@uva.nl

Adam Belloum

Institute of Informatics, University of Amsterdam
Amsterdam, Netherlands
&
Netherlands eScience Center
Science Park 140, 1098 XG Amsterdam, The Netherlands
e-mail: a.s.z.belloum@uva.nl

Souley Madougou

Netherlands eScience Center
Science Park 140, 1098 XG Amsterdam, The Netherlands
e-mail: s.madougou@esciencecenter.nl

Martin Bobak, Ondrej Habala, Viet Tran

Institute of Informatics, Slovak Academy of Sciences
Dúbravská cesta 9, 845 07 Bratislava, Slovakia
e-mail: {martin.bobak, ondrej.habala, viet.tran}@savba.sk

Jan Meizner, Piotr Nowakowski

UCC Cyfronet AGH
AGH University of Science and Technology Krakow, Poland
e-mail: {j.meizner, p.nowakowski}@cyfronet.pl

Process Data Infrastructure and Data Services 725

Mara Graziani, Henning Müller

University of Applied Sciences of Western Switzerland
HES-SO Valais, 3960 Sierre, Switzerland
&
Department of Computer Science, University of Geneva
1227 Carouge, Switzerland
e-mail: {mara.graziani, henning.mueller}@hevs.ch

Abstract. Due to energy limitation and high operational costs, it is likely that
exascale computing will not be achieved by one or two datacentres but will require
many more. A simple calculation, which aggregates the computation power of the
2017 Top500 supercomputers, can only reach 418 petaflops. Companies like Rescale,
which claims 1.4 exaflops of peak computing power, describes its infrastructure as
composed of 8 million servers spread across 30 datacentres. Any proposed solu-
tion to address exascale computing challenges has to take into consideration these
facts and by design should aim to support the use of geographically distributed
and likely independent datacentres. It should also consider, whenever possible,
the co-allocation of the storage with the computation as it would take 3 years to
transfer 1 exabyte on a dedicated 100 Gb Ethernet connection. This means we
have to be smart about managing data more and more geographically dispersed
and spread across different administrative domains. As the natural settings of the
PROCESS project is to operate within the European Research Infrastructure and
serve the European research communities facing exascale challenges, it is important
that PROCESS architecture and solutions are well positioned within the European
computing and data management landscape namely PRACE, EGI, and EUDAT. In
this paper we propose a scalable and programmable data infrastructure that is easy
to deploy and can be tuned to support various data-intensive scientific applications.

Keywords: Exascale data management, distributed file systems, microservice ar-
chitecture

1 INTRODUCTION

We see application of HPC in both the scientific domain and industry: ranging from
modeling global climate phenomenon to designing more efficient drugs. The state
of the art in HPC is at the petascale (in the order of 1015 FLOPS), first achieved in
2008 [33]. However, we now see an enormous increase in the size of commercial and
scientific datasets. Consequently, it is likely that the current petascale technologies

726 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

will not be able to handle this and that we will require new solutions to prepare our-
selves for the next milestone: exascale computing (1018 FLOPS). Exascale systems
are expected to be realized by 2023 and will likely comprise of 100 000 interconnected
servers; simply scaling up petascale solutions will likely not suffice [35]. Evidently,
this raises many challenges in how the required hardware but also how to design
applications that can make use of that many computing nodes. However, what is
relevant for this paper is how the large volumes of data involved will be stored. Ex-
ascale systems will need novel Distributed File Systems (DFS), sufficiently scalable
to accommodate for established DFS solutions.

The capacity of storage devices has been ever growing since the inception of the
first hard disk drives (HDDs) more than 60 years ago. State-of-the-art technology
currently limits HDD storage capacity for a single device at around 10 TB, with
technology to support 100 TB HDDs expected by 2025 [36, 37]. However, many
modern applications deal with data sets sized beyond what fits on a single ma-
chine or server. Moreover, these applications potentially require varying degrees of
performance, availability and fault-tolerance. Applications are becoming more dis-
tributed in nature by pulling data from several different locations as in sensory data
or by distributing computation to different locations as in edge computing applica-
tions. To facilitate this, we have to use a distributed data management system. The
distributed data management system (DDMS) integrates into different file systems
administered by different domains with the aim of creating a unified view of the
user’s data across administrative, geographic and technology borders.

In the PROCESS project, we proposed and developed a scalable and pro-
grammable data architecture that can be configured to best fit the data commu-
nication patterns of a given application and can be easily deployed. To achieve this
goal, the PROCESS approach is to create a thin programmable layer on top of other
established file systems with the aim to facilitate movement and pre-processing of
data while minimizing state management so as to scale better. In order for the
DDMS to actually manage data stored on multiple servers, these servers will have
to communicate with each other over a network. Here, protocols used between any
two servers could be customized and optimized for performance or any other at-
tribute. From a design perspective, there are three properties that are desirable for
a DDMS, namely: transparency, fault tolerance and scalability [39]. Transparency
means that ideally the complexity of the distributed system should be abstracted
away through the use of APIs. Fault tolerance means that in the event of a transient
server failure (e.g. a failing HDD) or partial network failure (i.e. network partition)
the system should continue to function, ideally without any compromising of data
integrity. Lastly, scalability means that the system is able to withstand high load
and allow for new resources (such as servers) to be integrated into the system with
relative ease.

In this paper, we describe in detail the PROCESS Data Infrastructure and Data
Services which aim to be a milestone in the path in the era of exascale computing.
To put this work in context, in Section 2 we provide an overview of several estab-
lished state-of-the-art solutions while also highlighting novel research projects and

Process Data Infrastructure and Data Services 727

regarding them in an exascale computing context. In Section 3, we describe the
architecture design processing starting from the requirement analysis, architectural
decision and technology choices. In Section 4, we describe the implementation of
the main important data services: LOBCDER, DataNet, and DISPEL, as well as
all the mechanisms and APIs needed for their interactions. Finally, in Section 5 we
describe the applicability to the different PROCESS use cases and derive a couple
of scenarios.

2 RELATED WORK

There is an active research community with respect to improving DFS design, both
in academia and in open-source communities. In this Section, we compare popular
DFS (like the Hadoop file system (HDFS) GlusterFS, Ceph) in the light of three
challenges we consider to be relevant for the development of the design of scalable
DFS namely metadata management, and decentralization.

2.1 Scalability of Metadata Management

To ensure a future use of current DFS designs means that they not only have to
be scalable in terms of actual storage capacity, but also in metadata management.
The metadata scalability is of an extreme importance as half of the data processing
operations are metadata operations [40], however, we have observed a lack of meta-
data scalability in most of the well-known DFS. Design of GFS and HDFS feature
a single metadata server, Lustre allows for multiple metadata servers, but relies on
explicitly storing the locations of files. GlusterFS somewhat improves in this aspect
by not explicitly storing metadata regarding file locations but opting for algorith-
mic placement instead. It must be noted however that even with this in place, all
the other metadata operations still happen on the data storage servers. The de-
sign of Ceph is probably the most scalable with respect to metadata management,
since it allows for a cluster of metadata servers and also features algorithmic file
placement and dynamic metadata workload distribution. A notable recent develop-
ment in relational databases is NewSQL, a class of databases seeking to combine the
scalability characteristics of NoSQL databases with the transactional characteristics
of traditional relational databases. In a 2017 paper Niazi et al. present HopFS,
a DFS built on top of HDFS, replacing the single metadata server with a cluster of
NewSQL databases storing the metadata [41]. They attempt to address the issue
of metadata management scalability by storing all HDFS metadata in a Network
Database (NDB), a NewSQL engine for MySQL Cluster. They tested their solution
on a Spotify workload (a Hadoop cluster of 1600+ servers storing 60 petabytes of
data) for which they observed a throughput increase of 16–37× compared to regular
HDFS. What makes this solution noteworthy is that it is a drop-in replacement for
HDFS, allowing to be used in existing Hadoop environments, allowing them to scale
beyond the limits imposed by the single metadata server approach. Using a similar

728 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

approach, Takatsu et al. present PPFS (Post-Petascale File System), a DFS opti-
mized for high file creation workloads. In their paper they argue that modern DFSs
are not optimized for high file creation workloads, and that for exascale computing
this can turn out to be a serious performance bottleneck [42]. They have evaluated
their system against IndexFS (2014), a middleware for file systems such as HDFS
and Lustre aiming to improve metadata performance [43]. With respect to file cre-
ation performance, they observed a 2.6× increase in performance. They achieved
this by employing a distributed metadata cluster design using key-value metadata
storage and non-blocking distributed transactions to simultaneously update multi-
ple entries. Although only tested on relatively small clusters comprising of tens of
servers, it is good to see that an effort is being made to improve upon aspects such
as file creation performance, which might be a bottleneck in an exascale context.

2.2 Decentralization

In the solutions discussed so far we have seen various approaches to positively in-
fluence the scalability characteristics of DFS. A recurring concept is that of decen-
tralization, distributing responsibility of certain aspects of the system to multiple
non-authoritative servers instead of relying on a single or multiple dedicated cen-
tralized servers. Removing a single point of failure by distributing the workload
should help to increase fault tolerance and scalability. We see such an approach in
GlusterFS and Ceph, they both feature a decentralized approach towards the file
placement. Here we will briefly discuss a recent project that seeks to go even further,
a completely decentralized peer-to-peer DFS. Currently an open-source project with
active development from a community of developers, the InterPlanetary File System
(IPFS) is a DFS protocol designed to allow all connected peers to access the same
set of files [44]. The author describes it as being similar to the Web in a single
BitTorrent swarm exchanging objects within a Git repository. Removing all single
points of failure by taking a completely distributed peer-to-peer approach is very
interesting, since it in theory provides infinite scalability. However, having to rely on
servers beyond your control likely rules it out for latency sensitive or mission critical
applications. That being said, leveraging a globally distributed network of intercon-
nected machines, such as DFS, is very relevant to at least capacity requirements.
One can envision that given a large peer count, storing exabytes of data becomes
almost trivial. Generally, we expect that the concept of decentralization will play
a significant role in the development of future DFSs to cope with ever increasing
scalability.

What are advantages to the design of GlusterFS? First of all, it offers POSIX file
semantics, which means that it is mountable like any other traditional file system
and adheres to strict consistency requirements. Secondly, its replication via erasure
codes is a more space efficient way of replicating data than naively storing multiple
copies. But the main advantage is the fact that the design does not feature a server
explicitly storing file location metadata. With respect to scalability, not requiring
a metadata server that can potentially be a performance bottleneck is a significant

Process Data Infrastructure and Data Services 729

benefit. For certain workloads, a disadvantage of the design of GlusterFS is that it
works on file granularity (as opposed to aggregated data blocks or chunks). Such
a design can introduce more internal administrative overhead when for example
replicating huge numbers of small files. However, we deem it likely that its approach
of having a decentralized Namespace will manifest itself in exascale DFS solutions
of the future. The design of Ceph, allowing for clusters of not only data, but also
metadata and monitor servers provides it with excellent scalability characteristics.
Currently, it is already being used by Yahoo to store petabytes of data and is chosen
as the technology to prepare their infrastructure for storing exabytes of data [45].
This in combination with the level of customizability makes Ceph a good candidate
for an exascale computing DFS.

There are several clear advantages to Lustre’s design. The first of which is that it
allows for clusters of data and metadata, like Ceph. Secondly, the handling of client
requests and actual storage of data and metadata occurs on different machines. In
terms of scalability this is a clear advantage since it allows for explicit control over
how many servers to dedicate to the handling of client requests and actual storage.
Similarly, availability can be customized by introducing redundant backup servers
to a cluster. The number of files that are stored in a single object is customizable
as well, which means that Lustre is not necessarily tied to a single type of workload
with respect to file size. However, the lack of replication at the software level makes
it a poor fit for failure sensitive commodity hardware, especially when the cluster size
grows. That being said, its metadata and data cluster architecture, given hardware
providing built-in redundancy and fault tolerance, make it a good candidate for
an exascale computing DFS.

3 DESIGN OF THE PROCESS DATA INFRASTRUCTURE

3.1 Requirements

The development of the PROCESS data infrastructure and services is motivated by
its use case applications from different scientific domains namely medical imaging,
astronomy, Industrial (Airline domain), and Agricultural Observation and Predic-
tion. All these applications are facing the data challenges either at this moment
or will face data and compute challenges soon due to the expected increase of the
data sets. A one size fit all design will not be able to fulfill all data requirements
of the applications. Even if all use case applications required that the PROCESS
infrastructure should be scalable, they have different requirements when it comes to
the type of data to be managed by the infrastructure and the storage technology.
In Table 1, we summarize the characteristics of the data sets used in 5 different
use cases in the light of the NIST Big Data Interoperability Framework: Volume 1,
Definitions [48], which reference to the Volume, Variety, Velocity and Variability as
the main characteristics of Big Data. The data requirements for the five PROCESS
applications are not exceptional; more extreme data management requirements are
also reported for other exascale applications in the U.S. DOE reports published in

730 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

2016 like the one for High-Energy Physics (HEP), and Biology and Environmental
Research. Both reports mention data access and movement as a key element in
dealing with growth of datasets. For the HEP community, the Large Hadron Col-
lider (LHC) at CERN will continue to be the largest producer, it is expected that in
the future (roughly 2025–35) each HL-LHC experiment will transition from O(100)
petabytes to O(1) exabyte of data. The Report states the infrastructure require-
ments for exascale of the HEP community for 2020 and 2025. The HEP community
has developed data storage and movement services, ROCIO, to meet its needs in
the 2020 timescale. In the Reports on the Biology and Environmental Research it
is clearly stated that similar algorithmic barriers (lack of scalable solver algorithms
and I/O) that challenged petascale performance will be faced again at exascale level,
with the additional constraints introduced by accelerators and hierarchical memory.

UC#1:
Exascale
learning
on medical
image data

UC#2:
Square
kilometre
array/
LOFAR

UC#3:
Supporting
innovation
based on
global dis-
aster risk
data

UC#4:
Ancillary
pricing
for airline
revenue
manage-
ment

UC#5:
Agri-
cultural
analysis
based on
Copernicus
data

Volume 3.5 PB ∼ 28 PB 1.5 TB
(minimum)

∼ 3 TB 10 PB

Variety files [34] files [49] files stream files

Velocity 1 low low low medium low

Variability 2 low low low low low

Growth 2 TB/year
[57]

5–
7 PB/year

1 TB/year 1 TB/year 1 TB/year

Table 1. Main data characteristics of the use cases

The gathered common requirements are summarized in Table 2. The Data
Services of the PROCESS projects implements them. Together with modularity
and scalability, it makes its modules robust enough to support not only exascale
communities coming from the PROCESS project but also supports a broad range
of new exascale communities in the future due to the project’s focus on reusability
and sustainability.

Because the aim of PROCESS is to design a data infrastructure with exascale
ultimate goal, we did study the exascale data storage landscape, one can see that
a significant research effort is put into designing new hardware infrastructures at the

1 Velocity is the rate of flow at which the data is created, stored, analysed, and visu-
alized. Section 3.3.2, page 15, https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.
1500-1.pdf.

2 Variability refers to any change in data over time, including the flow rate, the
format, or the composition. Section 3.3.2, page 15, https://bigdatawg.nist.gov/

_uploadfiles/NIST.SP.1500-1.pdf.

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf

Process Data Infrastructure and Data Services 731

Requirement Use Case Service/Module

Integrated to access all the data
storage centres

All LOBCDER

Efficient and user-friendly data up-
load, transfer and download

All LOBCDER (and its integra-
tion with IEE)

Provide access to storage resources
on computing sites

All LOBCDER

Provide support for HDFS 4 LOBCDER

Fast data transfer 2 LOBCDER (and its inte-
gration with Data Transfer
Nodes)

Support pre-processing pipelines 1 DISPEL

Support various transfer protocols
(e.g. GridFTP, SCP, etc.)

All LOBCDER

Support meta-data management All DataNet

User-friendly interface for data ac-
cess through the workflow manage-
ment

All LOBCDER (and its integra-
tion with IEE)

Table 2. Overview of the core requirements coming from the PROCESS use cases

datacenter level to optimize the HPC I/O stack [2, 3, 4, 5, 6, 7]. The DOE U.S. re-
port [8] on the system requirements expected archival storage describes an emerging
trend to embed more data management features directly into HPSS and thus acting
as the storage level itself. Simulation tools are being developed to support the design
of exascale systems and better understand the features and design constraints [9].
However, it is clear from many analytical studies [10, 11], which try to estimate
current and future expenses in terms of energy consumption, predict that one single
exascale datacenter is not realistic and thus the current effort of optimizing the HPC
I/O stack has to be complemented with an effort to create a data management layer
which can scale across data centers.

3.2 Design

3.2.1 Process Data System

To be able to claim that a data infrastructure is exascale enabled, it should be able to
easily scale across geographically and institutionally distributed datacentres. This
implies that the targeted data infrastructure is able to operate as a multi-system,
on multiple data centers, multiple providers, multiple domains/types. Current ap-
proaches try to propose a data federation layer, which directly interacts with the
backend storage, and for each backend they develop a specific driver in a plugin-like
architectural style. They have been designed to operate in a specific setting that
could be divided in 4 categories:

732 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

1. One system, one data centre, one provider, one domain/type like LHC;

2. One system, multiple data centres, multiple providers, one domain/type like
WLGC, Astron, Globus;

3. One system, multiple data centres, multiple providers, one domain/type like
cloud storage providers;

4. One system, multiple data centres, multiple providers, multiple domain/type
like EUDAT.

On the contrary, the cloud approach has proven that scalability can only be achieved
if we introduce a virtualization layer, which abstracts completely the details of the
“hardware” infrastructure. New approaches based on Named Data Networking try
to reduce the overhead in data transmission and will likely improve the communi-
cation within and across data centers [17, 18, 19, 20] and finding scattered across
data centers could be completely agnostic of its location.

Following the cloud virtualization approach, we propose a data micro-infrastruc-
ture which is based on two basic widely accepted concepts IaaS and the fact that
most secondary storages are accessed for read and write through a simple mount
action regardless of the operating system or the storage type. As the variety of ap-
plications and collaborations between researchers increases, so do their dependences
and requirements. Every group may have unique requirements and dependences for
their applications. These different environments might require different data man-
agement, distribution and processing. Clearly, a one size fits all distributed system
that tries to encompass all these different requirements beforehand will not per-
form well. Such an approach entails that the system needs to continuously resolve
new dependences and requirements while also maintaining scalability. Furthermore,
any smart data management is oftentimes very application or domain specific due
to storage means (DB, files, etc.), different data access patterns, algorithm com-
plexity, provenance, value, etc. This implies that the common data storage de-
nominator between applications is, most often, raw block storage and a monolith
system would need to handle all the different applications. A different approach
that can handle the multitude of different data models, applications, distribution
and management is through virtualization, by encompassing all these requirements
in a data micro-infrastructure with specific nodes for handling the different aspects,
e.g. a nextCloud node for sharing data within the group, and HDFS file system for
computing, GridFTP for accessing remote files, etc. The whole infrastructure then
becomes an ensemble of use-case micro-infrastructures each with its own full stack
encapsulated in a virtual infrastructure.

Figure 1 illustrates the notion of a micro-infrastructure. Site providers provide
raw resources through virtualization middleware such as OpenStack. They also pro-
vide raw storage that is accessible through the virtual machines. Through templat-
ing, micro-infrastructures can be booted up that will satisfy the groups’ requirements
for data processing. Cross provider data, process distribution and management are
handled from within the micro-infrastructure. Cross group collaboration is also

Process Data Infrastructure and Data Services 733

easily manageable, e.g., a group could give access to another group through their
ownCloud node inside the micro-infrastructure. Scalability is improved since state
management is divided between micro-infrastructures. One data management sys-
tem will have difficulty managing exascale data, but many micro-infrastructures can
better manage their own pool of data which is, most often, a few orders of magnitude
less than an exabyte.

Figure 1. PROCESS micro-infrastructure

To better facilitate access to remotely stored large data sets, we have also in-
cluded a component able to pre-process data remotely, at or near the place where
they are stored, and to stream for further processing only a pre-processed, more
compact data set. This component is based on the work of a previous FP7 research
project ADMIRE [22]. It includes a decentralized network of services called Gate-
ways, which are controlled by data manipulation programs described in a custom-
designed high level language [23], and an expandable set of data manipulation prim-
itives. A data process is instantiated as a network of streams of data through such
manipulation primitives, which can load, filter, change, recalculate, clean, and store
data (represented as a stream of uniform units of information, be it simple numbers,
characters, or more complex structures).

734 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

4 IMPLEMENTATION

The PROCESS data infrastructure is composed of three main parts which are con-
nected to data sources and managed by a service orchestration environment (see
Figure 2). A core component of the environment is a distributed virtual system
driven by LOBCDER. The tool has been rebuilt according to requirements coming
from use cases several times ([50, 51, 52]). Its current version is based on a micro-
infrastructure approach which allows creating a containerized micro-infrastructure
of data services required by a use case.

It also has access to data sources via dedicated data adapters. The (pre)proces-
sing environment is driven by DISPEL which offers several processing elements (e.g.
data access, data filtering, and data integration). DISPEL is accessible via DISPEL
Gateway which is able to communicate with a WebDAV server via REST API.
It accesses the data sources via dedicated data adapters. The whole data service
environment is administered by LOBCDER which is connected with the service
orchestration environment by REST API and WebDAV.

The PROCESS data infrastructure is meant to be programmable and customiz-
able for every application. This implies that every application has its own set of
data services that are deployed at runtime on the available storage resources. In
this architecture LOBCDER takes the role of the manager which is responsible for
instantiating the Data infrastructure for each application workflow. The other data
services are instantiated as containers on-demand (depending on the application)
to form Kubernetes pods. Service data containers instantiated by LOBCDER have
different capabilities from access to remote storage such as HPC file systems to
an interface which federates access to distributed storage (Figure 2).

4.1 LOBCDER/Micro-Infrastructure

LOBCDER implements the micro-infrastructure approach to develop the PROCESS
data platform. The notion of a micro-infrastructure is to decompose large, monolith
infrastructures into more scalable and manageable infrastructures. This decompo-
sition allows for better scalability since state management such as indices, is split
between many infrastructures. Furthermore, the increasing complexity of data re-
quirements for applications necessitates a programmable approach that can be op-
timized for each application without interfering with other applications. For this
reason, we leveraged the power of containers and created a platform using Kuber-
netes where users create an infrastructure with their own dedicated data services.
Typical data services include data store adapters to connect to remote data such as
HPC file systems, native cloud storage using Ceph block storage, runtime services
that have access to the storage such as WebDAV points, Jupyter notebooks and
data staging services.

The LOBCDER architecture is a hyper-converged infrastructure that provides
a virtualized distributed programmable data layer. The infrastructure is a Kuber-
netes cluster using VMS and physical nodes distributed amongst PROCESS part-

Process Data Infrastructure and Data Services 735

Meta-data environment
(driven by DataNet)

Swarm cluster

Data (pre)processing environment
(driven by DISPEL)

Repository of processing elements

Service orchestration environment
(driven by Cloudify and TOSCA templates)

Distributed virtual file system
(driven by LOBCDER)

User/VO distributed data micro-infrastructure

Service orchestration Container
deployment & management

Container monitoring Containerized service
configuration

Data Sources

FTP/FTP TCP/IP NFS

Hadoop Distributed
 File System

Java APIJava API

TCP/IP GridFTP SRM REST API HTTP

HBase Distributed Storage Distributed
File System

HDF5
Archive

DICOM
Archive

LOFAR LTA
Tape Archive

dCache
Storage

Copernicus
Open Access Hub CouchDB

FTP/FTPS

Data integration

Data filteringData access

WebDAV
server

DISPEL Gateway

REST API

Meta-data
repository

Meta-data
repository

Meta-data
repository

Swarm cluster

Meta-data
repository

Meta-data
repository

Meta-data
repository

Swarm cluster

Meta-data
repository

Meta-data
repository

Meta-data
repository

Meta-data manager
REST API

JSON

Blueprint
management

Virtual data infrastructure
management

Data access
management

Data container
managementVault management

Virtual data infrastructure
access

K8s management

REST API
WebDAV

REST API

REST API

Figure 2. Process data service environment

ners. The VMs for Kubernetes cluster can be managed by the Cloudify orchestra-
tion service [21] that will dynamically instantiate the VMs in EOSC-Hub Federated
Cloud infrastructure, configure and add them to the cluster. That will ensure the
scalability of the micro-infrastructure and also may optimize data access, where the
data service is located as close as the data storage the Kubernetes cluster servers
a programmable layer to abstract data services and storage. Data sources can be
of two types. The first type is the local-node storage, as is the case with dedicated
data nodes. In this scenario a container has a persistent storage in the cluster which
can be used as storage or cache for an application. The second type of storage is

736 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

HPC storage, in such case the data service containers mount remote storage in HPC
clusters. The sequence to access and make use of the data services is described in
Figure 3, the first two steps of the sequence shown in Figure 3 are dedicated to the
creation of the micro-infrastructure:

Request a token: All the LOBCDER API calls are token protected. A token
needs to be generated for users by the admin.

Create infrastructure: After getting a token a user needs to create his own data
infrastructure through API calls with the header x-access-token set with the
requested token.

Once the information about the created data infrastructure is ready, the execution
environment can create and start the execution of the Application data processing
pipeline.

Figure 3. Sequence of interacting components from user perspective. The green block
is a dynamically created virtual infrastructure per use-case. The infrastructure encapsu-
lates use-cases’ data management, credentials, distributed resources and pre-processing
routines.

Process Data Infrastructure and Data Services 737

A REST API allows users to create their infrastructure as a set of pods and
expose multiple WebDAV endpoints to access their data [53]. An important point
to mention here is the integration with the Execution Environment (EE) which has
to use the data services at several points during the application processing pipeline:

• The users’ micro-infrastructure is dynamic thus services and their ports can
change. For this reason, a first step of integration with EE is to discover
the user’s endpoints. This is done through the management API, specifically
through the /api/v1/infrastructure call which returns a description of the
endpoints.

• Every micro-infrastructure exposes an EE WebDAV specific endpoint which ac-
cepts tokens generated by the EE. Through this endpoint the EE environment
can access all user’s local and remote data through WebDAV.

• Query and data staging service: Every micro-infrastructure will implement
a data query and staging service which will list the physical location of files and
stage data onto HPC sites. This can be used by the EE to check the location of
files on different HPC sites and also describe a staging pipeline with webhooks
which will asynchronously stage in data (Figure 4) onto the HPC file system
and use a webhook as a call-back to notify about staging progress.

• Pre-processing workflows: Often scientific applications have a pre-processing
and staging workflow defined on the data services which will be exposed as end-
points whereby the EE can call and register a callback webhook to be notified
when pre-processing and staging has finished so that computation can com-
mence.

Figure 4. Simplified EE to LOBCDER interaction. EE queries LOBCDER to retrieve
user’s dynamic infrastructure. EE can then access user’s data services, e.g. data staging.

738 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

The LOBCDER micro-infrastructure approach revolves around containers. For
this purpose, several template containers are developed for use in the PRO-
CESS. Containers encapsulate different capabilities, from adapters to allow access
to remote storage such as HPC file systems to user interfaces to access the storage.
We categorize the containers into different groups depending on their capabilities.
All the data containers identified from the requirement analysis fit two categories:
the logic containers and the Storage adapters containers (see Table 3).

Storage adapter
containers

Provide access to remote storage such as
HPC file systems. Examples: sshfs,
GridFTP, Cloud-native-storage, etc.

Logic containers Provide a functionality on top of the stor-
age adapters. Examples: token-based Web-
DAV, Jupyter service, and DISPEL service.

Table 3. The categories of containers to create any micro-infrastructure

4.2 Storage Adapter Containers

For this category we are considering three types of access to remote storage which
are implemented as three storage adapter containers (see Table 4).

sshfs adapter
container [24]

The container is able to mount a remote
folder through ssh credentials. When creat-
ing an infrastructure through the API a user
supplies his credentials to the remote server.
The credentials are used to copy keys to the
remote storage and are discarded after keys
have been copied. This will allow password-
less authentication. A user can revoke ac-
cess from LOBCDER at any time by remov-
ing the key entry in his home directory in
.ssh/authorized keys.

gridFTP con-
tainer adapter

For high performance data transfers between
sites we will employ gridFTP delegation ser-
vice.

A cloud-native
adapter

Whereby storage is provisioned directly in
the Kubernetes cluster using Rook/Ceph
storage manager. The storage is mounted
into a container and exposed alongside the
other adapters using WebDAV.

Table 4. Three storage adapter containers

Process Data Infrastructure and Data Services 739

4.3 Logic Containers

Logic containers help to develop/offer new services on top of three basic storage
adapters (see Table 5). The logic container services are accessed by the user after
the micro-infrastructure.

• User first needs a token to interact with the management API.

• User submits a JSON description of the infrastructure to the
/api/v1/infrastructure url.

• LOBCDER will contact the k8s API to initialize a micro-infrastructure.

• The user queries the API to get the endpoint descriptions which include url and
ports for the dynamically running services.

• The user can access the running services.

Figure 5. Simplified user to LOBCDER interaction. User requests credentials to access
LOBCDER API. User can then submit requests to create virtual infrastructure and access
services.

5 APPLICATION USE CASES

5.1 Process Data Service in Medical Use Case

The application setup of the medical imaging use case [28] has two computationally
intensive workflows. The first, also referred to as Layer 1, consists of data staging
and pre-processing. The second one loads the intermediate output generated by
Layer 1 and focuses on the training of deep learning architectures, which needs

740 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

A WebDAV
container [25]

Through the API infrastructure description, users supply a username
and password for protecting the WebDAV point since this will be
exposed publicly.

A token based
WebDAV [25]

Meant for access by computing services. In this category we mod-
ified a standard WebDAV server to authenticate using web tokens.
This mechanism of authentication is needed by the execution en-
vironment. When supplying the infrastructure description, a user
also supplies the list of users with their public keys to be allowed
through the WebDAV endpoint. This WebDAV implementation is
expecting the WebDAV calls to have a header ‘authorization’ set
with a token provided by an external entity (in/out case the execu-
tion environment). Upon access the WebDAV server will decode the
header token check the user email is in the list of users and check the
signature by decrypting using the public key provided when setting
up the infrastructure.

Jupyter service
container

Jupyter service container allows the user to access data through
a processing environment whereby they can perform lightweight pro-
cessing inside the data infrastructure. The adapter data is mounted
in data folder on the container. In the following releases, this will be
extended into a general user interface container for PROCESS with
PROCESS-specific Python modules, and this general UI will be then
extended into use case-specific UIs with more Python modules de-
signed specifically to handle the use case data and pipelines.

Query/Staging
service [26]

This service lists the files and their location on the adapter contain-
ers. The purpose of this service is to incorporate also staging capa-
bilities for integration with IEE where IEE can request data staging
between adapters so that applications would have just-in-time data
on the HPC file systems (REF).
These containers are meant to optimize application workflows exe-
cution, e.g. by scheduling data transfers between sites, caching con-
tainers with local-node data storage so frequently accessed data can
remain easily accessible (to be developed as the project processes).

...

GPU compute nodes. This workflow requires fast access to the pre-processed data
which means having the pre-processed data ready on the local file system before
the compute can start. For this reason, we set up the pre-processing and staging
workflow as part of the data services that will be able to pre-process and push the
datasets directly onto the HPC file systems in preparation for the computation part
of the workflow.

The pre-processing extracts patches from the high-dimensional medical images.
A series of hyper-parameters are required as input to the runtime, such as the staging
location of the data, the resolution level at which the patch should be extracted,
the patch size and stride, and the patch sampling strategy (i.e. random sampling,
importance sampling, dense coverage). The file system is scanned to retrieve patient-

Process Data Infrastructure and Data Services 741

...

DISPEL DISPEL container gives access to remotely stored data and an en-
tire data (pre)processing environment. The DISPEL data processing
environment is currently available as a Debian-based virtual ma-
chine with a complete deployment of all tools, manuals and a tu-
torial with example data processes. The VM contains a graphi-
cal development environment based on Eclipse. Dispel is accessed
via standard WebDAV interface (HTTP protocol) since it is part
of the LOBCDER distributed data infrastructure. The parameters
for data processing are encoded in the provided HTTP URL, as de-
scribed previously in D5.1. The HTTP URL encodes the following
parameters: (1) One selection of DISPEL data process description
file template (in the DISPEL language). (2) Zero or more parame-
ters to be filled in the template. Example of URL-encoded param-
eters: http://lobcder.process-project.eu/dispel/tiffstore/

312/20181129/12/0-1200-0-400. Components of the URL are:

• http://lobcder.process-project.eu/: URL of the
LOBCDER WebDAV server

• dispel: a prefix to recognize the sub-repository to contact (the
DISPEL service)

• tiffstore: selection of the DISPEL data process template to
execute

• 312: subject designation (application-specific metadata)

• 20181129: data creation time (application-specific metadata)

• 12: layer in a multi-layer TIFF file (application-specific meta-
data)

• 0-1200-0-400: grid selection (application-specific metadata)

DataNet-
adapter

DataNet-adapter container allows pushing of metadata to the
Datanet service. DataNet allows performing operations on the
metadata sets such as creating/updating/querying/deleting entities.
DataNet is designed to offer straightforward user access via the
REST API as well as GUI HAL browser.
DataNet is available in the form of the Java source code under the
OSI approved license as well as a Docker Container for the convenient
deployment DataNet Rest API is described in Annex C

NextCloud [27] Service for ease of use by users. Next Cloud container allows the
user to view their data in dropbox fashion.

Table 5. Logic containers to support WebDav, Jupyter notebooks, and staging in/out
data to HPC systems

http://lobcder.process-project.eu/dispel/tiffstore/312/20181129/12/0-1200-0-400
http://lobcder.process-project.eu/dispel/tiffstore/312/20181129/12/0-1200-0-400
http://lobcder.process-project.eu/

742 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

related metadata and manual annotations. The physician annotations are used to
build binary masks of normal and tumor tissue from the lowest image magnification
level. From each of the two tissue types a set of image patches are extracted,
by sampling locations in the high-dimensional image, according to the sampling
strategy. Patches with non-relevant information (e.g. white content, black pixels,
background, etc.) are filtered out and discarded. The pixel values of the image
patches and metadata about the patient, the lymph node, the hospital that handled
the acquisitions, the resolution level of the patch, the doctor annotations and the
patch location in the image are stored in a HDF5 database.

Figure 6. Micro-infrastructure for learning on medical image use case

In Figure 6, we illustrate the set of containers proposed for the data micro-
infrastructure setup for UC#1.

WebDAV service: two WebDAV containers are used as a standard way to ex-
pose the data as a file system. A standard user/pass WebDAV can be used by
standard WebDAV clients while the token-based WebDAV client is used by the
Execution Environment.

Copy service: The role of this container is to expose a REST API that will handle
copying files between sites or pull public files from the internet and directly onto
the HPC file systems.

Query service: This REST service container will query all file systems to find
where the physical file is being hosted. The query service is a precursor for the
integration with DataNet.

Pre-processing service: This REST service container will allow users to define
input raw data, input hyper-parameters to generate new pre-processed datasets
and HPC output locations so that the pre-processed datasets are pushed directly

Process Data Infrastructure and Data Services 743

onto the HPC file systems. It also keeps track of these generated datasets using
a local database.

Pre-processing runtime: This container encapsulates the logic of pre-processing.

Cloud persistent storage: This container exposes a storage block hosted directly
inside the Kubernetes cluster. This storage will be used to host raw data that is
needed by the pre-processing pipeline and also act as a cache for the generated
datasets.

HPC SSHFS: These are standard rudimental containers acting as adapters to the
HPC file systems. Through these adapters, the copying service can push/pull
data from the HPC clusters.

Key/Value DB: A container that maintains state such as indexes for the generated
datasets and location of the files.

5.2 Data Services for LOFAR Use Case

Scaling is an important feature for the LOFAR Use Case [54] PROCESS data ser-
vices have to be combined with this goal in mind. The pipelines should be executed
by containers and when, say, two LOFAR archival observations are processed simul-
taneously, this can be enabled by doubling the number of containers – assuming these
observations are of the same size. Simultaneous or quasi-simultaneous processing of
multiple observations has the benefit of reducing latency induced by data transfers –
i.e. staging of observational data, from tape to dCache and from dCache to a com-
pute cluster – and by compute bottlenecks. Data transfers may take significant time
due to the data sizes and distances involved. Even at 10 GBit/s, a 16 TB dataset
will require about 4 hours to transfer. Fortunately, copying data from a tempo-
rary disk to the processing location may be done per observational subband. Thus,
staging and copying can overlap. Compute bottlenecks can occur in between the
two subsequent calibration steps. The first step is direction independent and is em-
barrassingly parallel, by distributing the different subbands of a single observation
(typically 244) over the different nodes, with one subband per node. Processing can
start as soon as a subband has been copied to a node disk. This takes typically four
hours, but the next step is direction dependent calibration and its algorithm needs
a unified memory space to compute the calibration solutions. This typically takes
four days on a single fat node with hundreds of GB of RAM, which would render
the remaining nodes idle when processing a single observation. Processing of mul-
tiple LOFAR archival observations simultaneously by many containers will reduce
latency on the compute nodes after the first calibration step of the first observation
has been completed. Also, it is important that reservation of the compute nodes is
done in an intelligent manner, i.e., that the nodes will not be waiting for data to
arrive at the cluster.

PROCESS can offer access to the three sites where the LOFAR Long Term
Archive is stored – Amsterdam, Jülich and Poznan, making simultaneous combined
staging and processing of observations possible. Presently, processing of data from

744 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

different sites requires separate user interfaces. The services required for the LOFAR
Use Case pipeline are shown in Figure 7.

Figure 7. UC#2: Data infrastructure including data adapters as well as long-term-archive
staging service

5.3 Experiments

Benchmarks have been performed to assess the performance, mainly in terms of
compute and/or transfer duration, of the PROCESS infrastructure and use-case
specific services.

5.3.1 Process Data Service in Medical Use Case

The data staging and pre-processing workflow of the medical use case described in
Section 5.1 becomes crucial for the performance of the application when the data
processing is distributed across geographically distributed data centers. PROCESS
data infrastructure has been used to enable the pre-processing workflow at the AGH
datacenter in Krakow while the neural network training workflow is at the UvA in
Amsterdam.

Table 6 shows the cross site staging part of the Camelyon16 dataset using sev-
eral protocols and strategies. Our initial approach is to use the widely available
SCP protocol and use cluster head nodes to stage the data. From the table, this
approach is shown to be one of the worst strategies, e.g. LISA to AGH. Further-
more, head nodes are very unstable for staging such data with frequent stalls and
broken connections. A second strategy is to use Data Transfer Nodes (DTN). What
we can show from the tests is that using such DTN nodes can speedup transfers,

Process Data Infrastructure and Data Services 745

for example, transferring data from LRZ site to LISA is faster by using a DTN
relay than by a direct copy. E.g. LRZ-VDTN to AMS-DTN takes 5.85 minutes plus
AMS-DTN to LISA is 3.03 minutes, cumulatively it is 8.9 minutes which is ∼ 30 %
faster than a direct copy which is 12.96 minutes. The results also show the added
speedup by using campus networks. The AMS-DTN and LISA are on campus thus
their bandwidth is approximately 4 times better than the rest. Using DTNs as cache
staging nodes could potentially accelerate data transfers between sites. With these
tests we feel that we have a basis for the upcoming steps for UC1. Moreover, the
additional requirement of SCP protocol for data transfer as stated in D4.3 page 9
has been met. This ensures that data transfer can be applied to different types of
users, and especially hospital institutions which may not have open FTP access for
security reasons.

Protocol
– SCP

30 GB Came-
lyon16.partAA
[MB/s]

30 GB Came-
lyon16.partAB
[MB/s]

30 GB Came-
lyon16.partAC
[MB/s]

Mean
BW
[MB/s]

Duration
[min-
utes]

LRZ-V-
DTN to
AMS-
DTN

86.8 90.8 84.9 87.5 5.85

LRZ-V-
DTN to
AGH

33.1 31.2 32.2 32.17 15.92

LRZ-V-
DTN to
LISA

25.5 64 29 39.5 12.96

AMS-
DTN to
LISA

167.9 172.6 166 168.83 3.03

AMS-
DTN to
AGH

53 53.9 38.9 48.6 10.53

LISA to
AGH

40 21.3 29.5 30.27 16.91

Table 6. Data transfer tests between different storage locations

5.3.2 Data Services in the LOFAR Use Case

As mentioned in section 5.2, the LOFAR use-case relies on archival observations.
To access this data, it has to be staged first. During this process a tape robot will
retrieve the appropriate tape(s) and read the desired data to a cache. Thereafter, the
data can be accessed directly from the cache. To gain insight into the overhead this
introduces to the pipeline, we performed the following three benchmarks: estimating
queuing and preparation time; total staging time as a function of total size; transfer

746 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

speeds from the three LTA locations to each of the three PROCESS HPC clusters;
and execution time as a function of total size.

Estimating Queuing and Preparation Time. The tape drives and robots at
each of the LTA locations are not only shared by other LTA users, but also by other
projects housed in the same data center [29]. Therefore, it may be that a staging
request will spend some time in a queue. In addition, the tape robot may need
some preparation time before the data can be copied. To estimate this overhead,
we staged a small file (< 100 MB) so the reading time would be negligible compared
to the remaining queuing and preparation time. We repeated this experiment ten
times, at each LTA location, spread over different days, before averaging the recorded
durations (Figure 8).

Jülich (DE) Amsterdam (NL) Pozna (PL)
0

2

4

6

8

10

12

Ti
m

e
(in

 m
in

ut
es

)

08:11

05:11

07:32

Estimated queuing/preparation time

Figure 8. Estimated queuing/preparation time

The durations are quite variable, but in general can be placed in the five to ten-
minute range. It might occur that queuing and preparation take longer, especially if
multiple staging requests are filled simultaneously. However, we did not experience
this during our benchmarking period. The differences between the three locations
can be attributed to (possibly) different configurations and/or load at the respective
data centers.

Total Staging Time as a Function of Total Size. For an indication about
the total duration of a staging request, we staged increasingly large numbers of
gigabytes (from 20 GB up to 320 GB). We repeated this three times, at each LTA
location, spread over different days before averaging the durations (Figure 9). We
observe, again, that the durations are variable, but are reasonable. These durations
are uncontrollable, as explained before, because of the shared nature of the LTA
systems.

Process Data Infrastructure and Data Services 747

20 40 80 160 320
Total size (in gigabytes)

5

10

15

20

25

30

35

Ti
m

e
(in

 m
in

ut
es

)

Time as a function of size
Jülich (DE)
Amsterdam (NL)
Pozna (PL)

Figure 9. Staging time as a function of size

Transfer Speeds from LTA to HPC Clusters. After the data have been
staged, they can be transferred to a HPC cluster for further processing. We are
benchmarking this transfer to see to which extent this transfer of large data files
across system boundaries induces a bottleneck in the overall use-case’s pipeline. We
measured the transfer speed (Figure 10) four times before averaging it, between each
LTA location and the HPC clusters: LRZ in Garching (DE), LISA in Amsterdam
(NL) and CYF in Krakow (PL). Transfer consisted of up to 10 files with a total size
of 100 GB.

200

220

240

260

Tr
an

sf
er

 sp
ee

d
(in

 M
B/

s) 241.5
Jülich (DE
Amsterdam (NL)
Pozna (PL)

LRZ (DE) LISA (NL) CYF (PL)
Target location)

0

50

100

150

96.3
78.3 90.596.5 91.74

21.1 34.2

120.04

Transfer speeds from LTA to HPCs

Figure 10. Transfer speeds from LTA to HPCs

748 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

The results show that the transfers between LTA locations and HPC clusters
are roughly in the 80 to 120 MB/s range. An exception are the transfers between
LISA and the Amsterdam LTA location, where the range is significantly higher.
This is excepted, since both locations operate on the same optimized grid infras-
tructure [30]. Another exception is the transfer from the Poznan LTA location to
the LRZ and LISA HCP clusters. Although by no means slow, the relative lower
speeds may be due to the geographical distance and/or the specific public network
composition in place. The achieved speeds between the other locations are, although
close to saturating the used public network, still considered suboptimal for exascale
purposes. Optimized networks, e.g. with tuned data transfer nodes (DTNs), are
needed. Provided with such, the PROCESS infrastructure is able to utilize the im-
proved capabilities and scale along with the transfer speeds, as demonstrated with
the transfers between the Amsterdam LTA location and the LISA HCP cluster.

Execution Time as a Function of Total Size (from D3.3). For the LOFAR
use-case, we measured the execution time as the most intensive components capable
of generating high FLOPS values are currently sequential or multi-threaded. The
wall clock times of the main steps of the data reduction pipeline are given in Table 7.
The main conclusion to draw from the high magnitude of these values is that the
overhead due to scheduling and staging is negligible.

Step Data Size Execution Time

1. Calibrator DI 25 GB ∼ 2.5 hour

2. Target DI 433 GB ∼ 3.5 hour

3. Init-subtract 76 GB ∼ 10 hour

4. DD2 (FACTOR) 76 GB ∼ 5 days

Table 7. Wall clock times of the main steps of the data reduction pipeline

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present the PROCESS data infrastructure which follows a micro-
infrastructure approach. The micro-infrastructure is created at runtime and com-
posed of a set of data service containers instantiated by the core of the infrastruc-
ture, LOBCDER. All the interactions among the software components composing
the micro-infrastructure have been clearly defined and used to create the implemen-
tations of PROCESS application scenarios’ data handling pipelines. Throughout
the five application use cases, a single backbone data infrastructure has been used
and combined at runtime with multiple data services required by the five applica-
tions. In this paper we focus on two out of the five applications, more details about
the other applications can be found in [53]. While the two applications described in
this paper are coming from two different scientific domains, namely astronomy and
medical imaging, they share a number of storage and logical adapters, but also have

Process Data Infrastructure and Data Services 749

their specific ones. Because of the container centric approach followed in the cur-
rent implementation of the micro-infrastructure, it was straightforward to mix and
match various data adapters to fulfill the applications data handling requirements.
All software components developed and reported in this paper are available in the
PROCESS software repository [56].

The micro-architecture is currently extended with two software layers to support
both application developers and end-users. The developer layer offers the application
developer an easy way to implement data processing functions that can be combined
to enable a specific data processing pipeline. The user layer offers basic programming
constructs, i.e. variables, conditionals, and loops. The user layer is designed for
scientists with limited programming experiences, the programming statements have
sentence-like structure [31].

The performance results reported in this paper measure only the overhead in-
duced by the software services proposed in the PROCESS project. In the absence
of an exascale computer, exascale can be achieved by combining the power of ge-
ographically distributed data centers. However, using the standard data transfer
techniques the stage-in of the 7 PB of data currently in LOFAR LTA would take
about 7 years and transferring a full exabyte would take several centuries. On-going
research to address this problem proposes to use efficient DTN networks between
compute centers involved in large data transfers across these centers. Experiments
by Geant in 2018 [32] have shown that 100 GbE DTN networks are feasible on the
European and even global scale. At such transfer rates it would take less than
a minute to transfer a single 16 TB LOFAR observation.

Acknowledgment

This work is supported by the “PROviding Computing solutions for ExaScale Chal-
lengeS” (PROCESS) project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement
No. 777533, by the project APVV-17-0619 (U-COMP) “Urgent Computing for Exas-
cale Data” and by the VEGA project “New Methods and Approaches for Distributed
Scalable Computing” No. 2/0125/20.

REFERENCES

[1] Koehler, M.—Knight, R.—Benkner, S.—Kaniovskyi, Y.—Wood, S.: The
VPH-Share Data Management Platform: Enabling Collaborative Data Management
for the Virtual Physiological Human Community. 2012 Eighth International Con-
ference on Semantics, Knowledge and Grids, Beijing, China, 2012, pp. 80–87, doi:
10.1109/SKG.2012.51.

[2] Bent, J.—Faibish, S.—Ahrens, J.—Grider, G.—Patchett, J.—
Tzelnic, P.—Woodring, J.: Jitter-Free Co-Processing on a Prototype Exascale

https://doi.org/10.1109/SKG.2012.51

750 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

Storage Stack. 2012 IEEE 28th Symposium on Mass Storage Systems and Technolo-
gies (MSST), San Diego, CA, USA, 2012, pp. 1–5, doi: 10.1109/MSST.2012.6232382.

[3] Filippidis, C.: Parallel Storage Systems for Large Scale Machines.
http://sc16.supercomputing.org/sc-archive/doctoral_showcase/doc_files/

drs104s2-file2.pdf.

[4] Lofstead, J.—Jimenez, I.—Maltzahn, C.—Koziol, Q.—Bent, J.—
Barton, E.: DAOS and Friends: A Proposal for an Exascale Storage System.
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC ’16), Salt Lake City, UT, USA, IEEE, 2016,
pp. 585–596, doi: 10.1109/SC.2016.49.

[5] Hemsoth, N.: Exascale Storage Gets a GPU Boost DFAF. 2018, https://www.

nextplatform.com/2018/02/12/exascale-storage-gets-gpu-boost/.

[6] Hemsoth, N.: An Exascale Timeline for Storage and I/O System. 2017, https://
www.nextplatform.com/2017/08/16/exascale-timeline-storage-io-systems/.

[7] Infinite Memory Engine: The Exascale-Era Storage Ar-
chitecture. 2017, https://www.hpcwire.com/2017/08/21/

infinite-memory-engine-exascale-era-storage-architecture/.

[8] Hick, J.—Watson, D.—Cook, D.—Minton, J.—Newman, H.—
Preston, T.—Rich, G.—Scott, C.—Shoopman, J.—Noe, J.—
O’Connell, J.—Shipman, G.—White, V.: HPSS in the Extreme Scale
Era: Report to DOE Office of Science on HPSS in 2018–2022. Technical Report
No. LBNL-3877E, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA, USA,
2009.

[9] Cope, J.—Liu, N.—Lang, S.—Carns, P.—Carothers, C.—Ross, R.:
CODES: Enabling Co-Design of Multi-Layer Exascale Storage Architectures. https:
//pdfs.semanticscholar.org/159d/bd0a8c18e2df895b131e33499e2d529210e0.

pdf.

[10] Mair, J.—Huang, Z.—Eyers, D.—Chen, Y.: Quantifying the Energy Effi-
ciency Challenges of Achieving Exascale Computing. 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 2015,
pp. 943–950, doi: 10.1109/CCGrid.2015.130.

[11] Cameron, K. W.: Energy Efficiency in the Wild: Why Datacenters Fear Power
Management. Computer, Vol. 47, 2014, No. 11, pp. 89–92, doi: 10.1109/MC.2014.315.

[12] https://www.eudat.eu/services/b2stage.

[13] https://www.dcache.org.

[14] https://www.gluster.org.

[15] https://iRODS.org.

[16] https://www.dcache.org/manuals/2016/presentations/20161006-PM-dCache.

pdf.

[17] Shannigrahi, S.—Fan, C.—Papadopoulos, C.: Named Data Networking Strate-
gies for Improving Large Scientific Data Transfers. Proceedings of the IEEE Inter-
national Conference on Communications Workshops (ICC Workshops), Kansas City,
MO, USA, 2018, doi: 10.1109/ICCW.2018.8403576.

https://doi.org/10.1109/MSST.2012.6232382
http://sc16.supercomputing.org/sc-archive/doctoral_showcase/doc_files/drs104s2-file2.pdf
http://sc16.supercomputing.org/sc-archive/doctoral_showcase/doc_files/drs104s2-file2.pdf
https://doi.org/10.1109/SC.2016.49
https://www.nextplatform.com/2018/02/12/exascale-storage-gets-gpu-boost/
https://www.nextplatform.com/2018/02/12/exascale-storage-gets-gpu-boost/
https://www.nextplatform.com/2017/08/16/exascale-timeline-storage-io-systems/
https://www.nextplatform.com/2017/08/16/exascale-timeline-storage-io-systems/
https://www.hpcwire.com/2017/08/21/infinite-memory-engine-exascale-era-storage-architecture/
https://www.hpcwire.com/2017/08/21/infinite-memory-engine-exascale-era-storage-architecture/
https://pdfs.semanticscholar.org/159d/bd0a8c18e2df895b131e33499e2d529210e0.pdf
https://pdfs.semanticscholar.org/159d/bd0a8c18e2df895b131e33499e2d529210e0.pdf
https://pdfs.semanticscholar.org/159d/bd0a8c18e2df895b131e33499e2d529210e0.pdf
https://doi.org/10.1109/CCGrid.2015.130
https://doi.org/10.1109/MC.2014.315
https://www.eudat.eu/services/b2stage
https://www.dcache.org
https://www.gluster.org
https://iRODS.org
https://www.dcache.org/manuals/2016/presentations/20161006-PM-dCache.pdf
https://www.dcache.org/manuals/2016/presentations/20161006-PM-dCache.pdf
https://doi.org/10.1109/ICCW.2018.8403576

Process Data Infrastructure and Data Services 751

[18] Chen, S.—Cao, J.—Zhu, L.: NDSS: A Named Data Storage System. 2015 Inter-
national Conference on Cloud and Autonomic Computing, Boston, MA, USA, 2015,
pp. 196–199, doi: 10.1109/ICCAC.2015.12.

[19] Zhu, S.—Yuan, M.—Lei, K.: Ndynamo: An ndnDHT-Based Distributed Stor-
age System over Named Data Networking. 2016 5th International Conference on
Computer Science and Network Technology (ICCSNT), Changchun, China, 2016,
pp. 148–152, doi: 10.1109/ICCSNT.2016.8070137.

[20] Rao, Y.—Gao, D.—Zhang, H.—Foh, C. H.: Mobility Support for the User in
NDN-Based Cloud Storage Service. 2015 IEEE Globecom Workshops (GC Wkshps),
San Diego, CA, USA, 2015, pp. 1–6, doi: 10.1109/GLOCOMW.2015.7414159.

[21] Cloudify Orchestration Service. https://docs.cloudify.co/latest/developer/

apis/.

[22] Atkinson, M. P.—Galea, M.—Liew, C. S.—Martin, P.: ADMIRE – Final
Report on the ADMIRE Architecture, with an Assessment and Proposals for Its
Development. Technical Report, The ADMIRE Project, May 2011.

[23] Brezany, P.—Aranda, C. B.—Corcho, O.—Janciak, I.—Woehrer, A.—
Atkinson M.: ADMIRE – Report Defining the Final Iteration of the Model and
Language. Deliverable Report D1.9, The ADMIRE Project, May 2011.

[24] Available at GitHub: https://github.com/micro-infrastructure/

adaptor-sshfs.

[25] Available at GitHub: https://github.com/micro-infrastructure/

service-webdavserver.

[26] Available at GitHub: https://github.com/micro-infrastructure/

service-scp2scp.

[27] Available at GitHub: https://github.com/micro-infrastructure/

service-nextcloud.

[28] Graziani, M.—Eggel, I.—Deligand, F.—Bobák, M.—Andrearczyk, V.—
Müller, H.: Breast Histopathology with High-Performance Computing and Deep
Learning. Computing and Informatics, Vol. 39, 2020, No. 4, pp. 780–807, doi:
10.31577/cai 2020 4 780.

[29] https://www.astron.nl/lofarwiki/doku.php?id=start.

[30] https://www.surf.nl/en/use-case-space-research-with-grid-

infrastructure.

[31] https://onnovalkering.github.io/brane/.

[32] https://github.com/recap/MicroInfrastructure.

[33] TOP500.org. The TOP500 List (June 2008). 2008, https://www.top500.org/

lists/2008/06/. Accessed: 04-01-2018.

[34] Bándi, P.—Geesing, O.—Manson, Q.—Van Dijk, M.—Balkenhol, M.:
From Detection of Individual Metastases to Classification of Lymph Node Status
at the Patient Level: The CAMELYON17 Challenge. IEEE Transactions on Medical
Imaging, Vol. 38, 2019, No. 2, pp. 550–560, doi: 10.1109/TMI.2018.2867350.

[35] Vijayaraghavan, T.—Eckert, Y.—Loh, G. H.—Schulte, M. J.—
Ignatowski, M.—Beckmann, B. M.—Brantley, W. C.—Great-
house, J. L.—Huang, W.—Karunanithi, A. et al.: Design and Analysis

https://doi.org/10.1109/ICCAC.2015.12
https://doi.org/10.1109/ICCSNT.2016.8070137
https://doi.org/10.1109/GLOCOMW.2015.7414159
https://docs.cloudify.co/latest/developer/apis/
https://docs.cloudify.co/latest/developer/apis/
https://github.com/micro-infrastructure/adaptor-sshfs
https://github.com/micro-infrastructure/adaptor-sshfs
https://github.com/micro-infrastructure/service-webdavserver
https://github.com/micro-infrastructure/service-webdavserver
https://github.com/micro-infrastructure/service-scp2scp
https://github.com/micro-infrastructure/service-scp2scp
https://github.com/micro-infrastructure/service-nextcloud
https://github.com/micro-infrastructure/service-nextcloud
https://doi.org/10.31577/cai_2020_4_780
https://www.astron.nl/lofarwiki/doku.php?id=start
https://www.surf.nl/en/use-case-space-research-with-grid-infrastructure
https://www.surf.nl/en/use-case-space-research-with-grid-infrastructure
https://onnovalkering.github.io/brane/
https://github.com/recap/MicroInfrastructure
https://www.top500.org/lists/2008/06/
https://www.top500.org/lists/2008/06/
https://doi.org/10.1109/TMI.2018.2867350

752 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

of an APU for Exascale Computing. 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), IEEE, 2017, pp. 85–96, doi:
10.1109/HPCA.2017.42.

[36] HGST Ultrastar Hs14. http://www.hgst.com/products/harddrives/

ultrastar-hs14. Accessed: 03-12-2017.

[37] ASTC Technology Roadmap. http://idema.org/?pageid=5868. Accessed: 03-12-
2017.

[38] Sandberg, R.—Goldberg, D.—Kleiman, S.—Walsh, D.—Lyon, B.: Design
and Implementation or the Sun Network File System. Proceedings of the Summer
1985 USENIX Conference, Portland, OR, USA, 1985, pp. 119–130.

[39] Levy, E.—Silberschatz, A.: Distributed File Systems: Concepts and Exam-
ples. ACM Computing Surveys (CSUR), Vol. 22, 1990, No. 4, pp. 321–374, doi:
10.1145/98163.98169.

[40] Roselli, D. S.—Lorch, J. R.—Anderson, T. E.: A Comparison of File System
Workloads. Proceedings of the USENIX Annual Technical Conference, General Track,
2000, pp. 41–54.

[41] Niazi, S.—Ismail, M.—Haridi, S.—Dowling, J.—Grohsschmiedt, S.—
Ronström, M.: HopsFS: Scaling Hierarchical File System Metadata Using NewSQL
Databases. Proceedings of the 15th Usenix Conference on File and Storage Technolo-
gies (FAST 2017), Santa Clara, CA, USA, pp. 89–103.

[42] Takatsu, F.—Hiraga, K.—Tatebe, O.: PPFS: A Scale-Out Distributed File
System for Post-Petascale Systems. Journal of Information Processing, Vol. 25, 2017,
pp. 438–447, doi: 10.2197/ipsjjip.25.438.

[43] Ren, K.—Zheng, Q.—Patil, S.—Gibson, G.: IndexFS: Scaling File System
Metadata Performance with Stateless Caching and Bulk Insertion. Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’14), IEEE, 2014, pp. 237–248, doi: 10.1109/SC.2014.25.

[44] Benet, J.: IPFS – Content Addressed, Versioned, P2P File System. arXiv preprint
arXiv:1407.3561, 2014.

[45] Yahoo Cloud Object Store – Object Storage at Ex-
abyte Scale. https://yahooeng.tumblr.com/post/116391291701/

yahoocloud-object-store-object-storage-at. Accessed: 06-01-2018.

[46] Koulouzis, S.—Belloum, A. S. Z.—Bubak, M. T.—Zhao, Z.—Živko-
vić, M.—de Laat, C. T. A. M.: SDN-Aware Federation of Distributed
Data. Future Generation Computer Systems, Vol. 56, 2016, pp. 64–76, doi:
10.1016/j.future.2015.09.032.

[47] Koulouzis, S.—Belloum, A.—Bubak, M.—Lamata, P.—Nolte, D.—
Vasyunin, D.—de Laat, C.: Distributed Data Management Service for VPH
Applications. IEEE Internet Computing, Vol. 20, 2016, No. 2, pp. 34–41, doi:
10.1109/MIC.2015.71.

[48] https://www.nist.gov/publications/nist-big-data-interoperability-

framework-volume-1-definitions.

[49] https://lta.lofar.eu.

https://doi.org/10.1109/HPCA.2017.42
http://www.hgst.com/products/harddrives/ultrastar-hs14
http://www.hgst.com/products/harddrives/ultrastar-hs14
http://idema.org/?pageid=5868
https://doi.org/10.1145/98163.98169
https://doi.org/10.2197/ipsjjip.25.438
https://doi.org/10.1109/SC.2014.25
https://yahooeng.tumblr.com/post/116391291701/yahoocloud-object-store-object-storage-at
https://yahooeng.tumblr.com/post/116391291701/yahoocloud-object-store-object-storage-at
https://doi.org/10.1016/j.future.2015.09.032
https://doi.org/10.1109/MIC.2015.71
https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-1-definitions
https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-1-definitions
https://lta.lofar.eu

Process Data Infrastructure and Data Services 753

[50] https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_

PROCESS_D4.1_Initial_-state_of_the_art_and_requirement_analysis_

initial_PROCESS_architecture_v1-1.pdf.

[51] https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_

PROCESS_D4.2_Report_on_architecture_v1.0.pdf.

[52] https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_

PROCESS_D5.1_Design_of_data_infrastructure_v1.0.pdf.

[53] https://www.process-project.eu/wp-content/uploads/2020/02/PROCESS_D5.

2_Alpha_release_of_the_Data_service_v1.0.pdf.

[54] Spreeuw, H.—Madougou, S.—Van Haren, R.—Weel, B.—Belloum, A.—
Maassen, J.: Unlocking the LOFAR LTA. 2019 15th International Confer-
ence on eScience (eScience), San Diego, CA, USA, 2019, pp. 467–470, doi:
10.1109/eScience.2019.00061.

[55] https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_

PROCESS_D2.1_Progress_Report_v1.0.pdf.

[56] https://www.research-software.nl/.

[57] Wittenburg, P.—Van de Sompel, H.—Vigen, J.—Bachem, A.—
Romary, L.—Marinucci, M.—Andersson, T.—Genova, F.—Best, C.—
Los, W. et al.: Riding the Wave: How Europe Can Gain from the Rising Tide
of Scientific Data. Final Report of the High Level Expert Group on Scientific Data –
A Submission to the European Commission, October 2010. http://ec.europa.eu/
newsroom/dae/document.cfm?doc_id=707.

Reginald Cushing is PostDoc at the University of Amsterdam
in the Multiscale Networked Systems (MNS) group. His research
fields are in distributed systems with a focus on data processing,
federation, and scientific workflows.

Onno Valkering is Scientific Programmer in the Multiscale
Networked Systems (MNS) research group at the University of
Amsterdam, Holland. His interests are distributed data pro-
cessing, domain-specific languages, and privacy-preserving tech-
niques.

https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.1_Initial_-state_of_the_art_and_requirement_analysis_initial_PROCESS_architecture_v1-1.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.1_Initial_-state_of_the_art_and_requirement_analysis_initial_PROCESS_architecture_v1-1.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.1_Initial_-state_of_the_art_and_requirement_analysis_initial_PROCESS_architecture_v1-1.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.2_Report_on_architecture_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.2_Report_on_architecture_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D5.1_Design_of_data_infrastructure_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D5.1_Design_of_data_infrastructure_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PROCESS_D5.2_Alpha_release_of_the_Data_service_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PROCESS_D5.2_Alpha_release_of_the_Data_service_v1.0.pdf
https://doi.org/10.1109/eScience.2019.00061
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D2.1_Progress_Report_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D2.1_Progress_Report_v1.0.pdf
https://www.research-software.nl/
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=707
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=707

754 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

Adam Belloum is Senior Researcher at the Computer Science
Department of the University of Amsterdam and the technology
lead working on optimized data handling at the Dutch National
eScience Center. He received his M.Sc. and Ph.D. degrees from
the Compiegne University of Technology, France.

Souley Madougou is an eScience engineer at the Netherlands
eScience Centre since December 2018. He is mainly involved in
the PROCESS project in which he contributes to the implemen-
tation of the LOFAR use case and the development and analysis
of PROCESS performance models. He previously worked in sev-
eral eScience projects in the Netherlands. His research interests
include performance modelling on many-core architectures, par-
allel programming and provenance.

Martin Bobak is Scientist at the Institute of Informatics, Slo-
vak Academy of Sciences, Bratislava, Slovakia, in the Depart-
ment of Parallel and Distributed Information Processing. He
started working at the institute in 2013, defended his disser-
tation thesis at the institute in 2017, became Member of the
Scientific Board of the institute, and Guest Handling Editor in
the CC Journal Computing and Informatics. His field of re-
search is cloud computing and the architectures of distributed
cloud-based applications. He is the author of numerous scien-
tific publications and has participated in several European and
Slovak R & D projects.

Ondrej Habala is Researcher at the Institute of Informatics,
Slovak Academy of Sciences, Bratislava, Slovakia. He works in
the Department of Parallel and Distributed Information Process-
ing since 2001. His interests are mainly in data and metadata
management in distributed computing, as well as in distributed
information systems in general and focused on applications in
environmental sciences and hydro-meteorology. He has over the
years participated in numerous FP5, FP6, FP7, H2020 and na-
tional research projects and produced over 80 scientific publica-
tions.

Process Data Infrastructure and Data Services 755

Viet Tran is Senior Researcher at the Institute of Informat-
ics, Slovak Academy of Sciences (IISAS). His primary research
fields are complex distributed information processing, grid and
cloud computing, system deployment and security. He received
M.Sc. degree in informatics and information technology, Ph.D.
degree in applied informatics from the Slovak University of Tech-
nology (STU) in Bratislava, Slovakia. He actively participates
on preparations and solving a number of EU IST RTD 4th, 5th,
6th, 7th FP and EU H2020 projects such as PROCESS, DEEP-
HybridDataCloud, EOSC-Hub and EOSC-Synergy. He is the

author or co-author of over 100 scientific publications.

Jan Meizner has graduated majoring in federated IT security
systems. Since then he has been working at ACC Cyfronet AGH
on many EU and national projects involving a wide range of
subjects, including computational medicine. His work focuses on
IT security, operations of cloud and HPC infrastructures, as well
as building software for such infrastructures. Currently involved
also in Sano Centre for Computational Medicine, focusing on the
operations of IT systems, as well as a range of IT security tasks,
including identity management and data security.

Piotr Nowakowski is Research Programmer at the Academic
Computing Centre CYFRONET AGH and Senior Data Scien-
tist at the Sano Centre for Computational Medicine. He spe-
cializes in design and development of distributed environments
for computational science, and he has participated in a range
of national and international research initiatives, including EU-
funded projects – most recently VPH-Share, EurValve and PRO-
CESS. He is the author or co-author of over 100 scientific pub-
lications.

Mara Graziani is a third-year Ph.D. student with double affil-
iation at the University of Geneva and at the University of Ap-
plied Sciences of Western Switzerland. With her research, she
aims at improving the interpretability of machine learning sys-
tems for healthcare by a human-centric approach. She was a vis-
iting student at the Martinos Center, part of Harvard Medical
School in Boston, MA, USA to analyze the interaction between
clinicians and deep learning systems. From her background of
IT Engineering, she was awarded the Engineering Department
Award for completing the M.Phil. in machine learning, speech

and language at the University of Cambridge, UK in 2017.

756 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

Henning M�uller is Full Professor at the HES-SO Valais and
responsible for the eHealth unit of the school. He is also Pro-
fessor at the Medical Faculty of the University of Geneva and
has been on sabbatical at the Martinos Center, part of Harvard
Medical School in Boston, MA, USA to focus on research activi-
ties. He is the coordinator of the ExaMode EU project, was the
coordinator of the Khresmoi EU project, the scientific coordi-
nator of the VISCERAL EU project, and is the initiator of the
ImageCLEF benchmark that has run medical tasks since 2004.
He has authored over 500 scientific papers with more than 13 000

citations and is in the editorial board of several journals.

Computing and Informatics, Vol. 39, 2020, 757–779, doi: 10.31577/cai 2020 4 757

DISTRIBUTED ALGORITHM FOR PARALLEL EDIT
DISTANCE COMPUTATION

Muhammad Umair Sadiq, Muhammad Murtaza Yousaf

Punjab University College of Information Technology (PUCIT)
University of the Punjab
Lahore, Pakistan
e-mail: {umair.sadiq, murtaza}@pucit.edu.pk

Abstract. The edit distance is the measure that quantifies the difference between
two strings. It is an important concept because it has its usage in many domains
such as natural language processing, spell checking, genome matching, and pattern
recognition. Edit distance is also known as Levenshtein distance. Sequentially,
the edit distance is computed by using dynamic programming based strategy that
may not provide results in reasonable time when input strings are large. In this
work, a distributed algorithm is presented for parallel edit distance computation.
The proposed algorithm is both time and space efficient. It is evaluated on a hybrid
setup of distributed and shared memory systems. Results suggest that the proposed
algorithm achieves significant performance gain over the existing parallel approach.

Keywords: Edit distance, dynamic programming, parallel computing, distributed
memory system, MPI, OpenMP, speedup

1 INTRODUCTION

Measuring the similarity between two strings helps to solve problems in many do-
mains such as spell checking, spam filtering, nucleotide sequence matching, virus
signature matching in computer security, natural language processing (NLP), speech
recognition, and pattern recognition [1, 2, 3, 4, 5]. String similarity/matching comes
in two forms: approximate string matching and exact string matching [6]. In the
exact string matching, all the appearances of the pattern are required to be found
in the given string. In the approximate string matching, the difference between the
given pattern and the string is measured. Levenshtein distance is the measure that

758 M.U. Sadiq, M.M. Yousaf

tells the difference between two strings. It counts the number of edit operations
(insert, replace, and delete) that are required to transform one string to another [7].
In literature, it is often referred to as edit distance [8, 9], but some other definitions
of edit distance exist as well [10]. In this study, we would consider the Levenshtein’s
definition of the edit distance.

Sequentially, edit distance/Levenshtein distance can be computed by using dy-
namic programming based strategy but if large strings such as deoxyribonucleic acid
(DNA) sequences are compared, then it may not give result in a reasonable amount
of time. Therefore, a parallel solution is required to compute result in acceptable
time if the data size is large. This work is about design and evaluation of a dis-
tributed algorithm for parallel edit distance computation between two strings. The
proposed algorithm is evaluated on a cluster by using Message Passing Interface
(MPI). MPI is designed to work with different parallel architectures and it serves as
a standard [11]. It defines certain point to point and the collective communication
protocols to program distributed parallel systems. The rest of the paper is orga-
nized as follows: Section 2 discusses some preliminary concepts. Section 3 presents
the background of the edit distance. Section 4 covers the related work. Section 5
presents a distributed algorithm for parallel edit distance computation. Section 6
presents experimental evaluation of the proposed algorithm. Finally, Section 7 con-
cludes the paper and discusses the artery of future work.

2 PRELIMINARIES

This section introduces some basic terminologies and key concepts that will be used
in the rest of the paper.

2.1 Cost of Communication

While designing a distributed algorithm, computation, as well as communication
time between different nodes, is also essential. For analysis of communication time,
consider this model of communication. The time required to communicate a message
between two nodes of a distributed memory system is equal to ts + twη where ts is
startup time to prepare the message for transmission, tw is per word transfer time,
and η is number of words [12].

2.2 Exclusive Scan Operation

Exclusive scan operation is an important primitive in parallel computing. It oper-
ates on an ordered set [x0, x1, . . . , xn−1] of n elements. It uses a binary associative
operator ⊕. It returns the result of form: [−, x0⊕x1, x0⊕x1⊕x2, . . . , x0⊕x1⊕x2⊕
· · ·⊕xn−1]. In the output each jth element is cumulative result of all input elements
from 0th to jth element (excluding jth element itself). If all n elements are divided
among p processors then this operation requires (ts + twη) log n time on distributed
memory system [12].

Distributed Algorithm for Parallel Edit Distance Computation 759

2.3 Speedup

In parallel computing, speedup is the measure of the increase of performance of
parallel algorithm compared to sequential algorithm. It is the ratio of sequential
execution time to parallel execution time.

2.4 Parallel Efficiency

Parallel efficiency is the measure of effectiveness of the resource utilization. It is the
ratio of speedup to the number of compute nodes.

3 SEQUENTIAL COMPUTATION OF THE EDIT DISTANCE

Sequentially, edit distance is computed by using dynamic programming based strat-
egy in which a table Lev of size (m + 1) × (n + 1) is built where m is size of first
string and n is size of second string [7]. Given two strings A and B of size m and
n, respectively, edit distance table can be computed with Algorithm 1.

Each cell (i, j) in the edit distance table represents the value of the edit distance
between the first i characters of string A and the first j characters of string B. Cell
(m,n) in the table represents the value of the edit distance between both strings.
Figure 1 shows a sample edit distance table for strings “ACER” and “CARE”.

Edit distance between “ACER” and “CARE” is 3 because to make this conver-
sion following operations are required: delete ‘A’, match ‘C’, replace ‘E’ with ‘A’,
match ‘R’, and delete ‘E’. There is no cost for matching a character. Figure 1 also
illustrates the dependence of the calculation of a single cell on other cells of the edit
distance table.

Sequential time complexity of the algorithm is O(mn) which is obvious from the
size of the edit distance table. Space complexity of the algorithm is O(n) [7].

4 RELATED WORK

To reduce the computation time of the edit distance many efforts have been made
and this section covers various such studies.

Masek and Paterson [8] presented a little restricted but fast sequential edit
distance algorithm for abstract unit-cost RAM machine. It requires the strings
to be of equal sizes. Mathies [9] presented a fast parallel algorithm for the edit
distance computation. It requires mn processors on abstract parallel random-access
machine. Apostlico et al. [13] presented a parallel edit distance algorithm for the
abstract parallel random-access machine. A space efficient algorithm for the edit
distance is presented in [14].

A bit parallel algorithm for the problem of approximate string matching [15]
is presented in [16]. This algorithm is serial and depends upon the word size of
machine. It allows to process only w cells at a time where w is the largest word

760 M.U. Sadiq, M.M. Yousaf

Algorithm 1: Sequential computation of the edit distance [7].

Input: Strings: A[0 . . .m− 1] and B[0 . . . n− 1]
1 m← A.length
2 n← B.length

3 Let Lev [0 . . . n], LevP [0 . . . n] be new arrays

4 for j = 0 to n do
5 Lev [j]← j
6 end
7 LevP ← Lev

8 for i = 1 to m do
9 for j = 0 to n do

10 if j = 0 then
11 Lev [j]← i
12 else if A[i− 1] = B[j − 1] then
13 Lev [j]← LevP [j − 1]
14 else
15 Lev [j]← min(LevP [j],LevP [j − 1],Lev [j − 1]) + 1
16 end

17 end
18 if i 6= n then
19 Swap(Lev , LevP)
20 end

21 end
Output: Lev [n]

size on a given machine. This algorithm is later modified to compute the edit
distance and is presented in [10]. In [17], Myers bit parallel algorithm [16] is also
implemented on GPUs using collaborative parallelization for large bitwise operations
and concurrent pattern matching. An implementation of Myers algorithm [16] is also
presented in [18].

An obvious way to compute the edit distance is to use diagonal parallel approach.
It calculates the edit distance table diagonal-wise by simultaneously computing all
entries in a diagonal. Its main disadvantage is unbalanced workload among proces-
sors because sizes of the diagonals vary in each step [19]. In [20], an efficient parallel
algorithm for longest common sub-sequence problem is presented for shared mem-
ory multi-core systems and GPUs. Sadiq et al. [21] presented a parallel algorithm
for the edit distance problem. Authors resolved the dependences in the dynamic
programming table and manage to calculate the edit distance table row-wise where
every row is computed in parallel. An additional preprocessing step is added which
helps in resolving the dependences in the dynamic programming table. Their pro-
posed algorithm is evaluated on GPUs and multi-core systems. It achieved good

Distributed Algorithm for Parallel Edit Distance Computation 761

Figure 1. Edit distance table between strings: “ACER” and “CARE” and dependences
of a cell (i, j) in the edit distance table

performance gains. Similar strategies to [21] for the problem of approximate string
matching have been proposed in [22, 23].

Another problem that is related to the edit distance is the sequence alignment
problem. In that, similar regions of two sequences are aligned together by insert-
ing gaps in the sequences. Major algorithms of the sequence alignment problem
also follow the dynamic programming. Furthermore, their solutions have similar
dependences in the dynamic programming table as in the case of edit distance.
Comprehensive studies have been made for this problem. Aluru et al. [24] presented
a distributed algorithm for various algorithms of biological sequence comparison.
It introduces the way to calculate the alignment table row-wise or column-wise by
using parallel scan operation [12, 25]. This algorithm is implemented by using MPI.
Results are presented for two type of sequences: one having complete match case
and other having complete mismatch case. This algorithm achieved good speedup
on both setups. Scalability of their algorithm is evaluated by a varying number of
processors. Authors indicated that their method can be used to parallelize other
algorithms that needed to calculate such a score table. An exact parallel space
and time optimal algorithm for the sequence alignment is proposed in [26]. It also
uses the parallel scan operation to exploit parallelism. Furthermore, it is important
to note that edit distance can also be computed using the parallel scan opera-
tion [25].

In [27] two streaming algorithms for biological sequence alignment are presented
for GPUs. These streaming algorithms are also based on diagonal parallel approach.
A parallel algorithm for local alignment is presented in [28]. It uses a master and
slave model. This algorithm is also space efficient. It is evaluated by using MPI and

762 M.U. Sadiq, M.M. Yousaf

cluster of eight and sixty nodes. The authors evaluated their algorithm by using
random pair of sequences in the range of 1 KBP (Kilo Base Pairs) and 1 600 KBP.

A parallel and space efficient algorithm for sequence alignment called z-align is
presented in [29]. The authors executed their algorithm in four phases:

1. distribution of input data including sequences,

2. calculation of the similarity matrix,

3. gathering of the best score and their coordinates at the master processor,

4. obtaining actual alignment(s) in limited space using a master-slave model and
self-scheduling policy.

This algorithm is evaluated on a cluster of sixteen processors. The authors com-
pared sequences of size between 1 KB and 3 MB. A parallel algorithm for multiple
sequence alignment is proposed in [30]. It is evaluated using a cluster of systems
connected through network. Parallelism is achieved by partitioning the dynamic
programming matrix among host systems. The authors also evaluated the scalabil-
ity of the algorithm.

To summarize, the following are major principles on which parallel computation
of the edit distance has been done. Some earlier solutions are based on a parallel
random access machine model that is really fast in terms of time complexity [8,
9, 13], but due to the quadratic space complexity and resource requirements such
models are not implemented practically. Bit parallel approach [10, 16, 17] is quite
common, in which a couple of cells are represented as a single word and bitwise
operations are used to perform simultaneous computations. Another approach that
is quite common is diagonal based approach [19] in which edit distance table is solved
anti-diagonal-wise, while computing each anti-diagonal in parallel. There is not
dependence among the cells of anti-diagonal according to the algorithm presented
as Algorithm 1. It can be further seen in the Figure 1. The number of cells in
each anti-diagonal is different, what lowers the parallelism in certain stages of the
algorithm. Furthermore, it is also not a load balanced approach. Another way of
solving the edit distance table is to use the parallel scan approach, which resolves
the dependences in the table and computes it row-wise. It increases the number of
steps for computation of each row, but it is the load balanced approach. Another
method of resolving the dependences in the dynamic programming table involves
a preprocessing step [21, 22, 23]. After changing the dependences, updated algorithm
computes entries of each row of the table in parallel.

Overall, extensive studies have been made for parallel computation of the edit
distance and related problems. Most of the studies primarily focuse on GPU-based
solution. In string comparison, problem size can be very large, therefore the scalable
solution is required for these problems. A solution for distributed memory systems is
always a good choice for scaling because there is no limit to the number of processing
nodes. To the best of our knowledge, distributed solutions exist [24, 26, 28] in
literature but those are not specific to the edit distance. Therefore, this study
focuses on designing a distributed algorithm for parallel edit distance calculation.

Distributed Algorithm for Parallel Edit Distance Computation 763

5 A DISTRIBUTED ALGORITHM FOR PARALLEL EDIT
DISTANCE COMPUTATION

To compute multiple entries of the edit distance table simultaneously, dependences
for computing each cell should be investigated. Computations in the first row and
the first column of the edit distance table are independent of any cell (Algorithm 1).
For any cell (i, j) in ith row, where i > 0 and j > 0, there are two possibilities:
either cell (i, j) can be a match case where the character of string A matches with
the corresponding character of string B. Otherwise, it will be a non-match case.

According to Algorithm 1, to compute any cell (i, j) which is a non-match case,
three values should be known in advance: the value of left cell (i, j − 1), the value
of upper cell (i − 1, j), and the value of diagonal cell (i − 1, j − 1) (Figure 1). To
compute any other cell in the edit distance table which is not a non-match case,
only the values from (i− 1)st row are required.

Yousaf at el. [31] presented a parallel algorithm for the edit distance computation
that resolves the dependences in the edit distance table. This algorithm computes
all cells in the ith row of the edit distance table simultaneously based on the (i−1)st

row only. Yousaf at el. [31] proved that the value of a non-match case can also be
computed from (i− 1)st row with the following equation:

Lev [j] = min(LevP [j] + 1,LevP [j − 1] + 1,LevP [mp− 1] + k).

Here mp is the position of the last match case in the ith row and k is the distance of
cell (i, j) from last match case. According to this new equation, dependences of the
cell (i, j) of the edit distance table are changed (as illustrated in Figure 2). Based
on these new dependences each cell (i, j) of an ith row can be computed based on
(i− 1)st row.

Figure 2. Dependences of cell (i, j) according to parallel edit distance algorithm presented
in [31]

Given character set Σ having |Σ| number of unique characters, last match case
for each cell in an ith row can be found by computing a Last Match Case Table
(LMT) of size (|Σ| − 1) × n. It contains the last match positions of the unique
characters of character set Σ against string B. It can be computed by using Algo-
rithm 2.

Table 1 shows a sample LMT for character set {A,C,G, T} and String = “ABA-
CUS”.

764 M.U. Sadiq, M.M. Yousaf

Algorithm 2: Computing LMT

Input: Character set Σ and String B
1 |Σ| ← Σ.length
2 n← B.length

3 Let LMT [0 . . . |Σ| − 1, 0 . . . n] be a new table

4 for i = 0 to |Σ| − 1 do
5 for j = 0 to n do
6 if j = 0 then
7 LMT [i][j]← 0
8 else if match case then
9 LMT [i][j]← j

10 else
11 LMT [i][j]← LMT [i][j − 1]
12 end

13 end

14 end

0 1 2 3 4 5 6
A B A C U S

A 0 1 1 3 3 3 3

C 0 0 0 0 4 4 4

G 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0

Table 1. LMT for Σ = {A,C,G, T} and String = “ABACUS”

The value of the last match position can be incorporated with the following
equation:

Lev [j] = min(LevP [j] + 1,LevP [j− 1] + 1,LevP [LMT [c][j]− 1] + (j−LMT [c][j])).

Here LMT [c][j] is the position of the last match case in an ith row. This algorithm
computes the same edit distance score as sequential algorithm. Its proof of correct-
ness is established in [31] and [21]. Furthermore, the size of each row is the same in
the edit distance table, therefore this approach allows balanced work division among
the processing elements.

Now, let us introduce a distributed way of computing edit distance based on [31].

5.1 Distributed Algorithm

The proposed method is divided into three parts:

1. Distribution of the strings,

Distributed Algorithm for Parallel Edit Distance Computation 765

2. Distributed computation of the LMT ,

3. Distributed computation of edit distance table using LMT .

Assume that there are p processors having ID in the range of 0 to p − 1. For
simplicity, also assume that n (size of string B) is divisible by p. However, it can
be generalized for an arbitrary number of processors. Now, we will discuss all three
steps one by one.

5.1.1 Distribution of the Strings

Initially, strings are distributed among each computing machine as plain text files.
Only a respective part of the string is moved to main memory on which processing
is required. Edit distance table can be computed row by row by reformulating
the dependences (as shown in [21, 31]). Each row can be divided among multiple

processors. So, every processor will compute O
(

n
p

)
part of the row. To compute

its part of the row each processor needs O
(

n
p

)
fraction of the string B, therefore

each processor pr gets second string from B[r(n
p
)] to B[(r + 1)n

p
] where r is ID of

the processor. This process is illustrated in Figure 3 which shows the distribution
of a row and string B among p processors.

Figure 3. Distribution of a row of the edit distance table and string B among p processors

In the edit distance table, computing a row requires only one character from
string A. So, string A can be obtained in chunks by each processor. Every time
processing on one chunk is completed, next chunk is obtained.

5.1.2 Distributed Computation of the LMT

The computation of the LMT is divided in equal parts of n|Σ|
p

among the p processors

(as illustrated in Figure 4).

LMT is computed row by row by modifying Algorithm 2. Each processor can
compute its part of ith row of the LMT in two steps:

1. In the chunk, all values after first match case can be computed in a similar
manner to Algorithm 2 and all the values before first match case are undefined
initially.

766 M.U. Sadiq, M.M. Yousaf

Figure 4. Distribution of the LMT among p processors

2. In any row of the LMT , values always increase or remain the same. So, all the
values before first match case can be found by an exclusive scan operation (with
maximum as binary associative operator) on extreme right value in the chunk
of each processor. This value can be used in the place of undefined values.

Hence with these steps, each processor has all required values of ith row of the LMT .
Now consider an example of computation of the LMT where a row of the table is
computed for a character ‘A’ and string “ATACG”. The whole row is divided among
four processors in n

p
chunks where the size of each chunk is two. Table 2 illustrates

both the steps to compute a row of the LMT .

0 1 2 3 4 5
P0(0) P0(1) P1(0) P1(1) P2(0) P2(1)

(A) A T A C G

Values computed after step 1 0 1 – 3 – –

Values received after step 2 – 1 3

Table 2. Steps to compute LMT (for a character ‘A’ and string “ATACG”)

Similarly, all rows of the LMT can be computed. At one time, all the processors
will be computing their chunk of one specific row. After computation of a row, all
processors are synchronized. Then next row is computed. The procedure to compute
the LMT for an arbitrary process pr is presented as Algorithm 3. Algorithm 3 takes
string B and character set as input and computes the LMT .

5.1.3 Distributed Computation of the Edit Distance Table

The computation of the edit distance table is also divided in equal parts of mn
p

among p processors (as illustrated in Figure 5).
Each processor will compute mn

p
part of the edit distance table. Edit distance

table is computed row by row, therefore to store current and previous row of the edit

Distributed Algorithm for Parallel Edit Distance Computation 767

Algorithm 3: Computation of the LMT at processor pr where r is
a unique identifier for the process between [0 . . . p− 1]

Input: Character set Σ and String B
1 |Σ| ← Σ.length
2 n← B.length
3 Br ← B[rn

p
. . . r(n

p
+ 1)]

4 Let LMT [0 . . . (|Σ| − 1), 0 . . . n
p
] be a new table

5 for i = 0 to |Σ| − 1 do
6 jc← initial index of a row in pr’s chunk
7 for j = 0 to n

p
do

8 if jc = 0 then
9 LMT [i][j]← 0

10 else if Br[j] 6= Σ[i] and j = 0 then
11 LMT [i][j]← undef
12 else if Br[j] == Σ[i] then
13 LMT [i][j]← jc
14 else
15 LMT [i][j]← LMT [i][j − 1]
16 end
17 jc+ +

18 end
19 Values before first match case ← Exclusive Scan (Max) on

LMT [|Σ| − 1][n
p
− 1]

20 end

Figure 5. Distribution of the edit distance table among p processors

768 M.U. Sadiq, M.M. Yousaf

distance table, each process will allocate O
(

n
p

)
space for both rows. At one time,

all processors will be computing their part of one specific row. After computation of
the row, all processors are synchronized. Then the next row is computed, and the
same process follows. Computation of an ith row of the edit distance table is done
in similar manner to Algorithm 1 but the following two cases must be delt with.

1. To compute the extreme left value in chunk of each processor, the value of its
diagonal cell is required (Figure 2), which is not available locally. It can be
found from the preceding processor.

2. It is possible that for some initial cells in the chunk of a processor, the value
of the last match case lies in the chunk of the preceding processor/s (Figure 2).
Therefore, that value must be obtained before computation of the ith row.

These both cases can be managed by two communication steps. The first case
can be handled as follows: Before computation of an ith row, every pth processor
communicates its extreme right value of the (i − 1)st row with (p + 1)st processor.
To handle the second case, an exclusive scan operation (with maximum as binary
associative operator) is performed with the value at very last match case in each
processor’s chunk (as there can be more than one match cases in each processor’s
chunk).

Now, each processor has every value to compute its part in ith row of the edit
distance table. Furthermore, all the values in the chunk of each processor can also be
computed in parallel as their computation is dependent only on (i−1)st row [31]. In
multi-core system, we can divide this computation further among multiple threads.
Similarly, all the rows can be computed. The procedure to compute the edit distance
table is presented as Algorithm 4 which shows working of an arbitrary process pr.
This algorithm takes strings A and B as input and computes the value of the edit
distance.

5.2 Analysis of the Algorithm

5.2.1 Computational Complexity

LMT and the edit distance table are computed row by row and each row is equally
divided among processors. Therefore, each processor computes O(n|Σ|

p
) part of the

LMT and O(mn
p

) part of the edit distance table. So, total computational complexity

is O(mn
p

) because n|Σ|
p
< mn

p
. Edit distance table is further divided among the avail-

able threads in case of hybrid implementation. If number of available threads is t,
then computation time is reduced to O(mn

pt
) because chunk of row for each process

is further divided among the cores of a multi-core system. Hence, the computation
of a row would take O(n

pt
) time.

Distributed Algorithm for Parallel Edit Distance Computation 769

Algorithm 4: Computation of edit distance table at processor pr
Input: Strings: A and B, and LMT

1 m← A.length
2 n← B.length
3 Br ← B[rn

p . . . r(np + 1)]

4 Ac← A[0 . . . np]

5 Let Lev [0 . . . np], LevP [0 . . . np] be new arrays

6 j initial ← initial index of a row in pr’s chunk
7 jc← j initial
8 for j = 0 to n

p − 1 do

9 Lev [j]← jc
10 jc + +
11 end
12 LevP ← Lev

13 for i = 1 to m do
14 Get next chunk of A if required
15 ch← next character in A
16 jc← j initial
17 for j = 0 to n

p − 1 do

18 if jc = 0 then
19 Lev [j]← i
20 else if Ac[i] = Br[j] then
21 if j == 0 then
22 Lev [j]← pre end value
23 else
24 Lev [j]← LevP [j − 1]
25 end
26 else
27 c← row index of character Ac[i] in LMI
28 lmp← LMI[c][j]
29 lmv ← Value at last match case according to lmp
30 Lev [j]← min(LevP [j] + 1,LevP [j − 1] + 1, (jc− lmp) + lmv)
31 end
32 jc + +
33 end
34 if i 6= n then
35 if r 6= p− 1 then
36 end value ← Lev [np − 1]

37 Send end value to processor pr+1

38 end
39 if r 6= 0 then
40 Receive pre end value from processor pr−1

41 end
42 lmv ← Exclusive Scan (Max) on very last match case in pr’s chunk
43 Swap(Lev , LevP)
44 end
45 end

Output: Lev [np − 1] if (r == p− 1)

770 M.U. Sadiq, M.M. Yousaf

5.2.2 Communication Time

Total communication required for the LMT is |Σ|(ts+twη) log n because to compute
one row of the LMT , one exclusive scan operation is required. In the edit distance
table, one exclusive scan operation per row is required. Furthermore, for each row
one extreme right value in the chunk of the processor should also be communicated.
Its communication time is m(ts + twη)(log n+ 1). So, the total communication time
for this algorithm is |Σ|(ts + twη) log n+m(ts + twη)(log n+ 1).

5.2.3 Space Complexity

Space requirement for string B is O
(

n
p

)
. LMT requires O

(
n|Σ|
p

)
space. Edit

distance table requires O
(

n
p

)
space. String A can be obtained by processors in

arbitrary sized multiple chunks, but if the chunk size taken is less than O
(

n
p

)
then

space complexity would be optimal. Hence, the total space complexity would be

O
(

n
p

)
+O

(
n|Σ|
p

)
. Here |Σ| is constant. So, the overall space complexity is O

(
n
p

)
.

5.2.4 Comparison with the Existing Algorithms

Table 3 shows the time and space complexity of algorithms that are closely related to
the edit distance. Although some of them are not proposed for the distributed mem-
ory environment, this comparison suggests that our proposed algorithm is equally
efficient as most of the state-of-the-art algorithms in terms of time and space com-
plexity.

Algorithm Time Complexity Space Complexity

Huang [14] (m+n)2

p
m+n
p

Myers [16], Chacón et al. [17] mn
w mn

Šošić and Šikić [18] mn
w m + n

Sadiq et al. [21] mn
p m + n

Aluru et al. [24] mn
p m + n

p

Rajko and Aluru [26] mn
p

m+n
p

Table 3. Space and time complexity of the existing algorithms related to the edit distance

Here m and n are lengths of string A and string B, respectively, w is the max-
imum word size that a machine can process, and p is the number of processing
units. Faster algorithms [9, 13] are proposed for the parallel random access machine
(PRAM) model but they are never implemented practically. Their space complexity
is also quadratic.

Distributed Algorithm for Parallel Edit Distance Computation 771

6 EXPERIMENTS AND RESULTS

We have used five-nodes cluster with a minimum specification of one node: Intel
Core-i5-3570K 3.40 GHz CPU having 4 physical cores, 4 logical processors, and
8 GB of main memory. All nodes in the cluster are interconnected to centralized
hub by using fast ethernet cables. Furthermore, we used MPI (mpich version 3.2)
for implementation of the algorithms. Four processes are launched at each node of
the cluster for the pure MPI implementation (twenty processes in total for all nodes
in the cluster). We have also used OpenMP for parallelism on one node. In the
OpenMP implementation, computation inside the chunk of a row of each process
is divided among multiple threads. Those threads are mapped into multiple cores.
We have used OpenMP pragmas for static division of the work among the multiple
threads. In the hybrid experiments using MPI + OpenMP, total five processes are
launched (one for the each node of the cluster), where each process launches four
threads to completely utilize all the cores of one node in the cluster.

We compared the proposed algorithm with an existing parallel scan approach [24]
that involves a higher number of steps than the proposed algorithm. Experiments
are performed for two types of datasets:

• Random strings

• Real DNA strings obtained from the National Center for Biotechnology Infor-
mation website (NCBI) [32]

6.1 Experiments with Random Strings

In the first set of experiments, we have used strings in the range of 100 000 to
1 000 000. Strings are generated randomly from twenty-six letters in the Latin al-
phabets. In each experiment, strings of equal size are compared.

6.1.1 Distributed Memory Setup (MPI)

Results for the MPI by using randomly generated strings show that the proposed
algorithm achieved speedup up to 5.90× and the existing parallel scan approach [24]
achieved speedup up to 4.33×. It is evident from the results that with increase in
the problem size, the performance gain of the proposed algorithm is larger than
the existing parallel scan approach. Figure 6 shows the scaled execution time and
speedup for different sizes of problem with randomly generated strings.

6.1.2 Hybrid Setup (MPI + OpenMP)

Results show that the proposed algorithm achieved speedup up to 9.93× and the
existing parallel scan approach [24] achieved speedup up to 7.04×. Figure 7 shows
the results for hybrid setup of MPI and OpenMP.

Results show that by using hybrid solution maximum attained speedup of the
proposed algorithm is improved from 5.90× to 9.93×. In the existing parallel scan

772 M.U. Sadiq, M.M. Yousaf

a) Execution time b) Speedup

Figure 6. Results and comparisons for MPI with randomly generated strings

a) Execution time b) Speedup

Figure 7. Results and comparisons for hybrid (MPI + OpenMP) setup with randomly
generated strings

approach, maximum attained speedup is improved from 4.33× to 7.04×. Hence, in
the MPI-only implementation the performance is slower because explicit inter-node
communication is required among the processes running on one node of the cluster.

6.2 Experiments with DNA Strings

In the next set of experiments real DNA strings are also compared. DNA strings are
taken from NCBI website [32] which maintains a database of many DNA strings.
Information of the DNA strings which are compared is presented in Table 4. This
table also shows the value of edit distance between each two DNA strings.

Size of the LMT is reduced in DNA strings because the number of characters
in character set of the DNA strings is four ({A,C,G, T}) which is smaller than the

Distributed Algorithm for Parallel Edit Distance Computation 773

Experiment ID
String A String B

Edit Distance
Name Size Name Size

Exp1 gbgss201 156 931 gbpln104 79 314 91 590
Exp2 gbgss201 156 931 gbhtg11 606 452 450 982
Exp3 gbhtg11 606 452 gbgss116 1 517 819 969 770
Exp4 gbuna1 308 453 gbinv32 3 424 429 3 116 517

Table 4. The list of experiments for DNA strings comparison

character set of randomly generated strings of latin letters. Hence, in this case, less
time is required for the processing of the LMT .

6.2.1 Distributed Memory Setup (MPI)

Results on the MPI show that the proposed algorithm achieved speedup up to 11.05×
and the existing parallel scan approach [24] achieved speedup up to 5.44×.

a) Execution time b) Speedup

Figure 8. Results and comparisons for MPI-only setup with DNA strings

Figure 8 shows scaled execution time and speedup for the experiments mentioned
in Table 4 for MPI.

6.2.2 Hybrid Setup (MPI + OpenMP)

Results on hybrid setup of MPI and OpenMP show that the proposed algorithm
achieved speedup up to 12.49× and the existing parallel scan approach [24] achieved
speedup up to 5.68×. Speedup is improved compared to the MPI-only results (where
maximum obtained speed up is 11.05× and 5.44× for the proposed algorithm and
the existing parallel scan approach, respectively). In the MPI-only implementation,
explicit inter-node and intra-node communication is required, while in the hybrid
implementation, explicit inter-node communication is avoided. Performance gain
for the proposed algorithm (by using OpenMP with MPI) is larger compared to the

774 M.U. Sadiq, M.M. Yousaf

existing parallel scan approach where proposed method gained added speedup of up
to 1.43× and the existing parallel scan method boosted up to 0.24 times. Hence,
parallel scan method requires more communication than the proposed algorithm.
Figure 9 shows the experimental results on hybrid setup of MPI and OpenMP by
using DNA strings.

a) Execution time b) Speedup

Figure 9. Results and comparisons for hybrid (MPI + OpenMP) setup with DNA strings

Since the computation as well as communication time plays its role in the overall
running time of the algorithm, both are equally important. Furthermore, in the pro-
posed method an additional table (LMT) is also computed, therefore it is essential
to analyze its running time as well. In the Table 5 and Table 6, detailed commu-
nication and computation time is presented (for the proposed algorithm) for the
LMT and edit distance table. Results show that time required for the processing of
the LMT is negligible compared to the edit distance table. Overall communication
time is less than computation time and total running time increases with increase
in problem size. Furthermore, it can be observed that communication time for
MPI-only experiments is significantly larger than for the hybrid experiments due to
added explicit inter-node communication among the processes in case of MPI-only
implementation.

An interesting case can be seen in the results of Exp3 and Exp4. For the proposed
algorithm, running time of Exp4 is smaller than Exp3 despite the size of the edit
distance table being approximately the same in both cases (9.20×1011 and 1.05×1012

respectively for Exp3 and Exp4). This is due to the fact that in the approximately
same sized problems, overall running time would be smaller for the tables having
small number of large sized rows (where the size of string A determines the number
of rows and the size of string B determines the size of a row). Exp4 has larger
sized rows than Exp3, therefore in the one row more parallelism is achieved. It
also has a small number of rows which reduces communication and synchronization
overhead required after the computation of a row. This observation indicates that
running time is small if the computation required is larger than communication,

Distributed Algorithm for Parallel Edit Distance Computation 775

i.e., the size of a row is large and the number of the rows is small. This indicates
that communication and synchronization are more expensive operations than the
computation.

Exp. ID
LMT Edit Distance Table Total

Comp. Comm. Comp. Comm. Comp. Comm. All

Exp1 0.006 0.015 67.437 93.214 67.444 93.229 160.673
Exp2 0.003 0.021 92.653 103.947 92.656 103.967 196.623
Exp3 0.004 0.023 493.335 426.950 493.339 426.973 920.311
Exp4 0.005 0.021 411.978 212.800 411.983 212.822 624.804

Table 5. Detailed communication and computation time (in seconds) for the proposed
algorithm using MPI-only implementation

Exp. ID
LMT Edit Distance Table Total

Comp. Comm. Comp. Comm. Comp. Comm. All

Exp1 0.002 0.002 20.054 22.389 20.056 22.391 42.447
Exp2 0.003 0.001 67.764 15.678 67.767 15.678 83.446
Exp3 0.007 0.002 534.848 71.853 534.856 71.855 606.711
Exp4 0.015 0.001 505.576 47.455 505.591 47.456 553.047

Table 6. Detailed communication and computation time (in seconds) for the proposed
algorithm using hybrid setup of MPI and OpenMP

6.3 Summary of the Results

These results suggest that the proposed algorithm significantly outperforms the
existing parallel scan approach [24]. It is up to 12.49× faster than a sequential al-
gorithm. It also utilizes given resources effectively compared to the existing parallel
scan approach. For the small problem sizes, the sequential algorithm performs better
compared to the parallel solutions because of the communication and synchroniza-
tion overheads of parallel solutions. In the proposed algorithm, time required for
the processing of the LMT is negligible compared to the edit distance table. Size of
the LMT is smaller for the DNA strings compared to randomly generated strings
(as there are only four characters in character set of DNA strings), therefore pro-
cessing time of the LMT is smaller for DNA strings. Furthermore, in the proposed
approach, the overall communication time is smaller compared to the computation
time which is always desired because the communication is expensive compared to
the computation.

Another important factor that should be considered is parallel efficiency of both
algorithms. It is the ratio of speedup and number of compute nodes. Total com-
pute nodes are twenty. Maximum speedup attained for the proposed algorithm
is 12.49× and 7.04× for parallel scan approach. Hence, maximum parallel effi-
ciency of the proposed algorithm is 0.62 and it is 0.35 for parallel scan approach.

776 M.U. Sadiq, M.M. Yousaf

The reason for this low parallel efficiency is that the explicit synchronization and
communication is required at the end of computation of each row. Due to these
overheads the parallel efficiency is decreased. In case of the parallel scan approach,
parallel efficiency is even lower because it involves more steps which add more par-
allel overheads. These overheads are unavoidable because of the nature of the al-
gorithm. Moreover, in general, these trade-offs exist when designing the parallel
algorithm.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced a distributed algorithm for the parallel edit distance
computation. The proposed algorithm ensures a balanced workload among the
processors. To the best of our knowledge, this is the first time when a distributed
algorithm of the edit distance is presented. Earlier studies [14, 24] have a mention
about distributed computation of edit distance, but its practical implementation is
not proposed.

We have presented results for random and real DNA strings. Evaluation on hy-
brid setup of OpenMP and MPI shows that the proposed algorithm achieved 12.49×
speedup compared to the sequential version of the algorithm. Furthermore, it also
outperforms the parallel scan approach [24] significantly. There are many other
problems that are related to edit distance. Damerau–Levenshtein distance, approx-
imate string matching, longest common sub-sequence, and sequence alignments are
an example of such problems. It is good challenge to design their solutions for dis-
tributed memory systems. Furthermore, in future we intend to design a distributed
memory solution that could exploit parallelism by using GPU on its each node.

REFERENCES

[1] Droppo, J.—Acero, A.: Context Dependent Phonetic String Edit Distance for
Automatic Speech Recognition. 2010 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Dallas, Texas, USA, 2010, pp. 4358–4361, doi:
10.1109/ICASSP.2010.5495652.

[2] Li, H.—Homer, N.: A Survey of Sequence Alignment Algorithms for Next-
Generation Sequencing. Briefings in Bioinformatics, Vol. 11, 2010, No. 5, pp. 473–483,
doi: 10.1093/bib/bbq015.

[3] Varol, C.—Abdulhadi, H. M. T.: Comparision of String Matching Algorithms on
Spam Email Detection. 2018 International Congress on Big Data, Deep Learning and
Fighting Cyber Terrorism (IBIGDELFT), IEEE, Ankara, Turkey, 2018, pp. 6–11, doi:
10.1109/IBIGDELFT.2018.8625317.

[4] Ying, Z.—Robertazzi, T. G.: Signature Searching in a Networked Collection of
Files. IEEE Transactions on Parallel and Distributed Systems, Vol. 25, 2014, No. 5,
pp. 1339–1348, doi: 10.1109/TPDS.2013.258.

https://doi.org/10.1109/ICASSP.2010.5495652
https://doi.org/10.1093/bib/bbq015
https://doi.org/10.1109/IBIGDELFT.2018.8625317
https://doi.org/10.1109/TPDS.2013.258

Distributed Algorithm for Parallel Edit Distance Computation 777

[5] Yu, M.—Li, G.—Deng, D.—Feng, J.: String Similarity Search and Join:
A Survey. Frontiers of Computer Science, Vol. 10, 2016, No. 3, pp. 399–417, doi:
10.1007/s11704-015-5900-5.

[6] Navarro, G.: A Guided Tour to Approximate String Matching. ACM Computing
Surveys (CSUR), Vol. 33, 2001, No. 1, pp. 31–88, doi: 10.1145/375360.375365.

[7] Wagner, R. A.—Fischer, M. J.: The String-to-String Correction Problem.
Journal of the ACM (JACM), Vol. 21, 1974, No. 1, pp. 168–173, doi:
10.1145/321796.321811.

[8] Masek, W. J.—Paterson, M. S.: A Faster Algorithm Computing String Edit Dis-
tances. Journal of Computer and System Sciences, Vol. 20, 1980, No. 1, pp. 18–31,
doi: 10.1016/0022-0000(80)90002-1.

[9] Mathies, T. R.: A Fast Parallel Algorithm to Determine Edit Distance. Carnegie
Mellon University. Journal contribution, 1988, doi: 10.1184/R1/6587387.v1.

[10] Hyyrö, H.: A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit
Distances. Nordic Journal of Computing, Vol. 10, 2003, No. 1, pp. 29–39.

[11] Gropp, W.—Hoefler, T.—Thakur, R.—Lusk, E.: Using Advanced MPI: Mod-
ern Features of the Message-Passing Interface. MIT Press, 2014.

[12] Grama, A.—Kumar, V.—Gupta, A.—Karypis, G.: Introduction to Parallel
Computing. Addison Wesley, 2003.

[13] Apostolico, A.—Atallah, M. J.—Larmore, L. L.—McFaddin, S.: Efficient
Parallel Algorithms for String Editing and Related Problems. SIAM Journal on Com-
puting, Vol. 19, 1990, No. 5, pp. 968–988, doi: 10.1137/0219066.

[14] Huang, X.: A Space-Efficient Parallel Sequence Comparison Algorithm for
a Message-Passing Multiprocessor. International Journal of Parallel Programming,
Vol. 18, 1989, No. 3, pp. 223–239, doi: 10.1007/BF01407900.

[15] Sellers, P. H.: The Theory and Computation of Evolutionary Distances: Pat-
tern Recognition. Journal of Algorithms, Vol. 1, 1980, No. 4, pp. 359–373, doi:
10.1016/0196-6774(80)90016-4.

[16] Myers, G.: A Fast Bit-Vector Algorithm for Approximate String Matching Based
on Dynamic Programming. Journal of the ACM (JACM), Vol. 46, 1999, No. 3,
pp. 395–415, doi: 10.1145/316542.316550.

[17] Chacón, A.—Marco-Sola, S.—Espinosa, A.—Ribeca, P.—Moure, J. C.:
Thread-Cooperative, Bit-Parallel Computation of Levenshtein Distance on GPU.
Proceedings of the 28th ACM International Conference on Supercomputing (ICS ’14),
ACM, Munich, Germany, 2014, pp. 103–112, doi: 10.1145/2597652.2597677.

[18] Šošić, M.—Šikić, M.: Edlib: A C/C++ Library for Fast, Exact Sequence Align-
ment Using Edit Distance. Bioinformatics, Vol. 33, 2017, No. 9, pp. 1394–1395, doi:
10.1093/bioinformatics/btw753.

[19] Balhaf, K.—Shehab, M. A.—Al-Sarayrah, W. T.—Al-Ayyoub, M.—
Al-Saleh, M.—Jararweh, Y.: Using GPUs to Speed-Up Levenshtein Edit
Distance Computation. 7th International Conference on Information and Com-
munication Systems (ICICS), IEEE, Irbid, Jordan, 2016, pp. 80–84, doi:
10.1109/IACS.2016.7476090.

https://doi.org/10.1007/s11704-015-5900-5
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/321796.321811
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1184/R1/6587387.v1
https://doi.org/10.1137/0219066
https://doi.org/10.1007/BF01407900
https://doi.org/10.1016/0196-6774(80)90016-4
https://doi.org/10.1145/316542.316550
https://doi.org/10.1145/2597652.2597677
https://doi.org/10.1093/bioinformatics/btw753
https://doi.org/10.1109/IACS.2016.7476090

778 M.U. Sadiq, M.M. Yousaf

[20] Yang, J.—Xu, Y.—Shang, Y.: An Efficient Parallel Algorithm for Longest Com-
mon Subsequence Problem on GPUs. Proceedings of the World Congress on Engi-
neering (WCE 2010), London, U.K., 2010, Vol. 1, pp. 499–504.

[21] Sadiq, M. U.—Yousaf, M. M.—Aslam, L.—Aleem, M.—Sarwar, S.—
Jaffry, S. W.: NvPD: Novel Parallel Edit Distance Algorithm, Correctness, and
Performance Evaluation. Cluster Computing, Vol. 23, 2020, pp. 879–894, doi:
10.1007/s10586-019-02962-w.

[22] Ho, T.—Oh, S.—Kim, H.: A Parallel Approximate String Matching Under Leven-
shtein Distance on Graphics Processing Units Using Warp-Shuffle Operations. PloS
ONE, Vol. 12, 2017, No. 10, Art. No. e0186251, doi: 10.1371/journal.pone.0186251.

[23] Guo, L.—Du, S.—Ren, M.—Liu, Y.—Li, J.—He, J.—Tian, N.—Li, K.: Par-
allel Algorithm for Approximate String Matching with K Differences. 2013 IEEE
Eighth International Conference on Networking, Architecture and Storage, Xi’an,
China, 2013, pp. 257–261, doi: 10.1109/NAS.2013.40.

[24] Aluru, S.—Futamura, N.—Mehrotra, K.: Parallel Biological Sequence Com-
parison Using Prefix Computations. Journal of Parallel and Distributed Computing,
Vol. 63, 2003, No. 3, pp. 264–272, doi: 10.1016/S0743-7315(03)00010-8.

[25] Sanders, P.—Träff, J. L.: Parallel Prefix (Scan) Algorithms for MPI. In:
Mohr, B., Träff, J. L., Worringen, J., Dongarra, J. (Eds.): Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2006). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4192, 2006, pp. 49–57,
doi: 10.1007/11846802 15.

[26] Rajko, S.—Aluru, S.: Space and Time Optimal Parallel Sequence Alignments.
IEEE Transactions on Parallel and Distributed Systems, Vol. 15, 2004, No. 12,
pp. 1070–1081, doi: 10.1109/TPDS.2004.86.

[27] Liu, W.—Schmidt, B.—Voss, G.—Muller-Wittig, W.: Streaming Algorithms
for Biological Sequence Alignment on GPUs. IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 18, 2007, No. 9, pp. 1270–1281, doi: 10.1109/TPDS.2007.1069.

[28] Boukerche, A.—de Melo, A. C. M. A.—de Oliveira Sandes, E. F.—Ayala-
Rincon, M.: An Exact Parallel Algorithm to Compare Very Long Biological Se-
quences in Clusters of Workstations. Cluster Computing, Vol. 10, 2007, No. 2,
pp. 187–202, doi: 10.1007/s10586-007-0020-0.

[29] Batista, R. B.—Boukerche, A.—de Melo, A. C. M. A.: A Parallel Strat-
egy for Biological Sequence Alignment in Restricted Memory Space. Journal of
Parallel and Distributed Computing, Vol. 68, 2008, No. 4, pp. 548–561, doi:
10.1016/j.jpdc.2007.08.007.

[30] Lopes, H. S.—Lima, C. R. E.—Moritz, G. L.: A Parallel Algorithm for Large-
Scale Multiple Sequence Alignment. Computing and Informatics, Vol. 29, 2012,
No. 6+, pp. 1233–1250.

[31] Yousaf, M. M.—Sadiq,M. U.—Aslam, L.—Ul Qounain, W.—Sarwar, S.:
A Novel Parallel Algorithm for Edit Distance Computation. Mehran University Re-
search Journal of Engineering and Technology, Vol. 37, 2018, No. 1, pp. 223–232, doi:
10.22581/muet1982.1801.20.

https://doi.org/10.1007/s10586-019-02962-w
https://doi.org/10.1371/journal.pone.0186251
https://doi.org/10.1109/NAS.2013.40
https://doi.org/10.1016/S0743-7315(03)00010-8
https://doi.org/10.1007/11846802_15
https://doi.org/10.1109/TPDS.2004.86
https://doi.org/10.1109/TPDS.2007.1069
https://doi.org/10.1007/s10586-007-0020-0
https://doi.org/10.1016/j.jpdc.2007.08.007
https://doi.org/10.22581/muet1982.1801.20

Distributed Algorithm for Parallel Edit Distance Computation 779

[32] National Center for Biotechnology Information (NCBI), https://www.ncbi.nlm.

nih.gov/.

Muhammad Umair Sadiq received his B.Sc. and M.Sc. de-
grees in computer science from PUCIT, University of the Punjab,
Lahore, Pakistan in 2016 and 2018, respectively. His research
interests include parallel and distributed computing, multi-core
computing, performance analysis, and GPGPU computing.

Muhammad Murtaza Yousaf is Professor at PUCIT, Uni-
versity of the Punjab, Lahore, Pakistan. He obtained his Ph.D.
from University of Innsbruck, Austria in 2008. He worked on
networks for grid computing during his Ph.D. His current ar-
eas of research include transport layer of networks, parallel and
distributed computing, cloud computing, data science, and in-
terdisciplinary research.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/

Computing and Informatics, Vol. 39, 2020, 780–807, doi: 10.31577/cai 2020 4 780

BREAST HISTOPATHOLOGY
WITH HIGH-PERFORMANCE COMPUTING
AND DEEP LEARNING

Mara Graziani

University of Applied Sciences of Western Switzerland
HES-SO Valais, Rue de Technopole 3
3960 Sierre, Switzerland
&
Department of Computer Science, University of Geneva
Battelle Building A, 7, Route de Drize
1227 Carouge, Switzerland
e-mail: mara.graziani@hevs.ch

Ivan Eggel

University of Applied Sciences of Western Switzerland
HES-SO Valais, Rue de Technopole 3
3960 Sierre, Switzerland
e-mail: ivan.eggel@hevs.ch

François Deligand

INP-ENSEEIHT
2 Rue Charles Camichel
31000, Toulouse, France
e-mail: francois.deligand@laposte.net

Martin Bobák

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9, 845 07 Bratislava, Slovakia
e-mail: martin.bobak@savba.sk

Breast Histopathology with HPC and DL 781

Vincent Andrearczyk

University of Applied Sciences of Western Switzerland
HES-SO Valais, Rue de Technopole 3
3960 Sierre, Switzerland
e-mail: vincent.andrearczyk@hevs.ch

Henning Müller

University of Applied Sciences of Western Switzerland
HES-SO Valais, Rue de Technopole 3
3960 Sierre, Switzerland
&
Radiology Service, Medical Faculty, University of Geneva
Geneva, Switzerland
e-mail: henning.mueller@hevs.ch

Abstract. The increasingly intensive collection of digitalized images of tumor tis-
sue over the last decade made histopathology a demanding application in terms
of computational and storage resources. With images containing billions of pixels,
the need for optimizing and adapting histopathology to large-scale data analysis is
compelling. This paper presents a modular pipeline with three independent layers
for the detection of tumoros regions in digital specimens of breast lymph nodes
with deep learning models. Our pipeline can be deployed either on local machines
or high-performance computing resources with a containerized approach. The need
for expertise in high-performance computing is removed by the self-sufficient struc-
ture of Docker containers, whereas a large possibility for customization is left in
terms of deep learning models and hyperparameters optimization. We show that
by deploying the software layers in different infrastructures we optimize both the
data preprocessing and the network training times, further increasing the scalability
of the application to datasets of approximatively 43 million images. The code is
open source and available on Github.

Keywords: Histopathology, exascale, medical imaging, sampling

1 INTRODUCTION

Breast cancer is the second leading cause of cancer death among women world-
wide [35]. In 2019, the estimated number of women diagnosed with breast cancer
was 271 270 only in the U.S. (7.3 % increase from the estimates of 2017), and an in-

782 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

creasing number of women died from the disease (2.8 % increase from 2017 with
41 760 estimated deaths). A metastasizing breast cancer, particularly, has a far
worse prognosis than a localized one. Assessing regional tumor spreading is thus ex-
tremely important for prompt treatment planning and accurate cancer staging [12].
Being the most likely target for initial metastases, axillary lymph nodes are ana-
lyzed to determine the spreading stage to neighboring areas. The N-stage of the
TNM system, for instance, assesses the presence of tumor in regional lymph nodes.
Before undergoing surgical removal of tissue, the patient is injected a blue dye or
a radioactive tracer to identify the nearest lymph node to which the tumor may
have drained, which is also called the sentinel lymph node [12]. Thin tissue slices
are collected for visual analysis, mounted on glass slides. At this stage, the tissue
slices mostly have transparent cells, the reason why they are treated with multiple
contrasting stains. Different staining techniques can be used, with Hematoxylin and
Eosin staining (H & E) being the most common, and immunohistochemical (IHC)
staining for cytokeratin being used only in case of unclear diagnosis on H & E [7].
Hematoxylin stains the nuclei with blue, while Eosin highlights the cytoplasmic and
non-nuclear components in different shades of pink. Their combination highlights
the structure and cells within the tissue specimen. Tumor presence is tradition-
ally evaluated by microscopic inspection, which may take several minutes per slide.
Pathologists base their decisions upon morphometric and architectural features of
the tissue structure and the nuclei, for instance estimating the presence of tubu-
lar formation, nuclear pleomorphism and mitotic count (see Figure 1) [30]. Such
analysis is time-consuming, tedious, and error-prone since small metastases may be
missed by the pathologist’s eyes (detection rate lower than 40% for the smallest
type) [38]. Moreover, the grading of tumor growth patterns is very subjective and
reports high inter-observer variability (κ ∈ [0.582, 0.850] [32, 29]).

Figure 1. Grading criteria in the Nottingham Histologic Grade of breast cancer

The difficulties in the diagnostic motivate the automation of the grading process,
made possible by the commercialization of high-resolution digital scanners for im-
ages of tissue specimens called Whole Slide Images (WSIs) around the year 2000 [1].
The well-established success of Convolutional Neural Networks (CNNs) in various

Breast Histopathology with HPC and DL 783

computer vision tasks triggered their use for automatic diagnoses. While clinical
pipelines are increasingly introducing the full digitization of specimens by WSIs,
several challenges affect the analysis of these images by deep learning models. On
the data acquisition side, defects in the tissue handling, fixation, processing and
staining affect the image quality, thus hampering future analyses. Intervals between
tissue harvest, fixation and total fixation time are also poorly controlled in current
pipelines, often leading to high variability and heterogeneity in the data collec-
tion [1]. Further technical aspects of the slide digitization such as the maximum
magnification, the image compression and the color palette may also cause hetero-
geneity in the data, affecting both the image visualization and analysis. Moreover,
storage requirements can easily explode when scaling the data collection to multiple
patients. WSIs are extremely large, reaching generally more than 100 000× 100 000
pixels [4]. Some pathological section processes may generate up to 20 images per
patient, easily leading to more than 65 GB of data per patient [41]. Besides, no
universally accepted WSI format has yet been defined, with different scanner man-
ufacturers patenting different WSI file formats (such as SVS or NDPI). The multi-
resolution pyramidal structure of WSIs, finally, contains multiple down-sampled ver-
sions of the original image, with different informative content [4]. Varying the scale
at which the images are analyzed improves the quality of the analysis by taking into
account information at different levels, the high-level disposition of the cells (e.g.
degree of tubular formation) and fine-grain details such as the nuclei morphology or
the mitotic activity.

This paper describes the research pipeline that we developed to process a scal-
able number of breast lymph node WSIs, to compare the performances of multiple
deep learning architectures in terms of their training and inference time, accuracy
and explainability. Our design takes into account the developmental requirements of
scientific research generally performed on small computing clusters (up to 4 GPUs
maximum). Being released with a containerized approach, it can be deployed on dif-
ferent infrastructures without requiring specific expertise, and it can be used to run
some tasks on the large scale computing services provided by the PROCESS project1,
by transforming the Docker into Singularity containers. The design of such pipeline
was driven by the need for flexibility in the used libraries for scientific development,
while its integration exploits the services of the High-Performance Computing (HPC)
structures. The paper is structured as follows. Section 2 introduces the state of the
art about deep learning developments for both digital pathology and HPC. Section 3
describes the methods and datasets used for the experiments. In this section, we
also describe the specific requirements of deep learning for histopathology and how
these are met by the PROCESS platform interconnecting HPC and research centers
in Europe. The experiments are run, in fact, at different sites, namely the Univer-
sity of Amsterdam (UVA), the SurfSARA computing center (with the LISA cluster),
the SuperMUC-NG of the Leibniz-Rezerchcentrum (LRZ), the Prometheus cluster

1 The PROCESS project received funding from the European Union’s Horizon 2020.
Homepage: https://www.process-project.eu/

https://www.process-project.eu/

784 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

at Cyfronet (AGH), the computing resources of the Slovak Academy of Sciences
(UISAV) and our local resources. Particularly in Sections 3.5, 3.6 and 3.7, we de-
scribe the three layers of the proposed pipeline, pointing to the relative open source
Github repositories. Section 4 reports the experimental results obtained with the
proposed architecture on the different computing resources. In Section 5, finally, we
present a discussion of the results and the challenges of scaling histopathology ana-
lysis to exascale datasets, together with the computational aspects of the software
optimization.

2 RELATED WORK

2.1 Digital Pathology

Digital pathology has become very popular over the last decade for its practical
assets [26]. WSIs reduce the need for storing glass slides on-site, reducing their
risk of breaking, fading, or getting lost. Digital images can also easily be shared
across institutions. This solicits the exchange of opinions, and if necessary pathol-
ogy consults, about challenging cases. In case of specific questions at tumor boards,
WSIs can be inspected offhand to find answers. Besides, WSIs allow the collection
of examples of many different cases, including rare cases, that can be practically
used in teaching slides sets. The creation of open-access digital slide archives, such
as that of The Cancer Genome Atlas, led to intensive research on image analysis
for pathology, which recently steered towards the application of deep learning based
techniques. The large image sizes, as well as their heterogeneity and the often-
imbalanced data distribution (towards non-tumorous tissue), make the development
in this area challenging. The development of handcrafted features requires a back-
ground knowledge comprehensive of biology and imaging skills, together with the
further specialization of the specific tissue type being analyzed. Handcrafted fea-
tures that can be applied to any organ type include nuclear/gland shape and size,
and tissue texture and architecture. Nuclear shape and texture, for example, were
shown to predict the prognostics for breast cancer [25]. Graph-based approaches
such as Voronoi tessellations were also used to characterize the relative position-
ing of nuclei and glands within the tissue. Prognostic features specific for breast
cancer, for example, take into account the disposition of infiltrating tumoral lym-
phocytes.

Deep learning approaches for the analysis of histopathology images remove the
need for the cumbersome creation of tissue-specific handcrafted features. Most
of the approaches in the literature focus on the detection of Region of Interest
(ROIs) where tumorous tissue can be identified, on the direct segmentation of nu-
clei [19] or the quantification of mitoses [3]. Because of the pyramidal structure
of WSIs, images are often analyzed at multiple resolutions in a multi-step proce-
dure [22, 42]. A thresholding operation (e.g. Otsu thresholding [42]) is performed
on the lowest resolution image to filter out the image background. The doctor
annotations of ROIs can then be used as ground-truth labels to train Convolu-

Breast Histopathology with HPC and DL 785

tional Neural Networks (CNNs). Image crops at higher resolutions are assigned
the tumor label if they fall within the ROI while the remaining tissue is assigned
a non-tumor label. These data are used to train CNNs end-to-end for the patch-
based classification of tumorous images2. Additionally to these, weakly super-
vised learning methods were used to exploit coarse labels to extract fine-grained
information. The information contained in high-resolution crops of the WSIs is
used as a “bag of inputs” with a single label in multiple-instance learning, for
example. Teacher-student designs, besides, were recently proposed for combining
small amounts of finely annotated data (manual segmentations of tumorous ar-
eas) with large amounts of weakly annotated data such as instance-level annotated
WSIs [28].

As for the deployment of digital pathology on HPC, this is a recently growing
area with yet unexplored opportunities and challenges. Particularly, with the ex-
ponential growth of biomedical data, several techniques will require adaptation and
optimization to process efficiently large-scale datasets [41]. The specific demands
of digital pathology require double adaptation, namely that of the HPC infras-
tructure towards the high computational burden of analyzing the massive dataset
sizes, and that of developing pipelines that best exploit the infrastructure poten-
tial. Only a few existing works distribute the algorithms for medical image anal-
ysis. The work in [39], for example, uses MapReduce to answer spatial queries on
large scale pathology images. A low-cost computing facility that can support the
analysis of up to 1 million (1 M) images was proposed, for example, in [5]. Multiple-
instance learning for histopathology was implemented in [41] to fit Microsoft HPC
resources, and further modifications to the original algorithm were shown to ob-
tain better scalability in [40]. These works, however, were directly optimized on
the available computing resources for the research, requiring expertise at the fron-
tier of HPC, deep learning and digital pathology. The main purpose of this work
is to offer a ready-to-use application for researchers in the digital pathology field
that have little to no experience in HPC and optimized computing. The appli-
cation, being organized in three layers, presents different steps in the traditional
pipeline with a modular approach, where each module can be customized in terms
of research parameters and input data and can be deployed to different computing
facilities.

2.2 HPC for Deep Learning

HPC infrastructures have played a fundamental part in solving large-scale problems
with a high degree of computational complexity in domains such as astrophysics,
high energy physics, computational fluid dynamics or finite element analysis. HPC
services were built specifically to fit the requirements of such problems to efficiently
scale up the problem size, exploiting the power of thousands of multi-core computer

2 Different pipelines can be adopted, obtaining different results, as those in https:

//camelyon17.grand-challenge.org/evaluation/leaderboard/

https://camelyon17.grand-challenge.org/evaluation/leaderboard/
https://camelyon17.grand-challenge.org/evaluation/leaderboard/

786 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

nodes to effectively solve a single computationally-intensive problem. The downside
is that the technical and organizational architecture of HPC trades some of the flex-
ibility and dynamism for achieving the highest possible performance and maximum
utilization rate. Only recently, HPC has embraced some of the programming solu-
tions to provide more effective Single Instruction Multiple Data (SIMD) operations
for vector data, which generated the possibility of introducing large scale machine
learning applications to their computational capacities.

The training of a deep neural network involves solving a high-dimensional non-
linear optimization function. The minimization of the gradients, often performed
with gradient descent algorithms such as Stochastic Gradient Descent (SGD), uses
several linear algebra computations on generally dense matrices. DistBelief was one
of the first examples of parallel training frameworks to train fully connected net-
works (42 M parameters) and locally connected convolutional neural networks (17 M
parameters) [9]. In this case, the parallelization of network training was achieved
by model parallellism. Model parallellism, splits the weights of the network equally
among multiple threads, creating network blocks that all work on the same mini-
batch. In other words, the same data is used for every thread, but the model-inherent
computations are split among threads. The output needs therefore to be synchro-
nized after each layer to obtain the input to the next layer. A simpler method is
that of data parallelism. The same model is replicated in each thread or working
node (either GPU or CPU) and the training is performed on different batches of
data. The gradients computed by each thread are relevant to the overall network
training. Hence, they need to be shared within all the models on all the workers at
the end of each data pass (i.e. their average is computed). Despite the simplicity
and the adaptability of this method to datasets, models and resources, two possible
bottlenecks may arise and hamper its efficiency. The averaging of the model pa-
rameters would require the transmission of extremely large matrices between nodes,
thus requiring a highly efficient network card connecting each node. A similar prob-
lem arises when handling the multiple data accesses: the continuous input/output
operations and data decoding may be the first cause for the slowing down of the
training process. Moreover, as in data parallelism the same mini-batch is analyzed
by all the GPUs, smaller batches result in decreased efficiency. The work on Large
Minibatch SGD by [13] proposed a solution to the optimization difficulties that arise
when increasing the size of the mini-batches to push to the edges the computational
gains in each worker. Furthermore, recent research in gradient compression has
proposed a solution to the latency in the communication between different nodes
caused by limited communication bandwidth. For instance, gradient compression
transmits only gradients larger than a certain threshold and accumulates locally
the rest of the gradients, thus consistently reducing the network communication
time [23].

In both data and model parallelism, the communication between the nodes can
be either synchronous or asynchronous. In the former, all the devices use differ-
ent parts of the same batch of training data and the model is updated when the
computation has finished in all of them. In the latter, the devices update the

Breast Histopathology with HPC and DL 787

model independently based on their mini-batches. Generally, the updates are shared
through a central parameter store, called parameter server. The parameter server
receives the gradients from all the workers and, when all the updates have been
received, computes the new model update and sends it to the workers. A boost in
efficiency is given by the ring all-reduce technique, where each worker receives the
latest gradient update from its predecessor and sends its gradients to its successor
neighbor in a circular fashion. The trade-off between the synchronous and asyn-
chronous implementation of SGD was exploited in [21]. Synchronous systems use
the hardware resources less efficiently, whereas the asynchronous systems generally
need more iterations since the gradient updates are computed on older versions of
the model.

The use of specific hardware dedicated to deep learning seems, therefore, to be
projected as a prosperous newborn branch for HPC. The introduction of the ultimate
TPUs by Google research3 stands as an initial step in this direction. Notwithstand-
ing, the range of hardware characteristics of multi-purpose supercomputers is very
large. Scaling up computations might be cumbersome, requiring HPC expertise to
tailor models on the available system hardware.

3 DATASETS AND METHODS

3.1 Datasets

We use the Camelyon 16 and 17 challenge data, which constitute, currently, one
of the largest and most challenging datasets for histopathology research [4]. The
datasets include WSIs of lymph node sections together with slide-level annotations
of metastases type (negative, macro-metastases, micro-metastases, isolated tumor
cells) and some manual segmentations of tumor regions. The data were collected
at five different data centers, namely the University Medical Center in Nijmegen
(RUMC), the Canisius-Wilhelmina Hospital in Nijmegen (CWZ), the University
Medical Center Utrecht (UMCU), the Rijnstate Hospital in Arnhem (RST), and
the Laboratory of Pathology East-Netherlands in Hengelo (LPON). A summary of
the data provenances and distribution is given in Table 1.

The variability in preparation across acquisition centers makes the data very
heterogeneous. Three different scanners were used in the five centers, namely the
3DHistech P250 (0.24µm pixel size) at RUMC, CWZ and RST, the Philips IntelliSite
Ultra Fast Scanner (0.25µm pixel size) at LPON and the Hamamatsu XR C12000
(0.23µm pixel size) at UMCU. The average file size is around 4 GB, for a total
storage requirement of 3 030.5 GB.

3 https://cloud.google.com/tpu/docs/tpus

https://cloud.google.com/tpu/docs/tpus

788 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

Year Center Total WSIs Metastases (Train)

Train WSIs Test WSIs None ITC Micro Macro

2016
RUMC 170 79 100 – 35 35
UMCU 100 50 30 – 12 8

2017

CWZ 100 100 64 11 10 15
RST 100 100 58 7 23 12
UMCU 250 100 165 2 34 49
RUMC 349 100 210 8 64 67
LPON 100 100 61 8 5 26

Total 1 169 629 688 36 183 212

Table 1. WSI-level summary of the Camelyon 16 and 17 challenge datasets

3.2 Application-Driven Requirements

The design of the HPC infrastracture used to run the experiments was driven by
the specific requirements of the pathology application, summarized in Table 2. The
rapid growth of this field makes its requirements at the border of those of exascale
computing both for computational and storage resources.

On the storage side, the extraction of image crops from the WSIs can easily
grow to more than 60 thousand patches for a single record. With more than one
record being held for each patient, the storage requirements can easily grow to sev-
eral Terabytes (TB) of space. This highly demanding data preprocessing is shared
with similar data types, e.g. satellite images. A requirement that is specific to the
medical field, however, is the handling of sensible data. Large publicly available
datasets such as Camelyon can be shared and downloaded on the main infrastruc-
ture to exploit the storage and computing facilities of the HPC providers. Sensible
data such as private patient data must, however, be left on the local storage of
the hospital to meet the security and privacy requirements. A typical approach,
in this case, is that of the “Evaluation as a Service” (EaaS) solution, where the
data can remain in a single infrastructure and does not need to be moved. Sen-
sitive data could be left in the hospitals and be used only on their local environ-
ment.

On the computational side, the training of state-of-the-art CNNs with millions
of parameters is highly demanding. Current implementations can take days to con-
verge for datasets sizes of the order of magnitude of 10 Gigabytes (GB). Medical
imaging data (and not only) easily reaches the TB if not the petabyte (PB) or-
der of magnitude. The computational demand on such datasets can easily reach
15 petaflop/s [21], pointing towards exaflop/s in the nearest future. The support
of dense linear algebra on distributed-memory HPC is an indispensable require-
ment to train deep models. Open Message Passing Interfaces and parallelization
libraries such as Horovod4 allow the parallelization on multiple GPUs and HPC
nodes. Top-development libraries such as Tensorflow and Keras are also top list

4 https://eng.uber.com/horovod/

https://eng.uber.com/horovod/

Breast Histopathology with HPC and DL 789

requirements for the deployment of deep learning algorithms. Computational and
storage requirements may seem two disentangled types of prerequisites, but one ac-
tually proportionally influences the other. With increasingly intense computations,
the need for storage for saving intermediate results arises.

The need for containerized software is a further requirement to maintain the
portability of the developments. While Docker containers are mostly used by the
scientific community, Singularity containers constitute a better trade-off between
the application and the infrastructure requirements, providing improved security by
removing the root access on the HPC machines. Specific technologies are required
to process the different image formats, being WSIs often saved as BIGTIFF files
paired to annotation XMLs, CSVs or TXTs. Moreover, datasets such as PubMed
central may require the handling of more common image compression formats such
as JPEG and MPEG.

Requirement Motivation Software Layer

SCP and FTP connection initial WSI transfer 1
Docker or Singularity software portability 1, 2, 3
Data storage (> 100 TB) public WSIs and intermediate results 1, 2
OpenSlides WSI preprocessing 1
Tensorflow > 1.4.0 DL library 2, 3
Keras > 1.4.0 DL library 2, 3
Horovod distributed computing 1, 2
OpenMPI distributed computing 1, 2
SLURM distributed computing 1

Table 2. Summary of application specific requirements

3.3 The Exascale Platform Architecture

In this section, we describe the architecture of the exascale platform within the
developments for the PROCESS project, highlighting the modules introduced to
adapt High-Performance Computing (HPC) to the use case requirements.

Data Services for Medical Use Case. The main data service of the PRO-
CESS platform is a virtualized distributed file system (VDFS) LOBCDER. It is
a modular, scalable and extensible VDFS implementing the micro-infrastructure
approach. LOBCDER integrates special hardware nodes that are dedicated to
the transfer of data. It has a module for meta-data management (DataNet) and
pre/post-processing of exascale datasets (DISPEL).

Computing Services for the Medical Use Case. The PROCESS platform
is available via Interactive Execution Environment (IEE) which gives access
to heterogeneous computing infrastructure of supercomputers supporting HPC
(via Rimrock) as well as cloud computing (via Cloudify). Both computing ser-
vices provide relevant containerization services (Docker and Singularity). The

790 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

platform also allows users to use GPUs in parallel and in a distributed man-
ner.

Table 3 summarizes the core requirements for the exascale platform given by the
medical application. These requirements are one of the main pillars on which the
PROCESS architecture was built. The table also provides an overview of how the
PROCESS platform is capable to satisfy them.

Requirement PROCESS Module

Support containerization Rimrock

Workflow management for configuration, deployment and
management of multiple application/use case executions

IEE

Distributed file system supporting medical use case datasets
and their file formats (e.g. image formats)

LOBCDER

Support multiple pipelines within a workflow LOBCDER,
Rimrock

Distributed pre-processing of training data DISPEL, LOBCDER

Supporting data transfer protocols (e.g. GridFTP, SCP, etc.) LOBCDER

Support of the set of common tools for machine learning and
deep learning on the HPC centres

Docker and Singularity
containers supported
by computing sites

Parallel and distributed multi-GPUs training Computing centres

Support GPUs in containers Computing cetenrs

Table 3. Use case requirements and dedicated components from the PROCESS platform
which fulfils them

3.4 A Modular Design for a Step-by-Step Pipeline

The method we propose is a three-layer software architecture for training differ-
ent deep neural network models, summarized in Figure 2 and presented in de-
tail in Figure 3. The modular approach splits the full pipeline in different work-
flows that can be shared, reused and updated independently. In the following
subsections we describe the methods adopted in each of the three framework lay-
ers.

3.5 Layer 1: Preprocessing and Patch Extraction

The WSI in its original format is much larger than the maximum input format for
a CNN. For this reason, WSIs need to be cropped into smaller images, called patches
or tiles, which can then be fed to the network. Patches are extracted at the highest
level of magnification (i.e. 40×). High resolution highlights qualitative features of
the nuclei which are prognostic of cancer [30].

The first layer of the proposed application focuses on the patch extraction and
data preprocessing of the WSIs (see Figure 4). As a first step, the filesystem is

Breast Histopathology with HPC and DL 791

Figure 2. Overview of the CamNet software

Layer I

Layer II

Layer III

Figure 3. Detailed structure of each software layer. Best on screen.

792 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

Figure 4. WSIs preprocessing pipeline: Normal tissue and tumor tissue masks are ex-
tracted and high-resolution patches are sampled from the selected regions

scanned to retrieve patient-related metadata and the acquisition center. If additional
data were to be loaded on the HPC, the LOBCDER filesystem of PROCESS could
be used. From the lowest magnification level, binary masks of normal and tumor
tissue are extracted by the Otsu thresholding method [42], already proposed for this
data in [4]. Patches are then sampled at the highest magnification level from the
annotated tumor regions for the tumor class. For the non-tumor class, patches are
sampled not only from the annotated images but also from 297 non-tumor WSIs in
Camelyon17.

Patches with non-relevant information (e.g. white content, black pixels, back-
ground, etc.) are filtered out and discarded. Information about the patient, the
lymph node, the hospital which handled the acquisitions, the resolution level of the
patch and the patch location in the WSIs are stored together with the pixel values
in an intermediate HDF5 database. Moreover, the doctor annotations are stored
in the HDF5 as a binary label on the patch, which discriminates between tumor
and non-tumor patches. Different cropping strategies following the sampling ap-
proaches for automated histological image analysis [4] are available in the system.
The most common is the random sampling scheme, which extracts randomly several
patch locations. A seed for initializing the random sampling and the desired number
of patches to extract (N) are passed as input parameters of this stage. A white-
threshold (expressed in terms of the percentage of pixels with intensity values larger
than 200) is applied to discard image croppings of the background and the adipose
tissue, which are uninformative for the task. Similarly, black background patches are
removed from the sampling results. The Simple Linux Utility for Resource Manage-
ment system (SLURM) is used to develop a parallel version that can be distributed
on the HPC. A job array is configured with a random generator seed. At each batch
run, a different patch set is extracted. The code for local execution (sequential
algorithm) and for the distributed execution is available online5.

5 https://github.com/medgift/PROCESS_L1

https://github.com/medgift/PROCESS_L1

Breast Histopathology with HPC and DL 793

By means of the HPC computational capacity, the dense coverage of the WSIs
is also possible. A sliding window that extracts patches with a fixed stride is imple-
mented as an alternative sampling option. This option, not possible with the local
research facilities, is optimal when ran on the computing capabilities of HPC. The
distribution of the code on different HPC nodes is, in this case, necessary. Therefore,
this part of the software can only be run on distributed computing facilities with
the support of SLURM. Each WSI is assigned to a single SLURM job array. The
patches with non-relevant information are filtered out and discarded by the white
thresholding. A further scaling step is also available, combining two SLURM tech-
niques at the same time for better efficiency. Each task in the SLURM job array is
assigned a different WSI, and an arbitrary number of subtasks are run in parallel to
implement the sliding window.

The image croppings resulting from the extraction process with any of the two
strategies are stored in an intermediate Hierarchical Data Format file (HDF5), to-
gether with the metadata about the patient, the lymph node, the acquisition center,
the magnification level and the patch location.

3.6 Layer 2: Patch-Based Deep Learning

The second layer loads the intermediate HDF5 dataset generated by Layer 1, and
focuses on the training of deep learning architectures for the binary classification be-
tween tumor and non-tumor patches, following the approach in [42]. The training of
several state-of-the-art CNNs (i.e. ResNet50, ResNet101, GoogleNet, Inception V3,
DenseNet, InceptionResNetV2, all pre-trained on ImageNet) is pre-implemented.
The training can be distributed with the Open Source Distributed Deep Learning
Framework for Tensorflow, Horovod. A configuration file is used to specify the
network architecture preferences and hyperparameters (i.e. loss, activation, learning
rate and batch size). The output of this layer consists of the trained network param-
eters and training statistics. In this paper, we compare the performances of ResNet
and Inception on different GPU types, namely Titan V, Titan X, Tesla K80, Tesla
K40. The source code is also available online, for either single-GPU or multi-GPU
execution6.

3.7 Layer 3: Inference and Interpretability

We present a summary of the functionalities of Layer III in Figure 5. This last layer
of the proposed application deals with two main tasks: performing inference and
interpreting the models trained in Layer II.

As a first functionality, this layer generates heatmaps of the probability of the
presence of tumorous tissue, which can be used for visual inspection and comparison
with the ground truth segmentations. CNN inference, in general, is less costly than
training, although WSIs still require a great number of patches to be tested. This

6 https://github.com/medgift/PROCESS_L2/

https://github.com/medgift/PROCESS_L2/

794 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

Figure 5. An example of the functionalities in Layer III, which consist of performing dis-
tributed inference for building the tumor heatmap and providing interpretability analyses
and insights about network training

process is hence optimized by parallel-data distribution. Several copies of the CNN
are stored on the GPUs and inference is performed in parallel on distinct batches of
data. The heatmaps are then built by interpolating the predicted probability values
for each pixel.

The interpretability of the models, besides, is analyzed in this layer. Under-
standing the decision-making process of CNNs is a key point in medical imaging,
to ensure that clinically correct decisions are taken. Several different approaches
are proposed in the literature, with clear distinctions being made between models
that introduce interpretability as a built-in additional task [11, 20, 6, 8, 2, 34] and
post-hoc methods. Post-hoc methods, as defined in [24], are particularly suited to
the proposed layered framework, since they allow to disentangle the interpretabil-
ity analysis from network training. They can be used to explain any machine
learning algorithm without retraining the network weights. Several post-hoc tech-
niques [36, 43, 33, 10, 31] highlight the most influential set of features in the input
space, a technique known as attribution to features [37]. Among these, gradient-
based approaches, such as Class Activation Maps (CAM), Gradient-weighted Class
Activation Maps (grad-CAM) and its improved version grad-CAM++, attribute the
network output to perturbations of the input pixels. The output of such methods
is a heatmap of the input pixels that mostly contributed to the decision. Local In-
terpretable Model-Agnostic Explanations (LIME) are used as an alternative tool to
obtain visualizations. These visualizations are compared to interpreting the CNNs
by the regression of clinical values such as lesion extension and appearance in the
internal network activations in [15]. The method proposed for the comparison is
that of Regression Concept Vectors (RCVs), first implemented in [14] and then ex-
panded in [17]. This approach, besides, was further investigated in [16], showing
that it can be efficiently used to improve the training of CNNs on medical images.
To develop concept-based explanations, we define a list of concepts that could be
relevant in the diagnosis. Concepts are chosen so that specific questions can be
addressed, e.g.: Do the nuclei appear larger than usual? Do they present a vesicu-
lar texture with high chromatism? To answer these questions about the nuclei area
and texture, representative of the NGH nuclear pleomorphism, the segmentation

Breast Histopathology with HPC and DL 795

of the nuclei instances in the image is obtained by either manual annotations [14]
or automatic segmentation [27]. We express the nuclei area as the sum of pixels
in the nuclei contours, whereas the nuclei texture is described by Haralick’s de-
scriptors such as Angular Second Moment (ASM), contrast and correlation [18].
A summary of the concepts extracted and how to compute them is presented in
Figure 6.

The performance of the RCV is evaluated by the determination coefficient of
the regression R2, expressing the percentage of variation that is captured by the
regression. This is used to check if the network is learning the concepts and in
which network layers [14, 17]. Sensitivity scores are computed on testing patches
from Camelyon17 as in [14]. The global relevance of the concept is estimated by
either TCAV or Br scores.

Figure 6. Concept list derived for the breast histopathology application with information
about the magnification level at which to extract them and whether the measures require
a continuous (C) or discrete (D) representation

4 EVALUATION

4.1 Data Preprocessing

We report in Table 4 the evaluation of the execution times for the data preprocessing
and patch extraction workflow. The two sampling processes, random and dense,
are compared. The measurements were computed on the AGH site in Krakow,
Poland.

The layer scalability to increasingly larger datasets and patient cohorts are
shown in Figure 7. Scaling is possible by increasing the number of available nodes,
for instance, from 100 to 1 000. In this case, approximately 50 000 patches can
be extracted in less than 5 minutes with random sampling strategy, showing lin-

796 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

WSIs # Nodes Sampling Parallelization Type CPU Time [s]

1 1 random none 292
5 5 random 1 CPU/WSI 260

1 1 dense none 18 400
1 100 dense 1 000 CPUs/WSI 3 000
5 500 dense 5 000 CPUs/WSI 7 530
5 1 000 dense 10 000 CPUs/WSI 3 780

Table 4. Measurements of execution time vs data sizes for extracting high resolution
patches from the Camleyon17 dataset at the PROCESS AGH site. The WSI size is
100 000× 100 000 pixels.

ear speed-up capability. Through the dense sampling strategy and by scaling the
patch extraction to 1 000 nodes, we extracted 43 million patches, for a total of
7 TB of intermediate data. With 8 thousand nodes available for the computa-
tion, this would take approximately 1 hour with the SLURM parallelization tech-
nique.

Figure 7. Layer 1 scalability to larger datasets and patient cohorts vs number of available
nodes

4.2 Data Transfer Between HPC Sites

In addition to the computational time, we evaluate the time for data transfer between
HPC centers, to establish whether this could constitute a possible bottleneck that
would prevent the execution of two different software layers in two centers, e.g.
Layer I at AGH and Layer II at UVA.

We show the cross-site staging results for transferring 30 GB of the Camelyon
16 dataset (3 % of the full dataset size, approximatively) in Table 5. Where avail-
able, i.e. for LRZ and UVA, we compare the Data Transfer Nodes connections.
DTN nodes speed up trasfers of nearly 30 % compared to the standard SCP proto-
col.

Breast Histopathology with HPC and DL 797

LRZ DTN UVA DTN LISA AGH

LRZ DTN – 405.32 25.53 32.17
UVA DTN 494.51 – 324.17 48.60
LISA 324.97 549.62 – 30.27
AGH 14.71 51.07 30.27 –

Table 5. Cross-site data staging speed for transfering 3 % of the Camelyon data with the
gridFTP protocol. Measures are reported in Mb/s.

Figure 8 compares using standard SPC protocols for data transfer between DTN
nodes against the dynamic reprogramming of DTNs with the FDT protocol through
containers. For files smaller than 2 Gb, the overhead of deploying the containers on
the fly is greater than the transfer time. For larger files, however, the overhead is
amortized by the better performing FDT protocol.

Figure 8. Comparison of SCP protocols vs FTD containerized approach for data transfer

798 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

4.3 Model Training

We compare in Figure 9 the training times (over 10 epochs) of two different ar-
chitectures, namely ResNet50 and InceptionV3, on 50 Gb of training data. Less
performant GPUs require a longer time to perform the training operations, with
NVIDIA K80 requiring more than 7 hours to train the 26 million of parameters
of ResNet50. This time reduces to slightly more than 1 hour when using the
latest NVIDIA V100. The model parallelization on two GPUs, particularly on
2 NVIDIA V100 shows the scalability of the network training over multiple GPUs,
requiring 1 hour and a half to train the 24 million of parameters of Inception
V3.

Figure 9. Comparison of ResNet and Inception average training times (on 50 Gb of train-
ing data) with single and distributed training on different GPUs. The number of param-
eters being trained is reported in brackets (M = millions). The floating point operations
per second (FLOPS) are reported for each GPU configuration. The size of the circle is
proportional to the number of parameters in each network.

The scalability of network training over larger datasets is compared for ResNet50
distributed on 2 NVIDIA V100 in Figure 10. This is insightful about the scalability
of the combination of Layer I and Layer II estimating the training time per epoch
for increasing dataset sizes.

4.4 Visualizations and Interpretability

Figure 11 shows some output heatmaps overlayed to the original input WSIs and
compared to the manual tumor segmentations provided by the pathologist. The
inference of nearly 10 thousand patches is distributed over 5 processes on a single
NVIDIA V100, requiring less than 4 minutes to compute the heatmap for an input
WSI (230 s). The network output is interpreted at the patch-level using gradCAM,
gradCAM++ and LIME. Some examples are shown in Figure 11.

The concepts representative of the NGH nuclear pleomorphism are learned in
early layers of the network, as shown in [14, 17]. Particularly, from the analysis of

Breast Histopathology with HPC and DL 799

Figure 10. Training time per epoch vs increasingly larger data sizes for ResNet50 on
2×NVIDIA V100

Figure 11. Visualization outputs. The heatmaps of tumor probability are computed by
distributed inference over 5 models replicas on a single NVIDIA V100. The interpretability
visualizations (on the right) were also computed on the same GPU.

the TCAV and Br scores it emerges that the contrast of the nuclei texture is relevant
to the classification, with TCAV = 0.72 out of 1 and Br = 0.27.

5 DISCUSSION

The best performance for the data preprocessing and patch extraction pipeline
(layer 1) is obtained when this layer is run on the HPC site. The scaling up of
the dataset sizes is possible under the condition of a sufficiently large number of
CPU cores on the computational site, which narrows down the computational time
required by each operation. The results in Table 4 show the large benefits of op-
timizing the data extraction process on the HPC resources. In less than one hour,
nearly 1 TB of data were extracted from 5 WSIs, with a computational requirement
of one thousand nodes (with 10 CPU cores per node). Scaling this up led us to the
extraction of 34 million of patches for a total of 7 TB that can be used for network
training. Under the hypothesis of a large number of CPUs available, i.e. one per
WSI, the computational requirements will not be a limit for data preprocessing, as
the scalability requirements are almost linear.

800 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

Similarly, layer 2 was tested on different GPU servers, comparing performances
of state-of-the-art networks and GPU types. The containerized approach allows
users to deploy each layer on multiple sites without requiring specific expertise on
the deployment site, thus leaving open different possibilities for deployment. The
training times are consistently narrowed down by the distribution of training with
model parallelism on multiple GPUs, as shown in Figures 9 and 10. The results
on the distribution of network training show that the TFLOP of the GPUs is not
a major limitation for scaling to larger datasets, with the performance of 4 NVIDIA
K80 being close to that of a single NVIDIA V100 (150 minutes against 140 minutes
respectively, as shown in Figure 9). Increasing data sizes leads to longer train-
ing times per epoch, as expected. In this case, even more TFLOPS are needed to
scale up to millions of images. The training on 1 million images, however, can be
performed in approximately 2 days with parallelization on 2 NVIDIA V100. The
heatmap generation and interpretability analyses provide a direct visualization of
the regions with a high probability of being tumorous. GradCAM, gradCAM++
and LIME provide various insights about the input regions responsible for the de-
cision. RCVs further showed the importance of nuclei texture in the classifica-
tion, with nuclei texture contrast being particularly relevant to the classification
of patches of breast tissue. This is in accordance with the NHG grading system,
which identifies hyperchromatism as a signal of nuclear atypia. It seems there-
fore that nuclear pleomorphism is taken into consideration during network train-
ing.

The results for each layer suggest that an optimal configuration would make the
best use of the CPU clusters for data preprocessing, while network training should
be performed on GPU servers. By testing data transfer times (see Table 5) we
showed that the FTD containerized approach with DTNs would reduce the data
staging bottleneck to the minimum.

6 CONCLUSION

We proposed a modular application that adapts with large flexibility to the differ-
ent requirements of research in deep learning for histopathology and is deployable
on HPC computing. The three layers can be deployed independently on the ap-
propriate computing site to run different parts of the pipeline. The modularity of
the proposed application embraces the foreseen future of digital pathology, being
easy to deploy and offering large customization in terms of network parameters and
choice of the training data. The parallelization of the different workflows improves
the performance in terms of computational time. This is in line with the require-
ments of digital pathology, that, with increasingly larger datasets being collected
and thus increasingly demanding tasks being set, is becoming demanding in terms
of computational and storage requirements.

Breast Histopathology with HPC and DL 801

Moreover, the network training could be deployed independently on a private
computational site, allowing users to fine-tune the network weights on sensitive data
that cannot be shared.

Acknowledgements

This work is supported by the “PROviding Computing solutions for ExaScale Chal-
lengeS” (PROCESS) project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 777533
and by the project APVV-17-0619 (U-COMP) “Urgent Computing for Exascale
Data”.

REFERENCES

[1] Aeffner, F.—Zarella, M. D.—Buchbinder, N.—Bui, M. M.—
Goodman, M. R.—Hartman, D. J.—Lujan, G. M.—Molani, M. A.—
Parwani, A. V.—Lillard, K.—Turner, O. C.—Vemuri, V. N. P.—Yuil-
Valdes, A. G.—Bowman, D.: Introduction to Digital Image Analysis in
Whole-Slide Imaging: A White Paper from the Digital Pathology Association.
Journal of Pathology Informatics, Vol. 10, 2019, No. 9, doi: 10.4103/jpi.jpi 82 18.

[2] Alvarez-Melis, D.—Jaakkola, T. S.: Towards Robust Interpretability with Self-
Explaining Neural Networks. Proceedings of the 32nd International Conference on
Neural Information Processing Systems (NIPS 2018), 2018, pp. 7786–7795.

[3] Bonert, M.—Tate, A. J.: Mitotic Counts in Breast Cancer Should Be Standard-
ized with a Uniform Sample Area. BioMedical Engineering OnLine, Vol. 16, 2017,
No. 1, Art. No. 28, doi: 10.1186/s12938-016-0301-z.

[4] Bándi, P.—Geessink, O.—Manson, Q.—Van Dijk, M.—Balkenhol, M.—
Hermsen, M.—Ehteshami Bejnordi, B.—Lee, B.—Paeng, K.—
Zhong, A.—Li, Q.—Zanjani, F. G.—Zinger, S.—Fukuta, K.—
Komura, D.—Ovtcharov, V.—Cheng, S.—Zeng, S.—Thagaard, J.—
Dahl, A. B.—Lin, H.—Chen, H.—Jacobsson, L.—Hedlund, M.—
Çetin, M.—Halıcı, E.—Jackson, H.—Chen, R.—Both, F.—Franke, J.—
Küsters-Vandevelde, H.—Vreuls, W.—Bult, P.—van Ginneken, B.—
van der Laak, J.—Litjens, G.: From Detection of Individual Metastases to
Classification of Lymph Node Status at the Patient Level: The CAMELYON17
Challenge. IEEE Transactions on Medical Imaging, Vol. 38, 2019, No. 2, pp. 550–560,
doi: 10.1109/TMI.2018.2867350.

[5] Campbell, C.—Mecca, N.—Duong, T.—Obeid, I.—Picone, J.: Expanding
an HPC Cluster to Support the Computational Demands of Digital Pathology. 2018
IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2018, doi:
10.1109/SPMB.2018.8615614.

[6] Caruana, R.—Lou, Y.—Gehrke, J.—Koch, P.—Sturm, M.—Elhadad, N.:
Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-Day
Readmission. Proceedings of the 21th ACM SIGKDD International Conference on

https://doi.org/10.4103/jpi.jpi_82_18
https://doi.org/10.1186/s12938-016-0301-z
https://doi.org/10.1109/TMI.2018.2867350
https://doi.org/10.1109/SPMB.2018.8615614

802 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

Knowledge Discovery and Data Mining (KDD ’15), ACM, 2015, pp. 1721–1730, doi:
10.1145/2783258.2788613.

[7] Chagpar, A.—Middleton, L. P.—Sahin, A. A.—Meric-Bernstam, F.—
Kuerer, H. M.—Feig, B. W.—Ross, M. I.—Ames, F. C.—Single-
tary, S. E.—Buchholz, T. A.—Valero, V.—Hunt, K. K.: Clinical Outcome of
Patients with Lymph Node-Negative Breast Carcinoma Who Have Sentinel Lymph
Node Micrometastases Detected by Immunohistochemistry. Cancer, Vol. 103, 2005,
No. 8, pp. 1581–1586, doi: 10.1002/cncr.20934.

[8] Cho, K.—Courville, A.—Bengio, Y.: Describing Multimedia Content Us-
ing Attention-Based Encoder-Decoder Networks. IEEE Transactions on Multimedia,
Vol. 17, 2015, No. 11, pp. 1875–1886, doi: 10.1109/TMM.2015.2477044.

[9] Dean, J.—Corrado, G.—Monga, R.—Chen, K.—Devin, M.—Mao, M.—
Ranzato, M.—Senior, A.—Tucker, P.—Yang, K.—Le, Q.—Ng, A.: Large
Scale Distributed Deep Networks. In: Pereira, F., Burges, C. J. C., Bottou, L. Wein-
berger, K. Q. (Eds.): Advances in Neural Information Processing Systems 25 (NIPS
2012), 2012, pp. 1223–1231.

[10] Fong, R. C.—Vedaldi, A.: Interpretable Explanations of Black Boxes by Mean-
ingful Perturbation. Proceedings of the 2017 IEEE International Conference on Com-
puter Vision, Venice, Italy, 2017, pp. 3449–3457, doi: 10.1109/ICCV.2017.371.

[11] Freitas, A. A.: Comprehensible Classification Models: A Position Paper.
ACM SIGKDD Explorations Newsletter, Vol. 15, 2014, No. 1, pp. 1–10, doi:
10.1145/2594473.2594475.

[12] Giuliano, A. E.—Ballman, K. V.—McCall, L.—Beitsch, P. D.—
Brennan, M. B.—Kelemen, P. R.—Ollila, D. W.—Hansen, N. M.—
Whitworth, P. W.—Blumencranz, P. W.—Leitch, A. M.—Saha, S.—
Hunt, K. K.—Morrow, M.: Effect of Axillary Dissection vs. No Axillary
Dissection on 10-Year Overall Survival Among Women with Invasive Breast Cancer
and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical
Trial. JAMA, Vol. 318, 2017, No. 10, pp. 918–926, doi: 10.1001/jama.2017.11470.

[13] Goyal, P.—Dollár, P.—Girshick, R.—Noordhuis, P.—Wesolowski, L.—
Kyrola, A.—Tulloch, A.—Jia, Y.—He, K.: Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour. 2017, arXiv preprint arXiv:1706.02677.

[14] Graziani, M.—Andrearczyk, V.—Müller, H.: Regression Concept Vectors for
Bidirectional Explanations in Histopathology. In: Stoyanov, D. et al. (Eds.): Under-
standing and Interpreting Machine Learning in Medical Image Computing Appli-
cations (MLCN 2018, DLF 2018, IMIMIC 2018). Springer, Cham, Lecture Notes in
Computer Science, Vol. 11038, 2018, pp. 124–132, doi: 10.1007/978-3-030-02628-8 14.

[15] Graziani, M.—Andrearczyk, V.—Müller, H.: Visualizing and Interpreting
Feature Reuse of Pretained CNNs for Histopathology. Irish Machine Vision and Image
Processing Conference (IMVIP 2019), Dublin, Ireland, 2019.

[16] Graziani, M.—Lompech, T.—Müller, H.—Depeursinge, A.—
Andrearczyk, V.: Interpretable CNN Pruning for Preserving Scale-Covariant
Features in Medical Imaging. In: Cardoso, J. et al. (Eds.): Interpretable and
Annotation-Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID

https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1002/cncr.20934
https://doi.org/10.1109/TMM.2015.2477044
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1145/2594473.2594475
https://doi.org/10.1001/jama.2017.11470
https://doi.org/10.1007/978-3-030-02628-8_14

Breast Histopathology with HPC and DL 803

2020, LABELS 2020). Springer, Cham, in cooperation with MICCAI, Lecture Notes
in Computer Science, Vol. 12446, 2020, pp. 23–32, doi: 10.1007/978-3-030-61166-8 3.

[17] Graziani, M.—Andrearczyk, V.—Marchand-Maillet, S.—Müller, H.:
Concept Attribution: Explaining CNN Decisions to Physicians. Com-
puters in Biology and Medicine, Vol. 123, 2020, Art. No. 103865, doi:
10.1016/j.compbiomed.2020.103865.

[18] Haralick, R. M.—Shanmugam, K.—Dinstein, I.: Textural Features for Image
Classification. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3,
1973, No. 6, pp. 610–621, doi: 10.1109/TSMC.1973.4309314.

[19] Hayakawa, T.—Prasath, V. B. S.—Kawanaka, H.—Aronow, B. J.—
Tsuruoka, S.: Computational Nuclei Segmentation Methods in Digital Pathology:
A Survey. Archives of Computational Methods in Engineering, 2019, pp. 1–13, doi:
10.1007/s11831-019-09366-4.

[20] Kim, B.—Shah, J. A.—Doshi-Velez, F.: Mind the Gap: A Generative Approach
to Interpretable Feature Selection and Extraction. In: Cortes, C., Lawrence, N.,
Lee, D., Sugiyama, M., Garnett, R. (Eds.): Advances in Neural Information Process-
ing Systems 28 (NIPS 2015), 2015, pp. 2260–2268.

[21] Kurth, T.—Zhang, J.—Satish, N.—Racah, E.—Mitliagkas, I.—
Patwary, M. M. A.—Malas, T.—Sundaram, N.—Bhimji, W.—
Smorkalov, M.—Deslippe, J.—Shiryaev, M.—Sridharan, S.—Prabhat—
Dubey, P.: Deep Learning at 15PF: Supervised and Semi-Supervised Classification
for Scientific Data. Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’17), ACM, 2017, Art. No. 7,
11 pp., doi: 10.1145/3126908.3126916.

[22] Li, J.—Yang, S.—Huang, X.—Da, Q.—Yang, X.—Hu, Z.—Duan, Q.—
Wang, C.—Li, H.: Signet Ring Cell Detection with a Semi-Supervised Learning
Framework. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (Eds.): Information Pro-
cessing in Medical Imaging (IPMI 2019). Springer, Cham, Lecture Notes in Computer
Science, Vol. 11492, 2019, pp. 842–854, doi: 10.1007/978-3-030-20351-1 66.

[23] Lin, Y.—Han, S.—Mao, H.—Wang, Y.—Dally, W. J.: Deep Gradient Com-
pression: Reducing the Communication Bandwidth for Distributed Training. 2017,
arXiv preprint arXiv:1712.01887.

[24] Lipton, Z. C.: The Mythos of Model Interpretability. Commununication of ACM,
Vol. 61, 2018, No. 10, pp. 36–43, doi: 10.1145/3233231.

[25] Lu, C.—Romo-Bucheli, D.—Wang, X.—Janowczyk, A.—Ganesan, S.—
Gilmore, H.—Rimm, D.—Madabhushi, A.: Nuclear Shape and Orientation Fea-
tures from H & E Images Predict Survival in Early-Stage Estrogen Receptor-Positive
Breast Cancers. Laboratory Investigation, Vol. 98, 2018, No. 11, pp. 1438–1448, doi:
10.1038/s41374-018-0095-7.

[26] Madabhushi, A.—Lee, G.: Image Analysis and Machine Learning in Digital
Pathology: Challenges and Opportunities. Medical Image Analysis, Vol. 33, 2016,
pp. 170–175, doi: 10.1016/j.media.2016.06.037.

https://doi.org/10.1007/978-3-030-61166-8_3
https://doi.org/10.1016/j.compbiomed.2020.103865
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1007/s11831-019-09366-4
https://doi.org/10.1145/3126908.3126916
https://doi.org/10.1007/978-3-030-20351-1_66
https://doi.org/10.1145/3233231
https://doi.org/10.1038/s41374-018-0095-7
https://doi.org/10.1016/j.media.2016.06.037

804 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

[27] Otálora, S.—Atzori, M.—Khan, A.—Jimenez-del-Toro, O.—
Andrearczyk, V.—Müller, H.: Systematic Comparison of Deep Learning
Strategies for Weakly Supervised Gleason Grading. Medical Imaging 2020: Digital
Pathology. Proceedings of the SPIE, Vol. 11320, 2020, Art. No. 113200L, doi:
10.1117/12.2548571.

[28] Otálora, S.—Marini, N.—Müller, H.—Atzori, M.: Semi-Weakly Supervised
Learning for Prostate Cancer Image Classification with Teacher-Student Deep Con-
volutional Networks. In: Cardoso, J. et al. (Eds.): Interpretable and Annotation-
Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID 2020, LA-
BELS 2020). Springer, Cham, Lecture Notes in Computer Science, Vol. 12446, 2020,
pp. 193–203, doi: 10.1007/978-3-030-61166-8 21.

[29] Rabe, K.—Snir, O. L.—Bossuyt, V.—Harigopal, M.—Celli, R.—
Reisenbichler, E. S.: Interobserver Variability in Breast Carcinoma Grading Re-
sults in Prognostic Stage Differences. Human Pathology, Vol. 94, 2019, pp. 51–57,
doi: 10.1016/j.humpath.2019.09.006.

[30] Rakha, E. A.—El-Sayed, M. E.—Lee, A. H. S.—Elston, C. W.—Grain-
ge, M. J.—Hodi, Z.—Blamey, R. W.—Ellis, I. O.: Prognostic Significance of
Nottingham Histologic Grade in Invasive Breast Carcinoma. Journal of Clinical On-
cology, Vol. 26, 2008, No. 19, pp. 3153–3158, doi: 10.1200/JCO.2007.15.5986.

[31] Ribeiro, M. T.—Singh, S.—Guestrin, C.: Why Should I Trust You?: Explaining
the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’16), ACM, 2016,
pp. 1135–1144, doi: 10.1145/2939672.2939778.

[32] Schnitt, S. J.—Connolly, J. L.—Tavassoli, F. A.—Fechner, R. E.—
Kempson, R. L.—Gelman, R.—Page, D. L.: Interobserver Reproducibility in
the Diagnosis of Ductal Proliferative Breast Lesions Using Standardized Cri-
teria. The American Journal of Surgical Pathology, Vol. 16, 1992, No. 12,
pp. 1133–1143, doi: 10.1097/00000478-199212000-00001.

[33] Selvaraju, R. R.—Cogswell, M.—Das, A.—Vedantam, R.—Parikh, D.—
Batra, D.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-
Based Localization. 2017 IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 618–626, doi: 10.1109/ICCV.2017.74.

[34] Shen, S.—Han, S. X.—Aberle, D. R.—Bui, A. A.—Hsu, W.: An Interpretable
Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malig-
nancy Classification. Expert Systems with Applications, Vol. 128, 2019, pp. 84–95,
doi: 10.1016/j.eswa.2019.01.048.

[35] Siegel, R. L.—Miller, K. D.—Jemal, A.: Cancer Statistics, 2019. CA: A Cancer
Journal for Clinicians, Vol. 69, 2019, No. 1, pp. 7–34, doi: 10.3322/caac.21551.

[36] Simonyan, K.—Vedaldi, A.—Zisserman, A.: Deep Inside Convolutional Net-
works: Visualising Image Classification Models and Saliency Maps. Computing Re-
search Repository (CoRR), 2013, arXiv:1312.6034, http://arxiv.org/abs/1312.

6034.

https://doi.org/10.1117/12.2548571
https://doi.org/10.1007/978-3-030-61166-8_21
https://doi.org/10.1016/j.humpath.2019.09.006
https://doi.org/10.1200/JCO.2007.15.5986
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1097/00000478-199212000-00001
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1016/j.eswa.2019.01.048
https://doi.org/10.3322/caac.21551
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034

Breast Histopathology with HPC and DL 805

[37] Sundararajan, M.—Taly, A.—Yan, Q.: Axiomatic Attribution for Deep Net-
works. Proceedings of the 34th International Conference on Machine Learning
(ICML ’17), JMLR.org, Proceedings of Machine Learning Research (PMLR), Vol. 70,
2017, pp. 3319–3328.

[38] van Diest, P. J.—van Deurzen, C. H. M.—Cserni, G.: Pathology Issues Re-
lated to SN Procedures and Increased Detection of Micrometastases and Isolated
Tumor Cells. Breast Disease, Vol. 31, 2010, No. 2, pp. 65–81, doi: 10.3233/BD-2010-
0298.

[39] Wang, F.—Aji, A.—Liu, Q.—Saltz, J. H.: Hadoop-GIS: A High Performance
Query System for Analytical Medical Imaging with Mapreduce. Technical Report
CCI-TR-2001-3, Emory University, Atlanta, USA, 2011, pp. 1–13.

[40] Wei, X. S.—Wu, J.—Zhou, Z. H.: Scalable Multi-Instance Learning. 2014
IEEE International Conference on Data Mining (ICDM), Shenzhen, China, 2014,
pp. 1037–1042, doi: 10.1109/ICDM.2014.16.

[41] Xu, Y.—Li, Y.—Shen, Z.—Wu, Z.—Gao, T.—Fan, Y.—Lai, M.—
Chang, E. I-C.: Parallel Multiple Instance Learning for Extremely Large
Histopathology Image Analysis. BMC Bioinformatics, Vol. 18, 2017, Art. No. 360,
15 pp., doi: 10.1186/s12859-017-1768-8.

[42] Zanjani, F. G.—Zinger, S.—De, P. N.: Automated Detection and Classification
of Cancer Metastases in Whole-Slide Histopathology Images Using Deep Learning.
2017.

[43] Zeiler, M. D.—Fergus, R.: Visualizing and Understanding Convolutional Net-
works. Computing Research Repository (CoRR), 2013, arXiv:1311.2901, http://

arxiv.org/abs/1311.2901.

https://doi.org/10.3233/BD-2010-0298
https://doi.org/10.3233/BD-2010-0298
https://doi.org/10.1109/ICDM.2014.16
https://doi.org/10.1186/s12859-017-1768-8
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901

806 M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, H. Müller

Mara Graziani is a third-year Ph.D. student with double affil-
iation at the University of Geneva and at the University of Ap-
plied Sciences of Western Switzerland. With her research, she
aims at improving the interpretability of machine learning sys-
tems for healthcare by a human-centric approach. She was a vis-
iting student at the Martinos Center, part of Harvard Medical
School in Boston, MA, USA to analyze the interaction between
clinicians and deep learning systems. From her background of
IT engineering, she was awarded the Engineering Department
Award for completing the M.Phil. in machine learning, speech

and language at the University of Cambridge, UK in 2017.

Ivan Eggel is Senior Research Associate of the University of
Applied Sciences of Western Switzerland. His research inter-
est focuses on developing applications for information retrieval
in healthcare and in cloud computing. He participated in the
organization of several challenges such as ImageCLEF and VIS-
CERAL.

François Deligand is a Bachelor’s student in mathematics and
informatics at INP-ENSEEIHT in Toulouse, France. He con-
tributed to the experiments during his internship at HES-SO
Valais.

Vincent Andrearczyk is currently Senior Researcher at the
University of Applied Sciences and Arts Western Switzerland
with a research focus on deep learning for medical image analy-
sis and texture feature extraction. He received a double Masters
degree in electronics and signal processing from ENSEEIHT,
France and Dublin City University in 2012 and 2013, respec-
tively. He completed his Ph.D. degree on deep learning for tex-
ture and dynamic texture analysis at Dublin City University in
2017.

Breast Histopathology with HPC and DL 807

Martin Bobak is Scientist at the Institute of Informatics (Slo-
vak Academy of Sciences, Bratislava, Slovakia), in the Depart-
ment of Parallel and Distributed Information Processing. He
started working at the institute in 2013, defended his disser-
tation thesis at the institute in 2017, became Member of the
Scientific Board of the institute, and Guest Handling Editor in
the CC journal Computing and Informatics. His field of re-
search is cloud computing and the architectures of distributed
cloud-based applications. He is the author of numerous scien-
tific publications and has participated in several European and
Slovak R & D projects.

Henning M�uller is Full Professor at the HES-SO Valais and
responsible for the eHealth unit of the school. He is also Pro-
fessor at the Medical Faculty of the University of Geneva and
has been on sabbatical at the Martinos Center, part of Harvard
Medical School in Boston, MA, USA to focus on research activ-
ities. He is the coordinator of the ExaMode EU project, was
coordinator of the Khresmoi EU project, scientific coordinator
of the VISCERAL EU project and is the initiator of the Image-
CLEF benchmark that has run medical tasks since 2004. He
has authored over 600 scientific papers with more than 17 000

citations and is in the editorial board of several journals.

Computing and Informatics, Vol. 39, 2020, 808–837, doi: 10.31577/cai 2020 4 808

ALLSCALE API

Philipp Gschwandtner, Herbert Jordan
Peter Thoman, Thomas Fahringer

Department of Computer Science, University of Innsbruck
Technikerstrasse 21a, 6020 Innsbruck, Austria
e-mail: {philipp.gschwandtner, herbert.jordan, peter.thoman,

thomas.fahringer}@uibk.ac.at

Abstract. Effectively implementing scientific algorithms in distributed memory
parallel applications is a difficult task for domain scientists, as evident by the large
number of domain-specific languages and libraries available today attempting to
facilitate the process. However, they usually provide a closed set of parallel pat-
terns and are not open for extension without vast modifications to the underlying
system. In this work, we present the AllScale API, a programming interface for
developing distributed memory parallel applications with the ease of shared mem-
ory programming models. The AllScale API is closed for a modification but open
for an extension, allowing new user-defined parallel patterns and data structures
to be implemented based on existing core primitives and therefore fully supported
in the AllScale framework. Focusing on high-level functionality directly offered to
application developers, we present the design advantages of such an API design, de-
tail some of its specifications and evaluate it using three real-world use cases. Our
results show that AllScale decreases the complexity of implementing scientific appli-
cations for distributed memory while attaining comparable or higher performance
compared to MPI reference implementations.

Keywords: API, programming interface, parallel programming, shared memory,
distributed memory, parallel operator, data structure

Mathematics Subject Classification 2010: 68-W10

AllScale API 809

1 INTRODUCTION

Even with the recent trend of many-core processors providing users with dozens of
cores per chip in a single memory address space, distributed memory systems pose
an essential aspect of HPC in order to achieve large-scale performance for scientific
applications. Although there are certain system architectures that overcome the
issue of distinct memory address spaces by hardware means (e.g. SGI’s UV [21]
series using the NumaLink protocol), the conventional approach is still to handle
distinct memory address spaces in the software stack by providing a global address
space in software or by explicit message exchange.

However, most of these ubiquitous software solutions entail several disadvantages
that make them hard to use for domain scientists. Programming interfaces such as
MPI are often too low-level for non-computer science experts and clutter up the
application with a non-domain-relevant source code. On the other hand, there are
high-level domain-specific languages or libraries that lack extensibility in order to
support new scientific problems [4]. In addition, many of these solutions often lack
the composability required for building libraries and integrating them seamlessly
into larger applications, they deny an incremental approach that allows parallelizing
an application step by step, or are limited to shared memory only. Therefore, users
often resort to combining several of these solutions (e.g. MPI+OpenMP), which
presupposes knowledge in at least two different programming models and entails
a lack of resource management coordination that is left to the user.

In contrast, the AllScale API aims at providing the application developer with
a single, extensible programming interface to express the parallel algorithms on
a high level of abstraction, with automatic support for distributed memory.

The specific contributions of this work are:

• a shared-memory-style API for high-level specifications of algorithms and data
structures with implicit distributed memory support,

• the capability of expressing new algorithms by extending the API with full
compatibility to the rest of the software stack, and

• an evaluation of its programmability and performance using three real-life use
cases.

While documentation and tutorials introducing the novice to the AllScale API
are available online1, the remainder of this work focuses on the API specification
and important properties.

The rest of the paper is structured as follows. Section 2 discusses API design
motivation while Section 3 and Section 4 detail API components. Implementation
information is given in Section 5. Three real-world pilot applications and their
respective API use are presented in Section 6 followed by an evaluation in Section 7.
Related work is discussed in Section 8 and Section 9 provides the conclusion and
future work.

1 https://github.com/allscale/allscale_api/wiki

https://github.com/allscale/allscale_api/wiki

810 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

2 API DESIGN

User API

Core API

AllScale
Compiler

Applications

Description Transition

Hardware-
oblivious code Map domain-

specific problem
to parallel patternsAbstract domain-

specific primitives
Break patterns

down to primitives
Compiler-

supported primitives Expose parallelism
and tuning options
to runtime systemRealization

of primitives
Standard
toolchain

Figure 1. AllScale API design and usage overview

AllScale aims at providing domain scientists with the ability to write parallel
applications for distributed memory using an API that is as easy to use as shared
memory programming models such as OpenMP. While AllScale consists of many
components including the API, a compiler, a distributed memory runtime system,
and additional components for monitoring, resilience, etc., this work will present the
API in detail. The overall architecture is discussed in detail by Jordan et al. [9].

The AllScale API is the façade of the AllScale Environment towards end-user
applications. It provides the necessary primitives to express parallelism, data de-
pendences, and needed synchronization steps within application code. The API is
subdivided into two layers: the AllScale Core API and the AllScale User API. Their
relationship is illustrated in Figure 1 and further discussed in the remainder of this
section.

The Core API provides a concise set of basic generic primitives, comprising par-
allel control flow, synchronization, and communication constructs. It furthermore
offers a generic data item interface that enables automatic data management of
user-defined data structures. The User API is harnessing the expressive power of
the Core API to provide specialized primitives for particular use cases, including
basic constructs like parallel loops or adaptive grids.

The purpose of the subdivision into a Core and User API is to enable the imple-
mentation of a variety of parallel primitives on top of a small, concise set of central
constructs which can be utilized to provide portability among different implementa-
tions of the AllScale Core API. Currently there are two implementations available
within AllScale:

• a shared memory, pure C++ implementation, also referred to as the standard
toolchain, which can be compiled by any C++14-compliant compiler with no
further third-party library dependences – this implementation serves as a de-

AllScale API 811

velopment platform for AllScale applications and also represents a reference
implementation; and

• the implementation utilizing the AllScale Compiler and Runtime System, also
called the AllScale toolchain, which comprises a combination of static program
analysis (crucial for automatically deriving data dependences required for dis-
tributed memory execution), code generation, scheduling, and resilience tech-
niques to provide a highly scalable and portable implementation of the Core
API on distributed memory systems.

Hence, applications developed within AllScale can be ported from shared to
distributed memory simply by switching the toolchain, without any modifications
required in the application. Additional parallel constructs may be introduced in the
User API without the necessity of altering the underlying Core API implementa-
tion. Thus, the User API layer provides an effective way of extending the range of
supported parallel patterns.

Furthermore, the User API shields application developers from the complexity
of the Core API constructs. Due to the introduction of the User API efficient imple-
mentations of primitives native to the domain of the applications can be provided
by parallelization experts. Therefore, AllScale provides a separation of concerns –
with the overall task of providing efficient parallel codes – distributed among three
contributors:

• the domain expert, aiming at obtaining the most effective algorithmic solution
for the problem of interest;

• the HPC expert, able to develop efficient domain specific primitives to be used
by the domain expert, focusing on e.g. communication and synchronization over-
heads or cache efficiency; and

• the system-level expert focusing on providing the most flexible and portable
implementation of the Core API, hence handling load management, scheduling,
resilience, and hardware management obligations.

The separation of responsibilities also effects the code base. By shielding the
domain expert from all the underlying details (e.g. synchronization, communication,
cache efficiency, scheduling, utilization of low-level parallel APIs), the resulting ap-
plication code remains free of the otherwise necessary management code. This im-
proves the maintainability of the resulting applications and thus the productivity of
the domain expert.

3 CORE API

This section will detail the Core part of the AllScale API, specifically the primi-
tives for parallel control flow and the concept of data items and their requirements.
The User API, discussed in the section thereafter, builds on-top of these basic con-
structs to provide more high-level operations to domain experts. Note that while

812 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

the Core API also offers additional features such as a small performance profiling
tool, discussing those exceeds the scope of this paper.

3.1 Parallel Control Flow

The AllScale Core API provides a single primitive for running concurrent tasks,
resulting in feasible yet profound compiler and runtime system support for automatic
distributed memory management of parallel applications. This single parallelism
primitive forms the basis for all higher-level operators of the User API such as
parallel loops, allowing the User API to be open for extension with new higher-
level operators without any modifications required in the Core API or underlying
compiler and runtime system [10].

This primitive, the prec [12] operator, is a higher order function combining three
given functions into a new, recursive function. The three combined input functions
are:

• a function testing for the base case of a recursion,

• a function processing the base case of a recursion, and

• a function processing the recursive step case.

The result is a new recursive function which, for a given input parameter, conducts
the specified computation accordingly. To support an arbitrary input type, the prec
operator has the type α→ bool,

α→ β,
(α, α→ treeture〈β〉)→ treeture〈β〉

→ (α→ treeture〈β〉)

where α is the parameter type of the resulting recursive function and treeture〈β〉 is
a parameterized abstract data type (ADT) modeling a handle on parallel tasks. The
three parameters of the prec operator are the input functions discussed above. The
resulting value of type α→ treeture〈β〉 is a function which, upon invocation, spawns
a new task conducting the specified recursive operation in parallel. The resulting
task handle can be utilized to orchestrate the parallel execution of additional tasks.
A more in-depth discussion of ADTs can be found online [11].

3.2 Data Structure Primitives

While the parallel control flow primitive has been covered so far, it is not sufficient to
compose parallel applications for distributed memory. In order to properly manage
data dependences for parallel tasks executed in distinct memory address spaces,
a specification for user-defined data structures needs to be defined as well. The
purpose of this specification is to provide a single generic interface for HPC experts
to implement new user-defined data structures while offering management access to
the underlying runtime system for data distribution.

AllScale API 813

To this end, the data structure primitives offered by the Core API are a mere
specification of any potential data type’s interfaces and behaviors. Any data type T
to be managed by an AllScale API implementation must provide a fragment type F
for managing data storage and a range type R for addressing and managing sub-
ranges of the data structure. Table 1 lists the operators required to be defined by F
and R. Proper implementation of these operators for any arbitrary data structure
ensures its suitability for automatic distributed data management by the AllScale
Compiler and Runtime System. Several examples that implement widely-used data
structures such as grids are discussed in Section 4.2 while their implementation,
among others, can be found online2.

Name Type Description

Fragment

create R→ F creates a fragment covering (at least) the speci-
fied range

delete F → unit deletes the given fragment
resize (F,R)→ unit alters the capacity of given fragment F to cover

at least the range R
mask F → T provides access to the data stored in fragment F

via the interface defined by type T
extract (F,R)→ Archive extracts the data addressed by R from frag-

ment F and packs it into an archive; Archive
is a generic type of a utility provided by the API
implementations to serialize data to be trans-
ferred between address spaces

insert (F,R,Archive)→ unit imports the data stored in the given archive into
fragment F at the specified range R

Range

union (R,R)→ R computes the union of two ranges
intersect (R,R)→ R computes the intersection of two ranges
difference (R,R)→ R computes the set difference of two ranges
empty (R)→ bool determines whether the given range is empty,

thus addressing no elements
pack (R)→ Archive serializes instances
unpack (Archive)→ R deserializes instances

Table 1. Operators to be defined by fragment F and range R types of an AllScale data
structure

3.3 IO Primitives

All sensible applications require input/output (IO) for their operations. While high-
performance IO is a research topic on its own, the Core API offers basic primitives

2 https://git.io/fj4Xj

https://git.io/fj4Xj

814 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

to facilitate high-performance IO while keeping actual implementations abstract. To
that end, the Core API provides two means for storage interaction:

• stream-based, providing unordered input and output facilities, facilitating e.g.
the writing of simulation results to output streams,

• memory-mapped, providing read-only facilities for efficient random access within
large data sets.

Their individual discussion in Section 3.3.1 and Section 3.3.2 illustrates the
need for two separate components that match the different requirements while still
providing efficient operations.

3.3.1 Stream-Based

The underlying concept of the AllScale stream-based IO interface is an out-of-order
stream. Data entries can be atomically read from or written to such a stream.
However, the order in which entries show up in the stream is undefined. Although
tasks may be restricted due to imposed synchronization constraints to write data
in a certain order to a stream pointing e.g. to a file, the resulting file may contain
the written data in an arbitrary order. Furthermore, the API only guarantees the
eventual visibility of a written element within an output stream, before the ap-
plication terminates – not any particular timing. Thus, in particular, stream IO
primitives may not be mis-used for implementing synchronization operations among
tasks (nor are they required for this purpose for applications that adhere to the
AllScale programming model).

Within the API we utilize the abstract types istream and ostream as a repre-
sentation of an input or output stream. Table 2 lists the operations provided by
stream-based IO.

Streams are designed to be the main facility to be utilized by application devel-
opers to produce output data without the artificial introduction of extra synchro-
nization overhead. Furthermore, the abstraction to streams, their global addressing
through names, and the lack of guarantees on the output order enables the flexible
migration of tasks throughout the system. Tasks holding a stream to a file X on some
node may be moved to another node, where they get assigned a new stream pointing
to the logically same file. However, in reality the stream may point to a physically
different output file maintained by the local runtime process. The concatenation of
all the locally maintained output files controlled by the various AllScale Runtime
System instances on a system are logically forming the actual output file. Thus, no
synchronization beyond the boundaries of an AllScale node is required to facilitate
streaming IO.

3.3.2 Memory-Mapped

In some cases, quite complex input data structures need to be handled. For instance,
indexed files providing efficient access to desired sub-fractions may be loaded by

AllScale API 815

Name Type Description

read (istream)→ α atomically reads an element of type α
from the given input stream

atomic

(
istream,

(istream)→ unit

)
→ unit An operator providing atomic access to

an input stream, enabling the provided
function to read a sequence of consecu-
tive elements in order

write (ostream, α)→ unit atomically writes the given element of
type α to the given output stream,
where it will be visible eventually

atomic

(
ostream,

(ostream)→ unit

)
→ unit An operator providing atomic access to

an output stream, enabling the pro-
vided function to write a sequence of
consecutive elements in order

create in (string)→ istream opens an input file with the given name
and provides a stream to read from
it; the file format is implementation-
specific and data may only be read and
written using the AllScale IO API

create out (string)→ ostream creates a new empty file under the given
name and provides an output stream to
write information to the file; the file for-
mat is implementation specific and may
only be read using AllScale IO primi-
tives

get in (string)→ istream obtains an input stream to a previously
opened input file which might be con-
currently read

get out (string)→ ostream obtains an output stream of a previ-
ously opened output file which might be
concurrently written to

Table 2. Operations supported by stream-based IO

an application. Since the sequential access through streams would impose a major
performance penalty for accessing such files, memory-mapped IO is offered for read
only files. It provides the means for efficient random read-only access of sub-sets of
larger data, with open files available in the address spaces of all AllScale runtime
system processes.

The abstract type referencing a memory-mapped IO file is mmfile. Table 3 lists
the operations provided by memory-mapped IO.

Opening and closing memory-mapped files is a global operation throughout the
system. Once a file is opened, it is available within the address spaces of all runtime
system processes, although not necessarily at the same address range. The task

816 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

Name Type Description

open (string)→ mmfile globally opens a memory-mapped file with the given path
get (string)→ mmfile obtains a reference to a previously opened memory-

mapped file
access (mmfile)→ α interprets the content of the memory-mapped file as

a value of type α
close (mmfile)→ unit globally closes a memory-mapped file such that it is no

longer available for any process in the application

Table 3. Operations supported by memory-mapped IO

migration of the runtime system ensures that references to such files are adapted
accordingly whenever a task is migrated between nodes.

Memory-mapped IO is mainly considered a facility for special use cases in the
construction of efficient data structures within the User API layer. An example is
the static graph structure of a mesh (see Section 4.2.3). While it might also be
utilized by the end user, it will always be strictly limited to read-only use cases.
Write operations are restricted to the steam-based IO API.

4 USER API

The generic nature of the Core API exceeds the complexity which could be effec-
tively handled by domain experts for implementing parallel algorithms. For this
reason, the AllScale User API aims at providing a set of more user-friendly, higher-
level constructs for the composition of parallel applications by domain experts. The
implementation of these constructs is carried out by HPC experts utilizing the prim-
itives offered by the Core API.

4.1 Parallel Control Flow Constructs

While the User API is open for extension with new parallel patterns as required,
several frequently-occurring patterns such as parallel loops are already provided and
discussed below.

4.1.1 Parallel Loops

A vast majority of algorithms expressing data parallelism rely on parallel loops.
They provide the means to perform computational work in an iteration space in
parallel at the cost of executing the individual iterations concurrently and in an ar-
bitrary order. To that end, the User API offers a parallel loop construct for realizing
data-parallel programming within the AllScale environment.

Let iterator be a random access iterator. Then the pfor operator provides a par-
allel loop execution with the parameters defined in Table 4. Figure 2 shows a sample
usage of the pfor operator with fine-grained synchronization. Several of these syn-

AllScale API 817

chronization patterns are available, such as neighborhood sync or one on one. HPC
experts are free to extend these by new patterns not yet covered.

Name Type Description

begin iterator inclusive beginning of the iterator range
end iterator exclusive end of the iterator range
body (iterator)→ β the function applied to each element
dependence dep〈iterator〉 optional dependence for fine-grained synchronization

Table 4. Parameters of the pfor operator

1 #include <array>
2 #include <allscale/api/user/algorithm/pfor.h>
3 namespace alg = allscale::api::user::algorithm;
4 using ArrayType = std::array<int,N>;
5 const int N = 200;
6 void initAndIncrement(const ArrayType& data, ArrayType& output) {
7 auto ref = alg::pfor(0,N,[&](int i) {
8 output[i] = ...; // initialization
9 });

10 alg::pfor(1,N−1,[&](int i) {
11 output[i] += data[i+1] + data[i] + data[i−1];
12 }, alg::neighborhood sync(ref));
13 }

Figure 2. Two pfor operators initializing and incrementing data in a std::array with fine-
grained synchronization. The second pfor will execute iteration i after the first has finished
its iterations i− 1, i, and i+ 1. Constructs specific to the AllScale API are shown in blue
and underlined.

4.1.2 Recursive Space/Time Decomposition

A frequently utilized template for large-scale high-performance applications are sten-
cils. In a stencil-based application, an update operation is iteratively applied to the
elements of an n-dimensional array of cells. Thereby, for each update, the update
operation is combining the previous values of cells within a locally confined area
surrounding the targeted cell location to obtain the updated value for the targeted
cell. Since these update operations within a single update step (also known as
timestep) are independent, this application pattern provides a valuable source for
parallelism within a correspondingly shaped application. The User API offers the
stencil operator, the parameters of which are defined in Table 5.

818 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

Name Type Description

timesteps int number of time steps to be com-
puted

size intn spatial size of n-dimensional
data to be processed

kernel function (int, intn, αs1×...×sn)→ α update function accepting cur-
rent time, location, and grid,
computing the resulting value

kernel shape (intn)∗ compile-time-constant list of off-
sets to cells accessed by kernel,
determining its shape

boundary function (int, intn, αs1×...×sn)→ α update function for boundary
cases, where some elements are
outside the grid

initialization function (intn)→ α computes initial value for cell at
given coordinate

finalization function (intn, α)→ unit function consuming value of cell
at the end of a computation

observers

(
(int, intn)→ bool,

(int, intn, α)→ unit

)∗
list of pairs, each describing
an observer with time/location
filtering function and actual
trigger function to be applied

Table 5. Parameters of the stencil operator

4.1.3 Additional Operations

Beyond the pfor and stencil operators presented thus far, the User API offers ad-
ditional parallel operations that are frequently encountered in parallel applications.
These include e.g. the map-reduce operator for data aggregation, the async opera-
tor for single tasks, or the vcycle operator for multi-grid methods. However, a more
detailed presentation is omitted for brevity.

4.2 Data Structures

4.2.1 Grid

A frequently-encountered data structure in high-performance codes is formed by
n-dimensional arrays of values. While many programming languages support such
structures for arbitrary dimensions, C/C++ only supports one-dimensional, dy-
namically sized arrays natively. However, this leaves creation and management of
these structures to the user, forming a major obstacle for the usability of C++ on
distributed memory systems.

To ease the use of C++ for use cases depending on such structures, the AllScale
User API provides a uniform Grid data structure providing the following features:

AllScale API 819

• regular n-dimensional array of runtime-defined size,

• efficient read/write random access operators,

• efficient scan operation (processing all elements),

• type-parameterized in element type and no. of dimensions,

• enforces the serializability of its element types,

• implements data item concept for automated distribution.

Let Grid〈α, n〉 be the abstract data type family implemented by the AllScale
User API to represent n-dimensional grids, where α is a type variable specifying the
element type. Furthermore, let type〈α〉 be the meta type of type α. Then Table 6
lists the operators defined on Grid data structures.

Name Type Description

create

(
type〈α〉,

intn

)
→ Grid〈α, n〉 creates new n-dimensional grid with el-

ement type α of given size
destroy (Grid〈α, n〉)→ unit deletes given grid

read

(
Grid〈α, n〉,

intn

)
→ α reads element from given grid at spec-

ified coordinates

write

 Grid〈α, n〉,
intn,
α

→ unit updates element within given grid at
specified coordinates

scan

 intn,
intn,

(intn)→ β

→ treeture〈unit〉 applies given function (in parallel) to
all elements of given interval in arbi-
trary order

Table 6. Operators defined on Grid data structures

Figure 3 illustrates the use of such a Grid data structure. In this case,
Grid<int,2> (type T , as described in Section 3.2) offers operators for access-
ing elements within a two-dimensional structure, indexed by coordinates of type
GridRegion (line 7, the type is not explicitly visible in this example code).
GridRegion is the corresponding range type R of T and holds a conjunction of 2D-
coordinate pairs describing axis-aligned boxes covering the range to be described – in
this case a single point at position {7, 9}. An instance of type
GridFragment<double, 2> (the corresponding fragment type F of T , generally not
visible in user code) realizes the actual storage of fragments of the data stored in Grid
instances; the implementation may hold a reference to allocated memory plus the
coordinates of the covered ranges. For further reference, the Grid implementation
of types T , R and F is available online3.

3 https://git.io/JUClF

https://git.io/JUClF

820 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

1 #include <allscale/api/user/data/grid.h>
2 // create a two−dimensional grid of integers of size 10x20
3 allscale::api::user::data::Grid<int, 2> grid({10,20});
4 // initialize all elements with 1.0
5 grid.pforEach([](int& element) { element = 1.0; });
6 // set element at position [7,9] to 5.0
7 grid[{7,9}] = 5.0;

Figure 3. Example usage of the Grid data structure

4.2.2 Adaptive Grid

The Adaptive Grid is an advanced variant of the Grid structure also frequently
encountered within a simulation code. In addition to the properties of Grid, the
Adaptive Grid provides means to nest grids within grid cells. For a given instance,
each top-level grid cell contains an identically structured fixed-length sequence of
grids. The first of those contains a single cell. Every consecutive grid contains
a multiple number of cells per dimension of its predecessor. Each top-level grid cell
comprising the sequence of its nested grids is referred to as an Adaptive Grid Cell.

Let AGrid〈α, n, [r1, . . . , rl]〉 be the ADT family implemented by the AllScale
User API to represent n-dimensional Adaptive Grids, where α is a type variable
specifying the element type, r1, . . . , rl the refinement factors, and l the number of
refinement levels. Thus, the size of the grid at level i is defined by

s(i) =

{
[1, . . . , 1] ∈ intn, if i = 0,

s(i− 1) ∗ ri, otherwise.

To address elements within an Adaptive Grid an extension of Grid coordinates
is required. While elements within a Grid can be addressed using a single coordinate
of type intn, the Adaptive Grid requires information regarding the location of the
addressed element in the nested grid structure. Thus, additional coordinates to
navigate through these refinement layers are required. Hence, to address an element
within an Adaptive Grid, a hierarchical coordinate of type (intn)+ is required. For
instance, the coordinate [[7, 3], [2, 4], [8, 2]] addresses the element located within the
cell that can be reached by navigating first to the top-level cell [7, 3], continuing to
cell [2, 4] of its first refinement layer, and ending up within cell [8, 2] of the second
refinement layer. Let seq〈r1, . . . , rl〉 be the static meta-type of a sequence of integers
r1, . . . , rl, then Table 7 lists the operators defined on Adaptive Grid data structures.

4.2.3 Unstructured Mesh

The Mesh data structure is designed to represent a graph structure of multiple node
types that are connected through various types of edges. Furthermore, a Mesh may

AllScale API 821

Name Type Description

create

 type〈α〉,
intn,

seq〈r1, . . . , rl〉

→ AGrid〈α, n, [r1, . . . , rl]〉 creates new n-dimensio-
nal adaptive grid with el-
ement type α of given
size and grid cell struc-
ture

destroy (AGrid〈α, n, [r1, . . . , rl]〉)→ unit deletes the given adap-
tive grid

read

(
AGrid〈α, n, [r1, . . . , rl]〉,

(intn)+

)
→ α reads element from given

grid at specified hierar-
chical coordinates

write

 AGrid〈α, n, [r1, . . . , rl]〉,
(intn)+,

α

→ unit updates element within
given grid at specified hi-
erarchical coordinates

refine

 AGrid〈α, n, [r1, . . . , rl]〉,
(intn)+,

Grid〈α, n〉

→ unit refines resolution of cell
addressed by given hier-
archical coordinate by in-
serting given grid data as
refinement information

coarsen

 AGrid〈α, n, [r1, . . . , rl]〉,
(intn)+,

α

→ unit coarsens resolution of
cell addressed by given
hierarchical coordinate
and inserting given value
data as coarsened infor-
mation

getLevel

(
AGrid〈α, n, [r1, . . . , rl]〉,

(intn)+

)
→ int gets currently active res-

olution level at a speci-
fied hierarchical grid po-
sition

scan

intn,
intn,

AGrid〈α, n, [r1, . . . , rl]〉,
((intn)+)→ β

→ treeture〈unit〉 applies given function (in
parallel) to all active hi-
erarchical coordinates of
a given interval in an ar-
bitrary order

Table 7. Operators defined on Adaptive Grid data structures

822 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

consist of several layers, which describe the same graph in different levels of detail.
Hierarchical edges may connect the same nodes of different layers.

Besides the topological information maintained by Mesh instances, means to
maintain attributes associated to nodes, edges, and hierarchical edges within a Mesh
need to be included. For instance, node IDs, coordinates, volumes, temperatures,
and other domain space specific properties may be incorporated through this facility.

Let n1, . . ., nm be a list of node types, e1, . . ., ek ∈ {n1, . . . , nm}2 a list of edge
types, and h1, . . ., ho ∈ {n1, . . . , nm}2 a list of hierarchical edge types. Then the type
Mesh〈[n1, . . . , nm], [e1, . . . , ek], [h1, . . . , ho], l〉 represents the type of a Mesh structure
including the given node, edge, and hierarchical edge types on l layers. Furthermore,
let id〈α, l〉 be an identifier for an element of type α on layer l within a Mesh – thus
the type of ID used for addressing nodes, edges, or hierarchical edges within meshes.
Also, let MData〈n, l, α〉 be the type of an attribute collection associating values of
type α to nodes of type n located on layer l of some Mesh instance. Finally, let
MBuilder〈[n1, . . . , nm], [e1, . . . , ek], [h1, . . . , ho], l〉 be the type of construction utility
for creating meshes. Then Table 8 lists the operations defined on these types.

5 IMPLEMENTATION

The AllScale API is based on C++, which allows the re-use of existing tools such
as debuggers, and makes heavy use of template-based meta-programming. This
built-in language feature of C++ enables the scripted generation of code during
compilation. Widely utilized examples include the generation of data structures like
vectors, sets, or maps specialized to specific type parameters. However, the capabil-
ities of this feature reach much further. It also enables the generic implementation
of primitives, where a single primitive may cover a wide range of use cases, without
the introduction of any abstraction overhead. All primitives of the AllScale Core
API are generic primitives, making heavy use of C++ meta-programming features
for the automated synthetization of program code. The same applies for all AllScale
User API constructs, to improve their (re-)usability and flexibility.

In addition, the standard toolchain implementation of the API only requires
a C++14-compliant compiler and standard library (e.g. recent versions of GCC,
Clang, Apple-Clang, and Visual Studio), and hence supports application develop-
ment on at least three different operating systems (Linux, OS X, Windows). In order
to mitigate the initial adoption barrier of porting applications to AllScale, an SDK
comprising a build system infrastructure and setup scripts is provided4.

6 USE CASES

This section presents our real-world pilot applications that build on the AllScale
API. The first, iPIC3D [14], is a particle-in-cell simulation code developed together
with KTH Stockholm and employs multiple pfor operators and 3-dimensional Grid

4 https://github.com/allscale/allscale_sdk

https://github.com/allscale/allscale_sdk

AllScale API 823

Name Type Description
Mesh Builder

create (type〈Mesh〈n, e, h, l〉〉)→ MBuilder〈n, e, h, l〉 creates builder for
a given mesh type;
intially, mesh is empty

destroy (MBuilder〈n, e, h, l〉)→ unit destroys builder instance

addNode

 MBuilder〈[n1, . . . , nm], e, h, l〉,
type〈n〉,
type〈i〉

→ id〈n, i〉 creates a new node of
a given type n on a given
level i within mesh under
construction

link

 MBuilder〈n, [(n1a, n1b), . . . , (nka, nkb)], h, l〉,
id〈nia, j〉,
id〈nib, j〉

→ unit ads edge to mesh under
construction

link

 MBuilder〈n, e, [(n1a, n1b), . . . , (noa, nob)], l〉,
id〈nia, j + 1〉,

id〈nib, j〉

→ unit adds hierarchical edge to
mesh under construction

toMesh (MBuilder〈n, e, h, l〉)→ Mesh〈n, e, h, l〉 obtains a copy of mesh
under construction

Mesh Structure
store (Mesh〈n, e, h, l〉)→ byte* serializes mesh

load

(
byte*,

type〈Mesh〈n, e, h, l〉〉

)
→ Mesh〈n, e, h, l〉 deserializes given byte

array to mesh
destroy (Mesh〈n, e, h, l〉)→ unit destroys given mesh

getNeighbors

 Mesh〈n, [(n1a, n1b), . . . , (nka, nkb)], h, l〉,
type〈nia, nib〉,

id〈nia, j〉

→ id〈nib, j〉* obtains a list of neigh-
bors of the given node
following given kind of
edge

getParents

 Mesh〈n, e, [(h1a, h1b), . . . , (hoa, hob)], l〉,
type〈hia, hib〉,

id〈hia, j〉

→ id〈hib, j + 1〉* obtains a list of parents
of the given node follow-
ing given kind of hierar-
chical edge

getChildren

 Mesh〈n, e, [(h1a, h1b), . . . , (hoa, hob)], l〉,
type〈hia, hib〉,

id〈hib, j〉

→ id〈hia, j − 1〉* obtains a list of children
of the given node follow-
ing given kind of hierar-
chical edge

scan

 Mesh〈[n1, . . . , nm], e, h, l〉,
type〈ni〉,
type〈j〉,

(id〈ni, j〉)→ β

→ treeture〈unit〉 applies given operation
to every instance of se-
lected node type on se-
lected level within given
mesh

scan

 Mesh〈n, [(n1a, n1b), . . . , (nka, nkb)], h, l〉,
type〈(nia, nib)〉,

type〈j〉,
(id〈nia, j〉, id〈nib, j〉)→ β

→ treeture〈unit〉 applies given operation
to every instance of se-
lected edge type on se-
lected level within given
mesh

scan

 Mesh〈n, e, [(n1a, n1b), . . . , (noa, nob)], l〉,
type〈(nia, nib)〉,

type〈j〉,
(id〈nia, j + 1〉, id〈nib, j〉)→ β

→ treeture〈unit〉 applies given operation
to every instance of se-
lected hierarchical edge
type on selected pair
of adjacent levels within
given mesh

824 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

Mesh Data

create

 Mesh〈[n1, . . . , nm], e, h, l〉,
type〈ni〉,
type〈j〉,
type〈α〉

→ MData〈ni, j, α〉 creates attribute storage
associating value of type
α to each node instance
of type ni on layer j
present in given mesh

destroy (MData〈n, l, α〉)→ unit deletes attribute storage

read

(
MData〈n, l, α〉,

id〈n, l〉

)
→ α retrieves value of at-

tribute associated to
given node from given
attribute store

write

 MData〈n, l, α〉,
id〈n, l〉,
α

→ unit updates value of at-
tribute associated to
given node in given
attribute store

Table 8. Operators defined on Mesh builder, Mesh structure and Mesh data

data structures. The second, AMDADOS [2], is an advection-diffusion code devel-
oped together with IBM Research Ireland and uses a 2-dimensional stencil operator
and adaptive grid structure. While the full implementation of these applications
is available online with an in-depth discussion available in literature [17], we only
present code excerpts of the main computation here for brevity.

6.1 iPIC3D

The iPIC3D pilot application is an iterative particle-in-cell space weather simulation
code and its main computation loop is shown in Figure 4. Its underlying data
structure is a 3-dimensional regular equidistant Grid (line 13) where each element
is a cell representing a cuboid and maintaining a dynamically-sized list of particles
(line 8) located in this cuboid. Furthermore, each particle stores physical properties
such as location, velocity, charge, and mass.

In each iteration of the simulation, the physical effects of the particles are ag-
gregated to compute a set of induced force fields (lines 21–26). These force fields
are also represented by 3-dimensional Grid structures (lines 9 and 14). In a next
step, electromagnetic field equations are solved (lines 27–29), the forces affecting
each particle’s position and velocity are computed and the particles are updated
accordingly (lines 35–37). Particles moving beyond the boundary of a cell need to
be migrated (lines 33–35) to the respective target cell, which can be any of 26 neigh-
bor cells. Once the migration of particles is completed, the next iteration can be
computed.

The simulation is set up such that particles may never move fast enough to skip
a full cell over the duration of a single time step (= iteration step). This property is
effectively restricting communication patterns, such that e.g. regions that are n cells
apart may differ in their simulation time by up to n time steps. It also localizes
communication since particles may only be exchanged between adjacent cells.

AllScale API 825

1 unsigned numSteps = ...; // number of time steps
2 auto zero = utils::Coordinate<3>(0); // point of origin
3 auto size = ...; // size of domain
4
5 namespace alg = allscale::api::user::algorithm;
6 namespace data = allscale::api::user::data;
7
8 struct Cell { std::vector<Particle> particles; };
9 struct FieldNode { ... // electric and magnetic field components };

10 struct DensityNode { Vector3<double> J; // current density };
11
12 // 3D grids for cells, electromagnetic field and current density
13 data::Grid<Cell, 3> cells = ...;
14 data::Grid<FieldNode,3> field = ...;
15 data::Grid<DensityNode,3> density = ...;
16 // create a grid of buffers for density projection from particles to grid nodes
17 data::Grid<DensityNode> densityContributions(size ∗ 2);
18
19 // run time loop for the simulation
20 for(unsigned i = 0; i < numSteps; ++i) {
21 alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos) {
22 //STEP 1a: collect particle density contributions and store in

buffers
23 particleToFieldProjector(cells[pos], pos, densityContributions); });
24 alg::pfor(zero, density.size(), [&](const utils::Coordinate<3>& pos) {
25 // STEP 1b: aggregate density in buffers to density nodes
26 aggregateDensityContributions(densityContributions, pos, density[

pos]); });
27 alg::pfor(fieldStart, fieldEnd, [&](const utils::Coordinate<3>& pos){
28 // STEP 2: solve electromagnetic field equations
29 fieldSolver(pos, density, field); });
30 alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos){
31 // STEP 3: project forces to particles and move particles
32 particleMover(cells[pos], pos, field, particleTransfers); });
33 alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos){
34 // STEP 4: transfer particles into destination cells
35 transferParticles(cells[pos], pos, particleTransfers); });
36 }

Figure 4. Code excerpt of main data structures and simulation loop of iPIC3D. The full
code is available online at https://github.com/allscale/allscale_ipic3d.

https://github.com/allscale/allscale_ipic3d

826 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

These major simulation steps are all parallel update operations using higher-
dimensional variations of the pfor operator. Thus, the resulting simulation code is
structured like a list of update loops, enclosed within a single time step loop.

A crucial step for distributed memory implementations is the exchange of parti-
cles and field strength values among adjacent cells. The original iPIC3D implemen-
tation requires three synchronization steps for each time step based on explicit halo
cell updates. The AllScale Toolchain integrates those exchanges implicitly, trans-
parent to the application developer, and overlaps computation and communication
to reduce the impact of necessary synchronization steps.

6.2 AMDADOS

AMDADOS is a numerical simulation of an oil spill, with an excerpt of the main com-
putation code shown in Figure 5. It is based on a 2-dimensional stencil (lines 20–44)
and incorporates data assimilation events (line 28) using external sensor data
(line 16) in order to mitigate simulation errors. The basic data structure of this
application is a regular, Adaptive Grid (line 18). The number of refinement levels is
a compile-time constant and can be hard coded within the application (lines 4–8).
However, coarsening and refinement steps are applied dynamically during execution
based on the state of the simulation as well as data assimilation events (inside the
functions called in lines 26 and 28, not shown in detail here).

The resolution refinement follows a hierarchical pattern. On the top level, a fixed
size, regular 2D grid defines the domain of the overall simulated area. Each of
these top-level cells (also called sub-domains) may then be itself recursively sub-
divided into small regular grids, up to a statically fixed maximum resolution. The
simulation algorithm updates each sub-domain independently for a single time step
at the currently active level of resolution. This update operation may take several
iterations, yet does not necessitate the exchange of any information with neighboring
sub-domains. Once complete, boundary information is exchanged between adjacent
sub-domains. Thus, sub-domains being n top-level cell-widths apart may be n time
steps apart in their simulation time.

While this application could be implemented using the pfor operator, this would
lead to a flat parallelism structure with synchronization enforced at the end of each
time step. For this reason, it utilizes the stencil operator instead, which exposes
recursive space-time decomposition and allows multiple time steps on spatially suf-
ficiently separated sub-domains to be computed in parallel – sub-domains being
n global cell-widths apart may be n time steps apart in their simulation time. In
addition, it shows the observer functionality of the stencil operator, which allows
for time- and space-controlled output of the simulation state.

The assimilation of data (line 28) is an optional step after the completion of
an update of a sub-domain. In this case, the solution obtained for the processed
sub-domain is combined with some externally obtained measurement before the
simulation continues with the mutual exchange of information among adjacent cells
and the next simulation time step.

AllScale API 827

1 namespace alg = algorithm;
2 namespace alg = data;
3
4 typedef data::CellConfig<2, data::layers<
5 data::layer<1,1>, // layer 2, size 1 x 1
6 data::layer<8,8>, // layer 1, size 8 x 8
7 data::layer<2,2> // layer 0, size 16 x 16
8 >> subdomain config t;
9

10 using subdomain t = data::AdaptiveGridCell<double, subdomain config t
>;

11 using domain t = data::Grid<subdomain t, 2>;
12
13 struct Sensor { ... };
14
15 // 2D grid of sensor data
16 const data::Grid<Sensor, 2> sensors = ...;
17 const size t Nt = ...; // number of time steps
18 domain t state field = ...; // 2D grid of sub−domains constitutes entire

domain
19
20 alg::stencil(state field, Nt,
21 [&,Nt](time t t, const point2d t& idx, const domain t& state)
22 −> const subdomain t
23 { // Computation of subdomains
24 subdomain t temp field;
25 if(contexts[idx].sensors.empty()) // subdomain without sensors
26 SubdomNoSensors(t, state, temp field, contexts[idx], idx);
27 else // subdomain with sensors, assimilation occurs
28 SubdomKalman(sensors[idx], t, state, temp field, contexts[idx], idx);
29 return temp field;
30 },
31 alg::observer(// Monitoring: periodically write full subdomain to file
32 [=](time t t) { return (t % output interval == 0); // time filter },
33 [](const point2d t&) { return true; // Space filter: no constraints

},
34 // Append a full field to the file of simulation results.
35 [&](time t t, const point2d t& idx, const subdomain t& cell) {
36 cell.forAllActiveNodes([&](const point2d t& loc, double val) {
37 point2d t glo = computeGlobalIndex(loc, idx);
38 out stream.atomic([=](auto& file) {
39 file << ... << ”\n”; // write output data
40 });

828 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

41 });
42 }
43)
44);

Figure 5. Code excerpt of the main stencil computation of AMDADOS. The full code is
available online at https://github.com/allscale/allscale_amdados.

An assimilation operation, however, is orders of magnitudes more complex than
a mere simulation time step for the same sub-domain. These trigger load imbalance
that has to be dealt with. Thus the application consists of fixed-size subdomains
with two levels of varying computational expenses:

• coarsely resolved sub-domains incur less computational workload than finer re-
solved sub-domains,

• optional data assimilation steps on sub-domains incur significantly additional,
sporadic computational costs.

6.3 FINE/Open

The FINE/Open application is a computational fluid dynamics (CFD) solver de-
veloped by NUMECA [16]. The underlying data structure is a static, unstructured
Mesh comprising objects such as cells, faces, edges, nodes, or boundary faces. The
computation is based on a vcycle, which is further detailed below.

While it is not possible to show the actual implementation of FINE/Open due to
non-disclosure concerns, Figure 6 shows a basic code example which is built on-top
of the same Mesh data structure and also performs computations using the vcycle
operator. The geometric information is covered by a list of relations connecting
cells, faces and vertices (line 3 and lines 5–9) with each other (e.g. a relation of
a cell to its faces). These relations can be easily navigated by templated member
functions (lines 45–46, 51 and 53). Note that the type system of C++ ensures
proper object navigation during compile-time (e.g., attempting to illegally access
a vertex from a face would result in a compiler error). Furthermore, for each object,
a set of properties influencing the simulation is maintained (lines 13–16). These may
comprise static information like e.g. the volume of a cell or dynamic information such
as the heat flow through a face. The latter is the state of the conducted simulation
and the result end users are interested in. Finally, to aid the effective computation
of the desired solution, multiple meshes describing the same objects in different
resolutions are combined into a hierarchy of meshes to enable the use of multi-grid
solvers (lines 39–60). The hierarchy of meshes can be navigated via hierarchical
edges (line 11).

In each simulation step, updates to the various properties associated to the mesh
objects are conducted. Updates start in the mesh layer exhibiting the finest resolu-
tion. Thereby, physical effects are propagated through the connections between the

https://github.com/allscale/allscale_amdados

AllScale API 829

1 using namespace allscale::api::user;
2 // − elements −
3 struct Cell {}; struct Face {}; struct Vertex {};
4 // − edges −
5 struct Cell2Vertex : public data::edge<Cell, Vertex> {};
6 struct Cell2Face In : public data::edge<Cell, Face> {};
7 struct Cell2Face Out : public data::edge<Cell, Face> {};
8 struct Face2Cell In : public data::edge<Face, Cell> {};
9 struct Face2Cell Out : public data::edge<Face, Cell> {};

10 // − hierarchical edges −
11 struct Parent2Child : public data::hierarchy<Cell,Cell> {};
12 // −− property data −−
13 struct CellTemperature : public data::mesh property<Cell,double> {};
14 struct FaceArea : public data::mesh property<Face,value t> {};
15 struct FaceVolRatio : public data::mesh property<Face,value t> {};
16 struct FaceConductivity : public data::mesh property<Face,double> {};
17 // − define the mesh and builder −
18 template<unsigned levels = 1>
19 using MeshBuilder = data::MeshBuilder<
20 data::nodes<Cell, Face, Vertex>,
21 data::edges<Cell2Vertex, Cell2Face In, Cell2Face Out, Face2Cell In,

Face2Cell Out>,
22 data::hierarchies<Parent2Child>,
23 levels>;
24 // −− type of a mesh −−
25 template<unsigned levels = 1, unsigned PDepth = P DEPTH>
26 using Mesh = typename MeshBuilder<levels>::template mesh type<

PDepth>;
27 // −− type of the properties of a mesh −−
28 template<typename Mesh>
29 using MeshProperties = data::MeshProperties<Mesh::levels,
30 typename Mesh::partition tree type, CellTemperature, FaceConductivity,

VertexPosition>;
31 // V−Cycle stage
32 template<typename Mesh, unsigned Lvl>
33 struct TemperatureStage {
34 const Mesh& mesh; // mesh structure, properties and cell data
35 MeshProperties<Mesh>& properties;
36 attribute<Cell, value t> temperature;
37 attribute<Face, value t> fluxes;
38
39 void jacobiSolver() {
40 auto& fConductivity = properties.template get<FaceConductivity

, Lvl>();
41 auto& fArea = properties.template get<FaceArea, Lvl>();

830 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

42 auto& fVolumeRatio = properties.template get<FaceVolRatio,
Lvl>();

43
44 mesh.template pforAll<Face, Lvl>([&](auto f) { // compute per−

face flux
45 auto in = mesh.template getNeighbor<Face2Cell In>(f);
46 auto out = mesh.template getNeighbor<Face2Cell Out>(f);
47 value t gradTemp = temperature[in] − temperature[out];
48 fluxes[f] = fVolumeRatio[f] ∗ fConductivity[f] ∗ fArea[f] ∗ gradTemp;
49 });
50 mesh.template pforAll<Cell, Lvl>([&](auto c) { // update per−

cell solution
51 auto subtractingFaces = mesh.template getNeighbors<

Face2Cell In>(c);
52 for(auto sf : subtractingFaces) { temperature[c] −= fluxes[sf]; }
53 auto addingFaces = mesh.template getNeighbors<Face2Cell Out

>(c);
54 for(auto af : addingFaces) { temperature[c] += fluxes[af]; }
55 }); }
56
57 void computeFineToCoarse() { ... }
58 void computeCoarseToFine() { ... }
59 void restrictFrom(TemperatureStage<Mesh,Lvl−1>& childStage) { ... }
60 void prolongateTo(TemperatureStage<Mesh,Lvl−1>& childStage) { ... }
61 };

Figure 6. Code excerpt of a sample application using the vcycle operator on a multi-grid
mesh. The full version is available online at https://git.io/fjBTq.

various objects on this layer. After a fixed number of iterations, the current state of
the simulated properties are aggregated and projected to the next coarser-grained
level of the hierarchical mesh. There, the same propagation and aggregation oper-
ations are repeated. After completing updates on the coarsest layer, modifications
are projected recursively down towards the finer layers and the simulation continues
with the next time step.

7 EVALUATION

7.1 Productivity

Table 9 lists absolute values for code metrics collected for the AllScale and MPI
versions of iPIC3D and AMDADOS, in order to get a grasp on the productivity
of working with the AllScale API compared to MPI. P.SLOC denotes the lines of
code spent on parallelizing the application, counting only the minimal set of lines

https://git.io/fjBTq

AllScale API 831

containing explicit interface calls. Additional code required for e.g. preparing argu-
ments is not accounted for, and hence these results present a best-case perspective
for MPI. Nevertheless, as the numbers show, AllScale clearly outperforms MPI. Fur-
thermore, we have measured the sum of the cyclomatic complexity [15] (TOT CY)
as well as the total count of non-comment lines of code (SLOC) over all translation
units. Compared to P.SLOC, these give an indication of how much of the overall
pilot application complexity is related to their manual MPI parallelization rather
than actual domain science content.

AMDADOS iPIC3D
AllScale MPI AllScale MPI

P.SLOC 25 70 23 56
SLOC 1 136 1 420 1 443 1 717
TOT CY 154 181 204 264

Table 9. Pilot application code metrics

Note that, in addition to greatly reducing the user-facing complexity of im-
plementing distributed memory parallel programs, the AllScale versions inherently
provide the possibility of integrating advanced features such as hybrid distribut-
ed/shared memory parallelism, inter-node load balancing, overlapping of communi-
cation and computation, or high-level monitoring facilities. All these features are
not present in the MPI versions, and thus not accounted for in the comparisons
presented here.

7.2 Performance

In order to ascertain the performance of the AllScale API and the underlying AllScale
toolchain, we conducted weak scaling experiments for AMDADOS and iPIC3D on
the Vienna Scientific Cluster (VSC-3) and the Meggie cluster of the University
of Erlangen-Nuremberg. Table 10 lists their hardware characteristics. The initial
problem size for a single node was chosen such that application throughput did not
noticeably improve when further increasing the problem size.

Name Nodes CPU (Intel Xeon) RAM Interconnect Compiler MPI

VSC-3 512 2x E5-2650 v2
64 GB

IB QDR-80 GCC 7.2 OpenMPI 3.0.0
Meggie 256 2x E5-2630 v4 OPA 100 GBit GCC 7.3 Intel MPI 2018.2

Table 10. Experimental platform description. The number of nodes refers to the maxi-
mum used in this work.

Figure 7 compares the performance results of the AllScale implementations
against MPI reference implementations, with performance measured as application
throughput.

For AMDADOS the AllScale variant achieves higher performance on both the
VSC-3 and Meggie cluster. On both systems up to 160 % higher performance is

832 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

obtained, in particular for executions involving a larger number of nodes. In case of
the 512 node run on VSC-3, the degrading scalability of the MPI reference imple-
mentation lead to exceeding the available time limit for our jobs. We defined this
limit as 30 times the execution time of a single node run.

For iPIC3D, on the other hand, the MPI implementation demonstrates nearly-
optimal scalability on both the VSC-3 and Meggie cluster. The throughput per node
remains almost constant throughout the range of evaluated system setups. The
AllScale version, however, shows varying performance characteristics. Generally,
good performance is observed for a small number of nodes. However, while on Meggie
throughput on larger scale systems remains comparable to the MPI reference version,
on VSC-3 a considerably lower throughput is observed, which remains constant
between 4 and 128 nodes. Beyond 128 nodes, performance degrades considerably
again.

These results demonstrate the feasibility of using automatically managed user-
defined data structures in large-scale high performance applications.

0

50

100

150

200

A
M

D
A

D
O

S
th

ro
u
gh

p
u
t

[s
u
b

d
om

ai
n
s/

se
c

an
d

n
o
d
e]

VSC-3 Meggie

AllScale
MPI

1 2 4 8 16 32 64 128256512
0

5 · 107

1 · 108

Number of Nodes

iP
IC

3D
th

ro
u
gh

p
u
t

[p
ar

ti
cl

es
/s

ec
an

d
n
o
d
e]

1 2 4 8 16 32 64 128 256

Number of Nodes

Figure 7. Comparison of throughput per node for AMDADOS and iPiC3D on VSC-3 and
Meggie for MPI and AllScale

AllScale API 833

8 RELATED WORK

Conventional, low-level HPC infrastructures comprising combinations of MPI with
some per-node parallelism APIs are still the default platforms for building HPC ap-
plications, but require programmers manually implement workload decomposition.
Systems providing a higher level of abstraction, such as the AllScale API, can be
grouped into three broad categories: new general purpose languages, domain-specific
frameworks, and general purpose libraries. Note that there is a large number of par-
allelism approaches constrained to single-node shared memory hardware. We omit
these from our overview provided here as they do not address the same problem
space as the AllScale API.

In terms of languages, X10 [7] and Chapel [6] have targeted (recursive) paral-
lelism on large scale, distributed systems, but left locality and data management to
the user. Charm++ [13], on the other hand, is a C++ extension aiming at isolating
the user from low-level mapping activities, thus facilitating portability. Its design is
based on message-exchanging entities exposed to the user and lacks automated data
distribution management. Recently, the ANTAREX research project [19] proposed
a DSL-based approach, facilitating the separation of concerns between functional
and non-functional aspects of HPC applications. However, due to its DSL-focused
design, users require additional tools and may not rely on the experience of an
established developer community.

Several new frameworks such as Lift [20], Delite [5], or AnyDSL [18] provide
environments for implementing DSLs. Internally, DSL constructs are encoded using
functional IR constructs like map, reduce, or zip. However, the resulting pro-
gramming interface for the domain experts remains a DSL, targeting very specific
application domains and inheriting the difficulties of DSLs noted above.

Domain-specific, C++-based libraries such as PETSc [4] or TensorFlow [1] han-
dle several of the challenges addressed by our framework successfully for their re-
spective domains. However, they are tailored towards specific domains instead of
supporting a wider range of applications.

More general purpose parallel C++ library based frameworks like STAPL [3] and
Kokkos [8] are exercising control over parallel algorithms and data structures similar
to our architecture. STAPL envisions a separation of concerns strategy similar to
ours. Kokkos, on the other hand, has a strong focus on multidimensional arrays and
parallel loops, unlike the wider range of data structures and operations supported
by our architecture. Due to a lack of compiler integration, these approaches require
data dependences of code regions to be expressed explicitly as part of the API, while
this is covered implicitly in our approach.

9 CONCLUSION

This work presented the AllScale API, a novel interface for implementing distributed
memory parallel applications with the programmability of a shared memory API.
We illustrated how the distinction into the User and Core components provides

834 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

a separation of concerns for domain experts, HPC experts and system-level ex-
perts, and discussed several constructs of the AllScale API in detail. In addi-
tion, the three use cases presented show the suitability of our approach to real-
world scientific problems, evaluated in both productiveness and parallel perfor-
mance.

Future work includes better user feedback for programming errors, additional
pre-provided operators in the User API along with new applications.

Acknowledgements

This project has received funding from the European Unions Horizon 2020 research
and innovation programme as part of the FETHPC AllScale project under grant
agreement No. 671603 and from the FFG (Austrian Research Promotion Agency)
project INPACT, project No. 868018. The computational results presented have
been achieved in part using the Vienna Scientific Cluster and the Regionales Rechen-
Zentrum Erlangen.

REFERENCES

[1] Abadi, M.—Agarwal, A.—Barham, P.—Brevdo, E.—Chen, Z.—
Citro, C.—Corrado, G. S.—Davis, A.—Dean, J.—Devin, M. et al.: Ten-
sorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 2016,
arXiv preprint arXiv:1603.04467.

[2] Akhriev, A.—O’Donncha, F.—Gschwandtner, P.—Jordan, H.: A Localised
Data Assimilation Framework within the ‘AllScale’ Parallel Development Envi-
ronment. OCEANS 2018 MTS/IEEE Charleston, 2018, pp. 1–7, doi: 10.1109/O-
CEANS.2018.8604556.

[3] An, P.—Jula, A.—Rus, S.—Saunders, S.—Smith, T.—Tanase, G.—
Thomas, N.—Amato, N.—Rauchwerger, L.: STAPL: An Adaptive, Generic
Parallel C++ Library. International Workshop on Languages and Compilers for Par-
allel Computing, Springer, 2001, pp. 193–208, doi: 10.1007/3-540-35767-X 13.

[4] Balay, S.—Abhyankar, S.—Adams, M.—Brune, P.—Buschelman, K.—
Dalcin, L.—Gropp, W.—Smith, B.—Karpeyev, D.—Kaushik, D. et al.:
PETSc Users Manual Revision 3.7. Technical Report ANL-95/11 Rev 3.7, Argonne
National Laboratory (ANL), Argonne, United States, 2016.

[5] Brown, K. J.—Sujeeth, A. K.—Lee, H. J.—Rompf, T.—Chafi, H.—
Odersky, M.—Olukotun, K.: A Heterogeneous Parallel Framework for Domain-
Specific Languages. 2011 International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), IEEE, 2011, pp. 89–100, doi: 10.1109/PACT.2011.15.

[6] Chamberlain, B. L.—Callahan, D.—Zima, H. P.: Parallel Programmability
and the Chapel Language. The International Journal of High Performance Computing
Applications, Vol. 21, 2007, No. 3, pp. 291–312, doi: 10.1177/1094342007078442.

https://doi.org/10.1109/OCEANS.2018.8604556
https://doi.org/10.1109/OCEANS.2018.8604556
https://doi.org/10.1007/3-540-35767-X_13
https://doi.org/10.1109/PACT.2011.15
https://doi.org/10.1177/1094342007078442

AllScale API 835

[7] Charles, P.—Grothoff, C.—Saraswat, V.—Donawa, C.—Kielstra, A.—
Ebcioglu, K.—von Praun, C.—Sarkar, V.: X10: An Object-Oriented Ap-
proach to Non-Uniform Cluster Computing. Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA ’05), 2005, ACM SIGPLAN Notices, Vol. 40, 2005, No. 10,
pp. 519–538, doi: 10.1145/1103845.1094852.

[8] Edwards, H. C.—Trott, C. R.—Sunderland, D.: Kokkos: Enabling Many-
core Performance Portability Through Polymorphic Memory Access Patterns. Jour-
nal of Parallel and Distributed Computing, Vol. 74, 2014, No. 12, pp. 3202–3216, doi:
10.1016/j.jpdc.2014.07.003.

[9] Jordan, H.—Gschwandtner, P.—Thoman, P.—Zangerl, P.—Hirsch, A.—
Fahringer, T.—Heller, T.—Fey, D.: The AllScale Framework Architecture.
Parallel Computing, Vol. 99, 2020, Art. No. 102648, doi: 10.1016/j.parco.2020.102648.

[10] Jordan, H.—Heller, T.—Gschwandtner, P.—Zangerl, P.—Thoman, P.—
Fey, D.—Fahringer, T.: The AllScale Runtime Application Model. 2018 IEEE
International Conference on Cluster Computing (CLUSTER), 2018, pp. 445–455, doi:
10.1109/CLUSTER.2018.00088.

[11] Jordan, H.—Iakymchuk, R.—Fahringer, T.—Thoman, P.—Heller, T.
et al.: D2.4 – AllScale System Architecture (b). May 2018, http://www.allscale.
eu/docs/D2.4%20-%20AllScale%20System%20Architecture%20(b).pdf.

[12] Jordan, H.—Thoman, P.—Zangerl, P.—Heller, T.—Fahringer, T.:
A Context-Aware Primitive for Nested Recursive Parallelism. In: Desprez, F. et al.
(Eds.): Euro-Par 2016: Parallel Processing Workshops. Springer, Cham, Lecture
Notes in Computer Science, Vol. 10104, 2017, pp. 149–161, doi: 10.1007/978-3-319-
58943-5 12.

[13] Kale, L. V.—Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented
System Based on C++. Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA ’93), 1993, ACM SIGPLAN
Notices, Vol. 28, 1993, No. 10, pp. 91–108, doi: 10.1145/167962.165874.

[14] Markidis, S.—Lapenta, G.—Rizwan-Uddin: Multi-Scale Simulations of Plasma
with iPIC3D. Mathematics and Computers in Simulation, Vol. 80, 2010, No. 7,
pp. 1509–1519, doi: 10.1016/j.matcom.2009.08.038.

[15] McCabe, T. J.: A Complexity Measure. IEEE Transactions on Software Engineer-
ing, Vol. SE-2, 1976, No. 4, pp. 308–320, doi: 10.1109/TSE.1976.233837.

[16] NUMECA International. 2019, https://www.numeca.com/.

[17] O’Donncha, F.—Iakymchuk, R.—Akhriev, A.—Gschwandtner, P.—
Thoman, P.—Heller, T.—Aguilar, X.—Dichev, K.—Gillan, C.—
Markidis, S.—Laure, E.—Ragnoli, E.—Vassiliadis, V.—Johnston, M.—
Jordan, H.—Fahringer, T.: AllScale Toolchain Pilot Applications: PDE Based
Solvers Using a Parallel Development Environment. Computer Physics Communica-
tions, Vol. 251, 2020, Art. No. 107089, doi: 10.1016/j.cpc.2019.107089.

[18] Leissa, R.—Boesche, K.—Hack, S.—Pérard-Gayot, A.—Membarth, R.—
Slusallek, P.—Müller, A.—Schmidt, B.: AnyDSL: A Partial Evaluation
Framework for Programming High-Performance Libraries. Proceedings of the ACM

https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.parco.2020.102648
https://doi.org/10.1109/CLUSTER.2018.00088
http://www.allscale.eu/docs/D2.4%20-%20AllScale%20System%20Architecture%20(b).pdf
http://www.allscale.eu/docs/D2.4%20-%20AllScale%20System%20Architecture%20(b).pdf
https://doi.org/10.1007/978-3-319-58943-5_12
https://doi.org/10.1007/978-3-319-58943-5_12
https://doi.org/10.1145/167962.165874
https://doi.org/10.1016/j.matcom.2009.08.038
https://doi.org/10.1109/TSE.1976.233837
https://www.numeca.com/
https://doi.org/10.1016/j.cpc.2019.107089

836 P. Gschwandtner, H. Jordan, P. Thoman, T. Fahringer

on Programming Languages, Vol. 2, 2018, Issue OOPSLA, Art. No. 119, doi:
10.1145/3276489.

[19] Silvano, C.—Agosta, G.—Cherubin, S.—Gadioli, D.—Palermo,
G.—Bartolini, A.—Benini, L.—Martinovič, J.—Palkovič, M.—Sla-
ninová, K.—Bispo, J. A.—Cardoso, J. M. P.—Abreu, R.—Pinto, P.—
Cavazzoni, C.—Sanna, N.—Beccari, A. R.—Cmar, R.—Rohou, E.: The
ANTAREX Approach to Autotuning and Adaptivity for Energy Efficient HPC
Systems. Proceedings of the ACM International Conference on Computing Frontiers
(CF ’16), ACM, 2016, pp. 288–293, doi: 10.1145/2903150.2903470.

[20] Steuwer, M.—Remmelg, T.—Dubach, C.: LIFT: A Functional Data-Parallel IR
for High-Performance GPU Code Generation. 2017 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), IEEE, 2017, pp. 74–85, doi:
10.1109/CGO.2017.7863730.

[21] Thorson, G.—Woodacre, M.: SGI UV2: A Fused Computation and Data Analy-
sis Machine. Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC ’12), IEEE, 2012, Art. No. 105, doi:
10.1109/SC.2012.102.

Philipp Gschwandtner is a senior scientist at the Research
Center HPC at the University of Innsbruck, Austria. He com-
pleted his Ph.D. in 2017 with a thesis on performance and en-
ergy analysis and optimization of parallel programs. His main
research interests lie in high performance computing and parallel
programming, including adjacent topics such as scientific com-
puting, program optimization, API design, runtime systems, and
compiler research.

Herbert Jordan is a former PostDoc at the University of Inns-
bruck, Austria. After completing his Ph.D. in 2014 on the In-
sieme optimizing compiler infrastructure he became the Scien-
tific Coordinator of the EU H2020 project AllScale, aimed at
exposing nested recursive parallelism for distributed memory.
His main research interests are in programming language and
API design, static program analysis, code transformations, and
performance optimizations.

https://doi.org/10.1145/3276489
https://doi.org/10.1145/2903150.2903470
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1109/SC.2012.102

AllScale API 837

Peter Thoman is Assistant Professor of computer science at
the University of Innsbruck. His research focus has been to im-
prove the effective performance and programmability of complex,
highly parallel systems. He has created and contributed to var-
ious APIs for HPC and GPGPU platforms, such as the Celerity
high-level single-source platform for GPU Clusters. He also in-
vestigates runtime systems, as well as compiler-based tools for
performance optimization as well as improved developer support.

Thomas Fahringer is Professor of computer science at the
University of Innsbruck since 2003. His research focuses on sup-
porting researchers in science and engineering by developing,
analysing, and optimizing parallel and distributed applications.
Fahringer was involved in numerous national and international
research projects including 15 EU funded projects, published
5 books, 40 journal and magazine articles, and more than 200
reviewed conference papers. He is a member of the IEEE and
ACM.

Computing and Informatics, Vol. 39, 2020, 838–859, doi: 10.31577/cai 2020 4 838

PROCESSING RADIO ASTRONOMICAL DATA
USING THE PROCESS SOFTWARE ECOSYSTEM

Souley Madougou, Hanno Spreeuw, Jason Maassen

Netherlands eScience Center
Science Park 140 (Matrix I)
1098 XG Amsterdam, The Netherlands
e-mail: {s.madougou, h.spreeuw, j.maassen}@esciencecenter.nl

Abstract. In this paper we discuss our efforts in “unlocking” the Long Term
Archive (LTA) of the LOFAR radio telescope using the software ecosystem de-
veloped in the PROCESS project. The LTA is a large (> 50 PB) archive that
expands with about 7 PB per year by the ingestion of new observations. It consists
of coarsely calibrated “visibilities”, i.e. correlations between signals from LOFAR
stations. Converting these observations into sky maps (images), which are needed
for astronomy research, can be challenging due to the data sizes of the observations
and the complexity and compute requirements of the software involved. Using the
PROCESS software environment and testbed, we enable a simple point-and-click-
reduction of LOFAR observations into sky maps for users of this archive. This work
was performed as part of the PROCESS project which aims to provide generalizable
open source solutions for user friendly exascale data processing.

Keywords: Radio astronomy, imaging, extreme large scale data processing, PC
clusters, distributed computing, grid, cloud computing

Mathematics Subject Classification 2010: 68-04

1 INTRODUCTION

The LOw Frequency ARray (LOFAR) [40] is a European radio telescope which cov-
ers frequencies between 10 and 250 MHz. Designed by ASTRON [18], it became
operational in 2010, and its design differs from classical radio telescopes that usu-
ally consist of arrays of dishes. Instead, LOFAR combines the signals from a large

Processing Radio Astronomical Data with PROCESS 839

number of relatively simple omnidirectional antennas, shown in Figure 1. These an-
tennas are grouped into stations, each typically consisting of 96 Low Band Antennas
(10 MHz–90 MHz) and 48 High Band Antennas (110 MHz–250 MHz).

Figure 1. LOFAR LBA (poles) and HBA (boxes) antenna types forming a single station
(image courtesy of ASTRON)

The signals received by these antennas are combined into a single station sig-
nal, similar to the signal of a single dish from a classical radio telescope. LOFAR
currently consists of 52 stations in total (as shown in Figure 2): 24 core stations
located within a 2 km radius near the village of Exloo in the east of the Netherlands,
14 additional stations in the Netherlands arranged in an (approximated) logarith-
mic spiral distribution, and 14 international stations located in Germany, France,
Sweden, UK, Poland, Ireland and Latvia and (in future) Italy.

For observations the station signals are correlated per pair of two stations, called
a baseline, following the principles of aperture synthesis. Every pair of signals, each
consisting of a sequence of complex numbers, is multiplied with each other and
a complex phase (which determines the direction of the observation), and inte-
grated over the time sampling interval. Depending on the combination of stations
used, LOFAR supports baselines from a few hundred meters to several thousand
kilometers. While longer baselines provide a higher angular resolution, they compli-
cate signal calibration as ionospheric disturbances vary more over longer distances.
Every LOFAR imaging observation results in a large set of such correlations, called

840 S. Madougou, H. Spreeuw, J. Maassen

Figure 2. LOFAR station distribution over Europe, including planned LOFAR stations
(image courtesy of ASTRON)

visibilities. A visibility is recorded as a complex number for each baseline, frequency
and time sampling interval, and polarization product.

The LOFAR Long Term Archive [36] (LTA) was set up to store all LOFAR
observations. A typical LOFAR observation takes 8–12 hours and has a size of about
100 TB. Frequency averaging of every eight channels reduces this size to about 16 TB.
Initial (coarse) calibration is also applied to improve the signal quality. The last few
years the LTA has been expanding by about 7 PB per year and is currently (2020)
exceeding 50 PB. The LOFAR LTA is stored on tapes at locations in Amsterdam
(The Netherlands), Jülich (Germany) and Poznan (Poland).

LOFAR science drivers are condensed in six key science projects [13] (KSPs):
the epoch of reionisation, deep extragalactic surveys, transient sources, ultra-high
energy cosmic rays, solar science and space weather, and cosmic magnetism. In
addition, the LOFAR data is publicly available for other uses.

The coarsely calibrated observations stored in the LTA are not directly suit-
able as a starting point for scientific research. KSP-specific processing pipelines
are needed to further refine the observations into science products, using different
combinations of processing tools and parameters. Each processing step is complex
and usually requires both domain and software knowledge to generate useful out-
put. Combined with the massive volumes of the data, further processing of the data

Processing Radio Astronomical Data with PROCESS 841

within the LTA is hard for non-experts. These challenges are exacerbated further
when one needs to process not just one, but many observations.

In this paper, we describe our efforts to build a user-friendly “point-and-click-
processing” system for the users of LTA data: after selecting an observation, an ap-
propriate pipeline and (optionally) a set of parameters, acquiring a well-calibrated
sky map just requires waiting for the processing to complete. Staging the data
(copying from magnetic tape to disk), transferring this data to a suitable compute
infrastructure, launching the processing pipeline, and retrieving the results, is all
handled automatically by the platform. We focus on the pipeline producing sky
maps, as these typically serve as a starting point for astronomy research. However,
we believe the approach is generalizable to other pipelines used for processing LTA
data.

This research was conducted as one the five use cases of the EU H2020 PRO-
CESS project [21]. In Europe, we currently do not have any exascale supercom-
puters. Therefore, any form of processing requiring exascale data processing will
have to be distributed over a number of clusters in Europe. Such distributions over
many clusters will have to be performed seamlessly and all software packages that
run the computations will have to be containerized to guarantee portability. The
goal of PROCESS is to offer exascale computing service prototypes to a range of
scientists that require big storage and big compute facilities, in such a way that these
users can remain mostly agnostic of the location and specifications of the compute
clusters where their data will be processed. Portability and scalability are the main
requirements for the PROCESS software infrastructure, not only with respect to
compute, but also with respect to data access.

2 RELATED WORK

One of the KSPs of the LOFAR telescope is to conduct deep wide-field surveys.
For instance, the LOFAR Two Meter Sky Survey (LoTSS) [38] is observing 3 000
different fields that will collectively map the entire northern radio sky and create
a total of 48 Petabytes of raw observation data that will be stored in LTA. Typi-
cally each dataset is 16 TB and is split into 244 files of 65 GB. This data is further
processed through the LOFAR imaging pipeline. To complete the LoTSS survey
in the project’s target five year duration, multiple datasets need to be processed
on a daily basis. To cope with the challenge, the LoTSS community has built the
LRT (LOFAR Reduction Tools) framework [33] that provides automation, porta-
bility, scalability and generalisation. LRT is built on top of a work distribution
environment which dispatches LOFAR pre-processing on a computing cluster [35]
using a PiCaS server [19] to track progress. Both because of this legacy and the
required high transfer rates, the platform has to run on a large computing infras-
tructure connected to the LTA with high-speed network, which limits its use to that
infrastructure. Furthermore, the parallelisation only concerns a single step in each
of the calibrator and the target pipelines.

842 S. Madougou, H. Spreeuw, J. Maassen

In an extension of the work described above, the same authors present AGLOW
or Automated Grid-enabled LOFAR Workflows [34]. AGLOW is a workflow or-
chestration system that integrates LOFAR processing with a distributed computing
platform. It uses Dutch Grid infrastructure and is based on Apache Airflow [2].
According to the authors, AGLOW allows to reduce the setup of complex workflows
from months to days. Both contributions are focused on lowering the data reduction
time by means of distributed computing. While this was a desirable feature for our
use case, our focus is more concerned with ease of use and portability of existing
pipelines.

Other authors [37] have investigated the viability of the cloud as infrastruc-
ture for processing LOFAR calibration pipeline as opposed to the more traditional
dedicated clusters and the grid. They found that while the cloud presents some
advantages such as the ease of software installation and maintenance and the auto-
matic scale-out, the most interesting ones, the commercial platforms, are also more
expensive that the use of a dedicated cluster for large datasets. The cloud solution
is only competitive if the number of datasets to be analysed is not high, which dis-
qualifies it, for instance, for surveys KSP. Furthermore, the pipeline tools used for
the tests do not include the most recent developments such as FACTOR or DDF.

3 BACKGROUND

This section consists of two parts where we lay down the foundations for under-
standing the science case behind our use case and the environment in which it is
implemented. First, we describe the LOFAR imaging pipeline with enough details to
understand the choices made for our use case implementation in PROCESS. Next,
we briefly summarise the PROCESS project and describe its ecosystem components
and architecture.

3.1 The LOFAR Imaging Pipeline

Astronomers often embark on a scientific investigation by inspecting sky maps. For
example, after the detection of a cosmic explosion by a gamma-ray satellite at a par-
ticular position on the sky, an astronomer will want to find out which celestial objects
are visible near this position on the sky at other wavelengths, like radio. This is
where a repository with low frequency radio maps covering a large part of the sky
can provide a useful resource. Unfortunately, such sky maps are currently only avail-
able for a fraction of the LOFAR observations stored in the LTA (as produced by
the LOFAR Two Meter Sky Survey (LoTSS) [38] for example).

When an astronomer wants to produce new sky maps, data first needs to be
downloaded from the LTA. ASTRON provides a convenient web portal, shown in
Figure 3, which allows users to search through the available data and select the ob-
servations which need to be retrieved from tape. Once the data is retrieved, it must
be downloaded from temporary disk storage at the LTA to the users own infrastruc-
ture. The size of these datasets can be significant, up to 16 TB per observation.

Processing Radio Astronomical Data with PROCESS 843

Figure 3. The LTA web interface for searching and downloading observation data, acces-
sible through https://lta.lofar.eu/Lofar (image courtesy of ASTRON)

To produce images from this observation data, a large number of processing steps
need to be performed, as shown in Figure 4 (in a simplified form). This pipeline is
generally referred to as the Standard Imaging Pipeline (SIP) [16].

The initial steps, known as the Default Pre-Processing Pipeline (DPPP) [5],
constitute (among other things) of flagging the data to remove radio frequency
interference (RFI), optionally averaging to reduce the data volume, and demixing
to subtract the contributions of the brightest sources in the sky to increase the
sensitivity.

Next, an initial set of calibration parameters is applied. To do so, a short
observation of a reference source (the calibrator) is performed immediately preceding
or succeeding the main observation of the target (the astronomical source of interest).
A Local Sky Model (LSM) which matches the area of interest is then extracted from
the LOFAR Global Sky Model (GSM). The GSM is a “ground truth” database
containing all known sources from various sky survey catalogs, including VLSS [28],
WENSS [30], TGSS [31]. Using the LSM and calibrator observation in an iterative
process, an estimate can be obtained for instrumental and environmental effects such
as electronic station gains and ionospheric delays. The target observation can then
be corrected for these effects, a step generally referred to a Direction Independent
calibration (DI).

The calibrated data are then converted into an image using an imager that
applies the w-projection algorithm [29] to remove the effects of noncoplanar baselines
when imaging large fields and the A-projection algorithm [39] to take into account
the varying primary beam during synthesis observations. The LSM is expanded and
updated in the process by extracting sources from the images. One or more loops

https://lta.lofar.eu/Lofar

844 S. Madougou, H. Spreeuw, J. Maassen

Figure 4. Imaging pipeline main steps

of calibration, imaging and LSM updates are performed. At the end of the process,
the final LSM will be used to update the GSM, and the final images are generated.
Various types of calibration algorithms can be used in this process, depending on
the requirements and user preferences.

Creating such an imaging pipeline is complex and requires detailed knowledge
of the domain, tools and pipeline framework (not to mention significant program-
ming skills). Therefore, a genericpipeline [9] is offered by ASTRON, which helps
astronomer design their processing pipeline without requiring too much technical
knowledge. This genericpipeline contains predefined pipeline steps for the user to
choose from. Creating a new pipeline then boils down to defining a so-called parset ;
a parameter set (or pipeline definition) which selects and configures the relevant
steps in the genericpipeline.

A tool commonly used in this process is prefactor [20] which consists of various
parsets for the genericpipeline to steer the processing of LOFAR data. Originally
intended to prepare the data for input to the direction-dependent (DD) calibration
software FACTOR [7] (hence, its name), prefactor performs the steps described
above to correct for various instrumental and ionospheric effects on observations,
and makes the observation ready for more advanced DD calibration pipelines, such
as FACTOR or killMS.

In this paper, we decided to use FACTOR, as we found it to be one of the most
stable tools available for DD calibration. It produces low-noise, high-resolution im-
ages from HBA LOFAR data using the facet calibration scheme [41]. FACTOR cor-
rects for direction-dependent effects, including ionospheric effects and beam-model
errors. FACTOR works by dividing up the target observation field into many facets
and separately solving for the direction-dependent corrections in each facet. It is
designed to minimize the number of free parameters needed to parameterize these
corrections to avoid overfitting. This minimization is critical in producing high-
fidelity images.

Processing Radio Astronomical Data with PROCESS 845

While the available tools are generally well documented and several LOFAR
imaging tutorials can be found online, the overall process is quite cumbersome for
non-expert users. A large number of tools must be installed and configured, some-
times resulting in complex technical or software dependency problems. Once the
tools are installed successfully and configured correctly, the data volumes that need
to be transferred and processed are significant and often exceed the capabilities of
the infrastructure available to the users. Therefore, a user-friendly “point-and-click-
processing” system for the users of LTA data could significantly lower the threshold
for using LOFAR LTA data for the non-expert users. In Section 4, we describe
how we have implemented such a system as one the five use cases using the soft-
ware environment developed in the PROCESS project, which is briefly described
below.

3.2 PROCESS

The aim of the PROCESS project [21] is to provide an open-source, multi-purpose
and scalable software environment specially developed for exascale data processing.
This goal was achieved by creating various tools and services that support set of
heterogenous extreme scale data processing use-cases driven by both the scientific
research community and industry [22].

Although these use cases come from very different communities (medical imag-
ing, radio astronomy, airline ancillary pricing, disaster risk management and earth
observation), they share the same problems:

1. they need to process very large volumes of data using a diverse collection of
tools,

2. these tools are difficult to install and configure by the users who often lack the
necessary technical knowledge, and

3. the storage and/or compute requirements exceed the capabilities of the infras-
tructure that is available to the users.

During the course of the PROCESS project, a modular service architecture
was designed and implemented [26], a simplified schematic of which is shown in
Figure 5. It can be divided into three main modules: the Interactive Execution En-
vironment [10] (IEE), which provides a web-based user API (as well as a REST API)
for submitting pipelines, the LOBCDER data module [12], which offers distributed
storage and data transfer services, and the compute module which provides access
to both HPC and Cloud compute infrastructure (via RimRock [23] and Cloudify [3],
respectively). For testing purposes, these services are deployed on compute and
storage infrastructure at Cyfronet1 and LRZ2.

1 http://www.cyfronet.krakow.pl/en
2 https://www.lrz.de/english

http://www.cyfronet.krakow.pl/en
https://www.lrz.de/english

846 S. Madougou, H. Spreeuw, J. Maassen

Figure 5. PROCESS platform architecture (image courtesy of [27])

To run a processing pipeline, the user will need a containerized version of the
necessary tools. Currently, only Singularity [32] containers are supported. Creating
such a containerized version of the tools may be too complex for the average user.
However, there is a current trend among tool developers to provide such containers
themselves, as this is seen as an easy solution to the dependency problems often
encountered by users when installing software.

Using the IEE, a processing pipeline can be defined based on the containerized
tools and then submitted to the compute infrastructure (either based on HPC or
Cloud technology). Before the processing starts, the IEE will use the LOBCDER
data module to transfer the necessary input data from the source location to the
selected compute infrastructure.

Processing Radio Astronomical Data with PROCESS 847

The architecture designed by PROCESS provided us with the necessary ser-
vices and infrastructure to create a “point-and-click” solution for the LTA imaging
pipeline, which will be described in the next section.

4 POINT-AND-CLICK PROCESSING IMPLEMENTATION

To create an easy to use solution for the LTA imaging pipeline, the requirement
analysis showed that three components need to be in place:

• A use-case specific web user interface, that enables users to select the desired
datasets and processing pipelines.

• Containerized versions of the LOFAR imaging tools.

• Data services for retrieving the observation data from tapes at the LTA (staging),
transferring this data to compute infrastructure, and the extraction of resulting
images.

• Compute services to run the containerized LOFAR imaging tools on the compute
infrastructure.

The solution we have implemented using the PROCESS services is shown in
Figure 6, and fulfills all of these requirements. We will first provide an overview of
how these components interact and then describe each of the components in more
detail below.

At the startup of the web application, the backend connects to the database at
the LTA archive and extracts a list of all accessible observations (step 1). Next, it
retrieves the list of pre-configured pipelines available to the user from local storage
(step 2). Both are then presented to the user in the web frontend, which is described
in more detail in Section 4.1.

Once the user has selected a suitable target and calibrator observation (step 3),
all necessary information on the selected observations, the pipeline, and various pa-
rameters are submitted to the IEE (step 4, described in Section 4.2). Before the IEE
can execute the pipeline on the compute infrastructure, however, the observation
data must be retrieved from the LTA archive. To do so, the IEE requests that the
LOBCDER data service to retrieve the necessary data from the LTA (steps 5-8,
explained in Section 4.3).

Once the data is available, the IEE will execute the pipeline on the compute
infrastucture (steps 9 and 10) using a containerised version of the pipeline (Sec-
tion 4.4). Finally, the result is returned to the the user via the web frontend (steps 11
and 12, Section 5).

4.1 Web Frontend

To enable easy access to the data processing infrastructure, we decided to create
a use-case specific web portal, based on LTACAT [14], which was developed earlier

848 S. Madougou, H. Spreeuw, J. Maassen

Figure 6. Schematic workflow of interaction between the images processing web applica-
tion, PROCESS services, and the LTA archive

Processing Radio Astronomical Data with PROCESS 849

in the EOSC pilot for LOFAR project [6]. The latter is a React3 application based
on FRBCAT [8] (originally developed as a catalogue for fast radio bursts (FRBs) in
the AA-ALERT [1] project). This web application was customised and extended to
fit LOFAR LTA imaging pipeline needs, and can be found at [15].

Figure 7. Main LTA database view

The LTA database main view, shown in Figure 7, shows information and meta-
data about LOFAR observations, similar to the original LTA web portal. As shown
in Figure 6, the backend directly connects to the LTA database allowing users to
seamlessly access the observation data archived in the LTA. Access to some obser-
vations may be restricted, however, due to various policies. Instead of providing
a unified view of all data (as the original LTA web portal offers), the user is pre-
sented with two lists in order to select the calibrator and the target observations
separately. The metadata can be used to filter the selection.

3 https://reactjs.org

https://reactjs.org

850 S. Madougou, H. Spreeuw, J. Maassen

Figure 8. Pipeline configuration and submission

Once the user selects a calibrator and target observations, the web application
provides a separate window to select (and optionally configure) a processing pipeline,
as shown in Figure 8. This window provides a list of available pipelines, the config-
uration parameters for the selected pipeline, and a submit button which will submit
the pipeline execution to the IEE.

Currently, the definitions of these pipelines are stored locally on the machine
running the Web application. In the backend, the pipeline configurator is automat-
ically generated from a JSON schema [11] describing each pipeline. This allows for

Processing Radio Astronomical Data with PROCESS 851

predefined default values, constraints on inputs, mandatory required properties, and
defining dependences between properties.

Each definition already includes suitable defaults for the pipeline parameters,
such as configuration settings for the processing steps and the necessary configura-
tion for the data retrieval and the choice of a computing site. Once set correctly,
the users does not need to adjust these. Suitable defaults are provided for the cur-
rent PROCESS testbed, which will retrieve data from the LTA and use the HPC
facilities at Cyfronet as the compute site. If needed, these values can be adjusted
in the staging and hpc sections of the pipeline configuration shown in Figure 8.

As part of the PROCESS testbed, the web portal comes bundled with a single
predefined pipeline, but it is easily extended. It allows users to develop additional
pipelines and integrate them in the Web application. For this purpose a pipeline
template is provided in addition to a step-by-step guide on how to integrate new
pipelines into the service [17]. The procedure consists of implementing a run func-
tion, defining the pipeline configuration parameters in JSON schema format, and
registering the pipeline in the pipeline administrator of the IEE. After installation of
the new pipeline based on these steps, a new pipeline appears in the list of available
pipelines.

4.2 Pipeline Submission to the IEE

Once the pipeline is selected (and optionally configured), the user can submit it
to the IEE for execution. The integration between the web portal and the IEE
consists of REST API calls for retrieving the pipeline configuration parameters and
submitting pipeline computations to the IEE based on the expected parameters.

When a pipeline is submitted, the LTA identifiers of the required target and
calibrator observations are provided to the IEE as parameters of the pipeline. Before
actual the actual pipeline execution begins, the IEE requests LOBCDER to fulfill
the data requirements of the pipeline and ensure the data of both observations are
available on the compute site. LOBCDER is described in more detail in the next
section. This step may be skipped if the data already resides on the compute site.

Once the data is available, the pipeline job will be scheduled on the compute
infrastructure. This job consists of a containerized version of the pipeline (described
in Section 4.4 to ensure portability. This job submision is performed through Rim-
Rock, which provides a REST API to the underlying scheduling system of the HPC
compute cluster.

Once running, the web portal will retrieve the pipeline status from the IEE using
the REST API calls. Once the pipeline has completed, the IEE will provide a link
to where the results can be retrieved.

4.3 LOBCDER Data Services

Before the pipeline can be executed, the observation data needs to be available on
the compute site. Consequently, the very first action of the IEE when receiving

852 S. Madougou, H. Spreeuw, J. Maassen

a pipeline submission is to call the LOBCDER data services to request that the
target and calibration observations are retrieved from the LTA archive. LOBCDER
in turn contacts the LTA to request that the observational data is retrieved from the
tapes and stored at a temporary location (a process referred to as “staging”). Once
this staging is complete, LOBCDER will transfer the data to the selected compute
site.

Therefore, to satisfy the data service requirements of our use case, several end-
points have been created by the LOBCDER team. One for issuing a staging com-
mand and one to check its status. Additionally, another one to transfer the staged
in data from the temporary location to a HPC cluster for processing, along with its
corresponding status check command. These are incorporated into the IEE portal
using a Python module. The parameters for configuring these service endpoints are
exposed by the JSON schema for the pipeline configuration.

Once the transfer is completed, LOBCDER notifies IEE which then submits the
job which will run the pipeline to the workload management system on the selected
computing resource(s).

4.4 Containerized Analysis Pipeline

To ensure portability, we have created a containerized version of the LTA imaging
pipeline based on CWL [25] and Singularity4. This container essentially implements
the FACTOR pipeline shown in Figure 4. The first two steps (calibrator and target)
are taken care of by prefactor which provides parsets for each of them. They pro-
vide direction independent calibration. prefactor also provides a parset for the third
step, subtract, which is specific to FACTOR. This step images the field at medium
and low resolution to make initial models of the sources and subtracts these models
from the uv data. The last step is FACTOR itself performing direction dependent
calibration and imaging of HBA data. It divides the field into facets based on bright
direction-dependent calibrators. It then cycles over the facets to self calibrate the
calibrator sources (facetselfcal) and to improve the subtraction with new model and
calibration (facetsub). The facets are then imaged (facetimage). Finally, FACTOR
makes a mosaic of all facets and corrects for the primary beam attenuation (field-
mosaic).

For the integration of the container with IEE, we need to provide an appropriate
run script within the container. This script passes the expected input parameter
values provided to the container by the IEE to the workflow runner (cwl-runner)
running inside the container. These parameters are provided by the user via the
frontend shown in Figure 8. They are passed to IEE through the REST API calls
described above. Currently, the container is stored online at a private location, from
where it is currently manually downloaded and installed at the computing site by the
IEE team. We aim to automate this process by storing the container in a registry
so it can be automatically retrieved, as shown in Figure 6.

4 https://www.sylabs.io

https://www.sylabs.io

Processing Radio Astronomical Data with PROCESS 853

Once the processing pipeline has completed, the output is made available for
download by the IEE via a download link. This output consists of the output
images in FITS format5, which is commonly used in astronomy, plus inspection plots
(examined by the astronomers to check the normal functioning of various parts of the
instrument) and various log files produced by the processing steps in the pipeline.
The full resolution output images can be downloaded by the user. For convenience,
downscaled JPG thumbnails of the images are presented in the frontend.

5 RESULTS

With our use case fully implemented using the PROCESS services, generating images
from the LTA data has never been so easy: the astronomer has just to launch
the frontend, choose its calibrator, target and pipeline, and click a button. The
PROCESS platform takes care of all the processing. The user can then use his/her
valuable time for more analytical tasks while waiting for the images. Sample output
images generated by this pipeline are shown in Figure 9.

Figure 9 a) shows the image that will be produced when directly using the data
from the LTA archive. This data is only roughly calibrated, and contains significant
distortions caused by ionospheric interferences and instrument effects. Figure 9 b)
shows the data after the initial processing, demixing of bright sources, and direc-
tion independent calibration, which already improves the image quality significantly.
Figure 9 c) shows the final result after direction dependent calibration, which further
improves the image quality to the level required for astronomy research.

Step Data Size [GB] Run Time [s)

calibrator 25 8 534

target 433 11 902

subtract 76 37 212

FACTOR 76 464 400
(∼ 5d9h)

Table 1. Breakdown of a test run of the LTA imaging pipeline using the PROCESS ser-
vices and infrastructure

In Table 1, we show a breakdown of the average execution time of each step
in the FACTOR pipeline. This pipeline is running on a test dataset consisting of
twenty sub-bands (out of 144) of both the calibrator and target data, and processes
about 450 GB of data. The end-to-end execution time of the pipeline is about 6 days.
As the table shows, the processing time is dominated by the direction dependent
calibration performed by FACTOR, which takes about 89 % of the overall time
required.

5 https://fits.gsfc.nasa.gov/fits_standard.html

https://fits.gsfc.nasa.gov/fits_standard.html

854 S. Madougou, H. Spreeuw, J. Maassen

a) Uncalibrated data b) DI calibrated data

c) DD calibrated data

Figure 9. Results of imaging uncalibrated, DI calibrated and DD calibrated data

6 CONCLUSION AND FUTURE WORK

In this paper, we discussed our efforts in “unlocking” the LOFAR LTA using the
software ecosystem developed in the PROCESS project. We described the moti-
vation for our use case and analysed its requirements. We succinctly described the
science case behind it and briefly presented the PROCESS project services and tools.
Then we showed that the solution for our use case can be straightforwardly imple-
mented using the PROCESS services and tools. Finally, we showed an example

Processing Radio Astronomical Data with PROCESS 855

of the sky maps generated using that solution and the time needed to reach those
results.

One of the nonfunctional requirements identified for our use case is horizontal
scalability that allows the processing of several observations in parallel, and poten-
tially on different compute sites. This feature would be very useful for the Surveys
KSP for instance, as they typically require a large amount of processing. Although,
theoretically, IEE can submit to several computing sites concurrently, in practice,
it can currently only submit to its local computing site, Prometheus. As our future
work, we hope to extend this to multiple sites.

In addition, all processing is currently performed on a single node. Parallelism
is limited to the number of cores available within this node. It would be inter-
esting to revisit these processing steps and reimplement them using more scalable
approaches. As the Direction Dependent calibration step is the most compute-
intensive, it would be beneficial to add alternative approaches to FACTOR such as
the DDF pipeline [4] or SAGECal [24], which may support better parallelisation
schemes.

Acknowledgements

This work is supported by the “PROviding Computing solutions for ExaScale
ChallengeS” (PROCESS) project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement
No. 777533.

REFERENCES

[1] AA-ALERT: Access and Acceleration of the Apertif Legacy Exploration of the Ra-
dio Transient Sky. https://www.esciencecenter.nl/project/aa-alert, accessed:
2020-09-17.

[2] Apache Airflow. https://airflow.apache.org, accessed: 2020-09-09.

[3] Cloudify: Multi-Cloud Orchestration. https://cloudify.co/, accessed: 2020-09-10.

[4] Ddf-Pipeline (GitHub). https://github.com/mhardcastle/ddf-pipeline, ac-
cessed: 2020-09-09.

[5] The Default Pre-Processing Pipeline (DPPP). https://support.astron.nl/

LOFARImagingCookbook/dppp.html, accessed: 2020-09-09.

[6] The European Open Science Cloud for Research Pilot Project. https://eoscpilot.
eu, accessed: 2020-09-09.

[7] Factor: Facet Calibration for LOFAR. https://www.astron.nl/citt/facet-doc/
index.html, accessed: 2020-09-09.

[8] FRB Catalogue. http://www.frbcat.org, accessed: 2020-09-17.

[9] Generic Pipeline. https://www.astron.nl/citt/genericpipeline/, accessed:
2020-09-09.

https://www.esciencecenter.nl/project/aa-alert
https://airflow.apache.org
https://cloudify.co/
https://github.com/mhardcastle/ddf-pipeline
https://support.astron.nl/LOFARImagingCookbook/dppp.html
https://support.astron.nl/LOFARImagingCookbook/dppp.html
https://eoscpilot.eu
https://eoscpilot.eu
https://www.astron.nl/citt/facet-doc/index.html
https://www.astron.nl/citt/facet-doc/index.html
http://www.frbcat.org
https://www.astron.nl/citt/genericpipeline/

856 S. Madougou, H. Spreeuw, J. Maassen

[10] The Interactive Execution Environment (IEE). https://gitlab.com/cyfronet/iee,
accessed: 2020-09-10.

[11] JSON Schema. https://json-schema.org/, accessed: 2020-09-09.

[12] The LOBCDER Data Services. https://github.com/micro-infrastructure/

mini-lobcder, accessed: 2020-09-10.

[13] LOFAR Key Science Projects. http://www.lofar.org/astronomy/key-science/

lofar-key-science-projects.html, accessed: 2020-09-09.

[14] LOFAR Long Term Archive Pipeline Orchestrate Web Application. https://github.
com/EOSC-LOFAR/ltacat, accessed: 2020-09-09.

[15] LOFAR LTA Pipeline Orchestrate Web Application. https://github.com/

process-project/ltacat_UC2, accessed: 2020-09-09.

[16] LOFAR Wiki: Standard Imaging Pipeline. https://www.astron.nl/lofarwiki/

doku.php?id=public:user_software:documentation:standard_imaging_

pipeline, accessed: 2020-09-09.

[17] LTA Processing Pipeline Template and Guide. https://github.com/

process-project/UC2_pipeline, accessed: 2020-09-09.

[18] Netherlands Institute for Radio Astronomy. https://www.astron.nl, accessed:
2020-09-09.

[19] Picas Overview: http://doc.grid.surfsara.nl/en/latest/Pages/Practices/

picas/picas_overview.html, accessed: 2020-09-09.

[20] Prefactor: Preprocessing for Facet Calibration for LOFAR. https://www.astron.
nl/citt/prefactor/, accessed: 2020-09-09.

[21] PROCESS: Providing Computing Solutions for Exascale Challenges. https://www.
process-project.eu, accessed: 2020-09-09.

[22] PROCESS Use Case Descriptions. https://www.process-project.eu/use-cases,
accessed: 2020-09-09.

[23] Rimrock – Robust Remote Process Controller. http://dice.cyfronet.pl/

products/rimrock, accessed: 2020-09-10.

[24] SAGECal (GitHub). https://github.com/nlesc-dirac/sagecal, accessed: 2020-
09-09.

[25] Amstutz, P.—Crusoe, M. R.—Tijanić, N.—Chapman, B.—Chilton, J.—
Heuer, M.—Kartashov, A.—Leehr, D.—Ménager, H.—Nedeljkovich,
M.—Scales, M.—Soiland-Reyes, S.—Stojanovic, L.: Common Workflow
Language, v1.0. Figshare, 2016, doi: 10.6084/m9.figshare.3115156.v2.

[26] Bobák, M.—Hluchy, L.—Belloum, A. S. Z.—Cushing, R.—Meizner, J.—
Nowakowski, P.—Tran, V.—Habala, O.—Maassen, J.—Somosköi, B.—
Graziani, M.—Heikkurinen, M.—Höb, M.—Schmidt, J.: Reference Exascale
Architecture. 2019 15th International Conference on eScience (eScience), San Diego,
CA, USA, 2019, pp. 479–487, doi: 10.1109/eScience.2019.00063.

[27] Bubak, M.—Meizner, J.—Nowakowski, P.—Bobák, M.—Habala, O.—
Hluchý, L.—Tran, V.—Belloum, A. S. Z.—Cushing, R.—Höb, M.—
Kranzlmüller, D.—Schmidt, J.: A Hybrid HPC and Cloud Platform for Multi-
disciplinary Scientific Application. 2020 Super Computing Frontiers Europe, Virtual
Global Conference, March 2020.

https://gitlab.com/cyfronet/iee
https://json-schema.org/
https://github.com/micro-infrastructure/mini-lobcder
https://github.com/micro-infrastructure/mini-lobcder
http://www.lofar.org/astronomy/key-science/lofar-key-science-projects.html
http://www.lofar.org/astronomy/key-science/lofar-key-science-projects.html
https://github.com/EOSC-LOFAR/ltacat
https://github.com/EOSC-LOFAR/ltacat
https://github.com/process-project/ltacat_UC2
https://github.com/process-project/ltacat_UC2
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:standard_imaging_pipeline
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:standard_imaging_pipeline
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:standard_imaging_pipeline
https://github.com/process-project/UC2_pipeline
https://github.com/process-project/UC2_pipeline
https://www.astron.nl
http://doc.grid.surfsara.nl/en/latest/Pages/Practices/picas/picas_overview.html
http://doc.grid.surfsara.nl/en/latest/Pages/Practices/picas/picas_overview.html
https://www.astron.nl/citt/prefactor/
https://www.astron.nl/citt/prefactor/
https://www.process-project.eu
https://www.process-project.eu
https://www.process-project.eu/use-cases
http://dice.cyfronet.pl/products/rimrock
http://dice.cyfronet.pl/products/rimrock
https://github.com/nlesc-dirac/sagecal
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1109/eScience.2019.00063

Processing Radio Astronomical Data with PROCESS 857

[28] Cohen, A. S.—Lane, W. M.—Cotton, W. D.—Kassim, N. E.—
Lazio, T. J. W.—Perley, R. A.—Condon, J. J.—Erickson, W. C.: The
VLA Low-Frequency Sky Survey. The Astronomical Journal, Vol. 134, 2007, No. 3,
pp. 1245–1262, doi: 10.1086/520719.

[29] Cornwell, T. J.—Golap, K.—Bhatnagar, S.: W Projection: A New Algorithm
for Wide Field Imaging with Radio Synthesis Arrays. In: Shopbell, P., Britton, M.,
Ebert, R. (Eds.): Astronomical Data Analysis Software and Systems XIV. Astro-
nomical Society of the Pacific, San Francisco, ASP Conference Series, Vol. 347, 2005,
pp. 86–90.

[30] de Bruyn, A. G.: The Westerbork Northern Sky Survey. In: Ekers, R., Fanti, C.,
Padrielli, L. (Eds.): Extragalactic Radio Sources. Springer, Dordrecht, International
Astronomical Union, Vol. 175, 1996, pp. 495–498, doi: 10.1007/978-94-009-0295-
4 180.

[31] Intema, H. T.—Jagannathan, P.—Mooley, K. P.—Frail, D. A.: The GMRT
150 MHz All-Sky Radio Survey – First Alternative Data Release TGSS ADR1. As-
tronomy and Astrophysics, Vol. 598, 2017, Art. No. A78, 28 pp., doi: 10.1051/0004-
6361/201628536.

[32] Kurtzer, G. M.—Sochat, V.—Bauer, M. W.: Singularity: Scientific Containers
for Mobility of Compute. PLoS ONE, Vol. 12, 2017, No. 5, Art. No. e0177459, 20 pp.,
doi: 10.1371/journal.pone.0177459.

[33] Mechev, A. P.—Oonk, J. B. R.—Danezi, A.—Shimwell, T. W.—
Schrijvers, C.—Intema, H. T.—Plaat, A.—Röttgering, H. J. A.: An
Automated Scalable Framework for Distributing Radio Astronomy Processing
Across Clusters and Clouds. International Symposium on Grids and Clouds
2017 (ISGC 2017), Academia Sinica, Taipei, Taiwan, 2017, Art. No. 002.
https://pos.sissa.it/293/002/pdf.

[34] Mechev, A. P.—Oonk, J. B. R.—Shimwell, T.—Plaat, A.—
Intema, H. T.—Röttgering, H. J. A.: Fast and Reproducible LOFAR Workflows
with AGLOW. 2018 IEEE 14th International Conference on e-Science (eScience), Am-
sterdam, Netherlands, 2018, Vol. 1, pp. 136–144, doi: 10.1109/eScience.2018.00029.

[35] Oonk, J.—Mechev, A.—Danezi, A.—Schrijvers, C.—Shimwell, T.: Radio
Astronomy on a Distributed Shared Computing Platform: The LOFAR Case. 2017.

[36] Renting, G. A.—Holties, H. A.: LOFAR Long Term Archive. In: Evans, I. N.,
Accomazzi, A., Mink, D. J., Rots, A. H. (Eds.): Astronomical Data Analysis Software
and Systems XX. Astronomical Society of the Pacific, San Francisco, ASP Conference
Series, Vol. 442, 2011, pp. 49–52.

[37] Sabater, J.—Sánchez-Expósito, S.—Best, P.—Garrido, J.—Verdes-
Montenegro, L.—Lezzi, D.: Calibration of LOFAR Data on the Cloud. Astron-
omy and Computing, Vol. 19, 2017, pp. 75–89, doi: 10.1016/j.ascom.2017.04.001.

[38] Shimwell, T. W.—Tasse, C.—Hardcastle, M. J.—Mechev, A. P.—
Williams, W. L.—Best, P. N.—Röttgering, H. J. A.—Callingham, J. R.—
Dijkema, T. J.—de Gasperin, F. et al.: The LOFAR Two-Metre Sky Survey. II.
First Data Release. Astronomy and Astrophysics, Vol. 622, 2019, Art. No. A1, 21 pp.,
doi: 10.1051/0004-6361/201833559.

https://doi.org/10.1086/520719
https://doi.org/10.1007/978-94-009-0295-4_180
https://doi.org/10.1007/978-94-009-0295-4_180
https://doi.org/10.1051/0004-6361/201628536
https://doi.org/10.1051/0004-6361/201628536
https://doi.org/10.1371/journal.pone.0177459
https://pos.sissa.it/293/002/pdf
https://doi.org/10.1109/eScience.2018.00029
https://doi.org/10.1016/j.ascom.2017.04.001
https://doi.org/10.1051/0004-6361/201833559

858 S. Madougou, H. Spreeuw, J. Maassen

[39] Tasse, C.—van der Tol, S.—van Zwieten, J.—van Diepen, G.—
Bhatnagar, S.: Applying Full Polarization A-Projection to Very Wide Field of
View Instruments: An Imager for LOFAR. Astronomy and Astrophysics, Vol. 553,
2013, Art. No. A105, 13 pp., doi: 10.1051/0004-6361/201220882.

[40] van Haarlem, M. P.—Wise, M. W.—Gunst, A. W.—Heald, G.—
McKean, J. P.—Hessels, J. W. T.—de Bruyn, A. G.—Nijboer, R.—
Swinbank, J.—Fallows, R. et al.: LOFAR: The LOw-Frequency ARray.
Astronomy and Astrophysics, Vol. 556, 2013, Art. No. A2, 53 pp., doi: 10.1051/0004-
6361/201220873.

[41] van Weeren, R. J.—Williams, W. L.—Hardcastle, M. J.—
Shimwell, T. W.—Rafferty, D. A.—Sabater, J.—Heald, G.—Sridhar,
S. S.—Dijkema, T. J.—Brunetti, G. et al.: LOFAR Facet Calibration. The
Astrophysical Journal Supplement Series, Vol. 223, 2016, No. 1, Art. No. 2, 16 pp.,
doi: 10.3847/0067-0049/223/1/2.

https://doi.org/10.1051/0004-6361/201220882
https://doi.org/10.1051/0004-6361/201220873
https://doi.org/10.1051/0004-6361/201220873
https://doi.org/10.3847/0067-0049/223/1/2

Processing Radio Astronomical Data with PROCESS 859

Souley Madougou is eScience Engineer at the Netherlands
eScience Centre since December 2018. He is mainly involved in
the PROCESS project in which he contributes to the implemen-
tation of the LOFAR use case and the development and analysis
of PROCESS performance models. He previously worked in sev-
eral eScience projects in the Netherlands. His research interests
include performance modelling on many-core architectures, par-
allel programming and provenance.

Hanno Spreeuw is an eScience Research Engineer at the Ne-
therlands eScience Center since February 2015. His Ph.D. re-
search paved the way for the detection of transient radio sources
with LOFAR. During his subsequent postdoc position at the
Netherlands Cancer Institute he accelerated CPU code for 3D
dose reconstruction from radiotherapy treatments in real time.
At the Netherlands eScience Center, his projects mostly involve
astronomy or physics with a focus on accelerated computing us-
ing GPUs.

Jason Maassen is Technology Lead at the Netherlands eScien-
ce Center. He is involved in many of the projects at the center
that apply parallel and distributed programming to scientific
applications, ranging from high-resolution climate modeling to
digital forensics. In addition, he guides internal software devel-
opment at the center and scouts for new software technology that
can be used in projects. In the past, he participated in many
research projects, such as EU FP5 GridLab, the Dutch Virtual
Labs for eScience, StarPlane, PROMM-GRID, COMMIT, and
H2020 PROCESS, where he worked on a range of topics related

to large scale distributed computing.

Computing and Informatics, Vol. 39, 2020, 860–880, doi: 10.31577/cai 2020 4 860

TOWARDS EXASCALE COMPUTING
ARCHITECTURE AND ITS PROTOTYPE:
SERVICES AND INFRASTRUCTURE

Jan Meizner, Piotr Nowakowski

ACC Cyfronet, AGH University of Science and Technology
Krakow, Poland
&
Sano Centre for Computational Medicine
Krakow, Poland
e-mail: {j.meizner, p.nowakowski}@cyfronet.pl

Jan Kapala, Patryk Wojtowicz

ACC Cyfronet, AGH University of Science and Technology
Krakow, Poland
e-mail: {j.kapala, p.wojtowicz}@cyfronet.pl

Marian Bubak

ACC Cyfronet, AGH University of Science and Technology
Krakow, Poland
&
Sano Centre for Computational Medicine
Krakow, Poland
&
Department of Computer Science, AGH University of Science and Technology
Krakow, Poland
e-mail: bubak@agh.edu.pl

Viet Tran, Martin Bobák

Institute of Informatics, Slovak Academy of Sciences
Dúbravská cesta 9, 845 07 Bratislava, Slovakia
e-mail: {viet.tran, martin.bobak}@savba.sk

Towards Exascale Computing Architecture and Its Prototype 861

Maximilian Höb

Munich Network Management Team (MNM-Team)
Ludwig-Maximilians Universität, Munich, Germany
e-mail: hoeb@nm.ifi.lmu.de

Abstract. This paper presents the design and implementation of a scalable com-
pute platform for processing large data sets in the scope of the EU H2020 project
PROCESS. We are presenting requirements of the platform, related works, infras-
tructure with focus on the compute components and finally results of our work.

Keywords: Exascale computing, large data sets, HPC, cloud computing

1 INTRODUCTION

Despite continuous increases in the computing power of HPC systems, even the
largest system on the latest edition of the TOP500 list [20] still provides less then
0.5 exaFLOP (in full precision). At the outset of the PROCESS project this figure
was even lower (about 0.1 exaFLOP) [19]. It therefore seemed clear to us that – at
least initially – reaching exascale computing capabilities would require a combination
of multiple HPC systems. As we can see, this premise holds true to this day, and
even when we finally break the exaFLOP barrier, the number of such systems will
be highly limited – thus, combining the power of many sites would remain prudent
in many cases. It is also important to notice that it is not always possible to quickly
move data between computing sites; hence, the ability to bring computations to
data remains an important issue.

Running tasks in such combined systems is fraught with multiple challenges.
The basic one relates to the heterogeneity of the environment, as each system is
operated by a different entity. This heterogeneity may involve access mechanisms
(protocols, credential types) as well as software installed on clusters (OS type and
version, queuing system). Additionally, each cluster usually runs its workloads in
internal private LANs which do not allow inbound connections from the Internet
(due to mechanisms such as NAT). This, in turn, places additional restrictions upon
the designed infrastructure, such as the lack of direct P2P communication between
jobs running on different clusters. One of the main goals of the project was to
provide a mechanism which would allow running jobs on multiple sites and move
data around freely.

In order to manage such heterogeneous systems, it is also crucial [14] to provide
a highly scalable platform, able to process large quantities of data (although issues
related to maintenance of such data have been described in a separate paper [23]).

862 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

Finally, we need to take into account that some sites in a distributed computational
environment may be based on traditional HPC paradigms (such as the Prometheus
cluster at Cyfronet, or CoolMUC and SuperMUC-NG at Leibniz-Rechenzentrum)
while others may be Cloud-based (in the presented case, this includes the Institute
of Informatics of the Slovak Academy of Sciences and other compatible private and
community clouds such as those provided in the scope of the European Open Science
Cloud; EOSC). This further elevates the level of heterogeneity [8].

2 A SHORT OVERVIEW OF RESEARCH ON EXASCALE SYSTEM

A systematic analysis of needs and profits of exascale computing systems was ini-
tiated by the U.S. DOE in a series of workshops on scientific grand challenges in
2007 [22]. Workshops were focused on the grand challenges of specific scientific
domains and on the role for scientific computing in addressing those challenges.
A summary of discussions during those scientific meeting is presented in [6]. It
also gives an initial set of requirements for exascale systems, however, it is mostly
concentrated on the computing aspect leaving aside big data aspects. Dongarra
et al. in [9] analysed the approaches used to implement peta- and exa-scale compt-
ing pointing out that completely uncoordinated development model will not provide
the software needed to support the unprecedented parallelism required for peta/
exascale computation and presented the idea of the International Exascale Software
Project. In this paper, the development of appropriate open-source software tools
was clearly indicated as an important factor in quest for high performance and pro-
ductivity. The focus was mostly on proper usage of new processors architectures of
large parallel computers.

The need for considering together exascale computing and big data was pre-
sented by Reed and Dongarra in [18]; after overview of main area for exascale
computing like biology, particle physics, climate science, cosmology, astrophysics,
material science, they have analysed technical challenges in advanced computing
including software elaboration, and overview a number of national and international
projects. The ideas presented in this paper are reflected in the Big Data and Ex-
treme Scale computing Project [1] and in the ECP – Exascale Computing Project [2].
On the basis of the achievements of these projects, an international group of scien-
tists [5] elaborated a set of recommendations for successful approaches for software
ecosystem convergence in big, logically centralized facilities that execute large-scale
simulations and models and/or perform large-scale data analytics. In our research,
we are going to take them into account having in mind that our solutions should be
appropriate for exascale computing and data analytics on distributed systems.

The recently published paper [16] presents results of a study of possible con-
vergence of big data coming from distributed scientific instruments and sensors and
high performance computing appropriate for coming era of next-generation data
centric computing. The study was performed in the framework of the EU project
SAGE. The authors have elaborated an advanced storage system which has been

Towards Exascale Computing Architecture and Its Prototype 863

implemented and installed at the Jülich Supercomputing Center. It is a very in-
teresting and important solution, however, it does not address usage of distributed
computing resources.

3 REQUIREMENTS

The ultimate goal of PROCESS is to provide a versatile solution well suited for
a wide range of use cases from multiple domains, both scientific and business-
oriented. To achieve this goal we had to collect a set of requirements from each
use case, and combine them into an integrated set applicable to all of them.

3.1 Hardware Requirements

The hardware resources are basis for any IT system. In this subsection we are pre-
senting the set of hardware-related requirements such as providing sufficient access
to: HPC resources, Cloud resources, accelerated computing resources (including the
GPGPUS), external infrastructure reachable via API, data storage on the order of
1 PB (distributed).

3.2 Software Requirements

As hardware alone is not sufficient to provide the services sought by scientists, our
platform also has to support a wide range of software tools. The common tools for
machine learning and deep learning are essential for wide range of medical applica-
tions, but also others such as business oriented. Python development environment
with support for Jupyter notebooks allows simplification of the Use Case codes
developments. Apache Spark, Hadoop and HBase frameworks are necessary to pro-
cess the big data sets. Support for containers such as Docker and Singularity allows
packaging of the codes alongside required dependences for streamlined deployment.
Secure access to and extraction from external data resources is of course also crucial
for any use case. Finally, we need to provide appropriate support for programming
languages and tools needed by the provided use cases’ codes such as: Java environ-
ment, Grid support, Matlab environment, Large-scale modelling, Predictive analytic
methods, Probabilistic risk calculation tools.

3.3 Execution Models

We have analyzed all these requirements and in our conclusions got a set of specific
Execution Models, namely: Deep Learning, Exascale Data Management, Exascale
Data Extraction, Probabilistic Analysis, Calibration and finally the Pre- and Post-
Processing.

All those models had to be reflected in the the PROCESS system architecture –
both general as well as Compute parts specific.

864 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

4 OVERVIEW OF COMPUTING COMPONENTS

While preparing such a complex system we have carefully taken into account the
current state of the art in various respects, relevant to the integrated system and
its computing components in particular. This analysis is presented in the following
subsections.

4.1 Interactive Execution Environment

Several solutions already exist to support interactive execution of large-scale com-
putations on hybrid underlying infrastructures. This subsection provides a basic
description of the available mechanisms and tools which support creation and shar-
ing of executable documents for data analysis. In this section we also provide
a brief introduction to scripting notebooks, in particular their integration with
HPC infrastructures in order to support building extreme large computing ser-
vices as well as their extensions mechanisms needed to add support specific to the
PROCESS project. We also present the results of comparison of their functional-
ity. This section partially extends the work submitted to KUKDM 2018 confer-
ence [13].

During our studies we have analysed multiple notebook-based solutions, a sum-
mary of which is presented in Table 1.

Name Large Data Sets Infrastructure

R Notebook
Using custom libraries (e.g. for
Apache SPARK)

Using custom libraries (e.g. com-
municating with HPC queuing
systems)

DataBricks
The whole platform is based on
Apache SPARK

Available only on AWS or Azure

Beaker Using additional custom libraries
No specific support for HPC;
docker version available

Jupyter Using additional custom libraries
No mature solution for HPC;
docker version available

Cloud Datalab
Support for Google data services
(e.g. BigQuery, Cloud Machine
Learning Engine, etc.)

Only GCP

Zeppelin Native support for Apache Spark
Possible to run on HPC using
connection to YARN cluster

Table 1. Interactive execution environment comparison

Although there exist many interactive execution environments that could be
considered for extension to match PROCESS requirements, many also have impor-
tant drawbacks. DataBricks and Cloud Datalab require to be run on specific cloud
resources. Zeppelin and DataBricks are based on the Apache SPARK solution which
potentially limits their usage to that platform. RNotebooks seems to be promising,

Towards Exascale Computing Architecture and Its Prototype 865

however some important features are only available with the commercial version of
Rstudio. BeakerX (the successor to Beaker) and Cloud Data are actually based on
the Jupyter solution, which appears to be the most popular base for building such
environments.

The goal of the Interactive Execution Environment is to bridge the gap between
users of computational services (who are not expected to be familiar with the com-
plexity of developing and executing extreme large scale computational tasks with
the use of modern HPC infrastructures) and the underlying hardware resources.
Accordingly, the IEE is envisioned as an interface layer where applications can be
accessed and their results browsed in a coherent manner by domain scientists taking
part in the PROCESS project and beyond.

The following properties are regarded as particularly desirable:

• A means of implementing the “focus on services and forget about infrastruc-
tures” concept;

• Providing two ways of accessing the underlying computational resources:
through a user-friendly GUI and programmatically, via a dedicated RESTful
API;

• Embeddability in an external environment (such as Jupyter) via API integration;

• Interfacing computational clouds and traditional HPC (batch job submission)
and public cloud access libraries, as appropriate.

The features which need to be provided by the environment are as follows:

• Deployment of computational tasks on the available resources,

• Infrastructure monitoring services,

• User-friendly access to PROCESS datasets,

• Security management (users, groups, roles),

• Administrative services (billing and logging),

• Integration with external tools via standardized APIs.

Following discussions with use case developers and the project’s architecture
team, the following tools, described further in this paper, have been identified as us-
able in the context of the PROCESS project – in addition to the previously discussed
notebook solutions, which can function as an embedded feature in a comprehensive
GUI.

4.2 EurValve Model Execution Environment

The EurValve [7] Model Execution Environment (shown in Figure 1) is an execution
environment for data processing pipelines. Originally conceived in the context of the
EurValve project, the goal was to develop a decision support system for procedures
related to heart valve abnormalities, enabling clinicians to decide upon the optimal

866 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

course of action for any specific patient (i.e. choose between medication/surgery
and advise on the possible strategies and outcomes of the latter). While the afore-
mentioned DSS does not, by itself, involve large-scale processing, it is based on
a knowledge base whose production is one of the principal goals of EurValve. As-
sembling this knowledge base calls for processing a vast array of patient data (for
both prospective and retrospective patients) through the use of dedicated pipelines,
consisting of multiple services and making use of various types of supercomputing
infrastructures (both traditional batch HPC and cloud models).

Figure 1. EurValve Model Execution Environment (MEE) architecture

4.3 Rimrock Execution Environment

Rimrock stands for Robust Remote Process Controller Controller [4] shown in Fig-
ure 2 is a service that simplifies interaction with remote HPC servers. It can execute
applications in batch mode or start an interactive application, where output can be
fetched online and new input sent using a simple REST interface. What is more,
by using a dedicated REST interface users are able to submit new jobs to the
infrastructure. This solution would support efficient creation and sharing of exe-
cutable documents for analysis of heterogeneous research datasets. RIMROCK is

Towards Exascale Computing Architecture and Its Prototype 867

currently actively used in production in the Polish nationwide HPC infrastructure
called PLGrid [17].

Figure 2. Rimrock architecture

4.4 Atmosphere Cloud Platform

Atmosphere [3], shown in Figure 3, is a hybrid cloud environment facilitating devel-
opment and sharing of computational services wrapped as cloud virtual machines,
with access to external data sources. Atmosphere supports the entire cloud service
development lifecycle and provides a set of pluggable interfaces which can be in-
cluded in portals and web applications. It is compatible with a wide range cloud
middleware packages from open-source and commercial vendors, and provides inter-
faces to both public and private cloud resources in the form of a technology-agnostic
UI and RESTful APIs.

Figure 3. The architecture of atmosphere

4.5 Benchmarking and Monitoring Services

We have analyzed multiple monitoring solutions including Nagios, Zabbix, Icinga,
Munin, Cacti, Ganglia, Collectd, Elastic Stack, Grafana, NFDUMP with NfSen and
ntopng.

868 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

While detailed analysis is out of scope of this paper, we initially identified three
candidates for this task: Zabbix, Nagios and Icinga, as they are all mature solutions
and possess the required properties. Other available solutions, while usable, would
only address a subset of the presented requirements; consequently, their usage would
require integration of multiple distinct components, with its attendant impact on
the stability of the integrated solution deployed in PROCESS.

Upon further analysis we finally chose Zabbix as the best solution (shown in
Figure 4). Icinga 2 (current version of Icinga) was rejected due to not being as
mature and well-established as either Zabbix or Nagios. As for Nagios Core, it offers
great alerting capabilities, however it does not provide the same level of support for
online resource monitoring, and its configuration is based on text files, requiring more
complex integration. In contrast, Zabbix’s configuration is based on an RDBMS
(like MariaDB/MySQL) and could be modified via an API. With over 19 years of
history and constant development/testing, as well as a wide range of users including
large corporations representing a wide spectrum of domains such as banking/finance,
health, IT and telecommunication, Zabbix is regarded as a mature solution.

Figure 4. Monitoring architecture

5 CONCEPT OF COMPUTING ARCHITECTURE

The overall architecture of the PROCESS Platform [15] is presented in a separate
paper [24]. In this section we focus solely on the computing components and glue
code connecting them to one another as well as to external services.

Towards Exascale Computing Architecture and Its Prototype 869

While this aspect represents only part of the bigger platform, due to the inherent
complexity of an exascale-capable system we had to design a solution composed of
multiple layers, namely:

• API for third-party services (like external Portals),

• Web UI for domain scientists (to configure pipelines),

• Connectors for HPC and Cloud backend APIs,

• The aforementioned backend APIs themselves (Rimrock [4] and Cloudify [10]),

• Containers suitable for specific HPC/Cloud resources [12],

• Underlying HPC and Cloud e-Infrastructures.

6 BUILDING THE COMPUTING PLATFORM

6.1 IEE

The Interactive Execution Environment (IEE) is a platform which enables execution
of HPC applications – including the PROCESS pilot use cases – in a heterogeneous
infrastructure which comprises multiple computing sites based on various comput-
ing paradigms (such as “classic” batch-oriented HPC, interactive cloud computing
and more). The basic architecture of the environment is schematically depicted in
Figure 5. The IEE user interface serves as the entry point for the platform. Compu-
tations which rely on batch access to HPC sites are processed by a dedicated service
called Rimrock, which can delegate operations to the underlying resources while
exposing a RESTful API for IEE (and other tools) to use. In addition, IEE features
integration with the Cloudify cloud platform, which enables scheduling cloud VMs
from it.

In the context of validating the PROCESS architecture (and that of IEE in
particular), we decided to focus on the full pipeline for the use case which involves
processing the LOFAR dataset. This enables the means to select the HPC Site and
then facilitate the process of staging in data from the LOFAR Long Term Archives
and moving it to the relevant site, running relevant computation using site-specific
settings (Queuing and Container systems) and finally staging out the results.

For this case we decided to utilize two separate HPC sites: the Prometheus
supercomputing cluster at ACC Cyfronet AGH in Kraków (same as for the first
prototype), as well as the SuperMUC-NG Cluster at LRZ in Garching bei München.
In addition to those HPC sites, to showcase the full capabilities of the platform, we
also included a demo of an additional application from another use case (Ancillary
pricing for airline revenue management) deployed on the OpenStack cloud at UISAV
in Bratislava via the Cloudify component.

Use case applications are organized as projects composed of multiple steps, each
of which involves either processing (computations) or is related to data transfer (in
particular, staging in the relevant data using the PROCESS data storage infrastruc-
ture, or accessing results of computational tasks for visualization and download).

870 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

Figure 5. Schematic depiction of the IEE architecture, including its integration with HPC
and data storage sites

6.2 Rimrock

The Rimrock component enables running batch scripts on an HPC infrastructure via
a convenient REST API. In the scope of the PROCESS project we use it to spawn
relevant use case computational components in the form of containers. The container
technology is proper for each site, so in the case of Prometheus it is Singularity and
in the case of SuperMUC-NG it is Charlie Cloud [21].

A schematic overview of the Rimrock architecture is presented in Figure 7. The
service is invoked from the IEE component described in Section 6.1.

6.3 Cloudify Orchestration Service

Service orchestration is often understood as the process of automated configuration,
deployment and other management activities of services and applications in the
cloud. It can automate execution of different service workflows, including deploy-

Towards Exascale Computing Architecture and Its Prototype 871

Figure 6. IEE user workbench

ment, initialization, start/stop, scaling, healing of services based on standardized
descriptions of composed services, relations between components and their require-
ments. In the PROCESS project, we use the OASIS TOSCA standard for service
description and Cloudify for orchestration.

Cloudify (https://docs.cloudify.co/4.5.0/about/) is an open source cloud
orchestration platform, designed to automate the deployment, configuration and
remediation of application and network services across hybrid cloud and stack envi-
ronments. It uses OASIS TOSCA templates written in YAML (called blueprints in
Cloudify) for defining applications, services and dependences among them. These
blueprint files describe also the execution plans for the lifecycle of the application for
installing, starting, terminating, orchestrating and monitoring the application stack.
Cloudify uses the blueprint as input that describes the deployment plan and is re-
sponsible for executing it on the cloud environment. Figure 8 shows the architecture
of the Cloudify orchestration service.

Cloudify has its own console, see Figure 9, but for integrating with other services,
it is more comfortable using its REST API. Cloudify has completed REST API for
all operations related to service orchestration. This REST API can be divided into
several sections, the most important ones are the following:

Blueprint: management of TOSCA templates, e.g. upload, download, list, delete.

Deployment: deployment of services and management of already deployed ser-
vices.

Execution: executing workflows defined in TOSCA templates on concrete deploy-
ment, e.g. install, restart, uninstall.

The details of REST API is described at https://docs.cloudify.co/4.5.0/

developer/apis/rest-service/.

https://docs.cloudify.co/4.5.0/about/
https://docs.cloudify.co/4.5.0/developer/apis/rest-service/
https://docs.cloudify.co/4.5.0/developer/apis/rest-service/

872 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

Figure 7. Schematic depiction of Rimrock, including Compute and Storage resources

The API is used by command-line clients (CLI) or scientific gateways (GUI)
for deployment and management of services. The services need to be described
in TOSCA templates (blueprints) and uploaded to the Cloudify server before de-
ployment using blueprint API. After that, the users can deploy/undeploy instances
of services described in the blueprints via deployment API or execute a specific
workflow, e.g. restart the service running in the cloud.

Currently Cloudify is integrated with the data micro-infrastructure and IEE.
A blueprint has been created for dynamic deployment of new nodes in the cloud
and adding them to the Kubernetes cluster for the data micro-infrastructure. The
use case of Ancillary pricing for airline revenue management runs in the Cloud using
the Cloudify orchestration service. By communicating with the Cloudify API, IEE
can manage the execution of the use case in the Cloud.

7 PLATFORM USAGE BY THE USE CASES

In this section we present the ways in which the PROCESS computing platform has
been integrated with the use cases considered in the project.

Towards Exascale Computing Architecture and Its Prototype 873

Figure 8. Architecture of Cloudify orchestration service

Figure 9. Cloudify console

7.1 Content-Based Search and Classification

The goal of this use case is to improve performance of AI-based medical image
analysis using GPU-accelerated distributed computing backed by HPC resources.
As the original code was prepared as a Docker container, part of our work was to
port it to the Singularity format which is designed for multi-tenant environments.

The basic workflow used for this use case is presented in Figure 10.

7.2 Square Kilometre Array (SKA)

The SKA use case goal is to prepare the computational platform and domain codes
for extreme challenges of the SKA radiotelescope when it is available, by using
existing datasets procured using the LOFAR telescope.

874 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

Figure 10. Content-based search and classification use case

Given that LOFAR produces large volumes of data even in its present state,
and that this data is stored in multiple locations, this use case obviously presents
a challenge for the data transfer subsystem, but at the same time sufficient com-
putational resources must be provided to quickly process incoming data, as well as
enable multi-site execution to bring computation nearer to the data.

Additionally, as the process of querying for the right data is complex and requires
broad domain knowledge, we have decided to provide scientists who possess such
knowledge with a familiar environment. To this end we have undertaken an effort
to integrate the existing LOFAR Portal with IEE using a specialized REST API, as
shown in Figure 11.

Figure 11. Square Kilometre Array (SKA) use case

7.3 Ancillary Pricing for Airline Revenue Management

This use case differs a bit from the others as it is a business-oriented one. This
imposes additional constraints on the compute platform such as the requirement to
build a platform that could be easily reproduced in a commercial environment.

To this end we have decided to provide a platform based on cloud resources.
The service was deployed using the cloud infrastructure in Slovakia, however such

Towards Exascale Computing Architecture and Its Prototype 875

an environment can be adapted to work with other cloud providers to fulfill the
said requirements. The infrastructure utilizes the Cloudify component, as shown in
Figure 12.

Figure 12. Ancillary pricing for airline revenue management use case

7.4 Agro-Copernicus

Finally, Agro-Copernicus is an example of a use case that features the use of a pro-
prietary component called PROMET, which, due to licensing restrictions, cannot
be directly accessed in a fashion similar to other use case codes. The only access
mechanism is available via the provided REST API used to control computation,
where the code itself is treated as a black box. This solution is shown in Figure 13.

Figure 13. Agro-Copernicus use case

The mechanism can be reused for a wide range of software delivered in the
Software as a Service model, as long as the proper API is available.

876 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

8 CONCLUSIONS AND FUTURE WORK

In this paper we have presented the work performed in the scope of the PROCESS
Project from the beginning until close to its conclusion. This includes state of the art
analysis, requirement gathering, platform design and implementation, and, finally,
integration with use case codes.

The platform has already been validated using four different use cases, but it is
also capable of providing support for other applications, whether based on traditional
HPC resources, computing clouds or external services exposing proper APIs.

By the end of the project we aim to provide a unified and straightforward mech-
anism enabling deployment of all platform components to a containerized environ-
ment. In the future we will also seek to further extend the range of supporting cases,
as well as make the platform ready for even more powerful upcoming infrastructures.

Within the project we will also continue to follow the containerization approach
for scalable HPC applications and will integrate the EASEY framework described
in [11], which enables also non-computing experts to easily deploy their applications
inside a Charliecloud container through the PROCESS ecosystem.

Acknowledgements

This work is supported by the “PROviding Computing solutions for ExaScale Chal-
lengeS” (PROCESS) project that received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No. 777533.
This research was supported in part by PL-Grid Infrastructure. This work is sup-
ported by the project APVV-17-0619 (U-COMP) “Urgent Computing for Exascale
Data” and by the VEGA project “New Methods and Approaches for Distributed
Scalable Computing” No. 2/0125/20.

REFERENCES

[1] Big Data and Extreme Scale Computing Project. Accessed Oct 26, 2020, available
at: https://www.exascale.org/bdec/.

[2] ECP – Exascale Computing Project. Accessed Oct 26, 2020, available at: https:

//www.exascaleproject.org/reports/.

[3] ACK Cyfronet AGH, DICE Team: Atmosphere. 2020, accessed Sep 14, 2020, available
at: http://dice.cyfronet.pl/products/atmosphere.

[4] ACK Cyfronet AGH, DICE Team: Rimrock. 2020, accessed Sep 14, 2020, available
at: https://submit.plgrid.pl.

[5] Asch, M.—Moore, T.—Badia, R. M.—Beck, M.—Beckman, P. H.—
Bidot, T.—Bodin, F.—Cappello, F.—Choudhary, A. N.—de Supin-
ski, B. R. et al.: Big Data and Extreme-Scale Computing: Pathways to Conver-
gence – Toward a Shaping Strategy for a Future Software and Data Ecosystem for

https://www.exascale.org/bdec/
https://www.exascaleproject.org/reports/
https://www.exascaleproject.org/reports/
http://dice.cyfronet.pl/products/atmosphere
https://submit.plgrid.pl

Towards Exascale Computing Architecture and Its Prototype 877

Scientific Inquiry. International Journal of High Performance Computing Applica-
tions, Vol. 32, 2018, No. 4, pp. 435–479, doi: 10.1177/1094342018778123.

[6] Ashby, S.—Beckman, P.—Chen, J.—Colella, P.—Collins, B.—
Crawford, D.—Dongarra, J.—Kothe, D.—Lusk, R.—Messina, P. et al.:
The Opportunities and Challenges of Exascale Computing – Summary Report of the
Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee. U.S.
Department of Energy, Office of Science, 2010.

[7] Bubak, M.—Bartyński, T.—Guba la, T.—Harȩżlak, D.—Kasztel-
nik, M.—Malawski, M.—Meizner, J.—Nowakowski, P.: EurValve Model Ex-
ecution Environment in Operation. In: Tura la, M., Bartyński, T., Wiatr, K. (Eds.):
CGW Workshop ’17, Proceedings. Academic Computer Centre CYFRONET AGH,
2017, pp. 65–66.

[8] Bubak, M.—Meizner, J.—Nowakowski, P.—Bobák, M.—Habala, O.—
Hluchý, L.—Tran, V.—Belloum, A. S. Z.—Cushing, R.—Höb, M.—
Kranzlmüller, D.—Schmidt, J.: A Hybrid HPC and Cloud Platform for
Multidisciplinary Scientific Application. 2020, https://www.process-project.eu/
wp-content/uploads/2020/03/SCFE2020-PROCESS-23-03-2020.pdf.

[9] Dongarra, J.—Beckman, P.—Moore, T.—Aerts, P.—Aloisio, G.—
Andre, J.-C.—Barkai, D.—Berthou, J.-Y.—Boku, T.—Braunschweig, B.
et al.: The International Exascale Software Project Roadmap. International Journal
of High Performance Computing Applications, Vol. 25, 2011, No. 1, pp. 3–60, doi:
10.1177/1094342010391989.

[10] GigaSpaces Technologies, Inc.: Cloudify. 2020, accessed Oct 7, 2020, available at:
https://cloudify.co/.

[11] Höb, M.—Kranzlmüller, D.: Enabling EASEY Deployment of Containerized
Applications for Future HPC Systems. In: Krzhizhanovskaya, V. et al. (Eds.): Com-
putational Science – ICCS 2020. Springer, Cham, Lecture Notes in Computer Science,
Vol. 12137, 2020, pp. 206–219, doi: 10.1007/978-3-030-50371-0 15.

[12] Meizner, J.—Bubak, M.—Kapa la, J.—Nowakowski, P.—Wójtowicz, P.:
Use of the HPC Containers in the Way Towards Exascale. In: Wiatr, K., Bubak, M.,
Tura la, M. (Eds.): CGW Workshop ’18. Academic Computer Centre CYFRONET
AGH, 2018, pp. 21–22.

[13] Rycerz, K.—Nowakowski, P.—Meizner, J.—Wilk, B.—Bujas, J.—
Jarmocik, L.—Krok, M.—Kurc, P.—Lewicki, S.—Majcher, M.—
Ociepka, P.—Petka, L.—Podsiad lo, K.—Skalski, P.—Zagrajczuk, W.—
Zygmunt, M.—Bubak, M.: A Survey of Interactive Execution Environments for
Extreme Large-Scale Computations. KDM ’18, Zakopane, Poland, 2018.

[14] Bobák, M.—Belloum, A. S. Z.—Nowakowski, P.—Meizner, J.—
Bubak, M.—Heikkurinen, M.—Habala, O.—Hluchý, L.: Exascale
Computing and Data Architectures for Brownfield Applications. 2018 14th In-
ternational Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), Huangshan, China, IEEE, 2018, pp. 461–468, doi:
10.1109/FSKD.2018.8686900.

[15] Bobák, M.—Hluchý, L.—Belloum, A. S. Z.—Cushing, R.—Meizner, J.—
Nowakowski, P.—Tran, V.—Habala, O.—Maassen, J.—Somosköi, B.

https://doi.org/10.1177/1094342018778123
https://www.process-project.eu/wp-content/uploads/2020/03/SCFE2020-PROCESS-23-03-2020.pdf
https://www.process-project.eu/wp-content/uploads/2020/03/SCFE2020-PROCESS-23-03-2020.pdf
https://doi.org/10.1177/1094342010391989
https://cloudify.co/
https://doi.org/10.1007/978-3-030-50371-0_15
https://doi.org/10.1109/FSKD.2018.8686900

878 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

et al.: Reference Exascale Architecture. 2019 15th International Conference
on eScience (eScience), San Diego, CA, USA, IEEE, 2019, pp. 479–487, doi:
10.1109/eScience.2019.00063.

[16] Narasimhamurthy, S.—Danilov, N.—Wu, S.—Umanesan, G.—
Markidis, S.—Rivas-Gomez, S.—Peng, I. B.—Laure, E.—Pleiter, D.—
de Witt, S.: SAGE: Percipient Storage for Exascale Data Centric Computing.
Parallel Computing, Vol. 83, 2019, pp. 22–33, doi: 10.1016/j.parco.2018.03.002.

[17] PL-Grid Consortium. The PL-Grid National Computing Infrastructure. 2020, ac-
cessed Oct 7, 2020, available at: http://www.plgrid.pl/en.

[18] Reed, D. A.—Dongarra, J.: Exascale Computing and Big Data. Communications
of the ACM, Vol. 58, 2015, No. 7, pp. 56–68, doi: 10.1145/2699414.

[19] TOP500.org. The TOP500 List (November 2017). 2017, accessed Sep 14, 2020, avail-
able at: https://www.top500.org/lists/top500/list/2017/11/.

[20] TOP500.org. The TOP500 List (June 2020). 2020, accessed Sep 14, 2020, available
at: https://www.top500.org/lists/top500/list/2020/06/.

[21] Triad National Security, LLC. Charliecloud. 2020, accessed Oct 7, 2020, available at:
https://hpc.github.io/charliecloud/.

[22] US Department of Energy, Office of Science. Advanced Scientific Computing
Research (ASCR): Scientific Grand Challenges Workshop Series. Accessed Oct
26, 2020, available at: https://science.osti.gov/ascr/Community-Resources/

Workshops-and-Conferences/Grand-Challenges.

[23] Cushing, R.—Valkering, O.—Belloum, A.—Souley, M.—Bobak, M.—
Habala, O.—Tran, V.—Graziani, M.—Müller, H.: Process Data Infrastruc-
ture and Data Services. Computing and Informatics, Vol. 39, 2020, No. 4, pp. 724–756,
doi: 10.31577/cai 2020 4 724.

[24] Bobák, M.—Hluchý, L.—Habala, O.—Tran, V.—Cushing, R.—
Valkering, O.—Belloum, A.—Graziani, M.—Müller, H.—
Madougou, S.—Maassen, J.: Reference Exascale Architecture (Extended
Version). Computing and Informatics, Vol. 39, 2020, No. 4, pp. 644–677, doi:
10.31577/cai 2020 4 644.

Jan Meizner has graduated majoring in federated IT security
systems. Since then he has been working at ACC Cyfronet AGH
on many EU and national projects involving a wide range of
subjects, including computational medicine. His work focuses on
IT security, operations of cloud and HPC infrastructures, as well
as building software for such infrastructures. Currently involved
also in Sano Centre for Computational Medicine, focusing on the
operations of IT systems, as well as a range of IT security tasks,
including identity management and data security.

https://doi.org/10.1109/eScience.2019.00063
https://doi.org/10.1016/j.parco.2018.03.002
http://www.plgrid.pl/en
https://doi.org/10.1145/2699414
https://www.top500.org/lists/top500/list/2017/11/
https://www.top500.org/lists/top500/list/2020/06/
https://hpc.github.io/charliecloud/
https://science.osti.gov/ascr/Community-Resources/Workshops-and-Conferences/Grand-Challenges
https://science.osti.gov/ascr/Community-Resources/Workshops-and-Conferences/Grand-Challenges
https://doi.org/10.31577/cai_2020_4_724
https://doi.org/10.31577/cai_2020_4_644

Towards Exascale Computing Architecture and Its Prototype 879

Piotr Nowakowski is Research Programmer at the Academic
Computing Centre CYFRONET AGH and Senior Data Scien-
tist at the Sano Centre for Computational Medicine. He spe-
cializes in design and development of distributed environments
for computational science, and he has participated in a range
of national and international research initiatives, including EU-
funded projects – most recently VPH-Share, EurValve and PRO-
CESS. He is the author or co-author of over 100 scientific pub-
lications.

Jan Kapala received his B.Sc. degree in computer science from
AGH University of Technology, Krakow, Poland in 2020 and now
he is pursuing the M.Sc. degree in the M.Sc. programme Com-
puter Science and Intelligent Systems: Artificial Intelligence and
Data Analysis. Both his B.Sc. thesis and ongoing M.Sc. thesis
are focused on reinforcement learning agents. He is Software En-
gineer at Academic Computer Centre CYFRONET AGH. His
main interest is artificial intelligence.

Patryk Wojtowicz received his B.Sc. degree in computer
science from AGH University of Technology, Krakow, Poland
in 2020 and now he is pursuing the M.Sc. degree. His B.Sc.
thesis and ongoing M.Sc. thesis are both focused on intelligent
reinforcement learning agents. He is involved in development of
the interactive execution environment platform in the PROCESS
project at Academic Computer Centre CYFRONET AGH. His
deep interests are artificial intelligence and its ethical aspects,
and data science.

Marian Bubak obtained his M.Sc. in technical physics and his
Ph.D. in computer science from the AGH University of Scien-
ce and Technology, Krakow, Poland. He is the Scientific Af-
fairs Director and President of the Management Board of the
Sano – Centre for Computational Personalised Medicine – Inter-
national Research Foundation (https://sano.science/). He
also leads the Laboratory of Information Methods in Medicine
at ACC Cyfronet AGH, he is a staff member of the Department
of Computer Science AGH, and the Professor of Distributed Sys-
tem Engineering (emeritus) at the Institute of Informatics of the

University of Amsterdam. His research interests include parallel and distributed comput-
ing and quantum computing. He served key roles in about 15 EU-funded projects and
authored about 230 papers. He is a member of editorial boards of FGCS, Bio-Algorithms
and Med-Systems, and Computer Science Journal.

https://sano.science/

880 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

Viet Tran is Senior Researcher of the Institute of Informatics,
Slovak Academy of Sciences (IISAS). His primary research fields
are complex distributed information processing, grid and cloud
computing, system deployment and security. He received his
M.Sc. degree in informatics and information technology, Ph.D.
degree in applied informatics from the Slovak University of Tech-
nology (STU) in Bratislava, Slovakia. He actively participates
on preparations and solving a number of EU IST RTD 4th, 5th,
6th, 7th FP and EU H2020 projects such as PROCESS, DEEP-
HybridDataCloud, EOSC-Hub and EOSC-Synergy. He is the

author or co-author of over 100 scientific publications.

Martin Bob�ak is Scientist at the Institute of Informatics, Slo-
vak Academy of Sciences, Bratislava, Slovakia, in the Depart-
ment of Parallel and Distributed Information Processing. He
started working at the institute in 2013, defended his disser-
tation thesis at the institute in 2017, became Member of the
Scientific Board of the institute, and Guest Handling Editor in
the CC Journal Computing and Informatics. His field of re-
search is cloud computing and the architectures of distributed
cloud-based applications. He is the author of numerous scien-
tific publications and has participated in several European and
Slovak R & D projects.

Maximilian H�ob is Associate Scientist in the Munich Net-
work Management Team at Ludwig-Maximilians-University Mu-
nich and Co-Coordinator of the PROCESS project, in which he
also contributes to two Use Cases in the area of data manage-
ment and agricultural simulation based on the Copernicus data
sets. His research focuses on large scale system architectures and
performance-aware containerization of HPC applications.

