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Abstract. The distributed alternating direction method of multipliers (ADMM)
algorithm is one of the effective methods to solve the global consensus optimization
problem. Considering the differences between the communication of intra-nodes
and inter-nodes in multicore cluster, we propose a group-based asynchronous dis-
tributed ADMM (GAD-ADMM) algorithm: based on the traditional star topology
network, the grouping layer is added. The workers are grouped according to the
process allocation in nodes and model similarity of datasets, and the group local
variables are used to replace the local variables to compute the global variable.
The algorithm improves the communication efficiency of the system by reducing
communication between nodes and accelerates the convergence speed by relaxing
the global consistency constraint. Finally, the algorithm is used to solve the logis-
tic regression problem in a multicore cluster. The experiments on the Ziqiang 4000
showed that the GAD-ADMM reduces the system time cost by 35 % compared with
the AD-ADMM.
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1 INTRODUCTION

Machine learning has become an important method to extract structured informa-
tion from raw data and transform it into different automatic predictions and applied
hypotheses [1]. In the era of big data, sometimes not only is the number of sam-
ples large, but also the dimension of samples is high. Therefore, in the traditional
machine learning algorithm, it is difficult to implement the relevant processing and
calculation of the big data in a reasonable amount of time. It is necessary to consider
how to transform the traditional machine learning algorithms into distributed ones
using high-performance distributed computing. Most supervised machine learning
algorithms can be viewed as cost-function optimization methods [1], which can be
expressed as the following mathematical form:

min fx(x,D) (1)

where D ∈ Rm∗n is the sample dataset, x ∈ Rn represents the model parameter,
m is the number of samples and n is the dimension of the samples.

The alternating direction method of multipliers (ADMM) is an effective method
suitable for separable convex optimization, which has been used in distributed opti-
mization and statistical machine learning [2]. The ADMM algorithm can transform
the large global problem into several smaller, local sub-problems, and can derive the
solution of the global problem by coordinating the solutions of the sub-problems [2].
We can transform the original problem (1) into a global consensus optimization
problem, suitable for distributed environments, as shown below:

min
N∑
i=1

fi(xi, Di) + g(z), s.t. xi = z, i = 1, 2, . . . , N (2)

where Di ∈ Rmi∗n,
∑N

i=1mi = m, xi ∈ Rn is the local variable, z ∈ Rn is the global
consensus variable, fi : Rn → R is the cost function, and g : Rn → R

⋂
{∞} is the

regularization function.
In the formula (2), the objective function f(x,D) is divided into N sub-problems

fi(xi, Di), and the local variable xi is required to be consistent with the global vari-
able z, so it is very suitable for a parallel solution in the distributed environment.
The distributed ADMM algorithm is implemented by MapReduce in a study by
Lubell-Doughtie et al. [3] and by MPI in a study by Taylor et al. [4]. The dis-
tributed ADMM algorithms implemented in [3] and [4] are synchronous. Due to the
difference in computing and communication performance between different nodes,
the synchronization overhead becomes the bottleneck for shortening the running
time of the algorithm, and the asynchronous distributed ADMM algorithm becomes
a new research hotspot [5, 6, 7]. Compared with the synchronous ADMM algo-
rithm, the asynchronous ADMM algorithm can better solve the “slow node” prob-
lem caused by network delay and the difference between nodes in the synchronous
algorithm [7], as well as improve the convergence speed of the algorithm. How-
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ever, the asynchronous ADMM algorithm often needs more iterations to make it
converge. As the size of the distributed system increases, the algorithm makes con-
vergence more difficult to achieve. Moreover, the increase in the number of nodes
also makes the central node overloaded, affecting the overall performance of the
system. However, with the advances of computer hardware technology, it is very
common for a single machine to have multicore and multiprocessor in the modern
high-performance distributed system. Message Passing Interface (MPI), which is
one of the important means of parallel program development in multicore systems,
has different communication mechanisms between the intra-nodes and inter-nodes:
the processes in the same node transmit data through shared memory or cache,
while processes in different nodes transmit data through the network interface [8, 9].
Moreover, the different communication mechanisms cause the unbalanced arrival
problem [8].

In order to solve the problems such as the distributed ADMM algorithm has slow
convergence speed, the center node is overloaded, the unbalanced arrival problem
in the multicore cluster, and to improve the system communication efficiency and
speed up algorithm convergence, we propose a group-based asynchronous distributed
alternating direction method of multipliers (GAD-ADMM). In our proposal, every
process is viewed as a unit, and all the workers are grouped according to the process
allocation in the multicore cluster and the model similarity of datasets. One worker
is selected as the group leader in each group. Each worker is responsible for the
update of local variable and dual variable, and then sends the local variable to the
group leader to update the group variable. Finally, the master collects the group
variables to update the global variable. The master only communicates with the
group leaders, and the worker communicates with the master indirectly through
the group leader, thus reducing the communication between nodes and the load of
the master. In order to solve the unbalanced arrival problem, the GAD-ADMM
algorithm adopts an asynchronous protocol between groups.

The main contributions of this paper can be summarized as follows:

1. We propose a group-based asynchronous distributed ADMM, which improves
the communication efficiency by reducing the communication between nodes in
a multicore cluster, and accelerates the convergence of the algorithm by relaxing
the constraint conditions on global consistency.

2. The asynchronous communication protocol is used between groups to further
improve the convergence speed of the algorithm on the premise of ensuring the
convergence of the algorithm.

3. Instead of directly transmitting the group local variable and dual variable, the
group leader first performs related operations on the group local variable and
dual variable before transmitting the result to the master, further reducing the
communication between nodes and reducing the calculation load of the master.

4. The GAD-ADMM algorithm is implemented in a high performance multicore
distributed cluster. The benchmark experiments show that the GAD-ADMM
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algorithm can reduce the number of external iterations, improve communication
efficiency, and reduce the total time cost of the system by 35 % compared with
the AD-ADMM algorithm.

The remainder of the paper is organized as follows. The background and related
work of ADMM are introduced in Section 2. Section 3 introduces the GAD-ADMM.
The theoretical analysis of the GAD-ADMM is presented in Section 4. In Section 5,
experiments on logistic regression (LR) solved by the GAD-ADMM are presented.
Finally, we present the conclusion of this paper in Section 6.

2 BACKGROUND AND RELATED WORK

Many machine learning problems can be transformed into global consensus opti-
mization problems. The distributed ADMM algorithm based on global consistency
is used to solve the SVM problem by Zhang et al. [10] and solve the logistic regres-
sion problem by Lubell-Doughtie et al. [3]. The ADMM algorithm is introduced by
Boyd et al. [2] to solve the global consensus optimization problem. The iterative
formula is shown as follows:

xk+1
i := argmin

xi

(
fi(xi, Di) +

ρ

2

∥∥∥∥xi +
1

ρ
yki − zk

∥∥∥∥2
2

)
, (3)

zk+1 := argmin
z

(
g(z) +

ρ

2

N∑
i=1

∥∥∥∥xk+1
i +

1

ρ
yki − z

∥∥∥∥2
2

)
, (4)

yk+1
i := yki + ρ

(
xk+1
i − zk+1

)
(5)

where yi ∈ RN is the dual variable, ρ is the penalty parameter, and
∥∥∥x+ 1

ρ
y − z

∥∥∥
is the penalty term. It is shown in Equations (3), (4) and (5) that the updates of
local variables and dual variables can be executed parallel in different nodes, while
the aggregation of all local variables and dual variables is desired to solve the global
variable. Generally, one master can be used to update the global variable, and
N workers can be used to update local variables and dual variables independently.
Due to the fault tolerance of the machine learning algorithm and the decomposable
characteristics of the algorithm, moderate relaxation of the accuracy requirements
of the iterative process can make the algorithm converge faster.

According to different communication topologies, distributed ADMM algorithms
can be classified into point-to-point mode [11] and master-slave mode [3, 12]. The
global consensus optimization problems are usually solved using a master-slave
mode. According to different communication protocols, distributed ADMM algo-
rithms can be classified into synchronous and asynchronous distributed ADMM. In
the synchronous distributed ADMM algorithm, the master must wait to receive the
parameters of all workers before updating the global variable [2, 3, 4, 10], so the
speed of the algorithm is limited by the slowest node. To solve this problem, Zhang
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et al. [7] proposed an asynchronous distributed ADMM (async-ADMM). A new asyn-
chronous distributed ADMM (AD-ADMM) proposed by Chang et al. [12], which
does not need the loss function, must be a convex function. Chang et al. [13] fur-
ther proved that the AD-ADMM had linear convergence. Unlike the synchronous
distributed ADMM algorithm, the AD-ADMM master only needs to receive the
local variables from a partial list of workers to update the global variable z. As
the number of workers increases, the convergence of the distributed ADMM algo-
rithm becomes more difficult. To solve this problem, Wang et al. [14] proposed
a group-based distributed ADMM (GADMM): all the workers are grouped into sev-
eral groups by model similarity in the GADMM algorithm, and then the group
variables are used to replace local variables and update the global variable. The
convergence speed of the algorithm is improved by relaxing the constraint on global
consistency.

The distributed ADMM algorithms introduced above optimize the iterative for-
mat and transmission process of the distributed ADMM algorithm from different
angles, but do not consider the difference of data communication between intra-
nodes and inter-nodes. This kind of communication variability often leads to the
unbalanced arrival problem, which slows down the convergence speed of the algo-
rithm. However, as the number of distributed system nodes increases, the distributed
ADMM algorithm converges slowly. The GAD-ADMM algorithm proposed in this
paper adds a layer of grouping on the basis of the AD-ADMM algorithm framework,
where the workers are grouped according to the distribution of processes in the dis-
tributed system and the model similarity of datasets. In addition, it uses group
variables instead of local variables to update the global variable. To improve the al-
gorithm efficiency and solve the unbalanced arrival problem in the multicore cluster,
a reasonable grouping of the workers was adopted for the GAD-ADMM. Besides, the
convergence speed of the GAD-ADMM algorithm was accelerated by relaxing the
constraints of global consistency. This paper bridges the structural characteristics of
distributed systems with the characteristics of distributed algorithms and proposes
an efficient grouping asynchronous distributed ADMM (GAD-ADMM) algorithm.
The GAD-ADMM is also different from the GADMM in two ways:

1. the GAD-ADMM fully considers the communication differences between pro-
cesses in a multicore cluster, and takes these differences as the main factor of
process grouping;

2. instead of a synchronous protocol, the asynchronous protocol is used between
groups.

3 THE GROUP-BASED ASYNCHRONOUS DISTRIBUTED
ADMM (GAD-ADMM)

We define the notations included in the rest of this paper as follows.
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Definition 1. P represents the number of nodes in the system and Qi represents
the number of working processes in node Pi. Pij represents the jth process in the
ith node. All the processes in the node Pi are divided into Mi groups, and M is
the total number of groups. M1 is the number of groups of the processes of the
node where the master is located. N is the total number of workers. Wij represents
the jth worker in the Gth

i group. Dij represents the dataset processed by Pij or
Wij, and Cij is the number of samples of Dij. The data transfer rate in the node
is Vin B/s while between nodes is Vout B/s. The number of bytes occupied by the
parameter x is Fdim (the number of bytes occupied by the parameter y or z is also
Fdim).

As the size of the data increases, the algorithm becomes more and more dif-
ficult to converge. The main purpose of the GAD-ADMM is to improve commu-
nication efficiency and speed up the convergence of the algorithm by grouping the
processes. Based on the traditional master-slave mode, the GAD-ADMM adds a
grouping layer to form a two-layer master-slave mode. After grouping, there are
three different types of processes in the system: the master, the group leader and
the worker. The entire algorithm framework of GAD-ADMM consists of four steps.
First, the processes of workers are classified into several groups according to the
process allocation of the system and model similarity of datasets. Each group se-
lects one process as the group leader. Second, the worker updates local variable
and dual variable, then sends the local variable to the group leader, and finally
waits to receive the group variable and global variable from the group leader for the
next update. Third, the group leader gathers all the local variables of the group
to produce the group local variable and dual variable, then the group leader must
send the group variable to the master and wait to receive the global variable from
the master, and finally broadcast the group local variable and global variable to
the workers. Finally, the master gathers the group variables from group leaders to
update the global variable and then sends the updated global variable to the group
leaders. Due to the differences between groups and network delay, we adopt an
asynchronous communication protocol between groups. The master does not wait
for the parameters of all groups to arrive, but only waits for the parameters of some
groups (the number of groups can be set by the user) to arrive to update the global
variable. All these steps, with the exception of the first one, are iterated until the
algorithm converges.

3.1 The Decomposition of the Calculation
and the Grouping Method of the Process

In a multicore cluster, each node may be assigned multiple processes, and each
process processes an independent dataset, and updates the local variable and dual
variable in parallel. In the iterative process, formulae (3), (4) and (5) can be further
modified as follows:
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xk+1
ij := argmin

xij

(
fi(xij, Dij) +

ρ

2

∥∥∥∥xij +
1

ρ
ykij − zk

∥∥∥∥2
2

)
, (6)

zk+1 := argmin
z

(
g(z) +

ρ

2

P∑
i=1

Qi∑
j=1

∥∥∥∥xk+1
ij +

1

ρ
ykij − z

∥∥∥∥2
2

)
, (7)

yk+1
ij := ykij + ρ

(
xk+1
ij − zk+1

)
(8)

where Dij represents the dataset processed by the process Pij, and xij and yij repre-
sent the local variable and dual variable updated by Pij, respectively. According to
formula (7), the solution of the global variable needs to aggregate all local variables
and dual variables. As the number of processes increases, the load on the master
increases. This algorithm first performs group aggregation on local variables, and
then uses the aggregate value of the group to update the global variable in order to
reduce the load on the master. So how to divide the working processes into groups
appropriately is considered in this phase. Considering the high cost of data com-
munication between nodes, we first assign processes in the same node to the same
group by default. Then, we analyze the impact of different groups on system time
cost.

In each iteration, the master needs to aggregate the group variables of all groups,
and then broadcast the global variable to each group. Therefore, the total system
time (Ttotal) of the master includes the waiting time (Twait), the calculation time
(Tcal) and the sending time (Tsend). The waiting time is determined by the update
time of each group and the transfer time of model parameters. The calculation time
is the time when the master calculates the global variable. The sending time is the
time required for the master to transfer the global variable to the group leaders.
The waiting time of each iteration can be expressed as follows:

Twait = Tupdate + Ttrans (9)

where Tupdate represents the average update time of all groups, and Tupdate is mainly
determined by the update time of local variables in the workers, so the change of
the number of groups does not have a great influence on it. Ttrans is the transfer
time, which can be computed as formula (10), and includes the time of the model
parameters transferred between the master and the group leaders, and between the
group leader and the workers:

Ttrans = 3N
Fdim
Vin

+ 3
P∑
i=2

Mi

(
Fdim
Vout

− Fdim
Vin

)
. (10)

The sending time can be computed as formula (11) and the calculation time can
be computed as formula (12) in each iteration, in which Tadd represents the time of
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an accumulation operation:

Tsend = (M −M1)
Fdim
Vout

+M1
Fdim
Vin

, (11)

Tcal =
M∑
i=1

Tadd. (12)

Usually, Vin > Vout. It can be induced from (9), (10), (11) and (12) that when
the dataset and the number of processes are constant, as the number of groups M
increases, Ttrans, Tcal and Tsend increase, and Tupdate is basically unchanged. So
the total time of the system in one iteration increases. That is to say, in each
iteration, the fewer the number of groups, the higher the system communication
efficiency. So we first divide the processes in the same node into a group by de-
fault.

After grouping processes, the group variables are used instead of local variables
to update the global variable to speed up the convergence of the algorithm. There-
fore, we use the similarity of the dataset as another criterion for grouping, that is,
the model similarity of the dataset of the processes in the same group after group-
ing is higher. To achieve this purpose, the processes in the same node are further
grouped according to model similarity. In this algorithm, we use Euclidean distance
as the measure of similarity: the smaller the Euclidean distance, the larger the sim-
ilarity of datasets. Measuring model similarity of datasets also requires expensive
computing and communication overhead, so we use the similarity of the local vari-
able x to replace the model similarity of the dataset as the measurement indicator.
The Euclidean distance (Ed) between the process Pij and the process Pik can be
calculated by formula (13):

Ed(Pij, Pik) = ‖x1ij − x1ik‖2 (13)

where x1ij, x
1
ik ∈ Rn represent the first updated values of the local variables of Pij

and Pik, respectively. After calculating the similarity between processes, the L al-
gorithm [15] is used to determine the number of internal groups, and the DIANA
algorithm [18] is used to perform regrouping operations on each default group. The
DIANA algorithm is a top-down hierarchical clustering algorithm, which needs to
determine the number of groups in advance, while the L algorithm can automatically
determine the number of groups in the hierarchical clustering algorithm [15]. Other
clustering algorithms can also be used to regroup the processes. Local variables
are used instead of datasets as indicators for similarity measurement. Although it
is necessary to perform an update operation on the local variables in advance, the
updated values can be used as the initial value of subsequent iteration updates, so
it will not increase the total system time cost.
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3.2 Group-Based Parallel Iterative Update Strategy

The workers are responsible for updating local variables and dual variables, which
can be executed in parallel. Each worker first updates local variable and dual vari-
able, then sends the local variable to the group leader, waits to receive the group
variable and global variable from the group leader, and then updates the local vari-
able again with the group variable. xij represents the local variable and yij represents
dual variable of the jth worker in the group Gi. Using formulae (14) and (15), each
worker updates local variable and dual variable, respectively,

xki+1
ij := argmin

xij

(fi

(
xij, Dij) +

ρ

2

∥∥∥∥xij +
1

ρ
ykiij − z̃Gi

∥∥∥∥2
2

)
, (14)

yki+1
ij := ykiij + ρ

(
xki+1
ij − z̃Gi

)
(15)

where Dij ∈ Rmij∗n, xij ∈ Rn, yij ∈ Rn,
∑P

i=1

∑Qi

j=1mij = m, and z̃Gi
represents the

latest z-value received by the group Gi. In the GAD-ADMM, the workers in the
same group are synchronous, while in different groups they are asynchronous, so the
workers in the same group have the same z̃Gi

while workers in different group may
have different z̃Gi

. The procedure for the worker is described in Algorithm 1.

Because the datasets are grouped according to model similarity, the local variable
is set to the same as the group local variable. It is worth noting that since the local
variable is updated at the time of grouping, the first update of the local variable is
directly set equal to the initial value, which is the updated value of the local variable
in the process grouping. Update of the local variable is the optimal value for solving
the sub-problem (14). In this paper, we use the Trust Region Newton method
(TRON) [16] to solve the sub-problem. Of course, other optimization methods are
also applicable to this algorithm.

Algorithm 1: Group-based Asynchronous Distributed ADMM (GAD-
ADMM): Processing by worker j in the group Gi

Initialize x0ij, y
0
ij and set ki=0.

set x1ij = x0ij and update yki+1
ij using (15)

send x1ij to the group leader

repeat
wait until receiving z̃Gi

and xGi
from the group leader.

set ki = ki + 1
xij = xGi

(16)

update xki+1
ij , yki+1

ij using (14), (15)

send xki+1
ij to the group leader.

until the stopping conditions are satisfied ;
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3.3 Group-Based Parameter Aggregation Communication

After grouping the processes, the process with the minimum process number is
selected as the group leader of the group. The group leader gathers all local variables
from the workers in the group, then updates the group variable xGi

and the group
dual variable yGi

. After the group leader updates the values of xki+1
Gi

and yki+1
Gi

, the
updated values can be directly sent to master. It can be seen from Equation (7)
that, when solving the global variable, we need to sum up yi/ρ + xi. Therefore,
the calculation can be performed prior to the transmission, leading the calculation
result wGi

(wGi
should be computed as formula (17)) transferred to the master

directly instead of xGi
and yGi

. In this case, the transfer time can be calculated by
formula (18), it can be induced by formulae (10) and (18) that T

′
trans < Ttrans:

wki+1
Gi

= yki+1
Gi

/ρ+ xki+1
Gi

, (17)

T
′

trans = 3N
Fdim
Vin

+ 2
P∑
i=2

Mi

(
Fdim
Vout

− Fdim
Vin

)
. (18)

According to the grouping method, the model similarity of a dataset between
workers in the same group is relatively high, and workers in the same group are
in the same node, so the synchronous communication protocol is adopted between
workers in the group. Considering that the number of samples on each worker may
be different, the group variable is calculated from the weighted average of local
variables of all the workers in each group. We define ηij as the ratio of dataset Dij

in the group Gi, and ηij can be computed by formula (19). Then, the group variable
xGi

can be updated as shown in formula (20), and the group dual variable yGi
can

be updated using formula (21):

ηij = Cij/
∑

Wij∈Gi

Cij, (19)

xki+1
Gi

:=
∑

Wij∈Gi

ηijx
ki+1
ij , (20)

yki+1
Gi

:= ykiGi
+ ρ

(
xki+1
Gi
− z̃Gi

)
(21)

where z̃Gi
represents the latest z-value received by the group leader of group Gi.

After this, the group leader sends wGi
to the master, then waits to receive the

global variable from the master, and finally broadcasts the group local variable and
global variable to the workers. The whole procedure for the group leader is shown
in Algorithm 2.
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Algorithm 2: Group-based Asynchronous Distributed ADMM (GAD-
ADMM): Processing by the group leader of the group Gi

Initialize xGi
, yGi

, zGi
and set ki=0.

repeat
wait xij from all workers in the group Gi

update {xki+1
Gi

, yki+1
Gi

, wki+1
Gi
} using (20), (21), (17)

send {wki+1
Gi
} to the master

wait until receiving z̃Gi
from the master.

broadcast z̃Gi
and xGi

to all workers in the group Gi.
set ki = ki + 1

until the stopping conditions are satisfied ;

3.4 Global Variable Data Synchronization and Update
Based on Bounded Delay

The master waits to receive the group variables from the group leaders, updates the
global variable z with the group variables, and then sends the new global variable
to the corresponding group leaders. Only a partial synchronization is required for
each iteration of the master, not full synchronization for all groups. The master
only broadcasts the global variable to the corresponding groups in each iteration.
However, since the number of processes in each group may be different, we use the
weighted value of the grouped variables to solve the global variable. Assuming that
there are NGi

processes in the group Gi, the global variable can be updated using
formulae (22) and (23).

wk+1
Gi

=

w̃Gi
, ∀Gi ∈ Ak,

wkGi
, ∀Gi ∈ Ack,

(22)

zk+1 := argmin
z

(
g(z) +

ρ

2

M∑
i=1

MNGi

N

∥∥wk+1
Gi
− z
∥∥2
2

+
θ

2

∥∥z − zk∥∥2
2

)
(23)

where Ak represents the index subset of group leaders received by the master in
iteration k, Ack represents the complementary set of Ak, and ρ and θ are the penalty

parameters. The penalty term
∥∥z − zk∥∥2

2
is added to further ensure the convergence

of the algorithm. The whole procedure for the master is shown in Algorithm 3.
In the GAD-ADMM, the bulk synchronous parallel (BSP) mode is adopted

between workers in the same group, while the stale synchronous parallel (SSP) [17]
mode is adopted between groups. The workers in the same group have the same
iteration cycles and between groups may have different iteration cycles. The SSP
mode achievement involves several steps. First, the minimum synchronized block
size is set to A (M ≥ A ≥ 1), indicating that the global variable z will not be
updated until the master has successfully received the group variables from A group
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Algorithm 3: Group-based Asynchronous Distributed ADMM (GAD-
ADMM): Processing by the master

Initialize z and set k = 0, dGi
= . . . = dGM

= 0.
repeat

wait until receiving a minimum of A updated variables from the group
leaders and dGi

≤ d for all i ∈ {1, . . . ,M}
update

dGi
=

{
0 : ∀Gi ∈ Ak
dGi+1 : ∀Gi ∈ Ack

(24)

update zk+1 using (23).
broadcast zk+1 to the group leaders in Ak.
set k = k + 1

until the stopping conditions are satisfied ;

leaders. Second, the maximum delay cycle is set to d (d ≥ 1), and every group must
update at least once in this cycle. Every group leader has its own delay counter
dGi

, which is stored on the master. When the wGi
from the group Gi arrives at the

master, the corresponding dGi
is set to 0, otherwise, dGi

is increased by one as the
master’s counter k increments. The dGi

for each group must be less than d. The
GAD-ADMM reduces to synchronous when A is equal to M or d is set to 1. Figure 1
shows the timing diagram of the GAD-ADMM when the threshold A is set to 2 and
cycle d is set to 3.
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Figure 1. The timing diagram of the GAD-ADMM (A = 2, d = 3): P0 represents the
master, and Pij represents the jth worker in the group Gi. In this figure, there are
8 workers grouped into 3 groups, in which P11, P21 and P31 are the group leaders of the
corresponding groups. The number in the upper right corner of the variable represents
the number of iterations.
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4 THEORETICAL ANALYSIS

In this section, we analyze the convergence of the GAD-ADMM and further compare
the convergence speed of the GAD-ADMM with the AD-ADMM.

4.1 Convergence Analysis

In this section, we analyze the convergence of the GAD-ADMM, in which the aug-
mented Lagrangian for (2) can be modified to the following formula:

Lρ(x, y, z) =
M∑
i=1

fi(xGi
) + g(z) +

M∑
i=1

MNGi

N

(
〈yGi

, xGi
− z〉+

ρ

2
‖xGi

− z‖22
)
. (25)

First, we make the assumption as follows to simplify analysis.

Assumption 1. The function g is proper, closed and convex; Each function fi
is a convex function, and there is a constant L ≥ 0 such that the gradient of fi
satisfies the Lipschitz continuous condition; Moreover, problem (2) has an optimal
solution f ?, which is bounded; Set d ≥ 1 as the maximum bounded delay; For all
i ∈ {1, . . . ,M} and k ≥ 0, it must be that i ∈ Ak

⋃
Ak−1

⋃
. . .
⋃
Amax(k−d+1,−1), and

there exists a constant B ∈ [1,M ] such that |Ak| ≤ B for all k (|Ak| represents the
number of Ak).

Theorem 1. If Assumption 1 is true, then the sequence of
(
{xki }Ni=1, {yki }Ni=1, z

k
)

generated by the GAD-ADMM is bounded and has limit points, which satisfy the
KKT conditions of problem (2) under the condition that formulae (26), (27), (28)
are established:

∞ > Lρ
(
x0, z0, y0

)
− f ? ≥ 0, (26)

ρ ≥
((

1 + L2
)

+

√
(1 + L2)2 + 8L2

)
/2, (27)

θ >
(
B
(
1 + ρ2

)
(d− 1)2 −Mρ

)
/2. (28)

The proof of Theorem 1 is similar to that of Corollary 1 in [12]. It is implied
by Theorem 1 that the GAD-ADMM is guaranteed to converge to the set of KKT
points so long as ρ and θ are large enough. The reciprocal of θ can be considered as
the step size of z.

4.2 Convergence Speed Analysis

We further analyze the convergence speed of the GAD-ADMM and the AD-ADMM
in this section. First, we analyze the update speed of the local variable for each
worker. We define the objective function of the sub-problem as follows:

F (xi) = f(xi) + h(xi) (29)
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where h(xi) = ρ
2
‖xi − z + 1

ρ
yi‖2, f(xi) is the loss function and f(xi) is convex. We

also denote xkii as the optimal value of the worker i in iteration ki.

Lemma 1. Assuming that the AD-ADMM and the GAD-ADMM have the same
method for updating the global variable z, all N workers in the GAD-ADMM are
classified into M groups. For any ki ≥ 1, the local variable xkii sequence satisfies the
formula (30):

N∑
i=1

F (xkii ) ≥
M∑
i=1

NiF

 ∑
Wij∈Gi

ηi,jx
ki
ij

 (30)

where Ni represents the number of the workers in the group Gi, and ηi,j is the weight
of Wij in the group Gi.

Proof. We first analyze the situation that there are only two workers (Wa and Wb)
in the group, and we define xc is the average of the local variables xa and xb. In the
GAD-ADMM, the workers in the same group are synchronous, so the workers in the
same group have the same ki and z̃Gi

. Because f(x) is convex, we can induce that

f(xa) + f(xb) ≥ 2f(xc) (31)

when ki = 2, it can be deduced from (14), (15) and (31) that

F (x2a) + f(x2b)− 2f(x2c) ≥ (ρ/2)
∥∥x2a − z̃1Gi

+ (1/ρ)y1a
∥∥2

+ (ρ/2)
∥∥x2b − z̃1Gi

+ (1/ρ)y1b
∥∥2 − ρ∥∥x2c − z̃1Gi

+ (1/ρ)y1c
∥∥2 ≥ (ρ/2)

∥∥x2a + x1a − z̃1Gi

∥∥2
+ (ρ/2)

∥∥x2b + x1b − z̃1Gi

∥∥2 − (ρ/4)
∥∥x2a + x1a + x2b + x1b − 2z̃1Gi

∥∥2 .
(32)

Similar, when ki > 2,

F (xkia ) + f
(
xkib
)
− 2f

(
xkic
)
≥ (ρ/2)

∥∥∥∥∥∥
ki∑
i=1

xia −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

+ (ρ/2)

∥∥∥∥∥∥
ki∑
i=1

xib −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

− ρ

∥∥∥∥∥∥
ki∑
i=1

xic −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

≥ (ρ/2)

∥∥∥∥∥∥
ki∑
i=1

xia −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

+ (ρ/2)

∥∥∥∥∥∥
ki∑
i=1

xib −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

− (ρ/4)

∥∥∥∥∥∥
ki∑
i=1

xib +
ki∑
i=1

xib − 2
ki−1∑
i=1

z̃iGi

∥∥∥∥∥∥
2

≥ 0. (33)
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If there are p workers in a group, then in the kthi iteration, it can be deduced
that

p∑
i=1

F
(
xkii
)
− pF

(
1

p

p∑
i=1

xkii

)
≥ (ρ/2)

p∑
j=1

∥∥∥∥∥
ki∑
i=1

xij −
ki−1∑
i=1

z̃iGi

∥∥∥∥∥
2

− ρ

2p

∥∥∥∥∥
ki∑
i=1

p∑
j=1

xij − p
ki−1∑
i=1

z̃iGi

∥∥∥∥∥
2

≥ 0. (34)

When all workers are divided intoM groups, and the number of workers in theGi

group is Ni, the difference between the original function F (xi) and the function F (xi)
after grouping is:

N∑
i=1

F
(
xkii
)
−

M∑
i=1

NiF

 ∑
Wij∈Gi

ηi,jx
ki
ij

 =
N∑
i=1

F
(
xkii
)
−

M∑
i=1

NiF

(
1

Ni

Ni∑
j=1

xkiij

)

≥
M∑
i=1


Ni∑
j=1

∥∥∥∥∥
ki−1∑
i=1

z̃iGi

∥∥∥∥∥
2

− ρ

2Ni

∥∥∥∥∥
ki∑
i=1

Ni∑
j=1

xiij −Ni

ki−1∑
i=1

z̃iGi

∥∥∥∥∥
2
 ≥ 0.

(35)

2

The main difference between the GAD-ADMM and the AD-ADMM is based
on the sum of the local variable xkii sequence, so F (ηxi) is going down faster than
F (xi).

Moreover, we define the objective function of the AD-ADMM and the GAD-
ADMM as follows:

G(xk, zk) =
N∑
i=1

fi(x
k
i ) + g(zk), (36)

Ḡ
(
x̄k, z̄k

)
=

N∑
i=1

fi
(
x̄ki
)

+ g
(
z̄k
)
. (37)

Theorem 2. If g(z) = β‖z‖2and the synchronous communication protocol is used
both in the GAD-ADMM and the AD-ADMM, then

G(xk, zk)− Ḡ(x̄k, z̄k) ≥ ρ2M(N −M)

N2(2β +Mρ)2(2β +Nρ)

∥∥vk+1
i

∥∥2 (38)

where vk+1
i =

∑N
i=1

(
xk+1
i + 1

ρ
yk+1
i

)
.
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Proof. Since g(z) = β‖z‖2, then it can be induced by (16),(20) and (23) that

x̄i
k =

∑
Wij∈Gi

ηi,jx
k
ij, (39)

z̄k =
Mρ

N(2β +Mρ)

M∑
i=1

Ni

(
xkGi

+ (1/ρ)ykGi

)
. (40)

Since f(x) is a convex function and non-negative, when the N workers are
grouped into M groups, the loss function of sub-problem satisfies:

N∑
i=1

fi(x
k
i ) ≥

M∑
i=1

Nifi

 1

Ni

∑
Wij∈Gi

xkij

 ≥ M∑
i=1

Nifi

 ∑
Wij∈Gi

ηi,jx
k
ij

 . (41)

It can be induced that

zk+1 =
ρ

2β +Nρ

N∑
i=1

(
xk+1
i + (1/ρ)yk+1

i

)
, (42)

z̄k =
Mρ

N(2β +Mρ)

M∑
i=1

Ni

(
xkGi

+ (1/ρ)ykGi

)

≤ Mρ

N(2β +Mρ)

M∑
i=1

∑
Wij∈Gi

(
xk+1
ij + (1/ρ)yk+1

ij

)

≤ Mρ

N(2β +Mρ)

N∑
i=1

(
xk+1
i + (1/ρ)yk+1

i

)
≤ zk+1, (43)

g
(
zk+1

)
− g

(
z̄k+1

)
≥ g

(
ρvk+1

i

2β +Nρ

)
− g

(
Mρvk+1

i

N(2β +Mρ)

)

≥ M(ρvk+1
i )T

N(2β +Mρ)

(
ρvk+1

i

2β +Nρ
− Mρvk+1

i

N(2β +Mρ)

)
=

ρ2M(N −M)

N2(2β +Mρ)2(2β +Nρ)

∥∥vk+1
i

∥∥2 . (44)

Therefore, it can be induced by (41) and (44) that

G
(
xk, zk

)
− Ḡ

(
x̄k, z̄k

)
≥ g

(
zk+1

)
− g

(
z̄k+1

)
≥ ρ2M(N −M)

N2(2β +Mρ)2(2β +Nρ)

∥∥vk+1
i

∥∥2 .
(45)
2
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Theorem 2 indicates that when M < N , the difference between the object
function of the AD-ADMM and the GAD-ADMM is greater than 0, and the smaller
the M , the greater the difference. It also indicates that when M is equal to N , the
GAD-ADMM is equal to the AD-ADMM.

5 EXPERIMENTS AND DISCUSSION

In this section, we solve the logistic regression problem with L2 regularization by
the GAD-ADMM and the AD-ADMM [12]. The problem is described as follows:

min
1

N

N∑
i=1

li
(
DT
i xi − bi

)
+ β‖z‖2, s.t. xi = z, i = 1, 2, . . . , N. (46)

where D ∈ Rm∗n is the sample dataset, m represents the number of samples, n rep-
resents the number of features of samples, bi ∈ {0, 1} is the label of the sample, and
β > 0 is the scalar regularization parameter.

5.1 Experimental Environment and Parallel Implementation

The experimental platform of this paper is the Ziqiang 4000 high-performance clus-
ter of Shanghai University. Each node of the cluster has an Intel E5-2690 CPU
(2.9 GHz/8-core) processor and 64 GB memory (RDIMM DDR3 1 600 MHz), the net-
work is gigabit Ethernet. We use the kdd2010 (bridge to algebra)1 as the datasets,
which contains 19 264 097 training samples and 1 163 024 features. All datasets are
divided into training/testing datasets at a ratio of 3:1 for experimental testing.
We implement the algorithm using the MPI implementation MPICH v3.2.12 as the
inter-processor communication and C++ as the programming language.

The parallel implementation of GAD-ADMM and AD-ADMM uses eight com-
pute nodes, and each node in the system is allocated with eight processes. We select
one process as the master and other processes as the workers. The scalar regulariza-
tion parameter β is set to 2. In the GAD-ADMM algorithm, we use the L algorithm
to obtain the total number of groups M, which is eight.

The TRON [16] method is used to solve the local variables. The parameter ρ is
set to 6 and the super parameter C is set to 1. We use the primal residual r and
dual residual s as the stop conditions, which should satisfy the conditions shown
in (47) and (48) to stop the iteration.

‖rk‖2 ≤ ABS ∗
√
Mn+ REL ∗max

{
‖xkGi
‖2, ‖zk‖2

}
, (47)

‖sk‖2 ≤ ABS ∗
√
Mn+ REL ∗

∥∥ρykGi

∥∥
2

(48)

1 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2 http://www.mpich.org/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.mpich.org/
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where
∥∥rk∥∥2

2
=
∑M

i=1

∥∥xkGi
− zk

∥∥2
2
,
∥∥sk∥∥2

2
= Mρ2

∥∥zk − zk−1∥∥2
2
. The absolute error

ABS and relative error REL are both set to 0.001.

5.2 Experiment Test and Analysis

In this section, the performance of the GAD-ADMM is compared with the AD-
ADMM in terms of the convergence speed, the system cost and the accuracy. Fur-
thermore, the influences caused by the different parameters and different groups are
also analyzed for the GAD-ADMM.

5.2.1 Convergence and Convergence Speed Test

In this section, the convergence of the GAD-ADMM and the AD-ADMM will be
tested. The convergence of these two algorithms is compared when different values
of threshold A are taken. We set d = 5, θ = 0 in both of the algorithms. The results
are shown in Figures 2 and 3.
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Figure 2. The convergence of the AD-ADMM
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Figure 3. The convergence of the GAD-ADMM
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Figures 2 and 3 show that the GAD-ADMM algorithm requires fewer iterations
than that of the AD-ADMM to converge in a peer-to-peer situation. This is because
in the GAD-ADMM, we relax the constraint conditions on global consensus, and the
objective function is faster to converge as analyzed in Section 4. When M is fixed,
the bigger the value of threshold A, the fewer the iterations required to converge.
Because the more information the master receives from the leaders in each iteration,
the less the “old values” used to update z, and the faster the algorithm converges.
When A is larger, it may take longer for the master to wait for receiving, which
shown in the next section.

5.2.2 System Time Cost and Accuracy Test

This section tests the system time cost and accuracy of the AD-ADMM and the
GAD-ADMM. The system time cost includes the waiting time, the calculation time
and the sending time. The accuracy of the system (Accur) is computed as follows:

Accur = (Ntp +Ntz)/Ntotal (49)

where Ntp represents the number of “true positive”, Ntz represents the number of
“true zero” and Ntotal represents the total number of testing datasets. The param-
eters of this section are set in accordance with Section 5.2.1. Figure 4 shows the
system time cost of the master of the AD-ADMM and the GAD-ADMM in different
thresholds. Figure 5 shows the accuracy of these two algorithms.

Figure 4 shows that the GAD-ADMM algorithm requires less system time than
that of the AD-ADMM in a peer-to-peer situation. This is because only the group
leader communicates directly with the master in the GAD-ADMM, which reduces
the traffic between nodes. Thus, the waiting time and sending time for each iteration
are reduced. At the same time, according to Equation (12), the smaller the number
of groups, the less time each calculation takes. Furthermore, the smaller the number
of groups, the less the number of external iterations, so the total system time cost is
reduced. If M is constant, when the threshold value A decreases, the total number
of iterations increases, and the calculation time increases, but the waiting time and
sending time for each iteration decreases. So selecting appropriate A can minimize
the system total time.

Figure 5 shows that compared with the AD-ADMM, the accuracy of the GAD-
ADMM decreases, that is because the convergence conditions are relaxed. It also
shows that the accuracy decreases less than 0.2 % when the total time is reduced by
at least 35 % under peer conditions.

5.2.3 System Time Cost Test with Different Parameters

In Section 3.3, we mentioned that the leader can send parameters x and y to the
master respectively, or send parameter w to the master. Figure 6 shows the system
time allocation of the GAD-ADMM and the AD-ADMM in these two cases when
the threshold A is equal to the group number M .
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Figure 4. The system time cost of the AD-ADMM and the GAD-ADMM: A is the thresh-
old and M is the number of groups
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Figure 5. The accuracy of the AD-ADMM and the GAD-ADMM: A is the threshold and
M is the number of groups

Figure 6 shows that when the group leader sends w to the master, the wait-
ing time is reduced compared to sending x and y. This is because the parameters
that the group leader transmits to the master each time are reduced by nearly half.
Compared with the AD-ADMM, the GAD-ADMM does not have obvious advan-
tages when transferring w. That is because the number of processes communicating
directly with the master decreases after grouping, and the performance improvement
is not obvious when the system bandwidth is high.
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Figure 6. The system time allocation of the AD-ADMM and the GAD-ADMM when
sending different types of parameters

5.2.4 System Time Cost Test of GAD-ADMM with Different Groups

In order to analyze the effects of different groups on the system time cost of the
GAD-ADMM, the processes within the nodes are divided into groups 1, 2, 4 and 8
(the number of groups of the node where the master is located is 7), that is, M is
taken as 8, 16, 32, and 63. Figure 7 shows the allocation of system time cost of the
master under different groups and different thresholds. It shows that the system
time cost decreases as the number of groups decreases in peer to peer conditions.
The main reason is that the reduction of the number of groups makes the system
converge faster. Another reason is that the system communication efficiency is
improved by reducing the communication between nodes.

6 CONCLUSION

The GAD-GADMM algorithm is proposed in this paper for global consensus opti-
mization problem. A grouping layer is added to the star topology, and the processes
are grouped according to the process allocation in the multicore cluster and the
model similarity of datasets. The convergence speed of the algorithm is improved by
relaxing the global consistency constraint and reducing the communication between
nodes. In the GAD-ADMM, the workers in the same group are synchronous while
in different groups they are asynchronous, and we use partial barrier and bounded
delay to guarantee the convergence of the asynchronous algorithm. In order to re-
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Figure 7. The system time allocation of the GAD-ADMM with different groups (M) and
thresholds (A)

duce the master load, the parameter that the group leaders send to the master is w,
not x and y, thus further reducing the system time cost. The convergence of the
GAD-ADMM is proved both in theory and experiments. We also explained why
the GAD-ADMM has a faster convergence speed than the AD-ADMM. The experi-
ments on LR problem show that compared with the AD-ADMM, the GAD-ADMM
can reduce the total system time by at least 35 % when the accuracy is reduced less
than 0.2 % under peer conditions. Finally, the effects of different parameters and
different number of groups on the performance of the GAD-ADMM algorithm were
analyzed. The grouping method proposed in this paper first divides the processes in
the same node into a group by default, and then further groups the default groups.
The minimum number of groups is the number of nodes. It is not considered that
the number of groups is less than the number of nodes, which will be studied in the
future.
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Abstract. An important aspect of modern computer systems is their ability to
adapt. This is particularly important in the context of the use of mobile de-
vices, which have limited resources and are able to work longer and more efficiently
through adaptation. One possibility for the adaptation of mobile service execution
is the use of the Mobile Cloud Computing (MCC) paradigm, which allows such
services to run in computational clouds and only return the result to the mobile
device. At the same time, the importance of machine learning used to optimize
various computer systems is increasing. The novel concept proposed by the au-
thors extends the MCC paradigm to add the ability to run services on a PC (e.g.
at home). The solution proposed utilizes agent-based concepts in order to create
a system that operates in a heterogeneous environment. Machine learning algo-
rithms are used to optimize the performance of mobile services online on mobile
devices. This guarantees scalability and privacy. As a result, the solution makes it
possible to reduce service execution time and power consumption by mobile devices.
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In order to evaluate the proposed concept, an agent-based system for mobile service
adaptation was implemented and experiments were performed. The solution devel-
oped demonstrates that extending the MCC paradigm with the simultaneous use of
machine learning and agent-based concepts allows for the effective adaptation and
optimization of mobile services.

Keywords: Agent-based system, machine learning, adaptation, mobile service, mo-
bile cloud computing

1 INTRODUCTION

The immense popularity of mobile devices, mainly smartphones, has brought about
a rapid development of mobile services. At the same time, this development of
mobile devices, including the availability of various sensors, has caused that the
services offered are becoming still smarter. They can adapt to the context in which
they are located and are able to learn some of their users’ behavioral patterns.
The user can obtain certain hints and context-based information from the device
(location, time, network communication method, light level, pulse, etc.) and from
the knowledge acquired in the learning process. The user may use this information
for a great variety of purposes, e.g. determining the best route or evaluating his/her
health. However, some mobile services overload the mobile device, especially in the
context of energy consumption. In such a situation, the Mobile Cloud Computing
(MCC) paradigm can be used. This paradigm makes it possible to execute these
services (or elements) in the cloud. Utilizing cloud resources allows service-oriented
computations (which would otherwise be resource-intensive) to be performed faster
using cloud infrastructure, and the results are sent to the mobile device. The ability
to change the location where the service is run makes it possible to optimize the
execution time of the service, also taking into account the energy consumption of
the mobile device. In MCC, in order to decide whether the mobile service should
run on the mobile device or in the cloud in the case in question, machine learning
algorithms can be used. An analysis of existing MCC solutions has shown that
the concept of using machine learning to optimize such systems has not yet been
thoroughly investigated. There are a few articles dealing with this topic such as [1]
and [2], also including the work conducted by the authors of this article: [3, 4]
and [5]. In addition, there are no comprehensive studies discussing the possibility
of extending the MCC paradigm to service-oriented computations on local PCs,
which has been demonstrated in a novel way by the authors of this article. Such
an extension allows the operating costs of a system to be decreased, but the system
becomes more complex. In this case, the use of machine learning is even more
justified.

A distributed system, like the one considered in this paper, is a natural envi-
ronment for agent-based solutions. If the environment is complex, it is very difficult
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to design all system details a priori. To overcome this problem, one can apply
a learning algorithm which makes it possible to adapt agents to the environment. In
multi-agent systems, most applications use reinforcement learning [6, 7, 8]. However,
in a complex environment (where the state-space is large), reinforcement learning
needs time to reach satisfactory performance and the knowledge learned is very
difficult to analyze. These problems suggest that other solutions, like supervised
learning, should be sought. It appears that this method can be also applied to
multi-agent systems and it yields results faster and in a human-readable form [9].

The main novelty of the solution proposed in this paper is the application of
the agent-based framework with agents which learn autonomously on a mobile de-
vice. This makes it possible to achieve scalable learning, because no computations
are performed on the data collected from mobile devices. It also protects privacy,
because the information collected about task execution is processed locally instead
of being sent to a server. An agent adapts the mobile service execution strategy
on-line. Mobile services may be executed on a computational cloud, a local PC
(personal computer) or a mobile device. The experiments are performed in a real
environment.

The structure of the article is as follows: Section 2 presents the analysis of
research in the field of agent-based systems in the context of mobile devices, Section 3
presents the concept of agent-based system for mobile service adaptation, Section 4
describes the implementation of this system, Section 5 introduces the results of the
experiments conducted and Section 6 contains conclusions.

2 RELATED WORK

Nowadays, an increase in the importance of agent-based systems can be noticed, es-
pecially when they are used as parts of heterogeneous environments. This approach
to developing systems facilitates communication between their elements located in
different places. Benefits of agent-based systems are that they are composed of intel-
ligent elements which are capable of learning and adapting. These elements are able
to communicate with one another and share experiences, which further helps the
evolution of the system to adapt to the current state of the environment. For this
reason, agent-based systems are among the best platforms for building intelligent
adaptive systems.

2.1 Learning Agents

The development of a complex, heterogeneous system is very difficult. It is practi-
cally impossible to foresee and design optimal behavior for all situations that may
arise. Therefore the agents must adapt to the situations they encounter. One of the
most commonly used adaptation mechanisms that may be applied for this purpose
is agents learning optimal behaviors.

The most common technique used for learning strategies in agent-based systems
is reinforcement learning [6, 7, 8]. The learning agent model assumes that the agent
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interacts with the environment in discrete steps, sets its state s by observing the
environment, executes actions and receives a reward r ∈ R. The reward is high if
its actions are good, and low if they are bad. The agent has to learn which ac-
tion should be executed in a given state. The formal model of learning is based
on a Markov process. Reinforcement learning algorithms are simple and computa-
tionally inexpensive. However, the process of learning requires a lot of trials and
without complex extensions it is inefficient in large state spaces [10]. This is a result
of the curse of dimensionality, a well-known problem in dynamic programming [11],
on which reinforcement learning is based. Another disadvantage of reinforcement
learning is the unreadability of the knowledge generated because the knowledge
learned is represented in a low-level manner (e.g. Q-value tables). Limitations of
reinforcement learning can be overcome by adding extensions to the basic algorithm.
One of the most impressive results has been achieved by combining reinforcement
learning and neural networks [12]. The Deep Q-Network developed as a result of
this approach allows the processing of large-dimensional spaces and even image pro-
cessing. However, it should be noted that such learning exhibits high computational
complexity. Therefore, currently it cannot be implemented on mobile devices.

Evolutionary computation, which is a second popular method of adaptation used
in agent-based systems, relies on using multiple agent generations to improve perfor-
mance [6]. This approach is computationally expensive, because many populations
of agents have to be maintained. As a result, it is not an appropriate choice for
mobile devices. Therefore this type of adaptation is not considered here.

There are few works on supervised learning applications in multi-agent systems.
In [13], rule induction is used in a multi-agent system for vehicle routing problems.
However, in that work the learning is done offline. First, rules are generated by the
AQ (algorithm quasi-optimal) algorithm (the same as used in this work) from global
traffic data. Next, agents use these rules to predict traffic. An extension of that
approach is [14]. Agents use a hybrid learning algorithm, which is executed online.
Rule induction is used to decrease the size of the search space for reinforcement
learning. Another approach is applied in [15, 16], where Airiau et al. add learning
capabilities to the Belief-Desire-Intention model. Decision tree learning is used to
support plan applicability testing. In [17], the C4.5 algorithm is used by agent to
build a model of teammates.

2.2 Mobile Cloud Computing

The development of technology, including the increase in processing power, the
ongoing miniaturization, and improving availability of various sensors, means that
mobile devices, including smartphones, have better technical parameters and more
computing power each year, which results in a broader range of applications. The
development of mobile devices has improved our ability to determine the context of
the device and its user. Information on the context has enabled the development of
solutions that are capable of learning how they should operate in order to optimize
the use of mobile device resources and also meet user expectations as best as possible.
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A large number of existing solutions only utilize the resources of mobile de-
vices and information about context [18]. Devices learn how to best perform ser-
vices based on the experience acquired. However, these solutions do not enable
a permanent reduction in mobile device resource consumption or a significant in-
crease in the execution speed of mobile services. This is why another idea – the
Mobile Cloud Computing paradigm – is becoming increasingly popular. In this
concept, cloud computing is used for the purpose of offloading mobile services to
the cloud in order to increase operating speed and reduce the load on mobile de-
vices. There are many solutions using the MCC paradigm such as Adaptive Code
Offloading for Mobile Cloud Applications, AIOLOS, AlfredO (An Architecture for
Flexible Interaction with Electronic Devices), CACTSE (Cloudlet Aided Coopera-
tive Terminal Service Environment), COMET (Code Offload by Migrating Execution
Transparently), COSMOS (Clouddb for Seamless Mobile Services), Cuckoo, Elijah,
EMCO, IC-Cloud (Computation Offloading to an Intermittently-Connected Cloud),
MALMOS (Machine Learning-based Mobile Offloading Scheduler), MAUI (Mobile
Assistance Using Infrastructure), Mirroring Mobile Device, Mobile Cloud Execu-
tion Framework, Mobility Prediction Based on Machine Learning, MOCHA (Mobile
Cloud Hybrid Architecture), Replicated Application Framework, ThinkAir, VMCC
(Virtualization in Mobile Cloud Computing), MpOS (Multiplatform Offloading Sys-
tem), VCLA (Virtual Cloud Learning Automata), Service-Oriented Context-Aware
Recommender System, Mobile Multimedia Processing System and Service-Oriented
Mobile Processing System (SMPS). However, only a few solutions (MALMOS, IC-
Cloud, VCLA, Service-Oriented Context-Aware Recommender System, Mobile Mul-
timedia Processing System and SMPS) utilize machine learning in order to determine
the optimal location for executing the service (the mobile device or the cloud)

The architecture proposed in the MALMOS solution [1] enables decisions to
be made, with the application of machine learning technologies, when to offload
applications from the mobile device to the cloud. For the offloading, the solution
uses the DPartner environment (Java-based on-demand offloading framework). In
order to properly teach the system where it should run applications so that they
launch faster, the solution uses an online training mechanism. This solution only
determines the optimal location for executing the application/service and completely
fails to address the important aspect of energy consumption during the launching
of the application and transferring the data to the cloud and also the amount of
energy used by the online learning mechanism.

Another solution, IC-Cloud [2], uses machine learning to estimate task execu-
tion times for the mobile device and for the cloud. These are used to determine
the location where the task is to be executed. The time estimation system uses two
components simultaneously: the offline component, which prepares the execution
model for each task for a specific device prior to the launch of the application, and
the online component, which utilizes the online training mechanism with machine
learning algorithms on an ongoing basis. In addition, the solution also estimates the
quality of network connection based on historical data and on radio signal strength.
This solution requires the prior offline setup of the task execution model for each mo-
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bile device separately, which may make broader application of the solution difficult.
Neither of the solutions (MALMOS, IC-Cloud) are being developed any longer.

The idea of using MCC to optimize the operation of mobile devices is still
valid and important [19]. In [20], the authors propose the MpOS system (Multi-
platform Offloading System), which allows offloading for mobile applications (An-
droid/Windows Phone) using the MCC and cloudlet concepts. The decision when
to offload tasks is made by the Dynamic Decision System (DDS) on the basis of
predefined simple metrics such as RTT (round-trip time) or the type of network
connection. At the same time, the authors investigate the impact of various types
of serialization methods on the performance of the offloading process itself. The
DDS system does not take into account the specificity of individual mobile applica-
tions nor their requirements related to the use of the processor or energy consump-
tion.

Another article [21] presents an extension of the MCC concept using the cloud
learning automata algorithm (VCLA). Some mobile devices are selected using Learn-
ing Automata (LA) as ad hoc virtual cloud elements and used to perform calcula-
tions. This complements the MCC concept when there is no connection to the
cloud. The results of tests conducted using the QualNet 4.5 simulator have shown
that the use of VCLA makes it possible to optimize the choice of the number of
remote devices (in an ad hoc virtual cloud) on which the calculations are carried
out. However, no experiments were conducted in a real-life testing environment
which would take into account, among other things, the actual energy consumption
of mobile devices.

Recently, the Deep Neural Network (DNN) mechanism has been commonly used
in mobile applications, for example for speech recognition purposes (Apple Siri).
The use of DNNs in the MCC often involves transferring large amounts of data
between the mobile device and the cloud. In [22], the authors study the possibility
of offloading only part of the DNN calculation to the cloud. The decision what
calculations to send to the cloud takes into account the energy consumption of
mobile devices and limited cloud resources. Test results demonstrated an increase
in calculation speed and a reduction in the energy consumption of the mobile device.
However, the authors only conducted simulation experiments without testing their
solution under real-life conditions.

Another article dealing with certain aspects of energy consumption by mobile
devices in the context of MCC is [23]. The authors propose an agent-based MCC
framework using the Dynamic Programming After Filtering (DPAF) algorithm to
enable the optimization of the offloading strategy, taking into account the energy
consumption of mobile devices. The experiments conducted demonstrated the use-
fulness of the framework developed in reducing energy consumption. However, they
were only performed in a simulation environment without verifying the solution
developed in real-life mobile devices.

An important aspect of using the MCC concept to optimize the operation of
mobile devices is security. In [24], the authors propose a secure and efficient offload-
ing scheme which employs a combination of regular rekeying and random padding.
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However, in the research conducted, the aspect of optimizing the operation of ser-
vices/applications on mobile devices was not addressed and the experiments were
only performed in a simulation environment.

The other solutions developed by the authors of this article such as the Service-
Oriented Context-Aware Recommender System – SoCaRS [25], Mobile Multimedia
Processing System – MMPS [4] and SMPS [3] make it possible to optimize (in terms
of execution time and the energy used) the location where services are executed
(locally or in the cloud) using MCC and machine learning algorithms.

MCC studies have been further developed in work related to Mobile Edge Com-
puting (MEC) [26, 27] in which cloud resources are complemented by edge devices
(servers) located close to the infrastructure which enables wireless transmission.
This concept is used primarily in cellular networks (including 5G). Most often, sys-
tems using MEC implement optimizations on the infrastructure side and use MCC
on the device and mobile application side. In MEC research, machine learning
algorithms are sometimes used to optimize the use of resources [28, 29].

In [28], a novel post-decision state (PDS) based learning algorithm was used
to optimize the operation of MEC. This enabled a significant improvement in edge
computing performance with regard to energy aspects. The research conducted only
concerned the optimization of operation and energy consumption by edge devices
and did not take into account aspects related to the optimization of mobile device
operation. Moreover, the authors’ experiments were only conducted in a simulation
environment.

In [29], the authors propose solutions for offloading in the MEC environment
in the context of IoT applications (IoT-Q-L). For this purpose, they use learning
agents and the Q-learning algorithm which improves the offloading of computing
tasks and reduces energy consumption. Experiments confirming the possibility of
optimizing task offloading were only performed in a simulation environment. An-
other article [30] proposes a multi-agent based flexible IoT edge computing system
(F-IoT-EC) which makes it possible to optimize operation and reduce the amount
of energy consumed. The system uses a rule-based engine with a fixed rule set. The
tests were carried out in a simulation environment.

2.3 Agent-Based Platforms for Mobile Devices

In order to choose a framework for our system, we have analyzed the agent-based
platforms available on mobile devices.

In [31], authors describe the JADE-LEAP platform as an agent-based technology
for use in connection with mobile devices. JADE-LEAP is a modified version of the
JADE platform that can be run on both PCs and servers, but also on mobile devices
using the Java environment (e.g., on Android mobile devices). JADE is a Java
framework designed for developing agent-based applications that are compliant with
FIPA (Foundation of Intelligent Physical Agents) specifications [32]. JADE-LEAP
message exchanges are ACL standard compliant. The exchange of messages is done
asynchronously. Each agent has its own message queue, to which data are sent from
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the other agents. The main limitation of JADE-LEAP is the inability to run more
than one agent in a separate container on the mobile device and the fact that the
main container cannot be created on the mobile device. The JADE-LEAP design
requires it always to be located on a PC.

In [33], authors present an agent-based software development platform called
JaCaMo. JaCaMo’s operating environment can be defined as a designed and pro-
grammed set of computing units called artifacts, collected in workspaces that can
be distributed across the network. Agents can communicate with each other and
use artifacts. In order for the agents to use artifacts, each of them should provide
an appropriate interface composed of a set of operations and properties, where op-
erations are actions that allow agents to interact with the environment. Properties
define the state of a given artifact, which can be read and modified by the agent
through corresponding operations.

In [34], the author describe the µ2 platform, which is an environment used
to build applications that use an effective communicating µ-agent. The platform
provides a comprehensive network support. Applications developed for desktop
can be (in most cases) launched on mobile devices. The main component of the
µ2 platform are agents and their roles. In contrast to conventional agent-based
solutions, the µ2 platform is strongly focused on efficiency and the minimization
of performance problems. Application development is therefore primarily about
implementing roles and modeling agent organizations. Java provides the basis for
working in the µ2 platform environment (the alternative is using Clojure). Jetlang
is used as an internal messaging mechanism between agents. XStream is used to
serialize objects over the network in XML. Netty is used for establishing connections,
agent discovery and agent communication over the network.

2.4 Mobile Service Adaptation

In Sections 2.2 and 2.3, the authors primarily analyzed various existing solutions
which enable service adaptation using, among others, machine learning and the
MCC paradigm. The result of this analysis is the comparison of existing solutions,
which is presented in Table 1.

As we can see, some systems are rule-based with manually created rules and
mostly apply machine learning to train the model that is used for service adaptation.
The latter solution is better because it makes it possible to adapt the system to
changing conditions by executing the machine learning algorithm again. Considering
all possible mobile devices, tasks and conditions would result in a very complex set
of rules.

Analyzing this table, it can also be observed that many state-of-the-art solutions
are tested in simulation environments. It should be noted that simulations of wireless
networks are simplified and do not account for all the technical problems which occur
in the real world [35].

Only a few systems use agents. However, agents are often used on the modeling
level rather than at the implementation stage (SoCaRS, MMPS, SMPS, IoT-Q-L,
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DPAF). Moreover, there is one type of the agent defined in these systems, and that is
an abstract entity which encapsulates learning and decision algorithms. It interacts
with environment rather than with other agents. Also importantly, these systems
are developed in a standard way, without using an agent-based framework, and
certain advantages of applying an agent-based methodology (like interoperability or
the ability to operate in heterogeneous environments) are not exploited. The only
solution known to the authors which employs a multi-agent system in this domain
is F-IoT-EC. However, it is implemented in the cloud and on the edge rather than
on mobile devices and no machine learning algorithm is used.

Solutions Env Energy Time ML/Rules Agents Tests

MALMOS MCC no yes ML no real

IC-Cloud MCC no yes ML no real

MpOS MCC no yes Rules no real

VCLA MCC no yes ML no simulation

DNN MCC yes yes ML no simulation

DPAF MCC yes yes Rules one simulation

SoCaRS MCC yes yes ML one real

MMPS MCC no yes ML one real

SMPS MCC yes yes ML no real

PDS MEC yes yes ML no simulation

IoT-Q-L MEC yes yes ML one simulation

F-IoT-EC MEC yes yes Rules multi simulation

Table 1. Comparison of existing service adaptation solutions

Several important elements of our research constitute contributions to the area
of MCC. The important aspect is that solution performance has been tested in a real-
life environment. Additionally, the experience gained by the authors in developing
their solutions (SoCaRS, MMPS, SMPS) has allowed them to develop the concept
of an agent-based system for mobile service adaptation. However, in contrast to
previous research, the authors used an agent-based platform for mobile devices (µ2)
to optimize the performance of mobile services. As a result, a genuine multi-agent
system with learning agents was built. The final contribution is that the solution
developed extends (in comparison to previous work) the ability to perform services
on local PCs, which makes the environment more complex and heterogeneous. Cur-
rently, it consists of mobile devices, the mobile cloud and the PCs accessible via
a local Wi-Fi network.

In summary, when compared with the solutions analyzed, the solution developed
by the authors is the only one that uses a multi-agent system, takes into account
time and energy consumption, applies ML (Machine Learning) online and has been
tested in a real-life environment.
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3 AGENT-BASED SYSTEM FOR MOBILE SERVICE ADAPTATION

The purpose of the research was to develop, implement and test the concept of
an agent-based system for mobile service adaptation using online machine learning
and the MCC paradigm. The system developed should allow adaptation in order to
select the optimal place of service execution from the point of view of execution time
and power consumption by a mobile device. The system keeps track of the service
being performed on a current basis and selects the place of its execution using the
machine learning concept on the basis of defined parameters.

The concept of system architecture (Figure 1) assumes that agents perform the
services commissioned on a mobile device, on a PC and in the cloud. The operation
of the system is based on interaction between agents in a heterogeneous environment.
The management agent containing the service adaptation module is located on the
mobile device. At the same time, there are agents responsible for launching the
mobile service on the mobile device (locally), on the PC and in the cloud. By using
this approach, it is possible to define a common way of exchanging messages and
data, which allows communication between different service locations and the mobile
device itself.

NETWORK
Mobile device

Main 
app

Agent executing
services on PC

Mobile application

Service 
Adaptation

Module

Agent executing
services locally Management Agent

Server in
computing 

cloud

Figure 1. Concept of system architecture

The Service Adaptation Module (Figure 2) consists of four main elements:

• The Manager whose task is to receive a service request, collect training data,
cooperate with the Learning Module and return a response that represents the
location selected.
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• The Learning Module, which builds the knowledge model K from training data.
K is used to select the service execution location.

• Training data – examples representing requests, locations of their execution and
results of their execution as described by attributes Attr collected during service
execution.

• Knowledge (K) – models allowing the prediction of request execution results in
a given location.

The Manager receives the service request and possible locations from the Man-
agement Agent, describes them with Attr, creating a problem, and passes it to the
Learning Module. The Learning Module applies K and returns a response repre-
senting the predicted outcome. The Manager’s task is to select the best location
based on such predictions. It also collects data from the execution of services and
stores them in T (Training Data). It is also responsible for passing T to the Learning
Module when necessary to build new knowledge K. The structure of knowledge is
closely related to the type of machine learning algorithm used. Model examples in-
clude a set of regression parameters, a set of neural network parameters or a decision
tree.

Service Adaptation Module

Learning
Module

Manager

Knowledge

training data

problem

response

request

response

Training
data

Figure 2. Service Adaptation Module architecture

More formally, the Service Adaptation Module may be defined as the following
tuple:

SAM = (A,K, T, L) (1)

where A is a set of attributes that are used to describe tasks and the context, K is
generated knowledge, T is training data, which is a set of examples, and L is a set of
possible execution locations.

Input data for the module is a pair x = (t, c) representing the task t which
should be executed in the context c. The aim of the module is to return a location
l ∈ L = {l1, l2, . . . lns}, which corresponds to engaging one of ns services. The
processing module describes x with observation attributes O = {o1, o2, . . . on} ⊂ A,
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which yields xO = (o1(x), o2(x), . . . on(x)), i.e. a description of the problem. Next,
using the knowledge stored in K, it solves the problem by selecting l ∈ L, which has
the minimum predicted cost. If K is empty, l is randomized.

The decision about execution location l is then applied and the task is run
using the corresponding service (i.e. locally or in the mobile cloud). After the
execution, the module obtains the execution result r(x, l), which is described by
Res = {r1, r2, . . . rm} ⊂ A attributes. For example, the four following attributes
may be used: whether execution was successful es(x, l), power consumption b(x, l),
calculation time ct(x, l) and user’s dissatisfaction dis(x, l), which may be measured
by observing if the user overrode the module’s decision. Therefore, the set of all
attributes used to describe the input data is the sum of O and Res

A = O ∪ Res . (2)

The module stores these results together with xO and location l in T . Therefore the
complete training example t stored in T has the form

t = (o1(x), o2(x), . . . on(x), r1(x, l), r2(x, l), . . . rm(x, l), l). (3)

The models {Mri} to predict Res values are constructed using supervised learn-
ing algorithms and stored in K. These models influence the decision selected. There
are |Res| models stored in K. Every model Mri : X,L → [0, 1] calculates the nor-
malized ri value for given x and l.

Using predictions of the ri value returned by the learned model: Mri(x, l), the
module may rate its decisions about all locations l ∈ L by calculating predicted
expenses e(x, l):

e(x, l) =
m∑
i=1

wi ∗Mri(x, l) (4)

where wi are weights of the result ri. The weights represent user’s preferences and
are also related to the specificity of application which executes services. In case of
an interactive application, the execution time may be more important and its weight
may be higher. If mobile services are executed in a background process, the weight
of battery usage may have higher value. In the production version of the system,
weights can be modified by the user in the settings.

The module selects the location l∗ ∈ L for which execution is predicted to be
successful and the expense is predicted to be the lowest:

l∗ =

{
arg minl∈L{e(x, l)|Mes(x, l) = 1}, Mes ∈ K,
arg minl∈L{e(x, l)}, Mes /∈ K.

(5)

The full algorithm of the Service Adaptation Module is presented in Figure 3.
At the beginning, K and T are set to empty (lines 1–2). Next, algorithm waits
for the task (line 4). If there is no learned knowledge, the decision is randomized
(lines 5–6). Else there is some knowledge, therefore expenses are calculated for all
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possible locations (line 8). Next, the best location is selected (line 9). To provide
exploration, l∗ is replaced by a random location with ε probability (line 10). The task
is executed in the selected service (line 12). Results of the execution are observed
(line 13) and the example is stored in T (line 14). After processing a given number
of tasks (line 15), Learning Module is called to generate new knowledge from T and
the learned knowledge is stored in K (line 16).

1: K := ∅;
2: T := ∅;
3: while module is working do
4: wait for x = (t, c);
5: if K = ∅ then
6: l := random decision;
7: else
8: calculate e(x, l) according to Equation (4) for all l ∈ L applying

models from K to predict ri;
9: l∗ := best location according to Equation (5);

10: replace l∗ by a random location with ε probability;
11: end if
12: execute task at the service determined by l∗;
13: observe execution results;
14: store example t (see Equation (3)) in the T ;
15: if it is learning time (e.g. every 100 steps) then
16: learn K from T ;
17: end if
18: end while

Figure 3. Algorithm of the Service Adaptation Module allowing the adaptation of mobile
service using machine learning

4 IMPLEMENTATION

The µ2 platform was used for implementation because it is lightweight and allows
the easy building of agents working in a heterogeneous environment. Each agent
operating within the µ2 platform must be on the same network (e.g. the same Wi-
Fi network). For this reason, it is not possible to establish direct communication
between an agent operating on a mobile device and an agent operating in the public
cloud. Exchanges of messages between agents are accomplished using the TCP
(Transmission Control Protocol).

The most important agent in the system is the ManagementAgent, which re-
ceives requests for service execution. The ManagementAgent selects the optimal
location for the service and then passes the service’s startup parameters to one of
the service agents:
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• AndroidProviderAgent – the agent responsible for the execution of the service
commissioned on the mobile device;

• AWSProviderAgent – the agent responsible for the execution of the service com-
missioned in the computing cloud;

• PCProviderAgent – the agent responsible for the execution of the service com-
missioned on the desktop device.

The communication between agents is based on exchanging MicroMessage mes-
sages. The message includes information about the sender and Intent (data). In the
Agent-based System for MCC Service Adaptation, the Intent object is composed
of:

• the data needed for service execution;

• information about the time when service execution started;

• battery status information at the start of service execution;

• information about the type of service executed;

• the result of service execution.

The detection of active agents is accomplished through a polling mechanism –
Heartbeat. The XML configuration file defines the frequency with which an agent
should query the presence of other agents.

At the time of receiving the service request, the ManagementAgent selects
where to execute the service, then creates a MicroMessage message with the data
necessary to execute it and the information described above. The Management-
Agent sends the message to the recipient who should execute the service via the
send(MicroMessage message) function. If the service should be executed by all
agents available, then the sendGlobalBroadcast(MicroMessage message) function is
used.

The Mobile application was written for Android mobile devices in accordance
with API 17. During the implementation work, the following technologies and tools
were used:

• Java language version 1.7;

• Gradle for building and managing application dependencies;

• Power Tutor for measuring the energy consumption of mobile device;

• WEKA (Waikato Environment for Knowledge Analysis) – a library providing
machine learning algorithms;

• Tess4J – Java interface for the Tesseract library for text recognition (Optical
Character Recognition – OCR);

• iText – a library for creating PDF documents;

• AWS (Amazon Web Services) Android SDK – a library for communicating be-
tween a mobile device and the AWS computing cloud;
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• µ2 – a platform for multi-agent systems.

WEKA was selected as the machine learning library because it has been ported
to the Android system used in the development and it provides a broad range of
algorithms, thus enabling comparisons between different solutions. In the production
version of the system, it may be replaced by a more modern machine learning library
like TensorFlow.

The Amazon AWS cloud has been used in the Agent-based System for MCC
Service Adaptation. For service execution, the AWS Lambda solution is used, which
is based on the IaaS (Infrastructure as a Service) model. AWS Lambda enables
the implementation of features that can be remotely invoked by web applications,
desktop applications and mobile applications. Due to the limitations related to µ2

platform operation in a local area network, it was not possible to run the agent in
the AWS Lambda cloud computing environment.

Two AWS Lambda functions have been created for MCC Service Adaptation:
the OCR and convertingPNGToPDF functions. The OCR service uses the Tess4J
API for Tesseract library operations. The same mechanism was used to implement
the service on a desktop. For the OCR service using the Tesseract library, it was
not possible to use the same source code as for the mobile app where the dedicated
tess-two library was used, which is a modified version of the Tesseract library that
can run on Android mobile devices. The same source code (using the iText library)
was used for the conversion of the image file to PDF. The AWS Lambda cloud
computing environment in which the functions are executed is a Java-based one.
The maximum memory for the functions was set at 512 MB and the timeout was
set to five minutes.

The desktop application within the Agent-based System for MCC Service Adap-
tation uses the µ2 environment and Java. The most important part of the application
is the agent that works on the desktop device. The agent communicates with the
Management Agent on the mobile device through the network. As with other agents
operating within the framework of the system, it receives the service request, ex-
ecutes it on the desktop device and then sends the result of its execution to the
Management Agent.

In order to objectively compare the services offered by cloud computing and the
desktop application, we have decided to run the desktop application under conditions
that are as close as possible to those in the cloud computing environment. For this
purpose, the Docker tool is used to place the program and all its dependencies, such
as additional libraries, in a lightweight, portable and virtual container that can be
run on a Linux server. In order to run a container on a Docker, an image must
be created with boot parameters that install the appropriate libraries and other
dependencies.

In order to map the AWS Lambda environment on a PC, a desktop application
is started via Docker using a docker-lambda image. It has the same software and
libraries installed, the same file structure and permissions, and the same environ-
mental variables as the AWS Lambda environment. The image makes it possible to
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run AWS Lambda functions in the Node.JS and Python environments. Currently,
the Java environment is not yet fully supported, but it is possible to launch Java
programs manually.

5 PERFORMANCE EVALUATION

A series of experiments were conducted to verify the operation of the Agent-based
System for MCC Service Adaptation. As test services, text recognition (OCR) and
PNG transformation to PDF format were selected due to the complexity of the
service and its demand for mobile device hardware resources.

Eight graphic files with varying sizes, resolutions, and amounts of text contained
in them were selected to test the service with different input parameters. Each of the
experiments was designed to perform a defined set of services under certain condi-
tions. The tests included service execution, time measurements, energy consumption
measurements by the mobile device while the service was being executed, and the
recording of results. Observed attributes were O = {tt, s, res, con, sig}. They corre-
spond to task type, file size, number of pixels in the picture, connection type and
network connection signal strength, respectively. Execution results observed were
Res = {ct, b} (calculation time and battery usage). Result expenses were calculated
according to the following formula:

e(x, l) = wctct(x, l) + wbb(x, l) (6)

where:

• wct – weight of service execution time;

• wb – weight of device energy consumption.

In experiments, sets of service requests were executed as consecutive rounds.
During the first round, the location is selected in a random way. During each
subsequent round, the Service Adaptation Module is trained on the data collected
from previous rounds 1 . . . r − 1. To ensure exploration, the location is randomly
selected with a probability of 10% even if knowledge is not empty.

After each service execution, the results are recorded in Training Data. After
each round, the Service Adaptation Module builds new knowledge using one of the
following algorithms provided by the WEKA library: J48, RandomForest, KStar,
MultilayerPerceptron and SimpleLogistic. For the J48, RandomForest and KStar
algorithms, numerical values of parameters are discretized into 6 compartments of
equal frequency.

Every experiment consists of 8 rounds, repeated 10 times. The measurement
involves total service execution time and total energy consumption of the mobile
device during the round in question. The results are presented as charts representing
average values and standard deviations of these measures over ten repetitions for
each of the rounds.
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The experiment was carried out using a mobile device – LG G2 (CPU1 –
2.26 GHz, memory – 2 GB), router – Wi-Fi TP-Link TL-WR842N (802.11bgn),
cloud – AWS Lambda platform and PC (CPU – Intel Core i5-3320M 2.6 GHz, mem-
ory – 8 GB).

5.1 Initial Tests

Initially, we measured values for cases when all tasks were executed on the mobile
device. These values are 364 806 ms for average execution time and 399 556 mJ
for average battery power consumption. Similarly, for executing all requests in
the cloud we get an average execution time of 340 714 ms and an average battery
power consumption of 408 212 mJ. It means that execution in the cloud is faster,
but requires somewhat more energy because of data transmission. There are no
results related to the execution of all tasks on the desktop device since the solution
implemented does not enable the execution of tasks on a PC when the mobile device
uses HSDPA (High-Speed Downlink Packet Access). In the scenario simulated, the
user can only use the desktop device at home.

5.2 Energy Optimization

The experiment was aimed at comparing the effectiveness of machine learning algo-
rithms in optimizing the power consumption of the mobile device. For comparison,
we selected five classification algorithms: J48, RandomForest, MultilayerPerceptron,
logistic regression and k -NN (k-Nearest Neighbors). The set of service requests con-
sists of 16 individual OCR service requests with various input data. Eight of them
are executed using the Wi-Fi connection, and eight using HSDPA.

Coefficient values are: the cost of service execution time wct at 0.1 and the cost
of device energy consumption wb at 0.9. Figure 4 shows the average results for each
round together with standard deviations.

The logistic regression algorithm was the worst from the point of view of opti-
mization. The results obtained by this algorithm in the rounds where location was
selected were worse than in the first round where the choice of execution location
was random.

The k -NN algorithm enabled a significant optimization of energy consumption,
but it was susceptible to overfitting. Initially, the algorithm was getting better with
each round until the fifth one, after which it started to oscillate. The statistical
significance of the improvement between the first and last rounds (d) was checked
using t-Student test. The p-value equals to 0.1196, which means that d is not
statistically significant.

Three other algorithms (J48, Random Forest and MultilayerPerceptron) enabled
similar levels of optimization. For each of them, a significant reduction in energy
consumption could be observed in the early rounds. After the fifth round had been

1 Central Processing Unit
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Figure 4. Optimizing energy consumption for coefficients wct = 0.1 and wb = 0.9

completed, the process of reducing energy consumption slowed down, but oscillations
were smaller. Results of the t-Student test for these classifiers (p-value) are as
follows:

• for J48: 0.0245, which means that d is statistically significant;

• for RandomForest: 0.0004, which means that d is statistically significant;

• for MultilayerPerceptron: ≤ 0.0001, which means that d is statistically signifi-
cant.

The experiment also examined the level of optimization in execution time with
the same cost factors. The results are shown in Figure 5.

As in the case of energy consumption optimization, the logistic regression algo-
rithm exhibited the worst results because no improvement could be observed. The
k -NN and MultilayerPerceptron algorithms made it possible to decrease execution
time. However, it should be noted that oscillations appeared after several rounds.
The best results were obtained by the J48 and RandomForest algorithms, which re-
duced execution time with small standard deviations in each round and oscillations
were small. The results of the t-Student test (p-value) are as follows:

• for logistic regression algorithm: 0.3501, which means that d is not statistically
significant;

• for k -NN: 0.0190, which means that d is statistically significant;

• for MultilayerPerceptron: 0.0024, which means that d is statistically significant;

• for J48: ≤ 0.0001, which means that d is statistically significant;

• for RandomForest: ≤ 0.0001, which means that d is statistically significant.
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 200000

 250000

 300000

 350000

 400000

 450000

 500000

 1  2  3  4  5  6  7  8

Ex
ec

ut
io

n 
tim

e,
 m

s

Rounds

J48
Random forest

Multilayer Perceptron
Logistic regression

k-NN

Figure 5. Optimizing execution time for coefficients wct = 0.1 and wb = 0.9

5.3 Time Execution Optimization

The experiment methodology was analogous to the one described above. The exper-
iment was designed to compare machine learning algorithms for selecting the service
execution location in order to optimize execution time. For comparison, the three
best algorithms were selected: J48, RandomForest and MultilayerPerceptron. The
set of service requests is defined in the same way as in the previous experiment. The
coefficients are: the cost of service execution time wct at 0.9 and the energy con-
sumption of the device wb at 0.1. Average results together with standard deviations
are shown in Figure 6.

The J48 and RandomForest algorithms exhibited similar results. Between the
second and fourth rounds, the improvement was almost linear. From round four
onwards, the reduction in execution time was no longer present, and then in rounds
from five to eight the execution time increased slightly. Standard deviations for
these two algorithms were significantly higher than for the MultilayerPerceptron al-
gorithm. The MultilayerPerceptron algorithm behaved similarly to the other two,
with the difference that from the second to fourth rounds it enabled better opti-
mization of execution time, and from the fifth round onwards the service execution
time for the MultilayerPerceptron algorithm oscillated around the same level and
standard deviations were small. The results of the t-Student test (p-value) are as
follows:

• for J48: 0.0002, which means that d is statistically significant;

• for RandomForest: ≤ 0.0001, which means that d is statistically significant;

• for MultilayerPerceptron: 0.0033, which means that d is statistically significant.
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Figure 6. Optimizing execution time for coefficients wct = 0.9 and wb = 0.1

The experiment also examines the level of energy consumption optimization on
the mobile device with the same cost factors. The results are shown in Figure 7.
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Figure 7. Optimizing energy consumption for coefficients wct = 0.9 and wb = 0.1

In the fourth round, energy consumption by the mobile device was the lowest
for the Random Forest algorithm. However, from the fourth round onwards there
was an increase in energy consumption by the device and a significant increase
in standard deviation could be observed in rounds six and seven. The significant
increase in standard deviation was related, among others, to the specificity of the
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HSDPA wireless transmission technology used in the tests, which does not allow to
guarantee the quality of the network connection (including delay and bandwidth).
The J48 and MultilayerPerceptron algorithms proved better in the end and they
also had lower standard deviations. The results of the t-Student test (p-value) are
as follows:

• for J48: 0.0002, which means that d is statistically significant;

• for RandomForest: 0.1757, which means that d is not statistically significant;

• for MultilayerPerceptron: 0.0013, which means that d is statistically significant.

5.4 Time and Energy Optimization

The experiment methodology was analogous to the previous experiments. The ex-
periment aimed at comparing machine learning algorithms for selecting service ex-
ecution location in order to optimize both mobile device execution time and energy
consumption. The same algorithms were compared as in the previous experiments:
J48, Random Forest and MultilayerPerceptron. The values of coefficients were as
follows: service execution time cost wct at 0.5 and device energy consumption cost
wb at 0.5. Average results together with standard deviations are shown in Figures 8
and 9.
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Figure 8. Optimizing execution time for coefficients wct = 0.5 and wb = 0.5

The J48 algorithm enabled the optimization of both mobile device execution
time and energy consumption. In the case of energy consumption, until the fourth
round of the algorithm a significant reduction in energy consumption was noted.
From the fifth round onwards, the process slowed down, but continued. A similar
situation occurred with the optimization of execution time, with the difference that
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Figure 9. Optimizing energy consumption for coefficients wct = 0.5 and wb = 0.5

from round four to six there was an increase in execution time but from round six to
eight the execution time decreased again. The Random Forest algorithm behaved
in the same manner with respect to both measurements. Until the fourth round,
there was a significant improvement in both parameters, and from the fourth to
the eighth rounds the values of the parameters oscillated around the same level. In
addition, the algorithm was characterized by the fact that the standard deviation
value over all rounds remained at a similar, low level. The MultilayerPerceptron
algorithm also optimized both the execution time and energy consumption of the
mobile device well. In both cases, the reduction was considerable until the fourth
round. From round four to round eight, the values of the metrics oscillated. The
feature that distinguished this algorithm from the others was also the low value
of standard deviation for all rounds. The results of the t-Student test for energy
consumption optimization (p-value) are as follows:

• for J48: 0.0039, which means that d is statistically significant;

• for RandomForest: 0.0059, which means that d is statistically significant;

• for MultilayerPerceptron: 0.0105, which means that d is statistically significant.

The results of the t-Student test for execution time optimization (p-value) are
as follows:

• for J48: 0.0002, which means that d is statistically significant;

• for RandomForest: 0.0002, which means that d is statistically significant;

• for MultilayerPerceptron: 0.0053, which means that d is statistically significant.
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5.5 Analysis of Results

As we can see, the J48, RandomForest and MultilayerPerceptron algorithms are
useful for service adaptation, while k -NN and SimpleLogistic yield poor results.
It should be noted that a careful choice of parameters with values different from
default ones might improve their results, but the first three algorithms listed work
well without such tuning.

The best optimization results were achieved by the J48 algorithm. It exhibited
the lowest energy consumption or execution time in the last round in three out of
six cases. This learning algorithm is relatively simple and has a low computational
complexity. What is also important, the knowledge learned has a form of a decision
tree, so it may potentially be analyzed by a human. Thus it appears to be the best
choice for mobile cloud computing and service adaptation.

To determine which algorithms yielded the fastest improvements, the results in
round three were compared. The fastest learning algorithm was Random Forest,
since it won in three out of six cases. Unfortunately, this learning algorithm is more
complex and needs more resources. The models learned are also difficult to analyze
in this case.

All algorithms yielded rapid improvements in performance in the first three
rounds. The reason for this is that during these rounds, various new examples were
added to the training set. During later rounds, the examples added were more
frequently similar to the previous ones and as a result, progress was much slower:
results were sometimes even worse than in earlier rounds or they oscillated.

6 CONCLUSIONS

In this paper, we have proposed an agent-based solution for mobile service adapta-
tion using machine learning. This approach enables online, autonomous adaptation
on a mobile device. Through the use of machine learning algorithms as well as the
Mobile Cloud Computing concept, various mobile services and applications may be-
come smarter, faster and more energy efficient. The local execution of the learning
algorithm allows for scalability because each device learns on its own. This solution
also ensures privacy protection as no usage data are being sent.

We have also shown that it is possible to add one more location to execute
computation, a PC computer that may by located at home or at work and used
instead of the cloud. Such solution makes task-related communication much faster,
because only local area network may be used. Increased complexity of the system
did not influence the adaptation capability. Application of the multi-agent platform
helped to design and implement PC-mobile devices cooperation.

Experimental results obtained in a real-life environment demonstrate that the
application of this approach brings improvements in energy consumption and exe-
cution time that are statistically significant. The best results are obtained by the
J48 algorithm. This algorithm creates models in a form of decision tree. Therefore
these models can be analyzed what may be important in some applications.
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In future research we would like to address, among other things, the use of
localization data and the building of user models. The first improvement would
make it possible to take into account user needs specific to his/her location, e.g. the
ability to recharge the device while at home. On the other hand, building a user
model would enable a faster start. Instead of an empty knowledge set, an initial
knowledge base matching the owner profile could be used. We would also like to
incorporate other metrics such as the quality of the result and its cost in the cost
function (Equation (6)). We will be also investigating possibilities to use agent-
based platform on a cloud by extending the functionality of the µ2 platform with
the possibility of unicast communication.
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Abstract. In order to solve a problem in parallel we need to undertake the fun-
damental step of splitting the computational tasks into parts, i.e. decomposing the
problem solving. A whatever decomposition does not necessarily lead to a par-
allel algorithm with the highest performance. This topic is even more important
when complex parallel algorithms must be developed for hybrid or heterogeneous
architectures. We present an innovative approach which starts from a problem de-
composition into parts (sub-problems). These parts will be regarded as elements
of an algebraic structure and will be related to each other according to a suit-
ably defined dependency relationship. The main outcome of such framework is to
define a set of block matrices (dependency, decomposition, memory accesses and
execution) which simply highlight fundamental characteristics of the correspond-
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ing algorithm, such as inherent parallelism and sources of overheads. We provide
a mathematical formulation of this approach, and we perform a feasibility analysis
for the performance of a parallel algorithm in terms of its time complexity and scal-
ability. We compare our results with standard expressions of speed up, efficiency,
overhead, and so on. Finally, we show how the multilevel structure of this frame-
work eases the choice of the abstraction level (both for the problem decomposition
and for the algorithm description) in order to determine the granularity of the tasks
within the performance analysis. This feature is helpful to better understand the
mapping of parallel algorithms on novel hybrid and heterogeneous architectures.

Keywords: Complexity and performance of numerical algorithms, performance
metrics, data decomposition, concurrency, parallel algorithms

Mathematics Subject Classification 2010: 65Y05, 65Y20, 68R01

1 INTRODUCTION AND MOTIVATION

Numerical algorithms are at the heart of the software that enable scientific discover-
ies. The development of effective algorithms has a tremendous impact on harnessing
emerging computer architectures to achieve new science. The mapping problem, first
considered in 1980s [8], refers to the implementation of algorithms on a given target
architecture which is capable to maximize some performance metrics [5, 6, 31, 26, 32].
Due to the multidimensional heterogeneity of modern architectures, it is becoming
increasingly clear that using the performance metrics in a one-size-fits-all approach
fails to discover sources of performance degradation that hamper to deliver the de-
sired performance level. The present article attempts to collect our efforts towards
the development of a performance model, based on mathematical tools, guiding the
understanding of computational tasks within an algorithm. We briefly summarize
main novelties we provide in this work.

• We address the study of data dependencies in an algorithm, through the depen-
dency matrix.

• We introduce the decomposition matrix describing a decomposition of the prob-
lem.

• We introduce the execution matrix describing the mapping of the algorithm on
the computing machine.

• We define the memory accesses matrix, that helps us to define the software
execution time.

• The block structure of the above matrices corresponds to the multiple levels (of
the performance analysis) for the proposed approach. This feature is helpful for
understanding the mapping of complex parallel algorithms solving real problems
on novel hybrid and heterogeneous architectures.
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• A set of parameters characterizing the matrices structure, namely their number
of rows and columns, and a set of computing environment parameters, such as
the execution time for one floating point operation, are used both to describe
the problem and to compute speed up, efficiency, cost, overhead, scale up and
operating point of the algorithm, starting from the problem decomposition.

• Even though for simplicity of notations we assume that at each level of paral-
lelism the computing architecture is homogeneous, it is possible to extend the
proposed framework considering – at the same level of decomposition – fea-
tures of distributed algorithms on heterogeneous computing architectures. In
this case, dependency matrix should firstly be employed to analyze problem and
data decomposition; then, execution matrix, whose rows depend on the execu-
tion time of the machine operations at a given level of granularity, highlights
the corresponding workload distribution at this level (cfr. Section 6).

The article is organized as follows. Section 2 will review basic concepts and defini-
tions useful for setting up the mathematical framework. We define the decompo-
sition matrix; following [33], we describe a parallel algorithm as an ordered set of
operators, moreover we give the definition of complexity of the algorithm depending
on the number of such operators; finally, we define the execution matrix describing
the mapping of the algorithm on the target computing resource. Section 4 focuses
on two metrics characterizing the algorithm performance, such as the scale up factor
and the speed up. In Section 5, we analyse the performance of parallel algorithms
arising from the same problem decomposition. We derive the Generalized Amdhal’s
Law and some important upper and lower bounds of the performance metrics. In
Section 6, we consider the particular case where the operators of an algorithm have
the same execution time (namely, the operators are the usual floating point opera-
tions); in other words, we are assuming to get a decomposition at the lowest level
of granularity and we derive the standard expressions for the performance metrics.
Section 7 introduces the access memory matrix and some useful performance metrics
to evaluate specific aspects of the software implementation. In Section 8 conclusions
are drawn.

1.1 Related Works and Criticism

The appropriate mapping depends upon both the specification of the algorithm and
the underlying architecture. Firstly, it implies a transformation of the algorithm
into an equivalent, but in a more appropriate form. Works on the mapping problem
can be classified according to the used representation.

Graph based approaches perform transformations on the algorithm and the ar-
chitecture, both represented as graphs. In this approach the algorithm is modeled in
terms of graphs structures and the mapping in terms of graphs partitions [8]. Lin-
ear algebra approaches represent the graph and its data dependencies by a matrix,
then they transform the graph by performing matrix operations. Language based
approaches transform one form of program text into another form, where the target
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form textually incorporates information about the architecture [25]. Characteristic
based approaches represent the algorithm in terms of a set of characteristics which
determines the transformations. Included in this category is the work of [28], where
a technique which abstracts a computation in terms of its data dependencies is de-
scribed. The method is based on a mathematical transformation of the index sets
and of the data-dependency vectors associated with the given algorithm. Finally, we
underline that there are a lot of scientific groups that are working on similar issue
from the years. In particular we mention the Heterogeneous Computing Laboratory
at University College in Dublin focusing on efficient use of heterogeneous architec-
tures. They mainly focus the attention on workload distribution, data distribution,
communication performance models and optimization of communication operations
of parallel or distributed algorithm on the network, by analyzing partitioning work-
load in proportion to the speed of the processing elements [29, 35].

One common issue of the aforementioned approaches is that very often the
model used for the representation and analysis of the algorithm cannot be explicitly
employed for deriving the expression of performance metrics of the software. On
the contrary, performance analysis is often accomplished with automatic tools on
a combination of the algorithm and the parallel architecture on which it is imple-
mented (the so-called parallel system), exploiting automating mappings, automatic
translations, re-targeting mappings tracing, auto-tuning tools (such as: the PaRSEC
runtime system [11], that provides a portable way to automatically adapt algorithms
to new hardware trend). Nevertheless, these approaches ignore dependency among
sub problems within the problem decomposition. Instead, our model, through the
choice of the computing operators of the algorithm, allows to set a level of abstrac-
tion for the algorithm description; each level determines the granularity/detail of
the performance analysis, and could be used to better understand the subsequent
mapping on the computing architecture. This topic is mainly important to analyse
performance of complex algorithm solving real problems.

2 PRELIMINARY CONCEPTS AND DEFINITIONS

We introduce a dependency relationship among the parts of a computational prob-
lem, among operators of the algorithm that solves the problem and, finally, among
memory accesses of the algorithm. In this way we are able to define the matrices
which are the foundations of the mathematical model we are going to introduce.

To this aim we first give some definitions1.

Definition 1 (Computational Problem). A computational problem BNr is the ma-
thematical problem specified by an input/output functional relation 7→:

BNr : InBNr 7→ OutBNr

1 It is worth to note that these definitions do not claim to be general. Their aim is to
establish the mathematical setting on which we will restrict our attention.
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where Nr is the input data size and r ∈ N, between the data and the solution of
BNr .

In the following the computational problem BNr is identified by the triple:

BNr ≡
(
Nr, InBNr ,OutBNr

)
.

Definition 2 (Similar Computational Problem). Two computational problems,
BNr and BNq , are said similar if they are specified by the same functional relation
7→ and they only differ in the input/output data size. If BNr and BNq are similar we
write BNrSBNq .

Dividing a computation into smaller computations, some or all of which may
potentially be executed in parallel, is the key step in designing parallel algorithms.
These parts often share input, output, or intermediate data, such that the output of
one part is the input of another. In our mathematical framework these relationships
will be described by the so called decomposition matrix. In order to define this
matrix we need to introduce the following algebraic structure

Definition 3 (Dependency Group). Let (E , π) be a group and let πE be a strict
partial order relation on E , which is compatible with π. We say that any element
of E , let us say A, depends on an element of E , let us say B, if AπEB, and we write
A ← B. If A and B do not depend on each other we write A 8 B. The group
(E , π) equipped with πE is called dependency group and it is denoted as (E , π, πE).

Remark 1. Since πE is transitive, from Definition 2 it follows that any two elements
of E , let us say A and B, are independent if there is no any relationship between
them. In this case we write A8 B and B 8 A, or even A= B.

Now we are able to define the dependency matrix on (E , π, πE).

Definition 4 (Dependency Matrix). Given (E , π, πE), the matrix F , of size rD · cD,
whose elements di,j ∈ (E , π), are such that ∀i ∈ [0, rD − 1]

di,j = di,s, ∀s, j ∈ [0, cD − 1] (1)

and ∀i ∈ [1, rD − 1], ∃q ∈ [0, cD − 1] s.t.

di,j ← di−1,q, ∀j ∈ [0, cD − 1], (2)

while the others elements are set equal to zero, is said the dependency matrix.

Remark 2. Matrix F is unique (through its construction), up to a permutation of
elements on the same row. cF is said the concurrency degree2 of (E , π, πE) and rF
is the said the dependency degree of E . Concurrency degree measures the intrinsic
concurrency among sub-problems of (E , π, πE). It is obtained as the number of
columns of F .

2 A similar concept has already been highlighted in [22]
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2.1 The Problem Decomposition

Let S(BNr) denote the solution3 of BNr .

Definition 5 (Decomposition of a Computational Problem). Given BNr , any finite
set of computational problems {BNi}i=0,...,k−1, where k ∈ N, such that BNr ← BNi ,
where Ni < Nr, and

k−1∑
i=0

Ni ≥ Nr

is called a decomposition of BNr . BNi denotes a sub-problem of BNr . A decomposi-
tion of BNr , which is denoted as

Dk(BNr) := {BN0 , . . . ,BNk−1
} (3)

defines the computational problem

Dk(BNr) ≡

(
k−1∑
i=0

Ni, InBNr , OutBNr

)
.

The set of all the decompositions of BNr is denoted as DBNr .

Definition 6 (Similar Decompositions). Given BNrSBNq , two decompositions
Dki(BNr) and Dkj(BNq) are called similar if

ki = card(Dki(BNr)) = card(Dkj(BNq)) = kj

and
∀BNs ∈ Dki(BNr)∃!BNt ∈ Dkj(BNq) : BNsSBNt

and we write
Dki(BNr)SDkj(BNq).

Remark 3 (Decomposition Matrix). In order to capture interactions among parts
(or sub-problems) of BNr , we use the dependency matrix on Dk(BNr). More pre-
cisely, by using Definition 2 we introduce the group (Dk(BNr), gsol) where gsol is any
application between any two elements BNi and BNj of Dk(BNr), equipped with the
strict partial order relation πDk(BNr ). Then, we construct the (unique) dependency
matrix F corresponding to the decomposition Dk(BNr). In the following we denote
this matrix as MD(Dk(BNr)), or MDk for simplicity, and we refer to it as the de-
composition matrix. Given Dk(BNr), let cDk denote the number of columns. This
is the (unique) concurrency degree of BNr . Let rDk denote the row number of rows.
This is the (unique) dependency degree of BNr . Concurrency degree measures the
intrinsic concurrency among sub-problems of BNr .

3 Here, for the sake of simplicity, we assume that S(BNr) exists and it is unique.
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If there are not empty elements, the problem BNr has the highest intrinsic concur-
rency, hence we give the following

Definition 7 (Perfectly Decomposed Problems). BNr is said perfectly decomposed
if ∃Dk(BNr) and MD such that

• cD > 1,

• ∀i, j, di,j 6= ∅.

The next step is to take these parts and assign them (i.e., the mapping step)
onto the computing machine. In the next section we introduce the computing envi-
ronment characterized by the set of logical-operational operators/operations that it
is able to apply/execute and by the memory system.

2.2 The Computing Architecture

Let MP denote the computing architecture equipped with P ≥ 1 processing ele-
ments with specific logical-operational capabilities such as: basic operations (arith-
metic, . . .), special functions evaluations (sin, cos, . . .), solvers (integrals, equations
system, non linear equations, . . . ). These are the computing operators of MP . In
particular, we will use the following characterization of operators of MP .

Definition 8 (Computing Operators). The operator Ij ofMP is a correspondence
between Rs and Rt, where s, t ∈ N are positive integers.

Given MP , the set
CopMP

:= {Ij}j∈[0,q−1], q ∈ N
where operators Ij are taken without repetitions, characterizes logical-operational
capabilities of MP .

Operators, properly organized, provide the solution to BNr , as stated in the
following definition.

Definition 9 (Solvable Problems). BNr is solvable in MP if

∃Dk(BNr) ∈ DBNr : ∀BNj ∈ Dk(BNr) ∃Ij ∈ CopMP
: Ij[BNj ] = S(BNj)

that is, if there exists any relation

θ : BNj ∈ Dk(BNr) ∈ DBNr 7−→ Ij ∈ CopMP
. (4)

In particular, we say that a decomposition is suited forMP if θ is a function. From
now on, we assume any problem BNr to be solvable, and we assume a decomposition
Dk(BNr) ∈ DBNr suited for MP to be fixed4.

We associate to each I i ∈ CopMP
in MP the parameter ti, denoting the execu-

tion time measured, for instance, in seconds. If I i ≡ ∅, we set t∅ = 0.

4 Note that there is no loss of generality.
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2.3 Memory Hierarchy and Communications

A computing architecture is not only characterized by the set of operations that is
able to apply, but also by the memory system. Indeed, the effective performance of
an algorithm relies not only on the processor speed for arithmetic operations but
also on the ability of the memory system to feed data to the processor. At the
logical level, a memory system, possibly consisting of multiple levels of caches, let
us say L, takes in a request for a memory word and returns a block of data contain-
ing the requested word after tmem l nanoseconds. Here, tmem l consists of memory
latency time, measuring the time between the of a read request and the release of its
corresponding data, plus the data transfer time. Memory latency time depends on
the latency of the memory, which is typically bridged by a hierarchy of successively
faster memory that rely on locality of data reference to deliver higher performance.
The rate at which data can be moved from the memory to the processor deter-
mines the bandwidth of the memory system. It is determined by the memory bus
bandwidth as well as by the memory unit.

So, we consider a computing machine MP such that

• its memory has L ≥ 2 levels,

• for each level l, where l ∈ [1, L], ndl denotes the bandwidth, i.e. the rate for
transferring (read/write) data of the same type. It is ndl ≥ 1,

• memory access time is
tmem l := taccl + ttransl

where taccl measures the memory latency time while ttransl measures the transfer
time. Moreover, let tcalc be the execution time of one floating point operation.
We assume that

tcalc < tmem1 ≤ tmem2 ≤ . . . ≤ tmemL

and
tmem l = αmeml · tmem, ∀l ∈ [1, L], αl ∈ < − {∞} (5)

where tmem denotes the execution time needed for moving a memory word.

Remark 4. In case of latency bound algorithms (i.e., taccl prevails over ttransl ) or
bandwidth bound algorithms (i.e., ttransl prevails over taccl ) the model could be prop-
erly refined by specifying tmeml.

Communication means moving data, either between levels of a memory hierarchy
or between processors of the reference machine. Hence, this mathematical framework
includes the communication level within the memory accesses, and the last (that is
the slowest) memory level (Lth) refers to it. Let tcom := tmemL denote the unitary
communication time, we assume that tcom � tmem i, i ∈ [1, L− 1].

Such computing machine is denoted asMP,L,ndL or simply asMP if there is no
ambiguity.
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3 THE ALGORITHM

In literature, an algorithm is any procedure consisting of a finite number of unam-
biguous rules that specify a finite sequence of operations bringing to a solution of
a problem or of a specific class of problems [24]. Analogously, we define an algorithm
as a finite set of operators solving BNr .

Definition 10 (Algorithm). Given Dk(BNr), an algorithm solving BNr , indicated
as

ADk(BNr ),MP
= {I i0 , I i1 , . . . , I ik}

is a sequence of elements (not necessarily distinct) of CopMP
, such that5

I ik ◦ I ik−1 ◦ . . . ◦ I i0 [BNr ] = S(BNr)

where j ∈ [0, card(CopMP
)− 1], and such that there is a bijective correspondence

γ : BNν ∈ Dk(BNr) ∈ DBNr ←→ I ij ∈ ADk(BNr ),MP
. (6)

Every ordered subset of ADk(BNr ),MP
is a sub-algorithm of ADk(BNr ),MP

.

For simplicity of notations and when there is no ambiguity, we indicate algorithms
briefly as Ak,P .

Definition 11 (Equal Algorithms). Two algorithms

Aik,P = {I i0 , I i1 , . . . , I ik}, Ajk,P = {Ij0 , Ij1 , . . . , Ijk}

are said equal if ∀s ∈ [0, k], I is ≡ Ijs .

We note that in this mathematical framework, two equal algorithms have the same
cardinality.

Definition 12 (Granularity Set of an Algorithm). Given Ak,P , the subset G(Ak,P )
of Ak,P made of distinct operators of Ak,P defines the granularity set of Ak,P . Two
algorithms

Aik,P = {I i0 , I i1 , . . . , I ik}, Ajk,P = {Ij0 , Ij1 , . . . , Ijk}

have the same granularity if G(Aik,P ) ≡ G(Ajk,P ).

Let ALBNr (or simply AL) be the set of algorithms that solve BNr , obtained by
varying MP , the number of processing units P and Dk(BNr) ∈ DBNr . Even if one
can easily formulate infinite variations of an algorithm that do the same thing, for
simplicity in the following we assume AL to be finite.

5 In the following we use the symbol ◦ to denote correspondence composition.
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Definition 13 (The Quotient Set AL
%

). Let

ϕ : Ak,P ∈ AL −→ Dk(BNr) ∈ DBNr (7)

be the surjective correspondence which induces on AL an equivalence relationship %
of AL in itself, such that

%(Ak,P ) = {Ãk,P ∈ AL : ϕ(Ãk,P ) = ϕ(Ak,P )}. (8)

The set %(Ak,P ) consists of algorithms of AL associated with the same decomposition
Dk(BNr) ∈ DBNr . % induces the quotient set AL

%
, whose elements are disjoints and

finite subsets of AL determined by %, that is they are equivalence classes under %.

In the following we assume Ak,P to represent its equivalence class in AL.

Definition 14 (Complexity). The cardinality of Ak,P , denoted as C(Ak,P ), is said
complexity of Ak,P . It is C(Ak,P ) := card(Ak,P ) = k.

Remark 5. C(Ak,P ) = k equals to the number of non empty elements of MDk , i.e.
the decomposition matrix defined on Dk(BNr). By virtue of the bijective correspon-
dence γ in (6), it holds that

card(Ak,P ) = card(Dk(BNr)) = k, ∀Ak,P ∈ %(Ak,P ). (9)

Each algorithm belonging to the same equivalence class according to % has the
same complexity. An integer (the complexity) is therefore associated with each
element %(Ak,P ) of quotient set AL

%
which induces an ordering relation between the

equivalence classes in AL
%

: therefore there is a minimum complexity for algorithms
that solve the problem BNr .

Remark 6 (Similar Algorithms). Given BNrSBNq and their relative similar de-

compositions D′k(BNr)SD
′′

k(BNq) (see Definition 6), algorithms belonging to %(Ak,P )
= ϕ−1(D′k(BNr)) (see (7)) are similar to algorithms belonging to %(Ak,P ) =
ϕ−1(D

′′

k(BNq)). From Definition 6 and 14 and (9), it follows that

Ak,PSAk,P =⇒ C(Ak,P ) = C(Ak,P ) = k,

that is, similar algorithms have the same complexity.

Remark 7. As we can associate I ik ∈ Ak,P to each subproblem according to γ,
then the operators of Ak,P inherit the dependencies existing between subproblems
of BNr , but they do not inherit independency, because for instance, two opera-
tors may depend on the availability of computing units of MP during their execu-
tion [33].

Remark 8 (Execution Matrix). According to Definition 3, we introduce the group(
P (Ak,P ) , ◦, πAk,P

)
where P (Ak,P ) is the set of all the sub-algorithms of Ak,P , and
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πAk,P is the strict partial order relation between any two elements of P (Ak,P ) that
guarantees that two elements cannot be performed in any arbitrary order and simul-
taneously6. We construct matrix F of order rE · cE, where cE = P 7 as a dependency
matrix (see Definition 4). The number of columns of this matrix will represent the
maximum number of sub-algorithms that can be performed simultaneously onMP .
In the following, we denote this matrix as execution matrix and we refer to it
by using the symbol ME(Ak,P ) = (ei,j) or simply MEk,P if there is no ambiguity.
Matrix MEk,P is unique up to a permutation of elements on the same row. This
matrix can be placed in analogy with the execution graphs (see [7, 10, 12, 30]) that
are often used to describe the sequence of steps of an algorithm on a given machine
for a particular input or a particular configuration.

Remark 9. As it is card(Ak,P ) = card(Dk(BNr)), then MDk and MEk,P have the
same number of non empty elements (k), whichever is P ≥ 1. If cE = P = cDk ,
there exists Ak,P whose matrix MEk,P has exactly the same structure of the matrix
MDk .

Definition 15. Ak,P is said perfectly parallel if: cE > 1 and ∀i, j : ei,j 6= ∅. Ak,P
is said sequential if: cE = 1 and @j > 1 : ei,j 6= ∅. Ak,P is said (simply) parallel if:
cE > 1 and ∃i, j : ei,j = ∅. Moreover, every row of matrix MEk,P such that ∃ei,j 6= ∅,
where j > 1, is a parallel sub-algorithm of Ak,P . Every row of matrix MEk,P such
that ∃!ei,j 6= ∅ is a sequential sub-algorithm of Ak,P .

Remark 10. Observe that the concurrency degree of BNr in a given decomposition
provides an upper limit to the maximum number of independent sub-algorithms
executable simultaneously on the machine. The dependency degree provides a lower
limit to the execution time of the algorithm.

Finally, from correspondence γ (see (6)), we say that BNr is solvable in MP ⇔
∃Dk(BNr) ∈ DBNr : ∃Ak,P that solves BNr .

Theorem 1. If BNr is perfectly decomposed according to Dk, ∃MP , where P > 1,
such that ∃Ak,P perfectly parallel that solves BNr .

Proof. If BNr is perfectly decomposed then the matrix MDk has not empty elements
and has order greater than 1. Since card(Ak,P ) = card(Dk(BNr)) = k, there exists
Ak,P with execution matrix MEk,P of order rE · cE, with only non zero elements,

6 The condition that two elements cannot be performed in any arbitrary order induces
the inheritance of dependencies between decomposition subproblems and algorithm opera-
tors, while the condition that two elements cannot be performed simultaneously – relating
to availability of resources – adds possible reasons for dependency between operators,
which depend on the machine on which algorithm A is intended to run [33].

7 In general cE ≤ P , but we can exclude cases where dependencies existing between
subproblems do not allow to use all the computing units available, i.e., in which cE < P ,
because they can be easily taken back to the case where cE = P .
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such that rE = rDk and cE = P = cDk or8 rE = n · rDk and cE = P = cDk/n
with the integer n is such that n < cDk and cDk mod n = 0. In conclusion, MEk,P

has cE = P > 1 columns, and no rows have an empty element; so Ak,P is perfectly
parallel. �

4 PERFORMANCE METRICS

In this section we employ the mathematical settings we introduced in Section 2, in
order to define two quantities to measure the performance of an algorithm: the scale
up and the speed up.

Let us consider two decompositions Dki(BN) and Dkj(BN) in DBN . Let us
consider Aki,P and Akj ,P representing their equivalence class in AL. We introduce
the following quantity:

Definition 16 (Scale Up Factor). If Aki,P and Akj ,P have the same granularity set
(see Definition 12), the ratio

Scup(Aki,P , Akj ,P ) :=
ki
kj

(10)

is said scale up factor of %(Akj ,P ) measured with respect to %(Aki,P ).

Note that by using Definition 14, we get

Scup(Aki,P , Akj ,P ) =
C(Aki,P )

C(Akj ,P )
. (11)

Next proposition quantifies the scale up when we solve the same problem with
an algorithm that is the concatenation of several algorithms which are similar to the
first one, with polynomial complexity of degree d.

Proposition 1. Given BNr , Dk(BNr) and Dk′(BNr) = {Dk′i
(BNq)}i=1,µ where

• Nq = Nr/µ with µ ∈ N , µ ≤ Nr, and Nr mod µ = 0,

• BNqSBNr ,
• DkSDk′i

SDk′j
, ∀i 6= j.

Consider Ak,P ∈ ϕ−1(Dk(BNr)) and Ak′i,P ∈ ϕ
−1(Dk′i

(BNq)) and assume that C(Ak,P )

= k = Pd(Nr) and C(Ak′i,P ) = k′i = Pd(Nq) where

Pd(x) = adx
d + ad−1x

d−1 + . . .+ a0, ad 6= 0 ∈ Πd, x ∈ <,
8 If the concurrency degree cDk is so great that we cannot imagine a real machine

with so many units, we can always use a number of computing units P = cDk/n with
cDk mod (n) = 0. This will mean that the execution matrix of Ak,P will have n times
more rows and n times less columns than the dependency matrix.
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then Scup(Ak,P , Ak′,P ) = ξ(Nr, µ) · µd−1 where

ξ(Nr, µ) :=
ad + ad−1

Nr
+ . . .+ a0

Nd
r

ad + ad−1
µ
Nr

+ . . .+ a0
µd

Nd
r

. (12)

Proof. We have that

C(Ak′,P ) =

µ∑
i=1

C(Ak′i,P ) = µ · Pd(Nq), (13)

then from the (11) it follows that

Scup(Ak,P , Ak′,P ) =
C(Ak,P )

C(Ak′,P )
=
Pd(Nr)

µ · Pd(Nq)
, (14)

that is

Scup(Ak,P , Ak′,P ) =
adN

d
r + ad−1N

d−1
r + . . .+ a0

µ ·
(
adNd

q + ad−1Nd−1
q + . . .+ a0

) . (15)

Since Nq = Nr/µ, then it is

Scup(Ak,P , Ak′,P ) =
ad(µNq)

d + ad−1(µNq)
d−1 + . . .+ a0

µ ·
(
adNd

q + ad−1Nd−1
q + . . .+ a0

) , (16)

then thesis follows from the (12). �

It comes out the following result:

Corollary 1. If Nr is fixed, and µ ' Nr, it is ξ(Nr, µ) = const where const ∈ (0, 1]
and Scup(Ak,P , Ak′,P ) ≤ Nd−1

r . If µ is fixed, it is limNr→∞ ξ(Nr, µ) = const where
const ∈ (0, 1] and limNr→∞ Scup(Ak,P , Ak′,P ) ≤ µd−1. If ai = 0, ∀i < d, then
ξ(Nr, µ) = 1 and Sup(Ak,P , Ak′,P ) = µd−1, ∀µ.

We observe that in the following, when we need to refer to the execution time
of computing operators of Ak,P , we will use the notation βcalc...,MEk,P

for the parame-

ters highlighting the execution matrix MEk,P and characterizing the mapping of the
algorithm on the machine MP . We assume that

∀I ij ∈ CopMP
, tij = βcalcij ,MEk,1

· tcalc, βcalcij ,MEk,1
∈ <, βcalcij ,MEk,1

≥ 1. (17)

Definition 17 (Row Execution Time). The quantity

Tr(Ak,P ) := max
j∈[0,cE−1]

trj (18)

is said execution time of the row r of MEk,P (which is a sub-algorithm of Ak,P ).
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Remark 11. Let βcalcr,MEk,P
:= maxj∈[0,cE−1] β

calc
rj ,MEk,P

, then

Tr(Ak,P ) = max
j∈[0,cE−1]

βcalcrj ,MEk,P
· tcalc = βcalcr,MEk,P

· tcalc.

Note that βcalcij ,MEk,1
≥ 1, then βcalcr,MEk,1

≥ 1.

Definition 18 (Execution Time). The quantity

T (Ak,P ) :=

rE−1∑
r=0

Tr(Ak,P ) (19)

is said execution time of Ak,P .

Remark 12. Let βcalcMEk,P
:=
∑rE−1

r=0 βcalcr,MEk,P
, then βcalcMEk,P

≥ rE.

T (Ak,P ) = βcalcMEk,P
· tcalc. (20)

Remark 13. Let

βcalcsum,MEk,P
:=

rE−1∑
i=0

cE−1∑
j=0

βcalcij ,MEk,P
. (21)

Then, if P = 1, then βcalcMEk,P
:= βcalcsum,MEk,P

.

Remark 14. Let

• rseq ≤ rE denote the number of rows of MEk,P with only one non-empty element
(sequential sub-algorithms of Ak,P );

• rpar = rE − rseq, with rpar ≤ rE, denote the number of rows of MEk,P with more
than one non empty element.

From the sequence i = 0, . . . , rE − 1, numbering the rE rows of MEk,P , two sub-
sequences of indices originate {iq}q∈[0,rseq−1], and {ir}r∈[0,rpar−1], and the following
definition follows.

Definition 19 (Parallel Execution Time). The quantity

Tpar(Ak,P ) :=

rpar−1∑
r=0

Tir(Ak,P ) (22)

is said parallel execution time of Ak,P .

Definition 20 (Sequential Execution Time). The quantity

Tseq(Ak,P ) :=

rseq−1∑
q=0

Tiq(Ak,P ) (23)

is said sequential execution time of Ak,P .
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The (19) can be written as

T (Ak,P ) = Tseq(Ak,P ) + Tpar(Ak,P ). (24)

This states that, by looking at matrix MEk,P , the model expresses the size of the
parallel and the sequential parts composing the execution time Ak,P .

Let

Rcalc(Ak,P ) :=
βcalcMEk,P

rE
. (25)

Rcalc is the parameter of the algorithm Ak,P depending on the most computationally
intensive sub-algorithms of A.

It holds

T (Ak,P ) = Rcalc(Ak,P ) · rE · tcalc =

rE−1∑
r=0

βcalcr,MEk,P
· tcalc. (26)

Remark 15. If P = 1, since rE = C(Ak,1) = k from (25), it is

Rcalc(Ak,1) :=
βcalcall,MEk,P

k
. (27)

Corollary 2. From the (25) it follows

T (Ak,1) = k ·Rcalc(Ak,1) · tcalc, (28)

T (Ak,P ) ≥ rD ·Rcalc(Ak,P )tcalc (29)

and it assumes its minimum value when rE = rD.

T (Ak,P ) = (rseq + rpar) ·Rcalc(Ak,P ) · tcalc. (30)

Definition 21 (Speed Up in AL
ρ

). Given

• BNr ,
• Ak,P ∈ ϕ−1(Dk(BNr)) where P > 1,

• two different decompositions Dk(BNr) and Dk′(BNr),
• Ak′,1 ∈ ϕ−1(Dk′(BNr))

where M1 and MP differ only in the number of processing elements, if G(Ak,P ) =
G(Ak′,P ), then the speed up of Ak,P with respect to Ak′,1 is

Sp(Ak,P , Ak′,1) := Scup(Ak,P , Ak′,1) ·
T (Ak,1)

T (Ak,P )
=
k′

k
·
βcalcsum,ME(Ak,P )

βcalcME(Ak,P )

. (31)
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Remark 16 (Ideal Speed Up). Since it is always9

βcalcsum,ME(Ak,P )
≤ P · βcalcME(Ak,P )

,

then it holds that

Sp(Ak,P , Ak′,1) ≤ Scup(Ak,P , Ak′,1) · P. (32)

Definition 22 (Speed Up in ρ(Ak,P )). The speed up of Ak,P with respect to Ak,1
is

Sp(Ak,P ) =
T (Ak,1)

T (Ak,P )
=
βcalcsum,ME(Ak,P )

βcalcME(Ak,P )

. (33)

Example 1. Preliminary results on speed up and scale up validating this approach
appear in [27, 3, 14]. In [27], the authors addressed the development of a modular
implementation of MGRIT (MultiGrid-In-Time), a parallel iterative algorithm to
solve linear and nonlinear systems that arise from the discretization of evolutionary
models with a parallel in time approach in the context of the PETSc (the Portable,
Extensible Toolkit for Scientific computing) library. The algorithm speed up has
been analyzed a priori to provide the best number of processing elements and grid
levels needed to address the scaling of MGRIT. In [3, 14], the performance analysis
carried out by the authors using the scale up factor suggests the introduction of
a highly scalable problem decomposition.

5 ALGORITHMS IN THE SAME EQUIVALENCE CLASS

We consider algorithms that are in the same equivalence class, i.e. those correspond-
ing to the same decomposition of the problem

Theorem 2. ∀BNr perfectly decomposed according to the decomposition Dk(BNr),
and ∀Ak,P perfectly parallel algorithm that solves it on MP with P > 1, if

CopM1
≡ CopMp

,

it follows that:

T (Ak,P ) =
T (Ak,1)

P
· R

calc(Ak,P )

Rcalc(Ak,1)
. (34)

Proof. If Ak,P is perfectly parallel, then MEk,P has no empty elements so

rE =
k

cE
=
k

P
.

9 βcalcME(Ak,P )
is the sum of the maximum operator time on each row, so βcalcsum,ME(Ak,P )

can be equal to P · βcalcME(Ak,P )
only if the operators have all the same time.
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Therefore, from the (26) and (28), it is

T (Ak,P ) = rE ·Rcalc(Ak,P ) · tcalc,

=
k

cE
·Rcalc(Ak,P ) · tcalc =

T (Ak,1)

P
· R

calc(Ak,P )

Rcalc(Ak,1)
. (35)

�

Theorem 3. For all the matrices MEk,P of algorithms in %(Ak,P ), it holds

cE ≤ cDk (36)

and
rE ≥ rDk . (37)

Moreover, let us consider Aik,P and Ajk,P two algorithms belonging to %(Ak,P ), and

their matrices M i
Ek,P

and M j
Ek,P

. We have:

• ciE < cjE ⇒ riE ≥ rjE;

• ciE > cjE ⇒ riE ≤ rjE.

Proof. From inheritance on Ak,P of dependencies defined on Dk(BNr), it is not
possible that cE > cD, therefore cE ≤ cDk . Then there is at least one row of
MDk with cDk non-empty elements. Let d be the difference between cDk and cE.
Therefore, since MDk and ME have the same number of non-empty elements, it is
rE ≥ rD + d(d/cE.)e.

Similarly, it can be proved that if ciE < cjE then riE ≥ rjE, and if ciE > cjE then
riE ≤ rjE. �

Remark 17. The minimum execution time is proportional to the dependency de-
gree of BNr , that is when the number of computing units is equal to the concurrency
degree of BNr .

We now define a subset of the equivalence class of %(Ak,P ). Let ' be the equiv-
alence relation identifying two algorithms with the same P . Then

%̂(Ak,P ) := %(Ak,P )/ ' (38)

i.e. consisting of the representatives of the equivalence classes of '10.
Let us now consider matrices MEk,P associated to algorithms belonging to

%̂(Ak,P ), varying P .
The following result defines the speed up of a parallel algorithm with respect to

the sequential algorithm belonging to its class.

10 For example, we can take the algorithm in %̂(Ak,P ), P ≥ 1, whose execution matrix
has the fewest number of rows.
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Theorem 4. Consider Ak,1
%
≡ Ak,P with

ME1 , of order NE
1 = rE1 · 1 and MEP of order NE

P = rEP · P.

It holds

Sp(Ak,P ) =
βcalcsum,MEk,1

rEP ·Rcalc(Ak,P )
. (39)

Proof. From the (26), (27) and (33), it follows

Sp(Ak,P ) =
rE1 ·Rcalc(Ak,1) · tcalc
rEP ·Rcalc(Ak,P ) · tcalc

=
C(Ak,P )

rEP

Rcalc(Ak,1)

Rcalc(Ak,P )

=
βcalcsum,MEk,1

rEP ·Rcalc(Ak,P )
. (40)

�

Corollary 3. Since (rEP · cEP ) ≥ C(Ak,P ), from the (40) it follows that

Sp(Ak,P ) ≤ cEP ·
Rcalc(Ak,1)

Rcalc(Ak,P )
= P · R

calc(Ak,1)

Rcalc(Ak,P )
.

Definition 23 (Ideal Speed Up in %̂(Ak,P )). We let

SpIdeal(Ak,P ) = P · R
calc(Ak,1)

Rcalc(Ak,P )
(41)

be the ideal speed up.

Let rpari denote the number of rows having i > 1 not empty elements, and
rpar1 = rseq, then it is

rEP =
P∑
i=1

rpari .

Definition 24 (Total Time of A with i Non Empty Elements). Let Tji the time of
a row with i ≥ 1 not empty elements. The quantity

Tpari(Ak,P ) =

rpari−1∑
j=0

Tij (42)

is the execution time of the part of A with i non empty elements on each row.

Remark 18. It holds that rpar = rEP − rseq =
∑P

i=2 rpari then Tpar1(Ak,P ) =
Tseq(Ak,P ).
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Next result shows how the generalized Amdhal’s Law can be derived by using
the rows of the execution matrix MEk,P having at least one non empty element.

Theorem 5 (Generalized Amdhal’s Law). It is

Sp(Ak,P ) =

Rcalc(Ak,1)

Rcalc(Ak,P )∑P
i=1 αi

(43)

where
αi =

rpari
C(Ak,P )

.

Proof. From (40) it is

Sp(Ak,P ) =

C(Ak,P )·Rcalc(Ak,1)
Rcalc(Ak,P )

rseq +
∑P

i=2 rpari
. (44)

By dividing for C(Ak,P ) it follows that

Sp(Ak,P ) =

Rcalc(Ak,1)

Rcalc(Ak,P )

rseq
C(Ak,P )

+
∑P

i=2

rpari
C(Ak,P )

, (45)

that is

Sp(Ak,P ) =

Rcalc(Ak,1)

Rcalc(Ak,P )

α1 +
∑P

i=2 αi
. (46)

�

Then, the Amdhal’s Law [1] comes out as a particular case of the previous
theorem.

Corollary 4 (Amdhal’s Law). If we assume that MEk,1 only has rows with 1 ele-
ment or P elements, we have

Sp(Ak,P ) =

Rcalc(Ak,1)

Rcalc(Ak,P )

α + 1−α
P

(47)

where
α :=

rseq
C(Ak,P )

.

Proof. From (43) it follows that

Sp(Ak,P ) =

Rcalc(Ak,1)

Rcalc(Ak,P )

α1 +
∑P

i=2 αi
(48)
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where
αi :=

rpari
C(Ak,P )

and
rpar

C(Ak,P )
=

P∑
i=2

αi.

If the rows with more than one non empty element have P elements, it is

rpar =
C(Ak,P )− rseq

P
,

therefore, if we let α1 = α = rseq
C(Ak,P )

, we get

Sp(Ak,P ) =

Rcalc(Ak,1)

Rcalc(Ak,P )
rseq
C(A)

+ rpar
C(Ak,P )

=

Rcalc(Ak,1)

Rcalc(Ak,P )

rseq
C(Ak,P )

+
C(Ak,P )−rseq
C(Ak,P )·P

=

Rcalc(Ak,1)

Rcalc(Ak,P )

α + 1−α
P

. (49)

�

Let Q denote the cost of Ak,P . The cost is defined as the product of the execution
time and the number of processors utilized [19]. In this mathematical settings it
holds that the cost Q can be written as

Q(Ak,P ) = cE · rE ·Rcalc(Ak,P ) · tcalc. (50)

If cE = 1, from the (28) it holds

Q(Ak,1) = rE ·Rcalc(Ak,P ) · tcalc = T (Ak,1) = C(Ak,P ) ·Rcalc(Ak,1) · tcalc

= βcalcsum,MEk,1
· tcalc. (51)

The overhead of Ak,P is the total time spent by all the processing elements over
and above that spent in useful computation.

Definition 25 (Algorithm Overhead). The quantity

Oh(Ak,P ) := Q(Ak,P )−Q(Ak,1) =
(
cE · βcalcMEk,P

− βcalcsum,MEk,1

)
· tcalc (52)

is said overhead of Ak,P .

Theorem 6. It holds

C(Ak,P ) · (Rcalc(Ak,P )−Rcalc(Ak,1)) · tcalc

{
= 0, if Rcalc(Ak,P ) = Rcalc(Ak,1),

> 0, otherwise.

(53)
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Proof. It holds

Q(Ak,P ) ≥ card(Ak,P ) ·Rcalc(Ak,P ) · tcalc

= C(Ak,P ) ·Rcalc(Ak,P ) · tcalc = k ·Rcalc(Ak,P ) · tcalc. (54)

Moreover,

Q(Ak,1) = C(Ak,1) ·Rcalc(Ak,1) · tcalc = k ·Rcalc(Ak,1) · tcalc,

therefore it follows from (52)

Oh(Ak,P ) ≥
(
k · (Rcalc(Ak,P )−Rcalc(Ak,1))

)
· tcalc

and (53) follows. �

Definition 26 (Ideal Overhead in %̂(Ak,P )). From the (53) it follows

OhIdeal(Ak,P ) =
(
k · (Rcalc(Ak,P )−Rcalc(Ak,1)

)
· tcalc. (55)

Let Ef(Ak,P ) :=
Sp(Ak,P )

P
be the efficiency of A where P ≥ 1.

Theorem 7. Let NE
P = cEP · rEP denote the dimension of the execution matrix of

Ak,P , it holds that

Ef(Ak,P ) =
βcalcsum,MEk,1

NE
P ·Rcalc(Ak,P )

. (56)

Proof. Since cE = P , it follows that

Ef(Ak,P ) =
Sp(Ak,P )

P
=

βcalcsum,MEk,1

cEP · rEP ·Rcalc(Ak,P )
. (57)

�

Definition 27 (Ideal Efficiency in %̂(Ak,P )). Since Sp(k,P ) ≤ P · R
calc(Ak,1)

Rcalc(Ak,P )
, it al-

ways is Ef(Ak,P ) ≤ Rcalc(Ak,1)

Rcalc(Ak,P )
. So let

EfIdeal(Ak,P ) =
Rcalc(Ak,1)

Rcalc(Ak,P )
(58)

be the ideal efficiency of Ak,P .

Remark 19. It is worth to note the role of parameters Rcalc(Ak,P ) and Rcalc(Ak,1)
in (47), (55) and (56). If in Ak,P there are few operators which are much more
time consuming than the others, and k >> rE then βcalcMEk,P

' βcalcsum,MEk,1
and

Rcalc(Ak,P ) >> Rcalc(Ak,1). The more the operators are and the greater the dif-
ference is in (55), or the lower the ratio is in (47) and (56). Hence, the greater the
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overhead is, the lower the speed up and the efficiency are. This is a consequence of
a problem decomposition, associated to Ak,P not well balanced.

Let us now suppose that the algorithm Ak,P is perfectly parallel, that is its
execution matrix MEP has not any empty element. Since rEP · cEP = C(Ak,P ) it
follows from Corollary 3 that

Sp(Ak,P ) = SpIdeal(Ak,P ) = P · R
calc(Ak,1)

Rcalc(Ak,P )
,

from (53) that

Oh(Ak,P ) = OhIdeal(Ak,P ) =
(
C(Ak,P ) · (Rcalc(Ak,P )−Rcalc(Ak,1))

)
· tcalc,

from (58)

Ef(Ak,P ) = EfIdeal(Ak,P ) =
Rcalc(Ak,1)

Rcalc(Ak,P )
.

Remark 20. If P = cD, rE = rD and cE = cD, if P = cD then the following results
hold on:

1. Q(Ak,P ) = cD · rD ·Rcalc(Ak,P ) · tcalc = ND ·Rcalc(Ak,P ) · tcalc;

2. Sp(Ak,P ) =
C(Ak,P )

rD

Rcalc(Ak,1)

Rcalc(Ak,P )
;

3. Oh(Ak,P ) = (cD · rD − C(Ak,P )) ·Rcalc(Ak,P ) · tcalc;

4. Ef(Ak,P ) =
C(Ak,P )

rD·cD
Rcalc(Ak,1)

Rcalc(Ak,P )
.

Example 2. The well known reduction problem is interesting to expose the nature
of Algorithm Overhead Oh and its impact in some classical metrics.

Let B27 denote the computational problem of the sum of 27 real numbers and
D13(B27) = {Bi3}0≤i<13 ∈ DB27 one of its decompositions, where Bi3 represents the
sum of 3 real numbers.

The decomposition matrix is

MD(D13(B27) =

B
0
3 B1

3 B2
3 B3

3 B4
3 B5

3 B6
3 B7

3 B8
3

B9
3 B10

3 B11
3 ∅ ∅ ∅ ∅ ∅ ∅

B12
3 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

 . (59)

Therefore, the concurrency degree is cD13 = 9, the dependency degree is rD13 = 3,
and the problem is not perfectly decomposed. Let us suppose B27 is solvable onMP

with P = 3. Let CopM3 = {++, . . .}, be the computing operators of M3, and let
AD13(B27),M3 = {++0, . . . ,++12} be the algorithm that we choose to solve B27, given



Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 839

D13(B27). Then the execution matrix is

ME13,3 =



++0 ++1 ++2

++3 ++4 ++5

++6 ++7 ++8

++9 ++10 ++11

++12 ∅ ∅


(60)

and the corresponding algorithm is simply parallel. Moreover, T (A13,3) = 5 · tcalc,
where tcalc is the execution time for the sum ++ of three real numbers.

If we take another MP with P = 4 where B27 is solvable, let us suppose that
CopM4 = CopM3 and AD13(B27),M4 = AD13(B27),M3 . Then, the execution matrix can
be written as

ME13,4 =



++0 ++1 ++2 ++3

++4 ++5 ++6 ++7

++8 ∅ ∅ ∅
++9 ++10 ++11 ∅
++12 ∅ ∅ ∅


. (61)

The corresponding algorithm is still simply parallel, and T (A13,4) = 5 · tcalc.

Considering the classical metrics of speed-up and efficiency, evaluated together
with cost and algorithm overhead, we have:

• for AD13(B27),M3

Sp(A13,3) =
rEA13,1

rEA13,3

= 2.6,

Q(A13,3) = cEA13,3
· rEA13,3

· tcalc = 15 · tcalc,

Oh(A13,3) = Q(A13,3)−Q(A13,1) = 2 · tcalc,

Ef(A13,3) =
rEA13,1

rEA13,3
· cEA13,3

= 0.87,

(62)
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• for AD13(B27),M4

Sp(A13,4) =
rEA13,1

rEA13,4

= 2.6,

Q(A13,4) = cEA13,4
· rEA13,4

· tcalc = 20 · tcalc,

Oh(A13,4) = Q(A13,3)−Q(A13,1) = 7 · tcalc,

Ef(A13,4) =
rEA13,1

rEA13,4
· cEA13,4

= 0.65.

(63)

Observe that while the speed up is the same, the overhead reveals that the
mapping on M4 is not the optimal one, showing the performance bottleneck of the
algorithm.

6 ALGORITHMS WHOSE OPERATORS
HAVE THE SAME EXECUTION TIME

We assume that all the operators of the algorithm have the same execution time.
For example they are the elementary floating point operations. The execution time
is βcalc · tcalc, and without loss of generality we assume that βcalc = 1.

Hence, it follows that, ∀P, βcalcr,MEk,P
= 1, βcalcMEk,P

= rE, β
calc
sum,MEk,P

= k. Finally,

from (25) it follows that ∀P,Rcalc(Ak,P ) = 1. Hence, we get

• Sp(Ak,P , Ak′,1) := k′

k
· k
rE

,

• if Q = 1, then Sp(Ak,P ) := k
rE

,

• SpIdeal(Ak,P , Ak′,1) = Scup(Ak,P , Ak′,1) · P = k′

k
· P ,

• SpIdeal(Ak,P ) = cEP = P .

Finally, if BNr is perfectly decomposed, then

T (Ak,P ) =
T (Ak,1)

P
, (64)

i.e., Ak,P has the ideal speed up in the classical definition.

Let us now consider matrices MEk,P associated with algorithms in %̂(Ak,P ), vary-
ing P . The following results hold: Q(Ak,P ) = cE · rE · tcalc and, if cE = 1, then
Q(Ak,1) = k · tcalc; OhIdeal(Ak,P ) = 0; EfIdeal(Ak,P ) = 1.

Theorem 8. Let us suppose that

∀I ij ∈ CopMP
, tij = βcalcij ,MEk,1

· tcalc = tcalc, ∀i, j. (65)
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Given Ak,P , P > 1, MEk,P of order NE
P = rE · P , let Vr be the number of empty

elements of the row r of MEk,P ; it is

Oh(Ak,P ) =

rE−1∑
r=0

Vr · tcalc. (66)

Proof. It holds that cE · rE = card(Ak,P ) +
∑rE−1

r=0 Vr = C(Ak,P ) +
∑rE−1

r=0 Vr =

k +
∑rE−1

r=0 Vr then from (52)

Oh(Ak,P ) =

(
k +

rE−1∑
r=0

Vr − k

)
· tcalc =

rE−1∑
r=0

Vr · tcalc. (67)

�

Remark 21. Note that
∑rE−1

r=0 Vr is the sparsity degree of the execution matrix.

Among the decomposition approaches, recursive decomposition very often is the
most suitable approach for employing a performance analysis, especially in the pres-
ence of complex algorithms solving real-world applications/simulations. In this case,
as described in the toy example below, the problem is solved by firstly decomposing
it into a set of independent sub-problems. Furthermore, each one of these sub-
problems is solved by applying a similar decomposition into smaller subproblems
followed by a combination of their results, and so on. In this way we get a decompo-
sition matrix whose elements are problems which could be subsequently decomposed
and analyzed until the desired level of detail is reached.

Example 3. Let B16 denote the computational problem of the sum of 16 real num-
bers and D3(B16) = {B8, B8, B2} ∈ DB16. The decomposition matrix is

MD3(B16) =

[
B8 B8
B2 ∅

]
. (68)

If B8 can be decomposed as D1
3(B8) = {B4,B4,B2} ∈ DB8 then

MD1
3
(B8) =

[
B4 B4
B2 ∅

]
. (69)

In the same way, if B4 can be decomposed as D2
3(B4) = {B2,B2,B2} ∈ DB8 and

MD2
3
(B4) =

[
B2 B2
B2 ∅

]
. (70)
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We have three decompositions for B16:

D3 ∈ D(B16) = {B8,B8,B2},

D7 ∈ D(B16) ≡ D1
3(B8) ∪D1

3(B8) ∪ {B2}

≡ {B4,B4,B2} ∪ {B4,B4,B2} ∪ {B2},

D15 ∈ D(B16) ≡ D2
3(B4) ∪D2

3(B4) ∪ {B2} ∪D2
3(B4) ∪D2

3(B4) ∪ {B2} ∪ {B2}

≡ {B2,B2,B2} ∪ {B2,B2,B2} ∪ {B2} ∪ {B2,B2,B2}

∪ {B2,B2,B2} ∪ {B2} ∪ {B2}

≡ {Bi2}0≤i<15 ∈ DB16 (71)

with the following characteristics, according to the corresponding decomposition
matrices:

• D3: cardinality 3, concurrency degree 2 and dependence degree 2,

• D7: cardinality 7, concurrency degree 4 and dependence degree 3,

• D15: cardinality 15, concurrency degree 8 and dependence degree 4,

meaning that the intrinsic concurrency of a problem heavily depends on the decom-
position chosen for that problem. Each decomposition has a level of detail depending
on the type of subproblems that are considered.

7 SOFTWARE

From now on, we consider memory accesses performed by an algorithm and we as-
sume, for simplicity, that to each access corresponds one read/write of a single data.
Moreover, we assume that computations and memory accesses are not performed
simultaneously, instead they depend on each other.

Definition 28. Given the set of elementary operators ofMP , we introduce memory
access operators corresponding to the memory access (read/write) of processing
elements of MP . The set OAMP

= {r(·), w(·)} where r(a), which reads a, and
w(a), which writes a, contains memory access operators of MP .

Note that MP is now the union of the set of elementary operators and the set of
memory accesses operators, MP = OpMP

⋃
OAMP

.

Definition 29. We introduce the ordered set (whose elements should not be dif-
ferent) of accesses operators ofMP AC = {oa0(·), oa1(·), . . . , oak(·)} where oai(·) ∈
OAMP

. Moreover, we consider the surjective correspondence

γ̄ : oai(·) ∈ OAMP
←→ opi ∈ Ak,P . (72)
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Note that card(AC) ≥ card(Ak,P ).

The set ACMP,L,ndL
(l) := {oali0(·), oa

l
i1

(·), . . . , oalik(·)} ⊂ XopMP
denotes an or-

dered set of accesses operators of MP,L,ndL at level l. Let ACMP,L,ndL
:=⋃L

l=1ACMP,L,ndL
(l) denote the set of the memory accesses of MP,L,ndL . For sim-

plicity of notations, if there is no ambiguity, the set ACMP,L,ndL
of memory accesses

of MP,L,ndL is briefly denoted as AC(L).

Definition 30 (Software). The set SW (Ak,P ) := Ak,P ∪ AC(L) where the order
relation on AC(L) is induced by the ordering on Ak,P is said the Software corre-
sponding to algorithm Ak,P . More simply, in the sequel we denote the Software as
SW (Ak,P ).

Definition 31. Given ME and AC, matrix AMADk,MP,L,ndL
(l), defined in AC of

order rAMl
× cAMl

, with cAM = ndl
11 is said the lth access matrix of SW .

Let rAM :=
∑L

l=1 rAMl
and let rCOM := rAML

(rCOM ≤ rAM) be the parameter
counting the rows of the Lth matrix AM(L) related to Lth level. If P = 1 then
rCOM = 0.

Definition 32 (Memory Access Time). The quantity

TM(SW (Ak,P )) :=
L−1∑
l=1

(rAMl
· tmem l) (73)

is said memory access time of SW (A).

Computational intensity is defined as the number of operations per memory ac-
cesses [23]. More precisely, it measures how intensely A computes with data, once
it has been received.

Definition 33 (Computational Intensity). The quantity

CI(SW (Ak,P )) :=
rE
rAM

∈ [1,∞[ (74)

is said software computational intensity.

Remark 22. If instead of rAM we only consider the number of rows of the Lth

memory access matrix, which is related to the software communications, i.e., we
only consider rCOM and take the reciprocal of CI(SW (Ak,P )), we get the so called
software communication intensity. It measures how much communications dominate
with respect to the operations. This quantity is usually called surface-to-volume
ratio [14].

11 In general cAMl
≤ ndl, but with no loss of generality we assume that cAMl

= ndl.
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Definition 34 (Communication Intensity). The quantity

ComI(SW (Ak,P )) :=
rCOM
rE

(75)

is said software communication intensity.

Definition 35 (Communication Time). The quantity

TCOM(SW (Ak,P )) := rCOM · tcom (76)

is said the software communication time.

We now assume that MP,ndL is such that P ≥ 1 and L ≥ 3, that is, it includes
the level L of the communications among processing elements. Moreover, since
overlapping communication with computation comes at the expense of increased
memory requirements, we assume that memory accesses (including communications)
and computations cannot be executed simultaneously, but they are dependent on
each other.

Definition 36 (Execution Time). The quantity

T (SW (Ak,P )) := T (Ak,P ) + TM(SW (Ak,P )) + TCOM(SW (Ak,P )) (77)

is said software execution time of SW (Ak,P ).

Definition 37 (Machine Communication Overhead). The ratio

UComoh(MP ) :=
tcom

tcalc
(78)

is said unitary machine communication overhead.

Observe that at present time it is UComoh(MP,L,ndL)� 1. Machine communication
overhead, also known as machine balance, is one of the parameters depending on
the machine [17].

Definition 38 (Software Communication Overhead). The quantity

Comoh(SW (Ak,P )) :=
TCOM(SW (Ak,P ))

T (Ak,P )
, (79)

which is the software communication overhead, is expressed as follows

Comoh(SW (Ak,P )) :=
rCOM
rE

· tcom
tcalc

≡ ComI(SW (Ak,P )) · UComoh(MP ). (80)
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Definition 39 (Memory Traffic). The quantity

MT (Ak,P ) :=
TM(SW (Ak,P ))

T (Ak,P )
, (81)

which is the memory traffic, is expressed as follows

MT (Ak,P ) :=

∑L−1
l=1 (rAMl

· tmem l)∑rE−1
r=0 Tr(Ak,P )

. (82)

Remark 23. If memory traffic grows, then the computational intensity
CI(SW (Ak,P )) decreases (see Definition 33).

Definition 40 (lth Software Memory Traffic). The ratio

MT (Ak,P )l :=
rAMl

· tmem l∑rE−1
r=0 Tr(Ak,P )

(83)

is said level the lth memory traffic of SW (A).

Definition 41 (Software Speed Up). Given SW (Ak,P1) and SW (Ak,P2), where
P2 > P1, the ratio

Sp(SW (Ak,P2)) :=
T (SW (Ak,P1))

T (SW (Ak,P2))
(84)

is said software speed up of SW (Ak,P2).

Proposition 2.

Sp(SWAk,P ,MP,ndL1
) =

T (SWAk,1,M1,nd
L1

)

T (SWAk,P ,MP,nd
LP

)

=
rE1 · tcalc+ (rAM1 − rCOM1) · tmem + rCOM1 · tcom
rEP · tcalc + (rAMP − rCOMP ) · tmem + rCOMP · tcom

.

In the same way as we have previously done for algorithm A, the Software efficiency
Ep(SW ) and all the other performance metrics can be defined in terms of the
Software execution time T (SW ).

8 CONCLUSIONS

This paper targets an important topic of current importance in High Performance
Computing community, which is the performance analysis of parallel algorithms; it
should be re-evaluated to find out the best-practice algorithm on novel architec-
tures [4, 15, 16, 18, 20, 21, 26, 34]. In this paper we presented a mathematical
framework which can be used to get a multilevel description of a parallel algorithm,
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and we proved that it can be suitable for analysing the mapping of an algorithm on
a given machine. The model is multilevel, in the sense that it allows the choice of
a level of abstraction of both the problem decomposition and of the operations in
the algorithm, which determines the level of granularity of the performance analy-
sis. This feature can be very useful in practice to analyze performance of complex
algorithms solving real problems and to indicate performance bottlenecks within the
algorithm. Furthermore, the model allows to take into account the initial decompo-
sition of the problem into subproblems, and so their mutual dependencies. In order
to show how to use the performance model, we validated this approach in practice
using real problems on real architectures. In [27], a preliminary performance ana-
lysis, carried out considering the speed up of the algorithm before its mapping on
the computing architectures, provided the best number of processing elements and
grid levels to address the scaling of a multigrid in time algorithm. According to the
time-stepping procedure, the performance analysis was carried out choosing matrix-
vector products or linear system solutions as the elements of the dependency matrix,
and therefore as computing operators of the algorithm. In [3, 14], the performance
analysis of the algorithm, carried out in terms of scale up, suggested the introduc-
tion of a highly scalable decomposition of a variational data assimilation problem.
This approach completely redesigned the mapping of the numerical algorithm on
high performance computing architectures.

We remark that energy consumption on computer systems has emerged as an im-
portant concern, and the energy consumed in executing an algorithm cannot be in-
ferred from its performance alone. We will employ the proposed framework to also
model energy consumption of parallel algorithms. As example, according to [13], we
performed the energy analysis of a variational data assimilation algorithm running
on an ARM-based HPC systems assuming that total energy depends on the energy
consumed in all steps executed by the parallel algorithm; the energy consumed at
each step is measured in terms of parameters depending on both the algorithm and
the computing architecture [2]. This approach can be used to extend the perfor-
mance metrics to address the analysis of software energy consumption.

We conclude that we have assumed abstract models for both algorithms and
architectures, and we have made numerous simplifying assumptions. Indeed, we be-
lieve that a simplified parameterized model gives a useful generalization for a better
understanding of algorithms that can run really fast, no matter how complicated
the underlying computer architecture [17].
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Abstract. Business process models are used by modeling experts to concisely de-
pict the workflow of an organization that plays a pivotal role in the development of
ERP systems. A growing number of organizations also maintain the textual process
descriptions of these process models as the descriptions are understandable across
the board. A recent study has revealed that these textual descriptions can also be
used for an accurate process model search. However, the use of textual descriptions
is a resource-intensive task due to the sheer size of the descriptions. To that end, in
this paper, we have proposed an approach that relies on the use of summary textual
descriptions, instead of full-length descriptions, to enhance the performance of pro-
cess matching. To evaluate the proposed approach, we have used four diverse text
summarization techniques, including a state-of-the-art deep learning based tech-
nique, for generating summary descriptions, and seven text-matching techniques
for finding relevant process specifications. Our empirical study has established that
the Vector Space Model is the most effective technique for process matching. Fur-
thermore, the use of Lingo generated summaries, at a compression rate of 50 %,
can achieve a higher efficiency as well as effectiveness than the full-length textual
process descriptions.

Keywords: Information retrieval systems, process retrieval, text-matching, sum-
mary-full description for process matching
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1 INTRODUCTION

Business process models are widely established as key artifacts to visually repre-
sent, analyze, and enhance the business operations of an enterprise [1, 2]. As these
artifacts are developed by modeling experts, they may not be readily understand-
able by all the stakeholders. In particular, the business users who actually execute
processes have difficulties with reading and comprehension of models due to their
limited knowledge of process modeling [3, 4]. Therefore, several studies have em-
phasized maintaining textual descriptions alongside process models. The availabil-
ity of textual process descriptions has also prompted the use of these descriptions
for process model validation [5], inconsistencies detection [6], and process match-
ing [7].

A recent study [8], has proposed to employ the combination of process mod-
els with textual descriptions of its activities to enhance the accuracy of querying
processes from a process repository. In contrast, another notable study has pro-
posed the use of textual descriptions as an alternative to process models [7]. The
two approaches have established that the use of textual descriptions enhances the
effectiveness of process matching. However, we contend that the use of textual de-
scriptions could be a time-consuming task due to the sheer size of these descriptions.
For instance, an Austrian bank’s process collection has 119 textual descriptions of
processes with an average length of 13 130 words, and the longest description is
composed of 60 558 words [9]. In the presence of such large textual descriptions,
the use of full-length textual descriptions may impede the efficiency of the process
matching.

To enhance the performance of matching, in this paper, we have proposed a sum-
mary description-based approach that relies on the compressed versions of full-length
textual descriptions. The significantly reduced size of the summary descriptions
should enhance the efficiency of process matching. However, we recognize that such
a reduction in the descriptions may impede the accuracy of matching. Therefore,
in this paper, we analyze the trade-offs between the summarized descriptions and
full-length textual descriptions in terms of efficiency and effectiveness. As far as we
are aware, no study has been conducted to evaluate the effectiveness of summary
descriptions for process matching. In particular, the key contributions to this paper
are as follows:

Proposed Approach: We have proposed a process matching approach that takes
an input textual or model-based specifications of a process and returns the spec-
ifications of relevant processes. In essence, the approach generates summary
textual descriptions by using text summarization techniques. Subsequently, it
computes the similarity between query-source pairs using text-matching tech-
niques and returns the specifications of the relevant processes.

Corpora Generation: We have generated corpora of 669 full-length textual de-
scriptions and their summary textual descriptions at five different compression
rates, using four diverse summarization techniques, including a state-of-the-art
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deep learning based approach. Thus, in total, we have generated (1 + 4× 5 =)
21 corpora of textual process descriptions. The techniques used to generate
summary descriptions are: a) TF-IDF, which generated a collection of impor-
tant words, b) LexRank, which employs a graph-based approach to rank, and
subsequently choose sentences of higher rank [10], c) Lingo, which employs a
clustering-based approach to identify the sentences that include key phrases of
the descriptions, and d) K-means clustering with skip-thought embeddings which
relies on the use of deep learning based technique to identify key sentences for
inclusion in a summary description.

Analysis of Summaries: We have compared the summary textual descriptions
generated by all the four summarization techniques, TF-IDF, LexRank, Lingo,
and K-means clustering with skip-thought embeddings. To this end, we first
generated the pairs of these summary descriptions at each compression rate.
Subsequently, we employed two established text-matching techniques, n-gram
overlap, and Longest Common Subsequence, to compute the similarity between
each pair of textual description. The results have been used to provide valuable
insights into the generated summaries.

Efficiency and Effectiveness Experiments: We have performed numerous ex-
periments for full-length textual descriptions and summary descriptions gen-
erated by each summarization technique. For that, we have used seven text-
matching techniques for each type of experiments. The results have been an-
alyzed to empirically establish the benefit of using summary descriptions as
an alternative to the full-length descriptions. Furthermore, the trade-offs be-
tween efficiency and effectiveness have been analyzed.

The rest of the paper is organized as follows: Section 2 provides an overview of
the proposed approach. Section 3 presents the procedure we have used for generating
full and summary textual descriptions corpora and the specifications of the corpora.
Section 4 introduces the text-matching techniques that are used for experimentation.
Section 5 analyzes the similarity between the summary descriptions generated by the
four summarization techniques. Section 6 presents the experimental setup. Analysis
of results, as well as the trade-off between efficiency and effectiveness, is presented
in Section 7. Related work is presented in Section 8. Finally, conclusions are drawn
in Section 9.

2 CONCEPTUAL APPROACH: AN OVERVIEW

In this section, we present an overview of the proposed approach which relies on
the use of summary textual descriptions for retrieving the desired specifications of
relevant processes, instead of full-length textual process descriptions. The reason
to use summary descriptions over full-length descriptions stems from the potential
size of process descriptions, which are particularly sizeable for end-to-end processes.
For instance, a recent study [9] has highlighted that the collection of an Austrian
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bank contains 119 real-world processes having an average length of 13 130 words and
a maximum length of 60 558 words. The presence of such sizeable textual descrip-
tions makes process matching a resource-intensive task which impedes the efficiency
of matching. A conceptual overview of the proposed approach is presented in Fig-
ure 1. As depicted in the figure, the repository is composed of a source collection of
process models and their corresponding corpus of textual process descriptions. Fur-
thermore, a mapping can be defined between the two types of process specifications.
While recent notable studies [8, 7] advocate that keeping textual process descrip-
tions alongside process models increases the comprehension of business operations
of enterprises among users, we have proposed to use summary textual description
queries for process matching.

Our approach relies on the use of an automatic approach to generate tex-
tual descriptions of a process model using Natural Language Generation System
(NLGS) [5]. As far as we are aware, NLGS is the only available tool that can au-
tomatically and comprehensively generate textual descriptions of a process model.
It uses a well-established technique that takes a process model in the JSON format
as input and generates its textual process description. In particular, the input to
our proposed approach could be a model-based or textual specification as a query,
whereas, the output is the specifications of relevant business processes. The ap-
proach involves three main steps: generating textual description, finding similar
process descriptions, and returning specifications of the relevant processes.

In the first step, if the input query is a model-based specification, the textual
process description of the query is generated using the NLGS. Secondly, the gen-
erated textual description of the input query process is compared with the textual
descriptions of all the source process models available in the repository, and a simi-
larity score of each query-source pair is computed using a text-matching technique.
Subsequently, a ranked list of processes is generated, where the processes are sorted
in the descending order of the similarity scores. Finally, the specifications of the top
K source processes are returned. In the rest of the paper, we have used summary
textual process descriptions of query processes for the process matching experiments
and compared its performance with the corresponding full-length textual descrip-
tions.

For a formal specification of the proposed approach, let pi be a business pro-
cess whose model-based specification is represented by Mpi. A function β can be
defined that generates textual process description Dpi of the process model Mpi.
Formally, Dpi = β(Mpi). Furthermore, consider PM be a collection of process mod-
els in a repository, and CD be a corpus of the corresponding textual descriptions.
A function γ can be defined that maps textual descriptions of business processes to
the model-based specifications of the processes. Formally, γ : Mpi → Dpi. For an in-
put query process Qp, the relevant process specifications the query can be extracted
using Algorithm 1.
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Figure 1. Overview of the proposed approach

Algorithm 1 Summary description for process matching

Input: Qp, CD, PM /* query, process corpus, model collection */

Output: List[PID, int y]

simScore = 0
L1 = List [x, y]

if (Qp = MQp) then
β(Qp)→ DQp

α(DQp)→ SDQp

else
α(Qp)→ SDQp

end
while Dpi ∈ CD do

simScore = similarity(SDQp , Dpi)
L1.append(Dpi , simScore)

end
sortdec(L1, simScore)
return L1
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3 CORPORA GENERATION

The investigation of performance trade-off between summary and full-length textual
descriptions require three artifacts: a) a corpus of full-length textual descriptions of
process models, b) corpora of query descriptions used for the matching experiments,
and c) corpora of summary textual descriptions of business processes. An overview
of the process that we have used for generating these corpora is shown in Fig-
ure 2.

Figure 2. Comparison of textual process descriptions

3.1 Generation of Full-Length Textual Descriptions

We have access to a collection of 669 process models that are designed using Busi-
ness Process Model and Notation (BPMN), which is the most prominent process
modeling language. The process models in the collection are designed in the most
recommended process modeling tool [12], Signavio [34]. The two key reasons for
choosing this collection of models are the following: a) the collection contains pro-
cess models with a diverse label and structural features [13, 11], and from several
genres, hence, the results generated using such collections are valid for several do-
mains, and b) a recent study [7] has emphasized that a necessary and sufficient
pool of queries and human-generated results against these queries are also available,
hence, making it a feasible test-bed for the matching experiments.

More precisely, the collection includes: a) 150 Original process models (O),
including the two datasets (University Admissions Processes and Birth Registration
Processes) used in the Process Model Matching Contest 2015 [14], and b) three other
handcrafted variants of these 150 models, Near Copy (NC), Light Revision (LR),
and Heavy Revision (HR).

Note that the variants are generated by employing a systematic and rigorous
procedure to impart diversity in labels and structure of models in order to challenge
the abilities of the matching techniques [13, 11]. The NC variant of a model is
generated by slightly changing the formulation of each label of the model, whereas
the LR variant is generated by substantially changing the formulation of each label
of the model. The HR variant is generated by significantly changing the formulation
of each label.
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The smallest model in the collection contains 11 activities and the largest model
contains 54 activities. Another unique feature of the collection is that the models
included in the collection comply most of the process modeling guidelines, presented
in [15]. For instance, there is no process model in the collection that contains
a split gateway node, without a corresponding join gateway node. The human
effort involved in generating the collection can be understood by the number of
operations performed while generating the three variants. That is, 24 092 insertion,
deletion, and substitution of words were performed to generate three variants of
process models.

For generating the full-length textual descriptions of 669 process models, we
have used Natural Language Generation System (NLGS). Figure 3 shows an ex-
ample textual description generated by the NLGS. As far as we are aware, NLGS
is the only established tool that can automatically and comprehensively generate
a textual description of process models. Note, an empirical evaluation of the textual
descriptions generated by NLGS has established that the NLGS generated textual
descriptions are superior to the human-generated textual descriptions, in terms of
completeness, structure, and linguistic complexity [16]. Furthermore, a users’ evalu-
ation of the NLGS generated textual descriptions demonstrate that the descriptions
are understandable, and they effectively allow the reader to interpret the seman-
tics of process models [16]. An example textual description of a healthcare process
generated using the NLGS is presented in Figure 3. Accordingly, the full-length
descriptions’ corpus contains 87 772 words, that include 29 493 (33.6 %) stop words.
These numbers indicate that the textual descriptions are not merely a collection of
activity labels, rather a significant amount of stop words are used in generating the
textual descriptions.

3.2 Generating Summary Descriptions

In this section, we first provide an overview of the four diverse techniques that we
have used for generating summary descriptions. Subsequently, in Section 3.2.2, the
procedure that we have employed for generating the corpora of summary descriptions
is presented.

3.2.1 Summarization Techniques

We have used four diverse text summarization techniques, ranging from a collection
of most important words to a state-of-the-art deep learning based technique, for
generating summary descriptions. In particular, we have used TF-IDF [19] which is
a collection of important words based approach, LexRank [10] that employs a graph-
based approach to rank sentences, Lingo [32] which is a state-of-the-art approach
to identify the sentences that includes key phrases of the input description, and
K-means with skip thoughts embeddings [37], which employs a deep learning based
approach for generating summaries. A brief overview of each summarization tech-
nique is as follows:
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The process begins when the hospital inquiry checks data. Then,

• The hospital inquiry finds the information is missing. Afterwards, the
hospital inquiry requests the parents to the complete information. Sub-
sequently, the hospital inquiry conducts the information received. Then,
the hospital inquiry informs the civil court.

• The hospital inquiry finds the information complete.

Once was the hospital administration confirms the parents accepted baby or
not. Afterwards, is.

• The hospital administration sees the parents don’t accept baby. Subse-
quently, the hospital administration sends the information. Then, the
hospital administration forwards the case to the higher authority.

• The hospital administration sees the parents accept baby. Afterwards,
the hospital administration checks the parents nationality. Subsequently,
the hospital administration checks the parents Russian citizenship or not.
Then, is.

– The hospital administration finds the no one has Russian nationality.
Afterwards, the hospital administration conducts the trial in court of
nationality affairs. Subsequently, the hospital administration receives
the citizenship decision. Then, the hospital administration registers
the citizenship of the baby.

– The hospital administration finds the at least 1 is Russian. Afterwards,
the hospital administration registers the baby as Russian.

Once was the hospital administration takes the decided name of the baby.
Subsequently, the hospital inquiry creates the birth certificate. Then, is.

• The hospital inquiry registers the baby.

• The hospital inquiry sends the birth information to the parents.

Once was the hospital inquiry finds at the least one of the parents has reg-
istration. Afterwards, the hospital inquiry getting the citizenship stamp on
the birth certificate. Subsequently, the hospital inquiry sends the request
about money benefits. Then, the hospital administration formalizes the moth
payments.
Afterwards, the process is finished.

Figure 3. Textual description of order process model generated by NLGS
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Term Frequency-Inverse Document Frequency (TF-IDF) relies on the im-
portance of words in a document. That is, firstly, a frequency matrix is generated
in which columns represent the vocabulary set of all the textual descriptions,
whereas, rows represent the identities of textual descriptions in the collection.
Secondly, using the formulas presented in Equation (1), the values of the matrix
are populated. In the equation given below, t is a vocabulary term, whereas
Di is the ith textual description in the collection. Finally, TF-IDF scores are
used to select top N words for each document for inclusion in summary, where
N is the number of words that should be included in the summary. Note that
the generated summary using this technique is a mere collection of important
words that may not be usable for the comprehension of the workflow of the
process.

TF − IDF = TF (t)× IDF (t) (1)

where

TF (t) =
FreqDi

t

|t ∀t ∈ Di|

and

IDF (t) = log
|Di|

|Di, such that, t ∈ Di|
.

LexRank is a sentence ranking based approach that relies on the use of Eigenvector
Centrality in a graph to compute the importance of each sentence [10]. In the
first step of the technique, the source text is tokenized into sentences and each
sentence is represented as a vertex in a graph. In the second step, edges between
the vertices are marked on the bases of Inverse Document Frequency (IDF).
Note that we have adapted the notion of IDF to Inverse Sentence Frequency
(ISF). That is, we take the log of the total number of sentences in the process
description and divide it the number of sentences in which the word occurs, as
shown in Equation (2). Subsequently, if the generated similarity score between
two sentences is above a certain threshold value, a value 1 is stored in the
respective index of the sentence matrix and increment 1 is performed to the
degree values. Otherwise, no increment is performed to the degree value. Lastly,
the final score of each sentence is computed using the power method followed
by vertices sort.

Similarlity(Si, Sj) =

∑
w∈Si,Sj

tf w,Si
× tf w,Sj

× (idf w)2

α× β
, (2)

α =

√ ∑
xk∈Si

(tfxk,Si
× idfxk

)2,
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β =

√ ∑
yk∈Sj

(tfyk,Sj
× idfyk)2,

p(u) =
d

N
+ (1− d)× γ, (3)

γ =
∑

v∈adj[u]

similarity(u, v)∑
z∈adj[v] similarity(z, v)

p(v).

Lingo is a state-of-the-art technique that employs a clustering-based approach to
identify the important sentences that include the key phrases of the given de-
scription [32]. In the first step, pre-processing is performed on the input text by
removing stop-words and applying stemming. In the second step, the phrases
are extracted based on the recurring ordered sequences of terms appearing in the
document. Subsequently, a term-document (t-d) matrix is generated for each
key phrase in the document. In the third step, the matrix is factorized using
Singular Value Decomposition (SVD) to find cluster labels, formally called the
topic label of the document. In particular, we have used a publicly available im-
plementation [33]. Finally, we generate a summary by extracting those sentences
which contain the most important topics.

K-means clustering is an extraction based approach in which sentences are ex-
tracted using k-means clustering technique with skip-thought embeddings. As
a starting point, each document is decomposed into its constitute sentences. In
the second step, encoder, which is the main part of the skip thought mode,
encodes the sentences using Recurrent Neural Network with Gated Recurrent
Unit. Meaning that a fixed-length vector representation for each sentence is
generated [26]. Equations (4)–(8) describe the sequences of steps which are
performed to encode the sentences.

rt = σ(Wrx
t + Urh

t−1), (4)

zt = σ(Wzx
t + Uzh

t−1), (5)

h̄t = tanh(Wxt + U(rt
⊙

ht−1)), (6)

ht = (1− zt)
⊙

ht−1 + zt
⊙

h̄t (7)

where rt is the reset gate,
⊙

represents the element-wise multiplication, zt is
the update gate, and h̄t is the proposed state update at time t. In the third
step, the encoded sentences are clustered using K-means clustering techniques
as shown in Equation (8).

Kmeans =
k∑

j=1

n∑
i=1

||xji − cj|| (8)
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where ||xji − cj|| is selected distance measure between a data point xji and clus-
ter cj. Finally, the sentences corresponding to sentence embeddings closest to
the cluster centers are chosen for inclusion in the summary. The implementation
of the technique that we have used in this study can be downloaded from [31].

3.2.2 Generating Summary Descriptions

We have generated the summary descriptions of 669 full-length textual descriptions
using the four text summarization techniques discussed above at five different com-
pression rates, 10 %, 20 %, 30 %, 40 % and 50 %. The x% compression rate indicates
that the top x% important sentences are preserved in the generated summary. In
case, the number of sentences to be preserved is in decimal (50 % of 7 is 3.5), the
decimal value was truncated. Accordingly, we yielded a total of twenty summary
descriptions corpora, each containing summary descriptions of 669 process models.
Table 1 shows an example summary generated by each technique, TF-IDF, LexRank,
Lingo, and K-means clustering with skip-thought embeddings, at a compression rate
of 50 %. It can be observed from the table that the TF-IDF generated summary is
a collection of words rather than complete sentences. Therefore it is not usable for
compression of the workflow of the process. On the contrary, the summaries gener-
ated by the three other techniques are readable as the techniques rely on ranking
sentences and subsequently choosing a subset of sentences for generating summaries.
In the example, the bold text represents the sentences that are common between all
the three sentence-level summaries, whereas the italic text represents the sentences
that are common between two sentence-level summaries.

3.2.3 Query Descriptions and Human Annotations

Typically, the existing studies, such as [17], use merely ten randomly selected queries
and a source collection of 100 processes, to evaluate the effectiveness of the matching
technique. A key limitation of using such a small and randomly selected queries is
that the findings generated in these settings may not be reliable. In contrast to
those studies, we have chosen a very large number of 56 queries, a collection of 669
process descriptions, and a recently developed human benchmark [7, 13], for our
experimentation.

As discussed in Section 3.1, a key motivation for the choice of the source collec-
tion is that it includes a large and carefully handcrafted collection of over 600 pro-
cess models, which includes three variants of each process model, NC, LR, and HR.
A key reason for the choice of 56 queries over a randomly collected pool of merely
ten queries is that our queries are selected by employing a systematic and rigorous
procedure, without having a pre-defined number in mind. Furthermore, the princi-
pal purpose of the procedure was to ensure the inclusion of a necessary and sufficient
set of query processes. Essentially, the procedure is composed of four main steps.
In the first step, the values of the widely use structural features of each process
model were computed. These structural features are size, diameter, sequentiality,
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TF-IDF [the, hospital, administration, inquiry, then, is, parents, afterwards, subsequently, finds, baby,
information, citizenship, of, checks, to, was, sends, registers, birth, process, information,
conducts , baby , or , not, sees, accept, nationality, russian, one, has, russian, once, certificate,
begins, when, a, data, missing, requests, complete]

LexRank The process begins when the hospital inquiry checks a data. Subsequently, the hos-
pital inquiry conducts the information received. Then, the hospital inquiry informs the
civil court. Once was the hospital administration confirms the parents accepted
baby or not. The hospital administration sees the parents don’t accept baby.
Then, the hospital administration forwards the case to the higher authority. The hospital
administration finds the no one has Russian nationality. Afterwards, the hospital admin-
istration conducts the trial in court of nationality affairs. Subsequently, the hospital
administration receives the citizenship decision. The hospital administration finds
the at least 1 is Russian. Once was the hospital administration takes the decided name of
the baby. Subsequently, the hospital inquiry creates the birth certificate. Once was the
hospital inquiry finds at the least one of the parents has registration. Afterwards,
the hospital inquiry getting the citizenship stamp on the birth certificate. Sub-
sequently, the hospital inquiry sends the request about money benefits. Then,
the hospital administration formalizes the moth payments.

Lingo The process begins when the hospital inquiry checks a data. Then is . The hospital
inquiry finds the information is missing. Subsequently the hospital inquiry conducts the in-
formation received. Then the hospital inquiry informs the civil court. Once was the
hospital administration confirms the parents accepted baby or not. Afterwards is .
The hospital administration sees the parents don’t accept baby. The hospital ad-
ministration sees the parents accept baby. Afterwards the hospital administration conducts
the trial in court of nationality affairs. Subsequently the hospital administration re-
ceives the citizenship decision. Then the hospital administration registers the citizenship
of the baby. Once was the hospital inquiry finds at the least one of the parents has
registration. Afterwards the hospital inquiry gettings the citizenship stamp on
the birth certificate. Subsequently the hospital inquiry sends the request about
money benefits. Afterwards the process is finished.

RNN The process begins when the hospital inquiry checks a data. Afterwards, the hospi-
tal inquiry requests the parents to the complete information. Then, the hospital inquiry
informs the civil court. Once was the hospital administration confirms the par-
ents accepted baby or not. The hospital administration sees the parents don’t
accept baby. Then, is . Afterwards, the hospital administration checks the parents na-
tionality.The hospital inquiry finds the information complete. Subsequently, the hospital
administration receives the citizenship decision. The hospital administration finds
the no one has russian nationality. Then, the hospital administration registers the citizen-
ship of the baby. Once was the hospital administration takes the decided name of the baby.
Afterwards, the hospital inquiry gettings the citizenship stamp on the birth cer-
tificate. Once was the hospital inquiry finds at the least one of the parents has
registration. Subsequently, the hospital inquiry sends the request about money
benefits. Afterwards, the process is finished.

Table 1. Summaries generated by TF-IDF, LexRank, Lingo and RNN at compression
rate 50 %

network connectivity, token split, etc. [20]. Further details of these metrics can be
found in [20]. In the second step, a correlation was computed between every pair
of structural metrics. Subsequently, for each pair of metrics having a very high
co-relation of over 0.9 one metric was excluded. Hence, ensuring that the values of
only adequate metrics are taken into consideration. Thirdly, to ensure the diversity,
the process models with the highest, lowest, and average values of each metric were
selected as query models. Finally, the steps were repeated for each variant in the
collection, NC, LR, and HR, while avoiding redundancy. Accordingly, the generated
collection includes 14 process models of each type, Original, NC, LR, and HR, as
well as the process model with diverse structural properties.
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The full-length textual descriptions of the selected 56 query models are used
as an input to the four summarization techniques to generate the summaries of the
query processes at different compression rates (10 %, 20 %, 30 %, 40 %, and 50 %). As
a result, the summary descriptions of 1 120 queries were generated. These summary
descriptions have been used as queries in the rest of the paper for experimentation.

4 MATCHING TECHNIQUES

A notable study [18] has classified text-matching approaches into seven broad cat-
egories: overlapping of grams, lexical similarity, string and sequence comparison,
fingerprinting, probabilistic methods, NLP methods, and structural methods. The
approaches in the former three categories primarily rely on the actual content of the
query-source descriptions, whereas, the latter four rely on the use of structural or
textual features of the query-source descriptions. In this study, we limit our choice of
matching techniques to the former three categories of techniques due to two reasons:

1. summarization may have substantially changed the structure or textual features
of the descriptions, which may ultimately affect the matching performance, and

2. the latter four categories of approaches increase the computational overhead of
computing structural or textual features of the query-source descriptions.

Below, we provide an overview of the matching techniques used in this study. In
particular, we present one technique from the first and second categories (N-gram
overlap and Vector Space Model, respectively) and three techniques (Longest Com-
mon Subsequence, Local Alignment, and Global Alignment) from the third category.

4.1 N-Gram Overlap

N-gram overlap computes the similarity between a query-source descriptions pair
by dividing them into a set of tokens, called grams [21]. It then counts the number
of common tokens in the two descriptions and divides it by the number of tokens
in one or both descriptions, to get a normalized score between 0 and 1. The value
of n determines the number of words in each token. Formally, it is defined as follows:

S(Q,S) =
|T (Q) ∩ T (S)|

min(|T (Q)|, |T (S)|)
(9)

where T (Q) and T (S) is the number of token in query and source description,
respectively.

4.2 Vector Space Model (VSM)

VSM computes the similarity between a query-source descriptions pair by first rep-
resenting each description in a vector space, where each word in the description
represents a dimension in a vector space [22]. The similarity is then measured by
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computing angle between them. Formally, the normalized score is computed as
follows:

S(Q,S) =

∑n
i=1 Qi × Si√∑n

i=1(Qi)2 ×
∑n

i=1(Si)2
. (10)

4.3 Longest Common Subsequence (LCS)

Longest Common Subsequence computes the similarity between a query-source de-
scriptions pair by identifying the longest consecutive sequence of tokens that are
common between the two descriptions and dividing it with the length of the smaller
description, to compute a normalized similarity score [18]. Formally, it is defined as
follows:

S(Q,S) =
|LCS|

min(|Q|, |S|)
(11)

where LCS is the longest sequence of tokens that are common between the two
descriptions.

4.4 Local Alignment (LA)

Local Alignment computes the similarity between a query-source descriptions pair
by identifying the identical portion of tokens (small regions) between the two se-
quences [24]. In particular, for each matching pair of tokens the matching score is
incremented by 1, and for each mismatched pair of tokens the matching score is
decremented by 1. Subsequently, the normalized score is computed by dividing the
similarity score with the minimum length of the query-source description

S(Q,S) =
Lscore

min(|Q|, |S|)
. (12)

4.5 Global Alignment (GA)

Global Alignment computes the similarity between a query-source descriptions pair
by representing both descriptions as a sequence of words and then identifying the
identical text between the entire length of the two descriptions [25]. Generally,
the technique is recommended for a sequence of equal and near-equal lengths. For
each matching pair of tokens, the matching score is incremented by 1, and for each
mismatch, the score is decremented by 1. The normalized score is then computed
by the following equation:

S(Q,S) =
Gscore

min(|Q|, |S|)
. (13)
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5 COMPARISON OF SUMMARY DESCRIPTIONS

In this section, we have computed the similarity between summary descriptions of
queries generated by the four summarization techniques to evaluate how similar or
dissimilar are the summary descriptions. The process that we have employed for the
comparison of summary descriptions is presented in Figure 4. In particular, we have
generated 20 corpora, each containing summary textual descriptions of 56 query
processes, i.e., a corpus of summary descriptions generated by each summarization
technique at each compression rate 10 %, 20 %, 30 %, 40 %, and 50 %. The com-
parison of these 56 × 5 × 4 = 1 120 summary descriptions would require creating
numerous pairs of summary descriptions.

Figure 4. Comparison of textual process descriptions

The manual comparison of these many pairs is a tedious task which requires
a substantial human effort. Therefore, we have used two similarity estimation tech-
niques (n-gram overlap and Longest Common Subsequence) to compute the sim-
ilarities between these pairs. N-gram computes the degree of similarity between
a query-source pair by counting the number of unique tokens (common words) and
dividing it by the length of the short description to get a normalized score. The
similarity score thus represents the content overlap between the query-source pair
without taking into consideration the ordering of the words. Due to that limita-
tion, we have also used a variant of LCS – an order-preserving similarity estimation
method. LCSnorm, a variant of LCS, computes the similarity by counting the num-
ber of edit operations required to transform one text into another and dividing it
with the length of the short text.

Table 2 shows the average similarity scores of all possible combinations of pairs
of summary descriptions. In the table, the average similarity score of 0.62 at a com-
pression rate 50 % for the 1-gram technique represents that 62 % of the unique words
(vocabulary) used by these two algorithms overlap. The key observations from the
results are as follows:
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Techn. Comp. TF-IDF & LexRank & Lingo &
LexRank Lingo K-means Lingo K-means K-means

Unigram

50 % 0.62 0.64 0.60 0.86 0.86 0.84
40 % 0.46 0.50 0.47 0.78 0.77 0.78
30 % 0.31 0.37 0.38 0.67 0.66 0.72
20 % 0.23 0.29 0.33 0.58 0.58 0.68
10 % 0.16 0.20 0.26 0.44 0.43 0.57

LCS

50 % 0.39 0.37 0.34 0.60 0.63 0.60
40 % 0.35 0.36 0.32 0.54 0.58 0.56
30 % 0.29 0.34 0.34 0.48 0.52 0.52
20 % 0.28 0.33 0.39 0.44 0.48 0.49
10 % 0.26 0.36 0.52 0.36 0.35 0.48

Table 2. Average similarities scores between summaries of 56 query descriptions

Figure 5. Unigram based comparison of all pairs

Vocabulary overlap. It can be observed from Table 2 that the unigram similarity
score for a large majority of the cases, 53 out of 60, are less than or equal to 0.67.
These lower values indicate that at least one-third of the vocabulary between
these pairs is different. For the remaining seven cases, which are highlighted
with gray color, the unigram score is substantially high, i.e., 0.86, 0.86, 0.84,
0.78, 0.77, 0.78, and 0.72. However, it can be observed from the table that the
LCS scores of the pairs, where the vocabulary overlap, are also higher, i.e., 0.60,
0.63, and 0.60, 0.54, 0.58, 0.56, and 0.52. These lower values represent that
the ordering of the words in these summaries is significantly different from each
other, hence, indicating a significant difference between the summaries.

Similarity between types of pairs. Figure 5 plots the n-gram similarity scores
between all the pairs of summary descriptions. From the figure, it can be ob-



Summary vs. Full-Length Textual Description 867

served that the similarity scores between TF-IDF generated summaries and the
ones generated by the remaining techniques are substantially low. On the con-
trary, the corresponding similarity scores between the other pairs are on the
higher side. That is, the similarity score of LexRank & Lingo, LexRank & K-
means, and Lingo & K-means are higher than that of TF-IDF & LexRank, TF-
IDF & Lingo, and TF-IDF & K-means. A key reason for the differences in the
similarity scores stems from the fact that TF-IDF employs an entirely different
mechanism from the other three techniques for generating summaries. That is,
TF-IDF employs a word-based approach to rank and identify important words
for a summary, whereas, the other three techniques employ a sentence-ranking
approach to identify a subset of sentences for inclusion in the summary.

Impact of compression rate on the similarity. It can be observed from Fig-
ure 5 that as the compression rate decreases from 50 % to 10 %, the vocabulary
overlap between the summaries decreases gradually. These decreasing numbers
represent that the differences between the summaries in the pair widen with
the decrease in the compression rate. Hence, indicating that all the techniques
employ a different mechanism to rank words or sentences which becomes more
visible when a smaller number of words or sentences are chosen for generating
a summary.

From the above discussion, we conclude that the summary textual descriptions
generated by the four techniques, TF-IDF, LexRank, Lingo, and K-means, are signif-
icantly different from each other. Hence, the choice of the summarization technique
is a non-trivial task. This raises several questions, such as, what is the impact
of different summarization techniques on process matching? Which summarization
technique generates the most appropriate summary for effective, as well as efficient
process matching results? What level of compression rate is most appropriate for
effective, as well as efficient process matching? To answer these questions, in the
remaining part of the paper, we have performed several process matching experi-
ments.

6 PROCESS MATCHING EXPERIMENT SETUP

This section presents the details of the experimental setup that we have used for
analyzing the performance trade-off between summary and full-length textual de-
scriptions for process matching. An overview of the experimental setup is presented
in Figure 6.

6.1 Dataset and Evaluation Measures

For the experiments, the full-length descriptions of 669 process models have been
used as a source collection, and two sets of queries have been used for the process
matching:
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Figure 6. Experimental setup

1. full textual descriptions of 56 query models,

2. four sets of summary textual descriptions of 56 query models at five different
compression rates 10 %, 20 %, 30 %, 40 % and 50 %.

The details of the summary descriptions and the human annotations have been
discussed in Section 3, whereas the trade-offs between the use of summary and
full-length textual descriptions have been analyzed in terms of effectiveness and
efficiency.

For the effectiveness of matching, we have used three established measures,
Precision (P), Recall (R) and F1 score. Precision represents the percentage of source
process models that are retrieved and are relevant. Recall represents the percentage
of source process models that are relevant and retrieved. F1 score is a harmonic
mean of Precision and Recall.

For the efficiency, we have used Retrieval Time (RT) as a measure. For a full-
length query description, RT is the time taken by a technique to match the full-
length query description with all the source descriptions in the collection. Whereas,
for a summary description query, RT is the sum of the time spent to generate
a summary description of the query process and the time taken by a technique to
match the summary query descriptions with all source descriptions in the collec-
tion.

6.2 Evaluation Methodology

We have implemented all the four summarization techniques, TF-IDF, LexRank,
Lingo, and K-means, as described in Section 3.2.1. Each implementation takes
a full-length textual description as input and generates its summary descriptions at
five compression rates 10 %, 20 %, 30 %, 40 %, and 50 %. For measuring the effec-
tiveness, the matching techniques presented in Section 4 are used for experiments.
Each technique has been implemented as a program, where each implementation
takes a query process description as input and generates its pairs with 669 source
process descriptions, formally called query-source pairs. Subsequently, each imple-
mentation computes a similarity score between 669 query-source pairs and saves
them in a text file in descending order of the similarity score, meaning that the



Summary vs. Full-Length Textual Description 869

most relevant processes are on the top. Furthermore, top K processes have been
generated by varying the value of K between 4 and 16, with a step size of four. The
reason for the varying value of K lies in the nature of the source process collection,
i.e., the source collection contains four variants of each model, 150 original process
specifications, and three handcrafted variants of each model. Consequently, keeping
the step size as 4 has helped us evaluate whether or not all the variants are ranked
in the top slots. Finally, Precision, Recall, and F1 scores have been computed after
applying pre-processing in order to compare the effect of each pre-processing step.
In particular, query and source descriptions have been pre-processed by removing
stop words, stemming (using Snowball stemmer), and a combination of both. The
process was repeated for full-length query descriptions, as well as for the summary
query descriptions generated by TF-IDF, LexRank, Lingo, and K-means, at five
different compression rates.

For measuring the efficiency, the implementations of the summarization tech-
niques were modified to include the computation of the summary generation time.
Similarly, the implementations of the matching techniques were modified to compute
the retrieval time, as defined in Section 6. These implementations take a query-
source pair as input and compute the retrieval time of each pair. Subsequently,
the retrieval time was saved in a text file. Note that the efficiency experiments
have been performed 10 times for 56 queries and at each compression rate. The
results presented in this paper are the average of the 10 iterations. Similarly,
the summary generation time used in this paper is the average of the 10 itera-
tions.

Technique Full Desc. TF-IDF LexRank
P R F1 P R F1 P R F1

1-Gram 0.719 0.455 0.557 0.741 0.471 0.576 0.705 0.444 0.545

2-Gram 0.723 0.454 0.558 0.411 0.253 0.313 0.696 0.441 0.540

3-Gram 0.688 0.438 0.535 0.058 0.031 0.040 0.647 0.420 0.535

GA 0.656 0.426 0.517 0.754 0.475 0.583 0.714 0.449 0.517

LCS 0.634 0.428 0.511 0.737 0.462 0.568 0.674 0.429 0.511

LA 0.616 0.388 0.476 0.250 0.152 0.189 0.580 0.366 0.476

VSM 0.772 0.487 0.597 0.763 0.480 0.589 0.786 0.502 0.597

Table 3. Effectiveness comparison of full and summary descriptions (top 4)

7 RESULTS AND ANALYSIS

7.1 Effectiveness Results

Precision, Recall, and F1 scores provide three different types of measures to gauge
the effectiveness of a matching technique. Therefore, we have included the results
of all the three measures in Table 3 and Table 4, for all the matching techniques,
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Tech. Full Desc. Lingo RNN
P R F1 P R F1 P R F1

1-Gram 0.719 0.455 0.557 0.688 0.439 0.536 0.670 0.416 0.513

2-Gram 0.723 0.454 0.558 0.705 0.448 0.548 0.683 0.430 0.528

3-Gram 0.688 0.438 0.535 0.661 0.426 0.518 0.625 0.410 0.495

GA 0.656 0.426 0.517 0.705 0.450 0.549 0.674 0.420 0.518

LCS 0.634 0.428 0.511 0.728 0.465 0.568 0.603 0.385 0.470

LA 0.616 0.388 0.476 0.629 0.405 0.493 0.554 0.341 0.422

VSM 0.772 0.487 0.597 0.790 0.500 0.612 0.795 0.504 0.617

Table 4. Effectiveness comparison of full and summary descriptions (top 4)

Figure 7. Performing variation across summarization techniques

where full-length textual descriptions and the summary descriptions are used as
queries. Note that each value in the table is an average score of the 56 query
descriptions. It can be observed from the Table 3 that the Precision scores of
full-length descriptions are significantly higher than the Recall scores for all the
matching techniques. Furthermore, a similar trend can be observed from Table 3 and
Table 4, for each summarization technique. A higher value of Precision represents
that among the processes retrieved by a technique the majority of the processes were
relevant, whereas, a lower Recall score represents that the majority of the variants
were not retrieved. Our synthesis of the Recall results revealed that for each query
the identical processes were retrieved, whereas, for a majority of the queries the
NC variants were also retrieved. Furthermore, the LR variants of some queries were
retrieved, whereas, HR variants of a few queries were retrieved. The key observations
based on the analysis of results are as follows:
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Most suitable matching technique. It can be observed from the table that the
Vector Space Model outperformed all the matching techniques for all types of
summary descriptions, as well as for the full-length descriptions. That is, the
Precision, Recall, as well as the F1 scores of the VSM are higher than all the
other techniques, and for both types of descriptions, summary and full-length
descriptions. These highest values are highlighted using gray background color
in the table. A possible explanation to the higher values of the evaluation
measures stems from the fact that the VSM firstly represents both query and
source documents as vectors in a high-dimensional space, and subsequently the
similarity is computed by the degree of angle between query-source vectors,
rather than merely the overlap in the contents or the alignment of the text.

Variation across summarization techniques. A comparison of the F1 scores
of the summary and full-length descriptions is presented in Figure 7. It can be
observed from the figure that there is no single summarization technique that
outperforms all the other summarization techniques for all the matching tech-
niques. Furthermore, the summary generated by the state-of-the-art deep learn-
ing based summarization technique achieved the highest F1 score of 0.617 using
the VSM matching technique, whereas Lingo achieved a comparable F1 score of
0.612. These two observations indicate that the most appropriate combination
of a summarization and matching technique is the VSM and K-means clustering
with skip-thought embeddings, which is a deep learning based approach.

Tech. Full Desc. LexRank TF-IDF Lingo RNN

1-Gram 559 465 359 380 972

2-Gram 558 523 402 433 1 030

3-Gram 561 477 397 414 1 038

GA 2 763 1 180 468 918 1 491

LCS 855 415 241 346 922

LA 6 871 2 955 928 1 116 1 478

VSM 21 20 28 17 603

Table 5. Retrieval time (in milliseconds) comparison of full and summary descriptions

7.2 Synthesis of Effectiveness

For a thorough analysis of the results, we have synthesized the effectiveness score of
56 queries by dividing them into four types, such that each type has an equal number
of queries. The query-types are Original Queries (OQ), Near Copy Queries (NCQ),
Light Revision Queries (LRQ), and Heavy Revision Queries (HRQ). For each type
of queries, all the experiments have been repeated, and the Precision, Recall, and
F1 scores have been recorded in Table 6. The key observations elicited from these
results are as follows.
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It can be observed from the shaded elements in Table 6 that the Precision, Recall,
and F1 score achieved by VSM for each query type is higher than the corresponding
scores achieved by any other matching technique when RNN generated summary
descriptions were used for the process matching. These results are consistent with
the results of VSM presented in Table 4, where VSM outperformed all the other
techniques based on the average F1 score of 56 queries. Hence, reinforcing that
VSM is the most effective matching technique.

It can also be observed from the bold values in Table 6 that the average F1 scores
achieved by HRQs are always significantly less than the F1 scores achieved by OQs,
NCQs, and LRQs, for all the matching techniques. This observation is valid for the
full-length descriptions, as well as for the RNN generated summary descriptions.
This lower value is due to the significant differences in the specifications of HR
variants from O, NC, and LR variants of processes. Hence, indicating that the
identification of HR variant is a challenging task for the matching techniques. It is
thus desirable to invent new matching techniques that can effectively retrieve heavily
modified variants of processes.

Another notable observation is that for the all types of queries, the F1 score
achieved using the RNN generated summary descriptions is either higher than or
comparable with the F1 scores achieved by the full-length generated descriptions.
This observation is valid across all the matching techniques. In particular, the
average differences in F1 scores between the matching techniques are 0.028, 0.062,
0.058, and 0.033 for OQs, NCQs, LRQs, and HRQs, respectively. These results
indicate that the RNN generated summary descriptions are equally effective for all
query-types and the matching techniques.

7.3 Efficiency Analysis

Table 5 shows a comparison of the Retrieval Time (RT) for the matching tech-
niques where the full-length and summary generated textual descriptions are used
as queries. Recall from Section 6 that, for a full-length description query, RT is the
time taken by a technique to match the query with all the source descriptions in the
collection. On the contrary, for a summary description query, RT is the sum of the
time consumed in generating a summary description and the time taken by a tech-
nique to match the summarized query description with all the source descriptions
in the collection. Each value in Table 5 represents the average RT of 56 queries for
10 iterations. The key observations about efficiency analysis are as follows:

Efficiency of the matching techniques. VSM is the most efficient technique
for process matching, as its retrieval time is merely 21 milliseconds in case of
full-length query descriptions. Furthermore, it can be observed from the table
that the use of summary descriptions substantially reduces the RT of all the
matching techniques, with the exception of VSM. That is, the RT of VSM does
not decrease substantially. Further analysis of the RT of VSM revealed that
the RT for full description queries is minuscule, 21 milliseconds only. Hence, the
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Full-length description RNN summary

Queries Technique P R F1 P R F1

OQ-14

Unigram 0.804 0.441 0.570 0.804 0.438 0.567
Bigram 0.786 0.439 0.563 0.786 0.428 0.554
Trigram 0.786 0.439 0.563 0.732 0.422 0.535
GA 0.804 0.454 0.580 0.821 0.464 0.593
LCS 0.786 0.462 0.582 0.768 0.443 0.562
LA 0.768 0.418 0.541 0.696 0.377 0.489
VSM 0.821 0.444 0.576 0.893 0.498 0.639

NCQ-14

Unigram 0.714 0.537 0.613 0.661 0.482 0.557
Bigram 0.696 0.519 0.595 0.679 0.513 0.584
Trigram 0.714 0.537 0.613 0.714 0.536 0.612
GA 0.696 0.527 0.600 0.732 0.542 0.623
LCS 0.732 0.575 0.644 0.661 0.506 0.573
LA 0.714 0.525 0.605 0.571 0.419 0.483
VSM 0.804 0.614 0.696 0.786 0.596 0.678

LRQ-14

Unigram 0.696 0.489 0.574 0.625 0.430 0.509
Bigram 0.714 0.491 0.582 0.625 0.432 0.511
Trigram 0.607 0.428 0.502 0.500 0.372 0.427
GA 0.643 0.456 0.534 0.589 0.373 0.457
LCS 0.589 0.420 0.490 0.518 0.332 0.405
LA 0.482 0.338 0.397 0.464 0.303 0.367
VSM 0.696 0.469 0.560 0.714 0.496 0.585

HRQ-14

Unigram 0.661 0.352 0.459 0.589 0.315 0.410
Bigram 0.696 0.368 0.481 0.643 0.346 0.450
Trigram 0.643 0.349 0.452 0.554 0.309 0.397
GA 0.482 0.269 0.345 0.554 0.300 0.389
LCS 0.429 0.256 0.321 0.464 0.258 0.332
LA 0.500 0.270 0.351 0.482 0.263 0.340
VSM 0.768 0.420 0.543 0.786 0.426 0.553

Table 6. Effectiveness comparison of query types (Top 4)

overhead of summary generation time becomes dominant. That is, the summary
generation time of LexRank is 3 milliseconds, whereas its matching time is 17
milliseconds, which represents a slight decrease in the matching time. Similarly,
for the other techniques, TF-IDF, Lingo, and K-means, the time required for
generating summaries is also minute, 0.015, 0.030, and 584 milliseconds, respec-
tively.

Efficiency of the summarization techniques. It can be observed from the
Figure 8 that the RT of a large majority of the summarization techniques is
significantly less than that of the full-length query descriptions. A notable ob-
servation is that, in contrast to other summarization techniques, the retrieval
time of K-means generated summaries is significantly higher than that of the
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full-length descriptions. It is due to the reason that K-means employs a deep
learning technique that takes into consideration several parameters for generat-
ing summaries, hence, making it a resource-intensive task. Furthermore, it can
be observed from Figure 8 f) that the RT of K-means generated summaries is
manifolds higher than that of the full-length generated descriptions. Our synthe-
sis of the RT revealed that the retrieval time of summary descriptions actually
reduces from 21 to 19 milliseconds. However, due to the higher amount of sum-
mary generation time, i.e. 584 milliseconds, the overall retrieval time inflates
significantly.

From the discussion we conclude that the choice of summarization technique, as
well as the matching technique, significantly contributes to the efficiency of match-
ing. However, one must take into consideration the trade-off between effectiveness
and efficiency. Therefore, the subsequent section focuses on analyzing this trade-off
in detail.

Effectiveness Efficiency
Tech. TF-IDF LexRank Lingo K-means TF-IDF LexRank Lingo K-means

1-Gram + – – – + + + –

2-Gram – – – – + + + –

3-Gram – NA – – + + + –

GA + NA + + + + + +

LCS + NA + – + + + –

LA – NA + – + + + +

VSM – NA + + – + + –

Table 7. Trade-off between Efficiency (EF) and Effectiveness (EC)

7.4 Efficiency-Effectiveness Trade-Off Analysis

In this section, we discuss the performance trade-off between the summary and full-
length textual descriptions. Table 7 provides an overview of the trade-off between
these descriptions in terms of efficiency and effectiveness. In the table, a ‘+’ sign for
effectiveness represents that the use of summary description has a positive impact
on the effectiveness of matching, i.e., the average F1 score achieved by the summary
queries is higher than the full-length description. Similarly, a ‘−’ sign represents
that the use of summaries impedes the effectiveness of matching. On the contrary,
a ‘+’ sign for efficiency represents that the performance of matching, in terms of
efficiency, increases when summary descriptions are used for process matching. That
is, the average RT of matching of summary query descriptions is less than the full-
length query descriptions, whereas, the ‘−’ sign represents that the matching time
of summary descriptions is higher than the full-length descriptions.
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a) Unigram b) Bigram

c) Trigram d) GA

e) LCS f) VSM

Figure 8. Performance comparison of summary and full-length description

It can be observed from Table 7 that the efficiency of the matching improves for
a large majority of the cases when summary query descriptions are used for process
matching. In particular, the efficiency increases when the LexRank generated sum-
mary queries are used for matching. However, the use of the LexRank generated
summary queries does not increase the effectiveness of matching.

It can also be observed from the table that the efficiency, as well as the effective-
ness of matching, does not increase for a large majority of the matching techniques
when K-means generated summary descriptions are used as queries. In contrast to
that, the use of the summary description queries generated by TF-IDF and Lingo
increases the efficiency as well as effectiveness for multiple matching techniques.
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Among these two summarization techniques, the effectiveness scores of the Lingo
generated summary is higher than that of TF-IDF for a majority of the matching
techniques making it more suitable for process matching.

Furthermore, for the most effective matching technique, VSM, the F1 score of
0.612 achieved by Lingo generated summaries is comparable with the F1 score of
0.617 achieved by K-means generated summaries, whereas, the retrieval time of
Lingo generated summaries is merely 17 milliseconds, which is less than that of TF-
IDF, 28 milliseconds. Hence, we conclude that the summary textual descriptions
generated by Lingo at a compression rate of 50 % can achieve a comparable or higher
efficiency as well as effectiveness than the summary descriptions generated by the
other three techniques, as well as by using full-length textual descriptions.

8 RELATED WORK

The approaches to process matching can be classified into two broad categories:

1. effectiveness enhancement approaches, and

2. efficiency enhancement approaches.

Effectiveness enhancement approaches: This category includes the approaches
that aim to enhance the effectiveness of process matching. Several approaches,
such as Ref. [17, 27], have proposed to combine structural and behavioral fea-
tures with label features to decide a query-source pair as equivalent or not equiv-
alent. To compute the similarity between label features, a large majority of the
techniques employ syntactic measures, such as distance-based measures [28],
to simply count the number of edit operations required to convert one label
into another. More advanced techniques, to compute the similarity between la-
bel features, use semantic and contextual measures [29]. These measures rely
on a lexical database, WordNet [30], to compute semantic similarity between
labels. The similarity between label features is combined with graph match-
ing techniques to compute the similarity between a query-source process model
pair. Behavioral feature-based approaches [35] compute the similarities between
a pair of process models using their execution behaviors, formally called the
causal relationship between activities.

Recent studies, such as [36], enhance the accuracy of process matching by inte-
grating the specification of a process model with the textual descriptions of its
elements. Another study [7] has proposed the use of textual descriptions as an
alternative to the process models.

Efficiency enhancement approaches: This category includes the approaches
that aim to enhance the efficiency of the process matching. To the best of
our knowledge, this category includes only two approaches, Ref. [38] and [39].
The first approach [38] aims to extract features from process models, and sub-
sequently uses these features to categorize processes as relevant, irrelevant, or
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potentially relevant. Whereas, the second approach [39] proposes to use a novel
feature of the process models, called Feature-Net (FNet). This approach consists
of two phases: indexing and querying. In the first phase, each process graph
{G1, G2, . . . } in the collection of process models, is indexed. Subsequently, each
indexed process graph is split into basic features {PF1, PF2, . . . } to construct
an FNet, which is used for computing similarity between a query-source pair.

9 CONCLUSION

In this paper, we argue that the use of full-length text descriptions may impede
the efficiency of matching techniques, particularly when the textual descriptions
are very long. To mitigate this, we promote the use of summary textual descrip-
tions as an alternative to the full-length textual descriptions. To this end, we have
thoroughly investigated the trade-off between efficiency and effectiveness between
full-length textual descriptions and our proposed alternative of summary textual
descriptions.

We have generated a corpus of full-length textual descriptions of 669 process
models and use them to generate 20 corpora of summary descriptions. The full-
length textual descriptions corpus is generated from the process models in JSON
format using an established tool for generating textual descriptions, called NLGS.
Whereas, the 20 summary corpora are generated by using diverse text summariza-
tion techniques, at five different compression rates, 10 %, 20 %, 30 %, 40 %, and
50 %. The techniques include a word-based summarization technique, TF-IDF, an
established graph-based summarization technique, LexRank, a state-of-the-art clus-
tering technique, Lingo, and another state-of-the-art deep learning based technique,
K-means clustering with skip-thought embeddings. To establish that the generated
summary corpora are substantially different from each other, we have used two text-
matching techniques, N-gram overlap, and LCS. For that, we have first generated
1 120 pairs of summary descriptions and subsequently used the two text-matching
techniques to compute the similarity between each pair. The results show that the
summaries generated by the two summarization techniques are significantly different
from one another, hence, the choice of summarization technique is a non-trivial task.
Therefore, we conducted process matching experiments to compare the performance
of the summary descriptions generated by the four summarization techniques.

The process matching experiments are performed using 56 full-length textual
descriptions as queries and 669 full-length textual descriptions as a source. For
matching, we have used seven text-matching techniques: Unigram, Bigram, Tri-
gram, Global Alignment, Longest Common Subsequence, Local Alignment, and
Vector Space Model. Furthermore, we have performed experiments using 20 sets of
56 summarized query descriptions generated by the four summarization techniques
at five compression rates. Our results show that the use of summary description
queries, generated by Lingo at a compression rate of 50 %, can achieve a comparable
or higher efficiency as well as effectiveness than the full-length descriptions. In the
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future, we aim to use other summarization techniques and study their impact on
process matching.
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Abstract. Multiple Traveling Repairman Problem with Distance Constraints
(MTRPD) is an extension of the NP-hard Multiple Traveling Repairman Problem.
In MTRPD, a fleet of identical vehicles is dispatched to serve a set of customers
with the following constraints. First, each vehicle’s travel distance is limited by
a threshold. Second, each customer must be visited exactly once. Our goal is to
find the visiting order that minimizes the sum of waiting times. To solve MTRPD
we propose to combine the Insertion Heuristic (IH), Variable Neighborhood Search
(VNS), and Tabu Search (TS) algorithms into an effective two-phase metaheuris-
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tic that includes a construction phase and an improvement phase. In the former
phase, IH is used to create an initial solution. In the latter phase, we use VNS
to generate various neighborhoods, while TS is employed to mainly prohibit from
getting trapped into cycles. By doing so, our algorithm can support the search to
escape local optima. In addition, we introduce a novel neighborhoods’ structure
and a constant time operation which are efficient for calculating the cost of each
neighboring solution. To show the efficiency of our proposed metaheuristic algo-
rithm, we extensively experiment on benchmark instances. The results show that
our algorithm can find the optimal solutions for all instances with up to 50 vertices
in a fraction of seconds. Moreover, for instances from 60 to 80 vertices, almost all
found solutions fall into the range of 0.9 %–1.1 % of the optimal solutions’ lower
bounds in a reasonable duration. For instances with a larger number of vertices,
the algorithm reaches good-quality solutions fast. Moreover, in a comparison to the
state-of-the-art metaheuristics, our proposed algorithm can find better solutions.

Keywords: Traveling repairmen problem, distance constraints, insertion heuristic,
tabu search, variable neighborhood search

1 INTRODUCTION

The Traveling Repairman Problem (TRP), which is also known as the Minimum
Latency Problem (MLP) or the Deliveryman Problem (DMP), has been studied in
the number of previous works [1, 2, 3, 4, 5, 6, 10, 11, 18]. The problem arises when
repairmen or servers have to accommodate a set of requests to minimize the total
or average waiting times [1, 2, 8, 10]. A direct generalization of the TRP is the
Multiple Traveling Repairman Problem (MTRP) that considers multiple vehicles
or travelers. Similar to TRP, there are several prior studies in the literature for
MTRP [22, 9, 23, 28, 29]. Applications of the MTRP can be found in routing
Pizza deliverymen or scheduling machines to minimize mean flow time for jobs [17].
In this paper, we study an extension of MTRP, namely the Multiple Traveling
Repairmen Problem with Distance Constraints (MTRPD), which involves distance
constraints. In MTRPD, the route length or maximum duration of each vehicle
cannot exceed a predetermined limit (MD). This type of constraint usually stems
from regulations on working hours for workers. Other examples of vehicle routing
models that incorporate the distance constraint can be found in [30]. In MTRPD,
we consider k vehicles at a main depot s and n customers. The goal is to find a tour
such that each vertex is visited exactly once, the distance constraint is respected
and the total waiting time of all customers is minimized.

MTRPD is at least as hard as TRP and MTRP. MPTRPD, which is also NP-
hard problem, can be formulated as follows.

Given a complete graph Kn with the vertex set V = {1, 2, . . . , n}, a symmet-
ric distance matrix C = {c(i, j) | i, j = 1, 2, . . . , n}, where c(i, j) is the distance
between two vertices i and j, and a predetermined limit L. Let R = (1, 2, . . . , k)
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be a set of k vehicles which begin at the main depot v1. Suppose that the tour
T = (R1, . . . , Rl, . . . , Rk) is a set of obtained routes from k vehicles. Let Rl =
(v1, . . . , vh, . . . , vm) (1 < m 6 n) be a route of vehicle l (l ∈ R). P (v1, vh) is the
path from v1 to vh on the route Rl and l(P (v1, vh)) is its length. The waiting time
of a vertex vh (1 < h 6 m) on Rl is the length of the path from starting vertex v1
to vh:

l(P (v1, vh)) =
h−1∑
i=1

c(vi, vi+1).

The waiting time of Rl is defined as the sum of waiting times of all vertices in this
route. It must satisfy the below constraint:

W (Rl) =
m∑

h=2

l(P (v1, vh)),

L(Rl) =
m−1∑
i=1

c(vi, vi+1) 6 MD .

The total waiting time of T is the sum of all the vertices’ waiting times:

W (T ) =
k∑

l=1

W (Rl).

MTRPD asks for a k -route, which starts at a given vertex v1, visits each vertex
in the graph once exactly with the total waiting time of all vertices being minimized.
Like other NP-hard problems, there are three main approaches to solve MTRPD:

1. exact algorithms,

2. approximation algorithms, and

3. heuristic algorithms.

The first approach guarantees to find the optimal solution that takes exponential
time in the worst case. However, the exact algorithm only solves with up to 50
vertices [25]. In the second approach, we denote an approximation algorithm as
p-approximation when the algorithm finds the solution at most p times worse than
the optimal one. Here p is the approximation ratio, which has a constant value. Up
to date, the best approximation ratio is 16.994 for the MTRP [22], which is still far
from the optimal solution. In the third approach, the proposed heuristic algorithms
perform well in practice and their performance is validated on an experimental
benchmark of interesting instances. The metaheuristic algorithm also falls in the
third approach.

Research on the MTRPD has not studied much and only one meta-heuristic
approach for this problem has been proposed in [9]. Ban’s algorithm in [9] is mainly
based on the principles of the Variable Neighborhood Decent (VND). However, Ban’s
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algorithms might become trapped into cycles. That means they return to the points
previously explored in the solution space. Consequently, the algorithms can get stuck
in local optima. In this article, we investigate the global structure of the MTRPD
solution space. Based on the investigation, a meta-heuristic algorithm that com-
bines the Tabu search (TS) and Variable Neighborhood Search (VNS) is proposed.
In the algorithm, TS is used to avoid getting trapped into cycles. Therefore, it
supports the search to escape from local optima. In a cooperative way, VNS is em-
ployed to generate various neighborhoods for the TS. Moreover, we also introduce
a novel neighborhoods’ structure for VNS and present a constant time operation
for calculating the cost of each neighboring solution. Therefore, the extension of
explored part of the solution space obtained by using various neighborhoods, which
can increase chances of finding better solution, is not time-consuming in our algo-
rithm. Extensive computational experiments on benchmark instances show that the
proposed algorithm is able to find the optimal solutions for all instances with up
to 50 vertices in a fraction of seconds. Moreover, almost all found solutions for in-
stances from 60 to 80 vertices fall into the range of 0.9 %–1.1 % of the lower bounds
of the optimal solutions at reasonable amount of time. For larger instances, our
algorithm obtains good-quality solutions fast and the new best solutions are found
in comparison with the state-of-the-art metaheuristics.

The rest of this article is organized as follows. Section 2 introduces the global
structure of the solution space of MTRPD. Section 3 presents the proposed algo-
rithm. Section 4 contains the evaluation. Finally, Section 5 concludes the article.

2 INVESTIGATION OF MTRPD SOLUTION SPACE

The structure of the MTRPD solution takes an important part in improving a suit-
able algorithm to solve the problem. However, to the best of our knowledge, there
has not been a previous work that would solve the global structure of the MTRPD
problem. That motivates us to investigate the global structure of the MTRPD
solution space.

In an intuitive way, the distance between two tours T1 and T2 of the problem
is defined as the minimum number of transformations from T1 to T2, denoted by
d(T1, T2). Since no polynomial method for computing d(T1, T2) has been known, we
define d(T1, T2) to be n minus the number of vertices which have the same position
in both T1 and T2. We see that this distance approximates the number of 2-opt
operations (2-opt is a local search described in Section 3) required to transform one
tour into another, to within a factor of two. Therefore, d(T1, T2) is the good measure
of proximity between solutions produced by 2-opt.

We have selected two instances (d15112-x and pr1002-x) from the dataset in [25]
and implemented with 2-opt. The selection reason is that the optimal solutions of
both instances are provided in [25]. Running each instance with 2-opt, we obtain
locally optimal solutions. The larger the number of 2-opt runs, the better the visu-
alization of the MTRPD solution space. The pilot experiment shows that the value
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Figure 1. 2 000 random 2-opt local minima for d15112-x. Tour cost (vertical axis) is
plotted against a) mean distance to the 1 999 other local minima and b) distance to the
global minimum.

of 2 000 is good enough for the investigation. We run 2-opt 2 000 times to produce
2 000 locally optimal solutions. Then, for each of those solutions, we compute the
average distance to the other 1999 solutions, measured by the distance metric d. The
results for d15112-x and pr1002-x are presented in Figures 1 and 2, respectively.

In Figures 1 a) and 2 a), we can realize a clear correlation as follows. The op-
timal minimum appears to be central to all other local minima. Moreover, indeed,
a prominent valley structure can be said to govern the set of locally minimum solu-
tions. We can gain further insights from Figures 1 b) and 2 b), which plot the costs
of the same 2 000 local minima against their distances from the optimal minimum
solution found. It indicates that the average distance between two random solu-
tions is just under (n− 2). The experiment shows that the MTRPD solution space
exhibits a global convex (i.e., the so-called big valley structure in Figure 3). That
means the set of local optima appears convex with one central global optimum.

As mentioned earlier, MTRPD has shown to be NP-Hard because it is a gen-
eralization of TRP, which is NP-hard [10, 18]. Therefore, a metaheuristic needs
to be developed to provide near-optimal solutions within a short computation time
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Figure 3. Intuitive scheme of the “big valley” solution space structure
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for large instance sizes. Moreover, the big valley structure suggests the idea of the
hybrid approach that combines the TS and VNS algorithms. First, in the valley
structure, the best elite solutions created by the VNS dispersed over it. Second, TS
is perfectly attracted to big valley area. Even though the initial solution was set
far from the valley, TS still can prevent from getting trapped into cycles to drive
the search to the big valley. The above observations indicate that the combination
between TS and VNS is suitable for finding good solutions inside the big valley.

3 OUR METAHEURISTIC APPROACH

We propose the efficient and straightforward metaheuristic algorithm that brings
together the components of IH, TS [19], and VNS [27]. The proposed algorithm
includes two phases:

1. IH in the construction phase and

2. VNS and TS in the improvement phase.

The two phases could be divided into five detailed steps, as shown in Algorithm 1. In
Step 1, the algorithm starts with an initial solution obtained from IH. The following
four main steps are repeated until a stop condition is met. In Step 2, we introduce
a novel neighborhoods’ structure in VNS [27]. Moreover, in order to avoid tabu
move, tabu lists are used. The idea of voiding possibility repeatedly in TS [19] is
to make tabu lists of the recent types of moves in the space solution, and prohibit
reversing these moves. The move here is a transition from one solution to another.
In Step 3, a list of promising solutions is built up, and the list serves as input for
Step 4. The step aims at exploiting the current solution space. To explore the entire
solution space, a diversification phase is added in Step 5. Further in this section we
describe the five steps of our algorithm in more details.

Step 1: We use the insertion heuristic which is given in Algorithm 2 for finding
an initial solution. Consider a partial tour, and define the set V as the set of all
non-visited nodes, V ⊆ V . To improve the partial tour, a node from V should be
added. This process requires two decisions: which vertex to insert and where to
place it in the tour. We use two insertion schemes to keep the balance between
pure greediness and overall layout of the tour. The major difference between
the two is the order in which the vertices are inserted.

Cheapest insertion: Among all vertices not inserted so far, choose a vertex
whose insertion causes the lowest increase in the cost of the tour. The idea
behind this strategy is undoubtedly pure greediness.

Farthest insertion: Insert the vertex whose minimal distance to a tour vertex
is maximal. The idea behind this strategy is to fix the overall layout of the
tour early in the insertion process.

Several main steps in IH-procedure is repeated until a feasible solution is found
or a stop condition is met. If any feasible solution is found, it is considered as
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Algorithm 1 Our VNS + TS Metaheuristic Algorithm

Input: v1, Kn, k are a starting vertex, the complete graph, and the number of ve-
hicles, respectively.

Output: the best solution T ∗.
Step 1 (Generate an initial solution):
T ← IH-Procedure(v1, V, k); {initiate the best solution}
T ∗ ← T {LT is the list of promising solutions}
LT ← ∅
while stop criteria not met do

Step 2 (VNS):
for i : 1→ 10 do
T

′ ← arg minNi(T ); {local search}
if ((W (T

′
) < W (T ) and T

′
is not tabu) or (W (T

′
) < W (T ∗))) then

T ← T
′

i← 1
update tabu lists;
if (W (T

′
) < W (T ∗)) and (T

′
must be a feasible solution) then

T ∗ ← T
′
;

end if
else
i++

end if
end for
Step 3 (Built up promising solutions list LT ):
if W (T ) < (1 + ST )W (T ∗) then
LT ← LT ∪ T ;

end if
if (| LT |== sLT ) then

go to Step 2;
end if
Step 4 (Implement Intensification):
for j : 1→ sLT do

perform VNS as in Step 2 without tabu list with an element of LT as start
solution;

end for
Step 5 (Implement Diversification):
Clear all tabu lists and update attribute matrix M ;
select a random tour T in LT ;
T ← shaking-procedure(T);

end while
return T ∗;
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Algorithm 2 IH-Procedure(v1, Kn, k)

Input: v1, Kn, k are a starting vertex, the complete graph, and the number of ve-
hicles, respectively.

Output: An initial solution T . {LIT is the list of infeasible tours}
1: LT = φ;
2: T = v1;
3: while stop criteria not met do
4: for (l = 1; l < k; l++) do
5: Rl = Rl ∪ v1; {The lth route of the tour T starts at a main depot v1}
6: end for {L is the list of visited vertices in Kn}
7: L = φ;
8: while |T | < n do
9: l = random(k); {Choose a route randomly in k routes}

10: rd = random(2); {Choose an insertion scheme randomly}
11: if rd == 1 then
12: Arbitrary select a vertex v that is not yet in the partial route and

an inserted position j < |Rl| at time tj so that the cost of R
′

l (R
′

l =
Insert(Rl, j, v)) is minimal; {Cheapest Insertion}

13: else
14: Arbitrary select a vertex v that is not yet in the partial tour and an in-

serted position j < |Rl| at time tj so that c(vj, v, j) is minimal and the
cost of R

′

l (R
′

l = Insert(Rl, j, v)) is maximal; {Farthest Insertion}
15: end if
16: Rl ← R

′

l

17: end while
18: if T is a feasible solution then
19: return T ;
20: else
21: LIT = LIT ∪ {T};
22: end if
23: if |LIT | > n− 1 then
24: choose a tour with the minimum cost in LIT ;
25: exit();
26: end if
27: end while

the initial solution. Conversely, it is added into the list LIT that is used to
store all infeasible tours. Since the size of LIT is n, we choose a tour with the
minimum cost in LIT as the initial solution.

Step 2: In this step, ten neighborhoods investigated are divided into two categories:
intro-route, and intra-route. Intro-route is used as a post-optimizer on single
vehicle routes. It includes remove-insert, swap-adjacent, swap, move-up(down),
move-forward(backward)-k -vertices [21]. Meanwhile, solution improvements can
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Algorithm 3 Shaking(T,M, pos)

Input: T , M , pos are the tour, attribute matrix, and the number of swap, respec-
tively.

Output: a new route T
′
.

Select randomly a route Rl in T ;
T = Shaking-intro-route(Rl,M, l, pos).
Select randomly two routes Rl and Rh in T ;
T = Shaking-intra-routes(Rl, Rh, pos).
return T ;

Algorithm 4 Shaking-intro-route(Rl,M, l, pos)

Input: Rl, M , l, pos are the l− th route, attribute matrix, and the number of times
an edge is present in an element of the promising solutions list, the number of
swap, respectively.

Output: a new solution T .
while (pos > 0) do
{select i, j from [1, n] at random}
i←− Random(1, n);
j ←− Random(1, n);
if (i 6= j) then

if (edge(Rl[i], Rl[j]) and edge(Rl[i], Rl[j+1]) are not in M more than l times)
then

Insert Rl[i] between Rl[j] and Rl[j + 1];
pos←− pos− 1;

end if
end if

end while
update Rl in T ;
return T ;

Algorithm 5 Shaking-intra-routes(Rl, Rh, pos)

Input: Rl, Rh, pos are the lth, hth route, the number of vehicles and the number of
swap, respectively.

Output: a new solution T .
while (pos > 0) do

select ith and jth positions from Rl and Rh at random, respectively;
swap Rl[i] between Rh[j];
pos = pos− 1;

end while
update T ;
return T ;
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be obtained by moving vertices belonging to two or more different routes in
intra-route. In this work, we introduce new neighborhoods in intra-route such
as swap-2-route, and insert-2-route. For a given current solution T , neighbor-
hood explores the neighboring solution space set N(T ) of T iteratively and tries
to replace T by the best solution T ′ ∈ N(T ). The main operation in explor-
ing the neighborhood is the calculation of the cost of a neighboring solution.
In a straightforward implementation in the worst case, this operation requires
Tsol = O(n). In this paper, by using the known cost of the current solution,
we show that this operation can be done in constant time for some considered
neighborhoods. Thus, we speed up the running time of exploring these neighbor-
hoods. Now, let T = (R1, R2, . . . , Rk) be a tour with k routes, we then introduce
a novel neighborhoods’ structure and complexity of its exploration.

For Intro-route: Intro-route is used to optimize on a single route. Assume
that R and m (m < n) are a route and its length, respectively. We then
introduce eight neighborhoods’ structure in turn.

Remove-insert neighborhood considers each vertex vi in the route at the
end of the route. This neighborhood of R is defined as a set N1(R) = {Ri =
(v1, v2, . . . , vi−1, vi+1, . . . , vm, vi) : i = 2, 3, . . . ,m− 1}. Obviously, the size of
N1(R) is O(m).

Property 1. The time complexity of exploring N1(R) is O(m2).

Proof. Let us consider an initial solution R = v1, v2, . . . , vi−1, vi, vi+1, . . . , vm.
The neighborhood generates a neighboring solution Ri = v1, v2, . . . , vi−1, vi+1,
. . . , vm, vi. The costs of R and Ri are calculated as follows:

L(R) = (m− 1)c(v1, v2) + . . .+ (m− i+ 1)c(vi−1, vi) + (m− i)c(vi, vi+1)

+ (m− i− 1)c(vi+1, vi+2) + . . .+ c(vm−1, vm) (1)

and

L(Ri) = (m− 1)c(v1, v2) + . . .+ (m− i+ 1)c(vi−1, vi+1) + (m− i)c(vi+1, vi+2)

+ . . .+ 2c(vm−1, vm) + c(vm, vi).

Thus,

L(Ri) = L(R)−
m−1∑
k=i−1

(m− k)c(vk, vk+1) + (m− i+ 1)c(vi−1, vi+1)

+
m−1∑
k=i+1

(m− k + 1)c(vk, vk+1) + c(vm, vi). (2)
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It takes O(m) time to calculate the formulation in (2). Therefore, the time
complexity of exploring N1(R) is O(m2). �

Swap adjacent neighborhood attempts to swap each pair of adjacent ver-
tices in the route. This neighborhood of R is defined as a set N2(R) = {Ri =
(v1, v2, . . . , vi−2, vi, vi−1, vi+1, . . . , vm) : i = 3, 4, . . . ,m − 1}. The size of the
neighborhood is O(m).

Property 2. The time complexity of exploring N2(R) is O(m).

Proof. The initial tour R and L(R) are the same as in (1). The neighborhood
generates a neighboring tour Ri = v1, v2, . . . , vi−2, vi, vi−1, vi+1, . . . , vm. The la-
tency of Ri is calculated as follows:

L(Ri) = (n− 1)c(v1, v2) + . . .+ (m− i+ 2)c(vi−2, vi) + (m− i+ 1)c(vi, vi−1)

+ (m− i)c(vi−1, vi+1) + (m− i− 1)c(vi+1, vi+2) + . . .+ c(vm−1, vn).

We have

L(Ri) = L(R)− (m− i+ 2)c(vi−2, vi−1)− (m− i)c(vi, vi+1)

+ (m− i+ 2)c(vi−2, vi) + (m− i)c(vi−1, vi+1). (3)

It is obvious that we can calculate L(Ri) by the formulation (3) in O(1) time.
Therefore, the complexity of exploring N2(R) is O(m). �

Swap neighborhood attempts to swap the positions of each pair of vertices
in the route. This neighborhood of R is defined as a set N3(R) = {Rij =
(v1, v2, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vm) : i = 2, 3, . . . ,m − 3; j =
i+ 3, . . . ,m}. The size of the neighborhood is O(m2).

Property 3. The complexity of exploring N3(R) is O(m2).

Proof. Initially, we have a solution R = v1, v2, . . . , vi−1, vi, vi+1, . . . , vj−1, vj,
vj+1, . . . , vm (i+ 2 < j). Swap generates a neighboring solution Rij = v1, v2, . . . ,
vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vm. The costs of R and Ri are calculated as
follows:

L(R) = (m− 1)c(v1, v2) + . . .+ (m− i+ 1)c(vi−1, vi) + (m− i)c(vi, vi+1)

+ . . .+ (m− j + 1)c(vj−1, vj) + (m− j)c(vj, vj+1)

+ . . .+ c(vm−1, vm). (4)

L(Rij) = (m− 1)c(v1, v2) + . . .+ (m− i+ 1)c(vi−1, vj) + (m− i)c(vj, vi+1)

+ . . .+ (m− j + 1)c(vj−1, vi) + (m− j)c(vi, vj+1) + . . .+ c(vm−1, vm).
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It follows that

L(Rij) = L(R)− (m− i+ 1)c(vi−1, vi)− (m− i)c(vi, vi+1)

− (m− j + 1)c(vj−1, vj)− (m− j)c(vj, vj+1) + (m− i+ 1)c(vi−1, vj)

+ (m− i)c(vj, vi+1) + (m− j + 1)c(vj−1, vi) + (m− j)c(vi, vj+1). (5)

Hence, we can calculate L(Rij) by the formulation (5) in O(1) time. Therefore,
the complexity of exploring L(Rij) is O(m2). �

Or neighborhood attempts to reallocate three adjacent vertices to another
position of the route. This neighborhood of R is defined as a set N4(R) =
{Ri = (v1, v2, . . . , vi−1, vi, vj+1, . . . , vk, vi+1, . . . , vj, vk+1, . . . , vm) : i = 2, 3,
. . . ,m−5, j = 4, . . . ,m−3, k = 6, . . . ,m−1}. The size of the neighborhood
is O(m3).

Property 4. The complexity of exploring N4(R) is O(m3).

Proof. In fact, this neighborhood implements the swap neighborhoods twice
(we exchange between vj+1 and vi+1 and between vj and vk) in the route. It
takes O(1) time for swap operation. Therefore, calculating L(Rijk) is 2 × O(1)
time and the complexity of exploring L(Rijk) is O(m3). �

2-opt neighborhood removes each pair of edges from the solution and recon-
nects the vertices. This neighborhood of T is defined as a set N5(T ) = {Tij =
(v1, v2, . . . , vi, vj, vj−1, . . . , vi+2, vi+1, vj+1, . . . , vm) : i = 1, . . . , n − 4; j = i +
4, . . . ,m}. The size of the neighborhood is O(m2).

Property 5. The complexity of exploring N5(T ) is O(m3).

Proof. The initial tour and L(T ) are the same as in (4). The neighborhood
generates a neighboring tour Tij = (v1, v2, . . . , vi, vj, vj−1, . . . , vi+2, vi+1, vj+1, . . . ,
vm). The costs of T and Ti are calculated as follows:

L(Tij) = (m− 1)c(v1, v2) + . . .+ (m− i)c(vi, vj) + (m− i− 1)c(vj, vi+2)

+ . . .+ (m− j + 1)c(vj−1, vi+1) + (m− j)c(vi+1, vj+1) +

+ . . .+ (vm−1, vm).
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We have

L(Tij) = L(T )− (m− i)c(vi, vi+1)−
j−i−1∑
h=1

(m− i− h)c(vi+h, vi+h+1)

− (m− j)c(vj, vj+1) + (m− i)c(vi, vj)

+

j−i−1∑
h=1

(m− i− h)c(vj−h+1, vj−h) + (m− j)c(vi+1, vj+1). (6)

It is obvious that we can calculate L(Tij) by the formulation (6) in O(m) time.
Therefore, the complexity of exploring N5(T ) is O(m3). �

Move-forward-k-vertices neighborhood of T is defined as a set N6(T ) =
{Tijk = (v1, v2, . . . , vi, vi+k+1, vi+k+2, . . . , vj, vi+1, vi+2 . . . , vi+k, vj+1, . . . , vm) :
i = 1, 2, . . . ,m − k − 1; i + k < j 6 m} with k = 2, . . . , l. The size of the
neighborhood is O(m2).

Move-backward-k-vertices neighborhood of T is defined as a set N7(T ) =
{Tijk = (v1, v2, . . . , vi, vi+k+1, vi+k+2, . . . , vi+1, vi+2 . . . , vi+k, vj, vj+1, . . . , vm) :
i = 1, 2, . . . ,m − k − 1; i + k < j 6 m} with k = 2, . . . , l. The size of the
neighborhood is O(m2).

Property 6. The complexity of exploring N6(R) and N7(R) is O(m3).

Proof. We prove Property 6 for move-forward-k-vertices and the same argument
holds for move-backward-k-vertices. For a tour Rijl ∈ N6(R), it can be shown
that

L(Tijk) = L(T )− (m− i)c(vi, vi+1)−
j−1∑

h=i+1

(m− h)c(vh, vh+1)

− (m− i)c(vi, vi+1) + (m− i)c(vi, vi+k+1)

+

j−i−k−2∑
h=1

(m− i− h)c(vi+k+h, vi+k+h+1) + (m− j + k + 1)c(vj−1, vj)

+ (m− j + k)c(vj, vi+1) +
k−1∑
h=1

(m− j + k − h)c(vi+h, vi+h+1)

+ (m− j + 1)c(vi+k, vj+1). (7)

It is obvious that we can calculate L(Tijk) by the formulation (7) in O(m) time.
Therefore, the complexity of exploring N6(T ) is O(m3). �

It is realized that the calculation of a neighboring solution cost by using the
known cost of the current solution in (6) and (7) cannot be done in constant
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time. As a result, the algorithm spends O(m3) operations for a full neighborhood
search. However, Silva et al. [31] suggest a move evaluation procedure, which
only requires O(1) amortized operations since the number of edge exchanges is
bounded. In this work, we use their evaluation procedure for 2-opt and move
forward(backward)-k-vertices. Therefore, the time complexity of exploring all
neighborhoods in the worst case is performed in O(m3).

For intra-route: Let Rl, Rh, ml, and mh be two different routes and their
sizes in T , respectively. Intra-route is used to exchange vertices between
two different routes or remove vertices from a route and then insert them to
another as follows.

The swap-2-routes neighborhood tries to exchange the positions of each
pair of vertices in Rl and Rh in turn. The swap-2-route neighborhood
of Rl and Rh is defined as a set N8(T ) = {Ti = (R1, . . . , R2, . . . , Rl =
(v1l, v2l, . . . , vih, vil+1, . . . , vml), . . . , Rh = (v1h, v2h, . . . , vil, vih+1, . . . , vmh),
. . . , Rk) : il = 2, 3, . . . ,ml − 1, ih = 2, 3, . . . ,mh − 1}. The size of the
neighborhood is O(ml ×mh).

Property 7. The complexity of exploring N8(T ) is O(ml ×mh).

Proof. We have an initial tour T and its two routes are Rl = (v1l, v2l, . . . , vil,
vil+1, vil+2 . . . , vml) and Rh = (v1h, v2h, . . . , vih, vih+1, vih+2, . . . , vhl). The neigh-
borhood generates a neighboring tour Ti = (R1, . . . , R2, . . . , R

′

l = (v1l, v2l, . . . ,
vih, vil+1, . . . , vml), . . . , R

′

h = (v1h, v2h, . . . , vil, vih+1, . . . , vmh), . . . , Rk). The costs
of Rl, and Rh are calculated as follows:

L(Rl) = (ml − 1)c(v1l, v2l) + . . .+ (ml − i+ 1)c(vil−1, vil) + (ml − i)c(vil, vil+1)

+ (ml − i− 1)c(vil+1, vil+2) + . . .+ c(vml−1, vml),

L
′
(Rl) = (ml − 1)c(v1l, v2l) + . . .+ (ml − i+ 1)c(vil−1, vih) + (ml − i)c(vih, vil+1)

+ (ml − i− 1)c(vil+1, vil+2) + . . .+ c(vml−1, vml), (8)

L(Rh) = (mh− 1)c(v1h, v2h) + . . .+ (mh− i+ 1)c(vih−1, vih)

+ (mh− i)c(vih, vih+1) + (mh− i− 1)c(vih+1, vih+2)

+ . . .+ c(vmh−1, vmh), (9)

L
′
(Rh) = (mh− 1)c(v1h, v2h) + . . .+ (mh− i+ 1)c(vih−1, vil)

+ (mh− i)c(vil, vih+1)− (mh− i− 1)c(vih+1, vih+2)

+ . . .+ c(vmh−1, vmh).
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Therefore,

L(Ti) = L(T )− (ml − i+ 1)c(vil−1, vil)− (ml − i)c(vil, vil+1)

− (mh− i− 1)c(vih−1, vih)− (mh− i)c(vih, vih+1)

+ (ml − i+ 1)c(vil−1, vih) + (ml − i)c(vih, vil+1)

+ (mh− i+ 1)c(vih−1, vil) + (mh− i)c(vil, vih+1). (10)

�

Hence, we can calculate L(Ti) by the formulation (10) in O(1) time. The com-
plexity of exploring N8(T ) is O(ml ×mh).

The insert-2-routes neighborhood considers each vertex vi inRl and inserts
it into each position in Rh. Insert-2-route neighborhood of Rl and Rh is
defined as a set N11(T ) = {Ti = (R1, . . . , R2, . . . , Rl = (v1l, v2l, . . . , vih−1, vih,
vil+1, . . . , vml), . . . , Rh = (v1h, v2h, . . . , vih−1, vih+1, . . . , vmh), . . . , Rk) : il =
2, 3, . . . ,ml − 1, ih = 2, 3, . . . ,mh − 1}. The size of the neighborhood is
O(ml ×mh).

Property 8. The complexity of exploring N9(T ) is O(ml ×mh).

Proof. The initial tour and L(R) are the same as in (8) and (9). The neighbor-
hood generates a neighboring tour Ti = (R1, . . . , R2, . . . , R

′

l = (v1l, v2l, . . . , vih,
vil, vil+1, . . . , vml), . . . , R

′

h = (v1h, v2h, . . . , vih−1, vih+1, . . . , vmh), . . . , Rk). The
costs of R

′

l, R
′

h are calculated as follows:

L
′
(Rl) = (ml − 1)c(v1l, v2l) + . . .+ (ml − i+ 1)c(vil−1, vil) + (ml − i)c(vil, vih)

+ (ml − i− 1)c(vih, vil+1) + (ml − i− 2)c(vil+1, vil+2)

+ . . .+ c(vml−1, vml),

L
′
(Rh) = (mh− 1)c(v1h, v2h) + . . .+ (mh− i+ 1)c(vih−1, vih+1)

+ (mh− i)c(vih+1, vih+2) + . . .+ c(vmh−1, vmh).

Therefore,

L(Ti) = L(T )− (ml − i)c(vil, vil+1)− (mh− i+ 1)c(vih−1, vih)

− (mh− i)c(vih, vih+1)−
ih−1∑
k=1h

c(vk, vk+1)

+ (ml − i)c(vil, vih) + (mh− i− 1)c(vih, vil+1)

+ (mh− i+ 1)c(vih−1, vih+1) +
il−1∑
k=1l

c(vk, vk+1). (11)
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�

Hence, we can calculate L(Ti) by the formulation (11) in O(max(mh,ml)) time.
Therefore, the complexity of exploring N9(T ) is O(max(mh,ml)×ml ×mh).

In each iteration, the best neighboring solution is accepted if it is non-tabu
and improving, or tabu, but globally improving. Due to the use of different
neighborhood structures, three tabu lists are built. A move of the type remove-
insert, swap-adjacent, or move-up(down) is stored in the first tabu list, the
second is for 2-opt and 2-edge-opt moves, and the last one is for swap-2-routes,
insert-2-routes. We do not use tabu list for move-forward-k-vertices, and move-
backward-k-vertices.

Step 3: After finding a local optimum in Step 2, Step 3 starts to build up a promis-
ing solution LT . When the objective value of any local optimum lies within
5–10 % of the best-found solution, it is added into LT . If the size of LT is equal
to sTL, then the algorithm goes to Step 4. The size of LT is chosen to be five
because a small value for the size of LT enhances more implementations to the
intensification and diversification steps. However, the search can be moved to
another area of the solution space without the previous area explored. Other-
wise, if the value of sTL is large, less intensification and diversification steps are
performed.

Step 4: If the promising solution list LT is full, an intensification step starts. Each
solution of LT is returned to Step 2 without any tabu move. When a new local
optimum is found, the algorithm goes to Step 5 in which a diverse solution to
reinitialize the search is created.

Step 5: We update an attribute matrix M , whose entries represent the number of
times edge (i, j) occurred in an element of the promising solutions list. The
Shaking procedure in Algorithm 3 will use the matrix; hence allows guiding
the search towards an unexplored part of the solution space. In this work, two
shaking mechanisms can be used to give a new solution as follows:

1. In intro-route, we use the shaking mechanism in Algorithm 4, called double-
bridge, originally developed by [26]. The structure of the double-bridge move
derives from a special 4-opt neighborhood where edges added and dropped
need not be successively adjacent. This mechanism can also be seen as
a permutation of two disjoint segments of a route.

2. In intra-route, we randomly choose two routes and after that, exchange some
vertices in them or insert some vertices from a route into another. The
steps in the intra-route are described in Algorithm 5. This solution obtained
from shaking procedures does not include the edges which appear more than
l times in the M matrix. We finally return to Step 2 with this solution.

The last aspect to discuss is the stop criterium of the VNS+TS algorithm. A bal-
ance must be made between computation time and efficiency. Here, the algorithm
stops if no improvement is found after the number of the loop (NL).
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The running time of the VNS + TS algorithm is mostly during the VNS step.
In that step, insert-2-routes neighborhood consumes time at least as the others do.
Assume that if these neighborhoods are invoked k1 times, then the complexity of
neighborhoods’ exploration is O(k1 × max(mh,ml) × ml × mh) ∼ O(k1 × n3) (in
the worst case the size of mh or ml is n). It is the theoretical complexity of our
algorithm.

4 COMPUTATIONAL EVALUATIONS

4.1 Metrics

In order to evaluate the efficiency of a metaheuristic algorithm, we can compare its
solution to

1. the optimal solution (OPT );

2. the lower bound (LB); and

3. the initial solution of the construction phase (Init.Sol) or a good upper bound
of the state-of-the-art metaheuristic algorithm (UB).

We define the improvement of the algorithm concerning Best.Sol, when Best.Sol
is the best solution found by our algorithm, in comparison with the optimal solution
(Gap1[%]), a lower bound (Gap2[%]), and an initial solution (Improv [%]) in percent,
respectively, as follows:

Gap1[%] =
Best .Sol −OPT

OPT
× 100 %,

Gap2[%] =
Best .Sol − LB

LB
× 100 %,

Improv [%] =
Best .Sol − Init .Sol

Init .Sol
× 100 %.

The exact algorithm can find optimal solutions as in [25]. However, the algorithms
only solve the problems with small sizes. The optimal solutions have been unknown
with large instance sizes. In such cases, our best solutions can be compared to
the tight lower bounds (i.e., defined by Nucamendi-Guillén et al. in [29]) or the
initial solutions (i.e., the output of the insertion heuristic). As mentioned ealier, the
MTRP is a relaxation of the MTRPD since MD = 0. Therefore, we can consider
the optimal solutions published by Nucamendi-Guillén et al. [29] for the MTRP as
the tight lower bounds in our experiments.

4.2 Datasets

The experimental data includes two datasets. In all instances, every distance be-
tween vertices satisfies the triangle inequality. Each instance contains the coordinate
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of n vertices and one vertex was arbitrary designated as the depot. We divide these
instances into two types (i.e., type 1 and type 2). The former one consists of the
instances in which the optimal solutions have been known, otherwise the other de-
pends on type 2.

We inherit several small instances in [25] and name them dataset 1 in our ex-
periments. As a result, we can obtain the optimal solutions for these instances by
using the exact algorithm in [25]. The dataset includes six TSP instances from
the TSPLIB such as brd14051, d15112, d18512, fnl4461, nrw1379, and pr1002. For
each TSP instance, they generate ten MTRPD instances by randomly selecting ten
subsets of n vertices, where n = 30, 40 and 50. Therefore, in total, fifty MTRPD
instances are used in our experiment.

The numerical analysis was performed on a set of benchmark problems for Ca-
pacitated VRP in [34]. As testing the proposed algorithm on all instances would be
computationally too expensive, we applied our numerical analysis on some selected
instances. First, to eliminate the effects of size, problems with approximately 50 up
to 561 customers are chosen. Moreover, in order not to bias the results by taking
“easy” or “hard” instances we randomly select them. We put them into a group
named dataset 2. These are:

1. Christofides et al.: This dataset includes seven instances (CMT6, CMT7, . . . ,
CMT14), which vary the number of vertices from 50 to 200 and vehicles from 5
to 18;

2. Taillard et al.: Nine instances from 75 to 150 vertices are picked randomly,
specifically: tai75a, tai75b, tai75c, tai100a, tai100b, tai100c, tai150a, tai150b,
tai150c;

3. Augerat et al.: Fifteen instances of dataset P and E are selected, which vary
the number of vertices from 30 to 76 and vehicles from 2 to 15. In this dataset,
we can obtain the lower bounds of the optimal solutions for the instances in [29];

4. Golden et al.: Six larger instances are picked randomly from G1 to G8, which
vary the number of vertices from 240 to 480 and vehicles from 5 to 10;

5. Nucamendi-Guillén et al.: One hundred and fifty instances from 60 to 80 vertices
are used in our experiments. The optimal solutions for the instances can be
extracted from [29].

Moreover, our algorithm is also tested with some TRP instances. These are:

6. Silva et al. [31]: Three of these sets are generated, where each of them is
composed of 20 instances with 50, 100, and 200 customers, respectively;

7. Abeledo et al. [2]: Nine instances from 48 to 100 vertices are chosen. The
optimal solutions for these instances are extracted from [2].

In all instances in dataset 1, and several instances in dataset 2 (such as Chri-
stofides et al.’s and Golden et al.’s instances), the maximum total distance traveled
in a route is available. However, in the others, there does not exist the distance
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constraint. For each of these instances, we generated three possible distance con-
straints as a function of the distance to the farthest vertice from the depot (dmax).
The distance constraint gets the values 2 × dmax, 2.5 × dmax, and 3 × dmax. The
similar generation for travel distance limit can be found in [12, 13, 25].

4.3 Results and Discussion

We conducted the experiments on a personal computer, which is equipped with
an Intel Pentium Core i7 duo 2.10 GHz CPU and 4 GB RAM.

We experimented with the above datasets. For the instances in dataset 1, their
optimal solutions let us evaluate precisely the efficiency of the TS + VNS algorithm.
For the instances in dataset 2, because their optimal solutions have been unknown,
our solutions only compare to the upper bounds or the known best solutions instead
of the optimal ones. Therefore, the TS+VNS algorithm’s efficiency is only evaluated
relatively.

Through preliminary experiments, we observed that the values pos = 5, sLT = 5,
l = 5, and NL = 50 resulted in a good trade-off between solution quality and run
time. In addition, in a pilot study, the performance of the algorithm relatively
depends on the order in which the neighborhoods are used. Generally speaking,
the neighborhoods which have a smaller size are explored first. Since the algorithm
becomes stuck in local optimum, the larger neighborhoods are used. That is, larger
sized neighborhoods may help escape from local optimum. In this paper, the order
of the neighborhoods is as follows: swap adjacent, remove-insert, swap, 2-opt, or,
swap-2-route, and insert-2-route.

For each instance, our algorithm runs ten times, and the results are shown in Ta-
bles 1–18. In all the tables, we denote Best.Sol and Aver.Sol as the best and average
solution of our metaheuristic, respectively. Table 1 includes the comparison between
our algorithm and the optimal solutions in [25]. Table 2 shows the average values
of Table 1. In Tables 3–11, we compare the results of the algorithm with the lower
bound of the optimal solution. In these cases, the optimal solution of MTRP is the
lower bound of the optimal solution of MTRPD. The optimal solution of MTRP is
obtained in [29]. Moreover, they are also compared with the initial solutions by using
insertion heuristic. Table 12 illustrates the evolution of the average deviation to the
initial solutions during the iterations in some instances. In Tables 13–18, we show
the results of our algorithm against the state-of-the-art metaheuristic algorithms in
several MTRPD variants. Let T be the running time in seconds for our metaheuris-
tic. cTime represents scaled run times, which is estimated on a Pentium 4, 2.4 GHz
by means of the factors of Dongarra in [14] by second (note that: The experiments of
Ezzineet et al. (IOE) [15], Ke et al. (CCVRP) [23], Ngueveu (MA1) [28], Nucamendi-
Guillén et al. (SNG) [29], Riberio et al. (ALNS) [30], Silva et al. (MS) [31], and
Ban (GRASP + VND) [9] were implemented on Pentium 4, 1 GHz, Pentium 4,
2.4 GHz, Pentium 4, 2 GHz, Intel Core 2 Duo 3 GHz, Pentium 4, 2 GHz, Pentium 4,
2.4 GHz, Pentium core i7 2.93 GHz, and Pentium core i7 duo 2.10 GHz, respectively).
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4.3.1 Experimental Results for Datasets in Type 1

The experimental results are illustrated in Table 2, which are the average values
calculated from Table 1. In Table 2, we denote Gap1 and T as the average values of
Gap1 and T for each dataset, respectively.

Table 2 shows that the algorithm is capable of finding the optimal solutions for
all instances in dataset 1 in a reasonable amount of time, even for the cases of 50
vertices. That means our solutions are better than the ones in our previous work [9],
which fails to find the optimal solutions for all instances with 50 vertices.

         Table 1. Results for dataset type 1 

Instances 
n=30, k=6 n=40, k=8 n=50, k=10 

OPT Best.Sol Aver.Sol T OPT Best.Sol Aver.Sol T OPT Best.Sol Aver.Sol T 

pr1002 

0 168,188.80 168,188.80 272,908.40 0.19 233,387.20 233,387.20 272,908.40 0.38 272,908.40 272,908.40 273754.69 0.72 
1 195,805.80 195,805.80 249,275.40 0.18 218,781.40 218,781.40 249,275.40 0.38 249,275.40 249,275.40 250561.75 0.73 
2 182,635.00 182,635.00 277,959.10 0.20 211,241.70 211,241.70 277,959.10 0.40 277,959.10 277,959.10 278260.69 0.69 
3 139,784.70 139,784.70 298,846.10 0.18 196,120.40 196,120.40 298,846.10 0.42 298,846.10 298,846.10 299368.26 0.72 
4 164,916.70 164,916.70 262,518.40 0.17 227,450.10 227,450.10 262,518.40 0.50 262,518.40 262,518.40 263424.19 0.68 
5 163,642.30 163,642.30 273,318.80 0.18 194,802.20 194,802.20 273,318.80 0.43 273,318.80 273,318.80 275714.50 0.68 
6 160,585.90 160,585.90 280,317.30 0.19 229,730.10 229,730.10 280,317.30 0.48 280,317.30 280,317.30 281015.54 0.72 
7 166,887.00 166,887.00 246,341.00 0.20 236,896.10 236,896.10 246,341.00 0.39 246,341.00 246,341.00 247693.88 0.73 
8 161,025.80 161,025.80 256,971.40 0.18 230,126.60 230,126.60 256,971.40 0.47 256,971.40 256,971.40 257688.31 0.74 
9 144,167.00 144,167.00 267,596.70 0.18 192,179.90 192,179.90 267,596.70 0.48 267,596.70 267,596.70 268104.67 0.75 

brd14051 

0 97,380.30 97,380.30 133,642.30 0.19 97,630.70 97,630.70 133,642.30 0.43 133,642.30 133,642.30 134565.72 0.68 
1 96,322.50 96,322.50 123,212.70 0.18 110,671.10 110,671.10 123,212.70 0.42 123,212.70 123,212.70 123459.68 0.69 
2 64,109.40 64,109.40 137,175.10 0.19 127,629.70 127,629.70 137,175.10 0.46 137,175.10 137,175.10 137550.65 0.75 
3 89,582.50 89,582.50 150,209.80 0.18 99,527.60 99,527.60 150,209.80 0.37 150,209.80 150,209.80 151117.47 0.75 
4 87,615.70 87,615.70 116,278.70 0.19 123,881.80 123,881.80 116,278.70 0.49 116,278.70 116,278.70 116771.48 0.75 
5 75,079.50 75,079.50 124,648.20 0.19 98,329.40 98,329.40 124,648.20 0.49 124,648.20 124,648.20 124860.29 0.69 
6 94,540.80 94,540.80 121,190.40 0.20 110,676.60 110,676.60 121,190.40 0.36 121,190.40 121,190.40 122040.23 0.72 
7 81,515.80 81,515.80 124,077.60 0.19 103,775.50 103,775.50 124,077.60 0.42 124,077.60 124,077.60 124459.33 0.68 
8 74,160.80 74,160.80 125,446.00 0.19 101,387.30 101,387.30 125,446.00 0.41 125,446.00 125,446.00 125750.98 0.72 
9 90,628.10 90,628.10 118,925.00 0.18 87,945.10 87,945.10 118,925.00 0.48 118,925.00 118,925.00 119701.47 0.75 

fnl4461 

0 51,192.20 51,192.20 81,562.20 0.19 63,096.00 63,096.00 81,562.20 0.48 81,562.20 81,562.20 81931.39 0.68 
1 44,154.70 44,154.70 79,804.80 0.18 66,882.60 66,882.60 79,804.80 0.38 79,804.80 79,804.80 80132.27 0.71 
2 46,571.20 46,571.20 73,309.10 0.18 70,151.40 70,151.40 73,309.10 0.39 73,309.10 73,309.10 73657.61 0.69 
3 48,591.40 48,591.40 79,335.10 0.19 58,843.90 58,843.90 79,335.10 0.43 79,335.10 79,335.10 79480.48 0.67 
4 54,485.90 54,485.90 75,052.00 0.18 61,654.90 61,654.90 75,052.00 0.38 75,052.00 75,052.00 75154.18 0.70 
5 47,907.30 47,907.30 76,738.10 0.18 56,144.50 56,144.50 76,738.10 0.42 76,738.10 76,738.10 77076.34 0.75 
6 45,882.10 45,882.10 75,268.90 0.18 61,274.90 61,274.90 75,268.90 0.43 75,268.90 75,268.90 75553.79 0.70 
7 44,545.30 44,545.30 72,956.30 0.20 65,698.30 65,698.30 72,956.30 0.38 72,956.30 72,956.30 73058.48 0.72 
8 50,365.30 50,365.30 70,244.00 0.20 64,260.90 64,260.90 70,244.00 0.48 70,244.00 70,244.00 70593.77 0.72 
9 49,179.60 49,179.60 82,157.00 0.18 58,717.50 58,717.50 82,157.00 0.49 82,157.00 82,157.00 82319.62 0.73 

d15112 

0 225,070.20 225,070.20 353,657.80 0.18 287,734.80 287,734.80 353,657.80 0.37 353,657.80 353,657.80 354976.61 0.73 
1 213,332.30 213,332.30 355,115.20 0.19 256,987.10 256,987.10 355,115.20 0.39 355,115.20 355,115.20 356258.02 0.72 
2 208,323.60 208,323.60 392,196.10 0.19 307,407.10 307,407.10 392,196.10 0.46 392,196.10 392,196.10 393694.14 0.75 
3 222,870.40 222,870.40 350,821.80 0.19 292,602.70 292,602.70 350,821.80 0.42 350,821.80 350,821.80 351422.23 0.72 
4 216,056.00 216,056.00 341,493.60 0.19 299,259.00 299,259.00 341,493.60 0.35 341,493.60 341,493.60 342212.93 0.74 
5 235,215.80 235,215.80 360,717.40 0.18 269,559.40 269,559.40 360,717.40 0.35 360,717.40 360,717.40 362220.31 0.72 
6 207,139.00 207,139.00 390,251.40 0.19 320,989.40 320,989.40 390,251.40 0.45 390,251.40 390,251.40 392014.44 0.72 
7 280,309.00 280,309.00 327,701.90 0.20 287,270.70 287,270.70 327,701.90 0.41 327,701.90 327,701.90 328900.79 0.73 
8 244,015.40 244,015.40 344,600.50 0.19 303,263.90 303,263.90 344,600.50 0.38 344,600.50 344,600.50 345172.84 0.68 
9 238,976.20 238,976.20 347,783.60 0.20 282,412.30 282,412.30 347,783.60 0.40 347,783.60 347,783.60 348249.82 0.72 

nrw1379 

0 31,249.40 31,249.40 39,206.10 0.17 35,655.20 35,655.20 39,206.10 0.45 39,206.10 39,206.10 39299.26 0.74 
1 33,138.50 33,138.50 61,449.00 0.17 33,000.70 33,000.70 61,449.00 0.39 61,449.00 61,449.00 44859.42 0.68 
2 31,872.00 31,872.00 45,914.20 0.19 39,928.10 39,928.10 45,914.20 0.49 45,914.20 45,914.20 46111.68 0.72 
3 31,777.10 31,777.10 46,208.00 0.18 36,685.40 36,685.40 46,208.00 0.50 46,208.00 46,208.00 46317.23 0.68 
4 26,671.20 26,671.20 43,557.90 0.18 36,168.60 36,168.60 43,557.90 0.38 43,557.90 43,557.90 43635.93 0.75 
5 29,010.30 29,010.30 46,718.40 0.18 38,005.40 38,005.40 46,718.40 0.42 46,718.40 46,718.40 46946.35 0.71 
6 30,398.10 30,398.10 49,421.10 0.19 31,837.30 31,837.30 49,421.10 0.36 49,421.10 49,421.10 49553.53 0.73 
7 30,765.50 30,765.50 49,960.10 0.19 39,394.80 39,394.80 49,960.10 0.49 49,960.10 49,960.10 50037.67 0.75 
8 28,796.40 28,796.40 41,560.90 0.20 36,674.50 36,674.50 41,560.90 0.37 41,560.90 41,560.90 41703.33 0.74 
9 26,271.20 26,271.20 44,404.00 0.18 36,447.70 36,447.70 44,404.00 0.43 44,404.00 44,404.00 44518.42 0.68 

Table 1. Results for dataset type 1

4.3.2 Experimental Results for Datasets in Type 2

Similar to the dataset type 1, we show the average values in Tables 9 and 12. The
values in Table 9 are calculated from the ones in Tables 3–8. Meanwhile, Table 12
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      Table 2. Average  results for dataset type 1 

Instances n=30 n=40 n=50 

Gap1 T Gap1     T Gap1     T 
brd14051-x 0.00 0.19 0.00 0.38 0.00 0.72 
d15112-x 0.00 0.18 0.00 0.38 0.00 0.73 
fnl4461-x 0.00 0.20 0.00 0.40 0.00 0.69 
nrw1379-x 0.00 0.18 0.00 0.42 0.00 0.72 
pr1002-x 0.00 0.17 0.00 0.50 0.00 0.68 

Table 2. Average results for daset type 1

            Table 3. Results for ANMM-instances (n=60, k=12) 

Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax              Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T 
pr1002_60_0 530946.01 660211.35 532444.24 537533.19 1.49 531865.86 533825.5 1.45 531757.16 534609.7 1.45 
pr1002_60_1 356469.79 455893.41 359952.84 370184.99 1.42 358368.98 367379.55 1.45 358942.18 367163.14 1.45 
pr1002_60_2 344118.14 467498.53 344660.51 354297.21 1.49 344923.03 351734.69 1.42 344310.30 351678.69 1.42 
pr1002_60_3 429604.2 579392.35 430930.61 435619.75 1.46 430738.16 433873.27 1.45 430341.65 434434.23 1.45 
pr1002_60_4 435655.25 540342.11 436868.42 443304.34 1.41 437187.11 441177.4 1.46 436487.61 441214.38 1.46 
pr1002_60_5 668129.73 779776.11 670146.51 674511.75 1.43 669780.58 673040.01 1.47 669092.64 673298.58 1.47 
pr1002_60_6 406678.77 495022.53 408185.76 413479.93 1.45 407782.79 411889.62 1.44 407328.01 412153.54 1.44 
pr1002_60_7 311254.73 414296.52 315012.06 325939.25 1.49 314351.03 322249.21 1.44 314631.61 323133.36 1.44 
pr1002_60_8 469816.84 591638.26 471572.56 478597.47 1.50 470579.14 476756.73 1.50 471383.23 476823.63 1.50 
pr1002_60_9 277336.06 377249.41 280140.52 292281.76 1.42 281572.42 288733.31 1.40 278504.55 288503.61 1.40 
brd14051_60_0 213420.42 267899.2375 214319.39 216860.88 1.50 213818.46 215295.73 1.49 213614.02 215749.05 1.49 
brd14051_60_1 218315.68 312468.7714 218728.14 220264.95 1.49 218880.78 220373.77 1.49 218556.31 220728.3 1.49 
brd14051_60_2 151666.85 207799.2353 153198.75 156139.96 1.45 152543.04 154954.36 1.48 153057.91 154911.12 1.48 
brd14051_60_3 172199.83 232433.3597 172875.34 175903.46 1.48 172877.53 174923.62 1.41 172882.12 174934.8 1.41 
brd14051_60_4 133952.5 167792.608 135660.89 139384.34 1.42 134963.93 138301.02 1.42 135622.01 138319.39 1.42 
brd14051_60_5 203145.14 290606.4286 203424.5 205266.4 1.44 203348.6 204742.68 1.43 203576.11 204746.58 1.43 
brd14051_60_6 136233.51 171636.975 137309.58 140813.51 1.49 137072.2 139742.31 1.47 137666.96 139931.2 1.47 
brd14051_60_7 171879.58 248180.3 173726.21 176795.14 1.48 173395.86 175603.68 1.42 172880.97 175530.15 1.42 
brd14051_60_8 191580.79 241067.3882 192145.73 196064.3 1.49 191949.55 194840.17 1.47 192277.69 195207.18 1.47 
brd14051_60_9 128178.58 174326.1925 129452.37 132113.8 1.47 129039.81 131038.32 1.41 128554.14 131136.74 1.41 
fnl4461_60_0 156260.54 194032.1583 156482.1 157364.48 1.40 156502.53 156867.68 1.47 156508.88 157085.13 1.47 
fnl4461_60_1 103190.13 131569.4961 103881.33 105989.96 1.48 103571.39 105059.35 1.45 103533.38 104978.45 1.45 
fnl4461_60_2 109739.93 149525.6149 110236.87 111979.43 1.49 110112.9 111088.62 1.48 109795.94 111158.19 1.48 
fnl4461_60_3 100792.2 136198.0575 101299.08 103234.98 1.47 100961.18 102382.31 1.47 101131.62 102305.81 1.47 
fnl4461_60_4 149638.18 185947.0777 150338.84 151703.66 1.48 150322.42 151338.95 1.49 150154.33 151438.45 1.49 
fnl4461_60_5 158679.44 185251.4379 159206.73 160478.43 1.48 158930.62 160072.49 1.49 158926.13 160089.54 1.49 
fnl4461_60_6 122266.92 149102.6283 122947.07 124435.02 1.44 122916.9 123926.83 1.43 122817.55 123825.42 1.43 
fnl4461_60_7 107469.11 142108.8532 108053.05 109887.69 1.47 107925.52 109376.06 1.47 107716.14 109006.11 1.47 
fnl4461_60_8 100531.72 127280.3749 101450.39 104630.87 1.42 101592.06 103707.02 1.42 101118.58 103710.54 1.42 
fnl4461_60_9 135829.76 183343.8156 136148.74 137640.52 1.47 136160.29 137330.96 1.40 136163.91 137267.96 1.40 
d15112_60_0 684939.42 851498.8482 686712.6 699720.00 1.40 685359.09 694349.73 1.48 686192.80 694446.4 1.48 
d15112_60_1 644759.99 819500.5493 647040.61 654258.07 1.43 646425.6 651802.15 1.45 645901.74 652152.95 1.45 
d15112_60_2 425069.33 583381.5404 430094.57 444157.23 1.41 428827.48 439403.47 1.45 426883.39 438826.4 1.45 
d15112_60_3 528177.95 662371.45 529897.16 541938.08 1.41 529082.69 539617.02 1.49 529129.18 538786.1 1.49 
d15112_60_4 586915.82 736112.95 588890.36 596517.59 1.48 587802.34 593603.46 1.46 588157.01 593755.74 1.46 
d15112_60_5 422195.61 494729.4263 425174.86 435267.63 1.47 423386.01 432465.17 1.46 422698.69 432637.93 1.46 
d15112_60_6 518793.6 633637.8578 522485.21 534777.58 1.43 521841.6 530514.27 1.48 520984.95 529540.23 1.48 
d15112_60_7 616918.44 776732.675 621386.14 631195.53 1.49 620561.63 627712.93 1.48 619844.40 627215.03 1.48 
d15112_60_8 397619.37 500495.3875 400396.31 417380.61 1.40 400772.54 412773.75 1.46 400191.93 412712.49 1.46 
d15112_60_9 673840.81 910298.6184 675975.95 682660.36 1.45 674759.18 681252.34 1.42 675686.08 680839.7 1.42 
nrw1379_60_0 64359.77 80086.56654 64587.82 65752.75 1.44 64588.24 65216.27 1.42 64570.11 65388.53 1.42 
nrw1379_60_1 83410.67 104646.3375 83717.07 84295.24 1.48 83453.87 84149.95 1.49 83577.60 84304.19 1.49 
nrw1379_60_2 52858.87 70986.81333 53240.11 55622.46 1.48 53731.31 55606.98 1.40 53699.79 55545.65 1.40 
nrw1379_60_3 62341.36 84434.20476 62799.04 64203.28 1.42 63054.46 64243.88 1.45 63155.92 64314.58 1.45 
nrw1379_60_4 56012.13 69680.90881 56337.25 57630.46 1.45 56306.76 57462.91 1.42 56401.26 57331.24 1.42 
nrw1379_60_5 58083.8 72973.325 58378.66 59960.51 1.45 58551.84 59986.25 1.50 58611.01 59945.96 1.50 
nrw1379_60_6 52224.66 65749.025 52599.22 54626.86 1.46 52433.62 54526.7 1.47 52476.05 54450.03 1.47 
nrw1379_60_7 58402.97 73290.6375 58632.51 59997.69 1.47 58495.04 60194.16 1.45 58679.87 59937.75 1.45 
nrw1379_60_8 52145.08 66101.85821 52687.3 53873.21 1.48 52682.18 53653.94 1.45 52550.57 53726.75 1.45 
nrw1379_60_9 49026.52 66572.84307 49436.13 51019.36 1.43 49471.03 51283.54 1.41 49385.68 50955.34 1.41 

Table 3. Results for ANMM-instances (n = 60, k = 12)
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Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax 
Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T 

pr1002_70_0 429557.7 535485.69 432866.54 439866.58 1.56 432866.54 439866.58 1.86 432866.54 439866.58 1.86 
pr1002_70_1 430048.06 530744.28 433424.51 440956.86 1.54 433424.51 440956.86 2.10 433424.51 440956.86 2.10 
pr1002_70_2 377233.86 524943.18 379605.76 389076.55 1.34 379605.76 389076.55 1.95 379605.76 389076.55 1.95 
pr1002_70_3 429562.01 557187.53 432804.3 441224.85 1.32 432804.3 441224.85 1.85 432804.3 441224.85 1.85 
pr1002_70_4 435659.17 574628.71 439726.32 447473.63 1.48 439726.32 447473.63 2.17 439726.32 447473.63 2.17 
pr1002_70_5 429584.16 558284.19 431998.56 443795.32 1.67 431998.56 443795.32 2.13 431998.56 443795.32 2.13 
pr1002_70_6 344534.44 495280.87 348013.29 355996.4 1.41 348013.29 355996.4 1.95 348013.29 355996.4 1.95 
pr1002_70_7 393558.46 543537.08 396618.63 406657.01 1.51 396618.63 406657.01 1.99 396618.63 406657.01 1.99 
pr1002_70_8 397072.39 560744.46 400993.88 412836.03 1.37 400993.88 412836.03 1.97 400993.88 412836.03 1.97 
pr1002_70_0 429557.7 535485.69 432866.54 439866.58 1.56 432866.54 439866.58 1.86 432866.54 439866.58 1.86 
brd14051_70_0 191843.35 248655.93 193433.59 196300.43 1.38 193433.59 196300.43 1.82 192664.90 195906.35 1.82 
brd14051_70_1 169340.01 227929.44 169848.29 172027.95 1.49 169848.29 172027.95 1.91 170141.57 171980.54 1.91 
brd14051_70_2 216195.95 274964.88 217119.82 218723.61 1.56 217119.82 218723.61 1.78 216904.65 219570.63 1.78 
brd14051_70_3 229328.9 287350.77 230828.7 235001.63 1.64 230828.7 235001.63 2.12 230700.27 234893.9 2.12 
brd14051_70_4 302498.42 352533.21 303665.65 305149.45 1.67 303665.65 305149.45 1.75 302997.60 305008.65 1.75 
brd14051_70_5 179470.31 239730.53 180336.91 182335.7 1.50 180336.91 182335.7 1.78 180402.62 182346.26 1.78 
brd14051_70_6 231693.74 299183.67 232654.01 234908.12 1.33 232654.01 234908.12 1.75 232686.01 234963.25 1.75 
brd14051_70_7 284960.31 354174.33 285658.8 288385.84 1.33 285658.8 288385.84 1.78 285974.24 288104.83 1.78 
brd14051_70_8 167533.17 246354.08 168487.82 171604.89 1.38 168487.82 171604.89 1.89 169011.06 171829.52 1.89 
brd14051_70_9 253499.74 304870.99 255311.77 259334.3 1.63 255311.77 259334.3 1.82 255500.92 259488.88 1.82 
fnl4461_70_0 154805.67 195026.89 155064.12 156113.94 1.38 155064.12 156113.94 2.16 155064.12 156113.94 2.16 
fnl4461_70_1 104585.82 138431.3 105739.55 108511.43 1.62 105739.55 108511.43 1.88 105739.55 108511.43 1.88 
fnl4461_70_2 161892.44 202490.16 162356.87 163138.77 1.37 162356.87 163138.77 1.75 162356.87 163138.77 1.75 
fnl4461_70_3 99122.23 136888.98 100079.14 101756.85 1.66 100079.14 101756.85 2.15 100079.14 101756.85 2.15 
fnl4461_70_4 157106.13 215133.56 157517.01 158373.7 1.42 157517.01 158373.7 2.19 157517.01 158373.7 2.19 
fnl4461_70_5 112094.64 154967.72 113643.87 116157.3 1.36 113643.87 116157.3 1.89 113643.87 116157.3 1.89 
fnl4461_70_6 121521 163833.57 122307.91 124262.7 1.37 122307.91 124262.7 1.71 122307.91 124262.7 1.71 
fnl4461_70_7 175859.51 219145.84 176440.38 177290.01 1.53 176440.38 177290.01 1.79 176440.38 177290.01 1.79 
fnl4461_70_8 122141.15 168186.87 122884.09 125065.93 1.47 122884.09 125065.93 1.88 122884.09 125065.93 1.88 
fnl4461_70_0 154805.67 195026.89 155064.12 156113.94 1.38 155064.12 156113.94 2.16 155064.12 156113.94 2.16 
d15112_70_0 517426.18 692065.87 523553.26 531145.65 1.62 523553.26 531145.65 1.48 523553.26 531145.65 1.79 
d15112_70_1 715678.26 886361.97 722362.06 728250.24 1.51 722362.06 728250.24 1.45 722362.06 728250.24 1.98 
d15112_70_2 688605.9 892883.4 690001.05 695602.83 1.50 690001.05 695602.83 1.45 690001.05 695602.83 2.04 
d15112_70_3 625623.9 852706.46 630340.44 637526.15 1.66 630340.44 637526.15 1.49 630340.44 637526.15 1.77 
d15112_70_4 532088.98 747897.34 536030.13 544894.97 1.39 536030.13 544894.97 1.46 536030.13 544894.97 1.72 
d15112_70_5 500455.25 639173.85 504012.97 516029.99 1.59 504012.97 516029.99 1.46 504012.97 516029.99 1.82 
d15112_70_6 497229.6 708355.1 494630.23 501861.27 1.59 494630.23 501861.27 1.48 494630.23 501861.27 1.82 
d15112_70_7 599776.85 766690.15 604254.21 609315.82 1.43 604254.21 609315.82 1.48 604254.21 609315.82 1.88 
d15112_70_8 576957.51 734369.78 582333.88 587065.31 1.51 582333.88 587065.31 1.46 582333.88 587065.31 1.93 
d15112_70_9 775176.3 1018784.7 776211.48 780571.39 1.30 776211.48 780571.39 1.42 776211.48 780571.39 1.70 
nrw1379_70_0 66839.83 91823.05 67133.95 68149.96 1.29 67133.95 68149.96 1.42 67141.89 67842.3 1.79 
nrw1379_70_1 65103.43 86177.5 65403.57 67281.39 1.49 65403.57 67281.39 1.49 65836.06 67162.39 2.09 
nrw1379_70_2 63480.7 86971.23 64215.06 65872.58 1.60 64215.06 65872.58 1.40 63992.33 65884.47 1.67 
nrw1379_70_3 59273.92 78578.67 60111.63 61528.06 1.66 60111.63 61528.06 1.45 59705.82 61585.84 2.16 
nrw1379_70_4 70594.56 90450.43 71095.2 71700.76 1.33 71095.2 71700.76 1.42 70953.48 71755.91 2.05 
nrw1379_70_5 73884.17 95059.75 74190.23 74969.23 1.51 74190.23 74969.23 1.50 74081.86 75045.23 1.92 
nrw1379_70_6 64306.14 87586.7 65019.63 66399.38 1.47 65019.63 66399.38 1.47 64995.77 66682.88 1.97 
nrw1379_70_7 90554.87 113522.25 90716.75 91348.07 1.27 90716.75 91348.07 1.45 90743.23 91407.05 1.78 
nrw1379_70_8 91738.43 125234.93 91924.59 92556.51 1.41 91924.59 92556.51 1.45 91961.09 92591.73 1.90 
nrw1379_70_9 68024.3 92003.32 68219.67 69163.47 1.34 68219.67 69163.47 1.41 68512.64 69234.01 2.18 

Table 4. Results for ANMM-instances (n = 70, k = 14)

contains the average values calculated from Tables 10 to 11. In Tables 9 and 12, we
denote Gapi(i = 1, 2) and T as the average of Gapi(i = 1, 2) and T for each dataset,
respectively.

From Tables 9 to 11, for all instances, it is indicated that the proposed algorithm
can improve the solutions in comparison with the initial solutions. Specifically, the
average of Improv lines between 19.4 % and 27.1 %. Besides, in Table 9, for most
instances, our solutions fall into the range of 0.88 %–3.77 % of the lower bound of
the optimal solution. Therefore, we can conclude that for the instances solved, our
algorithm finds near-optimal solutions, even for the large instances. In compari-
son with GRASP + VND [9], our average Gap2 (about 1.09) is much better than
GRASP + VND (about 3.62). Obviously, the VNS + TS algorithm outperforms
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            Table 5. Results for ANMM-instances (n=80, k=16) 

Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax              Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T 
pr1002_80_0 491764.64 656239.68 494687.68 504055.32 4.74 494687.82 501827.11 4.52 495216.69 502028.79 4.52 
pr1002_80_1 442164.21 613287.46 446829.95 452810.93 4.59 446638.68 451662.89 4.77 446105.29 451219.62 4.77 
pr1002_80_2 505524.17 609954.56 509224.22 516775.04 4.66 507827.3 514010.41 4.78 509460.12 513907.95 4.78 
pr1002_80_3 436752.96 614611.29 439342.64 448311.86 4.55 439573.59 445577.18 4.65 438557.21 445402.53 4.65 
pr1002_80_4 453609.46 587470.83 457842.39 467356.11 4.68 458557.63 464161.5 4.65 454449.43 463546.66 4.65 
pr1002_80_5 599492.4 771733.95 601443.35 606392.15 4.58 601220.79 605159.05 4.60 601030.48 605036.78 4.60 
pr1002_80_6 619003.36 805206.35 620905.87 626627.49 4.70 620390.26 624888.79 4.77 620980.59 624674.78 4.77 
pr1002_80_7 508186.51 658640.85 511992.03 520148.95 4.71 512678.26 518684.16 4.61 511049.54 518270.58 4.61 
pr1002_80_8 409733.88 518052.51 414454.61 431925.53 4.72 416386.88 426285.82 4.53 417195.97 426199.67 4.53 
pr1002_80_9 557220.48 670387.49 559471.39 566974.28 4.64 560004.93 565634.88 4.73 560663.69 565474.87 4.73 
brd14051_80_0 336983.07 403178.34 338615.5 340638.58 4.52 339017.38 341621.98 4.62 338752.62 341253.06 4.62 
brd14051_80_1 277861.02 348787.38 278718.88 280954.58 4.57 278712.45 280898.21 4.57 279056.42 281444.44 4.57 
brd14051_80_2 265370.92 321922.47 266964.57 271196.43 4.78 266965.71 271284.78 4.62 267098.27 271731.14 4.62 
brd14051_80_3 189815.69 240361.74 190981.53 192988.97 4.55 190970.44 193195.6 4.53 190524.94 192859.4 4.53 
brd14051_80_4 206068.45 275228.43 207846.42 211233.89 4.75 208142.71 211570.64 4.54 206986.40 211677.53 4.54 
brd14051_80_5 303621.75 348578.27 304790.13 307187.47 4.66 304570.04 307066.74 4.78 304731.36 306944.31 4.78 
brd14051_80_6 213405.23 266958.37 215496.73 219693.15 4.80 215905.29 220134.25 4.78 214846.74 220392.91 4.78 
brd14051_80_7 263737.93 308039.16 265261 267579.79 4.52 265166.47 267383 4.67 265491.60 268425.6 4.67 
brd14051_80_8 232967.83 298574.84 234215.29 236778.42 4.63 234262.37 238062.49 4.52 235200.12 238042.96 4.52 
brd14051_80_9 317790.55 368183.51 318860.4 320911.18 4.53 319258.92 321512.59 4.57 319305.30 321576.77 4.57 
fnl4461_80_0 153124.51 194685.8 154240.65 155854.44 4.79 154017.32 155260.49 4.61 154016.10 155538.61 4.61 
fnl4461_80_1 174975.64 224516.74 175564.02 176753.56 4.50 175521.26 176567.39 4.75 175432.81 176488.95 4.75 
fnl4461_80_2 162755.5 197782.39 163709.43 165437.58 4.73 163927.72 165265.48 4.51 163681.90 165198.58 4.51 
fnl4461_80_3 160819.04 192927.87 161721.6 164211.03 4.75 162093.53 164341.05 4.52 161950.22 164289.55 4.52 
fnl4461_80_4 151790.69 187440.09 152909.48 154583.49 4.76 152741.67 154474.03 4.55 152941.34 154525.71 4.55 
fnl4461_80_5 131045.47 172293.83 131674.42 134594.78 4.52 132508.99 134525.24 4.69 132384.34 134838.76 4.69 
fnl4461_80_6 125405.93 166418.99 126309.93 128634.42 4.62 126716.15 128784.35 4.72 126469.44 128585.69 4.72 
fnl4461_80_7 125228.91 164627.71 127382.05 129202.79 4.58 126969.72 129172.82 4.69 126973.64 129372.03 4.69 
fnl4461_80_8 185280.87 228208.31 185832.25 187148.81 4.74 185826.34 187068.01 4.64 185922.90 187144.12 4.64 
fnl4461_80_9 130304.95 165022.1 131835.98 133896.72 4.63 131690.15 133899.8 4.66 131257.09 134025.52 4.66 
d15112_80_0 551900.43 753989.49 556725.13 564166.47 4.78 552906.19 562737.67 4.59 552906.19 562737.67 4.59 
d15112_80_1 815029.39 979921.76 816533.21 820893.85 4.55 817987.76 820839.25 4.72 817987.76 820839.25 4.72 
d15112_80_2 828114.32 1080571.45 830372.82 834934.02 4.58 831176.05 836837.77 4.55 831176.05 836837.77 4.55 
d15112_80_3 689450.94 964458.54 693037.65 702133.55 4.55 694369.37 708522.84 4.71 694369.37 708522.84 4.71 
d15112_80_4 560385.47 737417.48 566738.01 578449.8 4.54 566738.01 578449.8 4.55 566738.01 578449.8 4.55 
d15112_80_5 821959.4 1030515.79 825064.27 830641.04 4.76 825064.27 830641.04 4.61 825064.27 830641.04 4.61 
d15112_80_6 715206.03 882086.8 719021.95 728868.7 4.68 719021.95 728868.7 4.68 719021.95 728868.7 4.68 
d15112_80_7 958278.86 1155190.13 960032.55 964445.29 4.66 960032.55 964445.29 4.73 960032.55 964445.29 4.73 
d15112_80_8 990277.77 1174384.17 990277.77 992123.77 4.55 990277.77 992123.77 4.52 990277.77 992123.77 4.52 
d15112_80_9 672457.47 931587.71 672457.47 677541.47 4.75 672457.47 677541.47 4.78 672457.47 677541.47 4.78 
nrw1379_80_0 64831.76 96656.39 65739.01 67598.57 4.68 65725.8 67571.78 4.73 65550.91 67927.83 4.73 
nrw1379_80_1 64967.83 88394.72 66163.83 67947.85 4.61 65927.2 67899.4 4.65 65929.48 67713.73 4.65 
nrw1379_80_2 73858.13 96499.97 74824.24 76023.55 4.65 74664.85 75881.09 4.63 74495.65 75981.26 4.63 
nrw1379_80_3 100592.83 131733.34 101010.22 101650.71 4.62 100706.51 101643.99 4.63 100858.38 101810.63 4.63 
nrw1379_80_4 98228.29 126451.61 98545.56 99177.28 4.52 98519.47 99278.86 4.59 98418.60 99239.92 4.59 
nrw1379_80_5 75984.21 99492.47 76685.61 78143.45 4.57 76525.87 78206.56 4.65 76524.34 78122.3 4.65 
nrw1379_80_6 79165.6 105024.23 79636.62 80402.19 4.54 79757.37 80363.95 4.65 79757.37 80363.95 4.65 
nrw1379_80_7 73194.55 105328.52 74106.95 75589.58 4.55 74106.95 75589.58 4.75 74106.95 75589.58 4.75 
nrw1379_80_8 83492.62 115793.31 83710.72 85128.66 4.57 83710.72 85128.66 4.74 83710.72 85128.66 4.74 
nrw1379_80_9 67034.31 92380.75 67853.71 69638.94 4.62 67853.71 69638.94 4.69 67853.71 69638.94 4.69 

Table 5. Results for ANMM-instances (n = 80, k = 16)

           Table 6. Results for E-instances  

Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax 

Best.Sol Aver.Sol      T Best.Sol     Aver.Sol       T Best.Sol    Aver.Sol T 
E-n30-k3 1643.3 2604.62 1670.41 1670.41 0.06 1670.41 1670.41 0.06 1670.41 1670.41 0.06 

E-n30-k4 1643.3 2490.48 1645.87 1645.87 0.07 1645.87 1645.87 0.06 1645.87 1645.87 0.07 

E-n33-k4 2819.43 3545.31 2819.43 2819.43 0.08 2819.43 2819.43 0.08 2819.43 2819.43 0.08 

E-n51-k5 2209.64 3357.72 2292.60 2292.60 1.01 2292.60 2292.60 1.05 2292.60 2292.60 0.96 

E-n76-k10 2310.09 3775.91 2417.55 2589.31 2.05 2417.55 2417.55 2.12 2417.55 2417.55 2.14 

E-n76-k14 2005.4 3237.01 2049.33 2145.23 2.13 2030.43 2030.43 2.09 2030.43 2030.43 2.05 

E-n76-k15 1962.47 3116.23 2031.95 2145.90 2.11 2031.95 2047.43 2.17 2031.95 2047.43 2.03 

Table 6. Results for E-instances
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Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax 

Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T 
P40k5 1537.79 2146.68 1587.52 1690.1559 0.08 1587.52 1568.86 0.08 1587.52 1568.86 0.08 

P45k5 1912.31 2688.95 1968.57 2143.5088 0.09 1968.57 1961.12 0.10 1968.57 1961.12 0.09 

P50k7 1547.89 2267.93 1580.65 1726.5957 0.97 1580.65 1575.59 0.97 1580.65 1575.59 1.01 

P55k7 1766.56 2716.8 1840.22 2006.9836 1.07 1840.22 1838.15 0.99 1840.22 1838.15 1.07 

P60k10 1676.35 2492.09 1723.04 1830.2216 1.18 1723.04 1707.72 1.16 1723.04 1707.72 1.20 

P76k4 4686.92 6474.01 5059.4 5666.5279 2.18 5059.4 5023.78 2.16 5059.40 5023.78 2.16 

P76k5 3820.02 5962.72 3820.02 3820.02 2.14 3820.02 3820.02 2.04 3820.02 3820.02 2.13 

Pn70k10 2097.17 3414.5 2137.3 2332.3804 1.40 2137.3 2332.3804 1.40 2137.3 2332.3804 1.40 

Table 7. Results for P-instances           Table 8. Results for Tai-instances  

Instances Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax 

Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T 
tai75a 6840.64 4840.69 5020.63 2.06 4803.02 5023.08 2.06 4803.02 5023.08 2.06 

tai75b 5575.85 3782.95 3931.11 2.14 3793.62 3941.72 2.14 3793.62 3941.72 2.14 

tai75c 7110.74 3838.18 4008.01 2.19 3848.39 4008.11 2.25 3848.39 4008.11 2.25 

tai75d 6501.43 4762.54 5091.00 2.18 4762.54 5091.00 2.22 4762.54 5091.00 2.22 

tai100a 11398.60 7798.82 8167.83 6.35 7772.71 8042.25 6.37 7733.07 8150.46 6.37 

tai100b 9775.59 7002.04 7510.64 6.42 6968.49 7452.22 6.34 6859.95 7398.34 6.34 

tai100c 7895.75 4773.88 4945.76 6.35 4773.88 4945.76 6.35 4773.88 4945.76 6.35 

tai100d 9051.64 5411.22 5695.49 6.38 5384.50 5627.70 6.36 5357.70 5646.42 6.36 

tai150a 16188.04 14048.22 14595.99 67.08 14052.37 14594.23 67.77 14075.20 14559.93 67.77 

tai150b 14018.07 11225.23 11802.84 67.15 11225.23 11802.84 68.54 11303.73 11804.18 68.54 

tai150c 13293.35 9756.99 10177.14 66.69 9763.81 10151.19 68.12 9789.65 10210.75 68.12 

tai150d  13001.42 9843.82 10201.89 67.46 9843.82 10201.89 69.01 9846.68 10199.94 69.01 

Table 8. Results for Tai-instances

GRASP + VND. On the other hand, the results from the different values of MD in
Table 9 indicate that the distance constraint also affects the quality of solutions.

In the CMT and Kelly instances with the maximum total distance traveled
in a route (as in Tables 11 and 12), as expected, our proposed algorithm shows
a significant improvement comparing to the initial solutions, with average Improv
of 24.01 % to 26.31 %.

Table 12 shows the evolution of the average deviation to the initial solutions dur-
ing the iterations in some instances. The deviations are 26.07 %, 28.05 %, 28.34 %,
28.61 %, 28.86 %, and 28.86 % for the first local optimum, obtained by one, ten,
twenty, thirty, fifty and one-hundred calls VNS, respectively. A major part of the
descent obtained is about 0.87 % by fifty to three-hundred calls VNS. We can ob-
serve that additional iterations give a minor improvement with the big running time.
Hence, the first way to reduce the long running time is to use no more than fifty
calls to VNS, and the improvement of our algorithm is about 28.61 %. A much faster
option is to run the initial construction phase, then improve it by using a single call
to VNS. As as a result, we can obtain an average deviation of 26.07 % and average
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             Table 9. Average results for dataset type 2 

Instances MD = 2×dmax MD = 2.5×dmax MD = 3×dmax 
Gap2 Impro      T      Gap2   Impro        T      Gap2    Impro T 

pr1002_60_x 0.53 21.30 1.12 0.48 21.35 1.45 0.34 21.45 1.45 
brd14051_60_x 0.66 25.63 1.13 0.46 25.77 1.45 0.53 25.73 1.45 
fnl4461_60_x 0.48 20.26 1.12 0.39 20.33 1.45 0.29 20.41 1.45 
d15112_60_x 0.56 23.94 1.11 0.39 24.07 1.46 0.31 24.12 1.46 
nrw1379_60_x 0.75 25.65 1.12 0.70 25.69 1.45 0.63 25.74 1.45 
pr1002_70_x 0.92 24.55 1.48 0.88 24.58 1.97 0.82 24.62 1.97 
brd14051_70_x 0.53 21.62 1.49 0.50 21.65 1.84 0.50 21.66 1.84 
fnl4461_70_x 0.66 23.53 1.46 0.62 23.56 1.94 0.59 23.58 1.94 
d15112_70_x 0.75 23.70 1.51 0.73 23.73 1.85 0.69 23.70 1.85 
nrw1379_70_x 0.72 24.17 1.44 0.64 24.23 1.95 0.61 24.25 1.95 
pr1002_80_x 0.73 22.23 3.58 0.68 22.26 4.66 0.65 22.28 4.66 
brd14051_80_x 0.62 17.85 3.56 0.57 17.89 4.62 0.56 17.89 4.62 
fnl4461_80_x 0.79 20.29 3.59 0.73 20.34 4.63 0.72 20.35 4.63 
d15112_80_x 0.43 21.59 3.57 0.41 21.61 4.65 0.39 21.62 4.65 
nrw1379_80_x 0.95 25.60 3.53 0.85 25.67 4.67 0.81 25.70 4.67 
E-instances 5.29 32.69 1.39 5.29 32.69 1.42 5.29 32.69 1.37 
P-instances 3.14 30.18 1.48 3.14 30.18 1.45 3.14 30.18 1.48 
Tai-instances - 29.77 32.79 - 32.42 33.20 - 29.83 33.31 
Aver 1.09 24.14 3.69 1.03 24.33 4.23 0.99 24.21 4.23 

Table 9. Average results for dataset type 2

            Table 10. Average results for dataset type 2 

Instances 
MD = 2×dmax MD = 2.5×dmax MD = 3×dmax 

Gap1 Gap2 T Gap1 Gap2 T Gap1 Gap2 T 
pr1002_60_x 0.53 21.30 1.12 0.48 21.35 1.45 0.34 21.45 1.45 
brd14051_60_x 0.66 20.43 1.13 0.46 24.86 1.45 0.53 24.80 1.45 
fnl4461_60_x 0.48 21.78 1.12 0.48 21.78 1.45 0.48 21.78 1.45 
d15112_60_x 0.56 21.18 1.11 0.56 21.18 1.46 0.56 21.18 1.46 
nrw1379_60_x 0.63 20.98 1.12 0.63 20.98 1.45 0.63 20.98 1.45 
pr1002_70_x 0.88 24.58 1.14 0.88 24.58 1.52 0.88 24.58 1.52 
brd14051_70_x 0.50 21.65 1.15 0.50 21.65 1.41 0.50 21.66 1.41 
fnl4461_70_x 0.62 23.56 1.12 0.62 23.56 1.49 0.62 23.56 1.49 
d15112_70_x 0.69 23.70 1.16 0.69 23.70 1.13 0.69 23.70 1.42 
nrw1379_70_x 0.64 24.23 1.11 0.64 24.23 1.11 0.61 24.25 1.50 
pr1002_80_x 0.68 22.26 3.58 0.73 22.23 3.58 0.65 22.28 3.58 
brd14051_80_x 0.57 17.89 3.56 0.62 17.85 3.55 0.56 17.89 3.55 
fnl4461_80_x 0.73 20.34 3.59 0.79 20.29 3.56 0.72 20.35 3.56 
d15112_80_x 0.41 21.61 3.57 0.39 21.62 3.57 0.39 21.62 3.57 
nrw1379_80_x 0.95 25.60 3.53 0.85 25.67 3.59 0.81 25.70 3.59 
E-instances 2.28 32.78 1.07 2.14 32.68 1.09 2.14 32.68 1.06 
P-instances 3.14 30.18 1.14 3.14 30.18 1.11 3.14 30.18 1.14 
Tai-instances - 29.83 25.20 - 29.91 25.63 - 29.98 25.63 
Aver 0.88 23.55 3.14 0.86 23.79 3.31 0.84 23.81 3.35 

Table 10. Average results for dataset type 2
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            Table 11. Results for Kelly-instances 

Instances n k MD Init.Sol Best.Sol Aver.Sol Impro T 
kelly01 240 9 650 72143.84 56121.25 57116.60 22.21 177.04 
kelly02 320 10 700 152816.69 104163.33 106346.89 31.84 349.84 
kelly04 480 10 1600 353374.40 271826.46 278169.07 23.08 566.42 
kelly05 200 5 1800 153187.07 116050.81 118758.33 24.24 179.39 
kelly06 280 7 1500 157506.03 127733.90 129785.16 18.90 404.47 
kelly07 360 8 1300 218214.03 166321.67 170351.03 23.78 615.73 
Aver 24.01 382.15 

Table 11. Results for Kelly-instances
Table 12. Evolution of average Impro deviation to Init.Sol  

Dataset  
1 iteration  20 iterations  30 iterations  50 iterations  100 iterations  200 iterations  

ଓ݉ݎതതതതതതതത തܶ ଓ݉ݎതതതതതതതത തܶ ଓ݉ݎതതതതതതതത തܶ ଓ݉ݎതതതതതതതത തܶ ଓ݉ݎതതതതതതതത തܶ ଓ݉ݎതതതതതതതത തܶ

E-instances  27.23 0.16 31.62 0.45 32.24 0.64 32.71 1.07 32.71 2.24 32.71 4.15 
P-instances  28.01 0.17 29.80 0.48 30.04 0.68 30.18 1.13 30.18 2.26 30.18 4.72 
Tai-instances  28.29 1.83 29.56 12.74 29.84 16.38 29.91 25.49 29.91 52.80 29.91 105.59 
CMT  24.98 17.45 25.87 23.92 26.31 27.10 26.31 35.06 26.31 61.03 26.31 141.56 
Kelly  22.01 188.22 23.55 259.52 23.88 293.74 24.01 382.15 24.01 667.34 24.01 1544.29 
Aver  26.10 41.56 28.08 59.42 28.46 67.71 28.62 88.98 28.62 157.13 28.62 360.06 

Table 12. Evolution of average Impro deviation to Init .Sol

time of 41.46 seconds, even for the instances which are up to 560 customers.
Most previous algorithms are proposed for specific variants; hence, they do not

apply for the other variants. However, our proposed algorithm is applicable to mul-
tiple variants of MTRPD, although it was not designed for solving them. In com-
parison with the state-of-the-art algorithms in [15, 23, 28, 29, 30, 31], our TS+VNS
algorithm’s solutions are at least as good as already the existing CCVRP algorithm
in [23, 28, 30], MTRP algorithm in [15, 29], TRP algorithm in [31]. Specifically,
for CCVRP problem, our algorithm obtains the better solutions for CMT1, CMT2,
CMT3, CMT4 or at least similar solutions for the others in Table 14. For the MTRP
problem, as shown in Table 13, the quality of our solutions is much better than the
algorithm of Ezzine et al. in [15] and comparable with the algorithm of Nucamendi-
Guillén et al. Tables 15 to 18 show the experimental results for the TRP problem.
Our algorithm outperforms that of Silva et al. [31] for four instances, and has similar
performance for the most of instances in TRP-100-Rx. In TRP-200-Rx, although
the VNS + TS metaheuristic cannot find any new best solution, our average solu-
tion quality is slightly improved. In addition, our algorithm can find the optimal
solutions for the problems with 50 to 100 vertices in several seconds, as shown in
Tables 15 and 18 (note that the optimal solutions for the instances are extracted
from Abeledo et al. [2]).

Our metaheuristic performs well because of two reasons:

1. The algorithm uses more neighborhoods than the others. Therefore, the explored
part of the solution space is more substantial. Hence, the chances of finding
even better solutions are higher. The extension of explored part is not time-
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Table 13. Comparsion with state of the art metaheuristic algorithm for MTRP (MD = 0) 

Instances IOE SNG Our Algorithm 
Best.Sol T Best.Sol T Best.Sol T cTime 

E-n51-k5 3320 2.25 2209.64 0.70 2209.64 1.31 3.25 
E-n76-k10 4094 1.48 2310.09 4.20 2310.09 2.67 6.62 
E-n76-k14 3762 0.50 2005.40 3.40 2005.40 2.77 6.87 
E-n76-k15 3822 0.09 1962.47 2.81 1962.47 2.74 6.80 
E-n101-k8 6383 89.4 - - 4051.47  6.40 15.87 
E-n101-k14 5048 5.43 - - 3288.53  6.74 16.72 
P-n50-k7 - - 1547.89 0.70 1547.89 1.26 3.12 
P-n55-k7 - - 1766.56 1.01 1766.56 1.39 3.45 
P-n60-k10 - - 1676.35 1.42 1676.35 1.54 3.82 
P-n76-k4 - - 4686.92 3.40 4686.92 2.83 7.02 
P-n76-k5 - - 3820.02 3.63 3820.02 2.78 6.89 
CMT1 - - 2209.64 0.70 2209.64 1.40 3.47 
CMT2 - - 2310.09 4.19 2310.09 2.78 6.89 
CMT3 - - 4002.90 14.94 4002.90 6.40 15.87 
tai100a - - 7809.43 13.63 7733.07 6.37 15.54 
tai100b - - 7038.60 12.83 6859.95 6.34 15.47 
tai100a - - 4868.61 14.12 4786.94 6.35 15.49 
tai100b - - 5422.63 14.23 5357.70 6.36 15.52 

Table 13. Comparision with state-of-the-art metaheuristic algorithm for MTRP (MD =
0)

Table 14. Comparsion with state of the art metaheuristic algorithm for CCVRP (MD = 0) 

Instances MA1 ALNS L. Ke’s algorithm Our Algorithm 
Best.Sol T Best.Sol T Best.Sol T Best.Sol T cTime 

CMT1 2230.35 10.63 2230.35 30.29 2230.35 17.64 2209.64 1.40 3.47 
CMT2 2421.90 27.78 2391.63 60.77 2391.63 22.48 2310.09 2.78 6.89 
CMT3 4073.12 97.91 4045.42 172.4 4045.42 60.96 4002.90 6.40 15.8
CMT4 4987.52 449.4 4987.52 235.1 4987.52 92.68 4953.94 63.0 156.
CMT5 5810.12 1035. 5838.32 277.3 5809.59 135.36 5809.59 11.2 92.7
CMT12 3558.92 53.72 3558.92 38.20 3558.92 152.74 3564.24 9.42 23.3

Table 14. Comparision with state-of-the-art metaheuristic algorithm for CCVRP (MD =
0)

consuming because of a constant time operation for calculating the latency cost
of each neighboring solution.

2. In some cases, while their algorithms get trapped in cycles, our algorithm over-
comes the issue and obtains the better solutions.

In Tables 13–14, the average scaled running time of the VNS + TS algorithm is
better than those of Ban et al., Ngueveu et al., and Ribeiro et al., and as well as
the algorithm of Ke et al. Besides, it grows quite moderately with the algorithm of
Nucamendi-Guillén et al.
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Table 15. Comparsion with state of the art metaheuristic algorithm for TRP (TPR-50-Rx) 

Instances 
k = 1 

MD=0 
OPT�

Our Algorithm 

Best.Sol� Aver.Sol� T� cTime 

TRP-50-R1 12198 12198 12198 0.49 1.20 
TRP-50-R2 11621 11621 11674 0.57 1.41 
TRP-50-R3 12139 12139 12139 0.61 1.50 
TRP-50-R4 13071 13071 13071 0.61 1.49 
TRP-50-R5 12126 12126 12284 0.58 1.44 
TRP-50-R6 12684 12684 12684 0.55 1.36 
TRP-50-R7 11176 11176 11176 0.59 1.45 
TRP-50-R8 12910 12910 12945 0.61 1.50 
TRP-50-R9 13149 13149 13149 0.62 1.53 
TRP-50-R10 12892 12892 12892 0.62 1.53 
TRP-50-R11 12103 12103 12181 0.61 1.44 
TRP-50-R12 10633 10633 10633 0.61 1.47 
TRP-50-R13 12115 12115 12115 0.56 1.47 
TRP-50-R14 13117 13117 13117 0.58 1.47 
TRP-50-R15 11986 11986 11986 0.61 1.47 
TRP-50-R16 12138 12138 12138 0.58 1.47 
TRP-50-R17 12176 12176 12176 0.49 1.48 
TRP-50-R18 13357 13357 13357 0.57 1.48 
TRP-50-R19 11430 11430 11430 0.61 1.48 
TRP-50-R20 11935 11935 11935 0.58 1.48 
Aver 0.58 1.47 

Table 15. Comparision with state-of-the-art metaheuristic algorithm for TRP (TPR-50-
Rx)

Table 16. Comparsion with state of the art metaheuristic algorithm for TRP (TPR-100-Rx) 

Instances 
k = 1 

MD=0 

MS Our Algorithm 

Best.Sol� Best.Sol� Aver.Sol� T� cTime 

TRP-100-R1 32779 32680 32680 5.67 14.00 
TRP-100-R2 33435 31598 31598 5.77 14.25 
TRP-100-R3 32390 32390 32390 5.67 14.00 
TRP-100-R4 34733 35208 35208 5.98 14.76 
TRP-100-R5 32598 32598 32598 5.87 14.50 
TRP-100-R6 34159 34159 34159 5.46 13.49 
TRP-100-R7 33375 33375 33375 5.05 12.47 
TRP-100-R8 31780 32479 32479 5.36 13.23 
TRP-100-R9 34167 34167 34167 5.98 14.76 
TRP-100-R10 31605 31605 31289 5.26 12.98 
TRP-100-R11 34188 34188 34188 5.26 13.84 
TRP-100-R12 32146 32146 30487 5.46 13.83 
TRP-100-R13 32604 31930 31930 5.05 13.78 
TRP-100-R14 32433 32433 32433 5.67 13.76 
TRP-100-R15 32574 32574 32574 5.87 13.67 
TRP-100-R16 33566 33566 33275 5.26 13.58 
TRP-100-R17 34198 34198 34198 5.87 13.59 
TRP-100-R18 31929 31929 31929 5.46 13.70 
TRP-100-R19 33463 33463 33463 6.08 13.75 
TRP-100-R20 33632 33363 33363 5.36 13.65 
Aver   5.57 13.72 

Table 16. Comparision with state-of-the-art metaheuristic algorithm for TRP (TRP-100-
Rx)
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Table 17. Comparsion with state of the art metaheuristic algorithm for TRP (TPR-200-Rx) 

Instances 
k = 1 

MD=0 

Our Algorithm MS 

Best.Sol�   Aver.Sol� Best.Sol� Aver.Sol� T� cTime 

TRP-200-R1 88787 88794.60 88789 88794.25 89.51 218.40 
TRP-200-R2 91977 92013.10 91977 91989.30 91.77 223.93 
TRP-200-R3 92568 92631.20 92570 92570.90 96.31 234.98 
TRP-200-R4 93174 93192.30 93174 93178.60 101.97 248.81 
TRP-200-R5 88737 88841.20 88737 88740.65 94.04 229.46 
TRP-200-R6 91589 91601.90 91591 91590.50 99.70 243.28 
TRP-200-R7 92754 92763.20 92754 92759.85 92.91 226.69 
TRP-200-R8 89048 89049.00 89048 89051.25 94.04 229.46 
TRP-200-R9 86326 86326.00 86326 86327.70 90.64 221.16 
TRP-200-R10 91554 91596.50 91554 91555.51 91.77 223.93 
TRP-200-R11 92655 92700.60 92658 92658.22 94.04 229.46 
TRP-200-R12 91457 91504.10 91457 91458.43 90.64 221.16 
TRP-200-R13 86155 86181.40 86159 86178.31 97.44 237.75 
TRP-200-R14 91882 91929.10 91882 91890.95 95.17 232.22 
TRP-200-R15 88914 88912.40 88914 88928.95 90.64 221.16 
TRP-200-R16 89313 89364.70 89313 89316.21 96.31 234.98 
TRP-200-R17 89089 89118.30 89089 89092.93 96.31 234.98 
TRP-200-R18 93619 93676.60 93619 93632.77 99.70 243.28 
TRP-200-R19 93369 93401.60 93369 93371.85 94.04 229.46 
TRP-200-R20 86294 86292.00 86294 86294.35 95.17 232.22 
Aver    94.60 230.82 

Table 17. Comparision with state-of-the-art metaheuristic algorithm for TRP (TRP-200-
Rx)

Table 18. Comparison with state-of-the-art metaheuristic algorithm for TRP(TSPLIB) 

Instances 
k = 1 

MD=0 
n  

OPT UB 
Our algorithm 

Best.Sol Aver.Sol T cTime 

dantzig42 42 12528 12650 12528 12528 0.56 1.50 
att48 48 209320 25315 209320 209320 1.45 3.87 
eil51 51 10178 10593 10178 10178 1.56 4.17 
berlin52 52 143721 15209 143721 143721 1.51 4.03 
st70 70 20557 25809 20557 20557 2.43 6.49 
KroA100 100 983128 10912 983128 983128 8.25 22.03 
KroB100 100 986008 10212 986008 986008 8.12 21.68 
KroC100 100 961324 11013 961324 961324 8.28 22.11 
KroD100 100 976965 10253 976965 976965 8.19 21.87 
Aver     4.48 11.97 

Table 18. Comparision with state-of-the-art metaheuristic algorithm for TRP (TSPLIB)

5 CONCLUSIONS

In this paper, we study the global structure of the MTRPD solution space. We have
proposed a new effective meta-heuristic algorithm for MTRPD, which combines In-
sertion Heuristic (IH), Tabu Search (TS), and Variable Neighborhood Search (VNS).
Our algorithm has been suitable for the global structure of the solution space. More-
over, we introduce the novel neighborhoods’ structure as well as the constant time
operation for efficient calculation of the latency cost for each neighboring solution.
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The extensive computational experiments on benchmark instances show that the
proposed algorithm is able to find the optimal solutions for all instances with up
to 50 vertices in a fraction of seconds. Moreover, almost all the found solutions
for instances from 60 to 80 vertices fall into the range of 0.9 %–1.1 % of the lower
bounds of the optimal solutions at a reasonable amount of time. For the larger
number of vertices, our algorithm obtains good-quality solutions fast. Additionally,
our algorithm can find better solutions than the state-of-the-art ones.
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Abstract. Hilbert-Schmidt Independence Criterion (HSIC) measures statistical in-
dependence between two random variables. However, instead of measuring the
statistical independence between two random variables directly, HSIC first trans-
forms two random variables into two Reproducing Kernel Hilbert Spaces (RKHS)
respectively and then measures the kernelled random variables by using Hilbert-
Schmidt (HS) operators between the two RKHS. Since HSIC was first proposed
around 2005, HSIC has found wide applications in machine learning. In this pa-
per, a HSIC regularized Local Tangent Space Alignment algorithm (HSIC-LTSA)
is proposed. LTSA is a well-known dimensionality reduction algorithm for local
homeomorphism preservation. In HSIC-LTSA, behind the objective function of
LTSA, HSIC between high-dimensional and dimension-reduced data is added as
a regularization term. The proposed HSIC-LTSA has two contributions. First,
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HSIC-LTSA implements local homeomorphism preservation and global statisti-
cal correlation during dimensionality reduction. Secondly, HSIC-LTSA proposes
a new way to apply HSIC: HSIC is used as a regularization term to be added
to other machine learning algorithms. The experimental results presented in this
paper show that HSIC-LTSA can achieve better performance than the original
LTSA.

Keywords: Dimensionality reduction, RKHS, Hilbert-Schmidt operators, LTSA,
HSIC

1 INTRODUCTION

The loss of information is inevitable during dimensionality reduction. Therefore,
the main concern in constructing algorithms of dimensionality reduction is what
information needs to be preserved during dimensionality reduction. From this view-
point, the algorithms of dimensionality reduction can be divided into two categories:
global-preserving and local-preserving algorithms [1]. The global-preserving algo-
rithms preserve some global features of data during dimensionality reduction [2, 3,
4, 5], while the local-preserving algorithms preserve some local features of data dur-
ing dimensionality reduction. Local Tangent Space Alignment (LTSA) algorithm is
a typical local-preserving algorithm for dimensionality reduction. The local feature
LTSA preserves is the local homeomorphism, i.e., the continuous dependence be-
tween data within a local region [6]. In recent years, the dimensionality reduction
algorithms capable of preserving both local and global features have emerged, such
as LPP [7, 8, 9].

Hilbert-Schmidt Independence Criterion (HSIC) measures the statistical inde-
pendence between two random variables [10]. However, instead of measuring the
statistical independence between two random variables directly, HSIC first trans-
forms the two random variables into two reproducing kernel Hilbert spaces (RKHS)
respectively and then measures the statistical correlation of the two transformed
random variables by using Hilbert-Schmidt operators between two RKHSs. In the
application of HSIC to data analysis, the given data can be regarded as the values
taken by the random variables. The HSIC formulae for calculating the statistical
correlation of data are simple and often used in many applications [11, 12, 13, 14, 15].
However, HSIC involves many mathematical concepts and it is not easy to under-
stand the meaning of HSIC thoroughly. The misunderstanding, or even misuse of
HSIC happens from time to time.

In this paper, HSIC is first explored theoretically and then applied to LTSA.
LTSA is a local homeomorphism-preserving algorithm for dimensionality reduction.
An improved LTSA, called HSIC regularized LTSA, or HSIC-LTSA for short, is
proposed in which a HSIC regularization term is added to LTSA’s objective function.
The HSIC regularization term measures the statistical correlation between the high-
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dimensional data and the dimension-reduced data. HSIC-LTSA takes into account
both the local and global preserving requirements during dimensionality reduction
and achieves a better result than LTSA.

The remaining sections in this paper are arranged as follows: in Section 2, LTSA
is elaborated, showing that LTSA is a local-homeomorphism preserving algorithm
in nature; in Section 3, RKHS is briefly described; in Section 4, the theory of
HSIC is elaborated thoroughly and the HSIC formulae for calculating the statistical
correlation between two sets of data is derived. In Section 5, an improved HSIC-
LTSA is proposed; in Section 6, the experimental results of LTSA and HSIC-LTSA
are presented to show the effectiveness of HSIC-LTSA; in Section 7, some conclusions
are presented.

2 LOCAL TANGENT SPACE ALIGNMENT (LTSA)

LTSA [6] is a classical local homeomorphism-preserving algorithm of manifold learn-
ing and mainly applied to dimensionality reduction. Generally speaking, the prob-
lem of dimensionality reduction can be expressed as follows: given a set of high-
dimensional data X = {x1, . . . , xN} ⊆ RD, we want to find an another set of data
Y = {y1, . . . , yN} ⊆ Rd such that yn is the dimensional-reduced version of xn,
where d << D and n = 1, . . . , N . In manifold learning, Y is also called the global
coordinate of X.

Remark 1. In this paper, a dataset can be represented by a set, in which the
elements of the set are data, for example, X = {x1, . . . , xN} ⊆ RD. The dataset can
also be represented by a matrix, in which the column vectors of matrix are data, for
example, X = [x1, . . . , xN ] ∈ RD×N . The two representations are equivalent.

The stages of LTSA are as follows:

1. Decompose the high-dimensional data into local groups: LTSA uses K-NN me-
thod. For each data xn, let xn1 , . . . , xnK

be its K-nearest neighbors, then the
nth local group is as follows:

Xn =
[
xn1 . . . xnK

, xnK+1

]
∈ RD×(K+1) (1)

where xnK+1
= xn, n = 1, . . . , N . It is clear that X =

⋃N
n=1Xn.

2. Reduce the dimension of each local group Xn: LTSA uses PCA method. The
local group Xn is first centralized:

X̂n =
[
xn1 − x̄n, xnK+1

− x̄n
]

= XnCK+1 (2)

where x̄n = 1
K+1

∑K+1
k=1 xnk

, CK+1 = IK+1 − 1
K+1

ΓK+1ΓT
K+1, ΓK+1 =

1
...
1

 ∈
RK+1. CK+1 is often called centralizing matrix.
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Then, the centralized matrix X̂n is SVD-decomposed:

X̂n = UnΣnV
T
n (3)

where both Un ∈ RD×D and Vn ∈ R(K+1)×(K+1) are orthonormal matrices, Σn ∈
RD×(K+1)(K+1) is singular value matrix.

At last, let Un,1 ∈ RD×d be the matrix composed of the first d column vectors

of Un, then the column vectors of X̂n are projected into the space spanned by
the column vectors of Un,1, i.e., spanUn,1, the coordinates of these projections
in spanUn,1 are the dimensional-reduced version of Xn:

Θn = UT
n,1X̂n ∈ Rd×(K+1). (4)

In manifold learning, Θn is often called the local coordinate of Xn.

Remark 2. From the viewpoint of manifold, the space spanUn,1 can be re-
garded as the tangent space [16] of the point x̄n, therefore LTSA is called local
tangent space method. Furthermore, since X̂n and Θn are homeomorphic [17]
to each other within the neighborhood of x̄n, therefore, LTSA belongs to the
category of local preserving algorithms.

3. Derive the global coordinate from the local coordinate: Let us denote the global
coordinate of Xn as

Yn =
[
yn1 . . . ynK+1

]
∈ Rd×(K+1) (5)

where ynk
is the global coordinate of xnk

, i.e., the dimensional-reduced version
of xnk

, 1 ≤ nk ≤ N , k = 1, . . . , K + 1. We want to derive Yn from Θn. LTSA
assumes that Yn is the linear transformation of Θn (affine transformation, strictly
speaking):

Ŷn =
[
yn1 − ȳn . . . ynK+1

− ȳn
]

= YnCK+1 = AnΘn (6)

where ȳn = 1
K+1

∑K+1
k=1 ynk

. The geometric meaning of Equation (6) is that
Yn can be derived from Θn by translation, rotation and scale. Furthermore,

Ŷn = AnΘn ⇒ An = ŶnΘ+
n (7)

where Θ+
n represents the right pseudo inverse of Θn, i.e., Θ+

n is the solution to
the following problem: ∥∥Id −ΘnΘ+

n

∥∥2 −−−−−−→
choose Θ+

n

min . (8)

Based on Equation (7), the local objective function can be established:∥∥∥Ŷn − AnΘn

∥∥∥2

=
∥∥∥Ŷn (IK+1 −Θ+

n Θn

)∥∥∥2

=
∥∥YnCK+1

(
IK+1 −Θ+

n Θn

)∥∥2
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=
∥∥Y SnCK+1

(
IK+1 −Θ+

n Θn

)∥∥2
= ‖Y Ln‖2 −−−−−→

choose Y
min (9)

where Sn ∈ RN×(K+1) is the selection matrix such that Yn = Y Sn, i.e., the nth
k

element of the kth column vector is 1, other elements are 0, k = 1, . . . , K + 1;
Ln = SnCK+1 (IK+1 −Θ+

n Θn), called the local pattern of X.

The objective function of LTSA can be derived by summing up all the local
objective functions:

N∑
n=1

‖Y Ln‖2 =
N∑

n=1

tr
(
Y LnL

T
nY

T
)

= tr

(
Y

N∑
n=1

LnL
T
nY

T

)
= tr

(
Y LLTY T

)
−−−−−→
choose Y

min (10)

where L = [L1 . . . LN ].

3 REPRODUCING KERNEL HILBERT SPACES (RKHS)

HSIC is based on RKHS. Let L2 (Ω) =
{
f
∣∣f : Ω→ R,

∫
Ω
|f (x)|2 < +∞

}
be the

space of square integrable functions. An inner product 〈•, •〉 can be defined over
L2 (Ω) [18]:

〈f, g〉 =

∫
Ω

f (x) g (x) dx. (11)

It can be proven that H = (L2 (Ω) , 〈•, •〉) is a complete inner product space, i.e.,
Hilbert space.

Definition 1 ([18]). Let H = (L2 (Ω) , 〈•, •〉), if there is a function k : Ω× Ω→ R
such that

• for all x ∈ Ω, kx = k (•, x) ∈ H,

• for all f ∈ H, f (x) = 〈f, k (•, x)〉,

then H is called a reproducing kernel Hilbert space (RKHS) and k is called the
reproducing kernel of H.

The reproducing kernel k can be used to define a map: ϕ : Ω → H such that
for all x ∈ Ω,

ϕ (x) = k (•, x) ∈ H. (12)

It can be easily proven that

〈ϕ (x) , ϕ (y)〉 = 〈kx, k (•, y)〉 = kx (y) = k (y, x) = k (x, y). (13)

The above equation is often used in many kernel methods of machine learning such
as kPCA [3], kLDA [19], kSVM [20], etc.
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Furthermore, if X is a random variable on Ω, then ϕ (X) is a random process
and its mean function is defined:

µX (u) = EX [ϕ (X) (u)] = EX [k (u,X)] =

∫
Ω

k (u, x) pX (x) dx. (14)

Then, for all f ∈ H,

〈µX , f〉 =

∫
Ω

µX (u) f (u) du =

∫
Ω

(∫
Ω

k (u, x) pX (x) dx

)
f (u) du

=

∫
Ω

(∫
Ω

k (u, x) f (u) du

)
pX (x) dx =

∫
Ω

〈f, k (•, x)〉 pX (x) dx

=

∫
Ω

f (x) px (x) dx = Ex [f (X)]. (15)

In mathematics, it can be proven that RKHS can be generated from kernel
functions. The definition of kernel functions is as follows.

Definition 2 ([21]). Let k : Ω× Ω→ R, if k satisfies the following conditions:

• Symmetric: for all x, y ∈ Ω, k (x, y) = k (y, x),

• Square integrable: for all x ∈ Ω, kx = k (•, x) is square integrable,

• Positive definite: for all x1, . . . , xN ∈ Ω, the matrixk (x1, x1) . . . k (x1, xN)
...

. . .
...

k (xN , x1) . . . k (xN , xN)

 is positive definite,

then k is called a kernel function.

Remark 3. Kernel functions and reproducing kernels are not the same concept.
Kernel functions are defined on their own, while reproducing kernels are defined
based on RKHS.

Theorem 1 ([18]). A kernel function k can be used to generate a unique RHHS Hk

such that k becomes the reproducing kernel of Hk.

Based on this theorem, as long as we define a kernel function, we define an
RKHS.

4 HILBERT-SCHMIDT INDEPENDENCE CRITERION (HSIC)

4.1 HS Operators

HSIC is defined by using Hilbert-Schmidt operators.
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Definition 3 ([22]). Let HX and HY be two separable Hilbert spaces, {ei |i ∈ I }
the orthonormal basis of HX , T : HX → HY a compact operator, if

∑
i∈I ‖Tei‖

2
Y <

+∞, then T is called a Hilbert-Schmidt (HS) operator.

Remark 4. In this paper, 〈•, •〉X represents the inner product of HX , ‖•‖X =√
〈•, •〉X the norm of HX . Similarly, 〈•, •〉Y represents the inner product of HY ,

‖•‖Y =
√
〈•, •〉Y the norm of HY .

Let HS (HX → HY ) be the space of all HS operators from HX to HY . An inner
product 〈•, •〉HS can be defined on HS (HX → HY ) to make (HS(HX → HY ),
〈•, •〉HS) become a Hilbert space.

Theorem 2 ([10]). If for all T, S ∈ HS (HX → HY ),
∑

i∈I |〈Tei, Sei〉Y | < +∞,
then (HS (HX → HY ) , 〈•, •〉HS) is a Hilbert space, where the inner product 〈•, •〉HS

is defined as follows:
〈T, S〉HS =

∑
i∈I

〈Tei, Sei〉Y . (16)

Tensor product operators are a kind of HS operators.

Theorem 3 ([10]). Let HX and HY be two separable Hilbert spaces, f0 ∈ HX ,
g0 ∈ HX , define f0 ⊗ g0 : HX → HY such that for all f ∈ HX , f0 ⊗ g0 (f) =
〈f0, f〉Xg0 ∈ HY , then f0 ⊗ g0 is a HS operator, i.e., f0 ⊗ g0 ∈ HS (HX → HY ).

Remark 5. f0 ⊗ g0 is called the tensor product of f0 and g0.

4.2 Cross Covariance Operators

Generally speaking, HSIC involves two RKHSs.
Let H1 = (L2 (Ω1) , 〈•, •〉1) be an RKHS, k1 : Ω1 × Ω1 → R the reproducing ker-

nel of H1. Define ϕ1 : Ω1 → H1 such that for all x ∈ Ω1, ϕ1 (x) = k1 (•, x) ∈ H1.
Note that 〈ϕ1 (x′) , ϕ1 (x′′)〉1 = k1 (x′, x′′).

Similarly, let H2 = (L2 (Ω2) , 〈•, •〉2) be an RKHS, k2 : Ω2 × Ω2 → R the repro-
ducing kernel of H2. Define ϕ2 : Ω2 → H2 such that for all y ∈ Ω2, ϕ2 (y) =
k2 (•, y) ∈ H2. Note that 〈ϕ2 (y′) , ϕ2 (y′′)〉2 = k2 (y′, y′′).

Furthermore, let X be a random variable on Ω1, Y a random variable on Ω2.

Theorem 4 ([10]). Let Φ : HS (H1 → H2)→ R such that for all T ∈ HS(H1 →
H2)

Φ (T ) = EXY [〈ϕ1 (X)⊗ ϕ2 (Y ) , T 〉HS]. (17)

If EXY [‖ϕ1 (X)⊗ ϕ2 (Y )‖HS] < +∞, then Φ is continuous linear functional on
HS (H1 → H2).

According to the representation theorem of continuous linear functionals (Riesz
theorem [18]), there must be a unique HS operator TΦ ∈ HS (HX → HY ) such that
for all HS operators T ∈ HS (HX → HY ),

Φ (T ) = EXY [〈ϕ1 (X)⊗ ϕ2 (Y ) , T 〉HS] = 〈T, TΦ〉HS. (18)
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This HS operator TΦ is called as cross covariance operator and often denoted as
CXY .

4.3 Hilbert-Schmidt Independence Criterion (HSIC)

Definition 4 ([10]). The HSIC of two random variables X and Y is defined as

HSIC (X, Y ) = EXY

[
‖(ϕ1 (X)− µX)⊗ (ϕ2 (Y )− µY )‖2

HS

]
. (19)

It can be easily proven [10] that:

HSIC (X, Y ) = EXY

[
‖(ϕ1 (X)− µX)⊗ (ϕ2 (Y )− µY )‖2

HS

]
= ‖CXY − µX ⊗ µY ‖2

HS

= 〈CXY ,CXY 〉HS − 2〈CXY , µX ⊗ µY 〉HS

+ 〈µX ⊗ µY , µX ⊗ µY 〉HS. (20)

In practice, two sets of data {x1, . . . , xN} ⊆ Ω1 and {y1, . . . , yN} ⊆ Ω2 are given and
can be regarded as some sample taken by the random variables X and Y . Therefore,
the calculation of HSIC can be approximated by replacing statistical average with
sample average [10].

At first, for all HS operators T ∈ HS (H1 → H2), since

〈CXY , T 〉HS = EXY [〈ϕ1 (X)⊗ ϕ2 (Y ) , T 〉HS]

≈ 1

N

N∑
n=1

〈ϕ1 (xn)⊗ ϕ2 (yn) , T 〉HS

=

〈
1

N

N∑
n=1

ϕ1 (xn)⊗ ϕ2 (yn), T

〉
HS

(21)

then

CXY ≈
1

N

N∑
n=1

ϕ1 (xn)⊗ ϕ2 (yn). (22)

Similarly, for all functions f ∈ H1, since

〈f, µX〉1 = EX [〈ϕ1 (X) , f〉1] ≈ 1

N

N∑
n=1

〈ϕ1 (xn) , f〉1 =

〈
1

N

N∑
n=1

ϕ1 (xn), f

〉
1

then

µX ≈
1

N

N∑
n=1

ϕ1 (xn). (23)
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By the same deduction, we have

µY ≈
1

N

N∑
n=1

ϕ2 (yn). (24)

Substituting Equations (34), (35), (36) into Equations (31), (32), (33) gives:

〈CXY , CXY 〉HS ≈

〈
1

N

N∑
i=1

ϕ1 (xi)⊗ ϕ2 (yi),
1

N

N∑
j=1

ϕ1 (xj)⊗ ϕ2 (yj)

〉
HS

=
1

N2

N∑
i=1

N∑
j=1

k1 (xi, xj) k2 (yi, yj) =
1

N2
tr (K1K2) , (25)

〈CXY , µX ⊗ µY 〉HS ≈

〈
1

N

N∑
i=1

ϕ1 (xi)⊗ ϕ2 (yi),

(
1

N

N∑
p=1

ϕ1 (xp)

)
⊗

(
1

N

N∑
q=1

ϕ2 (yq)

)〉
HS

=
1

N3

N∑
i=1

N∑
p=1

N∑
q=1

k1 (xi, xp) k2 (yi, yq) =
1

N3
ΓT
NK1K2ΓN (26)

〈µX ⊗ µY , µX ⊗ µY 〉HS = 〈µX , µX〉1〈µY , µY 〉2

≈

〈
1

N

N∑
i=1

ϕ1(xi),
1

N

N∑
j=1

ϕ1(xj)

〉
1

〈
1

N

N∑
i=1

ϕ2(yi),
1

N

N∑
j=1

ϕ2(yj)

〉
2

=
1

N4
ΓT
NK1ΓNΓT

NK2ΓN (27)

where

K1 =

k1 (x1, x1) . . . k1 (x1, xN)
...

. . .
...

k1 (xN , x1) . . . k1 (xN , xN)

 , K2 =

k2 (y1, y1) . . . k2 (y1, yN)
...

. . .
...

k2 (yN , y1) . . . k2 (yN , yN)

 .
(28)

Substituting (37), (38), (39) into Equation (30) gives:

HSIC (X, Y ) = 〈CXY ,CXY 〉HS − 2〈CXY , µX ⊗ µY 〉HS + 〈µX ⊗ µY , µX ⊗ µY 〉HS

≈ 1

N2
tr (K1K2)− 2

N3
ΓT
NK1K2ΓN +

1

N4
ΓT
NK1ΓNΓT

NK2ΓN (29)

=
1

N2
tr (K2CNK1CN) (30)
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where CN = IN − 1
N

ΓNΓT
N is the centralized matrix.

5 HSIC REGULARIZED LTSA (HSIC-LTSA)

5.1 The Objective Function of HSIC-LTSA

In manifold learning, LTSA is among the few algorithms which are created based
on the mathematical properties of manifolds. Therefore, LTSA achieves better per-
formance in the process of manifold data. However, the so-called manifolds are
topological spaces which are locally homeomorphic to Euclidean spaces. Therefore,
it is natural for LTSA to be a local homeomorphism-preserving algorithm. Many
improvements to LTSA try to turn LTSA into one capable of preserving both local
and global properties of data during dimensionality reduction. For example, in [23],
the dimension-reduced data Y are set to the linear transformation of the high dimen-
sional data X, i.e., Y = WX, where W ∈ Rd×D. Y is then replaced with Y = WX
in the objective function of LTSA:

tr
(
Y LLTY T

)
−−−−−→
choose Y

min⇒ tr
(
WXLLTXTW T

)
−−−−−→
choose W

min (31)

However, the setting Y = WX will destroy the nonlinear nature of LTSA.

In this paper, an improved LTSA, called HSIC regularized LTSA (HSIC-LTSA
for short), is proposed in which a HSIC regularization term is added to the objective
function of LTSA:

tr
(
Y LLTY T

)
− λHSIC (X, Y ) = tr

(
Y LLTY T

)
− λtr (K2CNK1CN) −−−−−→

choose Y
min

(32)
where λ > 0 is the regularization coefficient.

HSIC (X, Y ) measures the statistical dependence of two random processes
ϕ1 (X) and ϕ2 (Y ). Therefore, the objective function HSIC-LTSA shown in Equa-
tion (32) means that X and Y will be kept statistically dependent as much as
possible during dimensionality reduction of LTSA.

Furthermore, the dimension-reduced data Y is hidden in the kernel matrix K2

in HSIC (X, Y ). In order to facilitate the optimization of Y , the proposed HSIC-
LTSA sets the kernel function k2 based on the linear kernel: k2 : Rd × Rd → R, for
all y′, y′′ ∈ Rd,

k2 (y′, y′′) = y′
T
y′′ + κδ (y′, y′′) (33)

where κ > 0 and δ (y′, y′′) =

{
1, y′ = y′′

0, others
. The addition of δ ensures the positive
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definiteness of k2. The kernel matrix K2 is then to be:

K2 =

k2 (y1, y1) . . . k2 (y1, yN)
...

. . .
...

k2 (yN , y1) . . . k2 (yN , yN)

 =

y
T
1 y1 . . . yT1 yN
...

. . .
...

yTNy1 . . . yTNyN

+κIN = Y TY +κIN .

(34)
In this setting of K2, HSIC (X, Y ) will become:

HSIC (X, Y ) = tr (K2CNK1CN) = tr
(
Y TY CNK1CN

)
+ κtr (CNK1CN)

= tr
(
Y CNK1CNY

T
)

+ κtr (CNK1CN) . (35)

tr (CNK1CN) has nothing to do with Y , therefore the objective function of HSIC-
LTSA becomes:

tr
(
Y LLTY T

)
− λtr

(
Y CNK1CNY

T
)
−−−−−→
choose Y

min (36)

where

K1 =

k1 (x1, x1) . . . k1 (x1, xN)
...

. . .
...

k1 (xN , x1) . . . k1 (xN , xN)

 . (37)

The kernel function k1 can be chosen according to the applications at hand. There-
fore, HSIC-LTSA provides much flexibility for different applications.

5.2 The Solution to HSIC Regularized LTSA

The objective function of HSIC-LTSA shown in Equation (37) can be rewritten in
an equivalent form:

tr
(
Y LLTY T

)
tr (Y CNK1CNY T )

−−−−−→
choose Y

min. (38)

In Equation (38), since for all constant vectors z ∈ RN , CNz = 0, CNK1CN is
then positive semi-definite, not positive definite. However, from another viewpoint,
CN is the centralizing matrix, Y CN means the centralization of Y . In geometry,
Y CN means translation of Y to the origin of the Euclidean space Rn. Obviously, the
translation of Y has no impact on the result of dimensionality reduction. Therefore,
it is reasonable to assume that Y CN = Y . Under this assumption, the objective
function shown in Equation (38) can be refined as follows:

tr
(
Y LLTY T

)
tr (Y K1Y T )

−−−−−→
choose Y

min.

Equation (38) can be solved according to the following stages:
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1. Cholesky Decomposition of K1: the kernel function of K1 is symmetric and
positive definite, and can be Cholesky-decomposed:

K1 = V V T (39)

where V ∈ RN×N is a low-triangular matrix and the diagonal elements are all
positive.

2. Let Z = Y V ∈ Rd×N , then Y = ZV −1 and

tr
(
Y LLTY T

)
tr (Y K1Y T )

=
tr
(
Y LLTY T

)
tr (Y V V TY T )

=
tr
(
ZV −1LLT (V −1)

T
ZT
)

tr (ZZT )
. (40)

Furthermore, let us denote Z =

Z1Row
...

ZdRow

, where ZiRow ∈ R1×N represents the

row vector of Z, i = 1, . . . , d, then

tr
(
ZV −1LLT (V −1)

T
ZT
)

tr (ZZT )
=

∑d
i=1 ZiRowV

−1LLT (V −1)
T
ZT

iRow∑d
i=1 ZiRowZT

iRow

. (41)

3. Eigen Decomposition of V −1LLT (V −1)
T

. If ZT
iRow is an eigenvector of

V −1LLT (V −1)
T

, i.e.,

V −1LLT
(
V −1

)T
ZT

iRow = λiZ
T
iRow (42)

then

λmin ≤
∑d

i=1 ZiRowV
−1LLT (V −1)

T
ZT

iRow∑d
i=1 ZiRowZT

iRow

=

∑d
i=1 λiZiRowZ

T
iRow∑d

i=1 ZiRowZT
iRow

≤ λmax (43)

where λmax and λmin represent the maximum and minimum eigenvalues of
V −1LLT (V −1)

T
, respectively.

It is clear that the d row vectors of Z should be chosen to be the eigenvectors
corresponding to the d minimum eigenvalues of V −1LLT (V −1)

T
.

4. Y = ZV −1.

6 EXPERIMENTS

In this section, some experimental results of LTSA and HSIC-LTSA are presented
for comparison.
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Figure 1. The experimental results of LTSA and HSIC-LTSA on toy data
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6.1 Toy Data

Figure 1 shows the experimental results on toy data. The toy data as well as the
experimental results of LTSA on the toy data are all produced by using MANI.
MANI is a platform commonly used in manifold learning and can be downloaded
free from internet. It can be seen from Figure 1 that the experimental results of
HSIC-LTSA are reasonable and comparable with those of LTSA. In some toy data,
HSIC-LTSA seems even better than LTSA. For example, in Swill Roll with rectangle
hole in the middle, HSIC-LTSA reproduces the rectangle more faithfully.

6.2 Face Image Data

Figure 2. The experimental results of LTSA on face images

Figures 2 and 3 show the experimental results of LTSA and HSIC-LTSA on
the dataset of faces. This dataset is often used in many literatures of manifold
learning. The face in the dataset only changes in gesture and expression. There-
fore, although the faces are represented with high-dimensional vectors, it may be
enough to represent these faces with 2-dimensional vectors. In Figures 2 and 3, the
faces are dimensionally reduced to 2-dimension plane with LTSA and HSIC-LTSA,
respectively. Some face images are also shown at the corresponding positions. It
can be seen from Figures 2 and 3 that from up to bottom the face expression



HSIC Regularized LTSA 931

Figure 3. The experimental results of HSIC-LTSA on face images

changes from serious to happy, while from left to right, the face gesture changes
from eastward to westward. The impression of HSIC-LTSA seems better than that
of LTSA.

6.3 Classification Experiments

The experimental results shown in Figures 1, 2 and 3 are qualitative, not quantita-
tive, and are judged entirely by subjective feelings. In order to compare LTSA and
HSIC-LTSA objectively, a number of classification experiments are presented, where
data are first dimensionally reduced with LTSA and HSIC-LTSA, respectively, and
then classified with K-NN method. The accuracy rates of classification are listed in
Table 1.

The datasets used in the classification experiment are MNIST, USPS, YaleB,
Binaryalphadigs, AR, UMIST, ORL and Vehicle. All these datasets can be down-
loaded from Internet and commonly used in many literatures of machine learning.
Both MNIST and USPS are the datasets of handwritten digits. Binaryalphadigs is
the dataset of handwritten digits and English letters. YaleB, AR, UMIST and ORL
are all the datasets of face images. Vehicle is the dataset of vehicle images. The
classification method used in the experiments is 3-NN method. The kernel used in
HSIC is linear kernel.
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In Table 1, the numbers shown in the leftmost column are the reduced dimen-
sions; the numerical values shown next to the names of datasets are the accuracy
rates of classification without dimensionality reduction. Since the dimension of fea-
ture vectors of vehicle image is only 18, the reduced dimensions are then not larger
than 18.

Generally speaking, the performance of HSIC-LTSA is better than LTSA.

RD: the reduced dimension; unit: %
The numbers next to the names of datasets are the accuracy rates of classification

without dimensionality reduction

RD
MNIST/88.0 USPS/84.1 YaleB/61.5 AR/32.13

LTSA HSIC-LTSA LTSA HSIC-LTSA LTSA HSIC-LTSA LTSA HSIC-LTSA

10 74.6 86.2 69.4 85.9 7.5 19.5 15.8 17.8

20 80.4 88.6 79.4 87.4 28.0 67.7 20.4 23.0

30 82.4 89.3 80.5 86.4 46.3 78.3 23.4 28.6

40 82.2 88.5 80.6 87.1 61.4 80.5 26.0 31.7

50 85.5 88.7 82.8 86.6 73.6 83.1 28.9 37.3

60 86.0 88.4 82.4 85.4 77.5 83.2 33.7 44.3

80 86.0 88.4 84.7 85.3 82.6 84.7 47.6 51.5

100 87.1 88.1 84.5 84.1 85.3 86.0 58.9 58.3

RD
ORL/82.5 Binaryalphadigs/69.5

RD
Vehicle/63.7

LTSA HSIC-LTSA LTSA HSIC-LTSA LTSA HSIC-LTSA

10 64.0 77.0 53.1 7.40 2 48.6 48.5

20 75.2 81.8 66.3 31.4 3 48.7 51.3

30 81.9 81.7 65.6 31.4 4 48.0 51.7

40 82.0 77.0 67.4 31.4 5 51.8 50.5

50 81.7 72.5 63.5 43.0 10 66.5 62.3

60 77.6 65.2 59.0 40.0 15 74.0 66.7

80 70.6 53.9 52.4 27.6 16 74.7 70.4

100 66.1 47.4 41.1 18.9 17 75.1 66.9

Remark: The datasets as well as the source codes will be available on request.

Table 1. The accuracy rates of classification

7 CONCLUSIONS

The theory of HSIC sounds a little complicated and seems too difficult to understand
for AI engineers. In this paper, a brief and self-sufficient introduction to HSIC is
presented for better understanding of HSIC. Since it was first proposed around 2005,
HSIC has found many applications in machine learning and some of them are similar
to dimensionality reduction [24, 25, 26]. However, HSIC has never been applied to
machine learning in regularization form so far. The proposed HSIC-LTSA may be
the first try of HSIC regularization.
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The so-called regularization means to add regularization terms behind objective
functions of other algorithms. The proposed HSIC-LTSA adds HSIC regulariza-
tion to LTSA, we can also add HSIC regularization to Laplacian Eigenmap algo-
rithm [1] to form HSIC-LE algorithm, to Local Linear Embedded algorithm [2] to
form HSIC-LLE algorithm, and so on. HSIC regularization would likely greatly ex-
pand the application scope of HSIC, just like what manifold regularization [3] has
done. Manifold regularization makes the application scope of manifold learning ex-
pand from dimensionality reduction initially to various aspects of machine learning
now.
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1 INTRODUCTION

The problem of multiple pattern matching can be stated as follows: Given text T of
length n and pattern set P = {P0, . . . , Pr−1}, in which each pattern is of length m,
and all considered sequences are over common alphabet Σ of size σ, find all pattern
occurrences in T . The pattern equal length requirement may be removed (although
not all algorithms easily handle uneven patterns). Multiple pattern matching is
a classic problem, with over 40 years of history and applications in intrusion detec-
tion, anti-virus software, spam filtering and bioinformatics, to name a few. As this
problem is a straightforward generalization of a single pattern matching, it is per-
haps no surprise that many techniques worked out for a single pattern are borrowed
for efficient algorithms for multiple patterns.

Our paper presents a novel algorithm for multiple pattern matching, being
a careful combination of several known techniques: using q-grams combined with
pattern superimposition, bit-parallelism and alphabet size reduction. The experi-
mental results will show that the presented solution, MAG (Multi AOSO on
q-Grams), usually dominates over its competitors on texts with diverse characteris-
tics.

1.1 Related Work

A naive approach to searching for r patterns in a text is to use any single pattern
search algorithm r times. As the performance grows linearly with r, such a technique
cannot be reasonably used when, e.g., r exceeds 10. Non-trivial algorithms for the
presented problem can roughly be divided into three different categories, based on
the location of pattern substrings they try to find (and then to extend). More
specifically, these algorithms are based on

1. prefix searching,

2. suffix searching and

3. factor searching, respectively.

Another taxonomy of the existing solutions classifies them according to whether they
are based on character comparisons, hashing, or bit-parallelism. Yet another view is
to say that they are based on filtering, aiming for good average case complexity, or
on some kind of “direct search” with good worst case complexity guarantees. These
different categorizations are of course not mutually exclusive, and many solutions
are hybrids that borrow ideas from several techniques. For a good overview of the
classical solutions, the reader is referred to, e.g., [27, 19, 10]. We briefly review some
of them in the following paragraphs.

Perhaps the most famous solution to the multiple pattern matching problem
is the Aho-Corasick (AC) [1] algorithm, which generalizes the Knuth-Morris-Pratt
algorithm [22] for a single pattern. The AC algorithm follows the prefix-based ap-
proach and it builds a pattern trie with extra (failure) links. One can say that AC
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works in linear time. More precisely, however, AC total time is O(M+n+z) for con-
stant alphabet, where M , the sum of pattern lengths, is the preprocessing cost, and
z is the total number of pattern occurrences in T . For an integer alphabet, i.e., when
σ = nO(1), it obtains O(M + n log σ + z) time [12]. Fredriksson and Grabowski [18]
showed an average-optimal filtering variant of the classic AC algorithm. They built
the AC automaton over superimposed subpatterns, which allows to sample the text
characters in regular distances, not to miss any match (i.e., any verification). This
algorithm is based on similar ideas as the current work.

Another classic algorithm is Commentz-Walter [8], which generalizes the ideas
of Boyer-Moore (BM) algorithm [4] for a single pattern, to solve the multiple pat-
tern matching problem (suffix-based approach). Set Horspool (SH) [15, 27] may be
considered its more practical simplification, exactly in the way that Boyer-Moore-
Horspool (BMH) [20] is a simplification of the original BM. Set Horspool makes
use of a generalized bad character function. The Horspool technique was used in
a different way in an earlier algorithm by Wu and Manber (WM) [32]. These meth-
ods are based on backward matching over a sliding text window, which is shifted
based on some rule, with the hope that many text characters can be skipped alto-
gether.

The first factor-based algorithms were DAWG-match [9] and MultiBDM [11].
Like Commentz-Walter and Set Horspool, they are based on backward matching.
However, instead of recognizing the pattern suffixes, they recognize the factors,
which effectively means that they work more per window, but in return they are
able to make longer shifts of the sliding window, and in fact they obtain opti-
mal average case complexity. At the same time they are linear in the worst case.
The drawback is that these algorithms are reasonably complex and not very effi-
cient in practice. A more practical approach is the Set Backward Oracle Matching
(SBOM) algorithm [2], which is based on the same idea as MultiBDM, but uses
simpler data structures and is very efficient in practice. Yet another variant is the
Succinct Backward DAWG Matching algorithm (SBDM) [17], which is practical
for huge pattern sets due to replacing the suffix automaton with succinct index.
The factor-based algorithms usually lead to average-optimal [25] time complexity of
O(n logσ(rm)/m).

Bit-parallelism can be used to replace the various automata in the methods
mentioned earlier, to obtain very simple and yet competitive incarnations of many
classical algorithms. The most standard bit-parallel solution for a single pattern is
Shift-Or [3]. The idea is to encode (non-deterministic) automaton as a bitvector, i.e.,
a small integer value, and simulate all the states in parallel using Boolean logic and
arithmetic. The result is often the most practical method for the problem, but the
drawback is that the scalability is limited by the number of bits in a computer word,
although there exist ways to alleviate this problem somewhat, see [28, 7]. Another
way that is applicable to huge pattern sets is to combine bit-parallelism with q-grams;
our method is also based on this, and we review the idea and related previous work
in detail in the next section. Another practical solution based on q-grams (used for
a cache-efficient index structure), where a multiple pattern matching algorithm is
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applied in intrusion detection software and an antivirus system, is SigMatch [21].
Using q-grams in searches over DNA (for one or multiple patterns) is recommended
in the survey by Rivals et al. [29].

In a somewhat different way, parallelism for multiple pattern matching has been
obtained with a GPU. In particular, Kouzinopoulos et al. [24] adopted the well-
known (and mentioned earlier) AC, SH, SBOM, WM algorithms, as well as a more
recent one, SOG [30], to the CUDA programming model, to obtain from about
10- to 30-fold speedup compared to one CPU core. Their test GPU was an Nvidia
GTX280, and we can guess that the speedup would be significantly higher on a more
modern GPU. The same authors [23] proposed another solution based on hybrid
OpenMP/MPI technique, focusing on searching in biological databases.

Some recent work also recognizes the neglected power of the SIMD instructions,
which have been available on commodity computers well over a decade. For ex-
ample, Faro and Külekci [13] make use of the Intel Streaming SIMD Extensions
(SSE) technology, which gives wide registers and many special purpose instructions
to work with. They develop (among other things) a wsfp (word-size fingerprint in-
struction) operation, based on hardware opcode for computing CRC32 checksums,
which computes an α-bit fingerprint from a w-bit register handled as a block of α
characters. Similar values are obtained for all α-sized factors of all the patterns in
the preprocessing, and wsfp can therefore be used as a simple yet efficient hash-
function to identify text blocks that may contain a matching pattern. The same
authors [14] presented later a SIMD-based solution for multiple string matching, fo-
cusing on searching short patterns (16 ≤ m < 32) in genome sequences and English
texts.

Our paper is organized as follows. Section 2 describes and discusses the two
key concepts underlying our work, q-grams and pattern superimposition. Section 3
presents the description of our algorithm, together with its complexity analysis.
Section 4 contains experimental results. The last section concludes and points some
avenues for pursuing further research.

A preliminary version of our work appeared in Proc. PSC 2014 [31].

2 ON SUPERIMPOSING Q-GRAMS

A q-gram is usually defined as a contiguous substring (factor) of a string comprising
q characters, although, noteworthily, non-contiguous q-grams have also been consid-
ered [6]. In what follows, q can be considered a small constant (2, . . . , 6 in practice),
although we may analyze the optimal value for a given problem instance. We note
that q-grams have been widely used in approximate (single and multiple) string
matching, where they can be used to obtain fast filtering algorithms based on exact
matching of a set of q-grams. Obviously these algorithms work for the exact case as
well, as a special case, but they are not within the scope of this paper. Another use
(which is not relevant in our case) is to speed up exact matching of a single pattern
by treating the q-grams as a superalphabet [16].
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In multiple pattern matching q-grams may be combined using an interesting
technique called superimposition. Consider a set of patterns P = {P0, . . . , Pr−1}.
We form a single pattern P where each position P [i] is no longer a single character,
but a set of characters, i.e., P [i] ⊆ Σ. More precisely, P [i] =

⋃
j Pj[i]. Now P

can be used as a filter: we search candidate text substrings that might contain an
occurrence of any of the patterns in P . In other words, if T [i + j] ∈ P [j], for all
j ∈ 0, . . . ,m− 1, then T [i . . . i+m− 1] may match with some pattern in P .

Let us present a simple example. Let r = 2 and P = {abba, bbac}. The superim-
posed pattern is then P = {a, b}{b}{a, b}{a, c}, and there are a total of 8 different
strings of length 4 that can match with P (and trigger verification). Therefore we
immediately notice one of the problems with this approach, i.e., the probability
that some text character t matches a pattern character p is no longer 1/σ (assuming
uniform random distribution), it can be up to r/σ. This gets quickly out of hands
when the number of patterns r grows.

To make the technique more useful, we first generate a new set of patterns,
and then superimpose. The new patterns have the q-grams as the alphabet, which
means the new alphabet has size σq, and the probability of a false positive candidate
will be considerably lower. There are two main approaches: overlapping and non-
overlapping q-grams.

Consider first the overlapping q-grams. For each Pi we generate a new pattern
such that P ′i [j] = Pi[j . . . j+q−1], for j ∈ 0 . . .m−q, that is, each q-gram Pi[j . . . j+
q−1] is treated as a single “super character” in P ′i . Note also that the pattern lengths
are decreased from m to m−q+1. Taking the previous example, if P = {abba, bbac}
and now q = 2, the new pattern set is P ′ = {[ab][bb][ba], [bb][ba][ac]}, where we use
the brackets to denote the q-grams. The corresponding superimposed pattern is then
P ′ = {[ab], [bb]}{[bb], [ba]}{[ba], [ac]}. To be able to search for P ′, the text must be
factored in exactly the same way.

The other possibility is to use non-overlapping q-grams. In this case we have
P ′i [j] = Pi[(j − 1)q + 1 . . . jq], for j ∈ 0 . . . bm/qc − 1, and for our running example
we get P ′ = {[ab], [bb]}{[ba], [ac]}. Again, the text must be factored similarly. But
the problem now is that only every qth text position is considered, and to solve this
problem we must consider all q possible shifts of the original patterns. That is,
given a pattern Pi, we generate a set P̂i = {Pi[0 . . .m− 1], Pi[1 . . .m− 1], . . . , Pi[q−
1 . . .m− 1]}, and then generate P̂ ′i , and finally superimpose them.

The two alternatives given above both have some benefits and drawbacks. For
overlapping q-grams we have:

• pattern length is large (m− q + 1), which implies fewer verifications,

• text length is practically unaffected (n− q + 1).

On the other hand, for the non-overlapping ones:

• pattern length is short (m/q), which means potentially more verifications, but
bit-parallelism works for bigger m,

• text is shorter too (n/q),
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• more patterns to superimpose (factor of q).

In the end, the benefits and drawbacks between the two approaches mostly cancel
out each other, except bit-parallelism remains more applicable to non-overlapping
q-grams.

To illustrate the power of this technique, let us have, for example, a random
text over an alphabet of size σ = 16 and patterns generated according to the
same probability distribution; q-grams are not used yet (i.e., we assume q = 1).
If r = 16, then the expected size of a character class in the superimposed pat-
tern is about 10.3, which means that a match probability for a single charac-
ter position is about 64 %. Even if high, this value may yet be feasible for long
enough patterns, but if we increase r to 64, the character class expected size grows
to over 15.7 and the corresponding probability to over 98 %. This implies that
match verifications are likely to be invoked for most positions of the text. Using
q-grams has the effect of artificially growing the alphabet. In our example, if we
use q = 2 and thus σ′ = 162 = 256, the corresponding probabilities for r = 16
and r = 64 become about 6 % and 22 %, respectively, so they are significantly
lower.

The main problem that remains is to decide between the two choices, properly
choose a suitable q, and finally find a good algorithm to search the superimposed
pattern. To this end, Salmela et al. [30] presented three algorithms combining the
known mechanisms: Shift-Or, BNDM [26] and BMH, with overlapping q-grams; the
former two of these algorithms are bit-parallel ones. The resulting algorithms were
called SOG, BG and HG, respectively. In general, larger q means better filtering,
but on the other hand the size of the data structures (tables) that the algorithms
use is O(σq), which can be prohibitive. BGqus (BG with q-grams, Unrolling and
s-bit shift hash method) [33] tries to solve the problem by combining BG with
hashing.

Actually, not many classic algorithms can be generalized to handle superimposed
patterns (character classes) efficiently, but bit-parallel methods generalize trivially.
In the next section we describe our choice, FAOSO [18].

3 OUR ALGORITHM

In [18] a general technique of how to skip text characters, with any (linear time)
string matching algorithm that can search for multiple patterns simultaneously was
presented, alongside with several applications to known algorithms. In the follow-
ing we review the idea, and for the moment assume that we already have done all
factoring to q-grams, and that we have only a single pattern.
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3.1 Average-Optimal Character Skipping

The method takes a parameter k, and from the original pattern generates a set K
of k new patterns K = {P 0, . . . , P k−1}, each of length m′ = bm/kc, as follows:

P j[i] = P [j + ik], j = 0 . . . k − 1, i = 0 . . . bm/kc − 1.

In other words, k different alignments of the original pattern P is generated, each
alignment containing only every kth character. The total length of the patterns P j

is kbm/kc ≤ m.
Assume now that P occurs at T [i . . . i + m − 1]. From the definition of P j it

directly follows that

P j[h] = T [i+ j + hk], j = i mod k, h = 0 . . .m′ − 1.

This means that the set K can be used as a filter for the pattern P , and that the
filter needs only to scan every kth character of T . Figure 1 serves as an illustra-
tion.

P a b c d e f

i p
T x x a b c d e f x x x x

P 0 a d

P 1 b e

P 2 c f

P ∗ a d b e c f

Figure 1. An example. Assume that P = abcdef occurs at text position T [i . . . i+m−1],
and that k = 3. The current text position is p = 10, and T [p] = b. The next character
the algorithm reads is T [p+ k] = T [13] = e. This triggers a match of P p mod k = P 1, and
the text area T [p− 1 . . . p− 1 + m− 1] = T [i . . . i + m− 1] is verified.

The occurrences of the patterns in K can be searched for simultaneously using
any multiple string matching algorithm. Assuming that the selected string matching
algorithm runs generally in O(n) time, then the filtering time becomes O(n/k),
as only every kth symbol of T is read. The filter searches for the exact matches
of k patterns, each of length bm/kc. Assuming that each character occurs with
probability 1/σ, the probability that P j occurs (triggering a verification) in a given
text position is (1/σ)bm/kc. A brute force verification cost is in the worst case O(m).
To keep the total time O(n/k) on average, we select k so that nm/σm/k = O(n/k).
This is satisfied for k = m/(2 logσ(m)), where the verification cost becomes O(n/m)
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and filtering cost O(n logσ(m)/m). The total average time is then dominated by the
filtering time, i.e., O(n logσ(m)/m), which is optimal [34].

3.2 Multiple Matching with q-Grams

To apply the previous idea to multiple matching, we just assume that the (single) in-
put pattern (for the filter) is the non-overlapping q-gram factored and superimposed
pattern set. The verification phase just needs to be aware that there are possibly
more than one pattern to verify. The analysis remains essentially the same: now
the text length is n/q, pattern lengths are m/q, there are r patterns to verify, and
the probability of a match is p instead of 1/σ, where p = O(1 − (1 − (1/σq))qr) =
O((qr)/σq). That is, the filtering time is O(qn/(kq)) = O(n/k), verification cost is
O(rqm), and its probability is O(pbm/(kq)c) for each of the n/q text positions. How-
ever, now we have two parameters to optimize, k and q, and the optimal value of
one depends on the other.

In practice we want to choose q first, such that the verification probability is as
low as possible. This means maximizing q, but the preprocessing cost (and space)
grows as O(σq), and we do not want this to exceed O(rm) (or the filtering cost for
that matter). So we select q = logσ(rm), and then choose k as large as possible.
Repeating the above analysis gives then

k = O

(
m

logσ(rm)
· logσ 1/ρ

logσ(rm) + logσ 1/ρ

)
(1)

where ρ = logσ(rm)/m. We note that this is not average-optimal anymore, although
we are still able to skip text characters.

To search the superimposed pattern, we use FAOSO [18], which is based on
Shift-Or. The fact that the pattern consists of character classes is not a problem for
bit-parallel algorithms, since it only affects the initial preprocessing of a single table.
For details see [18]. The filter implemented with FAOSO runs in O(n/k ·d(m/q)/we)
time in our case, where w is the number of bits in computer word (typically 64).

We note that Salmela et al. [30] have tried a similar approach, but abandoned
it early because it did not look promising for short patterns in their tests.

3.2.1 Implementation

The q-gram, i.e., the super character, must have some suitable representation, and
the convenient way is to compute a numerical value in the range 0 . . . σq − 1, which
is done as

∑q−1
i=0 S[i] ·σi for a q-gram S[0 . . . q− 1]. This is computed using Horner’s

method to avoid the exponentiation. We have experimented with two different vari-
ants. The first encodes the whole text prior to starting the actual search algorithm,
which is then more streamlined. This also means that the total complexity is Ω(n),
the time to encode the text. We call the resulting algorithm SMAG (short of Simple
Multi AOSO on q-grams). The other alternative is to keep the text intact, and
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compute the numerical representation of the q-gram requested on the fly. This adds
just constant overhead to the total complexity. We call this variant MAG (short of
Multi AOSO on q-grams). We have verified experimentally that MAG is generally
better than SMAG.

3.3 Alphabet Mapping

If the alphabet is large, then selecting a suitable q may become a problem. The
reason is that some value q′ may be too small to facilitate good filtering capability,
yet, using q = q′ + 1 can be problematic, as the preprocessing time and space grow
with σq (note that q must be an integer). The other view of using strings of length q
as super characters is that we may then say that our characters have q log2 σ bits,
and we want to have more control of how many bits we use. One way to achieve
this is to reduce the original alphabet size σ.

We note that in theory this method cannot achieve much, as reducing the alpha-
bet size generally only worsens the filtering capability and therefore forces larger q,
but in practice this allows better fine tuning of the parameters.

3.3.1 Histogram Based Alphabet Mapping (HAM)

What we do is that we select some σ′ < σ, compute a mapping µ : Σ 7→ 0 . . . σ′ − 1,
and use µ(c) whenever the (filtering) algorithm needs to access some character c
from the text or the pattern set. Verifications still obviously use the original al-
phabet. A simple method to achieve this is to compute the histogram of character
distribution of the pattern set, and assign code 0 to the most frequent character,
1 to second most frequent, and so on, and put the σ′ − 1 . . . σ − 1 most frequent
characters to the last bin, i.e., giving them code σ′ − 1. The text characters not
appearing in the patterns also will have code σ′ − 1.

A better strategy is to try to distribute the original characters into σ′ bins so that
each bin will have (approximately) equal weight, i.e., each µ(c), where c ∈ 0 . . . σ′−1
will have (approximately) equal probability of appearance. This is NP-hard opti-
mization problem, so we use a simple greedy heuristic which can be described in few
steps:

1. compute the symbol frequencies on the pattern set (using, e.g., hashing to avoid
possibly large tables);

2. choose some suitable σ′, the size of the mapped alphabet;

3. use method of choice (e.g., bin-packing) to reduce the number of symbols, i.e.,
map them to range 0 . . . σ′ − 1;

4. optionally use hashing to store the mapping.
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3.3.2 Histogram Based Alphabet Mapping on q-Grams (HAMq)

The HAM method can be applied also to q-grams. This variant allows control of
table size, and with combined hashing it can accommodate very large q as well.
In this case the q-grams are used instead of the alphabet symbols, but the whole
process is very much the same. The only issue here is the need of additional hashing
to store mapping, along with the corresponding bitvectors needed by FAOSO. We
did not implement this method in this paper.

3.3.3 Combined Alphabet Mapping and q-Gram Generation (CAMq)

Yet another method to reduce the alphabet is to combine the q-gram computations
with some bit magic. The benefit is that the mapping tables need not to be prepro-
cessed, and this allows further optimizations as we will see shortly. The drawback
is that the quality of the mapping is worse than what is achieved with approaches
like bin-packing.

Consider a (text sub-)string S[0 . . . q − 1] over alphabet Σ of size σ. A simple
way to reduce the alphabet is to consider only the ` low-order bits of each S[i],
where ` < log2 σ. We can then compute (q`)-bit q-gram s simply as

s = (S[0] & b) + (S[1] & b) << `+ (S[2] & b) (2)

<< 2`+ · · ·+ (S[q − 1] & b) << (q − 1)`

where b = (1 << `)− 1 and << denotes the left shift and & the bitwise and.
There is a possibility to have four unique values in ASCII DNA alphabet by

right shift (CAMq(dna)).

s = ((S[0] >> 1) & b) + ((S[1] >> 1) & b) (3)

<< `+ · · ·+ ((S[q − 1] >> 1) & b) << (q − 1)`.

The main benefit of this approach is that a sequence of shifts and adds can be
often replaced by a multiplication (which can be seen as an algorithm performing just
that). As an illustrative example, consider the case ` = 2 and hence b = 3 (which
coincides to DNA nicely). As an implementation detail, assume that the text is
8-bit ASCII text, and it is possible to address the text, a sequence of characters,
as a sequence of 32-bit integers (which is easy, e.g., in C). Then to compute a 8-bit
4-gram s we can simply apply the transform:

s = (((x >> 1) & 0x03030303) ∗ 0x40100401) >> 24 (4)

where x is the 32-bit integer containing S[0 . . . 3]. Assuming 4-letter DNA alphabet,
with a right shift (by 1) and the (parallel) masking we obtain unique (and case
insensitive) 2-bit codes for all four characters. If the alphabet is larger (many DNA
sequences have rare extra symbols), those will be mapped into the same range,
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0 . . . 3. The multiplication then shifts and adds all those codes into an 8-bit value,
and the final shift moves the 4-gram to the lower bits (CAMq(opt)). Larger q-grams
can be obtained by repeating the code.

3.4 Preprocessing and Verification

Figure 2. An example of the data structure used for verification; r = 4, q = 3

The algorithm only returns the positions of possible matches so each of the
position needs to be verified. There is no information if the string on returned
position belongs to the list of the patterns or not so the verification is necessary.
To verify which (if any) of the patterns is found on a given position, the algorithm
maintains a dictionary with q-grams as keys and lists of the patterns which contain
the key as a substring starting at position 0, . . . , q− 1 as the associated values. The
total length of all the lists stored in the dictionary is rq.

Figure 2 presents a simple example of the described dictionary. The patterns
are shown on the left and the dictionary (I) of mappings from 3-grams to patterns
containing them (only their respective suffixes are presented) are given on the right.
For example, the second element on the list I[“CTG”] is 3 because “CTG” is the
third q-gram in the 3rd pattern. The pattern occurs in two other lists: I[“GAC”] and
I[“ACT”]. The pseudocode of building such structure is presented as Algorithm 1.

The presented structure is later used in verification process whose pseudocode
is presented as Algorithm 2. After a tentative match at position pos is reported, the
list of associated patterns, I[get q gram(T [pos . . . pos + q− 1])], is searched with the
binary search (line 3). The bsearch function searches over I[idx] with the pat field as
the key and returns the maximum range of indexes (i, j) such that for all i ≤ a ≤ j,
T [pos− I[idx][a].off . . . pos− I[idx][a].off +m− 1] = I[idx][a].pat.

3.5 Algorithm

The combination of all the described techniques yields a fast algorithm for multiple
pattern matching, presented as Algorithm 3. The search phase is based on FAOSO
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Algorithm 1 MAG Build Index

1: function MAG Build Index(P)
2: for j ← 0 . . . r − 1 do
3: for i← 0 . . . q − 1 do
4: idx← get q gram(Pj[i . . . q + i− 1])
5: el.off← i
6: el.pat← Pj
7: I[idx]← I[idx] ∪ {el}
8: for i← 0 . . . | I | do
9: sort(I[i], key = pat) . Sort by pat

10: return I

Algorithm 2 MAG Verification

1: function MAG Verification(T, pos, I)
2: idx← get q gram(T [pos . . . pos + q − 1])
3: [i, j]← bsearch(I[idx])
4: for el← I[idx][i] . . . I[idx][j] do
5: report match at pos− el.off

(an algorithm for searching a single pattern) but the preprocessing (lines 3–16) and
verification (Algorithm 2) are novel. The preprocessing involves multiple patterns
(there are r of them) that consist of character classes built on top of q-grams. There
is a possibility that the found position is aligned with one of the first q q-grams
and this is why such shifts have been taken into account (line 11). Note that
the pseudocode presents the variant with combined alphabet mappings and q-gram
generation called get q gram.

3.6 Searching in Compressed Text

Text compression is a technique widely used to decrease the amount of memory
needed to store (or transmit) textual data. Some text compression methods allow
to search directly in the compressed text, without prior decompression, which is not
only elegant but may also improve the search speed, even compared to searching
over non-compressed text. In this section, we adapt our solution to searching in
End-Tagged Dense Code (ETDC) [5] compressed text, where the ETDC codes are
assigned to words. ETDC is a variable-length byte code in which 7 bits per byte
store data and 1 bit (by convention, the highest one) is set in the last byte of each
codeword and unset otherwise. The data bits are used fully, which means that (in
accordance to the golden rule of data compression, which assigns shorter codewords
to more frequent symbols) 1-byte codewords are assigned to 128 most frequent words
in the text, 2-byte codewords are assigned to 214 = 16 384 next most frequent words,
and so on (in practice, for unilingual texts it is enough to maintain at most 3-byte
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Algorithm 3 Multi AOSO on q-Grams

1: function MAG(P , T [0 . . . n− 1])
2: I ← MAG Build Index(P)
3: for i← 0 . . . σq − 1 do b[i] = ∼0

4: m′ ← (bm/qc)− (1− b(m mod q)/(q − 1)c)
5: j ← 0
6: h← 0
7: mm← 0
8: for j ← 0 . . . k − 1 do
9: for i← 0 . . .m′/k − 1 do

10: for z ← 0 . . . r − 1 do
11: for o← 0 . . . q − 1 do
12: b[get q gram(Pz[ik̇q̇ + jq̇ + o])] &= ∼(1 << h)

13: for l← 0 . . . U − 1 do
14: mm← mm | (1 << (h− 1))
15: h← h+ 1

16: h← h− 1

17: /* Search superimposed pattern in T using FAOSO and verify each
tentative match at position pos with MAG Verification(T, pos, I) */

codewords). The flag bits not only make the code a prefix one, but also allow instant
synchronization in an ETDC stream, which in turn conveniently enables to plug in
any character-skipping pattern searching algorithms. Note also that such encoding
of a text perceived as a sequence of words is intended to make the text shorter (to
about 35 % of its original length in practice), yet the encoded pattern (a phrase
consisting of whole words) also tends to be shorter, which mitigates the expected
search speedup.

3.6.1 Implementation

We encode the input text with ETDC and build a helper array A which allows
us to find the position of the pattern in the original (non-compressed) text. More
precisely, before the encoding, the original text T is transformed to a simpler form T ′

by removing all commas, tabulation symbols, excessive spaces and EOL characters
(a period is treated as a separate word). After the ETDC encoding we obtain three
streams:

1. the encoded text E(T ′),

2. the dictionary, which maps the distinct words to their corresponding variable-
length codewords, and

3. the array A.
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Assume that the length of T ′ is n′ (characters, and also bytes). The array A is of
length n′/h (integers), where h > 1 is a parameter; larger h produces a smaller array
yet reporting a match position is more time consuming. Each A[i], 0 ≤ i < n′, stores
a value j such that T ′[j] is the first symbol of the word whose codeword in E(T ′)
contains the byte T ′[ih]. We assume that h is at least the maximum number of bytes
per codeword (in practice, it is much larger, otherwise the overhead of A would be
significant).

Searching in E(T ′) is very similar to searching in the plain text T . We first
run the MAG code for the encoded patterns over E(T ′), to obtain their positions in
the encoded text. Then, in a postprocessing, we map the found positions onto the
original positions in T ′.

The mapping, making use of the array A, will be shown on an example. Let
us have a short text (extracted from english.200MB) T ′ = “the fire on the hearth
filled the chamber .” and a pattern P = “the hearth” (for clarity we use only
one pattern, but it easily generalizes to multiple patterns). Figure 3 presents the
(simplified) text T ′, the encoded text E(T ′) and the helper table A. The goal is to
obtain all positions of pattern P in text T ′ from the found occurrences of E(P ) in
E(T ′).

Let us assume that E(P ) is the 3-byte sequence [(128)(36, 189)] and let h = 4
(note that |A| = d|E(T ′)|/he = d13/4e = 4). The first (and only in the example)
occurrence of E(P ) in E(T ′) is at position pos = 4. As pos mod h = 0, we have that
A[bpos/hc] is aligned with the match position and the returned value A[bpos/hc] =
A[1] = 12 is the match position of P in T ′.

In the second case, i.e., when pos mod h 6= 0, things are slighly more complicated.
Again, let us use an example; this time we look for P = “chamber”. It is encoded
as E(P ) = [(85, 138)(129)]. Its (first and only) occurrence in E(T ′) is at position
pos = 10. As pos mod h 6= 0, to the largest value of A sampling E(T ′) before
pos, that is, A[bpos/hc] = A[2] = 23, we add the decoded lengths of all the words
before the found pattern, starting with the word aligned with A[bpos/hc]. In our
example, there are two such words, spanning E(T [7 . . . 9]) and decoded to “filled
the ” (note the blank space following the last word), of length 11. Therefore, the
returned position of P in T ′ is 23 + 11 = 34. Note that the ETDC dictionary is not
shown in Figure 3.

the fire on the hearth filled the chamber .

0123456789012345678901234567890123456789012

(128)(112,130)(150)(128)  (36,189)    (66,133)  (128)   (85,138)  (129)
0 1 2 3 4 5 6 7 8

0

9 10 11 12

2312 42

T' = 

E(T') =

A = 

Figure 3. The excerpt from an ETDC-encoded text with the helper array (h = 4)
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4 EXPERIMENTAL RESULTS

In order to evaluate the performance of our approach, we ran several experiments,
using 200 MB versions of selected datasets (dna, english and proteins) from the
widely used Pizza & Chili corpus (http://pizzachili.dcc.uchile.cl/). MAG
variants were implemented in C++ and compiled with g++ 4.8.1 with -O3 opti-
mization. The experiments were run on a desktop PC with an Intel i3-2100 CPU
clocked at 3.1 GHz with 128 KB L1, 512 KB L2 and 3 MB L3 cache, sporting 4 GB of
1 333 MHz DDR3 RAM and running Ubuntu 13.04 64-bit OS with kernel 3.11.0-17.
The MAG source codes can be found at the URLs given below:

1. MAG – https://github.com/rsusik/mag,

2. MAG on ETDC – https://github.com/rsusik/magetdc.

4.1 Multi AOSO on q-Grams

In this section we compare several variants (cf. Section 3.3.1) of our solution. We
use the following naming convention:

• dna, adapted for the dna alphabet (each symbol is right shifted),

• opt, an optimized variant (shifts and adds replaced by a multiplication),

• lx, where x is the value of the ` parameter (σ = 2`).

We have nine variants in total:

• mag – HAM (Section 3.3.1),

• mag l2 – CAMq (Equation (2)), with ` = 2,

• mag l3 – as above, ` = 3,

• mag l4 – as above, ` = 4,

• mag dna l2 – CAMq(dna) (Equation (3)), ` = 2,

• mag dna l3 – as above, ` = 3,

• mag dna l4 – as above, ` = 4,

• mag dna opt l2 – CAMq(opt) (Equation (4)), with ` = 2,

• mag dna opt l3 – as above, ` = 3.

We call CAMq and CAMq(dna) as the generic variants, and CAMq(opt) as
the optimized variant (shifts and adds replaced by a multiplication). There are
a few parameters to set for the algorithms such as q-gram size, FAOSO striding
parameter (k) and the quantized alphabet size σ′ (only for HAM). We tested HAM
with multiple σ′ values ({4, 5, . . . , 26}) and experimentally chose only a few later
used in the tests, namely σ′ = 5 for dna, σ′ = 14 for english and proteins

(r ∈ {10, 100}) and σ′ = 21 for proteins (r ∈ {1 000, 10 000}). For all variants
we set q = min(10,max(2, blogσ′(rm)e)) and the FAOSO parameter k as mentioned

http://pizzachili.dcc.uchile.cl/
https://github.com/rsusik/mag
https://github.com/rsusik/magetdc
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in Equation (1), but rounded to the nearest value from {1, 2, 4}, and the pattern
length as follows:

m′ =

bm/qc − 1, if m mod q < q − 1,

bm/qc, otherwise.

It is possible to tune the parameters for a certain dataset and achieve better results
(because the formulas on q and k are designed to be optimal for random text). The
RAM usage of our implementation can be roughly expressed as 16σ′q + 24r + rm
bytes, where 16 and 24 are the internal data structure sizes (in bytes). The variants
other than HAM are less flexible in terms of σ′, but, on the other hand, do not
have the preprocessing phase and an additional array to store the alphabet map-
ping. We tested both methods generic and optimized (shifts and adds replaced
by a multiplication). The tests were performed on a 64-bit machine, so there
was a limitation for the maximum alphabet size and the value of q. For exam-
ple, if ` = 2, then we can (directly) use q ≤ 5, therefore to deal with a larger q,
we need to combine two smaller q-grams, e.g., take S[0 . . . 2]S[3 . . . 5] to obtain
a 6-gram.

2 3 4 5 6 7 8 9 10
q

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

dna.200MB (r = 1000), m=32

2 3 4 5 6 7 8 9 10
q

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

english.200MB (r = 1000), m=32

2 3 4 5 6 7 8 9 10
q

101

102

103

se
a
rc

h
 s

p
e
e
d
 [
M

B
/s

]

proteins.200MB (r = 1000), m=32

mag

mag_l2

mag_l3

mag_l4

mag_dna_l2

mag_dna_l3

mag_dna_l4

mag_dna_opt_l2

Figure 4. Search speeds for 1 000 patterns, m = 32, in function of q
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Figure 4 presents search speeds for a collection of r = 1 000 patterns of length
m = 32 of the MAG algorithm variants using different alphabet mappings, a his-
togram based mapping (mag), and a combined mapping. The main advantage (and
disadvantage) of HAM variant is the σ′ flexibility that allows use of quite a large
range of alphabet mapping. This parameter lets us adapt the HAM (mag) in terms
of performance to certain dataset or amount of RAM. On the other hand, it forces
us to find the most suitable configuration, what is quite tricky and highly depends
on the text characteristic. We removed some variants from charts for clarity. The
CAMq(dna) and CAMq(opt) variants were removed for proteins and english as the
results were worse or similar to CAMq. The mag dna opt l3 was removed because
the search speed was almost the same as mag dna l3. The next thing that may be
noticed is the difference between larger and smaller alphabets. On dna the bene-
fits in performance are visible for a higher q than on the english and proteins

datasets. Another parameter whose optimal value may vary for different alphabet
sizes is `. As expected, a larger value of ` value is beneficial for larger alphabets
(english and proteins). Note also that there is no point in setting ` above 2 for
dna as its alphabet size is small (four symbols). Finally, the dna adapted variant
(right shift) proved successful.
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We also show how MAG performance changes with growing q for different
number of patterns (Figure 5). The figure presents HAM variant for different
r = {10, 100, 1 000, 10 000} as a separate function for multiple values of q values
(q ∈ {2, 3, . . . , 10} for dna and q ∈ {2, 3, . . . , 6} for english and proteins). As
expected, larger q makes sense for increasing number of patterns (r), but a too large
value of it slows down the search, presumably due to many cache misses. If the
alphabet size is small (such as dna) the optimal q-gram size is larger than for bigger
alphabet (such as english and proteins). Note that due to the quantization the
original alphabet size does not (significantly) affect the choice of q, but may affect
the choice of optimal σ′ as it is expected to be smaller than σ.

4.2 Other Solutions

After testing our variants we decided to compare them to other relevant algorithms
from the literature, namely:

• BNDM on q-grams (BG) [30],

• Shift-Or on q-grams (SOG) [30],

• BMH on q-grams (HG) [30],

• Rabin-Karp combined with binary search and two-level hashing (RK) [30],

• Multibom and Multibsom, variants of Set Backward Oracle Matching [2],

• Succinct Backward DAWG Matching (SBDM) [17],

• Multi AOSO on q-grams (MAG) (this work).

We tested the competitors’ algorithms for a variety of parameters and chose
the fastest ones. Namely, there were executed: four variants of BG (using 2-grams,
3-grams, 3-grams with 4 subsets, 3-grams with 2 subsets), two variants of RK (with
default parameters and second level hashing), two variants of HG (with default set-
tings and 3-grams), three variants of SOG (2-grams, 2-grams AOSO and 3-grams),
and one variant of SBDM (“-A -B -F 1”, rank g and CUSTSIGMA for english;
some other configurations were excluded after preliminary experiments), Multibom
and Multibsom (both with default parameters). All presented results include pre-
processing and search times.

In Figure 6 we show the results of all the listed algorithms on english, with
a fixed pattern length m and growing number of patterns r. The used pattern
lengths (one for each plot) are {8, 16, 32, 64}. Note that some algorithms (or rather
their available implementations) cannot handle longer patterns (m = 64). To make
the chart clear we chose only two variants of our solution that seem to be the most
interesting in this case, which are mag and mag l4. The mag l4 dominates for longer
patterns (32, 64) and its performance is mixed for m = 8 and m = 16. For short
(m = 8, 16) and many (r = 10 000) patterns SBDM achieves the best results. As
expected, for all algorithms the search speed deteriorates with a growing number
of patterns, and for r = 10 000 and relatively long patterns (m = 32) only MAG
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Figure 6. Search speeds for varying number of patterns r = {10, 100, 1 000, 10 000} and
pattern lengths m = {8, 16, 32, 64}

almost achieves 100 MB/s (the worst ones here, SOG and RK, are 10 times slower).
However, the parameters of MAG are calculated using a formula designed for random
text, so better results are possible with tuning the parameters for a particular dataset
(actually, we achieved almost 200 MB/s for above example). Yet, this approach is
rather inelegant and time-consuming in the construction phase.

In Figure 7 the number of patterns r is fixed (1 000), but m grows. We chose
three variants, mag (the HAM variant) for all datasets, mag l4 for english and
proteins, and mag dna opt l2 for dna set. MAG usually wins on english and
proteins (except for the shortest patterns), yet is dominated by a few algorithms
on dna. Overall, in the experiments the toughest competitor to MAG was SBDM,
but in some cases (the shortest patterns (m = 8) on english and proteins) the
winner was SOG.
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Figure 7. Search speeds for the number of patterns r = 10 00 and varying pattern length m

4.3 MAG on ETDC

It is interesting to test multiple pattern matching also on compressed text. To
this end, we chose ETDC (see Section 3.6), a popular byte code scheme, applied
to the words of the text. The benefits of using ETDC are less text to search in,
possibly less RAM used, and (as we expect) reduced search time. Similarly to the
experiments on plain text, we use now different alphabet mapping methods. In
this experiment we use σ′ = 26 for etdc mag, and for other variants the same σ′

parameters as in the experiments with plain text. The variant naming convention is
preserved. The ETDC-encoded english text (including the helper array A) takes
between 33 (for the smallest A) and 35 (for the largest A) percent of the original
text.

In Figure 8 the performance difference between all variants of MAG algorithm
adapted for ETDC is presented. The ETDC variant has quite better performance
than the corresponding solution on plain text. ETDC compression allows to obtain
the compression ratio of factor 2.9 (as the ETDC-encoded file, the dictionary and
the array A take in total 35 % of the original file). The most successful variant is
etdc mag l4, which achieves not only the highest speed among all the variants but
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Figure 8. Search speeds for the pattern length m = 32 and varying q

then also makes use of a relatively small q (4), beneficial for RAM usage. This figure
also shows the growth of the optimal q for decreasing ` parameter (i.e., for ` = 4
the optimal q is 3, for ` = 3 the optimal q is 4 and for ` = 2 it is 7).

It is not trivial to compare the results of MAG in our two scenarios: on plain
text and ETDC-compressed text. The reason is that in the compressed scenario
the patterns must consist of words (which are obviously of varying length) and the
length (in bytes) of the ETDC codewords for the input words tends to differ. Taking
these into consideration, we decided to compare these algorithms by calculating the
average length of decoded patterns (for the ETDC case) and then execute MAG
tests with corresponding pattern lengths on plain text.
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Figure 9. Search speeds (comparison of plain text variants against ETDC variants) for
varying pattern lengths m = {33, 44, 57, 86, 170}

Figure 9 presents search speeds of MAG on plain text and MAG on ETDC-
compressed text with varying pattern length in {33, 44, 57, 86, 170} (averages for
ETDC). The corresponding word counts (in case of ETDC) for each pattern length
are {6, 8, 10, 16, 32}. As expected, the performance of MAG on ETDC data is much
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better than on plain text. The speed of the best result of MAG on ETDC is by
a factor of 2.8 higher (for m = 86 (16)) compared to the corresponding best result
of MAG on plain text.
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Figure 10. Difference of search speeds between the best plain text variant and ETDC
variants for varying pattern lengths m = {33, 44, 57, 86, 170}

In Figure 10 we compare variants of MAG on ETDC (etdc mag, etdc mag l2,
etdc mag l3, etdc mag l4) against the best result of MAG on plain text (mag,
mag l2, mag l3, mag l4) which is labeled as mag best. Overall, we can see a clear
upward trend in the speed growth when pattern length is increasing. Note that the
machine word size (64 bits) is limiting the MAG (mag best) performance in terms of
large pattern sizes, this is why we expected drastic speed increase for patterns longer
than 64 characters. On the other hand, a longer machine word can also improve the
performance of ETDC variants for even longer patterns.

5 CONCLUSIONS AND FUTURE WORK

Multiple string matching is one of the most explored problems in stringology. The
presented algorithm, MAG, usually wins with its competitors on the three test
datasets (english, proteins and dna). We discuss the pros and cons of vari-
ous alternatives to achieve a possibly best combination of techniques. The main
contribution and one of the key successful ideas was alphabet quantization such
as bin-packing which is performed in a greedy manner, after sorting the original
alphabet by frequency (HAM). We also proposed a different implementation of
alphabet quantization, called combined alphabet mapping (CAMq, in some vari-
ants), that has a few advantages like faster preprocessing (there is no need to
create a histogram), no array access (because there is no histogram) and less op-
erations. The disadvantage, which may be called reduced flexibility, is strong
dependence on machine word size, what significantly constraints the values of q
and `.
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There is a number of interesting questions that we can present here. We analyt-
ically showed that the presented approach is sublinear on average, yet not average
optimal. Therefore, is it possible to choose the algorithm’s parameters in order to
reach average optimality (for m = O(w))?

Our experiments confirmed that dense codes (ETDC) for words not only serve for
compressing data (texts), but also enable faster searching, for long enough patterns.
Thanks to the fact that the encoded pattern is much shorter than the original, the
actual input pattern length may be increased, which effectively raises the limit on
the machine word size and provides better performance for longer patterns.

Real computers nowadays have a hierarchy of caches in their CPU-related archi-
tecture and it could be interesting to apply the I/O model (or cache-obvious model)
for the multiple pattern matching problem. The cache efficiency issue may be crucial
for very large pattern sets.

The underexplored power of the SIMD instructions also seems to offer great
opportunities, especially for bit-parallel algorithms.
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Abstract. Morpher is a novel morphological rule induction engine designed and
developed for agglutinative languages. The Morpher engine models inflection using
general string-based transformation rules and it can learn multiple arbitrary affix
types, too. In order to scale the engine to training sets containing millions of exam-
ples, we need an efficient management of the generated rule base. In this paper we
investigate and present several optimization techniques using rule elimination based
on context length, support and cardinality parameters. The performed evaluation
tests show that using the proposed optimization techniques, we can reduce the av-
erage inflection time to 0.52 %, the average lemmatization time to 2.59 % and the
number of rules to 2.25 % of the original values, while retaining a high correctness
ratio of 98 %. The optimized model can execute inflection and lemmatization in
acceptable time after training millions of items, unlike other existing methods like
Morfessor, MORSEL or MorphoChain.

Keywords: Machine learning, natural language processing, inflection, lemmatiza-
tion, agglutination, morphology, optimization, rule base reduction
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1 INTRODUCTION

Natural language processing is one of the actively researched scientific areas nowa-
days. One of the goals of these research projects is to create automated methods
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for processing free texts. Developing efficient NLP applications requires processing
modules on several abstraction layers, among which the lowest layer is morphology.

Morphology deals with the inner components of words called morphemes, that
are the smallest units of the language with meaning [1]. The grammatically correct
root form of a word is called a lemma, whose base meaning can be modified by adding
affixes to it. These affixes can appear before the lemma (prefix), after the lemma
(suffix) or even inside the word (infix). The complexity of automated morphological
processing of words comes from the fact that in some cases adding affixes can modify
the root form as well, e.g. (try, tried). Inflection is the operation that produces the
inflected form from the lemma, while lemmatization determines the lemma and the
list of affix types in an arbitrary word.

Historically the first successfully applied, popular model for inducing inflection
rules of agglutinative languages was the two-level morphology model [6]. The name
of the model comes from the fact that the inflected word forms are represented on
two levels: the surface level stores the written form, and the lexical level stores the
morphological structure. Dictionaries were used to collect the valid lemmas and affix
types of the target language, while FSTs (finite-state transducers) were trained to
apply the required transformations on the input words. The FST model appears in
several other publications as well, because this model fits the need of transforming
one word to another based on some pre-learnt rules. One of the most widely used
FST category is the subsequential transducer model [9, 10] that can be trained using
the OSTIA algorithm [4, 12].

A very simple transformation engine called the tree of aligned suffix rules (TASR)
is proposed in [15]. It is a supervised model that generates elementary rules from the
training word pairs and stores them in a tree. Unfortunately the TASR model can
only handle suffix rules and not prefix or infix rules. According to the experiments
of [7], for languages that contain only suffix rules, the TASR model can be used very
efficiently.

A more recent unsupervised segmentation model is Morfessor [3, 20]. This model
uses a statistical training method to determine the morpheme boundaries inside the
words. One downside of the original Morfessor model is that it only uses global
frequencies and not local probabilities, so it does not take into account which mor-
pheme can come after which other morphemes. However, there are several other
methods that either use the Morfessor model or extend it.

The MorphoChain engine [11] is one such extension of Morfessor. The main
addition of this improved model is that it also uses orthographic and semantic views
of the input words, thus improving the segmentation correctness. Another improve-
ment was presented in [2] that adapts the MorphoChain segmentation system in
a way that it can identify identical morphemes with spelling differences. Based
on the results, this model outperforms both the original MorphoChain system and
MORSEL [8].

The target language of our research is Hungarian, that is highly agglutinative
and morphologically complex language. It has many affix types and each word can
contain multiple affixes. Most of the affix types are suffixes, but there are a couple
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of prefix and prefix-suffix affix types as well, like comparative and superlative1. In
many cases, adding an affix to a word also changes some characters in the base
form.

As an example, meg |szent |ség |telen |́ıt |hetetlen |ség |es |ked |és |eitek |ért is one
of the longest Hungarian artificial words that means “for your [plural] continued
behaviour as if you could not be desecrated”. It contains 11 affixes. On the other
hand, one lemma might have several inflected forms: in our data set, the word
konfigurál (configure) has 86 different forms in our data set, including átkonfigurálom
(I reconfigure it), konfigurálásukkal (with their configuration), etc. Such examples
show the complexity of the target language.

For Hungarian, Hunmorph-Ocamorph [18], Hunmorph-Foma [5], Humor [14] and
Hunspell [13] are four popular morphology tools. These analyzers can determine all
the possible morphological structures of input words, including their lemma and
the list of affix types found in the input word. According to the analysis of these
tools [16], Hunmorph-Ocamorph is the most advanced among them. Its engine
(Ocamorph) is language independent, and Morphdb.hu [19] is the language depen-
dent knowledge database that stores the set of affix types and their related trans-
formation rules. Hunmorph-Ocamorph can recognize more than 4 million words
using the lexical database of Morphdb.hu, but unfortunately this database has been
constructed by human experts, and not learnt by an automated learning algorithm.

The Morpher2 system [17] is a morphology model that can statistically learn
prefix, suffix and infix transformation rules from a training set containing (word,
lemma, part of speech, morphosyntactic tags) tuples. The model is suitable for
complex agglutinative languages like Hungarian, and it can handle multiple affix
types. According to the evaluation, Morpher can learn 100 000 training items in
about 4 seconds, then execute inflection and lemmatization in about 2.4 millisec-
onds and 2.4 seconds, respectively, reaching about 97 % of average correctness ratio
for previously unseen words. The known limitation of the model is that the lemma-
tization time increases exponentially as we increase the training data set.

The main goal of this paper is to perform space and time complexity analysis of
the baseline Morpher model and introduce several optimization techniques for rule
base reduction so that the engine can scale more easily to large training data sets
containing millions of items.

2 THE MORPHER MODEL

The training data of the Morpher model is a Dtrain set containing training items in

the form of
(
w, w̄, T̄0, 〈Ti〉ki=1

)
, where w ∈ W is the inflected form, w̄ ∈ W̄ is the

lemma of w, T̄0 ∈ T̄ is the part of speech, and 〈Ti〉ki=1 is the ordered list of k affix
types in w, Ti ∈ T.

1 Jó, jobb, legjobb means good, better, best.
2 https://github.com/szgabsz91/morpher

https://github.com/szgabsz91/morpher
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From this training data, Morpher can learn string-based inflection and lemma-
tization rules, the conditional probabilities of the affix types, as well as the valid
lemmas and their parts of speech.

Figure 1 displays the overall structure of the model.

Manager: manages the inflection and lemmatization tasks by coordinating the
transformation engines generated for each affix type. Has a knowledge about
the valid lemmas of the target language and the conditional probabilities of the
affix type chains.

Transformation engines: one transformation engine can learn the transformation
rules of a single affix type. For every affix type, a separate transformation engine
is generated and trained.

Probabilities: during the training phase, all the possible affix type chains are an-
alyzed and the conditional probabilities are stored and updated so that the
manager knows which affix type can come after which other affix types and with
how much probability.

Lemmas: all the valid lemmas are stored, as well as their associated parts of speech
so that during lemmatization the engine knows when it can stop processing an
affix type chain candidate.

T R A N S F O R M A T I O N

E N G I N E S

MANAGER

PROBABILITIES LEMMAS

. . .

Figure 1. The main components of the Morpher model

2.1 Transformation Engine

The responsibility of the transformation engine model is to learn simple string-based
transformation rules from word pairs of an affix type induced by the manager. The
transformation engines can inflect and lemmatize input words based on the induced
transformation rules. We build a transformation engine for every affix type of the
target language.

During the training phase, after the word pairs for an affix type are induced
by the manager, we identify the changing parts of the base forms, and generate
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a number of atomic rewrite rules for them in the form of R = (α, σ, τ, ω), where
α is the prefix, σ is the changing part of the base form, τ is the replacement string
and ω is the suffix. The first atomic rule is called the core atomic rule R̂ for which
|α| = |ω| = 0. The other rules are extended from this core atomic rule by prepending
and appending one character at a time, from the words to the context, essentially
filling in α and ω.

For each atomic rule, we calculate different statistics, including the support value
and the word frequency. The support of a rule equals the number of training word
pairs that the rule matches, while the word frequency is the sum of frequencies of
the related training words. A word’s frequency is equal to its number of occurrences
in the input free text sources, from which the training data was generated.

During inflection and lemmatization, the task is to find the best matching atomic
rules for the input word. For this, we define a fitness function that returns the
goodness value of an atomic rule R for the input word w. This fitness function is

f (R | w) =
|γ (R)|
|w|

· δ (γ (R) , w)

where

• R is the atomic rewrite rule in question,

• w is the input word that needs to be inflected or lemmatized,

• γ (R) is the context of the atomic rewrite rule,

• δ is a function that either returns 0 if the context is not found in the input word,
or 1 otherwise. (In this sense, it is similar to the Kronecker delta, but could be
implemented differently.)

The rule context is α+σ+ω during inflection and α+τ+ω during lemmatization.
Using the fitness function, we can select the matching atomic rewrite rules for the
input word.

2.2 Conditional Probabilities

During the training phase, the Morpher model learns all the possible affix type
chains, and their conditional probabilities. M is the function that can return the
probability of an affix type chain:

M
(
T̄0, T1, . . . , Ti

)
=

P
(
T̄0
)
, if i = 0,

P
(
T̄0
)
·
∏i

j=1 P
(
Tj | T̄0, T1, . . . , Tj−1

)
, if i = 1, 2, . . .

We use the relative frequencies in the training data set Dtrain for probability
calculation.
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2.3 Manager

The manager submodule coordinates all the other submodules to learn the required
morphological features of the training word pair set, as well as perform inflection
and lemmatization, producing complex responses with multiple steps.

The input of the inflection operation is a lemma w̄0 and a set of affix types
{T1, T2, . . . , Tk}. The output is a set of n items in the form of(

T̄0, 〈(Ti, wi)〉mi=1 , ϑ
)

containing

• the T̄0 part of speech,

• the (Ti, wi) steps, where 〈Ti〉mi=1 is a valid permutation of the input affix types
according to M , and 〈wi〉mi=1 are the produced inflected forms, and

• the ϑ aggregated weight of the response.

The responses are sorted by ϑ, in a descending order.
Similarly, the input of the lemmatization operation is an arbitrary inflected word

form w, and the output is a set of n items in the form of(
〈(Ti, wi)〉1i=m , T̄0, ϑ

)
containing

• the (Ti, wi) steps (wm = w), where 〈Ti〉1i=m is a valid affix type chain, and 〈wi〉1i=m

are the produced base forms,

• the T̄0 part of speech, and

• the ϑ aggregated weight of the response.

The responses are sorted by ϑ, in a descending order. The ϑ aggregated weight
is calculated using the normalized affix type conditional probability, and the aggre-
gated fitness of the output words in the steps.

3 OPTIMIZATION TECHNIQUES

Morpher’s generalization ability seemed to be promising, reaching about 97 % of
average correctness ratio in case of a training data set containing 100 000 random
items and evaluating 10 000 previously unseen random words. On the other hand,
we can see a linear increase of average inflection time and an exponential increase
of lemmatization time, as shown in Figures 2 a) and 2 b).

This increase is due to the nature of the problems. For example the exponential
increase of the lemmatization process is caused by the fact that the manager needs
to try all the possible preceding affix type candidates at every affix type. This
cannot be changed, because we do not know the exact set of affix types found in the
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a) Average inflection time
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b) Average lemmatization time

Figure 2. Average inflection and lemmatization times of the baseline Morpher model

input word. However, we can extend the number of training items with which the
Morpher system can perform inflection and lemmatization in acceptable time.

In order to reduce the size of the knowledge base, we need to modify the training
phase of the individual transformation engines associated with the affix types of the
target language, since the other components of the Morpher model (the lemma
database and the conditional probability store) cannot lose information without
a significant loss of correctness ratio.

3.1 Eliminating the Redundant Atomic Rewrite Rules

The main idea behind this optimization technique is to drop the redundant atomic
rules that are covered by other rules in the rule base.

Definition 1 (Redundant atomic rule). The atomic rule Ri = (αi, σi, τi, ωi) is a re-
dundant rule if and only if there exists another Rj = (αj, σj, τj, ωj) atomic rule in
the rule base such that γ (Rj) ⊆ γ (Ri), σi = σj and τi = τj. In this case we say Ri

is covered by Rj.

As an example, the contexts of R1 = (alm, a, át,#)3 and R2 = (-, a, át,#) are
γ (R1) = alma# and γ (R2) = a#, respectively. If both rules are in the rule base,
we can say that R1 is redundant, since γ (R2) ⊆ γ (R1) and the transformation (σ
and τ components) are also the same, i.e. R1 is covered by R2.

On the other hand, if R3 = (toll, -, at,#) and R4 = (l, -, t,#) are part of the same
rule base, they do not cover each other. Although l# = γ (R4) ⊆ γ (R3) = tollat#,

3 # is the special word-end symbol.
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R3 is not redundant, because the transformations are different: R3 appends ‘at’ at
the end of the word, while R4 only appends ‘t’.

The learning algorithm can detect the redundant rules during the rule generation
process, and it immediately blocks their generation. This means that the redundant
rules are not stored in the rule base, and we do not have to execute a second wave of
rule filtering after the original training phase. We introduce a new pmax optimization
parameter. If for an arbitrary word the atomic rules R̂1, R2, . . . , Rk were generated
(R̂1 being the core atomic rule), then using pmax only R̂1, R2, . . . , Rl will be retained,
where l = min (pmax, k). Those atomic rewrite rules that have a longer context than
Rl are simply omitted.

Proposition 1. Using pmax = 1, storing only R̂1 for each word pair and drop-
ping the other R2, . . . , Rk extended atomic rules is equivalent with generating every
possible atomic rule and then dropping all the redundant atomic rules.

Proof. According to Definition 1, an atomic rule Ri = (αi, σi, τi, ωi) is redundant if
and only if there exists another atomic rule Rj = (αj, σj, τj, ωj) such that γ (Rj) ⊆
γ (Ri), σi = σj and τi = τj.

We can assume indirectly that by executing the first part of the proposition,
there remains at least one redundant atomic rule R̃ = (α̃, σ̃, τ̃ , ω̃). This means that

there is at least one other atomic rule R = (α, σ, τ, ω) such that γ
(
R̃
)
⊆ γ (R) , σ̃ =

σ and τ̃ = τ .
From these formulae, we can see that γ

(
R̃
)

= α̃ + σ̃ + ω̃ ⊆ α + σ + ω = γ (R)

and since σ̃ = σ, we can see that α̃ + σ + ω̃ ⊆ α + σ + ω.
This means that |α̃ + σ + ω̃| ≤ |α + σ + ω|. There are two cases to check:

• If |α̃ + σ + ω̃| = |α + σ + ω|, then R̃ = R (as all the components are equal due
to both rules being core atomic rules due to pmax = 1), so R̃ is a non-redundant
item in the rule database.

• If |α̃ + σ + ω̃| < |α + σ + ω|, then |α̃| = |ω̃| = |α| = |ω| = 0 since both R̃ and R
are core atomic rules. This means that |σ| < |σ|, which is a contradiction.

From both cases we get a contradiction, which means that the proposition is
true. �

3.2 Limiting the Generalization Factor

The potential problem with pmax optimization, especially using pmax = 1 is that
we only retain atomic rewrite rules with very short contexts. This means that the
matching rules for the input word might have very different σ ⇒ τ transformations,
increasing the number of outputs at each affix type step, making the inflection and
lemmatization processes extremely slow. This effect is called overgeneralization and
can be prevented by also retaining some redundant rules to increase the information
in the system.
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In order to avoid this overgeneralization effect, we introduce another parameter
called pgen, that identifies the minimum context length of the generated atomic
rewrite rules. This means that for all the retained atomic rules, γ (R) ≥ pgen. Every
other atomic rule is dropped during the rule generation process.

This way we can limit the number of atomic rules from below, while pmax is
an upper limit on the atomic rule context length. We can also combine these two
parameters, retaining a slice of all the possible atomic rewrite rules. For example,
pmax = 2 and pgen = 3 will retain rules whose context contains at least two charac-
ters, but only 3 of these rules per each word pair. In this way, we drop the most
general rules (γ (R) = 1 and γ (R) = 2), and also drop the most specific rules where
γ (R) ≥ 2 + 3 = 5 in case of suffix rules.

3.3 Indirect Data Cleaning

While the pmax and pgen parameters drop the atomic rewrite rules based on their
contexts, we can also drop some rules based on the statistical attributes of the
training data set.

For each atomic rule, we calculate a support value and a word frequency value,
as described in Section 2. The support value is the number of training word pairs
that the rule matches, while the word frequency is the sum of frequencies of the
related training words. A word’s frequency is equal to the number of occurrences in
the input free text sources, from which the training data was generated.

For the support and word frequency based elimination method, we introduce the
psupp and pfreq parameters that drop every atomic rule whose support is less than
psupp, or whose word frequency is less than pfreq.

This optimization method is based on the widely used frequency based reduction
concept that can be found in other research areas as well, such as association rule
mining, where only frequent item sets are considered during rule generation. This
also means that we perform an indirect data cleaning, since rare rules apply to
fewer words. As the training data is generated automatically, it can contain words
with typos or otherwise meaningless words that can be omitted using these two
parameters.

4 SPACE AND TIME COMPLEXITY ANALYSIS

4.1 Space Complexity

The number of transformation engines is equal to the number of affix types, so the
space complexity is Ω (|T|).

The number of conditional probability values for inflection is equal to the number
of valid affix type orders: Ω

(∣∣{(T̄i0 , Ti1 , . . . , Tik) |M (
T̄i0 , Ti1 , . . . , Tik

)
> 0
}∣∣).

The upper size limit of the lemma database can be approximated with the
number of training items. In the worst case, every word in the training data set has
different lemmas, and as such, the size complexity is O(|Dtrain|).
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The number of generated rules depends on the number of word pairs for the
related affix type from Dtrain. In the worst case, it equals the number of training
items where the last affix type is the associated affix type of the transformation
engine. Therefore the number of word pairs generated to train the transformation

engine of the affix type T can be approximated with O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈

Dtrain | Tk = T
}∣∣∣).

For every deduced word pair we generate a number of atomic rules. The approx-
imation of the number of generated atomic rewrite rules for the word pair (w1, w2)
is max (|w1| , |w2|) − |σ| without any optimizations. For the whole transformation
engine related to the affix type T , the approximation of the generated atomic rewrite
rules is

O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈ Dtrain | Tk = T

}∣∣∣ · (max (|wj1| , |wj2|)− |σj|)
)

(1)

where the j index refers to the word pair for which the right component is maximal.
The optimization techniques introduced in Section 3 optimize the right compo-

nent of the above formula. The pmax optimization parameter (Subsection 3.1) makes
sure that the right component is at most pmax:

O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈ Dtrain | Tk = T

}∣∣∣ ·min (pmax,max (|wj1 | , |wj2|)− |σj|)
)
.

(2)
Using pmax = 1, this formula will be as simple as

O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈ Dtrain | Tk = T

}∣∣∣) .
The pgen optimization parameter (Subsection 3.2) will result in a space complex-

ity of

O
(∣∣∣{(w, w̄, T̄0, 〈Ti〉ki=1

)
∈ Dtrain | Tk = T

}∣∣∣ · (max (|wj1 | , |wj2|)− |σj| −Υgen)
)
(3)

where Υgen denotes the minimum number of generated atomic rules that have a con-
text shorter than pgen among the training word pairs.

Asymptotically this means that in the worst case, no reduction occurs, if all
the generated atomic rules have at least as long context as pgen. Additionally the
redundant rules are eliminated after processing each word pair or after each training
iteration. However, this cannot be estimated, since the final number of retained
atomic rules depends on the quality of Dtrain.

The space complexity of the psupp and pfreq optimization parameters, i.e. how
many atomic rewrite rules are retained by them, depends greatly on the training
data set Dtrain. While the support value only refers the number of words for which
the given atomic rule is generated, the word frequency also contains information
about the free text sources from which the training items in Dtrain were constructed.
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4.2 Time Complexity

The training phase consists of three main parts:

• Steps with O(1) time complexity like storing the lemmas or updating the con-
ditional probability values for each training item.

• Generating word pairs from the training items for each affix type.

• Generating atomic rewrite rules from the training word pairs for each affix type.

The generation of word pairs can be done in O(|Dtrain|2) time, since we need to
find all the possible item pairs that are adjacent in the affix type chains. However,
we can improve the pairing algorithm by only going through the items with the
same lemma as the item under processing. This way the majority of the search
space remains untouched. Also, for the set of items that have only one affix type,
we can generate a word pair using the lemma and the word of the same item without
any searching, in O(1) time.

For every training word pair, we first have to find the core. This can be
done in O(max (|w1| , |w2|)) time for the word pair (w1, w2). Then we need to
generate the required atomic rewrite rules. Every rule can be generated in O(1)
time, so the approximation depends on the number of generated atomic rewrite
rules, see Formulae (1), (2) and (3). Without any optimization, the whole gener-
ation process can be done in O(max (|wj1| , |wj2 |) − |σj|) time per word pair. This
can be reduced to O(pmax) using pmax optimization that will result in O(1) time
complexity using pmax = 1. Using pgen optimization, the generation time of the
atomic rules will also be O(max (|wj1| , |wj2|) − |σj| − Υgen). The time complexity
of the psupp and pfreq optimization parameters cannot be approximated accurately,
since the number of retained atomic rules depends on the quality of the training
data.

The first task during inflection is to generate all the valid orders of the given
k affix types. This can be done in at most O(k!) steps. In the worst case, all
the possible permutations are valid, and for each permutation we have to check
if the chain’s conditional probability is positive, which can be done in O(1). For
every possible valid order, we need to go through the affix type chain and perform
local inflection based on the atomic rewrite rules of the appropriate affix types one
by one. We assume that applying an atomic rule on a word and checking if an
atomic rule matches a word can be done in constant time, so at every affix type the
generation of the inflected forms can be approximated with O(|{R}|), which will be
either Formula (1), (2) or (3) as we saw earlier, based on the applied optimization
techniques.

As for lemmatization, the provided input does not contain any information about
how many and which affix types will appear in the word to lemmatize. In the worst
case, there may be O(|T|). At every step, the number of atomic rules to process and
potentially apply can be approximated with Equation (1), (2) or (3) based on the
optimization technique we used during training. The number of previous affix types
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that need to be checked is O(|T| − 1). This means that all in all lemmatization can

be done in exponential time, roughly in O(|Dtrain||Dtrain|) time at most.
Although the size of the knowledge base might seem to be the biggest reason

of the increase of average inflection and lemmatization costs, there are also other
factors to be considered. For example if we eliminate too many redundant atomic
rules with longer contexts, only atomic rules with shorter contexts will remain in
the rule base. This can cause many rules to match the input words, resulting in
many inflection and lemmatization responses for each affix type. Having long affix
type chains, the execution time can increase combinatorically.

5 TEST SYSTEM

For the evaluation of the baseline Morpher model and the optimization techniques,
we implemented a test system using the Java 11 programming language. With the
modern language features we could introduce clean interfaces among the different
submodules, using the modularization techniques introduced by Java 9. Moreover
parallel streams were used for processing large amounts of data in parallel, in a func-
tional manner. These features make the implemented system more maintainable and
efficient.

Figure 3 presents the data pipeline of the evaluation test system.

• Initially, a large number of Hungarian words were collected from the web using
the site of the National Széchenyi Library4.

• Hunmorph-Ocamorph [18] was used to analyze these words, creating a pre-
annotated corpus.

• The corpus was fed to the data generator that emitted both training data and
evaluation data.

• The training data was given to the trainer submodule that returned a trained
instance of the model.

• The evaluator submodule received the trained model and the evaluation data,
and performed several tests to evaluate the model against different metrics.

The number of sample word pairs generated by this data pipeline was 3 612 494.

6 EVALUATION

We examine several metrics during evaluation so that we can compare the baseline
Morpher method with other existing models, and evaluate the optimization param-
eters. These metrics include

• the average training, inflection and lemmatization time,

4 http://mek.oszk.hu

http://mek.oszk.hu


Optimization of the Morpher Morphology Engine 975

HunmorphWeb Data generator

Trainer Evaluator

words

annotated

corpus

training

data

evaluation

data

model

Figure 3. Test system pipeline

• the average number of responses and the average index of the expected response,

• the average correctness ratio,

• the average number of atomic rewrite rules and the average size of the knowledge
base.

All of these metrics should be minimized except for the average correctness ratio.
The performed tests are performed using the following steps:

1. Generate n1 training items and train the model.

2. Generate n2 evaluation items and evaluate the model using the previously men-
tioned metrics.

3. Repeat the test n3 times and calculate the average of the examined metrics.

The n1 parameter is increased from 10 000 to 100 000 with 10 000 increments in
Subsections 6.1 and 6.2, while it is increased from 500 000 to 3 million with 500 000
increments in Subsection 6.3. The n2 parameter is 10 000 in all cases, and n3 is
chosen to be 10. Every training and evaluation item is chosen randomly for each
test scenario, but the training and evaluation item sets are always disjoint.

The test machine is a Macbook Pro with 3.1 GHz Intel Core i7 processor and
16 GB memory.

6.1 Comparing the Baseline Morpher Model
with Other Morphology Engines

To compare the baseline Morpher model with existing methods, we executed the
same evaluation tests on the baseline Morpher model, Morfessor, MORSEL, Mor-
phoChain and Hunmorph-Ocamorph. Since the interface and functionality of these
tools differ in some points, we could not perform all the tests on every existing
methods:

• MorphoChain failed with an OutOfMemoryError using 50 000 training items, so
we dropped this tool, since we could not compare its final metric values.

• Morfessor and MORSEL are segmentation tools, so they could not perform
inflection.
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• Since we used Hunmorph-Ocamorph for training data preprocessing, it did not
make sense to include it in the comparisons other than the database size.

Figure 4 displays the average correctness ratio of the investigated methods. The
baseline Morpher method’s correctness ratio increases from about 73 % to about
97 %, while Morfessor only reaches 62 %, and MORSEL produces the worst results
with 20 % at the 100 000 training item mark.
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Figure 4. Average correctness ratio of the baseline Morpher model and other morphology
engines

Figure 5 a) displays the average training time of the three methods in seconds,
using exponential scale on the y axis. Morfessor has the worst training time, since
it can learn the segmentation of 10 000 words in 35 seconds, while it takes 6 minutes
to learn the segmentation of 100 000 words. MORSEL has a slightly faster training
phase and similar characteristics to the baseline Morpher model. The baseline Mor-
pher model trains in 4.03 seconds, while MORSEL finishes learning in 1.94 seconds
at the 100 000 training item mark. However, since the baseline Morpher model has
a much higher correctness ratio, this is not a big problem.

In Figure 5 b) we can see the average inflection and lemmatization times of
the baseline Morpher model, as well as the average segmentation time of Morfes-
sor and MORSEL in milliseconds, using exponential scale on the y axis. Morfessor
and MORSEL (the bottom two lines) can perform the segmentation of a word in
an average of 70 and 16 microseconds, respectively. This is almost constant time,
which lets us draw the conclusion that they work with a map-like structure, iden-
tifying the pre-learnt segments in the input words without much searching. Since
both inflection and lemmatization are more complex problems, they have a slightly
steeper curve (the top two lines). While inflection increases from 0.4 milliseconds to
2.4 milliseconds, lemmatization takes an average of 19.1 milliseconds to 2.4 seconds.
This confirms that lemmatization has an exponential time complexity.
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Figure 5. Average training and evaluation times of the baseline Morpher model and other
morphology engines using exponential scale on the y axis

Table 1 contains the average knowledge base size of the baseline Morpher model,
Morfessor and Hunmorph-Ocamorph using 100 000 training items. MORSEL does
not have an option to export its knowledge base. Morfessor has the smallest database
with 3.5 megabytes, but it needs to store much less information. The baseline
Morpher model’s knowledge base is 6.4 megabytes, but it contains the possible affix
type chains, their conditional probabilities, the valid lemmas and more complex
transformation rules as well. Hunmorph-Ocamorph has the biggest database with
22.7 megabytes.

Model File Size [MB]

Baseline 6.4

Morfessor 3.5

Hunmorph-Ocamorph 22.7

Table 1. Average knowledge base size of the baseline Morpher model and other morphol-
ogy engines using 100 000 training items

6.2 Evaluation of the Optimization Techniques

For this evaluation we analyzed the four optimization parameters using a smaller
training data set of 100 000 random items to decide which one is worth using with
larger data sets.

Figure 6 shows the average correctness ratio on the y axis, and the number of
retained atomic rules on the x axis using exponential scale. From this graph we
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Figure 6. Average correctness ratio over the number of retained atomic rules after psupp
and pfreq optimization, using exponencial scale on the x axis

can see that if we drop atomic rewrite rules randomly, the correctness ratio drops
dramatically.
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Figure 7. Average number of responses and average index of the expected response over
the number of retained atomic rules after psupp and pfreq optimization

On the other hand, if we use one of the two optimization parameters, we can
reduce the rule base size to about 1.73 % of the original and still inflect and lemmatize
about 93 % of the previously unseen words correctly. We added a vertical line to the
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Figure 8. Histogram of atomic rules based on their support and word frequency

10 000 atomic rule mark, while the total number of atomic rules was 578 497. We
can also see that using psupp we can keep a slightly higher correctness ratio with the
same amount of atomic rules, but the two parameters result in very similar results
otherwise.

In Figure 7 a) we can see the average number of responses. Similarly to the
correctness ratio, psupp performs better, producing slightly fewer responses using the
same amount of retained atomic rules.

Figure 7 b) displays the average index of the expected response, i.e., which re-
sponse is the expected (correct) one. Although it is not guaranteed that the expected
response is the correct one due to the large volumes of evaluation data, this metric
is a good approximation. The psupp parameter performs better, and the worst value
with a small number of retained atomic rules does not increase above 3, meaning
that the first 3 responses always contain the expected one.

From the above figures, we can choose psupp = 10 as the optimization parameter.
The histogram of the atomic rules in Figure 8 shows that choosing a relatively low
threshold will drop a lot of rules from the rule base.

Table 2 displays the average number of retained atomic rules, correctness ratio,
number of responses and expected response index using different (pgen, pmax) com-
binations. The most responses are produced when we only keep the most general
rules, and the correctness ratio is one of the lowest values as well. With pgen = 3,
the correctness ratio dropped to about 80 %.
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pgen pmax Rules Correctness [%] Responses Response Index

– – 578 497 96.19 37.11 1.53

1 1 5 019 85.78 126.01 31.94
1 2 16 923 92.62 114.34 7.34
1 3 46 506 94.89 89.45 2.44
1 4 103 533 96.17 56.23 1.60
1 5 175 334 96.18 41.78 1.54

2 1 10 501 91.91 10.92 5.42
2 2 36 186 92.62 9.71 2.05
2 3 90 710 94.02 6.47 1.47
2 4 161 132 94.28 4.60 1.39
2 5 238 879 94.29 4.04 1.39

Table 2. Average number of retained atomic rules, correctness ratio, number of responses
and expected response index using different (pgen, pmax) combinations

6.3 Evaluating the Optimal Optimization Parameter
Using Large Training Data Sets

We wanted to evaluate (pgen = 1, pmax = 1), as well as psupp = 10 using big training
data sets containing up to 3 million training items, but we had to omit the first case,
as it could not even handle 500 000 training items due to the exponential growth
of responses. Figure 9 shows the average training time of the optimized Morpher
model using psupp = 10, increasing about linearly up to about 74.61 seconds.
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Figure 9. Average training time using big training data sets and psupp = 10

In Figures 10 a) and 10 b) we can see the average inflection and lemmatization
times: 3.31 seconds for inflection and 13.26 seconds for lemmatization using 3 million
training items.
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Figure 10. Average inflection and lemmatization times using big training data sets and
psupp = 10

Figure 11 a) displays the average number of responses. It is surprising that
inflection produces more responses in average (31.16 vs 7.81).
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Figure 11. Average number of responses and average index of the expected response using
big training data sets and psupp = 10
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The reason is that many lemmatization responses are filtered out due to not
ending in a valid lemma. However, Figure 11 b) proves that the index of the expected
response does not go above 1.3 and 2.58, respectively.

In Figure 12 we can see the average correctness ratio, that increases from about
96.22 % to about 98.11 % in average.
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Figure 12. Average correctness ratio using big training data sets and psupp = 10

Table 3 contains the summary of the examined metrics, including their baseline
values and the measured values for the optimized case (psupp = 10), as well as
their ratio, using 3 million training items. Just for comparison we executed this
test using the baseline Morpher model, but with less evaluation data to save time.
The table shows that there are huge improvements, except for the training time:
lemmatization of one word would take about 8.5 minutes in average without any
optimizations, compared to 13.26 seconds in case of psupp = 10, which means that
using this optimization parameter value, the lemmatization becomes 2.59 % of the
original value.

Baseline psupp = 10 Ratio

Training time [s] 53.41 74.61 139.69 %

Inflection time [s] 640 3.31 0.52 %

Lemmatization time [s] 511.83 13.26 2.59 %

Number of atomic rules 11 354 255 255 867 2.25 %

Knowledge base size [MB] 130.6 5.5 4.21 %

Table 3. Summary of the average values and improvements of the examined metrics using
a big training data set containing 3 million items and psupp = 10
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7 CONCLUSION

In this paper we performed the space and time complexity analysis of the Morpher
morphological rule induction model, and introduced several optimization techniques.

The four new optimization parameters aim to reduce the number of retained
transformation rules during the training phase. The first optimization parameter
(pmax) limits the number of generated rules per word pair, while another one (pgen)
sets a lower boundary on the context length of the retained rules. We can also
reduce the rule base size using statistics calculated from the training data: there is
a psupp and a pfreq optimization parameter with which we can drop rules that have
a support value or a word frequency value less than these threshold parameters.

The complexity analysis showed that these optimization parameters improve the
memory requirements and average runtime of the original Morpher model dramati-
cally. The winning configuration was psupp = 10 that managed to reduce the number
of rules to the 1.73 % of the original set, still keeping an average correctness ratio of
about 93 % and finished in acceptable time using up to 3 million training items.
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Abstract. The World Wide Web has a considerable amount of information ex-
pressed using natural language. While unstructured text is often difficult for ma-
chines to understand, Open Information Extraction (OIE) is a relation-independent
extraction paradigm designed to extract assertions directly from massive and hetero-
geneous corpora. Allocation of low-cost computational resources is a main demand
for Open Relation Extraction (ORE) systems. A large number of ORE methods
have been proposed recently, covering a wide range of NLP tools, from “shallow”
(e.g., part-of-speech tagging) to “deep” (e.g., semantic role labeling). There is
a trade-off between NLP tools depth versus efficiency (computational cost) of ORE
systems. This paper describes a novel approach called Sentence Difficulty Estimator
for Open Information Extraction (SDE-OIE) for automatic estimation of relation
extraction difficulty by developing some difficulty classifiers. These classifiers ded-
icate the input sentence to an appropriate OIE extractor in order to decrease the
overall computational cost. Our evaluations show that an intelligent selection of
a proper depth of ORE systems has a significant improvement on the effectiveness
and scalability of SDE-OIE. It avoids wasting resources and achieves almost the
same performance as its constituent deep extractor in a more reasonable time.
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Keywords: Information extraction, open information extraction, relation extrac-
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1 INTRODUCTION

Information Extraction is the task of automatically extracting structured data from
unstructured text. One of the core information extraction tasks is the relation
extraction, which aims at extracting semantic relations among entities from natural
language text. Relation extraction can potentially benefit a wide range of NLP
tasks such as: Web search, question answering, ontology learning, summarization,
building knowledge bases, etc. [1].

The huge and fast-growing scale, a mixed genre of documents and infinite types
of relations are challenges of the Web-scale relation extraction [2]. The traditional
approaches to information extraction assume a fixed set of predefined target relations
and usually do not scale to corpora where the number of target relations is very
large [3]. An alternative paradigm OIE aims to scale information extraction methods
to the size and diversity of the Web corpus. OIE systems extract relational tuples
from texts, without requiring a pre-specified vocabulary [4].

The key goals of OIE are: 1. domain independence, 2. unsupervised extraction,
and 3. scalability to large amounts of text [5]. Scalability of OIE systems relies
on the different sophistication levels of the NLP tools they use. Shallow extractors
try to improve performance by limiting extraction procedure to shallow linguistic
analysis. Although the ORE approaches in this category (such as TextRunner [6],
WOEpos [7], ReVerb [8], R2A2 [9] and SONEX [10]) are fast and more scalable,
they are unable to deal with complicated structures such as long distance relations.
In addition, due to usage only shallow syntactic features, high performance is not
guaranteed, thus resulting in a significant drop of effectiveness.

In contrast to shallow extractors, some approaches (such as Wanderlust [11],
WOEparse [7], KrakeN [12], OLLIE [4], ZORE [13], DepOE [14], SRL-IE-Lund
[15], SRL-IE-UIUC [15], the methods proposed in [16] and [17]) use deep syntac-
tic or semantic analysis tools such as dependency parsing. These extractors are
generally more expensive than the previous extractors; they trade efficiency for
improved precision and recall [5]. The former extractors are rapid, guarantee scal-
ability and require less effort due to usage shallow syntactic analysis, while the
latter extractors are efficient for precision and recall but time consuming and re-
quire considerable effort due to usage deep syntactic analysis in the extraction pro-
cess [18].

Given the pros and cons of shallow and deep extractors, we proposed an approach
for automatic estimation of ORE difficulty. We developed different classifiers that
recognize sentences that are hard for ORE task and pass them to a deep extrac-
tor. Thus, it attempts to categorize them with the aim of reducing computational
cost. The proposed approach is a combination of two types of OIE systems and
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we employed ReVerb [8] and EXEMPLAR [19] as shallow and deep OIE extractors,
respectively.

According to the results in [19], shallow methods handle ten times more sen-
tences than deep ones. We examined the trade-off between effectiveness (F-measure)
and efficiency (computational cost) and found that using a deep extractor on the in-
telligent subset of input sentences can yield a substantial improvement in F-measure.
We present a novel approach for predicting ORE difficulty using different classifiers
with light-weight features. The classifiers recognize sentences that are hard for ORE
task and pass input sentences to a deep extractor only if needed. Therefore, our
difficulty classifiers prioritize the sentences likelihood of improving performance and
lead to better allocation of computational resources. Sentence difficulty is used in
many applications of natural language processing such as measuring translation dif-
ficulty [21], evaluating the reliability of parses [22], measuring text difficulty [23] and
text readability [24], etc. The idea of this work can be ported into other tasks in
natural language processing. Application systems such as Speech Processing, Ques-
tion Answering and Search Engines can benefit from automatic detection of difficult
subtasks.

The rest of this paper is organized as follows. Section 2 introduces previous
works in the areas of OIE systems. Our proposed approach is described in Section 3.
We present results of our experiments in Section 4 and end with the conclusion in
Section 5.

2 RELATED WORKS

In this section we review some related works on OIE, in particular works on ORE.
OIE has received much attention recently. It covers a wide range of NLP tools,
from shallow (e.g., part-of-speech tagging (POS)) to deep (e.g., semantic role label-
ing (SRL)). These systems can be divided into two main categories based on the
linguistic analysis which is applied for relation extraction task [18, 5, 14]. In the
following two subsections, we examine these two categories.

2.1 Deep Open Information Extraction Systems

ORE approaches which use parsing-based or SRL-based tools are grouped in deep
OIE systems. Most deep OIE systems apply dependency tree paths to learn extrac-
tion patterns. Wanderlust [11] uses hand-labeled training data to learn extraction
patterns on the dependency tree. The authors of this system annotated 10 000
sentences parsed with LinkGrammar. This system learns 46 general link paths as
patterns for relation extraction. WOEparse [7] is a pattern classifier learned from de-
pendency path patterns which uses typed dependencies as features [18]. PATTY [25]
extracts textual patterns from sentences based on paths in the dependency tree be-
tween the two named entities. It finds the shortest path in the dependency tree
that connects the two named entities. The TreeKernel approach [26] first inspects
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whether there is a relation between a pair of entities in a sentence and then whether
there are explicit relation words for this pair. A set of syntactic patterns is used
for generating candidate relations. One of the main drawbacks of dependency-based
deep OIE systems is restricting extraction to the paths of dependency tree.

Some approaches use bootstrapping to learn patterns. OLLIE [4] is a hybrid
approach based on bootstrapping which learns pattern templates automatically from
a training set that is bootstrapped from relations extracted by ReVerb. OLLIE
produces n-ary extractions by merging binary relations and has 1.9 to 2.7 times
more area under precision-yield curves 1 compared to ReVerb and WOE. BONIE [27]
is an open numerical relation extractor, for extracting OIE tuples where one of the
arguments is a number or a quantity-unit phrase. BONIE also uses bootstrapping to
learn the specific dependency patterns that express numerical relations in a sentence.
Bootstrapping methods have some limitations because extraction samples can vary
considerably depending on initial seed selection.

Some OIE methods are designed for languages other than English. Similarly,
most of them are based on rules or patterns. ZORE [13] is a syntax-based Chinese
ORE system that extracts relations and semantic patterns from Chinese texts. The
approach proposed in [17] also focuses on Chinese ORE. This system can be con-
sidered as a pipeline of word segmentation, POS tagging and parsing [18]. An OIE
system for German language was proposed in [28]. It is a straightforward approach
for adapting PropS, a rule-based predicate-argument analysis for English, to a new
language, German. DepOE [14] is a multilingual OIE system based on fast depen-
dency parsing. It uses DepPattern [29], a multilingual dependency-based parser,
to analyze sentences and obtain fine-grained information. Then, a small set of ex-
traction rules is applied and the target verb-based triples are generated. There is
a more recent version of DepOE system, called ArgOE [30]. ArgOE is a multilingual
rule-based OIE method that obtains as input dependency parses in the CoNLL-X
format, recognizes argument structures within the dependency parses, and extracts
a set of basic propositions from each argument structure. Since most of the OIE
systems designed in languages other than English are based on rules or patterns,
they have the same problems as rule-based and pattern-based methods.

Most OIE approaches usually extract binary facts and are not designed to cap-
ture n-ary relations. KrakeN [12] addresses this limitation by capturing unary,
binary and higher order n-ary facts. It has been built specifically for capturing
complete facts from sentences and can extract more facts per sentence with high
precision. EXEMPLAR [19] addresses the problem of extracting n-ary relations
by using handcrafted rules over dependency trees. These rules are applied to each
candidate argument individually by inspecting the path between an entity and a re-
lational word. OIE approaches which deal with n-ary relations can increase the
number of correct and informative extractions and achieve high precision and re-
call.

1 Receiver Operating Characteristic (ROC)
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Some deep OIE methods separate the detection of “useful” pieces of information
expressed in a sentence from their representation in terms of extractions. Clau-
seIE [5] is a clause-based approach which uses linguistic knowledge about the gram-
mar of the English language to first detect clauses in an input sentences and to
subsequently identify the type of each clause according to the grammatical function
of its constituents [18]. CSD-IE [31] is a method that uses contextual sentence de-
composition for OIE. A sentence is decomposed into the parts that are semantically
dependent and then the (implicit or explicit) verb in each part is identified and
the facts are obtained [8]. The performance of decomposition-based OIE systems is
highly dependent on the detection of effective pieces which produce the facts.

Although the majority of deep OIE systems are parser-based, there is a limited
quantity of approaches that exploit semantic role labelers. A deep OIE system based
on SRL has been proposed in [15]. This system has been developed based on two
SRL systems: UIUC [32] and LUND [33]. It produces the extractions by applying
some rules on the outputs of these SRL systems. The authors proposed two hybrid
methods that employ SRL only on a specific subset of TextRunner outputs. This
work is similar to our approach in terms of combining two OIE systems, but there
are some differences. Applying TextRunner to all input sentences and using SRL via
some restrictions rules on TextRunner outputs are the main differences. Another
version of SRL-IE was implemented in [20] by relying on the output of two SRL
systems: LUND [34] and SwiRL [35]. Efficiens [20] has a module for each NLP
tool. The Efficiens[POS] module relies on POS tagging, while the Efficiens[DEP]
and Efficiens[SRL] rely on dependency parsing and SRL, respectively. Since SRL-
based deep methods need more computational time than parse-based deep methods,
they are computationally expensive, even though they are robust to noisy text. The
related surveys are summarized in Table 2.

Although deep OIE systems have a high performance, the cost of leveraging
deep NLP tools and scarcity of them in other languages are the main challenges of
deep OIE methods. In this paper, we present an approach to alleviate these critical
challenges. We developed a strategy which mitigates these challenges by intelligent
use of different methods.

2.2 Shallow Open Information Extraction Systems

ORE methods, which are based on shallow NLP tools (such as POS taggers), are
grouped in shallow OIE systems. Some shallow OIE systems use classifiers with
some lightweight features to recognize the relation between name entities in a sen-
tence. TextRunner [36] is the first OIE system. It applies a Naive Bayes classifier
which determines whether the context between a pair of noun phrases in a sentence
describes a relation instance or not. WOEpos [7] is also inspired by TextRunner
and limited to shallow features like POS tags. WOEpos exploits the relations in
Wikipedia Infoboxes to match corresponding sentences in an unlabelled corpus that
mention these relations. It uses these examples as relation-independent training
data to learn an unlexicalized extractor. R2A2 [8] uses an argument learning com-
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N D S E P R

Wanderlust [11] 5 3 5 3 3 5

WOEparse, 7 5 3 5 3 3 5

PATTY [25] 5 3 5 3 3 3

TreeKernel [26] 5 3 5 3 3 5

OLLIE [4] 3 3 5 3 3 5

BONIE [27] 5 3 5 3 3 5

ZORE [13] 5 3 5 5 3 5

Chinese OIE [17] 5 3 5 5 5 3

German OIE [28] 3 3 5 5 5 3

DepOE [14] 5 3 5 3 5 3

ArgOE [30] 5 3 5 3 5 3

KrakeN [12] 3 3 5 3 5 3

EXEMPLAR [19] 3 3 5 3 5 3

ClauseIE [5] 3 3 5 3 5 3

CSD-IE [31] 5 3 5 3 5 3

SRL-IE [15] 3 5 3 3 5 3

Efficiens [20] 3 3 3 3 5 5

Table 1. Comparison of different deep OIE methods. N: extracts N-ary relations? D: ex-
tracts relations based on dependency parse tree? S: extracts relations based on SRL?
E: extracts relations in English language? P: extracts relations based on patterns? R: ex-
tracts relations based on rules?

ponent. It makes use of a number of classifiers to identify the arguments of a verb
phrase (based on hand-labeled training data). Two classifiers identify the left and
right bounds for the first argument and one classifier identifies the right bound of
the second argument.

Some shallow OIE systems are based on patterns. ReVerb [8] is a strong and
successful pattern-based shallow OIE system. It makes use of a simple POS tag
sequence as a syntactic constraint in order to extract relation phrases and eliminate
incoherent extractions and also reduce uninformative extractions. ReVerb exploits
a lexical constraint that aims to alleviate the amount of over-specified extractions.
Experiments show ReVerb outperforms TextRunner and its performance is more
than twice as much as that of TextRunner [7, 18, 37]. SONEX [10] extends ReVerb
by detecting patterns with appositions and possessives [19]. It identifies every entity
pair (e.g., “Google”, “Apple Inc.”) and all sentences where this pair is mentioned
together. From these sentences, SONEX extracts a context (e.g., a list of surround-
ing words) for the pair and applies clustering techniques to group together pairs with
similar contexts. SONEX sees each cluster of entity pairs as a relation. LSOE [38]
is also a pattern-based system which exploits two kinds of patterns: 1. generic pat-
terns, 2. rules from Cimiano and Wenderoth proposal [39]. The performance of
LSOE was compared with two other OIE systems: ReVerb and DepOE. The results
show that LSOE extracts relations that are not learned by other extractors and also
achieves compatible precision.
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There are some shallow OIE methods such as R-OpenIE [40] which are based on
rules. R-OpenIE defines some text-based rules to generate relation extraction tem-
plates. It applies the cascaded finite-state transducer model to match the satisfied
relational tuples.

The main drawback of all the above shallow OIE approaches is that they are
inefficient for high performance. With the fast growth of the Internet and the emerg-
ing problem of information overload, the computational cost of processing a large
volume of information is becoming an increasingly important issue of artificial in-
telligence researches. Based on the methods discussed above, despite the high per-
formance of pure deep OIE systems, applying them is time consuming. Unlike deep
OIE systems, shallow ones are fast and do not achieve high performance measures.
Therefore, each one of these categories has their own pros and cons and raises the
question of what is the trade-off between NLP depth (and associated computational
cost) versus effectiveness. In this paper we develop some probabilistic classifiers that
apply different combination parameters as features, for different classes of extrac-
tors. This approach is not limited to specific types of system. It divides the input
sentences to proper extractors.

3 SENTENCE DIFFICULTY ESTIMATION
FOR OPEN INFORMATION EXTRACTION SYSTEMS

Various levels of linguistic analysis tools from shallow (e.g. POS tagging) to deep (e.g.
SRL) were used to develop OIE systems. Applying expensive NLP tools for extract-
ing facts from huge and heterogeneous corpora in reasonable time is time-consuming
and costly. This problem worsens when such methods are applied on World Wide
Web documents. In addition, tools for automatic deep analysis are available only for
a limited number of natural languages, and produce imperfect results. Manual deep
analysis, on the other hand, is time consuming and expensive [41]. Automatic tools
for approaches that rely only on a shallow linguistic analysis are available for many
languages and sufficiently reliable [41]. These extractors are usually fast, but the
restriction to shallow syntactic analysis reduces maximum recall and/or may lead to
a significant drop of precision at higher points of recall [5]. Indeed, there is a need
to have a system that enables effective use of available time and offers a reasonable
balance of precision and recall. The advantages of these two kinds of extractors
motivate us to focus on developing a method that gets the best of both worlds.
A hybrid OIE paradigm by incorporating strengths of ReVerb and EXEMPLAR is
suggested. Figure 1 presents the general framework of our proposed approach.

Preprocessor. The preprocessor converts raw web pages into a sequence of sen-
tences. It takes web pages as input and transforms them to plain sentences using
pre-processing tools. The pages were then segmented into sentences, tokenized,
tagged with POS and chunked using the OpenNLP2 package.

2 Downloadable at http://opennlp.sourceforge.net.

http://opennlp.sourceforge.net
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Figure 1. SDE-OIE’s framework: Difficulty classifier exploits the best of both the shallow
and the deep OIE extractors

Extractor Core. This component takes each sentence and assigns it to a proper
extractor. Extractor Core consists of two main subcomponents: Sentence Diffi-
culty Estimator and Hybrid Extractor.

Difficulty Classifier. The difficulty classifier and the hybrid extractor are the
main parts of SDE-OIE. SDE-OIE reads each sentence sequentially. Given
a sentence, the difficulty classifier extracts a set of features and predicts
whether it is difficult or not. In other words, for each sentence, the difficulty
classifier finds the most appropriate system for processing it. In regards
to binary classification of sentences, we use different classifiers; a Logistic
Regression, a Naive Bayes and a Decision Tree. Due to strong classifica-
tion results of these classifiers, they have been used for many classification
problems in computational linguistics. In addition to classification, we need
to find difficult sentences, where we care about the severity of the extrac-
tion difficulty. For this purpose, we benefit from the classification score as
a difficulty measure.

SDE-OIE focuses on the difficulty estimation of a relation extraction task for
input sentences of OIE systems. We formulate this problem as a classification
problem, where the goal is to assign a class label of easy or difficult to a can-
didate sentence s based on a classifier c and then pass it to an appropriate
extractor. c:s → {easy,difficult}
For this purpose, different probabilistic classifiers were used. We used Naive
Bayes, Logistic Regression and Decision Tree to automatically assign a diffi-
cult/easy class to each input instance. Naive Bayes is a simple and common
generative classifier that chooses the most probable extractor class out of
a set of possible classes given a feature vector [42]. The features of data
samples are independent. Naive Bayes employs the normal distribution to
model numeric attributes.
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Logistic regression belongs to the family of classifiers known as the exponen-
tial or log-linear classifiers. Like Naive Bayes, it works by extracting some
set of weighted features from the input, taking logs, and combining them
linearly [43]. In order to train a model to classify with the least amount of
error possible, the cost function should be minimized. Gradient descent is
our learning algorithm that finds values for the parameters that result in the
best parameter values and a smaller minimum error.

Binary Decision Tree consists of terminal vertices and nonterminal vertices.
Compared to Naive Bayes, decision tree is a somewhat more transparent
approach that lends itself to inspection [42]. Our decision tree was built
by C4.5. For implementation of these classifiers we used the Weka package.
A variety of features have been used to train the classifiers. These features
are discussed with more detail in Section 3.1 and the appendix.

Hybrid Extractor. The hybrid extractor also includes two main subcompo-
nents, a shallow (ReVerb) and a deep (EXEMPLAR) OIE system. A com-
plete and fair experimental comparison of 10 approaches have been presented
in [19] and [20]. According to that research, ReVerb is the fastest method
based on matching patterns over POS tags. SONEX is a shallow ORE sys-
tem which produces results comparable to ReVerb. It focuses on overcoming
the challenges in deploying ORE systems in the blogosphere and uses a clus-
tering algorithm to group pairs with similar context together in a large scale.
Beside the challenges with large-scale clustering (time and space), it recog-
nizes instances at corpus-level. Since our system is sentence-based (meaning
the extraction process can take individual sentences as input), we employ
ReVerb as the shallow constituent extractor. Through these adaptations,
we gain a range of extraction quality improvements at the sentence level.
EXEMPLAR is based on using rules over dependency trees. It outperforms
ReVerb and differs greatly in efficiency. It achieves the best effectiveness
and is faster than the deeper methods such as SRL-based OIE extractors.
Thus, EXEMPLAR’s processing time is much less. More details about these
OIE systems were presented in Section 2. As illustrated in Figure 1, final
extractions are obtained by taking the union of these two extractors’ out-
puts.

The proposed approach has some advantages in the following aspects:

• While in the structure of previous similar approaches, a pure shallow or deep
linguistic analysis tool is applied to all input sentences at least once; to our
knowledge, we are the first to propose an approach to partition the input to
an appropriate extractor in order to achieve higher performance.

• The constituent systems of the extractor core are based on shallow and deep
linguistic analysis tools and neither ReVerb nor EXEMPLAR needs training
data. Therefore, SDE-OIE’s performance will be independent from training
parameters.
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• The proposed approach is independent of its constituent systems and can be
designed by other shallow or deep systems. In other words, it is a general
framework and it is not designed for certain OIE systems. Hence, it can be
designed by incorporating different systems with different depths.

• As will be discussed in Section 4, our experiments indicate that extraction
difficulty can be modeled and automatically predicated with decent accu-
racy. Detecting difficult sentences has significant influence on the extraction
time and quality. It prevents wasting resources and helps to achieve approx-
imately the same performance as the deep constituent extractor. SDE-OIE
is particularly effective when there is a large dataset and the processing
time is limited. In this case, our hybrid extractor makes effective use of
available time and runs the best algorithm given the available computation
time.

In case all input sentences are difficult, using a difficulty classifier would be an over-
head operation rather than applying a deep extractor individually. Additionally,
sometimes only a few sentences in the whole dataset produce better instances with
deep NLP tools. In this case, a classifier that applies deep extractor for most sen-
tences will be wasting computational resources for the rest of the sentences in that
dataset. SDE-OIE will prefer shallow extractor when both extractors produce cor-
rect extraction and therefore efficiency improves.

3.1 Feature Set

Deep features could improve precision and recall over shallow syntactic features, but
at the cost of extraction speed. For instance, parser-based features can help to handle
complicated and long distance relations in sentences. Such cases usually cannot be
detected by shallow features. Regarding the computational cost associated with rich
syntactic features, we used 61 light-weight features. All features are independent of
applied classifiers, scalable, domain independent, and can be evaluated at extraction
time without the use of expensive tools.

These features allow the difficulty classifier to estimate the challenge that the
system faces in extracting instances from a sentence. Although these features can
be extracted from the underlying systems, they are collected from the syntactic
and semantic structure of the sentence. Since our difficulty modeling is system-
independent, we particularly do not incorporate knowledge (features) from the un-
derlying OIE systems into the difficulty classifier. Additionally, we use source-
language features which bring deeper linguistic knowledge into our modeling and
classification.We list below some important features which the difficulty classifier
uses to recognize the class of an input sentence s :

• F1: s contains at least two name entities where the context between them has
a verb phrase.

• F2: Number of capital words in s is greater than 6.
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• F3: s contains communication verbs [1].

• F4: Number of stop words in s is equal or greater than 10.

• F5: s contains ‘if’.

• F6: s contains at least one coordinating conjunction (and, but, for, nor, or, so,
yet).

• F7: s contains ‘say’.

• F8: s contains at least one pronoun (PRP, PRP$,WP,WP$).

• F9: s contains ‘that’ or ‘whether’.

• F10: s contains at least one relative pronoun.

• F11: s contains ‘there’.

• F12: s contains feature1 (F1) and the first name entity is a pronoun.

• F13: s contains F1 and the second name entity is a pronoun.

• F14: s contains F1 and there is a preposition (‘to’ or ‘in’) in s.

• F15: s contains F1 and there is a verb before the first name entity.

• F16: s contains F1 and there is a verb after the second name entity.

• F17: s contains F1 and the first name entity is a proper noun.

• F18: s contains at least one entity pair where there is a verb after the second
name entity.

• F19: Length(s) is greater than 10.

• F20: s contains cognition verbs [2].

Examples of other features include presence of punctuation, capitalization, WH-
words, comma, quotation, parentheses, specific POS tag sequences, a verb with
a specific tag (such as vbz, vbg, vbd, vbn, vbp, vb) in the sentence and a specific
preposition at the end of the sentence (such as to, in, for, of, on). Following fea-
ture extraction, this set of automatically labeled feature vectors is used for training
the classifier; then each sentence is passed to an extractor based on the classifier
output.

4 EXPERIMENTAL RESULTS

In this section, we first describe the benchmark dataset and performance metrics,
and then give the evaluation results obtained by our approach, baseline methods
and state-of-the-art approaches.

4.1 Dataset

A gold standard data and a set of features are required to train the difficulty clas-
sifier. The lack of standard dataset is one of the main challenges of the OIE sys-
tems [20]. The current evaluation approaches rely on manual evaluation (e.g., [7, 8,
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4, 12, 14, 5, 31, 44, 26]), whose main limitation is that it is not scalable. Combining
available datasets to make a large one has some difficulties. Differences in annota-
tion and evaluation methodology are some of these challenges. Manual creation of
a large dataset, on the other hand, is time consuming and expensive.

Based on available resources, we used two state-of-the-art datasets [19] to vali-
date and compare our approach with other methods developed for extracting open
relations from the Web. These datasets contain relatively more data than the others
(e.g., [7, 8, 4, 12, 14, 5, 30, 26, 44]). They are standard datasets which have been
used in several recent studies such as [45, 46, 47].

This datasets try to alleviate the problems related to the lack of ground truth
and differences in evaluation methodologies by providing reusable annotations that
are flexible and can be used to evaluate a wide range of methods [19, 20]. They
cover sentences from the New York Times (NYT-500), the Penn Treebank (PENN-
100), a popular Web corpus (WEB-500) and a much larger dataset from the New
York Times which has been annotated automatically. WEB-500 is a commonly used
dataset, developed for the TextRunner experiments [3]. This dataset contains 500
sentences extracted from search engine snippets. These sentences are often incom-
plete and grammatically unsound, representing the challenges of dealing with web
text. NYT-500 represents the other end of the spectrum with individual sentences
from formal, well written new stories from the New York Times corpus [48]. PENN-
100 contains sentences from the Penn Treebank recently used in an evaluation of the
TreeKernel method [26]. The NYT-500 and the WEB-500 are used as training data
and the PENN-100 is used as test data. We also randomly selected 300 sentences
from the data source which was built automatically from Freebase and WordNet [19]
as our test set.

The gold standard data is a set of sentences which have easy or difficult labels.
Given a corpus, SDE-OIE should select sentences for the shallow/deep extractor.
We manually annotated these datasets. We label a sentence as easy if the shallow
extractor generates a correct result. In cases where the shallow extractor gener-
ates an incorrect result, it is labeled as difficult, except for cases where the deep
extractor also generates an incorrect result. A sentence is also labeled as easy if the
shallow extractor has no output for that sentence, but the deep extractor generates
an incorrect result. In this case, if the deep extractor generates a correct result, the
sentence will be labeled as difficult.

4.2 Performance Measures

Our evaluation focuses on the extraction of relation instances at sentence level. The
metrics used in the evaluations are: Precision (P), Recall (R) and F-measure (F).
Precision is the ratio of the number of correctly extracted instances to the total num-
ber of extracted instances. Recall is the ratio of the number of correctly extracted
instances to the total number of correct instances in the dataset. The F-measure is
the harmonic mean of precision and recall [18].
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P =
number of correctly identified relation instances

total number of identified relation instances
,

R =
number of correctly identified relation instances

total number of correct relation instances
,

F =
2× P ×R

P + R
.

4.3 Numerical Results and Discussion

The effect of applying the difficulty classifier to the input sentences was evaluated
and the behavior of the shallow and the deep extractors was explored. In our
experiments, we used the datasets previously described in Section 4.1. We trained
three different classifiers which read a sentence and decide if the sentence is easy or
difficult for the extraction of relation.

To collect syntactic features, we need to perform POS tagging and chunking.
Therefore, we use the OpenNLP package. We modeled extraction difficulty for
sentences. Our modeling of sentence difficulty was binary: sentences are easy or
difficult to extract for a system. Given a corpus, SDE-OIE should select sentences
for the shallow/deep extractor so as to maximize the number of correctly extracted
instances. In other words, it selects the extractor which produces a correct instance
when the other extractor generates an incorrect result.

After testing, relation instances with score values equal to or higher than a spe-
cific threshold are considered to belong to the class 1. The instances with score
values lower than this threshold are considered to belong to class 0. Different values
of the classifiers scores were examined. It was observed that the threshold of 0.6
for both Logistic Regression and Decision Tree, and 0.7 for Naive Bayes yields the
highest performance.

We ran different OIE systems on these datasets3. Table 3 shows the preci-
sion and recall of each system on two different datasets. NB, DT and LR sub-
scripts are used for Naive Bayes, Decision Tree and Logistic Regression, respec-
tively. There is an insignificant difference between the precision of SDE-OIE and its
constituent systems. ReVerb and EXEMPLAR have relatively high precision due
to designing good patterns for relation extraction; thus this can lead to a higher
rate of precision in SDE-OIE. The best result for the precision of SDE-OIE was
obtained by the Logistic Regression classifier. High precision of SDE-OIE is caused
by its primary elements. This is also the case for recall. As a result, selecting the
main components of the proposed approach has a direct effect on the overall pre-
cision and recall. In terms of precision, SONEX outperforms all other approaches

3 We used the source codes of these OIE systems for implementation. The source code
of SDE-OIE is available at https://github.com/VahidehRt/SDE-OIE.

https://github.com/VahidehRt/SDE-OIE
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since its pattern-based design is able to detect predicates triggered by a noun prop-
erly.

SDE-OIE’s recall is higher than that of ReVerb. Moreover, it is lower than
that for EXEMPLAR. EXEMPLAR has the highest precision among all the sys-
tems. It is superior mainly because it can recognize more correct instances, partic-
ularly those with verb + noun predicates [20]. The higher precision and the lower
recall in comparison to EXEMPLAR reflect that our approach finds less relation
instances than EXEMPLAR but most of the retrieved instances are accurate. Since
both ReVerb and EXEMPLAR have no output for some sentences, the number
of missing instances may be increased in comparison with EXEMPLAR individu-
ally. The best result for SDE-OIE’s recall was achieved by the Naive Bayes classi-
fier.

Penn Treebank New York Times
Method Precision Recall Precision Recall

SDE-OIENB 0.78 0.49 0.8 0.3
SDE-OIEDT 0.77 0.49 0.8 0.3
SDE-OIELR 0.79 0.43 0.81 0.26
ReVerb 0.78 0.14 0.8 0.13
EXEMPLAR 0.79 0.51 0.82 0.31
SONEX 0.92 0.43 0.84 0.22
OLLIE 0.81 0.43 0.81 0.25
PATTY 0.46 0.24 0.82 0.21
SwiRL-IE 0.89 0.16 0.84 0.2
Lund-IE 0.86 0.35 0.83 0.24

Table 2. Results for the task of extracting relations

Figure 2 shows the F-measure of each system. EXEMPLAR outperforms all
methods. This is mainly because of its relatively higher recall in comparison with
other methods. SDE-OIENB has the best F-measure among the other SDE-OIE
methods. SDE-OIENB and EXEMPLAR are both at a very close level of F-measure.
Based on the description given above, this can be interpreted in terms of preci-
sion and recall. ReVerb and EXEMPLAR have relatively high precision, there-
fore, SDE-OIENB’s precision is also high. SDE-OIENB and EXEMPLAR have the
same precision. SDE-OIENB’s recall is significantly higher than ReVerb, but slightly
lower than EXEMPLAR. Thus, SDE-OIENB’s F-measure is slightly lower than
that of EXEMPLAR, as it is defined as a harmonic mean of precision and re-
call.

SDE-OIE achieves an F-measure that is almost triple that of ReVerb. ReVerb
has a lower recall than other approaches because of the intrinsic weakness of shallow
tools in detecting relation instances. This leads to a significant drop in its F-measure.
The experiment results demonstrate that proper incorporation of shallow and deep
extractors decreases the number of incorrect extractions and increases the correct
ones, resulting in higher performance. On the other hand, our hybrid method is able
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a)

b)

Figure 2. The F-measure of our method in comparison with other methods drawn from
a) Penn Treebank b) New York Times. SDE-OIENB and EXEMPLAR have almost the
same F-measure. Their F-measure is better than that of the others.

to cover the limitations of the shallow OIE system and provides significant boost in
its performance. The satisfactory level of F-measure indicates that our approach is
at least as good as its deep constituent system.

The total computing time of each method was measured. We excluded the
time for initializing or loading any libraries or models into memory. To ensure
a fair comparison, we make sure each method runs in a single-threaded mode, thus
utilizing a single computing core at all times. The results are reported in Table 4.
The best results of our approach are highlighted in the table.
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Method Penn Treebank New York Times

SDE-OIENB 0.41 0.73
SDE-OIEDT 0.4 0.71
SDE-OIELR 0.38 0.68
ReVerb 0.02 0.01
EXEMPLAR 0.62 1.19
SONEX 0.04 0.03
OLLIE 0.14 0.23
PATTY 0.66 1.27
SwiRL-IE 2.17 3.49
Lund-IE 5.21 11.20

Table 3. Computing time (per second) for each method

The processing times vary with different types of extractors. There is an ex-
plicit differentiation of almost one order of magnitude among approaches based on
semantic parsing (SwiRL-IE and Lund-IE), dependency parsing (EXEMPLAR, OL-
LIE and PATTY) and shallow parsing (ReVerb and SONEX). ReVerb is the fastest
method since it uses shallow patterns and does not rely on any deep tool.

As the results show, deep extractors usually have a high computational cost.
There is always a trade-off between performance and speed when selecting a deep
extractor. Deep extractors usually have high computational cost. In general, the
deeper the extractor, the higher is the incurred computational cost. In the same
period of time, shallow extractors process several times more sentences than de-
pendency parsing extractors, which in turn process several times more sentences
than semantic parsing extractors. Since our main purpose is to achieve a high-
performance system both in time and performance, we have leveraged the best of
shallow and deep OIE systems. Selecting shallow and deep components was made
according to a fair and objective experimental comparison of 10 state-of-the-art ap-
proaches which is presented in [19] and [20]. Thus, SDE-OIE makes effective use of
available time and achieves a reasonable balance of precision and recall. As experi-
ment results show, the efficiency of the whole system has been affected by optimizing
the processing time which has been reduced more than 33 % for all classifiers. The
processing time for SDE-OIENB, SDE-OIEDT and SDE-OIELR was reduced by 33 %,
35 % and 38 %, respectively, in the Penn Treebank dataset and 38 %, 40 % and 42 %,
respectively, in the New York Times corpus.

SDE-OIELR is the fastest model among the other SDE-OIE models. Generally,
SDE-OIE has approximately the same F-measure as EXEMPLAR, but at a much
lower processing time. This becomes important in large inputs such as Web-scale
data. When the number of sentences processed by ReVerb is high, the total time
reduces to the processing time of ReVerb. An interesting result is that despite
achieving high accuracy, the methods based on semantic parsing (SwiRL-IE and
Lund-IE) have lower F-measure than SDE-OIE and also need too much computa-
tional time.
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4.4 Evaluation of Sentence Difficulty Estimator

The distribution of easy and difficult sentences is 39 % and 61 %, respectively (dif-
ficult being the majority class). Table 5 shows the distribution of the values in the
confusion matrix for all classifiers (TN, FP, FN, TP). In general, there are two types
of errors in our hybrid extractor. The first type is related to intrinsic weakness of the
constituent systems and amending these errors depends on the improvement of the
main extractors of the hybrid method. This kind of error is not caused by difficulty
classifier; it can be generated even if the proper extractor is selected. The second
type of error occurs with the incorrect selection of the extractor by the difficulty
classifier. This type of error almost always occurs as a direct result of the first type
of error. For example, in this case, the input sentence should be processed by the
shallow extractor but it is processed by the deep extractor. Thus, the optimal result
is not gained. Although this error may not affect the performance of the hybrid
method, it is not beneficial for the extraction speed.

Table 5 shows the accuracy and error rate for each classifier on the two datasets.
The accuracy for SDE-OIENB, SDE-OIEDT and SDE-OIELR is 72 %, 68 % and 73 %,
respectively, in the Penn Treebank dataset and 72 %, 67 % and 74 %, respectively,
in the New York Times corpus. The results show that SDE-OIELR is the most
accurate classifier among the three classifiers. We observe that the dominant error
in SDE-OIELR is classifying a difficult sentence as easy. In general, a sentence
difficulty classifier with a high accuracy results in a reasonable trade-off between
time and performance, because selecting the proper OIE system leads to a significant
reduction on the computational time of the whole system.

SDE-OIENB SDE-OIEDT SDE-OIELR

Difficult Easy Difficult Easy Difficult Easy

Penn Treebank Difficult 81.8 % 18.1 % 72.7 % 27.2 % 68.1 % 31.8 %
Easy 37.7 % 62.2 % 35.7 % 64.2 % 21.4 % 78.5 %

New York Times Difficult 82.7 % 17.3 % 71.6 % 28.3 % 69.3 % 30.6 %
Easy 37.3 % 62.6 % 36.5 % 63.4 % 20.3% 79.6 %

Table 4. The confusion matrix for the performance of the sentence difficulty classifiers

Penn Treebank New York Times
Accuracy Error rate Accuracy Error rate

SDE-OIEDT 68.5 % 27.3 % 67.5 % 32.4 %
SDE-OIENB 72 % 28 % 72.6 % 27.3 %
SDE-OIELR 73.3 % 26.6 % 74.5 % 25.4 %

Table 5. The accuracy and error rate of the difficulty classifiers
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5 CONCLUSIONS

We presented a new method for the automatic estimation of sentence difficulty in
ORE systems. In other words, this work explores the notion of relation extraction
difficulty and the ways how the difficulty information can be used to enhance ex-
traction quality in shallow extractors. We applied different classifiers with a set of
efficient sentence-based features to incorporate strengths of a shallow OIE system
with a deep one. Our sentence difficulty classifier detects difficult sentences for pro-
cessing by the deep extractor. We detected the best trade-off between efficiency
(computational cost) and effectiveness (F-measure). Experiment results demon-
strate that the proposed approach achieves significantly better F-measure than its
shallow extractor. SDE-OIE also has approximately the same level of F-measure
as its deep constituent extractor, but at a much lower processing time. This shows
that isolation of difficult sentences from the rest of the sentences creates flexibility
for applying different types of system customizations.

The aim of OIE is to scale information extraction methods to the size and
diversity of the Web domain. SDE-OIE passes an input sentence to a deep extractor
only if it is needed. SDE-OIE is able to better allocate computational resources and
avoid wasting them, and thus it is suitable in cases where the computing time is
limited and high performance is desired.

We believe that an extended work on difficulty modeling should incorporate
different sophistication levels of NLP tools; thus this method can be extended to
a multi-class problem as well. A SRL-based approach can be applied as the deepest
underlying extractor. The proposed features are very fast to compute, which is an
important property from a practical implementation perspective. In addition to our
proposed features, some features from the underlying systems can be incorporated
into the difficulty classifier. Using semantic features can also bring deeper linguistic
knowledge into our model, but at the cost of time.
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