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Abstract. Compute Cloud comprises a distributed set of High-Performance Com-
puting (HPC) machines to stipulate on-demand computing services to remote users
over the internet. Clouds are capable enough to provide an optimal solution to ad-
dress the ever-increasing computation and storage demands of large scientific HPC
applications. To attain good computing performances, mapping of Cloud jobs to
the compute resources is a very crucial process. Currently we can say that several
efficient Cloud scheduling heuristics are available, however, selecting an appropri-
ate scheduler for the given environment (i.e., jobs and machines heterogeneity)
and scheduling objectives (such as minimized makespan, higher throughput, in-
creased resource utilization, load balanced mapping, etc.) is still a difficult task.
In this paper, we consider ten important scheduling heuristics (i.e., opportunistic
load balancing algorithm, proactive simulation-based scheduling and load balancing,
proactive simulation-based scheduling and enhanced load balancing, minimum com-
pletion time, Min-Min, load balance improved Min-Min, Max-Min, resource-aware
scheduling algorithm, task-aware scheduling algorithm, and Sufferage) to perform
an extensive empirical study to insight the scheduling mechanisms and the attain-
ment of the major scheduling objectives. This study assumes that the Cloud job
pool consists of a collection of independent and compute-intensive tasks that are
statically scheduled to minimize the total execution time of a workload. The ex-
periments are performed using two synthetic and one benchmark GoCJ workloads
on a renowned Cloud simulator CloudSim. This empirical study presents a detailed
analysis and insights into the circumstances requiring a load balanced schedul-
ing mechanism to improve overall execution performance in terms of makespan,
throughput, and resource utilization. The outcomes have revealed that the Suffer-
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age and task-aware scheduling algorithm produce minimum makespan for the Cloud
jobs. However, these two scheduling heuristics are not efficient enough to exploit
the full computing capabilities of Cloud virtual machines.

Keywords: Distributed computing, scheduling algorithm, high-performance com-
puting, scheduling
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1 INTRODUCTION

Cloud is a large pool of virtualized resources that are provisioned on-demand in
a scalable manner. The efficient job scheduling mostly increases the user’s satisfac-
tion, improves the system utilization, reduces the job execution time, and minimizes
the energy consumption. Scheduling heuristics are generally classified as static and
dynamic. A static scheduling heuristic forms a complete job mapping plan be-
fore execution while a dynamic scheduling technique generally relies on the runtime
parameters to schedule jobs in a best-effort with the use of resources in a more scal-
able manner as per user requirements. The static Cloud scheduling heuristics avoid
the migration of Virtual Machines (VMs) to avoid communication overheads to re-
duce the execution time. In addition, most of the static techniques produce good
turnaround time and irrefutable Quality of Service (QoS) because of the pre-ensured
availability of the computing resources for the workload execution [1]. However, the
static scheduling techniques may produce inefficient and lower resource utilization
due to runtime changes in workload and computing environment [2].

In Cloud environment, scheduling is employed at two levels:

1. VM scheduling is concerned with the mapping of virtual machines to the physical
hosts in a Cloud data-center, and

2. job scheduling is concerned with the assignment of jobs to the virtual machines.

Various metrics are harnessed to determine the performance of job scheduling algo-
rithms. These performance metrics include makespan, throughput, resource utiliza-
tion, response time, and energy consumption. A crucial aspect of scheduling is to
map Cloud jobs in a load balanced manner to reduce the makespan of a job pool.
Load balanced mapping refers to a distribution of jobs (among VMs) so that all the
VMs accomplish the execution of assigned workload within the approximately same
time duration. Importantly, a balanced load ensures improved resource utilization,
higher throughput, and lower execution time for a job pool.

Several Cloud scheduling heuristics [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
have been presented by the scientific community. However, the selection of an ap-
propriate scheduler according to a given environment (jobs computing requirements
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and the available computing resources) to achieve desired scheduling objectives (such
as reduced makespan, higher throughput, etc.) is still a difficult task. Since each
heuristic contains different underlying assumptions; therefore, a precise compari-
son cannot be made. In this regard, we empirically scrutinize and experimentally
compare ten state-of-the-art static scheduling heuristics (i.e., Opportunistic Load
Balancing (OLB) [1, 10, 13], Proactive Simulation-Based Scheduling and Load Bal-
ancing (PSSLB) [17], Proactive Simulation-Based Scheduling and Enhanced Load
Balancing (PSSELB) [17], Minimum Completion Time (MCT) [6, 18], Min-Min [7, 8,
9, 10, 11], Load Balance Improved Min-Min (LBIMM) [11, 17], Max-Min [5, 10, 13],
Resource-Aware Scheduling Algorithm (RASA) [12, 19], Task-Aware Scheduling Al-
gorithm (TASA) [16], and Sufferage [10, 14, 15]).

In an empirical analysis, Syed Hamid Hussain Madni et al. provides the in-
vestigation of First Come First Serve (FCFS), Minimum Execution Time (MET),
MCT, Min-Min, Max-Min, and Sufferage scheduling algorithms [3]. Based on their
analysis, Madni et al. concluded that the hybridization of these techniques may re-
sult in more improved results and overcome the limitations of each other to achieve
the optimization of task scheduling in cloud computing [3]. Therefore, in this re-
search work, some hybridized scheduling techniques (i.e. RASA [12, 19], TASA [16],
LBIMM [11, 17], PSSLB [17], and PSSELB [17] algorithms) are also considered for
performance investigation of resource utilization in cloud computing. Figure 1 shows
ten scheduling algorithms; where the techniques on the tail of each arrow are the
modified and hybridized techniques based on the scheduling techniques directed by
the arrow symbols (i.e., the mechanism of RASA is based on Max-Min and Min-Min,
the mechanism of TASA is based on Sufferage and Min-Min, LBIMM is the modified
version of Min-Min, PSSLB is the modified version of Max-Min, and PSSELB is the
modified version of PSSLB technique).

In this study, we consider the following assumptions for the empirical-based
comparison of the employed scheduling heuristics. One such assumption is that
a workload is referred to as a collection of independent and compute-intensive tasks
(without inter-task data dependencies). The mapping of these tasks is performed
statically to minimize the scheduling overhead and to evade job migrations [13].
This empirical study provides a detailed analysis of the scheduling heuristics and
insights of the scheduling mechanisms where a higher throughput and reduced ex-
ecution time is attained; however, a considerable load imbalance is observed in
the experimentation. We argue that the existing state-of-the-art static scheduling
heuristics should address the load-balancing issue to attain exquisite resource uti-
lization in Cloud computing. A near-optimal resource utilization will produce higher
throughput, reduced execution time (for the Cloud job pool), and energy efficient
execution.

In summary, we present an analysis of the resource utilization of virtual resources
in terms of workload distribution among all the VMs. The empirical investigation
reveals that most of the scheduling heuristics are not efficient enough to exploit
the full computing capabilities of virtual machines in Cloud infrastructure. This
empirical study has highlighted various pressing research gaps that must be overcome
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Figure 1. Hybridization of Cloud scheduling algorithms

to improve the scheduling performance and to reduce cost at Cloud service provider
level (discussed in Section 5). Major contributions of this work include:

1. a critical analysis and synthesis of the existing state-of-the-art static Cloud
scheduling algorithms to identify the pros and cons of each algorithm;

2. in-depth performance analysis (in terms of turnaround time, resource utiliza-
tion, and throughput) and empirical assessment of the existing static scheduling
algorithms using two synthetic datasets and one benchmark dataset for Cloud
and distributed computing [37];

3. identification of the potential research directions that could assist the scien-
tific community to cope with the challenges pertaining to the static scheduling
heuristics for Cloud computing.

The rest of the paper is organized as follows. Section 2 discusses the working
semantics of scheduling heuristics. Section 3 illustrates the experimental setup and
workload compositions. Section 4 examines the experimental results. The resource
utilization and load imbalance in workload distribution caused by scheduling heuris-
tics are presented in Section 5 and the potential research directions are identified.
Section 6 concludes this research work.
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2 CLOUD SCHEDULING HEURISTICS

In this study, we synthesize and evaluate ten prominent static Cloud scheduling
heuristics which are: MCT [3, 6], OLB [1, 10, 13], Min-Min [7, 8, 9, 10, 11], Max-
Min [5, 10, 13], Sufferage [10, 14, 15], RASA [12, 20], PSSLB [17], PSSELB [17],
LBIMM [11, 17], and TASA [16]. The working of these heuristics is delineated below.

2.1 OLB Algorithm [1, 4, 10, 13]

This scheduling technique assigns each job, in an arbitrary order, to the next avail-
able machine regardless of considering the job’s execution time on that particular
machine. OBL is a simple scheduling scheme having low scheduling overhead and
complexity. A major scheduling objective of the OBL scheme is to make all the
Cloud machines as busy as possible [13]. However, OBL scheduling heuristic mostly
results in poor makespan because it is not resource-aware.

2.2 MCT Algorithm [3, 8, 13]

MCT technique assigns a candidate job to a machine that consumes minimum time
for the job [13]. The MCT heuristic examines the current load of machines to find
a suitable target machine for job assignment [8]. At each scheduling step, MCT
heuristic has to scan all the available machines to find the most appropriate com-
puting resource (i.e., machine producing the minimum completion time for a job).
The expensive search mechanism employed by the MCT (at each scheduling step)
causes a significant scheduling overhead.

2.3 Min-Min Algorithm [11, 13, 21, 22]

Min-Min scheduling first determines the minimum completion time of all the un-
allocated jobs and proceeds with the assignment of a job having overall minimum
completion time on a certain machine. Both Min-Min and MCT scheduling heuris-
tics rely on the completion time of a job on a certain machine [6]. MCT considers
the current job only for scheduling decision (at a certain scheduling step), whereas
the Min-Min considers the minimum completion time for all the unallocated jobs
(in each scheduling decision). Min-Min scheduling heuristic favors (i.e., schedules
first) the small-sized jobs while penalizing (causing delayed execution) for larger
jobs [8, 9, 10, 11, 12]. Therefore, Min-Min mostly overloads the faster machines with
larger number of small-sized jobs, while the slower machines are assigned fewer but
larger jobs. Thus, the larger jobs mapped on slower resources often cause a higher
makespan for the execution of the job-pool [23].
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2.4 Max-Min Algorithm [3, 21, 24]

Max-Min scheduling first computes the expected minimum completion time for all
the jobs and then the job requiring a maximum completion time is assigned to the
concerned machine. The scheduling process is repeated until all the un-allocated
Cloud jobs are scheduled. To avoid longer response time (for the larger jobs), Max-
Min scheduling heuristic selects larger jobs to be executed early [6, 14]. Max-Min
heuristic mostly performs better in the scenario when there is a large number of
small-sized jobs with a few larger size jobs [11, 14, 15]. The inherent mechanism of
both Max-Min and Min-Min heuristics adversely affects the resource utilization in
Cloud (as evident in our experimental results presented in Section 4).

2.5 Sufferage Algorithm [11, 21, 22]

Sufferage scheduling calculates the sufferage value for each job. To calculate the
sufferage value (i.e., a penalty in terms of longer execution time), the minimum
completion time and the second best minimum completion time producing VMs are
determined for each job (in each scheduling iteration). Afterward, the job experi-
encing the highest sufferage value is assigned to the machine (producing minimum
completion time for that job). Sufferage heuristic produces good results often with
reduced makespan; however, this scheduling mechanism causes higher scheduling
overhead (due to the calculation of sufferage value for each job in each scheduling
iteration) as compared to OLB, MCT, Max-Min, and Min-Min [18, 21, 22].

2.6 RASA Algorithm [12, 19]

RASA technique contemplates both Min-Min and Max-Min heuristics in the alter-
nate scheduling decisions until all the jobs are scheduled. RASA exploits the merits
of both Min-Min and Max-Min to evade corresponding limitations of these two
scheduling algorithms in certain cases (as discussed above). Mostly, RASA results
in a lower makespan when it considers smaller and larger jobs in alternate scheduling
steps [12]. However, RASA penalizes smaller size jobs (causing delayed execution)
when the number of larger jobs is higher in the workload [24].

2.7 TASA Algorithm [16, 30]

TASA favors the smaller jobs in the first scheduling step (based on Min-Min heuris-
tic) and finds an appropriate machine for the job (using the Sufferage heuristic)
in the second scheduling step [16]. In most of the cases, TASA produces better
makespan as compared to other scheduling heuristics such as Min-Min, Max-Min,
and OLB [16].
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2.8 LBIMM Algorithm [11, 17]

LBIMM [11, 17] assigns jobs to machines using the Min-Min scheduling technique
in the first phase. In the subsequent phase, LBIMM finds the smallest job on the
most loaded machines and determines its completion time on the other machines.
After that, the minimum completion time of that job is compared with makespan.
If this time value is less than the makespan, the job is assigned to a new machine
and the ready time of both machines are modified. This procedure is repeated for
the next smallest job on the most loaded machine, too. The process is repeated
until there is no other machine that can produce the minimum completion time for
the smallest job on the heavily loaded machine than makespan on another machine.
This technique shares a load of heavy machines with the idle or lighter machines.
LBIMM produces better makespan and load balancing than Min-Min heuristic.

2.9 PSSLB Algorithm [17]

PSSLB and PSSELB Algorithms are proposed to assign the large-sized jobs to the
machines that can execute them faster than the other machines. PSSLB finds the
matrix (i.e., each row has a completion time of a specified job on all machines) of
completion time of each job on each machine. The matrix is sorted in a way that the
last column stores minimum completion time for each job. Therefore, the longest
job on the last column is selected and assigned to machine producing minimum
completion time for it.

2.10 PSSELB Algorithm [17]

PSSELB Algorithm is the modified version of PSSLB that produces a load balanced
schedule. The largest job among the unallocated jobs is assigned to the machine
using PSSLB, and completion time of this job is considered as a pivot. After that,
the jobs that produce completion time (i.e., on other machines) equal to or less than
the pivot are iteratively determined and assigned to the concerned machines (i.e.,
producing MCT for a job equal to or less than the pivot value). Next, the largest job
is assigned to the concerned machine using PSSLB, and the pivot is updated with
the completion time of the largest job. Again, the jobs with MCT on other machines
(i.e., except the machine with last largest job assigned) that is equal to or less than
the pivot are determined and assigned to the concerned machine. This scheduling
procedure is repeated till all the unallocated jobs are assigned to machines in the
same way.

Assuming N number of Cloud jobs to be scheduled on M machines, Table 1
presents the summary of strengths, weaknesses, and time-complexity of the eight
scheduling heuristics, and the employed simulation tool (by the authors of the men-
tioned research work).
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Heuristics Strengths Weaknesses Complexity Tools Used

OLB [5, 10,
13]

Low complexity,
Minimal overhead,
keeps machines
busy [5, 10]

Load-imbalance,
and No-fairness in
scheduling [4]

O(M) tGSF Sim-
ulator [18],
CloudSim Simu-
lator [4].

MCT [3, 8,
13]

Improved makespan
than OLB [9],
Machine-aware
scheduling [24]

Load-
imbalance [5, 15],
Overloads faster
VMs

O(M ·N) CloudSim [4],
NS Simulator [7]

MinMin [3,
24, 26]

Favors smaller
jobs [12], Reduced
makespan for
smaller jobs [1, 8]

Overloads faster
VMs with smaller
Jobs [12], Penalizes
larger jobs.

O(M ·N2) C-Language [24],
Matlab [15],
Java-based
Simulation

LBIMM
[11, 17, 27]

Improved makespan
than Min-Min [27],
improved resource
utilization than
Min-Min [11]

A few smaller jobs
are penalized while
rescheduled [11]

O(M ·N2) Matlab [11]

MaxMin [3,
21, 24]

Favors larger
jobs [1, 28], Re-
duced makespan for
larger jobs [22].

Penalizes smaller
jobs [16], Load-
imbalance for job
pool with more
larger jobs [12].

O(M ·N2) Matlab and
Java-based
Simulation [8]

RASA [12,
19, 20]

Fair treatment of
larger and smaller
jobs [14].

Penalizes smaller
jobs in dataset
with more larger
jobs [23]

O(M ·N2) GridSim [11].

Sufferage
[3, 9, 14]

Improved makespan
than MCT, Min-
Min, and Max-
Min [21], Job
allocation to appro-
priate VM [22].

High scheduling
overhead due to
Sufferage value
calculation [10].

O(M ·N2) C++ and Java
implemen-
tations [14],
Matlab

TASA [16,
30]

Improved makespan
than Max-Min,
Min-Min and
RASA [16], Favors
smaller jobs.

Load balancing is
not considered [16].

O(M ·N2) CloudSim [16].

PSSLB [17] Reduces completion
and response time
for larger jobs [17]

Penalizes smaller
jobs [17]

O(M ·N2) CloudSim [17].

PSSELB
[17]

Improved makespan
than PSSLB [17]

Results in load im-
balance compared
to PSSLB [17]

O(N2/2) CloudSim [17].

Table 1. Summary of scheduling algorithms in related work
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3 EXPERIMENTAL SETUP

Evaluation of scheduling and resource allocation policies on real Cloud (with a vary-
ing load and system size) is a challenging problem. The use of real testbeds restricts
the experiments to the scale of the test environment. Cloud computing model is
based on a pay-per-use model, thus repeatable experiments on real Cloud may incur
a high monetary cost. Therefore, an ideal alternative to evaluate resource manage-
ment related Cloud policies is to use a simulation environment that enables Cloud
developers to conduct experiments by employing the desired and varying configura-
tions related to computing infrastructure and dataset (i.e., Cloud jobs). In this work,
we use a renowned Cloud simulator called CloudSim [31] (version 3.0.2). A user job is
represented as cloudlet in CloudSim and the job’s size (computational requirement)
is measured in terms of Million Instructions (MI). We perform the simulation-based
experiments on a machine equipped with Intel Core i3-4030U Quad-core processor
(having 1.9 GHz clock speed) and 4 GB of main memory. Liu and Cho [32] charac-
terize the computing machines and workloads on a Google cluster and found that
93 % of the machines are fairly homogeneous on Google cluster with approximately
6 % of the machines with a greater computing capability [32]. Using the character-
istics of the real computing machines (found in Liu and Cho’s study [32]) we build
an experimental setup for empirical evaluation. Table 2 illustrates the configuration
details of the employed simulation environment. Figure 2 presents the overall statis-
tics of the employed VMs with computing powers in terms of Million Instructions
Per Seconds (MIPS).

Parameters Details

Power of Cloud Host Machines 4 Dual core (4 000 MIPS), 26 Quad core (4 000 MIPS)

Total Host Machines 30 Host Machines

Total VMs 50 Virtual Machines

Total Cloudlets 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600,
650, 700, 750, 800, 850, 900, 950, 1 000

Table 2. Configuration of simulation environment

3.1 Workload Generation

In this research work, one GoCJ benchmark dataset [37] and two synthetic datasets
are used for the performance assessment of scheduling algorithms in simulation-based
experimentation. The detail of these datasets are described as follows.

3.1.1 GoCJ Dataset [37]

The data confidentiality and other such policies maintained by the Cloud service
providers [33] hinder to acquire real Cloud workload for the empirical investigations.
The contemporary state-of-the-art has been scrutinized to explore a real workload
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Figure 2. VMs in the cloud datacenter

behavior in Google cluster traces [32, 33, 34, 35, 36] and MapReduce logs from the
M45 supercomputing cluster [36].

Liu and Cho studied a large-scale Google cluster usage traces of 29 days to
examine the machine properties, workload behavior, and resource utilization [32].
The analysis of the Google cluster traces affirms that the majority of jobs execute
for fairly a short duration (i.e., less than 15 minutes), while the low number of
jobs execute over 300 minutes [32]. Further, the study [32] establishes the fact that
approximately two thirds of the jobs in the Google cluster traces execute for less
than five minutes and approximately 20 % of the jobs execute for less than one
minute. The median length of a job in the Google cluster traces is approximately
3 minutes. Another similar study of Google cluster is presented by Chen et al. [35]
and Reiss et al. [34].

In addition, Kavulya et al. [36] have scrutinized MapReduce logs of the M45 su-
percomputing cluster (logs of 10 months released by Yahoo). The study of MapRe-
duce logs affirms that 95 % of the jobs complete the execution within 20 minutes and
approximately 4 % of the jobs exceed execution up to 30 minutes [36]. Literature
review [32, 33, 34, 35, 36] reveals that most of the Cloud jobs are of a short size and
execute for less than 5 minutes.

Based on the analysis, we have generated a benchmark workload entitled Google
Cloud Jobs (GoCJ) [37]. Considering the computing power of VMs in a Cloud data-
center (see Figure 1), the cloudlet completion time follows a long-tailed distribu-
tion (with 90 % of cloudlets in GoCJ workload completing their execution within
1.6 minutes). The longest executing cloudlet observed in the GoCJ workload lasts
up to 15 minutes (6 % cloudlets execute for less than 5 minutes and 4 % execute for
15 minutes). The average size of a job in GoCJ workload is 5 minutes. Figure 3
presents the ratios and sizes of cloudlets distribution in GoCJ workload in terms of
percentage and MIs, respectively.
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3.1.2 Synthetic Datasets

In addition to GoCJ dataset, we study the literature [28, 38, 39] to generate two
synthetic datasets containing fix-sized jobs. Mehdi et al. [28] conducted the experi-
mentation of a genetic scheduler with heterogeneous VMs (1.0 GHz to 4.0 GHz speed)
to execute up to 100 cloudlets. In another work, Mehdi et al. [38] have examined the
Cloud scheduling using 100 VMs (computing power of 1.0 GHz, 2.0 GHz, 2.5 GHz,
and 3.0 GHz) to execute up to 500 cloudlets. Behzad et al. [39] presented a compar-
ative analysis of different scheduling algorithms by using 7 000 and 15 000 jobs with
a varying number of CPUs (i.e., 4 to 64 processors).

The synthetic-I workload is created with five fixed-size cloudlets (see Figure 4).
The majority of cloudlets (i.e., 75 % of the cloudlets in synthetic-I workload) com-
plete execution within 2 seconds and a small tail of the cloudlet distribution exe-
cutes up to 45 seconds (i.e., 15 % of the cloudlets run for 15 seconds and 5 % of the
cloudlets run for 45 seconds). The fixed sizes of tiny, small, medium, large and extra-
large cloudlets in synthetic-I dataset are 200, 1 000, 5 000, 15 000, and 45 000 MIs,
respectively.

The synthetic-II workload is generated using a random number generation mech-
anism by employing five cloudlet-size ranges (see Figure 4). The majority of cloudlets
(i.e., 85 % in synthetic-II workload) are of a short size and a small tail of the cloudlet
distribution completes execution within 45 seconds (i.e., 10 % of the cloudlets run
for 10 seconds and 5 % of the cloudlets run for 45 seconds). The cloudlet-size
ranges of tiny, small, medium, large, and extra-large cloudlets are 1–200, 800–1 200,
1 800–2 500, 7 000–10 000, and 30 000–45 000 MIs, respectively.
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4 EXPERIMENTAL RESULTS

Three performance metrics are measured and presented for experimental evaluation,
i.e., makespan, Average Resource Utilization Ratio (ARUR), and throughput.

4.1 Makespan-Based Results

We use term makespan to represent the completion of all the cloudlets execution
in a workload. The smaller value of makespan represents a better execution perfor-
mance. The makespan is mathematically expressed as follows:

Makespan = max
∀j=1,2,3,...,m

(VM CT j) (1)

where m represents the total number of VMs (which is 50 in our experiments)
and VM CT j is the completion time of VM j by executing its assigned cloudlets.
VM CT j is computed as:

VM CT j =

nj∑
i=1

Cloudlet i.MI

VM j.MIPS
(2)

where Cloudlet i.MI represents the size of cloudlet i in terms of Million Instructions
(MIs), VM j.MIPS is the computing power of VM j in terms of Million Instructions
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Per Second (MIPS) and nj represents the total number of cloudlets assigned to
VM j.

Figure 5 shows the makespan results of 10 scheduling algorithms for Synthe-
tic-I, Synthetic-II, and GoCJ benchmark workloads. For more clarity, the average
makespan (i.e., separately for synthetic-I, synthetic-II, and GoCJ workloads) of all
the experiments using different number of cloudlets is calculated as follows:

Avg Makespan =

∑NE
i=1 Makespan i

NE
(3)

where NE represents the number of experiments performed for each scheduling
algorithm (i.e., using specified workload) and Makespani represents the makespan
of ith experiment. Each experiment is repeated using a varying number of cloudlets
(i.e., cloudlets 100–1 000, as presented in Table 2). The average makespan results
for all scheduling algorithms are presented in Figure 6. The LBIMM, TASA, and
Sufferage techniques produce the shortest makespan for Synthetic-I, Synthetic-II,
and GoCJ workload, respectively. However, there is a minor difference with respect
to makespan of LBIMM, TASA and sufferage algorithms for the three workloads.
On the other hand, OLB achieves the largest makespan for Synthetic-I, Synthetic-II,
and GoCJ benchmark workloads.

4.2 Throughput-Based Results

Throughput is the number of jobs executed during the span of per unit time. In
our experiments, the throughput is referred as the number of cloudlets executed per
second. Throughput can be calculated as follows:

Throughput =
n

Makespan
(4)

where n is the number of employed cloudlets. A scheduling technique producing
higher throughput value is assumed a better performing algorithm. For more clarity
in results, the average throughput for synthetic-I, synthetic-II, and GoCJ workloads
is calculted as:

Avg Throughput =

∑NE
i=1 Throughput i

NE
. (5)

Figure 7 presents the throughput results for execution of Synthetic-I,
Synthetic-II, and GoCJ benchmark workloads. While, for more clarity in the sim-
ulation results, Figure 8 represents the average throughput for all scheduling algo-
rithms using the given workloads. Likewise average makespan results, the LBIMM,
TASA, and Sufferage algorithms achieve the highest throughput for Synthetic-I,
Synthetic-II, and GoCJ benchmark workloads, respectively. Similarly, OLB tech-
nique achieves the least throughput using given three workloads.
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Figure 5. Makespan results
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Figure 1: Average Makespan Results 
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Figure 6. Average makespan results

4.3 ARUR-Based Results

ARUR shows the average resource utilization ratio for a compute Cloud. ARUR is
the ratio of average makespan to the makespan of the Cloud system and is calculated
as follows [10].

ARUR =

∑m
j=1 VM CTj

m

Makespan
. (6)

ARUR value remains between 0 and 1, where value close to 1 shows exceptional
resource utilization (i.e., nearest to 100 % resource utilization). Figure 9 shows
the ARUR-based experimental results of ten scheduling algorithms for Synthetic-I,
Synthetic-II, and GoCJ benchmark workloads. Mean ARUR value for each heuristic
is reported based on the following equation:

Mean ARUR =

∑NE
i=1 ARURi

NE
. (7)

Figure 10 presents the Mean ARUR results for the execution of Synthetic-I,
Synthetic-II, and GoCJ benchmark workloads. The LBIMM technique attains the
highest ARUR (76.5 % resource utilization), as compared to other scheduling al-
gorithms for Synthetic-I workload. However, in case of Synthetic-II and GoCJ
benchmark workloads, Sufferage algorithm produces the highest resource utiliza-
tion (75.7 % and 86.3 % resource utilization, respectively), as compared to other
scheduling techniques. The OLB scheduling produces the least resource utilization
among all scheduling techniques using given three workloads (i.e., 18.8 %, 20.7 %,



540 A. Hussain, M. Aleem, M.A. Iqbal, M.A. Islam

 
 A) Using Synthetic-I Dataset 

 
 B) Using Synthetic-II Dataset 

 
 C) Using GoCJ Dataset 

 

0

2

4

6

8

10

12

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

TH
R

O
U

G
H

P
U

T 
 (

C
LO

U
D

LE
TS

/S
EC

)

NO OF CLOUDLETS

TASA Sufferage Max-Min RASA Min-Min LBIMM MCT OLB PSSLB PSSELB

0

2

4

6

8

10

12

14

16

18

20

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

TH
R

O
U

G
H

P
U

T 
 (

C
LO

U
D

LE
TS

/S
EC

)

NO OF CLOUDLETS

TASA Sufferage Max-Min RASA Min-Min LBIMM MCT OLB PSSLB PSSELB

0

0.1

0.2

0.3

0.4

0.5

0.6

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

TH
R

O
U

G
H

P
U

T 
 (

C
LO

U
D

LE
TS

/S
EC

)

NO OF CLOUDLETS

TASA Sufferage Max-Min RASA Min-Min LBIMM MCT OLB PSSLB PSSELB

Figure 7. Throughput results
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Figure 1: Average Throughput Results 
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Figure 8. Average throughput results

and 41.2 % resource utilization for Synthetic-I, Sythetic-II, and GoCJ workloads,
respectively).

4.4 Comparative Discussion

OLB produces poor makespan and very low resource utilization. However, OLB
technique requires simple implementation, causes minimal scheduling overhead, and
results in lower time complexity. MCT provides improved makespan for the work-
load execution and minimal completion time for each job. However, MCT results
in low resource utilization for both skewed and non-skewed workloads because it
overloads the faster machines, what results in an imbalanced distribution of work-
load.

A workload is referred to as positively skewed if it contains a large number of
shorter size jobs with a few very long jobs [25]. On the other hand, if the workload
comprises a large number of longer jobs with a few shorter jobs then the work-
load is referred to as negatively skewed [25]. The skewness in synthetic and GoCJ
benchmark workloads used in this study is shown in Figures 3 and 4.

Min-Min and Max-Min do not produce good results (in terms of execution time)
for a skewed workload [25]. Min-Min scheduling attains improved execution time
when the workload has shorter size jobs or cloudlets. On the other hand, Min-Min
produces longer makespan for a positively skewed workload (due to the inherent
penalty for larger jobs). In case of workload containing most of the shorter jobs with
few longer jobs, Max-Min achieves improved makespan by executing longer jobs on
faster machines; and concurrently executing the shorter jobs on comparatively slower
machines. However, Max-Min and Min-Min perform worst for a skewed workload
and provide improved results for a non-skewed workload [25].
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Figure 9. ARUR results
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Figure 1: Mean ARUR Results 
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Figure 10. Mean ARUR results

RASA scheduling mechanism benefits from the merits of Min-Min and Max-Min
producing a lower response time for both smaller and larger size jobs [12]. TASA,
Sufferage, and LBIMM are modified versions of Min-Min [12, 16]. Therefore, these
scheduling techniques provide better results (for a non-skewed workload) as com-
pared to Min-Min. Additionally, TASA produces higher resource utilization (as
evident by the results shown in Section 4.3). Similarly, PSSLB and PSSELB al-
gorithms are the modified versions of Max-Min techniques (as shown in Figure 1).
PSSELB provides better resource utilization as compared to Max-Min, while it
introduces a slight degradation in makespan and throughput of PSSELB, as com-
pared to Max-Min. On the other hand, PSSLB shows resemblance in results (i.e.,
makespan, resource utilization and throughput results), as compared to Max-Min
technique.

5 RESOURCE UTILIZATION AND LOAD-IMBALANCE

We scrutinize the literature [1, 3, 4, 11, 12, 13, 16, 17] to examine the schedul-
ing aspects related to load balancing and resource utilization for Cloud computing
platform. The detailed analysis of the literature revealed that most of the existing
scheduling algorithms [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 21, 22, 23, 24, 25,
26, 28, 29] are more inclined towards the decrease in turnaround and response time
of a Cloud workload. For example, MCT, Min-Min, Max-Min, RASA, TASA, and
Sufferage algorithms are designed and proposed to minimize makespan of the Cloud
workload. The OLB, LBIMM, PSSLB, and PSSELB techniques consider additional
consideration of load balancing, too. However, most of these scheduling algorithms
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are still unable to fully utilize the computing resources and result in an imbalanced
work distribution among the virtual machines.

Our empirical analysis reveals that LBIMM, TASA, and Sufferage techniques
produce comparatively better utilization of computing resources (i.e., higher re-
source utilization), as compared to other scheduling algorithms presented in this
work. In Table 3, the results show that the LBIMM heuristic attains higher re-
source utilization (i.e., 8.36 % and 11.52 % higher, respectively), as compared to the
TASA and Sufferage for the execution of Synthetic-I workload. The Sufferage heuris-
tic attained higher resource utilization (i.e., 0.66 % and 9.24 % higher, respectively),
as compared to the TASA and LBIMM for the execution of Synthetic-II workload.
Similarly, the Sufferage scheduling achieves higher resource utilization (i.e., 2.01 %
and 8.55 % higher resource utilization, respectively), as compared to the LBIMM
and TASA for the GoCJ workload. Moreover, the Sufferage, Max-Min, and PSSLB
heuristics attain higher resource utilization too for the execution of a GoCJ work-
load. The Max-Min and RASA have achieved higher resource utilization of 5.40 %
and 6.29 %, respectively, as compared to TASA for GoCJ workload. This minor
improvement in resource utilization by RASA and Max-Min techniques over TASA
is due to the lower resource utilization incurred by the Min-Min heuristic (as com-
pared to Max-Min and RASA for the execution of GoCJ workload). Further, it
is observed that the LBIMM, TASA and Sufferage schedulers achieve the minimal
completion time and better resource utilization as compared to Max-Min, RASA,
Min-Min, MCT, OLB, PSSLB, and PSSELB techniques. The experimental results
reveal that the LBIMM, TASA and Sufferage mechanisms attain on average lower
makespan compared to the other state-of-the-art. However, the most of these mech-
anisms still lack a higher resource utilization (see Table 3) that could be improved
to further lessen the makespan for the execution of a Cloud workload.

Algorithms GoCJ Dataset Synthetic-I Dataset Synthetic-II Dataset

TASA 79.5 % 70.6 % 75.2 %

Sufferage 86.3 % 68.5 % 75.7 %

Max-Min 84.5 % 38.7 % 38.9 %

RASA 83.8 % 34.1 % 36.0 %

Min-Min 52.0 % 46.5 % 37.5 %

LBIMM 84.6 % 76.5 % 69.3 %

MCT 69.8 % 55.0 % 50.5 %

PSSLB 84.5 % 38.7 % 39.1 %

PSSELB 46.7 % 31.3 % 36.9 %

OLB 41.2 % 18.8 % 20.7 %

Table 3. Percentage of resource utilization of scheduling algorithms

Improving resource utilization is very crucial to reduce the cost and energy
consumption for workload execution in a Cloud datacenter [23, 40]. Therefore, the
issue concerning low resource utilization should be addressed in a comprehensive
manner, while designing a Cloud scheduling technique. For the optimal resource



Resource Utilization in Cloud Computing 545

utilization, the workload should be assigned to the computing resources according
to the computing capabilities and application need. A resource- and application-
aware Cloud scheduling algorithm with load balancing will greatly benefit in terms
of reduced execution time and cost. Therefore, we have investigated machine-level
load balancing (i.e., VM category and VM-level load distribution) by using these
ten scheduling algorithms.

5.1 Discussion on VM Category and VM-wise Load Imbalance

For the empirical investigation, we employ the simulation environment based on
50 VMs (8 different sizes, as shown in Figure 2). For a balanced workload dis-
tribution, the cloudlets must be submitted to a compute Cloud for execution by
considering the computing capabilities of the employed VMs. Moreover, it is critical
to consider the current load of a VM, too. The computing load or share of each
VM j is presented as Sharej and can be calculated as:

Sharej =
n∑

i=1

Cloudlet i.MI × VM j.MIPS∑m
k=1VM k.MIPS

(8)

where Sharej is the amount of workload in terms of MI that needs to be allocated to
VM j to attain a load-balanced scheduling. The balance share for each VM category
in terms of percentage workload is represented as VMCat Sharec and is calculated
as follows:

VMCat Sharec =

∑cm
a=1 Sharea∑n

i=1 Cloudlet i.MI
× 100 (9)

where c represents the VM category and cm is the number of VMs in the VM
category c.

Percentage workload distribution by the 10 scheduling algorithms is presented
in a tabular form to highlight the load imbalance (see Figure 11). VMCat Sharec of
VM categories (see Figure 2) in a simulation environment is presented as a reference
for load distribution attained by the employed scheduling algorithms (see Figure 11,
presented in the last row). The imbalanced workload allocations are depicted such as
the underutilized resources are filled with orange-color background, heavily loaded
resources with red-background, and idle resources with a green background.

All VMs based on 100 MIPS (14 % of computing nodes in the experimental
setup) and a few of VMs with 500 and 750 MIPS remain idle when the GoCJ work-
load is scheduled using Min-Min algorithm. Additionally, the Min-Min overloads the
fastest VMs (based on 4 000 MIPS). On the other hand, the Max-Min scheduling
produces better workload distribution as compared to the Min-Min; however, only
a few VMs (both the slower and faster) are overloaded. This load mapping scenario
is mainly contributed by the composition of GoCJ workload; where a small portion
of large-sized cloudlets is present along with a majority of small-sized cloudlets. The
Max-Min algorithm overcomes the imbalance produced by the Min-Min due to the
presence of a few large-sized cloudlets which suits the Max-Min scheduling.
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Scheduling 
Heuristics 

No. of 
Cloudlets 

VMs  
100 

MIPS 

VMs 
500 

MIPS 

VMs 
750 

MIPS 

VMs 
1000 

MIPS 

VMs 
1250 

MIPS 

VMs 
1500 

MIPS 

VMs 
1750 

MIPS 

VMs 
4000 

MIPS 

O
L

B
 

100 6.58 % 7.15 % 6.61 % 9.90 % 12.09 % 14.45 % 15.42 % 27.80 % 

300 3.00 % 7.44 % 7.03 % 14.47 % 10.76 % 12.29 % 15.12 % 28.89 % 

500 1.96 % 6.61 % 7.70 % 9.83 % 11.16 % 13.23 % 15.90 % 33.62 % 

800 1.68 % 5.91 % 6.81 % 9.70 % 11.35 % 14.00 % 15.84 % 34.70 % 

1000 2.02 % 5.92 % 7.25 % 9.32 % 11.03 % 13.75 % 16.38 % 34.33 % 

M
C

T
 

100 0.00 % 3.07 % 4.54 % 6.92 % 8.83 % 10.66 % 13.81 % 52.16 % 

300 0.47 % 4.34 % 5.98 % 8.06 % 10.18 % 12.86 % 14.87 % 43.25 % 

500 0.65 % 4.72 % 6.29 % 8.67 % 11.00 % 13.37 % 15.92 % 39.38 % 

800 0.85 % 5.00 % 6.57 % 8.80 % 11.16 % 13.53 % 15.96 % 38.15 % 

1000 0.88 % 5.08 % 6.61 % 8.86 % 11.11 % 13.48 % 15.74 % 38.25 % 

M
in

-M
in

 100 0.00 % 0.00 % 0.00 % 4.34 % 3.64 % 7.68 % 11.93 % 72.40 % 

300 0.00 % 1.57 % 3.06 % 5.25 % 6.36 % 18.10 % 20.20 % 45.45 % 

500 0.00 % 3.28 % 4.33 % 4.99 % 11.49 % 12.56 % 17.74 % 45.62 % 

800 0.00 % 3.24 % 4.38 % 7.74 % 11.79 % 12.18 % 18.63 % 42.04 % 

1000 0.00 % 2.90 % 4.16 % 10.09 % 10.79 % 14.24 % 15.27 % 42.54 % 

L
B

IM
M

 100 0.00 % 1.95 % 3.43 % 4.34 % 7.95 % 10.69 % 11.93 % 60.07 % 
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300 1.73 % 5.17 % 6.94 % 9.13 % 11.42 % 13.55 % 15.78 % 36.29 % 
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800 1.22 % 5.38 % 6.92 % 9.10 % 11.40 % 13.62 % 15.92 % 36.43 % 

1000 1.13 % 5.33 % 6.79 % 9.10 % 11.40 % 13.70 % 15.99 % 36.55 % 

Balanced workload for VM categories. 

%age Load of VMs 1.07 % 5.33 % 6.85 % 9.13 % 11.42 % 13.70 % 15.98 % 36.53 % 

Figure 11. VM Category-wise percentage workload distribution for GoCJ workload
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The PSSLB algorithm shows almost the same behavior for the workload dis-
tribution like Max-Min because both of these algorithms favor larger jobs. The
LBIMM, Sufferage, RASA, Max-Min, and TASA produce comparatively a load-
balanced schedule. Among these algorithms, Sufferage produces the highest resource
utilization because of the resource-aware mechanism. However, an interesting obser-
vation is that the VMs based on 100 MIPS remain idle. Moreover, the recourse-aware
mechanism employed by the Sufferage also produces a notable load imbalance, when
the scheduling is performed using lesser number of cloudlets (i.e., 100 cloudlets), as
shown in Figure 11. Similarly, LBIMM algorithm shows an improved load balanc-
ing in workload distribution. Also, RASA scheduling produces better load balancing
due to the inherent usage of Min-Min and Max-Min (in alternate scheduling steps).
However, the slowest machines remain idle (due to the inherent use of Min-Min al-
gorithm) and the fastest VMs remain overloaded when a small number of cloudlets
are scheduled by the RASA (see Figure 11). The employed alternate Min-Min and
Max-Min mechanisms (by the RASA) produce a fair scheduling for both the large
and small size cloudlets. Similarly, TASA technique produces the minimal makespan
among the ten employed scheduling heuristics. However, most of the slower VMs
(i.e., 100 and 500 MIPS based) become idle due to the use of Min-Min in alternate
scheduling steps. On the other hand, TASA overcomes the load imbalance (caused
by the Min-Min algorithm) to some extent with the help of inherent Sufferage based
mechanism (in alternate scheduling steps). The Sufferage scheduling heuristic pro-
duces a better load-balanced schedule; however, very few slow VMs (with 100 MIPS)
remain idle.

The results reveal that there is sufficient possibility of imbalance workload dis-
tribution (among VMs) even a scheduling technique attains an improved ARUR
value; (as presented in Section 4.3). It is empirically evident that most of the exist-
ing scheduling mechanisms produce a reduced makespan with a higher throughput.
However, often these algorithms result in a load imbalanced scheduling.

For example, Sufferage produces a higher ARUR value 0.863 (i.e., 86.3 % resource
utilization) using the GoCJ workload (see Figure 22). However, the scheduling by
Sufferage in this scenario does not utilize the VMs with computer power of 100 MIPS
(i.e., those VMs remained idle). In addition, VMs with the computing capability of
500 and 750 MIPS are underutilized too and the VMs with 4 000 MIPS are heavily
loaded (for the schedule of 100 cloudlets-based job pool (see Figure 11)). On the
other hand, the VMs with the computing power of 100 MIPS were being utilized by
the Sufferage scheduling when the number of cloudlets in the job pool increased.

Similarly, LBIMM algorithm attains 0.846 ARUR (i.e., 84.6 % resource utiliza-
tion); however, VMs with 100 MIPS remain idle. Moreover, VMs with 4 000 MIPS
are observed heavily overloaded and all the other VMs (in the employed experimen-
tal setup) are observed as underutilized (for 100 cloudlets-based scheduling). TASA
technique produces 0.795 ARUR (i.e., 79.5 % resource utilization) for the GoCJ
workload (see Figure 10); however, VMs with 100 MIPS remain idle (see Figure 11).
TASA utilizes the VMs with 100 MIPS; however, most of these VMs (100 MIPS
based) remained underutilized when the number of cloudlets to be scheduled are
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Figure 12. VM-wise percentage workload distribution by Min-Min using 250 cloudlets of
GoCJ workload
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increased in the experiments. Min-Min scheduling technique produces 0.52 ARUR
(i.e., 52 % resource utilization) for the GoCJ workload. Figure 11 depicts a load im-
balance profile of the workload distribution by the Min-Min scheduling algorithm.
The VMs with 100 MIPS remain idle due to the imbalanced scheduling by Min-Min
algorithm. The VMs with 500 and 750 MIPS are assigned with cloudlets; however,
these VMs are significantly underutilized (as shown in Figure 11), when the num-
ber of cloudlets increases. Similarly, VMs with 1 000, 1 250, 1 500, and 1 750 MIPS
also remain underutilized for the Min-Min based scheduling. Contrarily, VMs with
4 000 MIPS are heavily overloaded by Min-Min technique (see Figure 11).

This empirical investigation reveals that the scheduling algorithms producing
better ARUR value still result in a machine level load-imbalance for workload dis-
tribution. The imbalanced distribution of workload among the VMs within the
same VM category is also observed. Figure 12 presents the workload allocation
among all VMs by the Min-Min scheduling algorithm for the GoCJ workload (using
250 cloudlets). Figure 12 highlights the imbalanced distribution of workload. The
underutilized VM categories are highlighted in orange color. The heavily overloaded
or idle VM categories are highlighted with the yellow and green background, respec-
tively. Similarly, the load imbalance of VMs within a specific VM category is shown
with a light-blue color. Despite balancing the workload assigned to VM category
with 1 750 MIPS, it can be seen that the VM with ID 39 is heavily overloaded (i.e.,
4.198 % workload is assigned) and VMs with ID 41 and ID 45 are underutilized with
only 1.830 and 1.837 % workload assignment, respectively (see Figure 12).

A higher resource utilization can be attained if all the VMs in Cloud exhibit ap-
proximately the same completion time. The load balance execution guarantees that
all the computing resources (i.e., VMs) are being fully utilized and there are no idle
resources. Ultimately, the minimal makespan with maximal throughput will be en-
sured. The load balanced execution in a compute Cloud is a highly desirable aspect
that will ensure lower makespan in amalgamation with higher throughput, higher
resource utilization, and less energy cost. In summary, this empirical investigation
highlights the following issues and potential research directions:

• a balanced distribution of workload among computing resources to be accom-
plished to achieve improved resource utilization with reduced makespan, and
increased throughput in Cloud computing;

• designing and implementing a resource-aware holistic scheduling that not only
considers application’s computing requirements, but also contemplates virtual
machine level attributes to provide a higher ARUR and near-optimal load bal-
ancing for the Cloud workload execution.

6 CONCLUSIONS

The inefficient utilization of resources by investigating the static heuristics for work-
load execution is empirically analyzed in this study. For this purpose, ten renowned
Cloud scheduling heuristics are scrutinized and a comprehensive empirical study
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is conducted using the CloudSim simulation tool. The experiments are conducted
using three workloads: two synthetics (i.e., Synthetic-I and Synthetic-II) and one
benchmark GoCJ workloads. All the three workloads are based on static, non-
pre-emptive, and compute-intensive Cloud jobs. Sufferage, LBIMM, Max-Min, and
RASA produced the higher ARUR (i.e., 86.3 %, 84.6 %, 84.5 %, and 83.8 % resource
utilization, respectively) using GoCJ workload. For LBIMM, Sufferage, and RASA
based scheduling, most of the VMs remain idle or underutilized and the faster VMs
(4 000 MIPS) are overloaded with the imbalanced workload. TASA scheduling mech-
anism has achieved a resource utilization of up to 79.5 % for the GoCJ workload while
the majority of machines (based on 100 to 500 MIPS) mostly remained idle or under-
utilized and the faster machines (i.e., 4 000 MIPS) were overloaded. Similarly, the
RASA scheduling mechanism produces a schedule that results in slower machines
being idle (for the small-sized job pool); however, a gradual improvement in load-
balanced was observed for the large size job pool. These results reveal that the out-
performing heuristics are also unable to utilize the full computing capacity of Cloud
resources. This empirical study carves out that the improper resource utilization
and load imbalance is a crucial research issue that needs to be addressed compre-
hensively. This study identifies that the workload should be mapped in a balanced
manner among the virtual machines considering both the computing capabilities of
the Cloud resources and the applications computing requirements. In a consequent
to this work, the authors are designing and implementing a resource-aware sched-
uler that considers the machines computing capabilities, the applications’ computing
requirements, and a balanced workload distribution constraint.
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Abstract. The suffix array is a classic full-text index, combining effectiveness with
simplicity. We discuss three approaches aiming to improve its efficiency even more:
changes to the navigation, data layout and adding extra data. In short, we show
that i) the way how we search for the right interval boundary impacts significantly
the overall search speed, ii) a B-tree data layout easily wins over the standard one,
iii) the well-known idea of a lookup table for the prefixes of the suffixes can be
refined with using compression, iv) caching prefixes of the suffixes in a helper array
can pose another practical space-time tradeoff.

Keywords: Suffix array, data structures, text indexes, hashing
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1 INTRODUCTION

Everybody knows the suffix array (SA) [1], a simple full-text index data structure
capable of finding the occ occurrences of a pattern P of length m in O(m log n+occ)
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time, where n is the length of the indexed text. The search mechanism consists
in two binary searches, for the left and the right boundary of the interval of text
suffixes starting with P , in the array of suffix offsets arranged in the lexicographical
order of their text content. The performance of the suffix array can serve as a
measuring stick for more advanced (e.g., compressed) text indexes [2] and at least
for this reason it is important to know how to implement it efficiently and what
space-time tradeoffs are possible.

The suffix array can be perceived as a simplification of the suffix tree (ST) [3],
a tree whose string collection is the set of all the suffixes of a given text, with an ad-
ditional requirement that all non-branching paths of edges are converted into single
edges. Indeed, a suffix array can be obtained from a suffix tree by visiting its leaves
in order (from left to right, obtained by depth-first traversal of the ST). Depending
on the implementation, the pattern search over ST takes either O(m log σ + occ)
or O(m + occ) time (where the latter variant involves perfect hashing). ST can
be built in linear time for integer alphabets [4]; a result that directly translates
to linear-time SA construction (albeit more direct and economical linear-time SA
construction algorithms were found later). The practical performance of ST and SA
is rather comparable, yet implementation details may be important; for example, if
the number of matches is large (which is typical for short patterns), the suffix array
may be even by an order of magnitude faster than the suffix tree [5].

A number of attempts have been made to improve the time complexities of full-
text indexes. For example, the suffix tray by Cole et al. [6], which can be seen
as a cross of the suffix tree and the suffix array, allows to achieve O(m + log σ)
search time, with O(n) worst-case time construction and O(n log n) bits of space.
Later, Fischer and Gawrychowski [7] reduced the search time to (deterministic)
O(m + log log σ), with preserved construction cost complexities. Even better time
complexity, O(m + log logw σ) (where w ≥ log n is the machine word size), for
a compressed (sic!) index and deterministic linear time construction was recently
achieved by Munro et al. [8]. Bille et al. [9] showed how to search for a packed
pattern in a (standard) suffix array in O(m/α+ log n) time, where α is the number
of characters one can pack in a machine word. In the same work, they presented
a more involved construction allowing to search for a packed pattern in O(m/α +
logm+log log σ) time; the index size is still O(n) words (or O(n log n) bits). We are
not aware of any implementations of the algorithms mentioned in this paragraph,
which means that they remain theoretical achievements so far.

The body of research on engineering the suffix array is surprisingly scarce. Al-
though the basic SA idea can be easily grasped even by high-school students, many
design choices from the implementor’s point of view are not obvious. Let us pose
a few questions:

1. Can the binary search strategy be replaced with a faster one, e.g., based on
interpolation search?

2. As occ is usually small, what is practically the best way to find the right interval
boundary once the left boundary is known?
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3. Can we change the data layout of suffixes in order to obtain more local memory
accesses?

4. How can we augment the suffix array with a moderate amount of extra data, to
initially reduce the search interval and/or speed up string comparisons?

The answer to some of them is known, yet in this work we are dealing with the
mentioned issues in a more systematic way.

The contributions of our paper are as follows. We show that the idea of k-ary
heap layout of a sorted array, known from the earlier works [12, 13], makes practical
sense also for the suffix array, due to increased data access locality. We discuss the
impact of the technique for finding the right interval boundary in the suffix array
on the overall performance. It is also noticed that augmenting the suffix array with
extra data boosts the performance; novel techniques presented in this work include
caching prefixes of the suffixes in a helper array and using a lookup table with
Huffman-compressed keys.

2 IDEAS AND INCARNATIONS

The considered ideas are divided into three groups and each of them is described in
a separate subsection. First we discuss non-standard SA traversal strategies. Later
we advocate for alternative data layouts, beneficial for the search speed. In the
last subsection some ways to augment the suffix array with extra data, to make the
pattern search even faster, are proposed.

2.1 Navigating over the Suffix Array

A textbook alternative to binary search is interpolation search, which performs
a number of “guesses” concerning the query’s location based on the query value
and the assumed distribution of keys. It is well-known that interpolation search
over constant-size keys achieves O(log log n) expected time not only for the simplest
case, i.e., uniformly random distribution [10], yet we are not aware of any published
experiments regarding text suffixes. Unfortunately, a straightforward interpretation
of string prefixes (which have a lot of duplicates) as integers and standard linear
interpolation yielded rather disappointing results.

Another question concerning the navigation over the SA is how the right interval
boundary should be found. We examine two methods: a naive one performs the
binary search over the range left . . . n of suffixes, where left is the position of the
least suffix greater or equal to the pattern, and the doubling (galloping) algorithm,
which peeks the locations SA[left + 2i], i = 0, 1, 2, . . ., until it reaches too far and
the search continues in the binary manner over the last considered interval. Note
that the time complexity of the right interval boundary search improves in this way
from O(m log n) to O(m log occ).

We should also mention here using non-standard CPU instructions for binary
search. Wide registers together with single-instruction multiple-data (SIMD) in-
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struction sets are a popular extension of modern CPUs, including Intel’s Pentium 4,
Core 2, Nehalem and more recent architectures, Intel’s Xeon, AMD’s Phenom, Bull-
dozer and Ryzen, and ARM Cortex-A mobile processors. Zhou and Ross [11] pro-
posed a SIMD-ized version of binary search (and other database operations) that is
geared towards small datasets, up to a few hundred keys. Significant speedups were
obtained as a result of the elimination of branch misprediction effects.

searchTree(pat, n, N , step)

(01) node ← 0; beg ← n
(02) while node < N do /* search down the tree from the top */
(03) (c, beg)← searchNode(pat , beg ,node, 0, step)
(04) node ← childNode(node, c)
(05) if isMaxPattern(pat) then /* pattern is lexicographically the greatest */
(06) return (beg , n)
(07) pat ← incPattern(pat)
(08) end ← beg ; i← end ; endNode ← node(end)
(09) while true do /* search up the tree from the current node */
(10) if pat < T [karySA[end ]] then break
(11) i← end + 1; node ← endNode
(12) while true do /* search for previous beg value */
(13) if endNode = 0 then
(14) end ← n; break 2
(15) (endNode, c)← parent(endNode)
(16) if c < k − 1 then break
(17) end ← index (endNode) + c
(18) if end = beg then /* pattern not found */
(19) return (beg , beg)
(20) c← elemOffset(i)
(21) (c, end)← searchNode(pat , end ,node, c, step)
(22) node ← childNode(node, c)
(23) while node < N do /* search down the tree from the current node */
(24) (c, end)← searchNode(pat , end ,node, 0, step)
(25) node ← childNode(node, c)
(26) return (beg , end)

Figure 1. The searchTree(pat , n,N, step) function, returning the first and the last index
in the search tree corresponding to the range of suffixes of the indexed text starting with
the string pat . The parameters n and N (N ≤ n) refer to the number of suffixes and the
number of nodes in the tree, respectively. The parameter step is passed to the searchNode
function.
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2.2 Linearized k-ary Tree Data Layout

Binary search over a sorted array is equivalent to walking down a path in a complete
binary search tree. Schleger et al. [12] noticed that changing the tree layout from
binary to k-ary (k > 2), together with linearization of the search tree, may be
more cache-friendly and also convenient for SIMD processing. In their experiments
(Intel Core i7) it achieved a speedup of as much as 3 up to 4.5 for 32-bit numbers
and 2 to 2.5 for 64-bit numbers, compared to a plain binary search. This data
organization can also be called an (implicit) B-tree layout [13], where the case of
B = 1 (a complete binary tree with the root going first, then followed by its both
children, etc.) is called the Eytzinger layout (dating back to old history) or the
heap-order layout, as this method was proposed by Williams for an implementation
of binary heaps [14]. We apply the presented idea to the suffix array, which, to our
knowledge, has not been tried before. Note that setting the B-tree layout for a suffix
array cannot be comparably successful as for, e.g., integers, as the accesses to the
text are still at “random” areas.

The pseudocodes of algorithms on the non-standard layout are presented in
Figures 1–3. The used notation and primitives (i.e., helper functions) need to be
explained beforehand. The term “index” will refer to the position in a linearized
k-ary tree, while “offset” to the position relative to the beginning of the node (i.e.,
the index relative to the beginning of the node). We use the following symbols and
helper function names:

• n is the number of SA elements, i.e., the text length,

• N is the number of nodes in the tree, i.e., N = dn/Be,
• index (node) returns the index of the first element in the given node,

• node(index ) returns the number of the node containing the given index,

• childNode(node, c) returns the number of the cth child node of the node,

• childNum(node) returns the number of the node among its parent’s children,

• elemOffset(idx ) returns the offset of the element,

• parent(node) returns a pair (p, off ), where p is the parent node number and off
is the smallest offset of an element in the parent node referring to a suffix not
smaller than suffixes in node,

• incPattern(pat) returns the next pattern of the same length in lexicographical
order. In the (very rare) case when pat is the lexicographically greatest pattern,
the lexicographically smallest pattern of the same length is returned (however,
such cases do not occur in our code),

• isMaxPattern(pat) tests if pattern is lexicographically the greatest.

Figure 1 presents a pseudocode of the function searchTree(pat , n,N, step), tra-
versing an n-element B-tree structure comprised of N nodes, in order to return
the pair (beg , end). The value of beg (resp. end) is the index of an element in the
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tree corresponding to the lexicographically smallest suffix not smaller (resp. suffix
greater) than the pattern pat. As the tree element IDs have values in {0, 1, . . . , n−1},
the special case of end set to n means that there are no suffixes lexicographically
greater than pat.

searchNode(pat , idx ,node, startOff , step)

(01) c← startOff + (step − 1); j ← index (node) + c
(02) while c < k − 1 do
(03) if pat < T [karySA[j]] then
(04) idx ← j; break
(05) c← c + step; j ← j + step
(06) guard ← c
(07) if guard > k − 1 then guard ← k − 1
(08) c← c− (step − 1); j ← j − (step − 1)
(09) while c < guard do
(10) if pattern < T [karySA[j]] then
(11) idx ← j; break
(12) c← c + 1; j ← j + 1
(13) return (c, idx )

Figure 2. The searchNode(pat , idx ,node, startOff , step) function for locating the smallest
element in the passed node (the third parameter) referring to a suffix lexicographically
not smaller than the pattern pat

This function makes use of searchNode(pat , idx , node, startOff , step) (Figure 2),
which returns the smallest index of an element in the passed node (the third param-
eter) referring to a suffix not smaller than the pattern pat. The current index, idx,
is updated only if a better candidate is found in the node. The parameter startOff
stores the number of node elements which are skipped (as being lexicographically
smaller than pat). The presented code for searchNode refers to the case of large
nodes (B > 8), when a two-pass node lookup (the first pass with the step given as
the last parameter of the function) is used.

Finally, the function count(beg, end) (Figure 3) returns the number of pattern
occurrences in the range determined by the beg and end indexes. For simplicity, the
presented code deals only with the case of beg < end , and end < n, i.e., when the
beg index is located in a tree layer not lower than the layer of the index end . In the
following paragraph we comment the main phases of this code.

In lines 01–02 we initialize the key variables, where res is the count to be even-
tually returned. The loop in lines 03–07 traverses down the tree until the layer just
below the layer of the end index is reached. After the loop, the helper array bOff
stores the left boundaries of the intervals from all the layers in which the elements
from beg to end (inclusively) belong to. Lines 08–17 add the number of elements
in the bottom layers of the tree, i.e., in the layers below the one to which end be-
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count(beg , end)

(01) res← 0; bOff [0]← beg ; b← beg ; l← 1
(02) bNode ← childNode(node(beg), elemOffset(beg))
(03) while bNode < N do
(04) b← index (bNode) + k − 1
(05) if b > end then break
(06) bOff [l]← b; l← l + 1
(07) bNode ← childNode(node(beg), elemOffset(beg))
/* adding interval widths in tree layers below end index */
(08) e← end
(09) eNode ← childNode(node(end), elemOffset(end))
(10) while eNode < N do
(11) e← index (eNode) + k − 1
(12) if e > n then break
(13) res ← res + e− b
(14) eNode ← childNode(eNode, k − 1)
(15) bNode ← childNode(bNode, k − 1)
(16) b← index (bNode) + k − 1
(17) if bNode ≤ N & b ≤ n then res ← res + n− b
/* adding interval widths in tree layers between beg and end indexes */
(18) e← end ; eNode ← node(end)
(19) while l > 0 do
(20) l← l − 1
(21) res ← res + e− bOff [l]
(22) eChild← childNum(eNode); eNode ← parent(eNode)
(23) e← index (eNode) + eChild
(24) bNode ← node(bOff [0])
/* adding interval widths in tree layers above beg index */
(25) if bNode = 0 then return res
(26) while true do
(27) bChild ← childNum(bNode); bNode ← parent(bNode)
(28) b← index (bNode) + bChild
(29) res ← res + e− b
(30) if bNode = eNode then return res
(31) eChild ← childNum(eNode); eNode ← parent(eNode)
(32) e← index (eNode) + eChild

Figure 3. The function count(beg , end), which returns the number of pattern occurrences
in the range determined by the beg and end indexes of the tree structure. It is assumed in
the presented code that beg < end and end < n (handling the other cases is similar, but
would make the pseudocode much longer).
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longs. The variable b (resp. e) is set to the first element from (resp. beyond) the
considered interval in the current layer. Special care must be taken not to exceed
the last stored element (line 17). In lines 18–24 we handle the layers between the
last considered layer (containing end) and the first considered layer (containing beg).
Finally, an analogous procedure continues up to the top, terminating when b and e
are in the same node (lines 30).

We have also a locate function, which is very similar to count, only instead of
incrementing the counter of matching suffixes it adds them to a returned list.

2.3 Augmenting the Suffix Array

Manber and Myers in their seminal paper [1] presented a nice trick saving several
first steps in the binary search: if we know the SA intervals for all the possible
first k symbols of the pattern, we can immediately start the binary search in a cor-
responding interval. We can set k to logσ n, where σ is the alphabet size, with
O(n log n) extra bits of space and constant expected size of the interval. Unfor-
tunately, real texts are far from random, hence in practice, we can use k up to 3
(assuming that text symbols are bytes), which offers a limited (yet, non-negligible)
benefit. This idea will be referred in our experiments as using a lookup table, and
more specifically we will denote the lookup table on pairs (resp. triples) of symbols
with LUT2 (resp. LUT3).

In the same spirit, Grabowski and Raniszewski [15, 16] use a hash table to store
the intervals for all k-symbol strings occurring in the text. This can significantly
reduce the initial interval for real texts with relatively little extra space.

In this work we first propose a lookup table with keys being concatenations of
Huffman codewords for the starting symbols of the text suffixes (Table 1), truncated
to a specified length of b bits. Pattern search translates to finding the first b bits
of Huffman encoding of the pattern, which is the LUT key, and then following with
binary search over a range of suffixes read from the LUT. A look onto the rows, e.g.,
LUT-Huff-23b and LUT3, reveals that the resulting search intervals to go into are
much narrower on average with the Huffman-based LUT, using the same amount
of extra memory. A correct implementation of this idea, in combination with the
B-tree SA layout, requires a reordering of the suffixes in the SA, to avoid nested
LUT ranges (other options, like replacing Huffman with Hu-Tucker coding, are also
possible, but we have not tried them out). Note also that the Huffman-based LUT
entries store twice more data (both boundaries of the interval) than in the standard
LUTs.

We also propose mixing the LUT or hash table interval narrowing with the
B-tree layout, and also augmenting the search tree with prefixes of the suffixes in
several top levels of the B-tree. Copying these text snippets into a helper array is
beneficial due to more local memory accesses.

The last novelty is varying the parameter k, the length of the hashed strings.
Using a fixed k results in having some intervals too wide (which deteriorates binary
search) while some others are (too) narrow, which does not already help much.
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space (MiB) dna200 english200 proteins200 xml200

LUT-Huff-15b 0.25 14.45± 1.21 15.53± 2.20 12.86± 0.81 17.05± 2.84
LUT-Huff-19b 4.00 11.07± 1.52 13.46± 2.63 9.10± 1.31 15.91± 3.64
LUT-Huff-23b 64.00 7.79± 1.98 11.63± 2.93 5.63± 2.17 14.99± 4.28
LUT2 0.25 23.74± 0.46 19.50± 2.18 19.27± 0.94 18.91± 2.40
LUT3 64.00 21.82± 0.61 16.55± 2.78 15.11± 1.18 16.74± 3.49

Table 1. Average binary logarithms (with their standard deviations) of the search interval
widths for different LUT variants (first three rows: order-0 Huffman encoding with 15–23
bits, next two rows: standard 2-/3-byte LUTs). The averages are taken over all suffixes of
the text. Without a LUT the corresponding binary logarithms would be log2(200 · 220) =
27.64 in all cases.

Varying k is expected to have more balanced interval widths, which in turn may
translate into more preferable space-time tradeoffs.

To this end, we use three parameters, k0 < k1 < k2, corresponding to suffixes’
prefix lengths, and the parameter r as an interval width threshold. The first of
the three parameters, k0, is used in a standard lookup table and was fixed to 2
throughout the experiments. If a pair of successive symbols, c1c2, does not occur
in the text more than r times (i.e., there are at most r suffixes starting with this
prefix), the suffixes starting with c1c2 are not inserted into any other data structure;
if the pattern matches such a prefix, one access to the mentioned LUT reveals that
the range of suffixes to search is of size at most r and the binary search follows.

Those suffixes which do not fall into a narrow range according to their first two
symbols, are then divided into two groups, based on whether their k1-symbol prefix
occurs at most r times in the text. Those for which the answer is positive are inserted
into a hash table in the manner of the SA-hash index (see [16] for more details).
If a k1-long prefix occurs more than r times though, we extend its occurrences to
length k2 and insert such (distinct) strings into the same hash table. Additionally,
a bit array V is maintained, initialized with zeros. For each distinct k1-symbol string
from the text its computed hash value tells the position in V to set a bit if its count
is at most r. Collisions are not handled here, which means that several different
strings may overwrite the same bit in V . Yet, V happens to be (relatively) very
small for real texts, which allows for small load factors (e.g., LF = 0.1) and in turn
translates into rather few collisions.

Now, given a pattern to search, we first check its k1-symbol prefix in V . If the
accessed bit is 1, we assume that the prefix, although relatively short, is specific
enough. We look for it in the hash table and the associated data is the range of
suffixes in which we continue with binary search. If the bit accessed in V is 0 though,
we look for the longer prefix, of length k2, in the hash table and continue in the same
manner.

Let us yet justify the presented idea using a small example. For a given (fixed) k,
we (locally) obtain three adjacent intervals of width 900, 60 and 40, respectively.
The numbers of binary search steps are: 10, 6 and 6, respectively. Yet, the average
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is not 7.333; it is rather 900/1 000 · 10 + 60/1 000 · 6 + 40/1 000 · 6 = 9.6. This
is because entering the widest interval is more likely than any of the remaining
two. Now, we introduce k1 and k2, and it may happen that our considered intervals
are split into three different intervals, of widths: 400, 500, 100, respectively. The
corresponding numbers of binary search steps are now: 9, 9, 7, respectively. The
(weighted) average is thus: 400/1 000 · 9 + 500/1 000 · 9 + 100/1 000 · 7 = 8.8, i.e.,
yields some improvement.

3 EXPERIMENTAL RESULTS

All experiments were run on a machine equipped with a 4-core Intel i7 4790 3.6 GHz
CPU and 32 GB of 1 600 MHz DDR3 RAM (9-9-9-24), hosting Windows Server 2012
R2. One CPU core was used for the computations. All codes (https://bitbucket.
org/kowallus/sa-search-dev/) were written in C++ and compiled with 64-bit
gcc 4.9.3 with -O3.

For each experiments, we took 500K patterns sampled from the text in a uni-
formly random manner, calculated the average time per pattern, repeated this
procedure 11 times and presented the median. The searches were performed over
200 MB datasets from the well-known Pizza & Chili corpus (http://pizzachili.
dcc.uchile.cl/).

In the first experiment we show how the count times are affected by two things:
using lookup tables, including the introduced Huffman-based ones (on 15 or 23 bits)
(Figure 5) and choosing a proper interval’s right boundary search (Figure 4). HT
denotes the idea of combining the suffix array with a hash table [15, 16]; it involves
the parameter k, which is the length of suffixes’ prefixes inserted in the hash table.
In our experiments we (arbitrarily) choose the smallest k for which the overall size
of the index, including the text, exceeds 5.5n.

The doubling trick reduces the times usually by 20–30 % for the standard and
LUT2-boosted suffix array, yet the effect is smaller for short patterns (i.e., small m),
especially for DNA (where short patterns tend to have thousands of occurrences).
This can be explained by the relatively small difference between log n and log occ
in those cases. The Huffman-based LUTs are more efficient than their traditional
counterparts (when about the same amount of memory is sacrificed).

For xml200 (Figure 4) one can observe a different trend than for other datasets:
the time decreases for smaller m. There are at least two factors specific to this
dataset that cause such an effect. The first one is the extremely large (average)
width of resulting intervals. For english200, the average interval width for m = 9
is about 103, while for xml200 it is as much as 105. The difference in xml200 is due to
repetitiveness in the data (long XML tag names, etc.). This dataset is sensitive to m
as long as the character access is involved; in datasets like english200, the average
matching prefix length during the comparisons is not very sensitive to m (grows only
slightly with growing m). The second factor is only a slight reduction of the resulting
interval width with growing m. Note that most methods work faster on narrow

https://bitbucket.org/kowallus/sa-search-dev/
https://bitbucket.org/kowallus/sa-search-dev/
http://pizzachili.dcc.uchile.cl/
http://pizzachili.dcc.uchile.cl/
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Figure 4. Count times for the standard suffix array and the SA augmented with a lookup
table on triples of bytes and a hash table over k symbols (k = 12 for dna200, k = 6
for proteins200 and k = 8 for the other datasets), using the standard and the doubling
search for finding the right interval boundary. The standard SA size is 5n (bytes), the
size with LUT3 is 5.321n and the size with a HT is 5.584n, 5.882n, 6.549n and 5.532n,
respectively, for dna200, english200, proteins200 and xml200.

intervals, due to reduced time for finding the right boundary. Consider extending
the pattern length from m = 9 to 10. For english200, the average interval length
gets reduced to 56 %, while in xml200 case to 83 % (in other words, the average
interval for xml200 shrinks by one sixth only, a really mild improvement). This
effect occurs also in proteins200. Those two factors, taken together, may explain
why for xml200 using a smaller m may yield a shorter overall time, as opposed to
other datasets. A similar reasoning also works for Figure 6.

Figure 5 shows how spending more space (from 215 to 225 array slots) for
Huffman-based LUTs improves the count times. Apart from order-0 (i.e., context-
free) Huffman coding also order-1 and order-2 Huffman models were used, to show
that increasing the context order helps on compressible datasets (english200,
xml200), but not on dna200 and proteins200 (comparable compression and more
space used). Using, e.g., order-2 encoding means that the first input symbol is
order-0 encoded, the second order-1 encoded and all the following ones are order-2
encoded. For dna200, biologically meaningful search patterns do not contain the
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Figure 5. Count times for the standard suffix array, the SA augmented with a lookup table
on pairs or triples of bytes (LUT), and on 15, 19, 23 or 25 bits of Huffman codewords
(a series for a different coding order), and the hash table (HT) on varying k-grams from
the text. The right interval boundary is found with the doubling technique.

N symbol and these should also be avoided in the searches with order-1 or order-2
Huffman-based LUT. The reason is that the N symbols tend to cluster, and N pre-
ceded by one or two Ns has high probability, which results in a one-bit Huffman
codeword. In consequence, one of the inputs of our Huffman-based LUT can be
a relatively long run of N symbols, which also means that the minimum pattern
length should be relatively large (e.g., over 20), which is obviously undesirable.

Figure 6 shows the impact of the node size B in the B-tree layout on the count
times, with varying pattern length. Even B = 1 results in a much faster search than
with a standard SA (by a factor of 1.7–2.0; cf. also Figure 4) and growing B helps
more, up to B = 32 (on all the datasets, B = 64 is slightly slower). Still, the speed
gap between B = 1 and B = 32 rarely exceeds 10 %. This small improvement may
seem disappointing, but is understandable. Using B > 1 improves access locality,
concerning the suffix offsets, yet the accesses to the text are inevitable and those
are generally not cached. This effects flattens all results. Moreover, the top levels
of the tree (disregarding the choice of B) are cached across multiple patterns in the
test collection.

The relative times of count and locate per found item, as a ratio of the respective
results of the SA variant with the B-tree layout and the plain SA, are shown in
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Figure 6. Count times for the standard SA and the SA with the B-tree layout, for selected
node sizes B. The right interval boundary in the standard SA variant is found with the
doubling technique (-dbl).

Figure 7. The locate operations in the B-tree SA variant suffer from the need
to traverse over many layers of the tree, which is relatively more costly when the
number of pattern occurrences tends to be larger (i.e., for small m). When m grows
and occ is often a few (or even one), this overhead is relatively smaller and the
cache-friendliness of the layout more than compensates the extra operations. The
count operation, after the boundary suffixes are found, is also more costly in the
B-tree layout, but the extra cost (logarithmic in N , as opposed to constant for the
standard SA) is computational, without extra accesses (and thus resulting cache
misses) to data.

In Figure 8 we show how augmenting the SA with various structures reducing
the initial search interval affects the query times and the used space. The hash ta-
ble (HT), based on the xxhash function (https://github.com/Cyan4973/xxHash),
stores 8-grams from the text and was tried with two load factors (LF); the solution
is called the SA-hash index in the original works [15, 16]. LUT2 gives a significant
boost in a tiny space, yet it is the hash table (LF = 0.9) that excels here, speeding
up the baseline variant by a factor of 1.5–2.

As our SAs with the B-tree layout can be augmented with prefixes of the suffixes
visited in the first steps of the traversal of the tree (i.e., in the top levels), we test
the impact of the prefix length on the performance and space of the resulting index

https://github.com/Cyan4973/xxHash
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Figure 7. Count and locate relative times for the SA variant with the B-tree layout and
the standard SA, for selected node sizes B

(Figure 9). Adding the prefixes gives a noticeable speedup even if they are limited
in length to 8 characters and are attached to a few tree levels only, while the space
overhead is rather small. Longer prefixes and more levels help less for a much
bigger space penalty. Combinations of all ideas presented in the paper are shown
in Figure 10, where the best option is to combine the B-tree layout with LUT/HT
(adding prefixes on top of it has a negligible effect). In total, the speed of the
standard SA with the standard right interval boundary search was usually improved
by a factor exceeding 3 (from 2.6 for xml200 to 3.9 for dna200, for m = 24).

In the last experiment we used the SA-hash index in a variant with varying
the length of the hashed prefix. Different lines (space-time tradeoffs) are obtained
with varying the parameters k1 and k2 (Figure 11). The key lines to compare
are denoted as “SA-dbl & HT” (which is SA-hash with the doubling technique for
finding the right interval boundary) and “SA-dbl & HT-var-k” (which is the new
variant).

Table 2 presents some details, grouped in pairs of rows. The value of k (prefix
length) used in the SA-hash algorithm is presented in the top rows. The parame-
ters k1 and k2, and r, the interval width threshold, found in a learning procedure, are
presented in the bottom rows. Clearly, r for the given dataset and the parameters
k, k1, k2, is such to make the sizes of the compared structures possibly equal, as the
next column demonstrates. More precisely, we find r in the following way. Let s1
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Figure 8. Augmenting the suffix array. The right interval boundary in the standard SA
variant is found with the doubling technique (-dbl). The four points in each series corre-
spond to: no extra data, LUT on 19 bit and 23 bits, respectively, using order-1 Huffman
coding, and HT with LF = 0.9 and k = 8.

be the size of the SA-hash index for a given k. For fixed (arbitrarily chosen) values
of k1 and k2, such that k1 < k and k2 > k, we binary search for r in a way to obtain
the size of the HT-var-k index not greater than s1, but possibly close to it.

However, we see in Figure 11 that the net result of our efforts is mixed. In
many cases the new variant is able to achieve a slight improvement in speed using
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Figure 9. Index sizes and count times for the SA with the B-tree layout, when several top
levels of the tree store the corresponding suffixes’ prefixes of length {0, 4, 8, 12, 16}
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Figure 10. Index sizes and count times for several SA variants with different layouts and
extra data. Successive points in the series are obtained by changing the LUT or hash table
component and/or using the prefix copies on varying number of levels in the tree.

the same space, with (sometimes) queries faster by more than 10 % for the xml200

dataset. On the proteins200 dataset, however, using k1 and k2 instead of a single
value of k makes the queries slower by more than 10 %.

4 CONCLUSION

Algorithm engineering not once revitalizes old ideas and data structures. In this
work, we attempted to improve the performance of the classic full-text index, the
suffix array. Our work focused on the navigation over the index, changes to its layout
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Figure 11. Index sizes and count times for the SA-hash index with two hashed prefix
lengths (k1 and k2)
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Dataset k k1 k2 r Total Size Filter Size avg log2(ival width)

dna200 12 – – – 5.584 – 5.256± 2.333
– 10 16 964 5.584 0.006 7.601± 2.528

english200 8 – – – 5.882 – 7.045± 3.797
6 12 3726 5.882 0.030 7.115± 3.695

proteins200 6 – – – 6.549 – 4.056± 2.801
4 10 2989 6.549 0.001 7.802± 4.277

xml200 8 – – – 5.532 – 12.102± 5.942
6 12 867 5.528 0.032 10.925± 5.539

Table 2. Index sizes for four 200 MB Pizza & Chili datasets. The used parameters are:
k for the standard SA-hash index and k1, k2 for the SA-hash index with variable prefix
lengths. The parameter r, the interval width threshold, was set in a way to have the two
index sizes possibly close to each other. The rightmost column presents the average binary
logarithms (with their standard deviations) of the search interval widths.

and augmenting the index with extra data. The experiments show that generally
the best option is to combine a B-tree layout of the suffix with a lookup table or
a hash table (reducing the interval of suffixes for further binary or k-ary search),
with a speedup over the standard SA configuration by a factor usually exceeding 3,
for a relatively small penalty in the space.
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1 INTRODUCTION

Reaching consensus about an issue through discussion with a group of people is
not a trivial task [15, 24]. When applied to a group of intelligent agents, this
task becomes even more complex, since agents must reason about logically related
instructions [1]. In order for consensus decision making in a group to take place,
it is necessary to identify the consensus level (or level of acceptance) of the group
with regard to the available decision alternatives. The stronger the justifications
for supporting or rejecting a particular decision alternative, and the greater the
consensus of the group on these justifications, the closer the situation will be to
a decision by consensus [25]. The choice of a decision alternative by consensus does
not reflect the optimal decision, but rather the one that is preferred by most of the
agents.

Consensus is directly related to common knowledge. Agreement on a decision
implies common knowledge, and this becomes a prerequisite when a group of agents
try to make decisions together [12, 20]. Common knowledge occurs when all agents
know an item of information and also know that the other agents in the group know
that information [16].

Several methods for group decision making have been proposed in the litera-
ture [15, 24], including majority voting, auctions, Borda, Condorcet, and judgment
aggregations, among others. These methods do not assume a dialogue between the
group members, and each participant only votes on or gives a preference relation for
the set of possible alternatives, expressing neither the reasons for these votes nor the
conditions for opinion formation. Thus, dialogue becomes an important step before
voting, in which all participants can express their opinions and arguments, defend-
ing or attacking the alternatives or the information in other arguments presented
by other participants. Furthermore, through this dialogue, agents can change their
way of thinking based on the arguments presented.

The use of argumentation in multi-agent systems has received a great deal of
attention in the last decade. Building arguments allows the agents to reach a collec-
tive agreement that is consistent with their beliefs and goals [6, 22]. For a collective
decision to be close to unanimity, we need to identify the consensus level of the
group on the information in the arguments sent during the dialogue, analysing both
the supporting and rejecting relations in each element of the inner structure of those
arguments. The information in an argument that is supported (or accepted) by most
agents should be consented to by the other agents in the group who do not know it
or who reject it. Thus, the supported information becomes consensually accepted
by the group in relation to the issue under discussion.

In this paper, we propose a model of dialogue that uses arguments in the mes-
sages sent by the agents. Through the information in these arguments, common
knowledge is formed based on the majority knowledge of the group. The innova-
tions and contributions of this work are as follows:

1. development of a process of common knowledge identification;
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2. identification of the relation between common knowledge and consensus; and

3. development of semantics for consensus decision making.

Thus, the paper has two goals:

1. To present a dialogue model that can be applied to multi-agent systems, where
each argument presented needs to be evaluated by the group in an attempt
to identify the consensus level on each piece of information presented in the
arguments. As a result of this model, common knowledge is formed about the
set of information that was accepted or rejected by the group of agents. This
common knowledge formation can be used in several application domains where
multi-agent systems are used, such as chatbots, sensor networks, ranking of the
importance of web pages, identification of simultaneous actions, or any domain
in which there is a need for the formation of group opinion.

2. To generate a weighted argumentation graph [2, 5] for each dialogue, so that
the decision alternatives can be analysed based on the arguments presented,
resulting in a preference relation for the group. The preference relation draws
on computation of the strength of an argument, and uses a semantics that
considers all the weights of the arguments to determine the preference level
for each alternative.

This paper is structured as follows. Section 2 presents the preliminary concepts
of possible worlds, common knowledge and structured arguments. Section 3 de-
scribes the proposed model of dialogue, covering the structures of the agents, the
construction of arguments, the formation of common knowledge, and the consensus
decision-making process, including the argument strength, the weighted argumenta-
tion graph and semantics for determining the preference relation among the decision
alternatives. A practical example, a discussion of the results, and related work are
given in Section 4. Finally, we present the conclusions and an outline of planned
future work in Section 5.

2 PRELIMINARIES

In this section, we introduce the fundamental background of knowledge representa-
tion related to possible worlds and common knowledge, which we use to represent
the possible decision alternatives (or issues) that are the subject of dialogue among
a group of agents. We also describe the fundamental concepts of arguments and
attack relations between arguments, which form the basic structure used by the
agents to send messages to the group during the dialogue.

The model proposed in this work considers a virtual environment where each
agent in a group, each one with its own knowledge base, is able to act sending
messages to the group in a discussion (dialogue) about any issue using logically
structured arguments. We model a dynamic process of dialogue that can be used by
the agents for choosing the alternative that is consensually justified or for obtaining
the order of preference over the available decision alternatives.
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2.1 Possible Worlds and Knowledge Representation

The classical model of reasoning about knowledge, as used by a single agent, is
known as the possible world model [17]. Possible worlds represent a possible state
of affairs (that is, there may be situations in which a belief holds for one issue under
discussion, but does not hold for another issue) [12]. Let AG = {ag1, . . . , agn} with
n > 0 be a finite set of agents. An agent ag i ∈ AG believes f if f is necessarily
true for ag i, i.e. it is true in all possible worlds for that agent. The modal operator
Ki represents the knowledge of agent ag i. The formula K1f is read as “agent ag1

knows f”, K1K2f is read as “agent ag1 knows that ag2 knows f” and ¬K2K1K3f
is read as “agent ag2 does not know that ag1 knows that ag3 knows f”.

When the reasoning involves the knowledge of a set of agents, two modal oper-
ators can be defined [13]: EAG (where EAGf represents the situation in which every
agent in the group knows f) and CAG (where CAGf represents the situation in which
every agent in the group knows f and they all know that every agent in the group
knows f , i.e. f is common knowledge in the group).

2.2 Structured Logical Arguments

The basis of the proposed dialogue model is the exchange of arguments among
agents. When an agent sends a message to the group containing an argument,
this argument represents the agent’s opinion of, point of view on or justification
for the issue under discussion. In this paper, Σ is a knowledge base with formulae
(beliefs) in a propositional language, and the arguments are built based on these
formulae [4]. In addition, ` is the classical inference, ≡ represents logical equivalence,
⊥ represents contradiction, ∧ conjunction, ∨ disjunction, ¬ negation,→ implication,
and ↔ biconditionality. An argument [3, 4, 21] is formed by a pair 〈Φ, α〉 where
Φ represents the support (premises) and α the claim of the argument, such that

1. α is a formula;

2. Φ ⊆ Σ;

3. Φ 0⊥;

4. Φ ` α; and

5. @Φ′ ⊆ Φ such that Φ′ ` α.

Arguments are created to justify a position against the decision alternative or
other arguments. The most common attack relations between arguments are under-
cut and rebuttal [4, 21]. Let arg1 = 〈Φ1, α1〉 and arg2 = 〈Φ2, α2〉 be two distinct
arguments: arg1 undercuts arg2 iff ∃ϕ ∈ Φ2 such that α1 ≡ ¬ϕ, and arg1 rebuts
arg2 iff α1 ≡ ¬α2.

Example 1. Let Σ = {a,¬b, a → ¬b, d → b, a → d} be a knowledge base of an
agent. Let us consider the following three arguments arg1 = 〈{a, a → ¬b},¬b〉,
arg2 = 〈{¬b, d → b, a → d},¬a〉, and arg3 = 〈{a, a → d, d → b}, b〉. We have that
arg2 undercuts arg1 and arg3 rebuts arg1. Figure 1 illustrates these attack relations.
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Figure 1. Types of attack relation: undercut (u) and rebuttal (r)

3 COMMON KNOWLEDGE AND CONSENSUS DECISION MAKING

The proposed dialogue model using arguments for common knowledge formation is
constructed using agents that play two roles: argumentation and mediation. Ar-
gumentative agents are responsible for building arguments and voting, using the
beliefs in their respective knowledge bases. Each belief consists of a formula in
propositional language. Argumentative agents are also responsible for giving their
opinions by voting to support or reject the formulae in arguments sent by the other
argumentative agents during the dialogue. The mediator agent is responsible for
several other aspects: controlling the message exchange among the argumentative
agents, that is, controlling the course of the dialogue; calculating the consensus level
on each formula within an argument; informing the group of argumentative agents
of which formulae should be accepted during the dialogue; computing the strength
of each argument; and informing the group of the outcome of the decision.

For the argumentative and mediator agents, we define a model for common
knowledge formation (CKF ).

Definition 1. A model for common knowledge formation is a tuple CKF = 〈AG,
EX, ISS ,med , t, σ〉 where:

• AG = {ag1, . . . , agn} with n > 1 is the finite set of argumentative agents;

• EX = {ex1, . . . , exn} with exi ∈ [0, 1] and
∑n

i=1 exi = 1 is the set of expertise
values for the argumentative agents, such that ag i has expertise exi;

• ISS = {iss1, . . . , issm} with m > 1 is the finite set of issues (or decision alter-
natives) to be discussed;

• med is the mediator agent;

• t is the waiting time used by the mediator to coordinate the message exchange;
and

• σ is a threshold value determining when a formula is common knowledge.

3.1 Argumentative Agent

Argumentative agents are responsible for building arguments, and for supporting or
rejecting any information used in an argument.
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Definition 2. Let AG be the set of argumentative agents. An argumentative agent
ag i ∈ AG is a tuple 〈Σi, Si, Ai〉, where:

• Σi = Ki ∪ KOi is the knowledge base, with Ki representing the beliefs that
the agent has about the environment, and KOi representing the beliefs acquired
through communication with other agents;

• Si is the argument base, which is used to store the set of arguments to be sent
to the group; and

• Ai is the current argument that is being discussed by the group, which is used
to look for counterarguments.

A formula f ∈ Σi may be followed by a label, such as f [iss i(b), . . .] where
iss i ∈ ISS is an issue and b ∈ [0, 1] is the group consensus level on f related to the
issue iss i. Whenever b > 0, most of the agents in AG believe f , and this formula is
accepted as common knowledge. For b = 0, formula f is not accepted by the group
as common knowledge since it is rejected or because most agents do not know f .

Example 2. [adapted from [3]] Consider a set of argumentative agents AG decid-
ing whether or not a patient should undergo surgery. Let Bob, agbob ∈ AG, be
an argumentative agent representing a doctor. The formulae in the knowledge base
represent the following information: the patient should undergo a surgery (sg), the
patient has colonic polyps (a), the patient is at risk of loss of life (b), the patient is
experiencing side-effects (c), the patient has cancer (d). Its structure is defined by:

Kbob = {a[sg(1)],¬c→ ¬sg[sg(0)], c→ sg, d→ b, a→ d, d ∧ ¬b→ sg},

KObob = {¬b[sg(0.7)],¬c[sg(0.4)]},

Sbob = {〈{¬c,¬c→ ¬sg},¬sg〉, 〈{a, a→ d, d→ b}, b〉},

Abob = {〈{a, a→ ¬b},¬b〉}.

The formulae ¬b and ¬c were accepted by the group, and therefore, were considered
by agbob and used to update its KObob base. Formula a was accepted unanimously,
while ¬c → ¬sg was not accepted by the group in the dialogue about sg. When
agbob has the opportunity to send arguments, both arguments in Sbob will be sent to
the group. Abob stores the current argument in the discussion, and this is used as
a reference to look for other counterarguments, storing them in Sbob when requested.

Let ARG i be the set of all arguments that can be built from Σi and arg ∈ ARG i

be an argument with arg = 〈Φ, α〉. The function premise(arg) returns Φ (a set of
formulae in support of arg) and claim(arg) returns α (the formula in the claim of
arg). Let F be the set of all formulae in arg obtained from the function split(arg)
(premise(arg) ∪ claim(arg)). Each formula f ∈ F has a set of atoms obtained from
the function atoms(f). These functions are used by the argumentative agents to
express support for or rejection of each formula in the argument that is presented
to the group in the dialogue.
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A formula f in any argument is supported by an argumentative agent when
it knows that formula. The argumentative agent rejects f when it knows other
formulae with the same atoms, but with no equivalent meaning.

Definition 3. A formula f in an argument arg1 sent by an agent ag i is supported
by ag j, with i 6= j, iff (i) ∃arg2 ∈ ARG j|claim(arg2) ↔ f is a tautology or (ii)
∃g ∈ Σj|atoms(g) = atoms(f) and µ ↔ f is a tautology. Formula f is rejected
iff (i) ∃arg2 ∈ ARG j|claim(arg2) ↔ ¬f is a tautology or (ii) ∃g ∈ Σj|atoms(g) =
atoms(f) and g ↔ f is not a tautology.

From Definition 3, we can observe that the agent ag j supports a formula f of
an argument sent by ag i if ag j has an argument for f (i.e. 〈{Φ}, f〉 ∈ ARG j), or if
ag j knows f (i.e. f ∈ Σj). A rejection occurs when ag j has an argument for ¬f (i.e.
〈{Φ},¬f〉 ∈ ARG j), or if ag j knows a formula g that has the same atoms as f , but
g and f are not logically equivalent.

Example 3. [cont. 2] Consider arg = 〈{a, a → ¬d},¬d〉, which will be analyzed
to identify the consensus level on its formulae. Agent agbob supports a because it
believes this formula. Formula a → ¬d is rejected because agbob believes a → d
and (a → ¬d) ↔ (a → d) is not a tautology. Formula ¬d is supported by agbob

because it has an argument for ¬d: 〈{¬b, d → b},¬d〉 and rejected with argument
〈{a, a→ d}, d〉.

The possible actions available to all the argumentative agents ag i ∈ AG in
an argumentative dialogue for a decision by consensus are as follows:

• discArg(arg , y): the current argument arg presented in the dialogue is stored
in Ai of the argumentative agents along with a number y that denotes its position
in the sequence in which the argument was sent to the group;

• askSpeak(): when Si 6= ∅, ag i informs med that it has some arguments to be
sent;

• propose(): when ag i is requested to send its arguments, it sends all the arguments
in Si to med and then Si is emptied;

• attack(t): ag i looks for arguments attacking the argument in Ai, storing them
in Si, in time t;

• voteSupport(f, t): ag i votes to support formula f at time t;

• voteRejection(f, t): ag i votes to reject formula f at time t;

• learn(f, b, iss): ag i updates Σi with formula f and the label containing the
consensus level b for issue iss. If f ∈ Σi, then the action inform(f, b, iss) is
executed; otherwise, formula f [iss(b)] should be inserted in KOi;

• inform(f, b, iss): agents with f ∈ Σi should update f with the label f [iss(b)]
only when issue iss is not yet annotated in f ;
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• query(ag j, at): agent ag i can ask ag j with i 6= j for formulae containing the
atom at. This action does not involve the med agent and can be performed at
any time by the argumentative agents;

• answer(ag i, F ): when an agent ag j is queried, it replies to ag i, returning the set
of formulae F containing the atom at.

3.2 Mediator Agent

There is a dialogue for each decision alternative and the mediator agent maintains
a dialogue table for each dialogue. This table is used to store the sequence of argu-
ments received during the dialogue, the attacks on the arguments and information
about the consensus regarding each argument.

Definition 4. The mediator agent med is a tuple 〈WB ,AGENDA,DT , δ〉, where:

• WB is an ordered list of argumentative agents;

• AGENDA is a list that stores all the arguments sent by one agent when re-
quested;

• DT = {dt1, . . . , dtm} is the set of dialogue tables where each dti ∈ DT has the
arguments sent during the dialogue on the issue issi;

• δ is the knowledge base that stores all the formulae of the arguments within
a dialogue, with their respective annotations.

WB is used by med as a coordination resource that emulates a face-to-face
meeting. When an argumentative agent has arguments to send to the group, it asks
to speak (action askSpeak()) to med and waits for a request to send the arguments.
This resource ensures that only agents in WB are granted the right to speak. Only
the agent at the top of the list at any given moment is able to send its arguments
when requested.

When med requests the arguments of an argumentative agent, all the arguments
received (action propose()) are stored in AGENDA. Each argument needs to be
checked; that is, med checks whether the arguments are admitted and whether an
argument has already been presented in the current dialogue.

Definition 5. An argument is admitted iff its formulae in Φ are accepted for the
current dialogue. A formula f is accepted for the issue issi if it does not mention
another issue: ∀atom(f) /∈ ISS \ {iss i}. Furthermore, it must satisfy one of the
following conditions:

1. it has not been presented in any other arguments in the current dialogue (formula
without a label for iss i); or

2. there is a consensus on it (label iss i(b) with b > 0).

Example 4. [cont. 2] In a dialogue about sg, the argument 〈{a[sg(1)], a→ d}, d〉 is
admitted. There is consensus on a, and a→ d has not been presented earlier in any
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argument about the issue sg. On the other hand, the argument 〈{¬c[sg(0.4)],¬c→
¬sg[sg(0)]},¬sg〉 is not admitted. Although there is consensus on ¬c, there is no
consensus on ¬c→ ¬sg.

Each admitted argument within the AGENDA occupies a row in the current
dialogue table. The dialogue table has the following fields: y (a sequential number
indicating the sequence in which the arguments are presented), the issuer agent,
the admitted argument, the argument being attacked, the sets of supporting and
rejecting agents for each formula of the argument, the set of consensus levels for
each formula of the argument, and the intrinsic strength of the argument.

After the support and rejection steps (actions voteSupport and voteRejection),
agent med computes the consensus level of f and stores it with the corresponding
label in δ, informing the group of argumentative agents of whether or not f should
be accepted as common knowledge.

Algorithm 1 shows the dialogue model for CKF executed by med . Firstly, the
structure for a new dialogue is created (line 2, function newDialogue(iss)) involving
the creation of WB , AGENDA, and the start point for the dialogue arg = 〈{T}, iss〉
is returned (a structure with only the claim to be discussed). The dialogue ta-
ble for the issue iss is initialized and the current line in the table is returned by
updateDT (med , arg) (line 3). Then, med sends arg to the group (line 4) and asks
for support and rejection of formula iss at time t (lines 5–6). The dialogue table is
updated, including the list of agents that supported and rejected formula iss, the
consensus level and the intrinsic strength for the start point (lines 7–8, functions
buf(iss) and is(arg)). The argumentative agents look for counterarguments at time t
(line 9). When med requests agents with arguments to send, the responses are stored
in agents (line 10) and WB is updated (line 11, function updateWB(agents)). For
each agent in WB , the agent in the first position of the queue sends its arguments
(line 13, function requestArgs(ag i)), and all arguments received are stored in the
AGENDA (line 14, function updateAGENDA(argsList)). Each argument is checked
(line 16, function check(argk)). Only the admitted arguments are stored in dt for
the current dialogue (line 17), and the group is informed (line 18). Each formula
of the argument undergoes a voting process considering a time t (lines 20–21) and
receives a consensus level (line 22); the current dialogue table is updated with the
agreement and rejection lists and the consensus level for the formula under analysis
(line 23); the knowledge base of med is updated with the formula and its related
label (line 24); med informs the group of whether or not the formula should be ac-
cepted (lines 25–28); the intrinsic strength is updated in the dialogue table (line 29);
and med asks the group to look for counterarguments, waiting a time t before asking
which agents have arguments to send (lines 30–32). The current dialogue ends when
WB and AGENDA are empty.

The buf (f) function acts as a belief update function. It is responsible for com-
puting the consensus level of the group on formula f in an argument, determining
which formulae should be accepted as common knowledge. Equation (1) shows how
this function is obtained. We refer to exi as the expertise value of the agent that
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Algorithm 1 Dialogue model for common knowledge formation

Input: the issue to be discussed (decision alternative)
Output: the dialogue table for the issue

1: procedure Dialogue(iss)
2: arg ← newDialogue(iss)
3: y ← updateDT (med , arg)
4: action(discArg(arg , y))
5: support ← action(voteSupport(iss , t))
6: reject ← action(voteRejection(iss , t))
7: b← buf (iss)
8: updateDT (y, iss , support , reject , b, is(arg))
9: action(attack(t))

10: agents ← action(askSpeak())
11: updateWB(agents)
12: for all ag i ∈WB do
13: argsList ← requestArgs(ag i)
14: updateAGENDA(argsList)
15: for all argk ∈ AGENDA do
16: if check(argk) then
17: y ← updateDT (ag i, argk)
18: action(discArg(argk, y))
19: for all f ∈ argk do
20: support ← action(voteSupport(f, t))
21: reject ← action(voteRejection(f, t))
22: b← buf (f)
23: updateDT (y, f, support , reject , b)
24: if b ≥ σ then
25: action(learn(f, b, iss))
26: else
27: action(inform(f, 0, iss))

28: updateDT (y, is(argk))
29: action(attack(t))
30: agents ← action(askSpeak())
31: updateWB(agents)

sent the current argument, and Support [f ] and Reject [f ] as the set of agents that
voted to support or reject formula f , respectively.

buf (f) = exi +
∑

agj∈Support [f ]

exj −
∑

agj∈Reject [f ]

exj. (1)

With buf (f) representing the consensus level on f , issk ∈ ISS the issue under
discussion, and ag i ∈ AG an argumentative agent:
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• buf (f) ≥ σ: formula f [issk(buf (f))] should be accepted and considered common
knowledge;

• buf (f) < σ: formula f [issk(0)] should be updated only when f ∈ Σi.

3.3 Consensus Decision Making

Each dialogue table contains a finite set of arguments ARG = {arg1, . . . , argz} with
z > 0 related to an issue. This set is then mapped to an abstract argumentation
framework such as the one proposed by Dung [11], formed of a pair AF = 〈ARG , R〉
where ARG is the set of arguments and R is a binary relation representing attacks
between arguments with R ⊆ ARG × ARG . The notation R(arg i, arg j) repre-
sents the situation in which arg i attacks arg j. During the mapping, an undercut
is a single attack relation from the attacking to the attacked (i.e. R(arg i, arg j)),
while a rebuttal is a symmetric relation (i.e. R(arg i, arg j) and R(arg j, arg i)). The
abstract argumentation framework is represented as a graph in which the arguments
are nodes and the attack relations are edges. During mapping, each line of the dia-
logue table represents an argument (column arg). The attack relation (column att)
is used to link arguments. Other attacks between arguments can exist and these
additional edges need to be identified.

The starting point arg1 in the dialogue table is the main node in an argumenta-
tion graph representing the decision alternative. This node is special since it receives
only an undercut representing the arguments against the decision alternative. We
refer to ARGS = ARG \{arg1} as the set of all arguments removing the main node.

The consensus decision-making process uses two additional phases to find the de-
cision alternative that is most preferred by the group: computation of the strength of
the arguments and determination of the extent to which one alternative is preferred
to another.

3.3.1 Computing Argument Strength

Arguments have two types of strength: intrinsic and overall strength [8]. The in-
trinsic strength is a value obtained using the concept of group majority knowledge,
which expresses the extent to which an argument is reliable based on its formulae.
This type of strength considers the supporting and rejecting votes in each formula
of the structured argument sent during the dialogue. The overall strength is a score
representing the importance of the arguments when compared to other arguments
in an argumentation graph. This type of strength considers the attack relations
between arguments in an abstract argumentation graph.

Equations (2) and (3) show how to compute the intrinsic and overall strengths,
respectively. Let length : ARG → N be a function that returns the number of
formulae of an argument arg i ∈ ARG and attack : ARG → ATT with ATT ⊆
ARG be a function that returns the set of arguments that attack arg i, that is,
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{arg j ∈ ARG |R(arg j, arg i)}.

is(arg i) =

(∑
f∈split(argi)

buf (f)

length(arg i)
+ 1

)
∗ 0.5, (2)

os(arg i) =
is(arg i)

1 +
∑

argj∈attack(argi)
os(arg j)

. (3)

To solve the entire system of argumentation, we use an iterative method [10]
on the set ARGS . Let time0 be the initial overall strength calculation for each
argument, and times the overall strength calculation obtained after the sth iteration.
An iteration at times computes a new overall strength at times+1 for all arguments
in ARGS . We refer to os(arg i)

s as the process of computing the overall strength
of arg i in iteration s. The iteration terminates when os(arg i)

s = os(arg i)
s+1 for all

arguments. The result is independent of the processing order of the arguments.

3.3.2 Computing Preference Relations

To determine the preference relations among the decision alternatives, we propose
an adaptation to the argument labelling in which the arguments receive a label of
“in”, “out” or “undec” according to their iterations with other arguments in the
argumentation graph [7]. These labels are used to specify the arguments that are
accepted (in) or rejected (out), and those that are neither accepted nor rejected
(undec) [23].

In this adaptation, the labelling implies that arguments with greater overall
strengths (labelled as “in”) are acceptable (or partially acceptable) and undermine
those arguments with lower overall strengths (labelled as “out”) that are attacked
by them. Arguments labelled as “undec” are those with identical overall strengths.
In this case, we use the intrinsic strength that represents the consensus level to
determine the argument most preferred by the group (“in” or “out”). The arguments
are designated as “undec” only when both the overall and intrinsic strengths are the
same and there is no attacking argument labelled “in”.

We define the following functions to obtain the neighbours of an argument
arg i ∈ ARGS : getAllNeighbors : ARGS → NB where NB is the set of all neigh-
bours of arg i (we consider neighbours to be the attackers and attacked arguments
with NB = {argb ∈ ARGS |R(argb, arg i) ∪ R(arg i, argb)}); getLabeledNeighbors :
NB → LNB where LNB is the set of neighbours with an associated label (“in”,
“out”, or “undec”); and ACC : AF → INARGS is the set of acceptable argu-
ments of an argumentation graph with the label “in”. The argument labelling
is a function that assigns a label to each argument in the graph. Argument la-
belling uses two sets P and Q representing the set of all labelled neighbours with
maximum overall strength and the set of all labelled neighbours with equal over-
all strength, respectively, where P = {arg j ∈ LNB|os(arg j) > os(arg i)} and
Q = {arg j ∈ LNB|os(arg j) = os(arg i)}.
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Definition 6. Let arg i ∈ ARGS be an argument and P and Q be the sets of
labelled neighbours with maximum and equal overall strengths, respectively. An ar-
gument labelling for an argumentation graph is a total function L : ARGS →
{in, out, undec} such that:

1. if P = ∅ and Q = ∅, then L(arg i) = in;

2. if P = ∅ and (∃arg j ∈ Q)(is(arg i) = is(arg j)), then L(arg i) = undec;

3. if P = ∅ and (∃arg j ∈ Q)(is(arg i) > is(arg j)), then L(arg i) = in;

4. if P = ∅ and (∃arg j ∈ Q)(is(arg i) < is(arg j)), then L(arg i) = out;

5. if (∃arg j ∈ P )(L(arg j) = in) , then L(arg i) = out;

6. if (∀arg j ∈ P )(L(arg j) ∈ {out, undec}), then L(arg i) = in.

The labelling of all arguments uses an iterative method to calculate the overall
strength of the arguments, since the arguments have links between them and when
an argument is labelled, its attacks and attackers need to be reviewed. We refer
to L(arg i)

w as the process of labelling argument arg i in an iteration w. The last
iteration occurs when L(arg i)

w = L(arg i)
w+1 for all arguments in ARGS .

Let POS : ARGS → {−1, 1} be a function that returns 1 if arg i is a supporting
argument, and −1 otherwise. Supporting arguments are those with even distance
over a simple shorter path to the main node in the argumentation graph, while
rejecting arguments are those with odd distance over a simple shorter path to the
main node in the argumentation graph. To compute the preference level for the
decision alternative iss, we need to compute the position of the accepted arguments
according to Equation (4). The preferred order relation of two decision alternatives
is denoted by the symbols � and ∼ (preferred or equally preferred, respectively).
Whenever pref (iss1) > pref (iss2) we have iss1 � iss2; for pref (iss1) < pref (iss2) we
have iss2 � iss1; and for pref (iss1) = pref (iss2) we have iss1 ∼ iss2. In this case,
the choice of the preferred decision alternative is random. In the special case when
there is no argument in the dialogue, that is, if ARGS = ∅, then the preference level
for the decision alternative is pref (iss) = is(arg1).

pref (iss) =
∑

argy∈INARGS

POS (argy) ∗ os(argy). (4)

Example 5. Consider the argumentation graph and the iterations for labelling in
Figure 2. We have L(arg2) = out , L(arg3) = in, L(arg4) = in, L(arg5) = out ,
ACC = {arg3, arg4}, POS (arg3) = −1, and POS (arg4) = 1. The preference level
for the issue is pref (iss i) = 0.13

4 PRACTICAL EXAMPLE

Our example consists of a discussion among three agents that are trying to decide
whether a robot should rescue a human being in a disaster situation. The robot has
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Figure 2. Labelling of arguments for issue iss i. The double line represents the main node.

a stretcher that can carry only one person at a time. There are two possible decision
alternatives for the robot: recharge its battery, x, or rescue the individual and take
him/her to the hospital, y. Let CKF = 〈{ag1, ag2, ag3}, {0.4, 0.3, 0.3}, {x, y},med ,
10, 0.4〉 and the atoms in the formulae represent the sentences: a = the battery has
less than 70 % charge; b = the person is very far from the robot; c = the risk of
death is 9 ([0, 10] where 10 means the person is dead); and d = the person is alive.
The initial knowledge is:

ag1 = {{a, b,¬c, c→ d, a ∧ b→ x, a ∧ b→ ¬y}, {}},

ag2 = {{a,¬b, c, c→ d, a ∧ b→ x, a ∧ b→ y, a ∧ b→ ¬d}, {}},

ag3 = {{b, c, c→ d, d→ ¬x, a ∧ b→ x, a ∧ b→ ¬y, d→ y}, {}}.

Agent med creates the starting point arg1 = 〈{T}, x〉 and informs the group
(arg1 is stored in the Ai base of all argumentative agents). For voting, we have
Support [x] = {ag1} where ag1 has the argument 〈{a, b, a∧ b→ x}, x〉 supporting it,
and Reject [x] = {ag3} where ag3 has the argument 〈{c, c → d, d → ¬x},¬x〉, with
buf(x) = 0.1. Agent ag3 has S3 = {〈{c, c→ d, d→ ¬x},¬x〉} and sends this to med
when requested. After being checked by the mediator, this argument is inserted into
the dtx as arg2. Thus, for voting, we have Support [c] = {ag2}, Reject [c] = {ag1},
Support [c → d] = {ag1, ag2}, Reject [¬x] = {ag1}, buf (c) = 0.2, buf (c → d) = 1,
buf (d → ¬x) = 0.3, and buf (¬x) = −0.1. The group is informed of all formulae
and these are updated with the corresponding label.

Agent ag1 has two arguments arg3 and arg4 in S1 = {〈{¬c},¬c〉, 〈{a, b, a ∧
b → x}, x〉}. When requested, ag1 sends the arguments, med checks them and
informs the group. For voting, we have: Reject[¬c] = {ag2, ag3} with buf(¬c) =
−0.2 (agents ag2 and ag3 have the counterargument 〈{c}, c〉 but formula c[x(0)] was
presented in a previous argument and was not accepted, meaning that this argument
is not admitted); Support [a] = {ag2} and Reject [a] = {ag3} with buf (a) = 0.4,
Support [b] = {ag3} and Reject [b] = {ag2} with buf (b) = 0.4, Support [a ∧ b → x] =
{ag2, ag3} with buf (a∧b→ x) = 1 (all agents know this formula), Reject [x] = {ag3}
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with buf (x) = 0.1. Formulae a[x(0.4)], b[x(0.4)], and a ∧ b → x[x(1)] are then
accepted by the group, becoming common knowledge.

Agent ag2 has the argument arg5 = 〈{¬b},¬b〉 in S2 with Support [¬b] = {ag3},
Reject [¬b] = {ag1, ag3} and buf (¬b) = −0.1. Agent ag3 has the argument 〈{b}, b〉
with Support [b] = {ag1, ag2}, Reject [b] = {ag2} and buf (b) = 0.7. Since WB and
AGENDA are empty, the dialogue for x is complete. It is important to note that
the argumentative agents have other counterarguments during the dialogue, but
these are not admitted. Agent med starts the dialogue again for the next decision
alternative. After all dialogues, the knowledge of the agents is:

ag1 = {{a[x(0.4), y(0.4)], b[x(0.4), y(0.4)],¬c[x(0), y(0.7)], c→ d[x(1), y(1)],

a ∧ b→ x[x(1)], a ∧ b→ ¬y[y(0.4)]}, {}},

ag2 = {{a[x(0.4), y(0.4)],¬b[x(0), y(0)], c[x(0), y(0)], c→ d[x(1), y(1)],

a ∧ b→ x[x(1)], a ∧ b→ y[y(0)], a ∧ b→ ¬d[y(0)]}, {b[x(0.4), y(0.4)],

a ∧ b→ ¬y[y(0.4)],¬c[y(0.7)]}},

ag3 = {{b[x(0.4), y(0.4)], c[x(0), y(0)], c→ d[x(1), y(1)], d→ ¬x[x(0)],

a ∧ b→ x[x(1)], a ∧ b→ ¬y[y(0.4)], d→ y[y(0)]}, {a[x(0.4), y(0.4)],

¬c[y(0.7)]}}.

Table 1 shows the dialogues for x and y. The corresponding argumentation
graphs are shown in Figure 3 with the arguments and their overall strengths. The
steps used in labelling the arguments are presented in Table 2. For a dialogue about
x, we have: L(arg2) = out , L(arg3) = in, L(arg4) = in, L(arg5) = out , L(arg6) =
in, ACC = {arg3, arg4, arg6}, POS (arg3) = 1, POS (arg4 = 1), POS (arg6) = 1
and pref (x) = 1.52. For a dialogue about y, we have: L(arg2) = in, L(arg3) =
out , L(arg4) = out , L(arg5) = out , L(arg6) = in, L(arg7) = in, L(arg8) = in,
ACC = {arg2, arg6, arg7, arg8}, POS (arg2) = −1, POS (arg6) = −1, POS (arg7) =
−1, POS (arg8) = −1, and pref (y) = −1.83. As a result of this dialogue, we have
x � y, where x is the preferred decision alternative for the group.

4.1 Results and Discussion

From the practical example given above, it is possible to observe the relation be-
tween common knowledge and consensus about information that is accepted by the
group of agents. In this work, we refer to each decision alternative as a possi-
ble world. One approach to formalising these possible worlds is the Kripke struc-
ture [12]. A Kripke Structure KS for n agents over a set of primitive proposi-
tions Γ is a tuple (P, π,Θ1, . . . ,Θn) where P is a non-empty set of possible worlds;
π : (p) → {true, false} is a function that assigns a truth value to the propositions
in Γ for each possible world p ∈ P ; and Θi is a binary accessibility relation between
the possible worlds in P . We can represent the practical example in a Kripke Struc-
ture using the system S5 [12, 14, 18] for knowledge representation in each agent
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Table 1. Arguments, supporting and rejecting votes and intrinsic strengths for x and y

Table 2. Labelling arguments from dtx and dty

where the possible worlds are symmetric, transitive and reflexive. Let the sequence
[x, y] represent the decision alternatives, with values T for true and F for false.

Before the dialogue, agent ag1 has one argument asserting x (〈{a, b, a ∧ b →
x}, x〉) and one argument asserting ¬y (〈{a, b, a ∧ b → ¬y},¬y〉). For this agent,
there is only one possible world: w1 = [T, F ]. Agent ag2 does not have an argument
for either x or y. In this case, both decision alternatives are accepted with four
possible worlds: w1 = [T, F ], w2 = [F, T ], w3 = [T, T ], w4 = [F, F ]. Agent ag3 has
one argument for ¬x (〈{c, c → d, d → ¬x},¬x〉) and one for y (〈{c, c → d, d →
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a) b)

Figure 3. Argumentation graphs mapped from a) dtx and b) dty. Double lines represent
the main node, and dotted lines are additional attack relations detected in the mapping.

y}, y〉) with only one possible world: w2[F, T ]. In this case, there is no consensus
on x or y, as shown in Figure 4 a).

After the dialogue, ag1, ag2 and ag3 accept only world w1 = [T, F ] (argu-
ments: 〈{a, b, a ∧ b → x}, x〉 and 〈{a, b, a ∧ b → ¬y},¬y〉). Agent ag2 still has
an argument for y (〈{a, b, a ∧ b → y}, y〉) and ag3 has arguments for ¬x and y
(〈{c, c → d, d → ¬x},¬x〉 and 〈{c, c → d, d → y}, y〉), but these arguments are
not admitted and therefore do not establish a position against ¬x or in favour of y.
After the dialogue, we can observe that there is a consensus on world w1 = [T, F ],
as shown in Figure 4 b).

Figure 4. Possible worlds and consensus for agents ag1, ag2, and ag3: a) before the dia-
logue; and b) after the dialogue, with common knowledge formation

We can also use the modal operators K, E, and C to represent the knowledge
of the agents:

• Kiϕ is equivalent to ϕ ∈ Σi (e.g. K1¬c implies that ¬c ∈ Σ1). If an agent knows
a piece of information, that information is in the agent’s knowledge base or can
be inferred.

• ¬KiKjϕ (e.g. K2d and ¬K1d or ¬K1K2d). If an agent does not know about
a piece of information, it can query other agents.
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• Kiϕ implies that KiKiϕ. If an information is in the agent’s knowledge base, the
agent knows that information and can use it to build new arguments and vote.

• ¬Kiϕ implies that Ki¬Kiϕ. The unknown information cannot be used to build
new arguments and vote.

• EAGϕ is equivalent to ∀ag i ∈ AG : ϕ ∈ Σi. Before the dialogue in the practical
example, agents know c→ d.

• CAGϕ is equivalent to ∀Σi,∃ϕ : ϕ[iss(b)] for iss ∈ ISS and b > 0. A formula is
common knowledge when related to an issue if it has a label with a consensus
level greater than zero.

Other characteristics of the model are as follows:

• It is able to represent the different belief states for each formula. Formulae ϕ
and ¬ϕ may be accepted at the same time for the same issue. The agent may
not have a well-defined position for that information.

• There are two ways in which an agent can decrease the strength of an argument:
voting for rejection of its formulae or sending counterarguments.

• Maximal acceptance of an argument arg results in is(arg) = 1, while maximal
rejection of the argument results in is(arg) = exi (the expertise value of the
proponent).

• A small number of strong attacks may be equivalent to or more rigorous than
several weak attacks.

4.2 Related Works

Dung [11] proposed some semantics to determine the admissibility of the argu-
ments, that is, a formal framework to identify conflict outcomes, such as preferred
or grounded semantics. The idea is to specify sets of acceptable arguments or ex-
tensions. An extension is a set of arguments that can be accepted together. These
semantics are used to select arguments without considering support for or rejection
of a decision alternative or group decision.

Coste-Marquis et al. [9] used an argumentation graph with weights in the attack
relations, and applied Dung’s semantics in determining the last attacked or best
defended extensions. Our proposal deals with strengths in arguments represented
as numerical values, applied when a group of agents intends to select the preferred
alternative by considering the opinions of all the agents.

Da Costa Pereira et al. [10] use a belief revision based on argumentation that
assigns fuzzy labelling to each argument, permitting the agent to change its mind
without removing the previous information forever, and allowing for recovery if this
information turns out to be wrong. In our work, the evaluation is carried out based
on the set of formulae of the argument, all arguments are evaluated, and the agents
store all the information that is acceptable to every possible world in their knowledge
bases.
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The work closest to our approach is probably that of Leite and Martins [19], who
extend Dung’s framework by applying it to online debate systems, allowing people
to vote to support or reject arguments or to send arguments that are not logically
structured. They defined a semantics for application to online debating systems
(democracy, universality, etc.) and to rank the arguments from the strongest to the
weakest, suggesting a preference for the group, although not a definite one. In our
work, arguments are logically structured; they are sent by agents within a restricted
group; the strengths of the arguments use quantitative (votes) as well as qualitative
(attacks) values; there are different dialogues, one for each issue; and the framework
still creates the preference order of the possible decision alternatives as a result.

5 CONCLUSION

This work presents an argumentative dialogue model for CKF in a group of agents.
This model is generic, and can be applied to a discussion about any issue where there
is a need for group opinions. We use propositional logic to represent the information
in the knowledge bases, and to build arguments and a voting model for support and
rejection, although other logical languages may be used.

The model has four main characteristics:

1. it allows agents to take part in a dialogue by exchanging arguments through
attack relations, while supporting or rejecting the arguments by voting on their
formulae;

2. based on the expertise of the agents, we can evaluate the arguments in numerical
form, representing the extent to which each formula (or argument as a whole)
is accepted by the group of agents;

3. the results obtained after the dialogue allow for an approximation of opinions,
meaning that the group can apply the model in consensus decision-making prob-
lems; and

4. the model presents a direct relation between common knowledge and consensus.

When a piece of information is taken as common knowledge, there is a consensus of
the group accepting that information. The output of the model is not the optimal
decision, but rather the decision preferred by the group.

There are several possible ways to extend this work. Some of these future direc-
tions involve the application of the model to decision making in which blocking is
possible, and the use of a reputation system to assign expertise to the agents, where
each value is related to the type of information presented in the argument.
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Abstract. Collaborative filtering (CF) is the most successful and widely imple-
mented algorithm in the area of recommender systems (RSs). It generates rec-
ommendations using a set of user-product ratings by matching similarity between
the profiles of different users. Computing similarity among user profiles efficiently
in case of sparse data is the most crucial component of the CF technique. Data
sparsity and accuracy are the two major issues associated with the classical CF
approach. In this paper, we try to solve these issues using a novel approach based
on the side information (user-product background content) and the Mahalanobis
distance measure. The side information has been incorporated into RSs to further
improve their performance, especially in the case of data sparsity. However, incor-
poration of side information into traditional two-dimensional recommender systems
would increase the dimensionality and complexity of the system. Therefore, to
alleviate the problem of dimensionality, we cluster users based on their side infor-
mation using k-means clustering algorithm and each user’s similarity is computed
using the Mahalanobis distance method. Additionally, we use fuzzy sets to repre-
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sent the side information more efficiently. Results of the experimentation with two
benchmark datasets show that our framework improves the recommendations qual-
ity and predictive accuracy of both traditional and clustering-based collaborative
recommendations.

Keywords: Recommender systems, collaborative filtering, Mahalanobis distance,
k-means clustering, multi-criteria, demographic recommender

1 INTRODUCTION

Recommender System (RSs) is the information filtering software tool which gives
suggestions to internet users for the products which are more likely to be preferred
by them or relevant to their choice [1]. Here, a suggestion can be from any domain,
such as which movie to watch, which song to listen, what products to buy, or which
online news to read. Collaborative filtering (CF) is the most used and popular
technology implemented in both industry and academia due to its simplicity and
accurate enough recommendations ability [2]. The CF technique is further classified
into product-based and user-based methods. The core idea of the product-based
method is to provide product suggestions to users based on the other similar prod-
ucts, while the user-based method generates recommendation to a user (target user)
by finding a set of users who have high correlations with this user. In both ways,
finding similar users (products) to target user (product) is the crucial step for CF
technique [3]. Currently, most of the CF similarity measures are based on com-
monly rated products. Although these CF recommendation methods are popular
and widely used, they still suffer a number of inadequacies, including [4]:

• Data sparsity: This is a very usual problem in collaborative recommenders where
users give ratings to a small set of products from a broad set of products available
in the system. The actual problem occurs in the neighborhood set generation
phase, where a very few or no common product ratings are available for similarity
computation between users which leads to invalid neighborhood set formation.

• Cold-start: This problem arises in a scenario similar to that of data sparsity. In
this problem, it is tough to produce recommendations for users who are newly
introduced into the system or have not rated a single product yet.

• Multidimensionality: Traditional RSs works fine in case of two dimensions, i.e.,
users and products, but tends to fail when a recommendation is needed for a sys-
tem having more than two dimensions. Therefore, the curse of dimensionality
is one of the major issues in classical recommender systems.

All of the above-listed problems are approximately dependent on each other;
for instance, while handling data sparsity issue through some user-product features
in the system, the multidimensionality issue comes into the picture [5]. Therefore,
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to tackle these problems, a compact model is required where the fusion of user-
product side information into traditional recommender system does not affect its
dimensions.

Although researchers are working towards the improvement in the accuracy of
recommender systems using the overall user-product single-criterion ratings [3, 6], it
has been seen that the user’s demographic data, products description, contextual and
multi-criteria rating factors significantly influence the utility of recommendations.
In this work, we incorporate

1. user demographic information (user age) and

2. multi-criteria ratings as side information for two different recommenders.

A collaborative filtering technique with demographic information is known as
demographic recommender systems. We have used user age as the third dimension
to alleviate data sparsity issue. Let us suppose a user x who is new in the system
and has no past ratings (user cold-start), then, in such case, other users can only
be matched with him/her by his/her age. Hence the young age group users will
be closer to each other rather than the old age people. Whereas, a multi-criteria
recommender system (MCRS) can provide more effective and accurate suggestions
to users as compared to the classical RSs. In MCRS the preference of a user is
represented based on several aspects of the products [7]. Instead of having a single
overall rating for a product, MCRS represents products using multiple components
to attain preference of a user in depth [7, 8]. For example, hotels can be evaluated
more effectively based on their different components (cleanliness, rooms, cuisines,
and price) instead of evaluating on a single overall rating. Now, our job is to find
a technique which can combine these side information with traditional recommen-
dation systems without dimension expansion and further improve their accuracy.
After connecting the side information into the system, we have to identify a method
to compute effective similarity between user models with side information. There
is a need for selecting an efficient similarity measure for a top-N neighborhood set
generation.

Therefore, in this work, we proposed a framework which has achieved our goals.
In our framework, we treated the side information (user age or multi-criteria ratings)
as a clustering parameter for k-means clustering. The users are clustered using their
age (or multi-criteria ratings) and this reduces the user search space while forming
neighborhood set of the user. Each user is assigned to his/her most similar side
information cluster. Further, we use Mahalanobis distance measure to compute the
distance between users within the group [35]. Our work follows a simple and effective
method to generate more expert recommendations to the users. The contribution
of the paper can be outlined as follows:

• We propose a recommendation method that improves the accuracy of collab-
orative filtering and is based on side information, Mahalanobis distance, and
k-means clustering algorithm.
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• We present a novel framework to deal with the curse of dimensionality in collab-
orative filtering recommender systems. No method in the literature deals with
the multi-criteria and demographic multi-dimensionality problem using a single
framework.

• A novel user profile is built on user-product side information, where fuzzy logic
is used to handle the sparsity and uncertainty and reduces the complexity of the
system.

• Modified Mahalanobis distance measure is proposed for users matching.

• We perform extensive experiments on two real datasets, namely Yahoo! Movies
for multi-criteria ratings and MovieLens for user age feature. The results show
that our proposed framework can deal with the multi-dimensionality and data
sparsity issues effectively and accurately as compared to other traditional tech-
niques.

This paper is organized as follows: Section 2 introduces the background and related
work. The proposed recommendation framework is introduced in detail in Section 3.
In Section 4, we evaluate the proposed method using the MovieLens 100 K and
Yahoo! Movies datasets and compare it with the existing methods. We conclude
the paper in Section 5.

2 BACKGROUND

2.1 Recommendation Techniques

Recommender systems employ different information filtering techniques to product
recommendations based on the type of application. There are many techniques
implemented in literature, but the Content-based (CB), Collaborative filtering (CF),
and hybrid techniques are the major recommendation techniques [4]. We will discuss
each of them in the following subsections.

2.1.1 Content-Based Technique

This technique suggests products similar to the ones user selected in the past. The
core mechanism of this technique depends upon the content or feature of the past
preferred products [1]. These contents or features are further used to build a user
profile for each user. Thereafter, similarity between user profiles and other products
are computed to obtain similar products.

2.1.2 Collaborative Filtering Technique

This is the most widely implemented technique in literature. It produces recommen-
dations based on preferences of other like-minded users in the system. CF works
in three steps. First, similarity is computed between users on the basis of their



Fuzzy Side Information Clustering-Based Framework for Effective Recommendations 601

historical ratings. Secondly, the neighborhood set is formed by obtaining most sim-
ilar users to the target user. Thirdly, predictions and recommendations are made
through neighborhood users’ collective ratings [2]. We can observe from above men-
tioned steps that the similarity computation is a critical step for CF technique and
the performance of the system considerably depends on the quality of neighborhood
set selection. Therefore, there is a need for a good mechanism to find neighbors
of target user which can facilitate better recommendations to the users. We will
discuss some of the well-known similarity measures in Section 2.2.

2.1.3 Hybrid Filtering

Here, more than one filtering technique is combined to improve the effectiveness of
the recommender system. Hybrid filtering is used to remove drawbacks of each tech-
nique separately [19]. There are multiple ways to implement a hybrid recommender
system; it can be implemented by combining separate recommender techniques or
by adding content-based characteristics to collaborative model and vice-versa.

2.2 Similarity Measures

Similarity computation is an intermediate and primary step in collaborative filtering
which is used for neighborhood set formation [10, 19]. Here user-product rating
matrix is used for similarity computation. Most of the similarity measures fail in
case of sparse data. In our work, we will perform experiments on the following
similarity measures to compute the similarity/distances between users.

2.2.1 Pearson Correlation Coefficient (PC)

This is the most popular similarity computation method usually applied to memory-
based CF [33]. In this method, the similarity between two users is based only on
the ratings both users have given to products in the past. The PC is calculated as
follows:

PC(x, y) =

∑
n∈Nxy

(rx,n − r̄x)(ry,n − r̄y)√∑
n∈Nxy

(rx,n − r̄x)2
√∑

n∈Nxy
(ry,n − r̄y)2

(1)

where rx,n is the rating of user x on product n and r̄x is the mean of the total ratings
given by the user x. Nxy is the set of products commonly rated by both user x and
y.

2.2.2 Cosine-Based Similarity (CS)

This method uses the concept of angle to compute the similarity among different
users. This similarity is based on the cosine of the angle between two users x and y.
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It is calculated using:

CS(x, y) =

∑
n∈Nx,y

rx,n · ry,n√∑
n∈Nx,y

r2
x,n

√∑
n∈Nx,y

r2
y,n

. (2)

2.2.3 Extended Jaccard Coefficient (JC)

This method can be used for continuous or discrete non-negative features and gets
reduced to the Jaccard coefficient in case of the binary attributes as input. This
coefficient, which is represented as JC, is defined by the following equation:

JC(x, y) =

∑
n∈Nx,y

rx,nry,n∑
n∈Nx,y

r2
x,n +

∑
n∈Nx,y

r2
y,n −

∑
n∈Nx,y

rx,nry,n
. (3)

2.2.4 The Mahalanobis Distance (MD)

This is a well-known distance measuring formula which is calculated using the inverse
of the variance-covariance matrix of the dataset of interest [14, 15]. The MD for a
single user x is computed similar to the concept of Euclidean distance method.

MD =
√

(x− x̄)vc−1
z (x− x̄)T (4)

where

vc−1
z =

[
σ2

2/det(vcz) −ρ12σ1σ2/det(vcz)
−ρ12σ1σ2/det(vcz) σ2

1/det(vcz)

]
where σ2

1 and σ2
2 are the variances of the values of the first and second users re-

spectively. ρ12σ1σ2 is the covariance between the two users and det(vcz) is the
determinant of the variance-covariance matrix (vcz), which is computed as follows:

vcz =

[
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

]
. (5)

Since Equation (4) is used only for a single user x, we will discuss MD for
multiple users in detail in Section 3.2.

2.3 Related Work

In our work, a user-based clustering has been applied to identify users with similar
preferences based on user age or multi-criteria ratings. For example, in a restau-
rant, one may like the food, but not the service, or vice-versa. So, in the real-life
scenario, the side information dramatically affects the overall preference of a user.
There has been a lot of research done in the area of recommender systems using
clustering, like a user-based clustering has been proposed using user-user similarity
computations and resulting clusters are used for neighborhood set generation [10].
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Ungar and Dean [21] clustered both users and products separately using k-means
and Gibbs sampling. Here, users can be un-clustered using the number of products
in each product cluster they have rated and vice-versa. Tsai and Chihli [22] pro-
posed cluster ensembles method for collaborative filtering recommendation where
they have used the self-organizing map and k-means clustering and three different
ensemble methods. A novel clustering-based CF approach was developed where user
groups are formed using a proposed method to reduce the impact of the data spar-
sity [20, 32]. After cluster formation, nearest neighbors are found from each user
group to produce the useful recommendation to the users. Similarly, Liu [9] pro-
posed an improved clustering-based collaborative filtering recommender method. In
this approach the authors applied k-means clustering to cluster the users and then
an enhanced similarity method was developed to generate nearest neighbors in the
cluster for the target user. The problem of computational time has also been ad-
dressed using k-means clustering by clustering user-product ratings and generate
nearest neighbors [23].

Liu et al. [11] presented a multi-criteria recommendation approach by clustering
users based on their criteria preferences in a preference lattice. Authors showed
that some set of criteria dominate the overall ratings and different users have their
own different dominant set of criteria. A clustering and regression-based technique
was proposed in [12, 13] to improve the predictive accuracy of multi-criteria CF:
different clustering methods were used to detect similar customer segments and re-
gression was used for learning important weights for the various quality factors.
Nilashi et al. in [26] proposed a technique to solve scalability and sparsity problems
of multi-criteria recommender systems using dimensionality reduction and Neuro-
Fuzzy techniques. In their approach the Neuro-Fuzzy technique was used to solve
sparsity problem, and scalability was handled using higher order singular value
decomposition along with supervised learning (classification) methods. Similarly,
in [24], a hybrid recommendation model was proposed to overcome the same issues
by using ontology and dimensionality reduction techniques. The authors have used
EM clustering to cluster user-product and Singular Value Decomposition (SVD)
techniques for dimensionality reduction. Whereas, [25] shows a method which com-
bines dimension reduction and user clustering in collaborative filtering in which the
authors have used principal component analysis and SVD techniques for dimension-
ality reduction plus k-means and agglomerative hierarchical clustering techniques
for user clustering. Authors in [30, 31] deal with the curse of dimensionality by
handling data sparsity problem of CF technique. Xu et al. [27] used the clustering
algorithm to cluster user profile and then combined it with product-based collabo-
rative filtering to improve its performance. Furthermore, authors have incorporated
fuzzy set theory to deal with different rating schemas and tackle the scalability issue
of recommender systems.

Furthermore, many authors have chosen certain clustering parameters from the
user-product profile features in literature. Frémal and Lecron in [16] presented
a clustering based recommender system based on product’s metadata: they have
used movie genre as a clustering parameter. Since a single movie can have mul-
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tiple genres, therefore, authors assigned a single product to multiple clusters and
results from every cluster were combined using different weighting strategies. In
the same way, [29] proposed a technique to cluster products based on the contents
using k-means algorithms. Product-grain clustering [18] was introduced by choos-
ing contexts as a clustering parameter using k-means algorithm. Further, these
context clusters were incorporated into matrix factorization technique to overcome
data sparsity, scalability and prediction quality issues. Wang et al. [28] proposed
a new algorithm which clusters user attributes using k-means algorithm. Here,
longitude and latitude of the user are considered as the clustering parameter and
after cluster formation, the similarity of each user is calculated within the respective
cluster.

The major problem with these works is that they all have used some additional
techniques to alleviate the issue of dimensionality reduction which makes the system
more complicated. A complex system will take more time to produce recommenda-
tions which may irritate the online user. Unlike the approaches mentioned above,
our proposed framework is straightforward and requires no mathematical modelling
for dimensionality reduction because we have treated the other dimensions as the
feature of user cluster. Our work in this paper can be summarized twofold. First,
we identify the clustering parameter for cluster segments and incorporate fuzzy
sets to handle the uncertainty issue associated with them. After cluster forma-
tion, in the second fold, we applied different similarity measures and compared
with our proposed Mahalanobis distance-based method. However, our goal is to
study the impact of different similarity measures for clustering and non-clustering
approaches.

3 THE PROPOSED FRAMEWORK

In this section, we give a description of our proposed framework which improves
recommendation system’s accuracy by identifying different users’ belongingness into
different clusters based on their side information. In the proposed technique, the
actual neighbors of users are found based on their Mahalanobis distance within the
user cluster. Unlike traditional similarity measures, the Mahalanobis distance not
only considers the commonly rated products between the two users but also finds the
variance and covariance between them which makes it more efficient to generate the
more similar neighborhood set to the target user, thus, improving the effectiveness
of the CF recommendation [15]. The framework is constructed according to the
idea and description mentioned above. Figure 1 presents the architecture of the
system. The proposed algorithm has three main components which are explained in
the below subsections.

3.1 User Cluster Formation

In order to generate most relevant user clusters according to their side information,
the first step is to identify the clustering parameter from the existing dataset. After
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Figure 1. Clustering with fuzzy side information framework

which, the number of user cluster centers has to be defined. The next step is
to cluster each user with any one of these pre-specified cluster centers based on
their in-between distance (similarity). Those users are assigned to the cluster which
has minimum distance (maximum similarity) from them, so that users with most
common preferences are grouped in the same cluster. This process iterates until
convergence criteria are met. The algorithm for creating user clusters is shown
below.

3.1.1 Fuzzy Approach

Fuzzy set has been used to deal with the vague concepts, like ‘old’, ‘short’, ‘poor’, and
so on. To incorporate the fuzzy sets into recommender system, proper fuzzification
(designing of membership functions) will be required and an appropriate distance
function will be needed to match the local and global similarities between different
users.
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Algorithm 1 Algorithm for user cluster formation

Input: Dataset with Side Information, number of clusters K
Output: Set of user clusters

Step 1: [Initialization]
Initialize randomly K clustering centers {c1, c2, c3, .., ck} from the dataset.

Step 2: [Assignment ]
a. Find the closest cluster center c for each user a using:
(i) Equation (8) in case of fuzzified side information OR
(ii) following Euclidean distance for non-fuzzified side information:

Edisc,a =
√

(Mc,1 −Ma,1)2 + (Mc,2 −Ma,2)2 + ...+ (Mc,n −Ma,n)2

where: Edisc,a - distance between the cluster center c and the user a;
n – number of user rated products;
Mc,n – age or multi-criteria ratings of cluster center c for product n
(n=4 for multi-criteria ratings; n=1 for age side information);
Ma,n – age or multi-criteria ratings of user a for product n.
b. Arrange user a by its distance from each clustering centers {c1, c2, c3, .., ck}.
c. Assign the user a with the nearest distance cluster center c.

Step 3: [Convergence]
a. Iteratively process cluster reassignment until convergence criteria is reached.
b. If convergence criteria met, then the algorithm terminates and returns a set of
user clusters {c1, c2, c3, .., ck}, otherwise go to step 2.

Side information fuzzification: We have used the following fuzzy sets to
deal with the uncertainty associated with the user-item side information (multi-
criteria ratings and user age).

In our approach, multi-criteria ratings from Yahoo! Movies dataset are classified
into six fuzzy sets, namely very bad (VB), bad, average, good, very good, and
excellent (Exl) [6], as shown in Figure 2, following are the membership functions for
these fuzzy sets:

PV B(m) =

{
1−m, m ≤ 1,

0, m ≥ 1,
(6a)

Pt(v)(m) =


0, m ≤ v − 2,m > v,

m− v + 2, v − 2 < m ≤ v − 1,

v −m, v − 1 < m ≤ v

(6b)
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where t(v) represents the bad, average, good, and very good for each value of v = 2,
3, 4, and 5, respectively.

PExl(m) =

{
0, m ≤ 4,

m− 4, 4 < m ≤ 5.
(6c)

Figure 2. Fuzzy sets for multi-criteria rating side information

The ‘user age’ feature from MovieLens dataset is fuzzified into three fuzzy sets
namely, young, middle-aged, and old [6], as shown in Figure 3, the membership
functions of these fuzzy sets are shown below.

Qyoung(m) =


1, m ≤ 20,

(35−m)/15, 20 < m ≤ 35,

0, m > 35,

(7a)

Qmiddle(m) =


0, m ≤ 20,m > 60,

(m− 20)/15, 20 < m ≤ 35,

1, 35 < m ≤ 45,

(60−m)/15, 45 < m ≤ 60,

(7b)

QOld(m) =


0, m ≤ 45,

(m− 45)/15, 45 < m ≤ 60,

1, m > 60.

(7c)

Fuzzy distance function: After side information fuzzification process, to
compute the distances between fuzzified features, we replace the Euclidean distance
method in Algorithm 1 mentioned above in step 2(i) with the following modified
Euclidean fuzzy distance formula [17].

Gfd(X, Y ) =

√√√√ z∑
i=1

(Lfd(xi, yi))2 (8)
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Figure 3. Fuzzy sets for age side information

where Gfd is the global fuzzy distance, z is the length of fuzzified vector and Lfd is
the local fuzzy distance of users:

Lfd = dis(xi, yi)× d(xi, yi). (9)

Here, d(xi, yi) computes the difference between vectors x and y of size m, and
dis(xi, yi) is an Euclidean distance function given shown below.

dis(xj, yj) =

√√√√ m∑
i=1

(xi,j − yi,j)2 (10)

where xi,j denotes the membership value of the ith feature in the jth fuzzy set.

3.2 Similarity Computation and Neighbors Selection

After creating groups, to generate most similar top-N neighbors of the target user,
the next step is to compute similarities among different users within their respective
clusters. The logic behind similarity computation is to extract those users who have
provided similar ratings to the same products. As Mahalanobis distance method
persists multiple benefits compared to the classical similarity methods, we choose
this method to compute the distance between two users who have co-rated a product
with a rating. Such as, the individual item’s rating does not affect the distance as
it only depends upon the variance and covariance of the total ratings given by user.
Also, in multi-dimensional space, the MD works well by removing the scaling as well
as the collinearity impact of the variables and then calculates the simple Euclidean
distance between users. Moreover, there are very few research works published in
the field of recommender systems which incorporates Mahalanobis distance for rec-
ommendations [15, 34]. The Mahalanobis distance between users can be calculated
with the help of following equations.
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Let us assume there are two users x and y and our task is to compute the
distance between them, in such case, Equation (4) for two different users can be
rewritten as [14]:

[(x− x̄)(y − ȳ)]vc−1
z =

[
σ2
2(x−x̄)−(y−ȳ)ρ12σ1σ2

det(vcz)

σ2
1(y−ȳ)−(x−x̄)ρ12σ1σ2

det(vcz)

]
. (11)

By multiplying

[
(x− x̄)
(y − ȳ)

]
in both side of the above Equation (11), we will get

[(x− x̄)(y − ȳ)]vc−1
z

[
(x− x̄)
(y − ȳ)

]
=
σ2

2(x− x̄)2 − (y − ȳ)(x− x̄)ρ12σ1σ2

det(vcz)

+
σ2

1(y − ȳ)2 − (x− x̄)(y − ȳ)ρ12σ1σ2

det(vcz)

(12)

=
σ2

2(x− x̄)2(1− ρ2
12) + σ2

1(y − ȳ2)− 2(x− x̄)(y − ȳ)ρ12σ1σ2 + σ2
2(x− x̄)ρ2

12

σ2
1σ

2
2(1− ρ2

12)

(13)

=
(x− x̄)2

σ2
1

+
(y − ȳ)2

σ2
2(1− ρ2

12)
− 2

(x− x̄)(y − ȳ)ρ12

σ1σ2(1− ρ2
12)

+
ρ2

12(x− x̄)2

σ2
1(1− ρ2

12)
(14)

=
(x− x̄)2

σ2
1

+
[

(y−ȳ)

σ2
√

1−ρ212
− ρ12(x−x̄)

σ1
√

1−ρ212

]2

. (15)

After comparing Equation (15) with Equation (4), the Mahalanobis distance for
users x and y will be

MD =

√(x− x̄
σ1

)2

+

[{(
y−ȳ
σ2

)
− ρ12

(
x−x̄
σ1

)}
1√

1−ρ212

]2

. (16)

The subtraction portion of the above formula is used to correct the correlation
between the data. This equation will become a simple Euclidean distance method in
case of uncorrelated variables. The above equation is limited to compute similarities
between two users who have co-rated a single movie only. Therefore, we updated
the formula so that it can calculate distances between multiple users and multiple
products (|items| ≥ 1).

MD(x, y) =

∑
n∈Nxy

√(
rx,n−x̄
σ1

)2

+

[{(
ry,n−ȳ
σ2

)
− ρ12

(
rx,n−x̄
σ1

)}
1√

1−ρ212

]2

|Nxy|
(17)

where Nxy is the set of co-rated products by both the users x and y. Rating of user x
on product n is represented by rx,n whereas x̄ represents the mean of the ratings
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given by the user x to all products. Finally, after similarity computation between
users within the cluster, the top-N most similar users are selected for neighborhood
formation.

3.3 Prediction and Recommendations

The collective ratings given by the users of the neighborhood set is used to predict
the ratings of all unseen products for the target user [3, 6]. This method is used
for all clusters to predict each user’s unseen ratings. Finally, top predicted products
can be recommended to the target user.

prex,i = r̄x + nf
∑
x′∈B

dis(x, x′)× (rx′,i − r̄x′). (18)

Here, dis(x, x′) is the distance between target user x and a neighborhood set member
x′, B is the neighborhood set of those users who have experienced product i earlier.
The multiplier nf , a normalizing factor, is computed as:

nf =
1∑

x′∈B |dis(x, x′)|
.

4 EXPERIMENTAL EVALUATION

4.1 Experiment Datasets

MovieLens 100 K dataset contains 943 users’ ratings for 1 682 movies gathered by the
GroupLens research laboratory at the University of Minnesota. The dataset consists
of 100 000 ratings where each user has rated at least 20 movies. The ratings follow
the 1-bad, 2-average, 3-good, 4-very good, and 5-excellent numerical scale. This
dataset also contains the user-product background information like age, occupation,
genre, etc. The sparsity level of the dataset is 93.69 %. Another dataset that we use
is the Yahoo! Movies dataset, which contains 62156 ratings rated by 6 078 users on
780 movies. The dataset includes user ratings, movie criteria ratings, total number
of movies rated by a user, and corresponding index of the movie which is rated. Ad-
ditionally, each movie is associated with four different criteria namely story, acting,
direction, and visuals, for which users have provided their ratings individually. This
dataset follows rating scale from 1-bad to 13-excellent. Since MovieLens supports
rating scale from 1-min to 5-max, therefore, we opt to normalize Yahoo! ratings in
the same range to get similar range results. For normalization, we formed five rating
groups [Poor(1, 2, 3),Fair(4, 5),Average(6, 7, 8),Good(9, 10),Excellent(11, 12, 13)] of
these 1–13 ratings, such that, the average of each group {2, 4.5, 7, 9.5, 12} have equal
step size (i.e., 2.5 in our case). The sparsity level for this dataset is 98.69 %.
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4.2 Experimental Settings

From the MovieLens dataset, we selected only those users who have rated at least
60 movies and discarded movies with zero ratings: 497 users and 1 682 movies sat-
isfied this condition and contributed 84,596 ratings out of 100 000. Similarly, from
Yahoo! Movies dataset, we extracted those users who have rated at least 20 movies.
Where 484 users and 945 movies satisfied this condition and contributed 19 050 rat-
ings out of 62 156. Furthermore, we divided each user’s ratings randomly into train-
ing set and testing set in the percentage ratio of 70 % and 30 % respectively. The
ratings in the training set are used for building the model and neighborhood set
generation whereas the testing rating set is marked as unseen products of the tar-
get user. After calculating the similarity or distances among users’ effectively, we
selected top-30 users for the neighborhood set formation. The size of the neighbor-
hood set is chosen experimentally. For k-means algorithm, we choose four cluster
centers randomly as an initial point and repeated the cluster assignment process
for 30 repetitions or until similar cluster appeared for three consecutive times. We
have conducted multiple experiments on the following recommendation methods to
demonstrate the effectiveness of the proposed scheme.

• Each User method: In this approach, each user’s similarity is computed with
every other user in the system. Therefore, we called this approach as the Each
User method also known as the non-clustering method.

• Clustering with Side Information approach (Clust-SI): To build a cluster, the
first thing to do is to identify the clustering parameters through which we can
form similar user clusters. After multiple experiments, we choose ‘User Age’
feature as a clustering parameter from MovieLens and multi-criteria ratings
from Yahoo! Movies datasets. We termed these selected parameters as the side
information.

• Clustering with Fuzzy Side Information approach (Clust-FSI): This is the ex-
tended version of the Clust-SI approach where we apply fuzzy sets on the side
information to deal with the uncertainty issue associated with them and obtain
as close as possible neighborhood set for the target user.

4.3 Evaluation Matrices

In this paper, mean absolute error (MAE), root mean square error (RMSE), and
coverage of the system evaluation matrices are used for evaluating the performance
of the experimental methods. The motivation behind choosing these performance
measures is their simplicity and vast use for measuring the effectiveness of RSs [3, 6,
17, 19]. The MAE calculates the average of the absolute differences between actual
(rk,j) and predicted user ratings (prek,j). The following formula gives the MAE (k)
for target user xk:
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MAE (k) =
1

pk

pk∑
j=1

|prek,j − rk,j| (19)

where pk is the cardinality of the test ratings set of user xk. Whereas, RMSE method
squares the error, therefore, its value grows faster than MAE when there is a big
gap between actual and predicted values. Lower the MAE and RMSE infers more
accurate predictions given by the system.

RMSE (k) =

√∑pk
j=1(prek,j − rk,j)2

pk
. (20)

The third evaluation metric which we used gives a total coverage of the sys-
tem. Coverage evaluates a system by measuring the percentage of products for
which a recommender system can provide predictions. Usually, a RSs may not be
efficient to make predictions for every product in the system. Higher the coverage
corresponds to better the prediction ability of the system.

Cov =

∑Pk

t=1 ft∑Pk

t=1 pt
(21)

where ft is the total number of predicted products for target user xt.

4.4 Experimental Results and Analysis

This section presents the results of the experiments conducted on two real datasets
to the improvement of collaborative filtering recommender’s performance. The goal
of this experiment is to compare the results of the proposed method with other
state-of-the-art CF methods under multiple evaluation metrics.

4.4.1 Comparing the Each-User and Clust-SI Methods

In this experiment, we run the Clust-SI approach and compare its results with the
traditional Each-User approach. For Each-User, experiments are run for entire train-
ing users’ database for each step. This type of computation is too time-consuming
and sometimes it leads to overfitting problem. In our experiments, we follow the user
partitioning technique to shorten the user space. We applied the k-means clustering
algorithm to form user clusters by choosing side information as a clustering param-
eter. Further, the neighborhood set for users is obtained from their respective user
clusters only. This agrees with our thinking of reducing the user search space and
may reduce the chances of overfitting. Another benefit of the use of side information
clustering is that it will alleviate the multi-dimensionality issue because we are not
building a complex model by selecting the side information as a third dimension
of the system. We picked the user age feature from the MovieLens dataset as the
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clustering parameter where users are grouped into multiple clusters using k-means
clustering. Whereas, for Yahoo! Movies dataset, we selected the multi-criteria movie
ratings as the clustering parameter where users with high (low) similar interests are
grouped into same (different) groups.

Results summarized in following figures and tables show that Clust-SI outper-
forms Each-User for all the performance measures. Results of Clust-SI are much
better than Each-User for every corresponding similarity approach. The comparing
approaches are labelled with four letters (e.g., MLCS or YMCS), the first two let-
ters represent the name of the dataset (i.e. ML for MovieLens and YM for Yahoo!
Movies) and the remaining letters represent the name of the measure used (i.e. CS
for Cosine-based similarity). The MAE and RMSE of Clust-SI are always smaller
than the corresponding approaches of Each-User, as shown in Tables 1 and 2 for
both MovieLens and Yahoo! Movies datasets, respectively. Whereas, the coverage
is higher for all the comparing approaches.

Figure 4. Comparison of coverage for different collaborative recommenders on ML dataset

4.4.2 Comparing the Clust-SI and Clust-FSI Methods

In this experiment, fuzzy logic is used to handle the uncertainty issue associated
with the side information. The multi-criteria ratings and user age are fuzzified with
the help of fuzzy function shown in Figures 4 and 5, respectively. The purpose
of using fuzzy logic for side information is to get as close as possible to the set of
users for the target user. Where a young user will be matched with other young
users instead of the old users. It will generate more effective neighborhood set for
the target user in comparison to the non-fuzzified methods. Since we clustered
users based on their fuzzified side information, we call this approach as Clust-FSI
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MAE
Non-Clustering Clustering Based Approach

Each User Clust-SI Clust-FSI

MLCS 0.8498 0.8163 0.8151

MLPC 0.8544 0.8196 0.8199

MLJC 0.8304 0.8143 0.8146

MLMD 0.8142 0.8139 0.8133

a) Comparison of MAE for different collaborative recommenders

RMSE
Non-Clustering Clustering Based Approach

Each User Clust-SI Clust-FSI

MLCS 1.0632 1.0241 1.0243

MLPC 1.07 1.0286 1.0325

MLJC 1.0413 1.0215 1.0237

MLMD 1.0194 1.0186 1.0161

b) Comparison of RMSE for different collaborative recommenders

Table 1. Performance on MovieLens Dataset

Figure 5. Comparison of coverage for different collaborative recommenders on YM dataset

approach. The experimental results of this approach are compared with Each-User
and Clust-SI approaches, as shown in above figures and tables. Results summarized
in Tables 1 and 2 show that Clust-SI and Clust-FSI outperform Each-User method
for both datasets. The MAE and RMSE for Each-User method are always higher
than the clustering based approaches, therefore, we can infer that the use of the
side information clustering has improved the performance of the system. Similarly,
Figures 4 and 5 prove that the coverage of the clustering based approaches are higher
than the non-clustering method where higher coverage shows the higher accuracy
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MAE
Non-Clustering Clustering based approach

Each user Clust-SI Clust-FSI

YMCS 0.9694 0.89908 0.9006

YMPC 0.9586 0.8938 0.8833

YMJC 0.9459 0.8957 0.8803

YMMD 0.8871 0.8822 0.8675

a) Comparison of MAE for different collaborative recommenders

RMSE
Non-Clustering Clustering based approach

Each user Clust-SI Clust-FSI

YMCS 1.1923 1.109 1.0207

YMPC 1.1772 1.1094 1.1006

YMJC 1.1664 1.0957 1.0866

YMMD 1.0904 1.0839 1.0735

b) Comparison of RMSE for different collaborative recommenders

Table 2. Performance on Yahoo! Movies Dataset

of the system. Since non-clustering approach fails, as compared to the clustering
based approaches, now we will analyze the performance of the clustering based
approaches.

We compared the Clust-SI and Clust-FSI approaches based on four different
similarity methods (CS, PC, JS, and MD) concerning MAE, RMSE, and Coverage
of the system using two different datasets. Table 1 shows that the MAE and RMSE
of MLPC and MLJC methods of Clust-SI are slightly better than the Clust-FSI
on MovieLens dataset whereas the methods for Clust-FSI outperform the Clust-SI
methods except the MAE of YMCS method for Yahoo! Movies dataset, as shown
in Table 2. From Figures 4 and 5 we can see that the coverage of MLCS, MLPC
and YMCS for Clust-SI approach is more accurate than the Clust-FSI methods. It
means that these methods have greater ability to predict ratings as compared to the
fuzzy-based clustering methods.

From the above-shown results we can infer that the clustering based technique
has always improved the performance in comparison to the non-clustering methods.
Furthermore, the Clust-SI approach shows more accurate results than the Clust-FSI
approach for MovieLens dataset. In most of the cases, the Clust-FSI techniques
outperform the non-fuzzified clustering approach for the Yahoo! Movies dataset.
From these observations we can say that our proposed method can work more ef-
ficiently in case of sparse data (Yahoo! Movies dataset is sparser than MovieLens
dataset). Moreover, the results prove that the Mahalanobis distance-based measure
remains the best-performing method throughout the experiments for all performance
measures on both datasets.
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5 CONCLUSION

In this paper, we introduced a recommender system framework based on the side
information clustering. We focus on the data sparsity and dimensionality issues
using Mahalanobis distance and k-means clustering through

1. user’s age and

2. multi-criteria movie ratings.

Our approach is based on the assumption that each user has a different opinion on
different features. Therefore, to distinguish users, the prime concern of this work is
to identify user segments with similar tastes. Fuzzy sets for side information have
been applied to choose more accurate and reliable neighbors for the target user in
each cluster. Moreover, we know that the traditional Cosine similarity and Pearson
Correlation Coefficient methods have a shortage that they work only for commonly
rated products and are not suitable for capturing user preferences at ground level. To
overcome this problem, we used the well-known Mahalanobis distance method which
considers user preferences from local to global level through the variance-covariance
matrix. In experiments, we evaluated the effectiveness of our proposed algorithm
on accuracy and recommendation performance improvement. The experimental
results on two benchmark datasets with different side information demonstrated
that our proposed fuzzy-based algorithm for Mahalanobis distance method (Clust-
FSI – MD) has better performance compared with the classical recommendation
algorithms. Additionally, our proposed framework can be seen as a cross-domain
recommendation model because this compact model can be applied to different
domains with different clustering parameters. For instance, the model which is
used for multi-criteria movie recommendation can also be applied to context-aware
music recommendation system. Therefore, in future work, we will try to apply
our proposed framework to other domains where multi-dimensionality is the major
issue.
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Abstract. Foreign-key relationship is one of the most important constraints be-
tween two tables. Previous works focused on detecting inclusion dependencies
(INDs) or foreign keys in relational database. To discover foreign-key relationship
is obviously helpful for analyzing and integrating data in web tables. However, be-
cause of poor quality of web tables, it is difficult to discover foreign keys by existing
techniques based on checking basic integrity constraints. In this paper, we propose
a hybrid human-machine framework to detect foreign keys on web tables. After
discovering candidates and evaluating their confidence of being true foreign keys by
machine algorithm, we verify those candidates leveraging the power of the crowd.
To reduce the monetary cost, a dynamical task selection technique based on conflict
detection and inclusion dependency is proposed, which could eliminate redundant
tasks and assign the most valuable tasks to workers. Additionally, to make workers
complete tasks more effectively and efficiently, sampling strategy is applied to mini-
mize the number of tuples posed to the crowd. We conducted extensive experiments
on real-world datasets and results show that our framework can obviously improve
foreign key detection accuracy on web tables with lower monetary cost and time
cost.
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semantic recovery
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1 INTRODUCTION

Foreign-key relationship is one of the most important constraints between two tables.
Previous works focus on detecting inclusion dependencies (abbr. INDs) or foreign
keys in relational database [1, 2, 3, 4], in which table name, uniqueness of key and
strict inclusion dependency between foreign key (the dependent attribute) and pri-
mary key (the referenced attribute) are important factors for detecting foreign keys.
The worldwide web contains a vast amount of tables on varieties of topics [5], and
to discover foreign-key relationship is obviously helpful for analyzing and integrat-
ing data in web tables. Unfortunately, all the previous works could not be used
directly on web tables which often lose table names and sometimes have noisy data.
In fact, web tables may not satisfy the entity integrity constraint and referential
integrity constraint. Figure 1 shows fragments of typical web tables from Google
Table [6] which miss table names and have duplicated tuples. There is a foreign key
relationship between tables in Figure 1, where country in Figure 1 b) is a foreign
key referencing short name in Figure 1 a). However, foreign key detection method
in relational database could not be used in such tables which lose some schema in-
formation and also do not satisfy basic integrity constraints. Furthermore, even if
a web table has a table name, it often does not include meaningful information which
could describe the semantics of this table exactly. Because of poor quality of web
tables, it is difficult to discover foreign keys effectively only by machine algorithm.

a) b)

Figure 1. An example of web tables

Recent researches have shown that crowdsourcing could be used effectively to
solve problems that are difficult for computers, such as entity resolution [7], senti-
ment analysis [8], and image recognition [9]. We propose a hybrid human-machine
framework that leverages human intelligence to discover foreign keys on web ta-
bles effectively. Our framework implements foreign key detection in two phases,
which are finding candidates by machine algorithm and validating candidates by
the crowd.
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The first phase is for candidate generation. Because web tables may not satisfy
the entity integrity constraint and referential integrity constraint, we define unique-
ness degree to measure the proportion of unique values in a column and coverage
rate to measure the proportion of dependent attribute values contained in the refer-
enced attribute. Then we use four features to evaluate the possibility of a candidate
being a true foreign key which are the unique degree of the referenced attribute,
the coverage rate of the referenced attribute to the dependent attribute, the column
names’ similarity and whether the dependent attribute is a key. Short of semantics,
it is so difficult for computer to understand relationships between two tables that
will result in some false positive candidates. Fortunately, with the intelligence of
humans, those false positive candidates can be easily distinguished.

After the first phase, candidates are generated inevitably with some false pos-
itives, so crowdsourcing is used for distinguishing true foreign keys from all candi-
dates. As the crowd is not free, cost control is one of the biggest challenges in data
management with the crowd [10]. To reduce the monetary cost, number of tasks
should be reduced. Considering some conflicts in candidates and inclusion depen-
dency between dependent attributes, we propose dynamical task selection methods
based on conflict detection and inclusion dependency. The experimental results
show our method can effectively reduce the number of tasks.

Besides the monetary cost, time cost is also to be considered for crowdsourcing
tasks. For foreign key validation, workers have to check content between two tables.
Facing tables with too many tuples, workers will be impatient with taking long time
to browse the whole table and make decision. So, to reduce the latency of tasks, we
propose a task reduction method based on sampling strategy, which could reduce
the volume of web tables under the condition that the original relationship between
tables could be held.

The main contributions of this paper are:

• To our best knowledge, we are the first to propose a hybrid human-machine
framework for discovering foreign keys on web tables which may not satisfy the
entity integrity constraint and referential integrity constraint.

• To reduce monetary cost for crowdsourcing tasks, we propose a dynamical task
selection technique based on conflict detection and inclusion dependency, which
could eliminate redundant tasks and assign the most valuable tasks to workers.

• To avoid latency of tasks, we propose a task reduction method based on sampling
strategy to minimize the number of tuples posed to the crowd.

• Based on real-world datasets, we evaluated the performance of human-machine
hybrid approach and effectiveness of our dynamical task selection method and
task reduction method.

The remainder of the paper is organized as follows. We present solution overview
in Section 2. Section 3 gives the machine algorithm for generating and scoring
foreign key candidates on web tables. Our dynamical task selection method and
task reduction method are discussed in Section 4 and Section 5, respectively. Then
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we report results of experiment in Section 6, discuss related works in Section 7, and
conclude the paper in Section 8.

2 SOLUTION OVERVIEW

To discover foreign keys on web tables, we propose a hybrid human-machine frame-
work. Our framework takes as input a set of web tables and generates foreign key
candidates by machine algorithm. Then the false positive candidates are verified by
the crowd and true foreign keys are output. Figure 2 shows the framework.

Figure 2. A hybrid human-machine framework for discovering foreign keys on web tables

There are two phases in our framework. In the first phase, machine algorithm
is used to find candidates on input tables and calculate their confidences to be true
foreign keys (the details will be described in Section 3). Then candidates with high
confidence will be verified by the crowd in the second phase. As the crowd is not
free, we take measures to reduce monetary cost by reducing the number of tasks.
Because there are some tasks that could be deduced by other tasks, we dynami-
cally select tasks based on conflict detection (Section 4.1) and inclusion dependency
(Section 4.2). The task selection method based on conflict detection reduces tasks
in conflict with those verified as true, while the task selection method based on
inclusion dependency reduces tasks which can be deduced by those verified with
the method. Browsing a whole table with a large volume will surely make workers
impatient and lead a high latency. So, we try to reduce tables’ volume leveraging
a combinational sampling strategy (Section 5). After steps above, only most valu-
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able tasks are posted to the crowd through the crowdsourcing platform, and the
final verified results are returned.

3 FOREIGN KEY CANDIDATE GENERATION

In our framework for discovering foreign keys on web tables, generating candidates
is the first step.

Definition 1 (Uniqueness Degree). Given table S and its attribute S.b, the uni-
queness degree of S.b, denoted as UNI (S.b), is the ratio of S.b’s cardinality to S’s
cardinality.

UNI (S.b) =
|S.b|
|S|

. (1)

Definition 2 (Coverage Rate). Given a pair of tables R, S and attributes R.a, S.b
in R and S, respectively, the coverage rate of S.b on R.a, denoted as COV (S.b, R.a),
could be calculated using following formula:

COV (S.b, R.a) =
|R.a ∩ S.b|
|R.a|

. (2)

We start the detection from measuring the confidence of attribute pairs to be
true foreign keys. As web tables may lose or duplicate some cells or tuples, we relax
checking the uniqueness of key and containment relationship between key and foreign
key which are necessary conditions for foreign key detection in relational database.
Let δ be the threshold of primary keys’ uniqueness degree, λ be the threshold of
primary keys’ coverage rate to the foreign key, and p = (R.a, S.b) denote a pair of
attributes where R and S are corresponding tables. For attribute pair (R.a, S.b) with
UNI (S.b) ≥ δ and COV (S.b, R.a) ≥ λ, we use a scoring function CTF (R.a, S.b) to
measure the attribute pair’s confidence to be a true foreign key. The scoring function
is a weighted sum of 4 scores corresponding to 4 features as follows:

S.b’s unique degree: Score1 = UNI (S.b).

S.b’s coverage to R.a: Score2 = COV (S.b, R.a).

The similarity between attribute name of R.a and S.b:
Score3 = Sim(R.a, S.b).

Whether R.a is a key: Score4 = 1 if R.a is a key (UNI (R.a) ≥ δ) otherwise
Score4 = 0.

CTF (R.a, S.b) =
4∑
i=1

ωiScore i. (3)

In Equation (3), 0 < ω1, ω2, ω3 < 1, ω4 < 0 . If CTF (R.a, S.b) is higher than
the threshold of confidence, (R.a, S.b) is recognized as a foreign key candidate and

denoted as R.a
δ,λ−→ S.b.
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An important problem in this step is how to evaluate the string similarity. Gen-
erally, the similarity matching algorithm could be accurate matching and fuzzy
matching. Accurate matching is usually used in traditional inclusion dependencies
discovery in relational database [1, 2, 4]. For web tables often with noisy data,
we use edit distance to evaluate the similarity between attributes’ values and Jaro
Winkler Distance [11] to measure similarity between attributes’ names.

Though we try our best to improve accuracy of the candidate generation method,
there are still many false positive candidates in the result. Therefore, we decide to
utilize human intelligence to find true foreign keys from candidates.

4 DYNAMICAL TASK SELECTION

For discovering foreign keys on web tables, we adopt a human-machine hybrid ap-
proach which first uses machine algorithm to generate a foreign key candidate set,
and then ask humans to verify candidates in the set as either foreign-key or non-
foreign-key. As the crowd is not free, cost control is one of the most important
problems in crowdsourced data management, and appropriate task selection will
surely make the crowd work more efficiently. For reducing monetary cost, we dy-
namically detect redundant tasks and assign the most valuable tasks to workers.
In this section, we propose the dynamical task selection method based on conflict
detection and inclusion dependency between dependent attributes.

Since, in our setting, some candidates will be verified by crowd, and others will be
deduced by the task selection method. We call the former as crowdsourced(labeled)
candidates , and the latter as deduced(labeled)candidates.

4.1 Task Selection Based on Conflict Detection

In a list of foreign key candidates, there often exist some conflicts. If a candidate is
verified to be true, its conflicts must be false. We could utilize conflict relationship
between candidates to reduce number of crowdsourcing tasks.

Definition 3 (Foreign Key Candidates Reference Graph). Given a set of foreign
key candidates FC, a foreign key candidates reference graph is a weighted directed
graph FKRG = 〈ζ, ϕ, ω〉, where:

• ζ is a set of attributes occurred in FC.

• ϕ is a set of foreign key candidates, and 〈R.a, S.b〉 ∈ ϕ iff R.a
δ,λ−→ S.b ∈ FC.

• ω is a set of weights, each of which corresponds to confidence on a foreign key
candidate in ϕ.

Figure 3 is an example of foreign key candidates reference graph. Given two
attributes A.a and B.b, if A.a is a candidate foreign key referencing B.b, there will
be a directed edge from A.a to B.b, this edge’s weight (i.e. 0.53) represents the

confidence of the foreign key candidate R.a
δ,λ−→ S.b.
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Figure 3. Foreign key candidates reference graph

A foreign key candidates reference graph is made up of vertexes and edges. While
edges have weights with them reflecting the confidence of candidates, vertexes should
be given weights reflecting average confidence of candidates related. The weight of
a vertex is defined in Definition 4 as its influence.

Definition 4 (Influence of Attributes). Given a foreign key candidates reference

graph FKRG = 〈ζ, ϕ, ω〉, T.m ∈ ζ, RS (T.m) =
{
R.a

δ,λ−→ S.b|R.a = T.m or S.b =

T.m
}

, the influence of T.m, denoted as Influence(T.m), could be calculated by the

following formula:

Influence (T.m) =

∑|RS(T.m)|
i=1 CTF (R.a, S.b)

|RS (T.m)|
(4)

where R.a
δ,λ−→ S.b ∈ RS(T.m).

For example, in Figure 3, Influence (A.a) = CTF (A.a,B.b)+CTF (A.a,B.c)+CTF (A.a,C.d)
3

= 0.66+0.53+0.70
3

= 0.63. Intuitively, if a vertex has high influence, candidates related
to this vertex may have high confidence of being true foreign keys and are more
likely to be verified as a true foreign key.

In a true foreign key relationship, the dependent attribute couldn’t be contained
in the set of values of many other attributes, while the referenced attribute couldn’t
be referenced by multiple attributes from one table. Combining with web tables’
characteristics, we get conflict detection rules below.

Conflict Detection Rules:

• A foreign key can only reference one primary key in the same referenced table.

• A primary key can only be referenced by one foreign key in the same dependent
table.

Figure 4 gives examples about conflict rules. In Figure 4 a), there are foreign

key candidates R.a
δ,λ−→ S.b and R.a

δ,λ−→ S.c . In case any candidate is verified to be
a true foreign key, another will be ruled out. This case indicates the similarity of b
and c is very high, and there exists data redundancy in S. In Figure 4 b), there are

foreign key candidates R.a
δ,λ−→ S.b and R.c

δ,λ−→ S.b . In the same way, when any
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candidate is verified to be a true foreign key, another will be removed. This case
indicates the similarity of attribute R.a and R.c is very high, and there exist data
redundancy in R.

a) b)

Figure 4. Conflicts of foreign key candidates

Based on the conflict detection rule, we propose to deduce unlabeled candidates
with the labeled ones. Details of this candidate deduction algorithm are shown in
Algorithm 1.

Algorithm 1 Candidate Deduction Based on Conflict Detection

Input: LC: a set of candidates that have been labeled as true foreign keys;
uc: an unlabeled candidate;

Output: rc: the deduced result of uc;
1: begin
2: rc← null;
3: for ∀c ∈ LC do
4: Conf← false;
5: F ← AttrSame(c.ref, uc.ref);
6: if F then
7: Conf← TableSame(c.dep.t, uc.dep.t);
8: else
9: F ← AttrSame(c.dep, uc.dep);

10: if F then
11: Conf← TableSame(c.ref.t, uc.ref.t);
12: end if
13: end if
14: if Conf then
15: rc← lable(uc, false);
16: end if
17: end for
18: return rc;
19: end

Given a set of candidates LC that have been labeled as true foreign keys and
an unlabeled candidate uc, for each labeled candidate in LC, this algorithm check
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whether its referenced attribute is the same with the referenced attribute of un-
labeled candidate (lines 3–5). If it is the same, check whether their dependent
attributes are from the same table, and label the unlabeled candidate as a conflict
if the checking result is true (lines 6–7). Otherwise, check whether its dependent
attribute is the same with the dependent attribute of unlabeled candidate or not,
if it is the same, check whether their referenced attributes are from the same ta-
ble, and label the unlabeled candidate as a conflict if the checking result is true
(lines 8–13). The unlabeled candidate will be deduced as a non-foreign-key if it
is labeled as conflict candidate (lines 14–16). Finally, the deduced result will be
returned (lines 18–19).

Task selection aims at reducing crowdsourcing cost by reducing the number
of tasks (i.e. crowdsourced candidates). Using the candidate deduction algorithm
based on conflict detection, we dynamically reduce tasks (i.e. candidates) which can
be deduced and select the most valuable task to be crowdsourced. When publishing
tasks to crowdsourcing platform, we should give priority to the candidate which is
most likely to be a true foreign key. Once a true foreign key is confirmed, other
candidates conflicting with it will be removed from the task list.

The dynamical task selection method based on conflict selects tasks from two
perspectives. From the global perspective, it chooses the high-influence vertex first.
Then it chooses the foreign key candidates with high confidence first from the local
perspective. Details of this method are shown in Algorithm 2.

Algorithm 2 Dynamical Task Selection Method Based on Conflict

Input: G: a foreign key candidates reference graph;
Output: R: the labeled result of candidates in G;
1: begin
2: flag← hasEdge(G);
3: while flag do
4: vh ← getTopV(G);
5: CS← asDepAttr(vh);
6: cfkh ← getTopE(CS);
7: r ← crowd(cfkh), R← crowd(cfkh);
8: elimEdge(cfkh, G);
9: if r then

10: R← deduceCan(r, CS), cc← confCan(r,CS);
11: elimEdge(cc,G);
12: end if
13: end while
14: return R;
15: end

Given a foreign key candidates reference graph G, we first calculate each vertex’s
weight and select the one (denoted as vh) with the highest weight (lines 2–4). Then
from the foreign key candidate set where vh is a dependent attribute, we choose the
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candidate cfkh with the highest confidence to be verified by the crowd (lines 5–7).
After getting the verification result, we eliminate the corresponding edge of cfkh
from G (line 8). If cfkh is verified to be a true foreign key, unlabeled candidates will
be deduced using Algorithm 1, and corresponding edges will be removed (lines 9–11).
Above steps are repeated until there is no edge in G, and then the labeled result of
candidates in G will be returned (lines 13–15).

4.2 Task Selection Based on Inclusion Dependency

In addition to conflicts, there may be an inclusion dependency between dependent
attributes which refer to the same referenced attribute. In this section, we introduce
another task selection method based on inclusion dependency.

Suppose there are three foreign key candidates A.a
δ,λ−→ B.b, C.c

δ,λ−→ B.b and

A.a
δ,λ−→ D.d that have been verified to be true foreign keys, and COV (B.b, A.a) =

COV (B.b, C.c) = COV (D.d,A.a) = 1, i.e. A.a ⊆ B.b, C.c ⊆ B.b, A.a ⊆ D.d. If
C.c ⊆ A.a, it is easy to get C.c ⊆ D.d. Because foreign key is a semantic relationship
between attributes [1], we can get the conclusion that

1. the semantics of B.b is similar to the semantics of A.a and C.c, and

2. the semantics of A.a is similar to the semantics of D.d.

Thus, we infer that

1. A.a and C.c are semantically related, and

2. C.c and D.d are semantically related.

Based on the above conditions, the candidate C.c
δ,λ−→ D.d could be deduced as

a true foreign key. This discovery gives us an inspiration of deducing candidates
based on inclusion dependency between dependent attributes which is the core of
this task selection method (based on inclusion dependency).

Next, we will describe the candidate deduction method based on inclusion de-
pendency. Algorithm 3 gives the details of the method.

Given a set of candidates LC that have been labeled as true foreign keys and
an unlabeled candidate uc, denote the referenced attribute and dependent attribute
of uc as P.k and F.k′, respectively (line 2), the algorithm first check whether there
is any labeled candidate (denoted as c) of which the dependent attribute is the
same with F.k and coverage equals to 1 (lines 3–6). If any, it will try to discover
another two labeled candidates (denoted as c′ and c′′) which have the same dependent
attribute and satisfy

1. referenced attribute of c′ is the same with referenced attribute of c and referenced
attribute of c′′ is the same with P.k,

2. the coverage of c′ and c′′ are equal to 1,

3. all values in F.k′ are a subset of dependent attribute of c′.
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Algorithm 3 Candidate Deduction Based on Inclusion Dependency

Input: LC : a set of candidates that have been labeled as true foreign keys;
uc: an unlabeled candidate;

Output: rc: the deduced result of uc;
1: begin
2: rc← null , P.k ← uc.refAttrrc, F.k′ ← uc.depAttr ;
3: for ∀c ∈ LC do
4: if c.depAttr == F.k && c.coverage == 1 then
5: C.r ← c.refAttr , LC ′ ← LC − {c};
6: end if
7: S ← Pair2Can(LC ′);
8: while S do
9: s← getEle(S), c′ ← s.c1, c

′ ← s.c2, remove(s);
10: if c′.depAttr == c′′.depAttr && c′.refAttr == C.r && c′.refAttr ==

P.k && c′.coverage == c′′.coverage == 1 && Fk′ ⊆ c′.depAttr then
11: rc ← label(uc, true);
12: break;
13: end if
14: end while
15: if rc then
16: break;
17: end if
18: end for
19: return rc;
20: end

If these candidates exist, then uc will be deduced as a true foreign key (lines 7–14).
Finally, the deduced result will be returned (lines 15–19).

Example 1. For an unlabeled candidate C.c
δ,λ−→ D.d with COV (D.d, C.c) = 1

(i.e. C.c ⊆ D.d), we check whether there is any candidate C.c
δ,λ−→ B.b with

COV (B.b, C.c) = 1 has been labeled as true. If any, we try to detect the labeled
candidates which have the same dependent attribute (T.m) and satisfy the following
conditions:

1. T.m reference to B.b and D.d at the same time,

2. COV (B.b, T.m) = COV (D.d, T.m) = 1,

3. C.c ⊆ D.d.

If these candidates exist, then the candidate C.c
δ,λ−→ D.d can be deduced as a true

foreign key.

Generally, candidates deduced with high confidence are more credible. So, we
are inclined to let candidates with low confidence be crowdsourced and candidates
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with high confidence to be deduced. Given a set of candidates to be verified, the task
selection method based on inclusion dependency sorts them by their confidence in
increasing order and gives priority to candidates with higher confidence first. Each
time, candidate with the lowest confidence will be checked whether it can be deduced
based on inclusion dependency. If not, its corresponding task will be posted to the
crowdsourcing platform, otherwise, it will be deduced as a true foreign key.

4.3 A Combined Task Selection Method

To reduce the number of tasks as much as possible, we combine the task selection
method based on conflict detection and inclusion dependency in practice. The above
task selection methods (in Sections 4.1 and 4.2) publish the most valuable candidate
to the crowdsourcing platform. Hence, long latency would be caused when only one
candidate is posted to crowd at a time. To overcome this drawback, the combined
task selection method places multiple candidates into a single task.

The core of the combined method is detecting redundant candidates in the task.
There are two kinds of redundant candidates, certainly redundant candidates which
could be deduced by labeled candidates and probably redundant candidates which
are probably deduced by other unlabeled candidates in the same task.

Definition 5 (Certainly redundant candidate). Given a set of labeled candidates C
and an unlabeled candidate uc which will be crowdsourced, if uc could be deduced
by candidates in C with any candidate deduction method (i.e. candidate deduc-
tion based on conflict detection or inclusion dependency), we say uc is a certainly
redundant candidate.

Definition 6 (Probably redundant candidates). Let UC be a set of unlabeled can-
didates which will be crowdsourced together in a single task, and uc is one of them,
suppose all candidates except uc will be labeled as true foreign keys by crowd. Let
C ′ be the labeled result set. If uc could be deduced by any candidates in C ′ with
any candidate reduction method, we say uc is a probably redundant candidate in
UC .

Next, we will introduce how to check and deal with two kinds of redundant
candidates in a single task. Suppose k unlabeled candidates will be placed into
a single task each time. For each unlabeled candidate, we need to check whether
it could be deduced by labeled candidates first. If any, it will be recognized as
a certainly redundant candidate and be deduced. A certainly redundant candidate
will be removed and never be crowdsourced. Then the unlabeled candidates left
should be checked whether they are probably redundant candidates in the task. For
each candidate left, we suppose all the others will be labeled as true foreign keys
and check whether it could be deduced with any candidate deduction method. If
not, it will be recognized as a valuable candidate, otherwise, it will be recognized
as a probably redundant candidate. Only valuable candidates will be placed into
the crowdsourcing task, and probably redundant candidates will be hold on. After
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crowdsourcing results coming up, some probably redundant candidates might be
deduced, and others not be deduced will be added into the unlabeled candidate set
again. Algorithm 4 shows the details of the redundant candidate detection method.

Algorithm 4 Redundant Candidates Detection

Input: LC : a set of candidates which have been labeled as true foreign keys;
ULC : a set of candidates that need to be crowdsourced;

Output: RLC : a candidate set without redundant candidate
1: begin
2: if ∃c ∈ LC then
3: ULC ← DeduceConflict(LC ,ULC );
4: ULC ← DeduceIND(LC ,ULC );
5: end if
6: Temp ← Label(ULC , true);
7: ULC ← DeduceConflict(Temp,ULC );
8: RLC ← DeduceIND(Temp,ULC );
9: return RLC ;

10: end

Given a set of candidates that need to be crowdsourced, we first deduce certainly
redundant candidates with the candidate deduction methods (lines 2–5). Then we
suppose all candidates left will be labeled as true foreign keys (line 6) and detect
probably redundant candidates, i.e. detect whether they could be deduced by other
candidates when they are labeled as true foreign keys (lines 7–8). Here, the proce-
dure DeduceConflict is used to deduce candidates based on conflict detection, and
the procedure DeduceIND is used to deduce candidates based on inclusion dependen-
cies. Finally, the candidate set without redundant candidate will be returned (line 9).

Algorithm 5 gives the details of the combined task selection method.
Given a set of unlabeled foreign key candidates, we first sort them by their

confidence in increasing order and select the top-k candidates to make up a task
(lines 2–5). Then we remove the redundant candidates in the task and check the
number of tasks (lines 8–9). If the number is less than k, we update the tasks (i.e.
add new unlabeled tasks into the task) and repeat steps above until the number of
candidates in the task is not less than k (lines 10–17).

Example 2. Consider the foreign key candidates in Figure 3. Suppose 5 candidates
are contained in a task, COV (C.d,A.a) = COV (C.d, E.f) = COV (B.c, A.a) = 1
and E.f ⊆ A.a. Firstly, we sort these candidates by their confidence in increasing

order and get the top-5 candidates, i.e., A.a
δ,λ−→ B.b, E.f

δ,λ−→ C.d, A.a
δ,λ−→ C.d,

A.a
δ,λ−→ B.c and E.f

δ,λ−→ B.c. For there is no labeled candidate, we just detect
probably redundant candidate. For each candidate, suppose all the others will be

labeled as true foreign keys. A.a
δ,λ−→ B.c and A.a

δ,λ−→ B.b are conflict candidates. In

this case, we should crowdsource candidates with high confidence first. So, A.a
δ,λ−→
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Algorithm 5 The Combined Task Selection Method

Input: LC : a set of candidates that have been labeled as true foreign keys;
ULC : an unlabeled candidate set;
k: the number of candidates that need to be placed into a task;

Output: T : the task that needs to be crowdsourced;
1: begin
2: if ∃c ∈ ULC then
3: S ← SortInc(ULC );
4: T ← getTopK (S);
5: RD ← true;
6: while RD do
7: T ← RedundancyDetect(T,LC );
8: if Num(T ) < k then
9: RD ← true;

10: if RD then
11: T ← Update(T );
12: end if
13: else
14: RD ← false;
15: end if
16: end while
17: end if
18: return T ;
19: end

B.c will be recognized as a probably redundant candidate. In addition, E.f
δ,λ−→ B.c

might be deduced by A.a
δ,λ−→ B.c, E.f

δ,λ−→ C.d and A.a
δ,λ−→ C.d, therefore, it will be

recognized as a probably redundant candidate and be temporarily removed. After
eliminating redundant candidates, there are only 3 valuable candidates left. So, we

need add another two tasks (i.e. C.e
δ,λ−→ D.g and B.b

δ,λ−→ D.g) into the task and

check the redundant tasks again. If A.a
δ,λ−→ B.c is verified to be a true foreign key

by crowd, A.a
δ,λ−→ B.b will be labeled as false directly, otherwise, it will be added

into subsequent task to be verified by crowd. Likewise, if A.a
δ,λ−→ B.c, E.f

δ,λ−→ C.d

and A.a
δ,λ−→ C.d are verified to be true foreign keys, E.f

δ,λ−→ B.c will be deduced as
a true foreign key, otherwise, it will be added into subsequent task group.

5 TASK REDUCTION WITH SAMPLING

Browsing a large volume table will surely make workers impatient and lead a high
cost. To control the tasks’ latency, we propose a sampling strategy to sample some
representative tuples to prompt to workers.
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Generally, the sampling method can be divided into a uniform sampling and
a biased sampling. A foreign key relationship involves two tables. Although records
in single table are independent, there exists dependency among the attribute pair
in a foreign key relationship. Hence, uniform sampling could not be used simply in
this situation. We propose a combinational sampling method which can keep the
original relationship between tables while reducing the tables’ volume.

Our task reduction method based on sampling strategy consists of two phases:
dependent table reduction and referenced table reduction. Suppose there is a can-

didate foreign key relationship R.a
δ,λ−→ S.b between table R and S. We sample

the dependent table R with the uniform sampling and get the reduced table R′.
Based on R′, we sample the referenced table S with a biased sampling method. We
describe the details as follows.

1. Dependent table reduction: Suppose there are m tuples in the dependent table
R, the sample rate is φ. Considering that each tuple in the table has the same
probability to be sampled though some of them may have the same value on
dependent attribute, we randomly sample bm × φc tuples from R to make up
the reduced dependent table R′.

2. Referenced table reduction: Suppose there are n tuples in the referenced table S,
and the uniqueness degree of the referenced attribute S.b is δ′, only bn×φc rows
are allowed to be sampled. If we randomly sample the referenced table, the
original relationship between two tables (the dependent table and the referenced
table) could not be hold. We partition S into covered part and uncovered part.
The covered part consists of tuples in which the referenced attribute is referenced
by the values sampled in the dependent attribute. The uncovered part consists
of tuples left when removing the covered part from S. From the covered part,
we extract all the tuples in which values of the referenced attribute is referenced
by values of the dependent attribute in R′ (reduced dependent table). Suppose
the number of tuples sampled from the covered part is k, we then randomly
select bm × φc − k tuples from the uncovered part, and combine all the tuples
we sampled into the reduced referenced table S ′.

Example 3. Consider two tables in Figure 5, in which Figure 5 a) is the referenced
table S with 16 tuples, and Figure 5 b) is the dependent table R with 12 tuples.

There exists a foreign key relationship R.a
δ,λ−→ S.b on which the uniqueness degree on

S.b is 0.94, and S.b’s coverage to R.a is 0.92. If the sampling rate is 0.5, R should be
reduced to 6 tuples while S should be reduced to 8 tuples. According to our sampling
method, we randomly sample 6 tuples from R and make up the reduced dependent
table R′ (see Figure 5 d)). After getting R′, we should make corresponding reduction
to the referenced table. We first partition S into covered part and uncovered part,
then extract 4 tuples in which values of the referenced attribute short name is
referenced by values of the dependent attribute country in R′ (the value of short
name is United States, United Kingdom, Japan and Vietnam) from the covered
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a) b)

c) d)

Figure 5. An example of task reduction by sampling

part, and randomly select 4 tuples from the uncovered part. The reduced referenced
table S ′ is shown in Figure 5 c).

From this example, we can see that only small fraction of tuples in web tables
can ensure the quality of crowdsourcing task. In Section 6, we will make suggestion
for optimal sampling rate by comparing the performance of different sampled tasks.

6 EXPERIMENT

We evaluate our method using a number of real word web tables. The goals of our
experiment are:

1. compare the performance of our candidate foreign key generation algorithm with
the fast foreign key detection method proposed in [2],
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2. evaluate the power of the crowd,

3. evaluate the effectiveness of the task selection method,

4. evaluate the effectiveness of the task reduction method with sampling.

Dataset: We crawled more than 1 000 web tables from Google tables [6] and selected
118 tables which have semantic relationships with each other to conduct our
experiment. The content of these tables refers to sports, economy, technology,
movies and so on. Tuples in these tables add up to 12 717, and the total columns
are 699. For there is no declared semantic relationship between these web tables,
we manually labeled 550 foreign key constraints as the “ground truth” with the
help of machine algorithm.

6.1 Performance Comparison of Machine Algorithms

Before crowdsourcing, we preprocess the web tables using machine algorithms to find
foreign key candidates with high probability. In this section, we compare the preci-
sion, recall and F-Measure of our candidate foreign key detection method denoted
as WFD with the fast foreign key detection method denoted as FFD [2].

We run two algorithms to process the web tables, respectively and compare
their performance. Under different thresholds of candidate confidence (varying from
0.5 to 1), we compare the precision, recall and the F-measure of FFD and WFD.
Precision and recall are calculated by Equations (5) and (6), respectively.

Precision =
|TAF |
|AF |

, (5)

Recall =
|TAF |
|WF |

. (6)

Where TAF is the set of true foreign keys the machine-based algorithm discov-
ered, AF denotes the foreign key candidates the machine-based algorithm detected,
and WF is the true foreign keys in the dataset. F-measure is defined as the harmonic
mean of precision and recall in following formula:

F =
(1 + α)× Precision × Recall

α× Precision + Recall
(7)

where α is set to 1 in the experiment.
Table 1 shows the number of candidate foreign keys (FFD disc, WFD disc), true

foreign keys they discovered (FFD true, WFD true). WFD finds more true foreign
keys than FFD. The higher the threshold is, the less candidates they will find.

Figures 6, 7, 8 describe the precision, recall, and F-measures of the two algo-
rithms, respectively.

When confidence threshold varies from 0.5 to 1, all precision values of WFD are
higher than that of FFD. When the threshold is set to 0.9, the precision of WFD
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θ FFD disc FFD true WFD disc WFD true

0.50 772 229 819 448

0.55 598 217 756 437

0.60 487 212 703 428

0.65 435 201 678 420

0.70 320 165 593 409

0.75 253 154 406 310

0.80 205 128 263 207

0.85 133 93 198 156

0.90 94 67 169 134

0.95 45 33 102 79

1.00 17 12 22 17

Table 1. Experiment result of FFD and WFD

Figure 6. Precision of FFD and WFD

reaches to 79.29 %. The highest precision of FFD is 70.21 % when the threshold

is 0.95. For a foreign key candidate R.a
δ,λ−→ S.b, FFD measures its confidence

by four factors including similarity between table name of R.a and S.b. However,
most of the web tables’ names could not describe the semantics of tables exactly.
Eliminating the influence of web table’s name makes WFD performs better than
FFD in precision. The higher the confidence is, the higher the quality of foreign key
candidates. Therefore, the precision of WFD and FFD trends to increase generally
as confidence threshold increases.

With the increase of confidence threshold, the recall of the two methods de-
creases. When the threshold is less than 0.7, WFD’s recall is much higher than
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Figure 7. Recalls of FFD and WFD

Figure 8. F-measures of FFD and WFD

that of FFD. Relatively, the FFD’s recall decreases slowly with the increase of the
threshold, while the WFD’s recall has a sharp decline with threshold = 0.75. WFD
relaxes requirements for uniqueness of key and strict inclusion dependency, therefore
its recall is higher than FFD.

Generally, the precision and recall are mutually restricted, and F-measure is
a combination of these two indicators which can inflect the overall performance of
the method. From Figure 8, F-measure of WFD is higher than that of FFD under
various threshold values. WFD and FFD with lower confidence thresholds (less than
0.7 and 0.65, respectively) could not achieve full effectiveness in detecting foreign key
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candidates. Obviously, it is more possible to contain false positives in candidates
with low thresholds. As the threshold grows, the F-measure of WFD and FFD
reaches highest (0.72 for WFD and 0.41 for FFD). After that, the F-measure value
decreases because recall decreases along with high confidence threshold.

In summary, our machine algorithm performs better than the state-of-the-art
algorithm for discovering foreign key candidates on web tables.

6.2 Evaluation of Power of the Crowd

Analyzing the result made by WFD, we find that the false positive candidates are
generated mainly because of lack of tables’ semantics. With the help of the crowd,
those false positives could be easily distinguished. The crowdsourcing experiment
is implemented on CrowdSR [12], which is a crowdsourcing platform for semantic
recovering of web tables.

From Figure 8, we can see that the F-measure of WFD reaches to the maximum
value when the confidence threshold is set to 0.7. So, we set the threshold to 0.7
in the following experiment which means that 593 foreign key candidates including
409 true foreign keys and 184 false positive candidates need to be verified by the
crowd. We create corresponding microtasks and post them to the crowd. These tasks
are organized to 36 groups, each of which includes the true foreign keys and false
positive candidates. Each task is finished by at least three workers with professional
knowledge, and the majority voting are used to aggregate answers. Before doing
tasks, workers should pass a qualification test which consists of three simple foreign
keys verification tasks.

As a result, 376 candidates are verified as true foreign keys, among which 371 true
foreign keys are correctly verified, and 5 false positive candidates are verified as true
foreign keys by mistake. The performance comparison of machine algorithm and
hybrid method is shown in Figure 9.

Obviously, the precision and F-measure of the human-machine hybrid method is
better than the machine algorithm. The precision of the hybrid method is improved
to 371/376 = 98.67 % from 68.97 % with the help of the crowd, since most candidates
verified as true foreign keys by crowd are proved to be true. The recall of the human-
machine hybrid approach is lower (67.45 % vs. 76.36 %) than that of the machine
algorithm, because all foreign keys discovered by the human-machine hybrid method
are contained in the output of machine algorithm.

6.3 Evaluation of Effectiveness of Dynamical Task Selection Method

This experiment is conducted on the same candidate set mentioned in Section 6.2,
which contains 593 foreign key candidates with 409 true foreign keys and 184 false
positive candidates. We use the combined task selection method to select the most
valuable candidates to be verified and compare candidate numbers and precision with
the naive task assignment method (i.e. assign all candidates to workers). Table 2
shows the result.
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Figure 9. Performance comparison

Method
Crowdsourced

Candidate Numbers
Foreign Keys

Output
True Foreign

Keys
Precision

Task Selection 322 384 368 95.83 %

Naive 593 376 371 98.67 %

Table 2. Naive task assignment method vs. task selection method

By the task selection method, total number of crowdsourced candidates is re-
duced to 322, about 54.30 % of the number of naive method. The task selection
method outputs more foreign keys (384 vs. 376) because some candidates that are
mislabeled as false positives in the naive method are deduced as true. There is
no significant difference in the number of true foreign keys output by two methods
(368 vs. 371). Conflict detection could help to remove candidates conflicted with
the true foreign key, and inclusion dependency detection could help to deduce for-
eign key relationship. However, if candidates are mislabeled as true by the crowd,
those candidates that are in conflict with them may be wrongly recognized as false
positives. So, the precision of the task selection method is slightly lower (95.83 %
vs. 98.67 %) than that of the naive method

To summarize these experimental results, our task selection method can effec-
tively reduce the number of tasks thus reducing the monetary cost. Although some
human errors may be amplified, foreign key detection precision under the task se-
lection still reaches 95.83 %.

6.4 Evaluation of Effectiveness of the Task Reduction Method

Finally, we evaluate the task reduction method based on sampling strategy. Our
main goal is to compare the time cost of the tasks reduced by our method with
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the naive tasks without sampling. In order to evaluate the effectiveness of the task
reduction method, we vary the sampling rate from 0.1 to 0.5, and compare the finish
time and precision.

We sample the dependent table randomly, then partition the referenced table
into two parts, the covered part and the uncovered part. From the covered part,
we extract all tuples related to the sampled dependent table. Figure 10 shows the
average time cost for each task with different sampling rate. Obviously, the average
latency is substantially proportional to the sample rate. The time cost of our task
reduction method under sampling rate from 0.1 to 0.5 is always lower than the
average time cost 54 s of naive tasks.

Figure 10. The average time cost under different sampling rate

Though our task reduction method keeps as much original table features as
possible by using combinational sampling strategy, it is more easily for the crowd
to make erroneous judgment when the table has been badly compressed with low
sampling rate. Figure 11 shows the precision of the crowd verification result in
different sampling rate. The precision increases with the increase of sampling rate.
When the rate is set to 0.5, 364 candidates are verified as foreign keys by the crowd
among which 353 are true foreign keys and the precision is close to the precision of
the naive method. All the precisions of labeling results under sampling rate from
0.1 to 0.5 are more than 92 %.

In summary, our task reduction method with sampling strategy has a better
performance than the naive method. Setting the sampling rate to 0.4, the average
time cost is reduced to 41 s, while the precision of the verification result is very close
to the precision of the naive method.

Quality vs. Cost. As both the precision and time cost are positively related to
the sampling rate, there is a tradeoff between quality and cost. It is very im-
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Figure 11. Precision comparison under different sampling rate

portant to select an appropriate sampling rate when using this task reduction
method.

7 RELATED WORK

Recently, structured data from the web, such as the web tables, has been identified
to have a high value in research. Thus, many researchers tend to recover [13, 14, 15]
or integrate [16, 17] data in web tables.

Foreign key detection is an important work for analyzing and integrating data
in web tables. Previous researches mainly focus on identifying inclusion dependen-
cies. Bauckmann et al. proposed an algorithm named SPIDER for detecting unary
inclusion dependencies [4], while some works [1, 2, 3] present a global way for foreign
key detection in relational database. Rostin et al. detect putative foreign keys with
a learning based method and propose some meaningful features for classifying inclu-
sion dependencies [1], including DistinctDependentValues, Coverage, ColumeName,
and DependentAndReferenced. Chen et al. propose a fast foreign-key detection
method in PowerPivot [2] to perform this detection interactively and with high
precision even when data sets scale to hundreds of millions of rows and the schema
contains tens of tables and hundreds of columns. Randomness is proposed and an al-
gorithm is developed to discover single-column and multi-column foreign keys in [3].
However, all the previous methods are not effective for discovering foreign keys on
web tables of poor quality, which could not satisfy the entity integrity constraint
and referential integrity constraint.

Fortunately, these problems could be solved easily with human’s intelligence.
Crowdsourcing is a good way to solve problems that are difficult for computers, and
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it is widely used in academia such as entity resolution [7], sentiment analysis [8], and
image recognition [9]. In this paper, we propose a hybrid human-machine framework
to detect foreign keys on web tables. After discovering candidates and evaluating
their confidence of being true foreign keys by machine algorithm, we verify those
false positives leveraging the power of crowd.

8 CONCLUSIONS

Previous researches on foreign key detection mainly focus on finding the foreign key
relationships between the relational tables in database. We are the first to propose
a hybrid human-machine framework for discovering foreign keys on web tables which
may not satisfy the entity integrity constraint and referential integrity constraint.
To reduce the monetary cost, we proposed a dynamical task selection method based
on conflict detection and inclusion dependency. Besides, to make workers complete
tasks more effectively, sampling strategy is applied to reduce the task volume. The
experimental results show our hybrid human-machine approach could indeed achieve
a much higher detection precision with lower monetary cost and time cost.
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Abstract. This paper describes a plaintext related image encryption algorithm
that utilizes the Mojette transform for computation of bins that are subsequently
combined with pixels of the processed image. While the bins are computed solely
from pixel intensities of a plain image and also the combination depends only on
intensities of plain image pixels, the parameters of bins are rearranged according to
used key. This design results in a great sensitivity of the proposed image encryption
algorithm to both plain images and keys, which is verified by a set of experiments.
The paper also tests the resistance of the proposal against statistical and differential
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attacks by means of commonly used measures as correlation coefficients, entropy,
NPCR and UACI. Furthermore, the paper analyses computation speed reached by
the proposed solution. Computed values of all parameters are discussed and then
compared with results obtained by some recent plaintext related image encryption
algorithms.

Keywords: Image encryption, logistic map, Mojette transform, pixel intensity
chaining, plaintext related operation

Mathematics Subject Classification 2010: 94A60, 68U10

1 INTRODUCTION

Security of data transmitted over public networks is an important task these days.
One of the possible solutions for establishing security of data is encryption. Con-
ventional encryption algorithms such as Advanced Encryption Standard (AES) were
usually designed in a way that is suitable for encryption of rather small blocks of
hexadecimal or binary characters [1, 2]. However, this approach is not suitable for
all data types. Digital images known for their redundancy (vast amount of pixels)
and high correlation between adjacent pixels can be considered as an example.

Encryption of image data by conventional encryption algorithms can lead to
various undesirable results. For example, a basic mode of operation for AES, called
Electronic CodeBook (ECB), only replaces blocks of plain image data by calcu-
lated blocks of encrypted data. In the case that some plain image blocks are the
same, all of them are substituted with identical blocks of encrypted data. This sit-
uation is shown in Figure 1 where AES in ECB mode was used for encryption of
the image with resolution of 256 × 256 pixels and color depth of 8 bits per pixel.
Used encryption key was 0× C4 EB 50 BC 0E C5 EB 50 BC 0E C5 EB 50 BC 0E

C5. This key was acquired from the first 128 bits of binary representation of decimal
part of π.

plain image encrypted image

Figure 1. Contours in encrypted image after encryption by ECB mode of AES
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As seen in Figure 1, the smooth image areas located in the characters of the
plain image, where the intensities of adjacent pixels do not change, produce several
identical blocks in the encrypted image. On the other hand, the background of im-
age, which contains a grayscale gradient filling, was substituted with many different
blocks. The contrast between these blocks can lead to identification of contours of
the characters from the plain image, and that is undesirable.

The example illustrated in Figure 1 can be viewed as an exaggeration as the used
plain image is an uncompressed bitmap image. However, also images processed by
lossy compression algorithms can contain some identical blocks of pixels. Therefore
this problem can arise also in the encrypted versions of such images.

Furthermore, the encryption of images by conventional encryption algorithms
can lead to bad performance in terms of computational speed. In the case that
used platform does not enable hardware acceleration of encryption [3], the dedi-
cated image encryption algorithms are usually faster [4]. This is due to their better
optimization for the task of image encryption. Considering the mentioned proper-
ties of images and conventional encryption algorithms, images as a data type require
specific and more efficient approach in order to achieve an acceptable performance.

The first dedicated image encryption algorithms were designed in late 1990s.
Probably one of the most popular early image encryption algorithms is the Fridrich’s
algorithm published in 1998 [5], which used chaotic Bakers’ map for achieving the
desired performance. Application of a chaotic map inspired other researchers [6, 7, 8,
9] and nowadays the majority of image encryption algorithms is based on a suitable
chaotic system. Fridrich’s paper was also important because it described a useful
architecture of image encryption algorithms, consisting of confusion and diffusion
stage. This architecture corresponds with ideas of Shannon [10], and with some
modifications it is still used nowadays.

First attempts to break chaotic image encryption algorithms can be traced back
to early 2000s. However, majority of these papers tried to break only one spe-
cific image encryption algorithm [11, 12]. In 2010, Solak et al. proposed a chosen
ciphertext attack based on relations between image pixels during decryption [13].
Solak’s attack is not only able to break Fridrich’s encryption algorithm, but it can
be also used for some other designs with the similar architecture [13]. The perfor-
mance of Solak’s attack was later discussed by Xie et al. in [14], where some minor
improvements were suggested.

Presentation of the Solak’s attack caused changes in the Fridrich’s architecture.
Most authors tried to establish relations between the steps of image encryption algo-
rithm and used plain image (image before encryption). Therefore these approaches
are described as plaintext related image encryption algorithms.

Despite chaotic image encryption algorithms still evolve, the existing algorithms
have already found some applications. They usually require sensitive data to remain
in the form of an image: image steganography [15, 16, 17], transfer and storage of
biometric features [18] or medical images [19].

Image encryption algorithms can be also used for verification of data integrity
of images, because any image processing technique applied on an encrypted image
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leads to the incorrect decryption. If users wish to enhance or modify some image, it
needs to be processed before the encryption. Then the decryption of the encrypted
image leads to the processed image.

The rest of the paper is organized as follows: Section 2 describes works of other
authors in the field of plaintext related chaotic image encryption. Section 3 explains
techniques used in our proposal and describes the steps of encryption and decryption
algorithms. Section 4 presents obtained experimental results and compares them
with the results achieved by some other similar algorithms. Section 5 discusses the
properties of the proposed solution and concludes the paper.

2 RELATED WORK

Since the introduction of Solak’s attack [13] in 2010, several solutions for suppressing
or even eliminating a possibility of a successful attack have been provided. Fu et al.
proposed their solution in 2012 [20] where parameter of Chebyshev’s map is modified
according to intensity of the previously encrypted pixel. However, these parameter
modifications can lead to fixed points, where behavior of chaotic maps is constant
and therefore unsuitable. Fu et al. used a mechanism that prevents occurrence of
fixed points, however this step decreases the overall computational speed.

A proposal by Kanso et al. from 2012 [21] changed the amount of iterations
of Arnold’s cat map by intensities of currently processed image pixel. As the pixel
intensities are divided by 10 and then rounded to the closest smaller integer number,
multiple intensities lead to identical amount of iterations. Also, each additional map
iteration causes the longer computational time, so timing attacks [22] are possible.

A paper by Fu et al. [23] from 2013 used cyclic shifts of bits from pixel intensities
controlled by intensities of previous image pixels. As there are only 8 possible ways of
cyclic shift of 8 bits, this solution can lead to equivalent shifts for multiple intensities
(there are 256 possible pixel intensities for color depth of 8 bits per pixel).

In 2014, Zhang proposed an encryption algorithm [24] based on a different ar-
chitecture, where one iteration of diffusion is followed by plaintext related confusion
and then second iteration of diffusion. However, this approach can be prone to cho-
sen plaintext attacks [25] in cases when one iteration of diffusion produces a similar
results for two images, and the plaintext related confusion – a rearrangement of
image pixels only shuffles these slightly different image pixels. Similar problems can
happen also with Zhang’s later design from 2015 [26].

Murillo-Escobar et al. proposed an image encryption algorithm in 2015 [27] that
utilized a sum of plain image pixel intensities for calculation of an initial condition
and parameter of logistic map. This solution has two drawbacks: the same sum
can be computed from various images and it is not possible to calculate sum used
during encryption from the encrypted image. For enabling successful decryption,
Murillo-Escobar et al. suggested that this value can be hidden as intensity of one
of encrypted image pixels. This approach was broken by Fan et al. in 2018 [28] by
usage of chosen and known plaintext attacks.
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Three similar plaintext related image encryption algorithms were designed by
Chai et al. in 2017 [29], by Wang et al. [30] and Li et al. [31] in 2018. These
algorithms use hash functions for calculation of the digests of plain images. The
digests are then used for modifying initial conditions or parameters of chaotic maps.
Hash functions should provide significantly different digests for similar plain images,
however, their usage usually negatively affects the computational speed of the whole
algorithm. This drawback is visible mainly in the case of [30], which uses two hash
functions.

We already published one paper describing a plaintext related image encryption
algorithm [32]. However, as the relation was established individually between each
image pixel and each key element by means of Arnold’s cat map, it was necessary to
provide a key with the length of used plain image. This problem was solved by a key
extension algorithm. As the decryption algorithm requires the last elements of the
extended key at start of the decryption, the keys for encryption and decryption are
different. The fact that approach [32] is asymmetric can be viewed as a drawback.

3 PROPOSED SOLUTION

The algorithm proposed in this paper can be used for encryption of images with ar-
bitrary resolution higher than 16×16 pixels and color depths of 8 or 24 bits per pixel.
The restriction placed on image resolution is caused by usage of multiple different
image rows for processing of each row of image pixels in the proposed algorithm. The
plaintext related operation utilizing the Mojette transform (MoT) requires a matrix
of 12× 12 pixel intensities. Together with other 2 rows of pixel intensities used for
plaintext unrelated operations, one row that chooses the computed Mojette bins and
the actually processed row of pixel intensities, the amount of required rows reaches
16. The amount of necessary columns of image pixels, which is 12 was then enlarged
to 16 in order to produce so-called square resolution (16×16 pixels). The mentioned
color depths are common for grayscale and true color images.

The proposed image encryption algorithm uses key with length of 128 bits, stored
in a hexadecimal notation. As it will be shown in Section 4.1, this key length can
be considered as sufficient by means of a brute-force attack. Architecture of the
proposed algorithm is inspired by Fridrich’s approach, however several stages are
added as it is shown in Figure 2.

Steps of the proposed image encryption algorithm were carefully chosen for
obtaining acceptable performance by means of commonly used measures (presented
in Section 4) and also reasonably fast speed of encryption or decryption (investigated
in Section 4.4). The following paragraphs describe individual stages of the proposed
image encryption algorithm.

Combinations with generated pseudo-random sequences (PRSs) are used for two
purposes. The first combination used during encryption helps to achieve better re-
sults for plain images with simple scenes, such as “black” images where intensities
of all pixels are zero. The second purpose is suppression of the possibility of a suc-
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encryp�on

plain image

combina�on with pseudo-random sequence

plaintext unrelated shuffling

plaintext unrelated chaining

plaintext related chaining

combina�on with pseudo-random sequence

encrypted image

decryp�on

encrypted image

combina�on with pseudo-random sequence

plaintext related inverse chaining

plaintext unrelated inverse chaining

plaintext unrelated inverse shuffling

combina�on with pseudo-random sequence

decrypted image

Figure 2. An architecture of the proposed image encryption algorithm

cessful attack. If the plain image is combined with two PRSs before and after the
encryption, an attacker would need to guess at least one of the used PRSs before
attacking the encryption algorithm. All PRSs used in our encryption algorithm are
generated by logistic map (LM) and then processed and quantized.

Confusion stage (shuffling of image pixels) consists of two steps. The first step
rearranges image pixels in individual rows of image, while the second step shuffles
pixels in individual columns of the image. The rearrangement of image pixels helps
to suppress the relations between adjacent image pixels, such as their correlation.

Diffusion stage exploits the fact that the intensities of image pixels were already
combined with one PRS. Therefore the diffusion can be achieved simply by per-
forming chaining of pixel intensities. The chaining is done in two steps, the first
one is not related to plain image and it is used only for establishing relations be-
tween intensities of all image pixels. Second step of the chaining is plaintext related
operation based on MoT.

The main contribution of the proposed solution is a description of a novel ap-
proach of plaintext related image encryption based on MoT. MoT was chosen be-
cause it operates directly with matrices of pixel intensities and therefore it enables
relatively simple implementation in the second step of the pixel intensity chaining.
Also, MoT has a relatively large amount of parameters even for matrices with small
sizes. Finally, as these parameters can be rearranged, the usage of MoT brings
a desired nonlinear operation to the proposed image encryption algorithm.

The novel application of relatively simple MoT should lead to a faster perfor-
mance than that obtained by image encryption algorithms based on more com-
plicated techniques. As it is shown in Section 4.5, the proposed image encryption
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algorithm is one of the fastest algorithms when compared to similar plaintext related
image encryption algorithms. Section 4.5 also discusses properties of the proposed
algorithm in contrast with features of other published approaches.

MoT computes bins by using various projections of plain image blocks. Each
bin is calculated as a sum of exactly three pixel intensities chosen from various
color planes of image (if it has multiple color planes). As image pixels are already
rearranged at the point of MoT based chaining, the bin computations use pixel
intensities from various locations of the plain image.

Proposed approach utilizes encryption keys also for shuffling parameters of com-
puted Mojette bins. Therefore, the calculated bins depend on both pixel intensities
and the key. The rearrangement of Mojette parameters also causes a nonlinearity in
calculations, where slight changes in parameters result in big differences in computed
bin values. Calculated bins are then combined with rows of the image according to
rows that are not yet encrypted, therefore this operation is plaintext related.

3.1 Preliminaries

3.1.1 Logistic Map

Logistic map (LM) is an example of one-dimensional chaotic map controlled by one
parameter. LM was popularized mainly by work of May [33]. The equation for
calculation of successive iterates generated by LM can be expressed as Equation (1):

xn+1 = r · xn(1− xn) (1)

where xn+1 ∈ (0, 1) is value of a successive iterate, r ∈ (0, 4) is a parameter of the
map and xn ∈ (0, 1) is value of a current iterate. Calculations of the first iterate x1
utilize value x0 known as an initial condition or initial value.

Chaotic behavior of LM is presented on its bifurcation diagram shown in Fig-
ure 3. While the behavior of the map is predictable after the first bifurcation that
occurs at r ∼ 3, after several more bifurcations the predictability gradually de-
creases. The point where r ∼ 3.56995 is known as “an onset of chaos” [34] and
as a lower bound of parameter r that causes a suitable chaotic behavior of the
LM.

LM often uses so-called transient period for providing more complex chaotic
behavior of generated sequences. The iterates generated during transient period are
used only for modification of initial condition x0. Usual lengths of transient period
are powers of 10, e.g. 1 000 iterates.

3.1.2 Mojette Transform

The Mojette transform (MoT) described in 1995 by Guédon et al. [35] is a discrete
two-dimensional transform that sums matrix elements over projection lines [36, 37].
These sums are called bins and projection lines are given by three parameters –
b which selects summed elements and p and q which determine discrete projection
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Figure 3. A bifurcation diagram of the logistic map

angle. Mathematically, calculation of Mojette bins for an image is given as Equa-
tion (2):

bin(b, p, q) =
w∑

k=1

h∑
l=1

Im(l, k) · δ(b+ kq − pl) (2)

where k = 1, 2, . . . , w is column index of image Im, w is width of the image,
l = 1, 2, . . . , h is its row index, h is height of the image and δ(x) is a Kronecker
delta function, δ(x) = 1 if x = 0, δ(x) = 0 otherwise.

The calculation of Mojette bins for a simple image and a set of two projections
is illustrated in Figure 4. Please note that additions use modulo 256 operation in
order to preserve the interval of inputs (given by 8 bits – a set {0, 1, . . . , 255}) [38].

MoT has various applications including image coding [39, 40]. In our previous
work, we found out that MoT can be used for establishing relations between image
pixel intensities [41]. This feature is also the goal of diffusion stages of the image
encryption algorithms. Furthermore, MoT has a property of redundancy, which
causes multiple usages of pixel intensities during bin computations. While this can
be viewed as a drawback from the point of computational speed, we utilize it to
suppress possibility of differential attacks as each different pixel intensity would
affect several bins.

3.2 Encryption Algorithm

The encryption algorithm takes a plain image P and a key K with length of 16
hexadecimal characters as inputs. Resolution of P needs to be at least 16 × 16
pixels for enabling computations of sufficient number of Mojette bins. The only
output is encrypted image E.
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Figure 4. An example of calculated Mojette bins

3.2.1 Generation and Processing of the Pseudo-Random Sequences

Inputs: plain image P , key K.

Output: six processed and quantized PRSs seq ′1m, seq ′2 to seq ′5 and seq ′6m.

Step 1: Height h, width w and number of color planes numcp of plain image P
are determined. These values are used for computation of extended width
wext = w · numcp and total number of pixels numpx = w · h · numcp.

Step 2: Key K is divided to four parts: K1 uses first four bytes of K, K2 utilizes
bytes 5 to 8, K3 is made of bytes 9 to 12 and K4 uses the last four bytes of K.
All four key parts K1 to K4 are then converted from hexadecimal to decimal
notation.

Step 3: Four key parts K1 to K4 are utilized for calculation of four LM (1) param-
eters r1 to r4:

ri = 3.9999 + 25 · 10−6 · (i− 1 + 2−32 ·Ki) (3)

where i = 1, 2, 3, 4 is an index of parameter and key part, coefficient of (i− 1) ·
25 · 10−6 ensures that each ri stays in a different interval and constant of 2−32

fixes the interval of all possible Ki to [0, 1).

Step 4: Six PRSs seq1 to seq6 are generated by six LMs (1). The initial condition
x0 is equal to 0.5 in all cases, values of parameter r are changed during the
transient period according to Table 1. The changing of parameter helps to
establish relations between all generated sequences and all key parts. Lengths
of generated sequences are included in the bottom row of Table 1.

Step 5: The PRSs seq1 to seq6 are quantized by applying Equation (4). Quantized
sequences are denoted as seq ′1 to seq ′6. Maximal possible value of element after
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Sequence seq1 seq2 seq3 seq4 seq5 seq6
r used iterates 1 to 250 r1 r2 r3 r4 r2 r3
during iterates 251 to 500 r2 r3 r4 r1 r1 r2
transient iterates 501 to 750 r3 r4 r1 r2 r4 r1
period iterates 751 to 1 000 r4 r1 r2 r3 r3 r4
r used for following iterates r1 r2 r3 r4 r2 r3
length of sequence [iterates] numpx wext h 16 16 numpx

Table 1. Parameters of logistic maps and lengths of generated sequences

quantization is individual for each sequence and it is determined by Table 2.

seq ′i =
⌊
(maxi + 1) ·

(
105 · seqi (mod 1)

)⌋
(4)

where i = 1, 2, . . . , 6 is an index of sequence and maxi is the maximal possible
quantized value for each sequence.

Sequence seq1 seq2 seq3 seq4 seq5 seq6
maxi 255 h− 1 wext − 1 15 15 255

Table 2. Maximal possible values of the sequence elements after quantization

The multiplication of LM iterates by a constant of 105 and the modulo operation
help to provide more uniform distribution of values, as it is demonstrated on
the example in Figure 5. This example used two sequences, both with length of
106 iterates, initial condition x0 = 0.5 and parameter r = 4− 10−15. While the
sequence denoted as “before processing” was simply generated by LM (1), the
second sequence was processed by the multiplication and the modulo operation.
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Step 6: Sequences seq ′1 and seq ′6 are rearranged to matrices seq ′1m and seq ′6m with
h rows and wext columns. The rearrangement uses rows first scanning pattern.

3.2.2 Combination with First Pseudo-Random Sequence

Inputs: plain image P , number of color planes numcp, width w, pseudo-random
sequence seq ′1m.

Output: extended image Pext.

Step 1: Plain image P is rearranged to extended image Pext. Grayscale images
(numcp = 1) are simply copied to Pext, while true color images (numcp = 3)
are decomposed to individual color planes. Columns of red color plane are then
copied into columns of Pext with indexes 1 + 3 · (i − 1), where i = 1, 2, . . . , w.
Columns of green and blue color planes are copied into columns of Pext with
indexes 2 + 3 · (i− 1), and 3 · i where i = 1, 2, . . . , w, respectively.

Step 2: Sequence seq ′1m is combined with extended image Pext by means of bitwise
eXclusive OR (XOR) using Equation (5). This step is necessary for images with
simple scenes (images where most pixel intensities are similar).

Pext = Pext ⊕ seq ′1m (5)

where ⊕ is an operator of bitwise XOR.

3.2.3 Confusion Stage

Inputs: extended image Pext, extended width wext, height h, pseudo-random se-
quences seq ′2 and seq ′3.

Output: extended image Pext with rearranged image pixels.

Step 1: Pixel intensities in columns of extended image Pext are shuffled by a cyclic
shift to the bottom side of Pext. Size of shift is individual for each column of Pext

and it is determined by corresponding element of sequence seq ′2 (Equation (6)):

Pext(l, k) = Pext (1 + (l − 1 + seq ′2(k) (mod h)) , k) (6)

where l = 1, 2, . . . , h is row index and k = 1, 2, . . . , wext is column index.

Step 2: Pixel intensities in rows of extended image Pext are shuffled by a cyclic shift
to the right side of Pext. Size of shift is individual for each row of Pext and it is
determined by corresponding element of sequence seq ′3 (Equation (7)):

Pext(l, k) = Pext (l, 1 + (k − 1 + seq ′3(l) (mod wext))) . (7)

3.2.4 Diffusion Stage – Plaintext Unrelated Chaining

Inputs: extended image Pext, height h, extended width wext.
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Output: extended image Pext with chained intensities of image pixels.

Step 1: Rows of extended image Pext are scanned from the top to the bottom.
Pixel intensities in individual rows of Pext are chained with pixel intensities in
neighboring rows. The chaining is done by element-wise modulo 256 addition of
intensities from the previous scanned row and then bitwise XOR with intensities
from the next scanned row, as shown in Figure 6. The top row uses the bottom
one as the previous scanned row and the bottom row uses the top row as the
next scanned row.
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intensi�es for addi�on
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Figure 6. Demonstration of chaining for the first two rows

Step 2: Columns of extended image Pext are scanned from the leftmost one to
the rightmost one. Pixel intensities in individual columns of Pext are chained
with pixel intensities in neighboring columns. The chaining is done by element-
wise modulo 256 addition of intensities from previous scanned column and then
bitwise XOR with intensities from next scanned column. The leftmost column
uses the rightmost one as the previous scanned column and the rightmost one
uses the leftmost one as the next scanned column.

Step 3: Rows of extended image Pext are scanned from the bottom to the top. Pixel
intensities in individual rows of Pext are chained by bitwise XOR with intensi-
ties from the next scanned row and then element-wise modulo 256 addition of
intensities from the previous scanned row. The bottom row uses the top row
as the next scanned row and the top row uses the bottom one as the previous
scanned row.

Step 4: Columns of extended image Pext are scanned from the rightmost one to
the leftmost one. Pixel intensities in individual columns of Pext are chained
by bitwise XOR with intensities from next scanned column and element-wise
modulo 256 addition of intensities from previous scanned column. The rightmost
one uses the leftmost one as next scanned column and the leftmost column uses
the rightmost one as previous scanned column.

Four different scans are used for establishing relations between all pixel intensi-
ties. An example of this property is shown in Figure 7 where the fill of matrix
element means difference between two images. The two operations with neigh-
boring rows or columns are utilized for creating relations during both encryption
and decryption.
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Figure 7. Scanning pattern used during plaintext unrelated chaining

3.2.5 Diffusion Stage – Plaintext Related Chaining

Inputs: extended image Pext, extended width wext, height h, pseudo-random se-
quences seq ′4 and seq ′5.

Output: extended image Pext with intensities of image pixels chained according to
its pixel intensities.

Step 1: A set of parameters of Mojette bins represented by matrix motpar is rear-
ranged similarly as the extended image Pext during confusion stage. The matrix
motpar has 16 rows and 16 columns. Its elements with linear indexes (rows first
scanning pattern) are shown in Table 3. Firstly, a cyclic shift shuffles the pa-
rameters in columns of motpar according to sequence seq ′4. Then the parameters
in rows of motpar are rearranged depending on sequence seq ′5.

Indexes (p q) Set of b
1 to 20 (−5 1) {−56,−55,−51,−50,−46,−45,−41,−40, . . . ,−16,−15,−11,−10}
21 to 36 (−5 2) {−57,−55,−52,−50,−47,−45,−42,−40, . . . ,−27,−25,−22,−20}
37 to 48 (−5 3) {−58,−55,−53,−50,−48,−45,−43,−40,−38,−35,−33,−30}
49 to 56 (−5 4) {−59,−55,−54,−50,−49,−45,−44,−40}
57 to 96 (−4 1) {−47,−46− 45,−44,−43,−42,−41,−40,−39,−38, . . . ,−10,−9,−8}
97 to 120 (−4 3) {−53,−50,−49,−47,−46,−45,−44, . . . ,−32,−31,−30,−28,−27,−24}
121 to 128 (−4 5) {−59,−55,−54,−50,−49,−45,−44,−40}
129 to 168 (4 1) {−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, . . . , 34, 35, 36}
169 to 192 (4 3) {−9,−6,−5,−3,−2,−1, 0, 1, 2, 3, 4, . . . , 12, 13, 14, 16, 17, 20}
193 to 200 (4 5) {−15,−11,−10,−6,−5,−1, 0, 4}
201 to 220 (5 1) {−1, 0, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, . . . , 39, 40, 44, 45}
221 to 236 (5 2) {−2, 0, 3, 5, 8, 10, 13, 15, . . . , 28, 30, 33, 35}
237 to 248 (5 3) {−3, 0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25}
249 to 256 (5 4) {−4, 0, 1, 5, 6, 10, 11, 15}

Table 3. A set of parameters utilized for computing Mojette bins

Rearrangement of parameters according to sequences generated by a key es-
tablishes the relations between values of computed bins and the key. As the
parameters are shuffled, even small change in their indexes should result in
a significant difference of computed bin values – this step causes nonlinearity.

The set of parameters was chosen according to several rules – the greatest com-
mon denominator of p and q is equal to one and q is always positive. These
two conditions were formulated by Guédon et al. [38] and ensure uniqueness of
projection angles. Furthermore, as our approach uses MoT for specific purposes,
we introduced other conditions:
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• |p| > 3 ensures that the summed intensities belong to different pixels,

• |p| (mod 3) 6= 0 provides pixel intensities from various color planes,

• values of b were chosen in a way that bins are always made as sums of exactly
three intensities.

Step 2: Rows of extended image Pext are scanned from top to bottom. Intensities
of an actually scanned row are stored in a vector rowact. Intensities of a row
that is two rows under the rowact are stored in a vector rowmodif . Then, the
following 144 intensities (columns first scanning pattern) are copied to vector
vecint. These operations are depicted in Figure 8. If row indexes for rowmodif

and vecint are higher than height h of Pext, the algorithm uses rows from the top
of Pext.
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Figure 8. Operations with rows of extended image

Please note that pixel intensities rows of Pext were already shuffled during con-
fusion stage. Therefore the 144 intensities in vecint were chosen from the whole
image. Also, the requirement of 144 pixel intensities causes a restriction of mini-
mal image resolution – the size of 16×16 pixels was chosen as the closest square
resolution to 16× 12 pixels.

The sixteen rows are necessary as one is actually scanned row (rowact), another
is used for modifications (rowmodif ), two rows are utilized during plaintext un-
related chaining and the remaining 12 rows produce a block of 12 × 12 pixels
required for computation of Mojette bins.

Step 3: Vector vecint is rearranged to matrix matint with 12 × 12 elements (rows
first scanning pattern). This matrix is used for computation of 256 bins by
MoT with parameters from rearranged matrix motpar. Bin values are stored
in a vector vecbins. The redundancy property of MoT causes that 256 bins are
calculated from various triples of 144 pixel intensities (they are used multiple
times).

Step 4: Intensities of rowact are element-wise combined with bins vecbins by means
of bitwise XOR (Equation (8)). A bin value for each intensity from rowact is
chosen according to corresponding intensity from rowmodif . The resulting vector
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of intensities is stored in the matching row of extended image Pext.

Pext(1:h, k) = Pext(1:h, k)⊕ vecbins (rowmodif (k)) (8)

where 1:h denotes sequence 1, 2, . . . , h, k = 1, 2, . . . , wext is column index and ⊕
is an operator of bitwise XOR.

3.2.6 Combination with Second Pseudo-Random Sequence

Inputs: extended image Pext, number of color planes numcp, width w, pseudo-
random sequence seq ′6m.

Output: encrypted image E.

Step 1: Sequence seq ′6m is combined with extended image Pext by means of bitwise
XOR using Equation (9). This step suppresses possibility of attacks on the
plaintext related diffusion stage.

Pext = Pext ⊕ seq ′6m. (9)

Step 2: Extended image Pext is rearranged to encrypted image E. Grayscale images
(numcp = 1) are simply copied to E, while true color images (numcp = 3) are
combined from their individual color planes. Columns of red color plane of E are
achieved from columns of Pext with indexes 1 + 3 · (i− 1), where i = 1, 2, . . . , w.
Columns of green and blue color planes of E are obtained from columns of Pext

with indexes 2 + 3 · (i− 1), and 3 · i where i = 1, 2, . . . , w, respectively.

3.3 Decryption Algorithm

Steps of decryption algorithm are analogous to encryption. The opposite order of
operations can be seen in Figure 2. One exception of the opposite order is decom-
position to two-dimensional extended image Eext and rearrangement to a matrix
with one or three color planes. Generation and processing of the PRSs is the same
as during encryption. Combinations with PRSs are swapped, the first one is done
with sequence seq ′6m, while the second one uses seq ′1m. Plaintext unrelated inverse
chaining utilizes subtraction instead of addition, the usage of all bitwise XOR oper-
ations stays the same. Also, the order of subtraction and bitwise XOR operations is
reversed. The shifts of image pixels during inverse confusion utilize negative values
of elements from sequences seq ′3 and seq ′2.

4 EXPERIMENTAL RESULTS

All experiments described in this section were performed on a PC running MATLAB
R2015a on Windows 10 OS, with a 2.5 GHz Intel Core i7-6500U Skylake CPU and
12 GB of RAM. A set of experimental plain images is shown in Figure 9. Their
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parameters are mentioned in Table 4. Please note that images black and blackG
are magnified in all following figures, as their low resolution enables detection of
possible patterns by a naked eye.

lena lenaG peppers

peppersG

black blackG

Figure 9. A set of experimental plain images

Image lena lenaG peppers peppersG black blackG

height [px] 512 512 512 512 16 16
width [px] 512 512 512 512 32 32
color depth [bits/px] 24 8 24 8 24 8

Table 4. Parameters of used plain images

A set of three experimental keys in hexadecimal notation is displayed in Table 5.
Value of K1 was obtained from the first 128 bits of binary representation of decimal
part of π. The difference between K1 and K2 is highlighted by italics.

Key Value

K1 0× C4 EB 50 BC 0E C5 EB 50 BC 0E C5 EB 50 BC 0E C5

K2 0× C4 EB 51 BC 0E C5 EB 50 BC 0E C5 EB 50 BC 0E C5

K3 0× 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Table 5. A set of experimental keys

Encrypted versions of some plain images from Figure 9 are shown in Figure 10.
All encryptions used key K1.
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lena

black

peppersG

Figure 10. Some examples of encrypted images

4.1 Size of Key Space

The proposed algorithm uses key with length of 16 bytes. Therefore the size of key
space can be expressed as 25616 = 28·16 = 2128. Considering that one decryption
of color image with resolution of 512 × 512 pixels takes approx. 420 ms (refer to
Section 4.4 for details), the brute-force attack would require approx. 2.7192× 1032

years to complete. Therefore we consider this type of attack as infeasible.

4.2 Key and Plaintext Sensitivity Analysis

4.2.1 Key Sensitivity

Key sensitivity of the proposed algorithm is illustrated in Figure 11. The top row
of images was created by encryption of plain image lena by three various keys.
Left image in the bottom row shows differences between images encrypted by two
different keys. The other two images in the bottom row illustrate decryption by the
correct key (middle image) and by incorrect key (right image).

4.2.2 Plaintext Sensitivity

Sensitivity of encryption algorithm to slight changes of plaintext (in the form of plain
image before encryption or encrypted image before decryption) can be demonstrated
by two simple experiments.

The first experiment increases intensity of the last scanned pixel (in the bottom
right corner of blue color plane) of image black. The pixel intensity is increased by
one level from 0 to 1. The left and middle images in Figure 12 illustrate effect of
one different pixel intensity before encryption with the same key.

The second experiment starts with encryption of image black by key K1. The
result is shown in left image in Figure 12. Then, the encrypted image is modified by
increasing the intensity of last scanned image pixel (in the top left corner of red color
plane) of encrypted image. The modified image is finally decrypted by key K1. The
decryption without modification should lead to the original plain image black, as
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Figure 11. Demonstration of key sensitivity
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Figure 12. Effects of modifications of image before and after encryption

shown in Figure 9. However, as seen in the right image in Figure 12, the decryption
of modified image produced a totally different image.

4.3 Robustness Against Certain Types of Attacks

This section investigates the robustness of the proposed image encryption algorithm
against commonly used attacks in a field of image encryption. The ways how mea-
sures used for assessment of the robustness are computed can be interpreted as
examples of certain types of well known attacks.
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In the case that the proposed image encryption algorithm improves values of
these measures, it can be stated that the algorithm resists not only the mentioned
basic attacks, but also some of the more complicated attacks based on these general
attacks. A detailed analysis of robustness against all published attacks would be
extensive, so this paper investigates only robustness against certain general attacks.

4.3.1 Statistical Attacks

Robustness of image encryption algorithms against statistical attacks can be exam-
ined by several measures. First of all, usage of encryption should reduce significant
peaks present in the histogram of a plain image. This situation is illustrated in
Figure 13 by histograms of plain image lenaG and its version encrypted by key K1.
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Figure 13. Comparison of image histograms

Secondly, the encryption algorithms should suppress the correlation of adjacent
image pixels. This feature can be shown by correlation diagrams, which use inten-
sities of two pixels as coordinates of one plotted point. If pixel intensities are highly
correlated, the diagram should have points near line y = x. Encryption should
result in nearly uniform distribution of points in these diagrams. An example of
correlation diagrams for plain image lenaG and its version encrypted by key K1 is
shown in Figure 14. Both diagrams contain 1 000 points, which were plotted ac-
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cording to intensities of 1 000 randomly chosen pairs of horizontally adjacent image
pixels.
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Figure 14. An example of correlation diagrams

Various image encryption algorithms can be compared by numerical parameters.
These measures include correlation coefficients ρ, which are calculated separately for
horizontally (ρh), vertically (ρv) and diagonally (ρd) adjacent pairs of image pixels
and entropy H. Both correlation coefficients and entropy are computed individually
for each color plane of the analyzed image.

Correlation coefficients ρ can be calculated by Equation (10):

ρ =

∑numpp

pp=1 (vec1(pp)− vec1) · (vec2(pp)− vec2)√∑numpp

pp=1 (vec1(pp)− vec1)
2 ·
∑numpp

pp=1 (vec2(pp)− vec2)
2

[-] (10)

where pp = 1, 2, . . . , numpp is an index of pixel pair, numpp is total amount of pixel
pairs, vectors vec1 and vec2 contain intensities of the first and the second pixels from
pixel pairs, respectively, and vec denotes arithmetic mean of vector vec.

Entropy H is computed by applying Equation (11):

H = −
2L−1∑
in=0

p(in) · log2 (p(in)) [bits/px] (11)
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where L is color depth of color plane, in denotes intensity of image pixel and p(in)
stands for probability of occurrence of pixel with intensity in. The theoretical upper
bound of entropy H is given by color depth of the color planes.

Computed values of correlation coefficients ρ and entropy H are presented in
columns 4 to 7 of Table 6. Symbol “–” denotes either the only color plane for
grayscale images (in the second column) or usage of plain images (in the third
column).

4.3.2 Differential Attacks

Differential attacks are used for revealing properties of image encryption algorithms
by comparing two encrypted images E1 and E2. These two images were created by
encryption of plain images P1 and P2, where P2 is slightly modified version of P1.
The modification should be minimal, i. e. intensity of one image pixel from one
color plane is changed by one level.

Robustness of image encryption algorithms against differential attacks is tested
by two measures: Number of Pixel Change Ratio (NPCR) and Unified Average
Changing Intensity (UACI) [42]. While the first one only counts the amount of
different pixels, the second one also takes into account the size of differences.

NPCR for images E1 and E2 is computed as Equation (12):

NPCR =
100

h · w

h∑
l=1

w∑
k=1

Diffmat(l, k) [%] (12)

where h is height of images E1 and E2, w is their width, l and k are line and column
indexes and Diffmat is a difference matrix, Diffmat(l, k) = 1 if E1(l, k) 6= E2(l, k),
Diffmat(l, k) = 0 otherwise.

UACI for the same pair of images is calculated as Equation (13):

UACI =
100

h · w

h∑
l=1

w∑
k=1

|E1(l, k)− E2(l, k)|
2L − 1

[%] (13)

where L is color depth of color plane.
Calculated values of NPCR and UACI are included in columns 8 and 9 of Table 6.

Each value is an arithmetic mean of 100 repeated measurements with randomly
chosen modified pixel intensity in the plain image. Symbol “–” denotes either the
only color plane for grayscale images (in second column) or usage of plain images
(in third column). NPCR and UACI of plain images could not be computed as
the modification of one plain image pixel intensity is not spread to other intensities
(images are not encrypted).

The paper by Wu et al., which analyzed NPCR and UACI [42] also mentions
so-called expected values of these parameters for certain resolutions of encrypted
images. If the computed values of NPCR and UACI are greater than the expected
values, it can be concluded that encryption algorithm successfully suppressed the
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similarity of plain images P1 and P2. Wu et al. also defined significance levels α,
which can be used for predicting amount of successful differential attacks on a pair
of encrypted images.

The computed expected values of NPCR and UACI for a color plane with reso-
lution of 512× 512 pixels are 99.6094 % for NPCR and 33.4635 % for UACI [42].

4.3.3 Discussion

Image and
Key

ρh ρv ρd H NPCR UACI
Color Plane [–] [–] [–] [bits/px] [%] [%]

lena

R
–

0.9749 0.9782 0.9593 7.5889
not computedG 0.9632 0.9729 0.9497 7.106

B 0.9376 0.9515 0.9212 6.8147
R

K1

0.0004 0.0013 0.0005 7.9993 99.6101 33.4738
G −0.001 −0.0021 −0.0037 7.9994 99.6109 33.4742
B −0.0032 −0.002 0.0017 7.9992 99.6103 33.4746
R

K2

0.0033 0.0026 −0.001 7.9994 99.6105 33.4742
G 0.0006 0.0015 −0.0016 7.9993 99.6113 33.4749
B 0.0016 0.0013 0.003 7.9993 99.6101 33.4743
R

K3

0.0028 −0.0012 0.0002 7.9993 99.6101 33.4736
G −0.0007 0.002 0.0002 7.9993 99.6109 33.4731
B −0.0042 −0.0017 0.0005 7.9993 99.6098 33.4744

lenaG –

– 0.9679 0.9761 0.955 7.2344 not computed
K1 0.0008 0.0005 −0.0004 7.9992 99.61 33.4714
K2 0.0015 0.001 −0.0012 7.9993 99.6099 33.4725
K3 0.0051 −0.0004 −0.0001 7.9993 99.6105 33.4704

peppers

R
–

0.9635 0.9663 0.9564 7.3388
not computedG 0.9811 0.9818 0.9687 7.4963

B 0.9665 0.9664 0.9475 7.0583
R

K1

0.0007 −0.005 0.0009 7.9994 99.6112 33.4719
G −0.0009 0.0006 −0.0018 7.9993 99.6106 33.4727
B 0.0013 −0.0011 0.0026 7.9993 99.611 33.4712
R

K2

−0.0007 0.0004 −0.0026 7.9994 99.6114 33.4707
G −0.0028 −0.0015 0.0031 7.9993 99.6103 33.4718
B −0.0005 −0.0019 0.0011 7.9993 99.6108 33.4723
R

K3

0.0034 −0.0005 0.0006 7.9992 99.61 33.471
G −0.0025 −0.0014 −0.0007 7.9994 99.6102 33.4708
B −0.0035 0.0003 0.0006 7.9992 99.6109 33.4714

peppersG –

– 0.9768 0.9792 0.9639 7.5944 not computed
K1 0.0051 0.0007 −0.0001 7.9991 99.6106 33.4721
K2 0.0019 −0.0011 −0.0008 7.9991 99.6121 33.4729
K3 −0.0002 −0.0006 −0.0016 7.9993 99.6117 33.4735

Table 6. Achieved numerical parameters
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Results presented in Table 6 show that encryption by the proposed algorithm
helps to decrease values of correlation coefficients ρ. Also, the values of ρ are quite
similar for different keys. The biggest difference of ρ caused by usage of other key
is present for image peppersG where key K1 produces ρh = 0.0051, while other keys
produce values of 0.0019 and −0.0002, respectively. However, the high value of ρh is
balanced by values of ρv and ρd, which are better for K1. Values of ρ for other two
images (black and blackG) are affected by their low resolution and the simplicity of
their scene (all image pixels have zero intensity). Encryption of image blackG by
key K1 resulted in ρh = −0.0191, ρv = −0.0616 and ρd = −0.0181.

The encryption also increases entropy H of the images. Obtained values are
close to theoretical bound of 8 bits per pixel and they are more uniform among
various color planes. Usage of different keys does not significantly affect the values
of H. Image blackG encrypted by key K1 produced H = 7.5929 bits per pixel.

Values of NPCR and UACI are similar for various combinations of color planes
and keys applied on individual images. Images black and blackG have greater vari-
ance of these values as their low resolution makes even slight differences in amount
of changes (NPCR) or their intensity (UACI) more noticeable. Examples of NPCR
and UACI for image blackG encrypted by key K1 are 99.6719 % and 33.4304 %,
respectively.

All arithmetic means of NPCR and UACI for images lena, lenaG, peppers
and peppersG are higher than the expected values. However, some of the 100
measurements have lower values than the expected value, which causes limited
confidence about possibility of a successful differential attack. Figure 15 illus-
trates 100 repeated measurements of NPCR for image lenaG encrypted by key K1.
The displayed significance level α = 0.001 results in a confidence level of 99.9 %
(NPCR > 99.5717 %). Therefore 1 out of 1 000 predictions of a possible differential
attack can be wrong [42].
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Figure 15. The illustration of 100 measured NPCR values
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The properties of the proposed image encryption algorithm regarding commonly
used attacks in the field of image encryption can be evaluated from several aspects.
Firstly, the key space of the proposed algorithm is big enough for preventing brute-
force attacks. Secondly, the design of the proposed algorithm ensures certain level
of sensitivity to both used keys and plain or encrypted images. Also, the architec-
ture of the proposed algorithm contains a plaintext related stage, which eliminates
application of Solak’s attack [13]. Finally, the robustness against statistical and dif-
ferential attacks can be evaluated by values of correlation coefficients ρ, entropy H,
NPCR and UACI.

Therefore it can be concluded that the proposed image encryption algorithm is
robust against all currently known attacks in the field of image encryption.

4.4 Analysis of Computational Speed

Encryption and decryption times are other important properties of the image en-
cryption algorithms. The speed of performed operations can be also evaluated via
encryption speed venc or decryption speed vdec, which take into account the resolu-
tion and color depth of images (Equation (14)):

voper =
h · w · d
220 · toper

[MB/s] (14)

where h, w and d are height, width and color depth of image, 220 is a constant
representing amount of bytes in a megabyte and toper is time in seconds needed for
an operation (either encryption or decryption).

Considering different specifications of various computers used for experiments,
the speed of image encryption algorithms can be given by the number of processor
cycles required for operations with one byte of data. These values are denoted as
cycenc for encryption of one image byte and cycdec for decryption of one image byte.
The number of cycles necessary for an operation (either encryption or decryption)
with one byte of data cycoper can be computed by Equation (15):

cycoper =
fcpu
voper

[cycles/B] (15)

where fcpu is processor clock frequency measured in Hz and voper is speed of the
investigated operation given in B/s. Please note that the computed values of cycles
required for operations with one byte expect that only one core of the processor is
utilized (at 100 %) for the purposes of the image encryption algorithms.

Times, speeds and numbers of processor cycles for operations with images and
keys from the experimental set are presented in Table 7. The times are arithmetic
means of 100 repeated measurements. Speeds and numbers of the processor cycles
were computed from these means.

Results shown in Table 7 lead to several conclusions. Firstly, the speed of
operations does not depend on the key used. Secondly, both the encryption or



Image Encryption Algorithm with Plaintext Related Chaining 671

Image Key
tenc tdec venc vdec cycenc cycdec
[ms] [ms] [MB/s] [MB/s] [cycles/B] [cycles/B]

lena
K1 436.2245 420.5649 1.7193 1.7833 1454.08 1401.9
K2 436.3845 420.3934 1.7187 1.784 1454.59 1401.35
K3 436.7181 421.081 1.7174 1.7811 1455.69 1403.63

lenaG
K1 126.2499 122.7206 1.9802 2.0371 1262.5 1227.23
K2 126.9473 122.6332 1.9693 2.0386 1269.49 1226.33
K3 126.905 122.6084 1.97 2.039 1269.04 1226.09

peppers
K1 436.3264 419.8888 1.7189 1.7862 1454.42 1399.62
K2 436.4397 421.8564 1.7185 1.7779 1454.76 1406.15
K3 435.8724 419.6389 1.7207 1.7873 1452.9 1398.76

peppersG
K1 127.1529 122.8078 1.9661 2.0357 1271.55 1228.08
K2 126.8485 122.7695 1.9709 2.0363 1268.46 1227.72
K3 127.3672 122.8902 1.9628 2.0343 1273.69 1228.92

black
K1 2.557 2.6487 0.5729 0.553 4363.76 4520.8
K2 2.5451 2.6251 0.5756 0.558 4343.29 4480.29
K3 2.535 2.6628 0.5779 0.5501 4326.01 4544.63

blackG
K1 1.5223 1.5587 0.3207 0.3133 7795.45 7979.57
K2 1.5124 1.564 0.3229 0.3122 7742.34 8007.69
K3 1.4991 1.5803 0.3257 0.309 7675.78 8090.61

Table 7. Measured times, speeds and the numbers of the processor cycles

decryption speeds and the number of the processor cycles required for processing
of one byte of data for images with the same resolution and color depth are very
similar. Also, the speeds for images with a higher resolution (such as lena and
peppers) are lower than the speeds for images with a lower resolution. This can
be caused by generating of longer PRSs since LM (1) is a recursive function where
each currently generated iterate (xn+1) requires the previous iterate (xn) for its
computations. The lower speeds result in an increased number of the processor
cycles required for processing of one byte of data.

The values for images black and blackG are distorted by rather low resolution
of the images (32 × 16 pixels). For images with resolution of 512 × 512 pixels,
the encryption speeds venc are approx. 1.7 MB/s for true color images and approx.
1.95 MB/s for grayscale images. The decryption speeds vdec are slightly higher.

4.5 Comparison with Other Approaches

The comparison of numeric parameters obtained by image encryption algorithms
is not an easy task, as researchers tend to use different plain images and various
measures. This section summarizes results reported in papers [20, 21, 24, 26, 27, 29,
30, 31, 32], which all describe plaintext related image encryption algorithms. The
comparison of parameters presented in Table 8 is divided into two parts – the first
part includes values obtained by papers that used true color image lena, while the
second part shows values from papers that utilized grayscale image lenaG.
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Results for this paper were obtained by using key K1. Some papers used plain
images with different resolution: refs. [20, 30] used resolution of 256 × 256 pixels,
while refs. [24, 26] used resolution of 357× 317 pixels. Algorithm published in [27]
was already broken in [28]. An approach presented in [32] is asymmetric (meaning
that the encryption and decryption keys are different).

The numbers of the processor cycles required for encryption of one byte cycenc
were calculated with respect to both resolutions of used images and specifications
of the computers used. All compared approaches obtained the encryption times
used for calculation of cycenc in various versions of the MATLAB computational
environment. None of the compared algorithms mentioned the usage of multiple
processor cores.

If some paper presented multiple values for one parameter, the best results were
chosen for the comparison. The most outstanding value was highlighted by italics
for each parameter.

Approach
ρh ρv ρd H NPCR UACI cycenc
[–] [–] [–] [bits/px] [%] [%] [cycles/B]

red color plane of true color image lena (512× 512 pixels)

proposed 0.0004 0.0013 0.0005 7.9993 99.6101 33.4738 1454.08
ref. [21] −0.0029 −0.015 0.0129 7.9997 99.62 33.51 ∼2270
ref. [27] 0.0135 not reported 7.9974 99.63 33.31 648.53

grayscale image lenaG (512× 512 pixels)

proposed 0.0008 0.0005 −0 .0004 7.9992 99.61 33.4714 1262.5
ref. [20] 0.0088 −0.0087 −0.006 7.9902 99.62 33.46 9063.44
ref. [24] −0.0046 −0.0511 −0.0168 7.9993 99.6101 33.4679 8230.32
ref. [26] −0.0084 0.0041 −0.0463 7.9984 99.6077 33.4441 3366.6
ref. [29] 0.0044 0.0151 0.0012 7.9993 99.62 33.45 15120.97
ref. [30] −0.0037 −0.0029 0.0047 7.9975 99.5956 33.5512 43151.97
ref. [31] 0.0013 0.0008 0.0066 7.9993 99.6107 33.4436 5185.19
ref. [32] 0.0042 0.0022 −0.0045 7.9992 99.1802 33.3483 795.17

Table 8. Comparison of numerical parameters

As seen in Table 8, the proposed solution provides the best values of correlation
coefficients ρ among presented values. The results for entropy H are similar, and in
most cases close to the theoretical bound of 8 bits per pixel. The highest entropy
value for red color plane of color image lena is achieved by approach [21], while
highest entropy values for grayscale image lenaG are obtained by algorithms [24,
29, 31].

Majority of NPCR and UACI results are higher than the expected values. The
best value of NPCR for color images was obtained by design [27], however this
algorithm was already broken [28]. NPCR values for grayscale images are similar,
except for proposal [32]. The best values were produced by approaches [20, 29].
The best UACI values were achieved by algorithm [21] for true color images and by
approach [30] for grayscale images.
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Reported numbers of the processor cycles required for encryption of one byte
cycenc are greatly influenced by the architecture of the algorithms. This fact is most
visible in the approaches [29, 30], which used hash functions and the algorithm [27],
which inserted plaintext related parameter into the encrypted image. While hash
functions significantly slow down the whole algorithms, the other solution needs
a relatively small number of processor cycles for the encryption. However, as it was
already pointed out, this solution was already broken [28]. Another approach with
different properties was described in [32], where an asymmetric image encryption
algorithm was proposed. Except these solutions, the design proposed in this paper
is the fastest.

5 CONCLUSIONS

This paper described an image encryption algorithm, which employed the Mojette
transform for plaintext related chaining of pixel intensities. The values of Mojette
bins, which are going to be combined with image pixels are chosen by pixel intensities
that are yet not encrypted, therefore this proposal is plaintext related. Moreover,
the Mojette bins are computed also from pixel intensities of plain images.

Parameters of Mojette bins were chosen in a way that each bin is affected by pixel
intensities from various color planes. Also, the pixel intensities that are summed
by the Mojette transform are chosen from different columns of the processed im-
ages.

As the combinations of images and computed Mojette bins are done with whole
rows of pixel intensities, the proposed solution is among the fastest plaintext re-
lated image encryption designs. Also, the experimental results show that the al-
gorithm proposed in this paper reaches excellent values of correlation coefficients.
The obtained values of entropy, NPCR and UACI are comparable with other pro-
posals.

Probably the biggest drawback of the proposed algorithm is the fact that not
all of 100 performed NPCR and UACI measurements are higher than the expected
values. This disadvantage could be improved in the future.
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[29] Chai, X.—Gan, Z.—Zhang, M.: A Fast Chaos-Based Image Encryption Scheme
with a Novel Plain Image-Related Swapping Block Permutation and Block Diffusion.
Multimedia Tools and Applications, Vol. 76, 2017, No. 14, pp. 15561–15585, doi:
10.1007/s11042-016-3858-4.

[30] Wang, X.—Zhu, X.—Wu, X.—Zhang, Y.: Image Encryption Algorithm Based
on Multiple Mixed Hash Functions and Cyclic Shift. Optics and Lasers in Engineering,
Vol. 107, 2018, pp. 370–379, doi: 10.1016/j.optlaseng.2017.06.015.

[31] Li, Z.—Peng, C.—Li, L.—Zhu, X.: A Novel Plaintext-Related Image Encryption
Scheme Using Hyper-Chaotic System. Nonlinear Dynamics, Vol. 94, 2018, No. 2,
pp. 1319–1333, doi: 10.1007/s11071-018-4426-4.

[32] Oravec, J.—Turán, J.—Ovseńık, Ľ.—Ivaniga, T.—Solus, D.—
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Technical University of Košice in 1984 and 1992. He works at
the Technical University of Košice, currently as Full Professor.
His research interests include prevention of industrial accidents
and safety assessments of critical infrastructure systems.



Computing and Informatics, Vol. 38, 2019, 679–700, doi: 10.31577/cai 2019 3 679

LEARNING SPARQL QUERIES FROM EXPECTED
RESULTS

Jedrzej Potoniec

Faculty of Computing
Poznan University of Technology
ul. Piotrowo 3
60-965 Poznan, Poland
e-mail: jpotoniec@cs.put.poznan.pl

Abstract. We present LSQ, an algorithm learning SPARQL queries from a subset
of expected results. The algorithm leverages grouping, aggregates and inline values
of SPARQL 1.1 in order to move most of the complex computations to a SPARQL
endpoint. It operates by building and testing hypotheses expressed as SPARQL
queries and uses active learning to collect a small number of learning examples from
the user. We provide an open-source implementation and an on-line interface to test
the algorithm. In the experimental evaluation, we use real queries posed in the past
to the official DBpedia SPARQL endpoint, and we show that the algorithm is able
to learn them, 82 % of them in less than a minute and asking the user just once.

Keywords: SPARQL, RDF, active learning

1 INTRODUCTION

Querying information with a complex structure is an inherently hard task for a user.
The user must spend a lot of time learning a vocabulary and relations used in the
data. This will become more and more important, as we develop more complex
artificial intelligence systems, using vast amount of information encoded in a complex
representation formalism. In this paper, we aim to remedy this issue in the context
of information represented as an Resource Description Framework (RDF) graph.

Consider the following use case scenario: a user has some informal criteria to
select a subset of nodes of a graph. He/she knows some of the relevant nodes in
the graph, he/she also knows some of the irrelevant nodes. Moreover, he/she can
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distinguish a relevant node from an irrelevant one for some price, e.g. by spending
his/her time verifying if a node is a relevant one or not. He/she wants to obtain
a formal query corresponding to the informal criteria to be able to query the graph.

To address this use case, we propose an algorithm for learning a SPARQL query
corresponding to these criteria. The algorithm is designed in such a way that it moves
most of the computational work to a SPARQL endpoint by posing quite complex
queries to it. It is a reasonable decision: the RDF graph is stored there, so that is
the best place to perform any optimization.

Our contribution is as follows: we present the first algorithm for constructing
SPARQL queries from examples, which is at the same time interactive and saves
computational power of the client, by moving most of the computations to the
SPARQL server.

The rest of the paper is organized as follows: in Section 2 we present a short
overview of the most important aspects of RDF and SPARQL. Section 3 discusses
related research. The description of the algorithm, along with the required defini-
tions, is presented in Section 4, and in Section 5 we introduce a web application
implementing the presented algorithm. Section 6 presents an experimental evaluation
of the algorithm in two setups:

1. using a set of real-world SPARQL queries as a gold standard;

2. using a benchmark for the task of binary classification in the structured machine
learning.

We conclude in Section 7.

2 PRELIMINARIES

2.1 Resource Description Framework

Resource Description Framework (RDF) is a framework designed to represent infor-
mation in the Web in a way accessible for machines [33]. The core concept of RDF
is an RDF triple, which consists of a subject, a predicate and an object. A customary
meaning assigned to a triple is such that the entity represented by the subject is in
relation denoted by the predicate with the entity represented by the object.

A set of triples constitutes an RDF graph, where subjects and objects jointly
form the set of nodes of the graph and each triple represents a directed edge from
the subject of the triple to the object, labeled with the predicate.

An RDF term is either an IRI (Internationalized Resource Identifier), that serves
as a global identifier for some entity in the universe of discourse; a blank node,
that is a local identifier for some entity in the universe of discourse; a literal, that
represents a concrete value such as a string of characters or a number. Usually, the
non-unique name assumption is made, stating that a single entity may be referenced
by multiple identifiers. The subject of a triple may be either an IRI or a blank node,
the predicate must be an IRI and the object may be an arbitrary RDF term.
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In formalizing RDF we follow [22] and we start by introducing three pairwise
disjoint sets: the set of all IRIs I, the set of all blank nodes B and the set of all
literals L. A subject of a triple is any element of the set I ∪ B, the predicate of
a triple is an element of the set I, while object is any element of the set I ∪B ∪ L.
An RDF graph G, being a set of triples, is thus a subset of a Cartesian product:
G ⊆ (I ∪B)× I× (I ∪B ∪ L).

Throughout this work, we use a subset of the Turtle syntax [7], where each triple
is written in the order subject, predicate, object and ends with a dot. We represent
IRIs using the prefix notation well-known from XML, i.e., prefix:localName, and
list the common prefixes used throughout this work in Table 1. A literal is represented
in quotation marks, with its datatype after ^^. For example, the triple dbr:Warsaw

dbo:populationTotal "1740119"^^xsd:integer. states that an entity denoted by
the IRI dbr:Warsaw (in full: http://dbpedia.org/resource/Warsaw) has a total
population of 1 740 119 citizens.

Prefix Corresponding IRI

dbr: http://dbpedia.org/resource/

dbo: http://dbpedia.org/ontology/

dbp: http://dbpedia.org/property/

dct: http://purl.org/dc/terms/

xsd: http://www.w3.org/2001/XMLSchema#

Table 1. The common IRI prefixes used in the paper and their corresponding IRIs

One of the most prominent applications of RDF is the Web of Data (also called
Linked Data)1, a large, distributed collection of RDF graphs concerning different
topics from life sciences, to media, to governmental data. In the center of the Web
of Data is DBpedia2, the result of a complex knowledge extraction process from
Wikipedia [1, 3, 20].

2.2 SPARQL Query Language

Every form of information representation requires a querying language and RDF is
not an exception here. SPARQL Query Language is by far the most popular query
language for RDF, built around graph pattern matching, yet having a lot in common
with SQL known from relational databases [14]. Below, we summarize the most
important aspects of SPARQL.

A SPARQL SELECT query is of form

SELECT head

WHERE { pattern }
[GROUP BY variables ]

1 http://lod-cloud.net/
2 http://dbpedia.org

http://dbpedia.org/resource/Warsaw
http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://purl.org/dc/terms/
http://www.w3.org/2001/XMLSchema#
http://lod-cloud.net/
http://dbpedia.org
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[HAVING criterion ]

[LIMIT limit ]

where the square brackets denote optional parts of the query. Every time the pattern
is matched against the queried RDF graph, it yields a mapping from variables of the
query to the RDF terms.

A variable in SPARQL is prefixed with a question mark, e.g. ?var. A blank
node [] denotes an anonymous, existentially quantified variable. A triple pattern is
an RDF triple with an arbitrary number of components replaced by variables, e.g.
dbr:Warsaw dbo:populationTotal ?population.. A Basic Graph Pattern (BGP)
is a set of triple patterns that are matched jointly against the queried graph.

Denote by V the set of all variables. Let G be an RDF graph, P a BGP and
denote by vars(P ) the set of all variables in P . We consider a mapping, i.e., partial
function µ : V 7→ I∪B∪L. We say that µ is a solution to P if the domain of µ is the
set vars(P ) and there exists a function σ : B 7→ I ∪B ∪ L such that µ(σ(P )) ⊆ G.
We abuse the notation and by applying µ and σ to P we understand applying it
element-wise to each part of each triple pattern in P .

A BGP may be optionally extended with a filter expression FILTER(condition ),
to the effect that if µ(condition) evaluates to false, then µ is rejected. An alternative
of two BGPs may be realized using the UNION keyword: bgp1 UNION bgp2, and
we say that µ is a solution for it if it is a solution to either one of the BGPs.
Finally, the clause VALUES ?var {allowed assignments } limits the set of allowed
assignments for the variable ?var in the solutions to the RDF terms listed in the
curly braces.

The multi-set of solutions µ can be represented as a table, which can be then
processed according to the standard SQL semantics of GROUP BY, HAVING
and LIMIT. We thus abstain from formally defining their semantics and refer the
interested reader to [14].

SPARQL is frequently employed with the SPARQL Protocol, which defines
means to use HTTP (Hypertext Transfer Protocol) to query an RDF graph [32].
A server capable of answering SPARQL queries posed using SPARQL Protocol is
called a SPARQL endpoint and is identified by its URL.

3 RELATED WORK

For the past few years, researchers proposed many approaches for querying an RDF
graph alternative to writing a formal query by hand. Roughly, they can be divided
into a few categories: faceted browsing, natural language interfaces, visual interfaces
and recommendations. In faceted browsing a user is presented with an interface
dynamically generated from an RDF graph to filter the graph according to his/her
needs, e.g. see [23]. Also variants tailored to a specific types of data were proposed,
e.g. [21] describes an interface for geospatial data. A recent system Sparklis combines
faceted browsing with natural language generation to enable a non-expert user to
query an RDF graph [11].
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Natural language interfaces are concerned with answering a query specified
in a natural language, e.g. by translating it to SPARQL and then posing it to an
endpoint. These systems are frequently tailored to some specific task and/or a specific
RDF graph. For example, Xser [34] is a system for answering factual questions and
CubeQA [15] is designed to answer statistical queries requiring aggregate functions.
A recent survey [16] gives a comprehensive overview of such systems.

The visual interfaces offer a possibility of constructing a query by visual means,
e.g. by navigating over a displayed part of a graph [9] or by constructing a SPARQL
query from building blocks [4].

A system using recommendations still requires from a user knowledge of SPARQL,
but it helps to deal with an unknown vocabulary. [13] recommends predicate names
based on an inferred type of a variable in a triple pattern. [6] describes a method
for recommending query terms based on a graph summary, while [5] pushes it even
further by performing the recommendations on-line, by posing appropriate queries
to a SPARQL endpoint.

A similar idea to ours was already proposed in [19]. The main difference are the
assumptions: [19] performs all the computation on the client-side, obtaining informa-
tion about resources using an approach similar to Concise Bounded Description [27]
and then computing their intersections. Our approach leverages new features of
SPARQL 1.1, namely grouping, aggregates and providing inline values, and thus
moves most of the learning complexity directly to a SPARQL endpoint.

Methods for learning queries from a set of examples were also discussed in other
contexts. [17] uses a pattern mining approach to learn a set of SPARQL queries,
which then are used as binary patterns for a normal classification algorithm. In [24]
the authors propose a method for unsupervised mining of data mining features,
which directly correspond to SPARQL queries. [18] and [10] are methods for learning
Description Logics class expressions from a set of positive and negative examples.
The expressions can then be used as queries to an ontological knowledge base to
retrieve individuals fulfilling the class expression, e.g. using the DL Query tab of
Protégé [12].

4 LEARNING SPARQL QUERIES

4.1 Basic Concepts

Throughout this section, we use the following example: the user wants to formulate
a SPARQL query which allows him/her to query DBpedia for the capitals of states of
the European Union. He/she knows some of them: Warsaw, Berlin, Zagreb, Nicosia
and Vilnius. He/she can also recognize whether an arbitrary DBpedia IRI refers to
one of the capitals by reading a Wikipedia article corresponding to the IRI. Of course,
reading consumes his/her time, so he/she wants to limit the number of articles read.
He/she also knows that Oslo, a capital of Norway, which is not a European Union
member, should not be presented in the results.
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Generally speaking, LSQ works by formulating a hypothesis and verifying it with
the user.

Definition 1 (hypothesis). A hypothesis, denoted H(?iri), consists of SPARQL
triple patterns and filters. Every triple pattern in the hypothesis has a fixed predicate
(i.e., the predicate is an IRI), the subject and object may be an IRI, a literal or
a variable. Every filter contains only an expression of form variable >= fixed literal
or variable <= fixed literal. The hypothesis may contain an unlimited number of
variables, but there is a single, distinguished variable ?iri, which must be present in
at least one triple pattern. We require the undirected graph corresponding to the
basic graph pattern defined by a hypothesis to be a connected graph.

An empty hypothesis is a hypothesis which contains no triple patterns or filters.

For example, the algorithm may generate the following hypothesis H(?iri):

dbr:European_Union dbo:wikiPageWikiLink ?iri .

?iri dct:subject dbr:Category:Capitals_in_Europe .

dbr:Member_state_of_the_European_Union dbo:wikiPageWikiLink ?iri.

It may be that the user already has some SPARQL query and wants to extend
it by providing examples. We allow the user to provide a BGP U(?iri), such that
it shares the distinguished variable ?iri with the hypothesis, but all the remaining
variables are separate. Some of the variables from U(?iri) may be also present in
the head of the final query obtained from the algorithm. We observe that if the user
does not know SPARQL or does not have any query to extend, it is sufficient to
assume that U(?iri) = ∅.

Definition 2 (query corresponding to a hypothesis). A query corresponding to
a hypothesis H(?iri) is a SPARQL SELECT query containing the variable ?iri
in the head, optionally with other variables coming from U(?iri). The WHERE
clause contains the hypothesis H(?iri) and the user-provided BGP U(?iri).

To formulate a hypothesis, LSQ uses a set of positive examples P and a set of
negative examples N. Both sets contain IRIs from the RDF graph. P is a subset of
IRIs expected in the results of the query corresponding to the final hypothesis. N is
a set of IRIs which are forbidden to appear in these results. They do not need to be
fully specified before the algorithm is run, instead it is enough that the user provides
a few IRIs in both sets, and then they are extended during the execution of the
algorithm. By n pos we denote for the number of IRIs in the set P. In our running
example, P initially consists of dbr:Warsaw, dbr:Berlin, dbr:Zagreb, dbr:Nicosia
and dbr:Vilnius, and thus n pos = 5. N contains only dbr:Oslo.

The algorithm uses well-known information retrieval measures. Denote by TP
the number of IRIs from the set P which were retrieved by the query corresponding to
a hypothesis, and by FP the number of IRIs from the set N which were retrieved by
the query corresponding to the hypothesis. Following [2], we define three measures.
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Definition 3 (precision). Precision is the fraction of the number of the positive
IRIs retrieved by the query corresponding to the hypothesis over the number of both
positive and negative IRIs retrieved by the query corresponding to the hypothesis

p =
TP

TP + FP
.

Definition 4 (recall). Recall is the fraction of the number of the positive IRIs
retrieved by the query corresponding to the hypothesis over the number of known
positive IRIs n pos

r =
TP

n pos
.

Definition 5 (F1 measure). F1 measure is the harmonic mean of precision and
recall

F1 =
2

1
p

+ 1
r

.

4.2 Overview of the Algorithm

The flowchart of LSQ is presented in Figure 1 and its pseudocode in Algorithm 1. In
the beginning, the user is asked to provide a few positive and a few negative examples.
The hypothesis considered by the algorithm is set to an empty hypothesis. The
hypothesis is then refined, as described in Section 4.5. Then, the algorithm generates
a few examples that follow the hypothesis and a few examples that contradict the
hypothesis, and the user is asked to assign them to one of the two sets. If any of
the examples following the hypothesis is assigned to the set N, it means that the
hypothesis is invalid and the last refinement is retracted. If the hypothesis is good
enough w.r.t. the known examples (c.f. Section 4.3), it is presented to the user along
with the full result of posing its corresponding query to the SPARQL endpoint. The
user then must either accept the hypothesis or add at least one new positive or
negative example, e.g. by selecting an IRI from the result which should not be there,
or by adding an IRI which is missing. If the hypothesis is not good enough or the
user adds a new example, the algorithm goes back to generating a new refinement.

4.3 Measuring Quality of a Hypothesis

To compute with a SPARQL endpoint how good a hypothesis is, the query presented
in Listing 1 is used. Such a query computes the measures described above. The
variable ?s (resp. ?t) is mapped to all IRIs from the set P (resp. N) that follow
the hypothesis, thus ?tp corresponds to TP , ?fp to FP and so on. If the value of
F1 measure is high enough, the hypothesis is good enough w.r.t. to the examples
available to the algorithm, and it is presented to the user as the final answer.
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Start

Add new examples

Refine the hypothesis

Generate new examples
and counterexamples

Label the examples
Retract the

last refinement

Evaluate the hypothesis

Verify the hypothesis

Stop

Good enough

ContradictoryOtherwise

Unsatisfied

Satisfied

Figure 1. The flowchart of LSQ. A trapezoid denotes an input from the user, a rectangle
denotes computations, a single-edged rhombus denotes a decision made by the algorithm
and a double-edged rhombus denotes a decision made by the user.

4.4 Generating New Examples and Querying the User

If the hypothesis is not good enough, the algorithm should gather more evidence,
to either confirm it or to reject it. To do so, the algorithm must generate a small
set of examples that follow the hypothesis and another small set of examples that
contradicts the hypothesis. To generate examples following the hypothesis, the
query presented in Listing 2 is used. H(?iri) in the query ensures that an ex-
ample follows the hypothesis, and FILTER ensures that it is a new example, i.e.
one that is not present in either of the sets P and N. LIMIT 3 is to ensure that we
query the user only about a small number of new examples. Recall the example
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h← empty hypothesis;
fn← 0;
while h is not good enough do

if fn > 0 then h.pop back();
ready to query ← false;
while not ready to query do

while |h| > 0 do
p, n← generate new examples;
if |p| > 0 and |n| > 0 then break;
else h.pop back();

end
cand← ∅;
foreach var ∈ variables(h) do

cand← cand ∪ refinements for variable var (cf. Section 4.5);
end
sort cand according to the value of precision;
foreach c ∈ cand do

h.push back(c);
p, n← generate new examples;
if h is good enough or (|p| > 0 and |n| > 0) then

ready to query ← true;
break;

end
h.pop back();

end

end
ask the user to label examples in p and n;
fn← number of examples from p that user labeled as negative;

end

Algorithm 1: The pseudo-code of the LSQ algorithm. Deciding whether the
hypothesis is good enough is described in details in Section 4.3 and generating
new examples in Section 4.4. Function pop back removes the last element of the
array, while push back extends the array with its argument.

and let H(?iri) be dbr:European Union dbo:wikiPageWikiLink ?iri. Possi-
ble new examples are dbr:Above mean sea level, dbr:Afroasiatic languages,
dbr:Andorra, neither of them following the criteria we aim for since the hypothesis
is too broad.

Generating negative examples is more difficult. Let Hp(?iri) be a hypothesis
the hypothesis H(?iri) directly originated from, i.e. Hp(?iri) is the hypothesis
H(?iri) without the last refinement. Consider the SPARQL query presented in
Listing 3. The only common variable between Hp(?iri) and H(?iri) is ?iri, the
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SELECT (COUNT(DISTINCT ?s) as ?tp)

(COUNT(DISTINCT ?t) AS ?fp)

(?tp/(?tp+?fp) AS ?precision)

(?tp/n_pos AS ?recall)

(2/((1/?precision)+(1/?recall)) AS ?f1)

WHERE {{

U(?s)

H(?s)

VALUES ?s { P }

} UNION {

U(?t)

H(?t)

VALUES ?t { T }

}}

Listing 1. A query used to compute how good the hypothesis H(?s)

SELECT DISTINCT ?iri

WHERE {

U(?iri)

H(?iri)

FILTER(?iri NOT IN (P N))

} LIMIT 3

Listing 2. A query used to generate new examples following the hypothesis H(?iri)

rest is uniquely renamed. The renaming is such that no variable except ?iri is
shared with the user-provided BGP U(?iri). This query provides a set of examples
that follow the hypothesis except for the last refinement. FILTER and LIMIT are
used for the same purpose as before. The process of generating new examples follows
the idea of active learning, where a learning algorithm selects unknown examples to

SELECT DISTINCT ?iri

WHERE {

U(?iri) {

{ Hp(?iri) }

MINUS

{ H(?iri) }

} FILTER(?iri NOT IN (P N))

} LIMIT 3

Listing 3. A query used to generate new negative examples following the hypothesis
H(?iri), where Hp(?iri) is the previous hypothesis
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SELECT ?p ?o (COUNT(DISTINCT ?s) AS ?tp)

(COUNT(DISTINCT ?t) AS ?fp)

(?tp/(?tp+?fp) AS ?precision)

(?tp/n_pos AS ?recall)

(2/((1/?precision)+(1/?recall)) AS ?f1)

WHERE {{

U(?s)

H(?s)

?s ?p ?o .

VALUES ?s { P }

} UNION {

U(?t)

H(?t)

?t ?p ?o .

VALUES ?t { N }

}}

GROUP BY ?p ?o

HAVING (?recall>=.99)

Listing 4. A query used to compute the set of possible refinements of the hypothesis
H(?iri), that have a fixed predicate and object

maximize benefit from getting the correct labels for them, i.e., to remove as much
uncertainty as possible [8].

After the examples are generated, they are presented to the user. He/she must
then assign each of them either to the set P or N. After the assignment is done, the
algorithm continues, as described in Section 4.2.

4.5 Hypothesis Refinement

If the hypothesis is not good enough, the algorithm must refine it. First, the algorithm
checks whether it is possible to generate new examples using the current hypothesis.
If it is not, the most recent refinement of the hypothesis is retracted and the condition
is checked again. The process continues until it becomes possible to generate new
examples. In the worst case, it means emptying the hypothesis.

To refine the hypothesis, the algorithm must generate a set of possible refine-
ments and select the best of them. First, consider a refinement consisting of a single
triple pattern with a fixed predicate and object, and a subject being a variable
already present in the hypothesis. For example, such a refinement could be ?iri

dct:subject dbr:Category:Capitals in Europe. To generate a set of such refine-
ments the query presented in Listing 4 is used. Observe that the results are grouped
by the pair ?p ?o, so effectively what this query does is to compute the measures
for a lot of hypotheses at once, each consisting of the original hypothesis H and
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a refinement with the subject being a variable already present in the hypothesis (?s
and ?t) and fixed values for the predicate and the object. We require for the recall
to reach at least 0.99, to ensure that all known positive examples are covered by
a new hypothesis.

Recall the example, and let H(?iri) be

dbr:European Union dbo:wikiPageWikiLink ?iri.

Consider the refinement

?iri dct:subject dbr:Category:Capitals in Europe.

Its recall is r = 1, as it matches all five elements of the set P, and its precision is
p = 1 as it does not match the negative example, i.e., Oslo. On the other hand,
the refinement ?iri dbo:utcOffset "+2" will not be considered, as its recall is 0.8
(dbr:Berlin does not occur in such a triple).

To compute refinements with a fixed subject, but a variable object, the algorithm
uses the same query, but replaces ?s ?p ?o (resp. ?t ?p ?o) with ?o ?p ?s (resp.
?o ?p ?t). Finally, to compute refinements with a fixed predicate, a new variable
as the object (resp. subject) and an existing variable as the subject (resp. object),
the query with ?o replaced with a blank node [] in the triple patterns and without
?o in the head and in the GROUP BY clause is used.

A more elaborate query, presented in Listing 5, is required to provide refinements
with FILTER. The query operates in two steps. First, the subquery extracts all the
pairs consisting of a predicate ?p and a literal ?l for the set P. Then, for every pair
?p ?l it computes the measures for a hypothesis consisting of the original hypothesis
H(?s), a triple pattern ?s ?p ?xl (?xl is a new variable), and a filter comparing
the new variable ?xl to a literal ?l from the subquery. Again, we require the recall
to be at least 0.99 to ensure appropriate coverage of positive examples. A sample
refinement obtained this way is

?iri dbo:populationTotal ?var.

FILTER(?var >= "205934"^^ xsd:nonNegativeInteger).

When the set of the possible refinements is collected from the endpoint, the
algorithm must choose the right one. The set of refinements is sorted according to
the descending values of the F1 measure and (in case of ties on F1) the precision. For
every refinement, the algorithm checks if the current hypothesis with the refinement
added is good enough. If it is, the hypothesis is displayed to the user, as described
in Section 4.2. Otherwise, the algorithm tries to generate new positive and negative
examples (c.f. Section 4.4). If it is not possible, the refinement is retracted from
the hypothesis and the refinement next in order is checked. If the examples were
generated, the algorithm proceeds as described earlier. If the algorithm fails to find
any suitable refinement, it terminates with a failure.
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SELECT ?p ?l (COUNT(DISTINCT ?s) AS ?tp)

(COUNT(DISTINCT ?t) as ?fp)

(?tp/(?tp+?fp) AS ?precision)

(?tp/n_pos AS ?recall)

(2/((1/?precision)+(1/?recall)) AS ?f1)

WHERE {{

U(?s)

H(?s)

?s ?p ?xl.

FILTER(isLiteral(?xl))

VALUES ?s { P }

} UNION {

U(?t)

H(?t)

?t ?p ?xl.

FILTER(isLiteral(?xl))

VALUES ?t { N }

} FILTER(?xl <= ?l) {

SELECT DISTINCT ?p ?l

WHERE {

U(?s)

H(?s)

?s ?p ?l.

FILTER(isLiteral(?l))

VALUES ?s { P }

}}}

GROUP BY ?p ?l

HAVING (?recall >= .99)

Listing 5. A query used to compute the set of possible refinements of the hypothesis
H(?iri), that use a FILTER clause

5 IMPLEMENTATION

To make it easier to reuse the algorithm, we provide a Python implementation of the
algorithm available at: https://semantic.cs.put.poznan.pl/ltq/src.tgz. We
also developed an on-line interface to the implementation which we coupled with
Blazegraph 2.1.1 3 loaded with DBpedia 2015-04 and made publicly accessible at
https://semantic.cs.put.poznan.pl/ltq/. In the implementation, we assume
a hypothesis to be good enough if the F1 measure is at least 0.99. Screenshots of the
interface are presented in Figures 2 and 3 and the detailed description is presented
in [25].

3 https://www.blazegraph.com/

https://semantic.cs.put.poznan.pl/ltq/src.tgz
https://semantic.cs.put.poznan.pl/ltq/
https://www.blazegraph.com/
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1

2

3 4

56

Figure 2. A screenshot of the on-line interface to the implementation of the algorithm.
It presents 1) the query corresponding to a current hypothesis, 2) a set of new examples
the user is supposed to assign to one of the two sets and already known 3) positive, and
4) negative examples. It is also possible to 5) add a new example by entering its IRI or
6) load one of the demo scenarios.

2

1

3

4

Figure 3. After a good enough hypothesis is reached, the interface displays 1) the query
corresponding to the hypothesis and 2) results of posing it to the SPARQL endpoint. The
user can then use 3) the X buttons to remove some of the unwanted results and further
4) refine the query.
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6 EXPERIMENTAL EVALUATION

6.1 Using Query Logs to Simulate the Users

To validate the algorithm, we posed the following research question: is the algorithm
able to cover the requirements of the real users of DBpedia? To answer the question,
we collected a set of SPARQL queries from the logs of the official DBpedia SPARQL
endpoint and used the queries as a gold standard. The queries and the raw results
of the experiment are available with the source code. Below, we describe the details
of the experiment.

6.1.1 Setup

The Linked SPARQL Queries dataset contains queries obtained from query logs
of SPARQL endpoints for various popular Web of Data datasets [26]. Among
others, it contains queries from the official DBpedia SPARQL endpoint, for the
period from 30. 04. 2010 to 20. 07. 2010. From this set, we selected queries that are
SELECT queries and contain only a single variable in the head or use star in the
head, but contain only a single variable. This way we obtained 415 342 queries
(415 145 character-wise distinct queries). We then randomly selected 50 queries,
which did not fail when posed to a DBpedia SPARQL endpoint and resulted in at
least 20 different IRIs. The endpoint run on Blazegraph 2.1.1 and contained DBpedia
2015-04. For the selected 50 queries, the smallest number of different IRIs retrieved
was 20, and the largest 2 060 507.

We used each of the selected queries to simulate a user. Each query was posed
to the SPARQL endpoint and its results (any duplicates removed) were used as
a gold standard, i.e. the set of all the IRIs the simulated user is interested in. Out of
the gold standard, we randomly selected 5 IRIs, which were given to the algorithm
as the initial positive examples. To provide the negative examples we randomly
selected the following six IRIs: dbr:Bydgoszcz, dbr:Murmur %28record label%29,

dbr:Julius Caesar, dbo:abstract, dbp:after, dbo:Agent. If any of these neg-
ative examples was in the gold standard, it was removed from the set of negative
examples. We used an empty user-provided BGP.

We then run the algorithm until it converged to a hypothesis that resulted in
exactly the same set of IRIs as the gold standard, or for 10 good enough hypotheses
generated by the algorithm, whichever came first. If a good enough hypothesis
was not perfect, we randomly added up to 5 new positive examples (i.e., new IRIs
which were present in the gold standard, but were not present in the results of the
hypothesis) and up to 5 new negative examples (i.e., new IRIs that were present in
the results of the hypothesis, but were not present in the gold standard). We also
counted the number of interactions of the simulated user with the algorithm and
measured the wall time.
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6.1.2 Results

For 41 of the selected queries the first good enough hypothesis presented to the
simulated user was perfect, for 8 the second, and for 1 only the third hypothesis
was perfect. The WHERE clause of the gold standard query corresponding to this
last case was ?value dbp:subdivisionType dbr:List of counties in Montana.

The first hypothesis was too broad, consisting of a single triple pattern

?iri dbp:areaCode "406"^^xsd:integer.

Apparently, this is a correct telephone area code for the state of Montana [31], but
so it is for Gümüşhane Province in Turkey [30]. The second try was, on the other
hand, too narrow:

?iri dbp:subdivisionType

dbr:Political_divisions_of_the_United_States .

?iri dbp:subdivisionType

dbr:List_of_counties_in_Montana .

It omitted four resources from the gold standard: dbr:Browning, Montana,
dbr:Missoula, Montana, dbr:Great Falls, Montana, dbr:Helena, Montana. Af-
ter they were added as positive examples, the algorithm converged to the correct
hypothesis.

For 38 of the queries, the simulated user was asked only once to label a set of
six examples, in case of 4 queries the user was asked twice, for 3 queries thrice, for
2 queries four times, for another 2 queries five times and once six times. The user
waited on average for 56± 22 seconds (median: 41 seconds) during the whole process
for the algorithm to generate new examples or present a good enough hypothesis.
In the case of queries that achieved the gold standard with the first good enough
hypothesis, the average time was 50± 2 seconds. For 82 % of the queries the user
obtained a perfect hypothesis in less than a minute and was asked to label at most
12 examples. That means the algorithm is really able to cover requirements of the
users, it does not waste their time in waiting and we can answer positively to the
research question.

6.2 Using the Algorithm to Solve Classification Problems

To prove that LSQ is not a DBpedia-specific algorithm, we used SML-Bench, a bench-
marking framework for structured machine learning [29]. SML-Bench provides
9 datasets of varying complexity and size, and integrates a sizable number of learn-
ing systems. The authors of SML-Bench performed an extensive evaluation with
8 datasets and 15 configurations of the learning systems. We performed a similar
experiment with LSQ and report the details below, comparing to the results reported
by the authors of SML-Bench.
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6.2.1 Setup

In order to perform the experiment, we had to prepare a wrapper adapting a learning
problem to our interactive approach. SML-Bench provides the wrapper with a set
of positive and negative learning examples, and an OWL file with the background
knowledge. The wrapper then runs an instance of Blazegraph, loads the provided
OWL file and initializes LSQ by randomly selecting 10 of the positive and 10 of
the negative learning examples and providing them as the initial examples to LSQ.
Next, LSQ is executed until it does not converge to a good enough hypothesis or
until the prescribed amount of time is exceeded, whichever comes first. Every time
LSQ generates a set of examples to be labeled by the user, the current hypothesis
is stored and the examples are labeled as follows: if an example is present in the
set of positive learning examples, it is labeled as positive, otherwise it is labeled as
negative. If the maximal execution time is to be exceeded, all the stored hypotheses
are reevaluated on the set of learning examples gathered so far by the algorithm and
the one with the highest score is selected as the final result. We assume that the
user-provided BGP is empty.

We used the SML-Bench framework to perform the experiment using the same
parameters as Westphal et al. [29]: 8 datasets; 5 minutes for a single execution of the
algorithm, including loading the data and the final reevaluating of the hypotheses
(enforced by the framework); 10-fold cross-validation. To execute the experiment we
used a workstation with Intel Core i7-3770 CPU with 4 cores (8 threads) clocked
at 3.40 GHz and equipped with 16 GB of RAM. It must be noted that this is
a considerably weaker configuration than the one used by Westphal et al. and thus
the limit of 5 minutes was, in fact, more strict.

6.2.2 Results

Following Westphal et al. we report the accuracy and the F1 score in, respectively,
Table 2 and Table 3. The measures were averaged over all the folds of the cross-
validation. For comparison, we report the four best systems from the experiment
by Westphal et al.: Aleph4 and DLLearner [18] in three configurations. It must be
noted that there was no clear winner in the experiment: different systems were the
best on different learning problems.

In one case (the learning problem nctrer/1) LSQ achieved results far better than
the remaining systems. In all the folds of the cross-validation LSQ generated exactly
the same hypothesis consisting of a single triple pattern:

?s <http://dl-learner.org/ont/ActivityOutcome NCTRER>

"active"^^xsd:string .

Our suspicion is that the true label is encoded in the background knowledge, and
thus the obtained result is not credible.

4 http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph.html
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For the remaining 8 datasets, we used Welch’s unequal variances t-test [28] to
compare the average accuracy values between the values achieved by LSQ and the
highest average accuracy of the remaining systems. The null hypothesis was that
both averages are equal. In two cases (pyrimidine/1 and carcinog./1) it was not
possible to reject the null hypothesis (p-values, respectively, 0.234 and 0.263), in the
five remaining cases the null hypothesis was rejected (p-value below 0.01).

Comparing LSQ with the best algorithm is unfavourable for LSQ, because its
hypothesis space is limited to a single SPARQL BGP, and is considerably smaller
those of Aleph, DLLearner (CELOE) and DLLearner (OCEL). We thus performed
additional analysis comparing LSQ with DLLearner (ELTL). ELTL stands for the
EL Tree Learner algorithm, that has the target language restricted to OWL EL,
similar in its expressivity to the expressivity of SPARQL BGPs.

In the case of four learning problems (carcinog./1, hepatitis/1, lymphogr./1,
mutag./42), it was not possible to reject the null hypothesis (p-values, respectively,
0.263, 1.0, 0.071, 0.753). Comparison for the learning problem pyrimidine/1 was
not possible due to the missing results for ELTL, and for the learning problems
mammogr./1 and prem.leag./1 we rejected the null hypotheses (p-values below 10−4).
In both cases we observe that the average accuracy of LSQ is higher than this of
ELTL.

From the performed comparison we conclude that the performance of LSQ is at
least as good as the performance of ELTL. Moreover, we observe that in some cases
LSQ is on a par with the best of the remaining algorithms.

Learning LSQ Aleph DLLearner DLLearner DLLearner
Problem (CELOE) (OCEL) (ELTL)

carcinog./1 0.53± 0.05 0.48± 0.10 0.55± 0.02 no results 0.55± 0.02
hepatitis/1 0.43± 0.03 0.67± 0.05 0.47± 0.05 0.66± 0.14 0.41± 0.01
lymphogr./1 0.54± 0.03 0.83± 0.10 0.83± 0.11 0.73± 0.12 0.54± 0.03
mammogr./1 0.52± 0.03 0.65± 0.04 0.49± 0.02 0.82± 0.05 0.46± 0.01
mutag./42 0.31± 0.07 0.72± 0.25 0.94± 0.13 0.53± 0.29 0.30± 0.07
nctrer/1 1.00± 0.00 0.72± 0.14 0.59± 0.02 0.81± 0.09 0.58± 0.02
prem.leag./1 0.89± 0.09 0.95± 0.09 0.99± 0.04 0.85± 0.10 0.49± 0.02
pyrimidine/1 0.85± 0.20 0.95± 0.16 0.83± 0.17 0.85± 0.24 no results

Table 2. The average accuracy and its standard deviation over the 10-folds cross-validation
for LSQ, and for the other systems, their values reported from [29]

7 CONCLUSIONS

We presented an algorithm for learning SPARQL queries using examples provided
by the user. The algorithm uses active learning to minimize the required number of
learning examples. It is also suitable for any RDF graph accessible through a SPARQL
endpoint and does not require any preprocessing or initialization phase. By using
aggregates, grouping and inline values from SPARQL 1.1, the algorithm is able to
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Learning Learning Aleph DLLearner DLLearner DLLearner
problem SPARQL (CELOE) (OCEL) (ELTL)

Queries

carcinog./1 0.69± 0.04 0.46± 0.12 0.71± 0.01 no results 0.71± 0.01
hepatitis/1 0.59± 0.01 0.38± 0.12 0.60± 0.02 0.64± 0.07 0.58± 0.01
lymphogr./1 0.70± 0.03 0.84± 0.09 0.87± 0.07 0.76± 0.10 0.70± 0.03
mammogr./1 0.64± 0.02 0.48± 0.08 0.64± 0.01 0.78± 0.08 0.63± 0.00
mutag./42 0.47± 0.08 0.43± 0.47 0.93± 0.14 0.29± 0.42 0.46± 0.08
nctrer/1 1.00± 0.00 0.71± 0.18 0.73± 0.02 0.85± 0.06 0.73± 0.02
prem.leag./1 0.86± 0.12 0.94± 0.11 0.99± 0.04 0.97± 0.06 0.66± 0.02
pyrimidine/1 0.81± 0.30 0.90± 0.32 0.84± 0.15 0.80± 0.13 no results

Table 3. The average F1 score and its standard deviation over the 10-folds cross-validation
for LSQ, and the other algorithms, their values reported from [29]

move most of the complex computations to the SPARQL endpoint. Contemporary
RDF stores (e.g. Blazegraph) are very sophisticated and are able to deal with such
queries without any problem. To prove that the algorithm works, we provide an on-
line interface for testing, available at https://semantic.cs.put.poznan.pl/ltq/.
To prove the usability of the algorithm, we performed two experiments: one using real
queries from the Linked SPARQL Queries and DBpedia; the other using 8 datasets
from the structured machine learning benchmark SML-Bench. In the first case,
we showed that the algorithm is able to converge to the gold standard with only
a minimal amount of interaction with the user. In the second case, the algorithms
performance was similar to those algorithms with similarly restricted hypothesis
space.

In the future, we would like to analyze whether using a different measure may
provide even faster convergence to a correct hypothesis. We would also like to extend
the algorithm with a possibility of obtaining some prior knowledge from the user.
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Abstract. In the Privilege-based Visual Secret Sharing Model (PVSSM), each share
has a unique privilege and a higher-privilege share contributes with more privilege
to reveal the secret image. However, in PVSSM, when several shares with the
higher priority are stacked, the secret image can be visibly displayed. This security
problem is solved by applying a two-dimensional Logistic-Adjusted Sine Map (2D-
LASM) to each share. This method is called Chaotic Encryption-based PVSSM. In
this paper, we aim to present how Chaotic Encryption-based PVSSM is applied to
color images. In order to assess the efficiency of this method, histogram analysis,
data loss attack, salt-pepper noise attack, differential attack, chi-square analysis
and correlation analysis tests were applied. The performance of this method has
been evaluated according to NCPR, UACI, PSNR, SSIM and CQM. The proposed
method achieved a good test values and showed better results compared to similar
studies in literature.
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1 INTRODUCTION

With the development of technology and the Internet network, digital images pub-
lished and transmitted over the network have become extremely important. The
transfer and storage of secret and private images such as military, intelligence, and
medical images must be fast and secured. Thus, researchers have started to focus
their attention on image security [1]. Traditional encryption algorithm such as Data
Encryption Standard (DES) and Advanced Encryption Standard (AES) can be used
to encrypt images.

However, image data is much greater than text data, so the traditional encryp-
tion algorithms require a lot of time to encrypt the image. In addition, the decrypted
text must be equal to the original text, but decrypted image should not necessar-
ily be equal to the original image [2]. Watermarking and steganography have been
proposed instead of DES and AES for image encryption but these methods are suit-
able for single communication channel [3]. Therefore, Visual Secret Sharing Scheme
(VSSS) methods could be one of the possible solutions.

Visual cryptography (VC), one of the VSSS methods, was first developed in
1994 by Naor and Shamir [4]. The approach of this system based fragmenting the
key and distributing them to the different users. In key-based approach, if the
key is lost or stolen, all secret information is inaccessible or revealed. In order to
prevent crime, VC methods are used, especially cybercrime [5]. With this method,
if any key is lost or stolen, other key pieces can be put together and generate the
secret key. Also any user cannot get the secret information from any single key
pieces.

In VC method, the secret image is divided into n images. These are called
shares that do not contain any information about the secret image. If any r shares
are stacked, the secret image is restored. The result of stacking shares in the VC
is equivalent to that of the logical OR (∨) operation. VC has the advantages that
it eliminates complex algorithm to improve applicability and efficiency [6], and de-
cryption can be done using the human visual system. However, if less than r shares
are stacked, the content of the secret image remains hidden [7].

An increase in the number of shares causes more difficulties to reveal the secret
image. However, if the number of the shares is too high, restoring the secret image
will become difficult as well. To resolve this dilemma, Fang and Lin [8] presented
a progressive VC (PVC) for binary image. While traditional VC needs all the
necessary shares for the secret image to reveal, in PVC the secret image is gradually
revealed as each share is added. Jin et al. [9] proposed PVC for color image. Fang’s
method [10] is about how to manage the shares more easily in PVC. On the other
hand, with these methods, the shares have increased four times of the size of the
original image and there is no order of privilege among the shares [8, 9, 10, 11].

In the process of revealing the secret image, it may be expected to be a privi-
leged order among the shares in hierarchical systems such as military institutions,
public institutions, and corporations. Therefore, the share with higher priority is
distributed to people based on their positions or status. However, in most of the
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studies, this situation has not been considered. In order to overcome this prob-
lem, it is necessary to use a privilege-based sharing scheme. The privilege means
the capability to reveal the secret image. A group-based weighted VC is proposed
in [12]. The shares are divided into different groups and given a different weight
number within the group. Lin et al. [13] performed a study to determine the size
of the shares according to their weights. However, when the size of any share is
small, the weight of that share is small, too. Therefore, it reveals which share is
small. Li et al. [14] suggested that each of the shares on the PVC scheme has a cer-
tain privilege. In their study, the shares are divided into four groups as essential,
non-essential, limitedly essential and limitedly non-essential, but there is no order
of importance for each group. Hou et al. [15] proposed that the importance of the
shares is arranged from the lowest to the highest order. This is called the Privilege-
based Visual Secret Sharing Model (PVSSM), and it has several advantages that
each share size is the same as the secret image, the restored image has a better
contrast than the traditional VC scheme and each share has a unique privilege level
according to their order.

In PVSSM, when several shares with the higher priority are stacked, the se-
cret image can be revealed. To solve this problem, it would be appropriate to
encrypt each share. Because of the high correlation among adjacent pixels and bulk
data capacity, traditional encryption algorithms such as DES, AES, RSA, are not
suitable for image encryption [16]. To prevent image information leakage, chaotic
systems are suitable for image encryption. Chaotic systems are used in many ar-
eas [17]. Chaotic maps are the core of a chaos-based image encryption [18]. More-
over, permutation-diffusion mechanism can be used in chaos-based image encryp-
tion [17, 19]. Chaotic maps have an excellent character such as ergodicity, flexibility,
speed, unpredictability, and high sensitivity to initial state of the system and control
parameter [17, 20]. As a result, chaotic-based encryption has become popular for
image encryption [19].

There are many studies on chaos-based image encryption methods in protecting
and transferring digital images. The level of security in chaos-based encryption de-
pends on the performance of the chaotic maps [17]. Chaotic maps can be classified
into two groups; one-dimensional and high-dimensional. The initial states and orbits
of one-dimensional chaotic maps such as Logistic, Gaussian, Sinus and Tent maps,
can be estimated easily [20, 21]. Arroyo et al. [20] demonstrated that the estimation
of control parameters and timing attacks applied to one-dimensional chaotic maps
and some weaknesses about linearity were found. Tang and Guan [22] show that
control parameters were estimated in time-lagged Logistic and Mackey-Glass map
by using genetic algorithm. These weaknesses have caused many security vulnerabil-
ities in one-dimensional chaotic map [15, 19, 20]. In high-dimensional chaotic maps,
because the system and control parameters are more complex, it is more unpre-
dictable [19, 20, 21, 22, 23]. Therefore, it would be more appropriate to encrypt the
shares with a high-dimensional chaotic map. However, because of the large num-
ber of parameters in the high-dimensional chaotic map, the system requirements
are more expensive and the computational complexity is high [16, 17]. At the same
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time, using more than one chaotic map can increase the calculation time [24]. There-
fore, it is important that the high-dimensional chaotic map shows low calculation
time and high degree of chaos feature [21]. A two-dimensional Logistic-adjusted
Sine Map (2D-LASM) [17] is a high-dimensional chaotic map that provides these
features.

In this paper, we aim to present the Chaotic Encryption-based PVSSM for
color images. The secret color image is first separated into RGB channels. Then,
RGB channels are transformed into binary images. PVSSM and 2D-LASM based
image encryption are applied respectively to each channel. Even if the shares are
captured and stacked, the secret image would not be seen. In decryption process,
the shares of each channel are decrypted with 2D-LASM and stacked. Recreated
RGB channels are merged. To obtain the original color image from the combined
RGB channels, the pixel values of 1 are changed to 255. Finally, the secret image is
revealed. Histogram analysis is applied for all R, G and B channels. In addition, for
observing the proposed method’s performance on different image distortions, data
loss and salt-pepper noise attack are applied to the encrypted images. The results
show that this method has high resistance against these attacks.

2 VISUAL CRYPTOGRAPHY

The VC was first proposed by Naor and Shamir [4], the secret image is divided
into n shares. When r shares are stacked, the secret image is revealed. If r − 1
shares stacked, the secret image cannot be visible. This is called (r, n) threshold
mechanism [4, 15, 25, 26, 27, 28, 29]. In black-and-white VC scheme, black and
white pixels are shared according to some rules. In (2, 2) VC scheme, one pixel in
the secret image is divided into four pixels in the share images in Figure 1.

In Figure 1, if the pixel is black, one of six blocks is randomly selected for the
first share. According to the first share’s block, the other block is selected for the
second share. If the pixel is white, the same rule is applied. Then the shares are
stacked. Black pixel is logical 1 and white pixel is logical 0. Therefore, black pixels
in the secret image are obtained full black and white pixels in the secret image are
obtained half-black-and-white. The stacked image is four times as big as the original
image, but aspect ratio remains the same. Although the contrast of the secret image
is degraded by 50 %, human visual system can still detect the content of the secret
image.

In Figure 2, a black and white secret image with the words of “123456” is
decomposed into two shares and the stacked image is shown.

In some studies, the privilege of the shares is limited or does not exist [4, 7, 9,
13, 28]. If the shares have a privilege order, it will be better for hierarchical sys-
tems. This means that if a person in hierarchical systems has higher privilege such
as the manager of the company, etc., then his/her share must be also a higher privi-
lege. Thus, more privileged shares are stacked, more information will be reached or
revealed.
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Figure 1. (2, 2) VC scheme

a) Secret image b) Share 1

c) Share 2 d) Stacked image

Figure 2. Visual cryptography
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Fang and Lin [8] first described a progressive VC on binary images. In their
work, each pixel in the secret image was magnified to 2 × 2 blocks. If the black
pixels are encrypted, 2 × 2 blocks are full black. If the white pixels are encrypted,
one of randomly selected two pixels is white in 2× 2 blocks. However, due to pixel
enlargement, more memory and processing time are required.

Hou and Quan [29] reported that Fang and Lin’s work [8] had pixel enlargement,
unnecessary storage space and more transfer time, and also it had a low visual
quality of the stacked images. Hou and Quan stated that they eliminated these
disadvantages.

Fang [10] proposed a new progressive VC that stego images and shares are used
together. The aim of this work is a more simplified management of shares. However,
in Fang’s method, the share has been increased in size by four times more than the
secret image.

Hou [7] proposed a privileged-based approach. In Hou’s study, to create the
shares of color images, he uses three color shares (Cyan-Magenta-Yellow) and mask
share. Thus, four shares are produced. The masks are randomly created to cover
unwanted colors in the stacked image, while the three main colors represent the color
share images. Although there is no privilege among the color shares, according to the
mask, the stacked image is changed. In this case, the mask image is more privileged
than the color share images. However, in this method, the size of the stacked image
size has increased to four times as large as the original image and the encryption
process is limited to only four shares.

Li et al. [14] posed the method that emphasizes the importance of the shares
among themselves. The shares on the progressive VC scheme are classified into
two groups: necessarily with higher importance and non-necessarily with lower im-
portance. Later on, intermediate shares are also added with important and non-
important shares, but it is difficult to manage the shares in this study. In addition,
the size of non-important shares is larger than the size of the important ones. Be-
cause of the different size, the importance of shares is revealed.

PVSSM is proposed in [15]. With this work, each share has a unique level of
privilege. The privilege level of the shares is set by the proportion of the black pixel
in the secret image. This means the blacker pixels in the secret image, the higher
the order of importance.

3 PRIVILEGED-BASED VISUAL SECRET SHARING MODEL

In this section, PVSSM is explained. The flow diagram of PVSSM is given in
Figure 3.

The design of sharing matrices C0 and C1 is defined below. All rows and columns
start from 1 and n is defined as the number of shares.

C0 consists of two parts, the left-C0 and the right-C0. The column of left-
C0 is calculated as m1 = n(n − 1)/2. The size of left-C1 is set to n × m1. In
left-C0, all 0s are placed to different columns. The number of 0s in ith row is
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Figure 3. PVSSM flow diagram

equal to n − i. The remaining locations are filled with 1s. Right-C0 and left-
C0 have the same number of rows. The column of right-C0 is equal to m2 =
n(n−1)(n−2)/2. The size of right-C0 is set to n×m2. All locations of right-C0 are
filled with 0s. After this design, right-C0 and left-C0 concatenate and the design of
C0 is completed.

The column of C1 is calculated as m = n(n−1)(n−1)/2. Moreover, Equation (1)
is satisfied:

m = m1 +m2. (1)

The size of C1 is set to n×m. In C1, all 1s are placed to different columns. The
number of 1s in ith row is calculated as (n2 − 3n + 2i)/2. The remaining locations
are filled with 0s. Therefore, the design of C1 is completed.

After the design of the C0 and C1 sharing matrices, the dispatching algorithm
is implemented to generate the shares in Figure 4.

Firstly, a random number “t”, between 1 and m, is selected. If the pixel in the
secret image is white (0), tth column of C0 is selected. The first element of this
tth column is distributed to the first share, the second element is distributed to the
second share, the third element is distributed to the third share, etc. If the pixel in
the secret image is black (1), tth column of C1 is selected. The first element of this
tth column is distributed to the first share, the second element is distributed to the
second share, the third element is distributed to the third share, etc. The densities of
the black pixels in the shares determine the level of its privilege in PVSSM because
the human vision system more focuses on the black pixels in binary image. Output of
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Figure 4. The dispatching algorithm

this algorithm are privileged shares with increasing order and each share is a unique
privilege [14].

The grayscale test image size of 256 × 256 pixels is used and it has produced
6 shares in PVSSM as an example (S1, S2, S3, S4, S5, S6). The grayscale test image
is first converted with the Jarvis algorithm [30] into binary image in Figure 5 and
it is shared by PVSSM.

a) Grayscale image b) Binary image

Figure 5. Test image
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a) S1∨S2 b) S1∨S2∨S3 c) S1∨S2∨S3∨S4

d) S1∨S2∨S4∨S5 e) S1∨S2∨S3∨S4∨S5 f) S1∨S2∨S3∨S4∨S5∨S6

Figure 6. The secret image gradually appears

As seen in Figure 6, the secret image becomes apparent while the shares are
stacked one by one. The human vision system can detect the secret. Therefore, all
the shares are not needed to restore the secret image. Table 1 shows the similarity
ratio of the images in Figure 6 using PSNR (peak to noise signal ratio) and SSIM
(structural similarity index). They have been seen to be similar both visually and
mathematically.

Images a) b) c) d) e) f)

PSNR 52.3784 53.3662 54.5234 54.3006 55.9546 57.7802

SSIM 0.9868 0.9915 0.9944 0.9940 0.9958 0.9961

Table 1. PSNR and SSIM values

4 THE PROPOSED METHOD

Although PVSSM determines the order of importance among the shares, when the
shares with the higher priority are stacked, the secret image appears visually in
Figure 6. It also proves the similarities by using PSNR and SSIM in Table 1. In
order to overcome this problem of PVSSM, PVSSM and 2D-LASM based image
encryption are used together. The proposed method is called Chaotic Encryption-
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based PVSSM and we have explained how this method is applied to color im-
ages.

Figure 7. Chaotic Encryption-based PVSSM flow diagram for grayscale images

Firstly, the diagram of the Chaotic Encryption-based PVSSM for grayscale im-
ages is shown in Figure 7. In Figure 7, if the secret image is binary, PVSMM is
applied to the secret image. n shares are obtained. Then, these n shares are en-
crypted by 2D-LASM based image encryption. If the secret image is grayscale, it is
transformed into binary image by Jarvis algorithm. After that, this binary image
is shared by PVSSM. Finally, n shares are encrypted by 2D-LASM based image
encryption. Therefore, even if n encrypted shares are captured and stacked, no
information about the secret image can be revealed.

In decryption process, firstly n encrypted shares are decrypted by 2D-LASM
based image encryption. Then n shares are stacked and the secret image is restored.

The diagram of the Chaotic Encryption-based PVSSM for color images is shown
in Figure 8. In Chaotic Encryption-based PVSSM for color images, the color secret
image is first separated into RGB channels. After, RGB channels are transformed
into binary images by the Jarvis algorithm. Then PVSSM is applied to binary
images of RGB channel. n shares of R channel, n shares of G channel and n shares
of B channel are obtained. After that, 2D-LASM based image encryption is applied
to each channel shares. Finally, 3n encrypted shares are obtained. Therefore, no
information is revealed from the shares.

In decryption process for color image, the shares are first decrypted with 2D-
LASM based image encryption. Then the shares are stacked for each color channel,
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Figure 8. Chaotic encryption-based PVSSM flow diagram for color images

and the RGB channels are merged. Finally, the pixel values of 1 are changed into 255
to obtain the original color image in Table 2. In this way, 8 colors are obtained.
The secret color image is restored.

This work is implemented with the MATLAB 2014b program on the AMD A10-
4600M 2.30 GHz 8 GB computer. This method is applied to color Lena image size
of 256× 256. The color Lena image is divided into RGB channels in Figure 9. Then
Jarvis algorithm is used and the RGB channels are converted into binary images in
Figure 10.
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The Resulting Pixel
Values

New Pixel Values of
Color Images

The Obtained Color

(0, 0, 0) (0, 0, 0) Black

(0, 0, 1) (0, 0, 255) Blue

(0, 1, 0) (0, 255, 0) Green

(0, 1, 1) (0, 255, 255) Cyan

(1, 0, 0) (255, 0, 0) Red

(1, 0, 1) (255, 0, 255) Magenta

(1, 1, 0) (255, 255, 0) Yellow

(1, 1, 1) (255, 255, 255) White

Table 2. Restored color

a) Secret image b) R channel c) G channel d) B channel

Figure 9. Color Lena image

PVSSM and 2D-LASM based image encryption is applied to the binary RGB
channels respectively. 6 shares are produced as example. Figure 11 shows each
of the encrypted shares and their histograms. In Figure 11, Chaotic Encryption-
based PVSSM for color images is successfully applied. The encrypted shares of
the histograms show a balanced distribution. Figures 11 a), c), and e) show the
chaotic encrypted PVSSM implementation for all R, G and B channels, respectively.
Figures 11 b), d), and f) represent histograms of the encrypted images for all R, G
and B channels, respectively. The x-axis of these histograms shows the pixel values
(0–255), and the y-axis shows the number of pixels. Thus, it will be difficult to
obtain information with statistical methods [16]. The restored images are shown

a) R channel b) G channel c) B channel

Figure 10. Binary channels
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in Figure 12. Also PSNR and SSIM values of R, G, and B channels of color Lena
image are shown in Table 3.

a) Encrypted R channel b) Histograms of Figure a)

c) Encrypted G channel d) Histograms of Figure c)

e) Encrypted B channel f) Histograms of Figure e)

Figure 11. Chaotic Encryption-based PVSSM

5 EXPERIMENTAL RESULTS

In this section, we analyze the proposed method with some tests including his-
togram analysis, data loss attack, salt-pepper noise attack, differential attack, chi-
square analysis and correlation analysis. NCPR, UACI, PSNR, SSIM and CQM
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a) R channel b) G channel c) B channel d) Secret image

Figure 12. Restored images

R Channel G Channel B Channel Average

PSNR 60.5639 57.3671 57.5363 58.4891

SSIM 0.9983 0.9955 0.9958 0.9965

Table 3. PSNR and SSIM values of channels of color Lena image

are used for measurement. Experimental images are used from the USC-SIPI image
database.

5.1 Histogram Analysis

The histograms of the encrypted shares are shown in Figures 11 b), d), and f). These
histograms show a balanced distribution, so it is difficult to get information from
the shares [16]. In addition, showing a balanced distribution, this will reduce the
possibility of statistic attacks.

5.2 Data Loss Attack

Data loss attack means that some parts of the share lose their real value by adding
noise to them. In this section, grayscale Lena image and color Lena image are used.
Both images are encrypted with Chaotic Encryption-based PVSSM with 6 shares.
Then data loss attacks of various types take place. Each encrypted share is attacked
on the same region and the same noise ratio. Finally, the encrypted shares are
decrypted.

The grayscale secret image and restored image is shown in Figure 13. Data loss
attack is implemented to all shares. Only first share is shown for grayscale image in
Figure 14 and only R channel share is shown for color image in Figure 15.

5.3 Salt-Pepper Noise Attack

In this section, grayscale Lena image and color Lena image are encrypted and then
salt-pepper noise with different ratio is added to all shares. Finally, the encrypted
shares are decrypted. Simulation results are shown in Figure 16.
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a) Lena image b) Binary image of Figure a) c) Restored image

Figure 13. Grayscale test image

5.4 Differential Attack

NPCR (Number of pixels change rate) and UACI (Unified average changing in-
tensity) metrics can measure the number of pixel changing rate with respect to
differential attacks [31]. For secret image, randomly change one bit of a pixel and
obtaining another secret image. NPCR and UACI are represented as Equations (2),
(3) and (4), respectively [21]:

NPCR(C1, C2) =
M∑
i=1

N∑
j=1

D(i, j)

L
× 100 %, (2)

UACI (C1, C2) =
M∑
i=1

N∑
j=1

(
|(C1(i, j)− (C2(i, j)|

T × L

)
× 100 %, (3)

D(i, j) =

{
0, if (C1(i, j) = (C2(i, j),

1, if (C1(i, j) 6= (C2(i, j)
(4)

where C1 and C2 are encrypted images, M and N denote the size of images, i and
j denote the pixels, T is the total number of pixels in the encrypted image, L is the
largest allowed pixel value in the images and D is the bipolar array.

Experimental Image NCPR UACI

Lena Image 0.9963 0.3347

Barbara Image 0.9963 0.3346

Boat Image 0.9961 0.3346

Cameraman Image 0.9962 0.3342

Elanie Image 0.9961 0.3347

Peppers Image 0.9960 0.3344

Table 4. NCPR and UACI values

Table 4 shows NPCR and UACI values with respect to same secret key. When
NPCR is equal to 0, it implies that all pixels remain the same between images.
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a) 10 × 10 black square
attack

b) 10 × 10 black square
result

c) 30 × 30 black square
attack

d) 30 × 30 black square
result

e) 100 × 100 white
square attack

f) 100×100 white square
result

g) 100×100 black square
attack

h) 100×100 black square
result

i) 100 × 100 part of im-
age attack

j) 100×100 part of image
attack result

k) 90% data loss attack l) 90% data loss result

Figure 14. Data loss attack results for grayscale image

When NPCR is equal to 1, it implies that all pixel values are changed [31]. The
ideal value of NCPR is 0.9961 and the ideal value of UACI is 0.3346 [32]. Table 4
shows that NPCR and UACI values are over 0.9960 and 0.3342, respectively, so the
proposed method has good ability to resist differential attacks.

5.5 Chi-Square Analysis

The chi-square parameter X2 is defined as Equation (5):

X2 =
256∑
i=1

(Oi − Ei)
2

Ei

(5)

where i is the number of gray values, Oi and Ei are observed and expected occur-
rence of each gray value (0 to 255), respectively. In this experiment, we obtained
6 encrypted shares as an example, so it is obtained chi-square analysis between test
image and its encrypted shares one by one. Then, the average is calculated. The
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a) 10 × 10 black square
attack

b) 10 × 10 black square
result

c) 30×30 black square at-
tack

d) 30 × 30 black square
result

e) 100×100 white square
attack

f) 100×100 white square
result

g) 100×100 black square
attack

h) 100×100 black square
result

i) 100×100 part of image
attack

j) 100×100 part of image
attack result

k) 90% data loss attack l) 90% data loss result

Figure 15. Data loss attack results for color image

values of chi-square for images under study are listed in Table 5. Table 5 shows that
the histograms of the encrypted images are uniform.

a) 1% salt-pepper noise
for grayscale image

b) 5% salt-pepper noise
for grayscale image

c) 1% salt-pepper noise
for color image

d) 5% salt-pepper noise
for color image

Figure 16. Salt-pepper noise attack result
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Experimental Image Chi-Square Value

Lena Image 255

Barbara Image 255

Boat Image 128

Cameraman Image 255

Elanie Image 255

Peppers Image 255

Table 5. Chi-square values

5.6 Correlation Analysis

The correlation coefficient Rx,y between two grayscale adjacent pixels x and y are
defined as Equation (6):

Rx,y =
cov(x, y)√
D(x)D(y)

(6)

where cov(x, y) = 1
T

∑T
i=1(xi − E(x))(yi − E(y)), E(x) = 1

T

∑T
i=1 xi, D(x) =

1
T

∑T
i=1(xi−E(x))2 and T is the total number of pixels selected from the encrypted

image.

In this experiment, the grayscale Lena image is used and 6 encrypted shares
are obtained. 2 000 pairs of adjacent pixels are randomly selected. The horizontal,
vertical and diagonal correlation coefficients of Lena image and original Lena image
are shown in Table 6.

1 2 3 4 5 6 Avg. Lena

Horizontal 0.1356 0.1303 0.0821 0.0846 0.1210 0.1312 0.1141 0.9269

Vertical 0.1101 0.1007 0.1008 0.1317 0.0923 0.0775 0.1021 0.9699

Diagonal 0.1068 0.1089 0.1078 0.0815 0.1340 0.1013 0.1067 0.9129

Table 6. Correlation coefficients of encrypted shares of Lena image

As can be seen in Table 6, a small coefficient value means a weak correlation
between two adjacent pairs [17]. There are no detectable correlations between the
encypted share images and Lena image. Thus, the proposed method has good ability
to resist statistical attacks.

5.7 Test Results

PSNR is a metric that measures the similarity between two images. PSNR can
represent the image noise removal effects [33]. PSNR is represented as Equation (7):

PSNR = 10 log10

2552

1
n×m

∑n−1
i=0

∑m−1
j=0 (xij − x

′
ij)

2
(7)
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where n ×m denotes the size of the secret image, xij and (x
′
ij) denote the pixel of

secret image and restored image, respectively.
SSIM is the other metric of the similarity. If SSIM is equal to 1, two images are

the same [34]. SSIM is of the following form [35]:

SSIM (x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1) + (σ2
x + σ2

y + C2)
(8)

where x and y are the secret image and the restored image, µx and µy denote the
mean values, σxy denotes the covariance, σx and σy denote the variance of the secret
image and restored image, respectively. C1 and C2 are the constants that inhibits
division by 0.

CQM is the measurement of color image similarity [36]. In this method, first
RGB channels are transformed to YUV channels:

Y = 0.257R + 0.504G+ 0.098B + 16, (9)

U = −0.148R− 0.291G+ 0.439B + 128, (10)

V = 0.439R− 0.368G− 0.071B + 128. (11)

Then, CW and RW are calculated as CW = 0.0551 and RW = 0.9449. CW is the
weight on the human perception of the cones and RW is the weight on the human
perception of the rods.

Finally, CQM is calculated as Equation (12):

CQM = (PSNRY ×RW ) +

(
PSNRU + PSNRV

2

)
× CW . (12)

Some test images are encrypted and their PSNR, SSIM and CQM values are
calculated and shown in Table 7.

Experimental Image PSNR SSIM Experimental Image CQM

Binary Lena Image 58.3701 0.9958 Color Pepper Image 20.6227

Grayscale Lena Image 58.1951 0.9966 Color Lena Image 22.1913

Grayscale Barbara Image 57.8817 0.9962 Color House Image 22.4517

R Channel of Pepper Image 58.9144 0.9973 Color Jet plane Image 25.8311

G Channel of Pepper Image 57.7796 0.9958 Color Baboon Image 20.5208

B Channel of Pepper Image 56.5663 0.9941 – –

Grayscale Building Image 59.8442 0.9978 – –

Table 7. Test results of Chaotic Encryption-based PVSSM

As can be seen in Table 7, PSNR, SSIM and CQM values show that there is
a similarity between the original secret image and the restored images which are
both grayscale and color images. In addition, SSIM values are close to 1. Also the
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proposed method has not only worked with square image but also rectangular image
because a building image with size of (232× 311) is a rectangular.

Grayscale PSNR SSIM Color CQM

(10× 10) black square 75.7988 1.000 (10 x 10) black square 25.4017

(30× 30) black square 67.4142 0.9997 (30 x 30) black square 25.3883

(100× 100) white square 57.6786 0.9959 (100 x 100) white square 25.3587

(100× 100) black square 57.6786 0.9959 (100 x 100) black square 25.3587

(100× 100) part of image 57.6762 0.9959 (100 x 100) part of image 25.3543

90 % data loss 52.0986 0.9728 90 % data loss 24.9894

1 % salt-pepper noise 58.7118 0.9971 1 % salt-pepper noise 25.1583

5 % salt-pepper noise 53.5124 0.9834 5 % salt-pepper noise 25.0015

Table 8. Attack type results

As can be seen in Table 8, when the same attack type rate increases, PSNR,
SSIM and CQM values decrease. It is understood that the similarity ratio decreases
as the attack rate increases. According to PSNR, SSIM and CQM values, the
similarity ratio of the images is still high despite these attacks. SSIM values are also
close to 1. In only 90 % data loss, the image is visually lost in Figures 14 and 15.
As a result, it has been seen that the system is resistant to most attacks.

6 DISCUSSION

When experimental PSNR and SSIM values are investigated, high PSNR values
represent the success of the proposed method. SSIM shows the proposed method’s
quality measure of one of the images being compared with original images. Tables 9
and 10 compare the proposed method with other methods.

Method Image Type PSNR

Wang et al. proposed method 1 [11] Grayscale 51.13

Thien and Lin [37] Grayscale 37.37

Yang et al. scheme 1 [38] Grayscale 50.53

Yang et al. scheme 2 [38] Grayscale 48.88

Pandey et al. [39] Grayscale 57.6337

Goswami et al. [40] Grayscale 37.24

Proposed Method Grayscale 58.1951

Table 9. Encryption comparisons 1

In Table 9, Wang et al. [11] get PSNR value of 51.13 (proposed method 1), Thien
and Lin [37] get PSNR value of 37.37, Yang et al. [38] get PSNR values of 50.53
and 48.88, Pandey et al. [39] get PSNR value of 57.6337 and Goswami et al. [40]
get PSNR value of 37.24. A higher rate of PSNR value (58.1951) is obtained in the
proposed method.
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As can be seen in Table 10, Goswami et al. [40] get SSIM value of 0.9960 and,
Weir et al. [41] get SSIM value of 0.9147. A higher rate of SSIM value of 0.9966
is obtained with the proposed method. SaiCandana and Anuradha [42] get SSIM
values of 0.98 and 0.99 (color) and Huang et al. [43] get SSIM values of 0.9879
and 0.9925 (color). A higher rate of SSIM value (0.9965 – color) is obtained in the
proposed method.

Method Image Type SSIM

Goswami et al. [40] Grayscale 0.9960

Weir et al. [41] Grayscale 0.9147

SaiCandana et al. [42] example 1 Color 0.98

SaiCandana et al. [42] example 2 Color 0.99

Huang et al. [43] example 1 Color 0.9879

Huang et al. [43] example 2 Color 0.9925

Proposed Method Grayscale 0.9966

Proposed Method Color 0.9965

Table 10. Encryption comparisons 2

Gorji et al. [44] get PSNR values of 53.6654 (1 % salt-pepper), 47.8638 (5 % salt-
pepper) and 56.6781 ((10 × 10) data loss). A higher rate of PSNR values 58.7118
(1 % salt-pepper), 53.5124 (5 % salt-pepper) and 75.7988 6781 ((10× 10) data loss)
are obtained in the proposed method (see Table 11).

Method Attack Type Image Type SSIM

Gorji et al. [44] 1 % salt-pepper Grayscale 53.6654

Proposed method 1 % salt-pepper Grayscale 58.7118

Gorji et al. [44] 5 % salt-pepper Grayscale 47.8638

Proposed method 5 % salt-pepper Grayscale 53.5124

Gorji et al. [44] (10× 10) data loss Grayscale 56.6781

Proposed method (10× 10) data loss Grayscale 75.7988

Table 11. Attack comparisons 1

In Lena image, Xu et al. [45] and Ye et al. [19] get NCPR values of 0.9962
and 0.9955, respectively. A higher rate of NCPR value 0.9963 is obtained in the
proposed method. Xu et al. [45] and Ye et al. [19] get UACI values of 0.3351 and
0.3339, respectively. In the proposed method, UACI value 0.3347 is obtained.

In Boat image, Hua et al. [17] and Ye et al. [19] get NCPR values of 0.9963 and
0.9962, respectively. A lower rate of NCPR value 0.9961 is obtained in the proposed
method. Hua et al. [17] and Ye et al. [19] get UACI values of 0.3353 and 0.3347,
respectively. A lower rate of UACI value 0.3346 is obtained in the proposed method.

In Elanie image, Hua et al. [17] and Hua et al. [21] get NCPR values of 0.9962
and 0.9961, respectively. In the proposed method, UACI value 0.9961 is obtained.
Hua et al. [17] and Hua et al. [21] get UACI values of 0.3342 and 0.3355, respectively.
In the proposed method, UACI value 0.3347 is obtained.
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Method Image NCPR UACI

Xu et al. [45] Lena 0.9962 0.3351

Ye et al. [19] Lena 0.9955 0.3339

Proposed method Lena 0.9963 0.3347

Hua et al. [17] Boat 0.9962 0.3347

Ye et al. [19] Boat 0.9963 0.3353

Proposed method Boat 0.9961 0.3346

Hua et al. [17] Elanie 0.9962 0.3342

Hua et al. [21] Elanie 0.9961 0.3355

Proposed method Elanie 0.9961 0.3347

Ye et al. [19] Cameraman 0.9960 0.3353

Proposed method Cameraman 0.9962 0.3342

Table 12. Attack comparisons 2

In Cameraman image, Ye et al. [19] get NCPR value of 0.9960 and UACI value
of 0.3353. In the proposed method, NCPR value 0.9962 and UACI value 0.3342 are
obtained (see Table 12).

The encrypted shares are tested by using many methods of histogram analysis,
data loss attack and salt-pepper noise attack. These tests are applied to both
grayscale and color images. The histograms of the encrypted shares are balanced
and unbiased causing the statistical methods to fail in information extraction. The
measurement results of data loss and salt-pepper noise attacks are obtained with
PSNR and SSIM for binary and grayscale images whereas CQM is used for color
images. When image resolutions are examined, the worst result is obtained with
90 % loss compared to (10 × 10), (30 × 30) and (100 × 100) data losses attacks.
A better image resolution is obtained in 1 % salt-pepper noise attacks compared to
5 % salt-pepper noise attacks.

Moreover, the measurement results of differential attacks are obtained with
NCPR and UACI. There is no big difference between these comparisons in Ta-
ble 12. Chi-square analysis is also applied. The low values of chi-square confirm
that the proposed method offers fairly high encryption effect [46].

Finally, all comparisons show that the proposed method has better PSNR, SSIM
values and a good NPCR and UACI values. Thus it provides a better security.

7 CONCLUSION

In PVSSM, when the higher privileged shares are superimposed, the secret image is
restored. Therefore, there is no need for all share images to reveal the secret image.

In this work, we have presented a solution to the security problem of PVSSM.
We combined PVSSM with 2D-LASM based image encryption. This method was
called Chaotic Encryption-based PVSSM. There are some advantages and novelty
of the proposed method:
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1. One of the VC and chaotic encryption methods are employed together.

2. Unlike traditional VC, this method has no pixel expansion.

3. When grayscale and color images are encrypted, Jarvis algorithm is applied.

4. Chaotic Encryption-based PVSSM is suitable for binary, grayscale, and color
images.

5. For color images, CQM metric is used.

Finally, according to the test results, the proposed method is resistant against vari-
ous attacks. Moreover, a better image quality has been obtained with the proposed
method.

Since PVSSM is a lossy-method, certain loss may be possible while decrypting
the encrypted image. Future works may ensure better image quality and compare
CQM values for color images.
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Abstract. Discrete-Event Systems (DES) are discrete in nature. Petri Nets (PN)
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Different kinds of PN can be used for such purposes. Some of them were described
in [3], being the first part of this paper. Here, the applicability of Labelled PN
(LbPN) and Interpreted PN (IPN) for modelling and control of nondeterministic
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1 INTRODUCTION AND PRELIMINARIES

This paper is the Part 2 of the the paper which had started by the Part 1 published
as [3]. In the Part 1 the basic background about several crucial kinds of Petri nets
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(PN), including Place/Transition PN (P/T PN), Timed PN (TPN), Controlled PN
(CtPN), Interpreted PN (IPN) and Labelled PN (LbPN), was presented as well as
a simple application of them for modelling and control of flexible manufacturing
systems (FMS). In this paper, especially the IPN and LbPN will be used in mod-
elling and control of discrete-event systems (DES), namely some kinds of FMS and
a segment of transport systems, to tend towards the applications in practice. Two
principled kinds of uncertainties in PN models of DES will be analyzed here:

1. the effect of uncontrollable and unobservable transitions;

2. the occurrence of different kinds of errors/failures.

While resolving the former problem requires the usage of special kinds of PNs (IPN
or LbPN), resolving the latter one requires the usage of an error recovery procedure.
Both kinds of uncertainties as well as their combination will be analyzed here by
PN-based approach.

1.1 Mathematical Model of Petri Nets

At the beginning let us recall the principle definition of the basal PN – P/T PN.
As it was introduced in the Part 1 of this paper – see [3] – mathematical expression
of P/T PN consists of the (i) expression of the PN structure – PN is a bipartite
directed graph 〈P, T, F,G〉 with P = {p1, . . . , pn}, |P | = n being the set of places pi,
i = 1, . . . , n; T = {t1, . . . , tm, |T | = m} being the set of transitions tj, j = 1, . . . ,m;
F being the set of directed arcs from places to transitions; G being the set of
directed arcs from transitions to places; (ii) description of PN dynamics (the marking
development) in the form of the limited discrete linear equation

xk+1 = xk + B.uk, k = 0, 1, . . . , N, (1)

F.uk ≤ xk, (2)

with the structural matrix B = GT − F (F, GT correspond to F , G). Here,
xk = (σk

p1
, . . . , σk

pn)T with entries σk
pi
∈ {0, 1, . . . ,∞}, representing the states of

particular places, is the PN state vector in the kth step of the dynamics devel-
opment; uk = (γkt1 , . . . , γ

k
tm)T with entries γkpi ∈ {0, 1}, representing the states of

particular transitions (either enable – when 1, or disable – when 0) is the control
vector; F, GT are, respectively, incidence matrices of arcs from places to transitions
and contrariwise.

Particulars about P/T PN as well as about other kinds of Petri nets which will
be used here (IPN, LbPN) are introduced and explained in detail in the Part 1 of
the paper – i.e. in [3].

1.2 Place Invariants in Supervisor Synthesis

In order to control the PN model of a plant, a supervisor has to be proposed.
To synthesize the supervisor based on place invariants (P-invariants), where the
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invariants are defined as columns of the matrix W given as follows:

WT .B = 0, (3)

it is necessary to enforce the suitable restrictive condition on the state vectors of
the system (1) as follows:

L.x ≤ b. (4)

Here, L is a matrix of integers and b is a vector of integers representing some
restrictions on the linear combination of corresponding entries of the state vector.
To eliminate the inequality in (4) it is needful to insert there the (ns × 1) vector xs

consisting of slack variables. Thus,

L.x + xs = L.x + Is.xs = (LIs).

(
x
xs

)
= b (5)

where Is is the (s × s)-dimensional identity matrix. To synthesize the supervisor
with a structure Bs (so far unknown), force the matrix (L, Is) into (3) instead of
WT and the matrix (BT ,BT

s )T instead of B. Hence, the structure of the supervisor
was found as

(LIs).

(
B
Bs

)
= 0; Bs = −L.B; Bs = GT

s − Fs. (6)

Here, Bs represents the interconnections of ns additional places (called monitors)
with the original PN. Fs,Gs obtained by the decomposition of Bs are the incidence
matrices of the directed arcs. The monitors together with the arcs create the su-
pervisor. The directed arcs realize interconnections of the supervisor with the PN
model of a plant in both directions:

1. from the supervisor places to a part of the PN model transitions (a set of the
model inputs) and

2. from another part of the PN model transitions (a set of the model outputs) to
the places of the supervisor.

The initial state of the supervisor follows from (5) in the form

x0
s = b− L.x0. (7)

1.3 Uncontrollable and Unobservable Transitions

When no uncontrollable and unobservable transitions occur in the PN model (it is
the ideal case), the supervisor is able to observe all transitions. Consequently, it can
either prevent a transition from firing or to fire it – i.e. to enforce a desired behavior
on it. However, in practice usually such an assumption is not valid. There are two
possibilities for transitions in PN models of realistic systems: (i) a transition tj ∈ T
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may be uncontrollable; (ii) a transition tj ∈ T may be unobservable. In the former
case the supervisor is not able to prevent the transition from firing – i.e. there is no
arc from any supervisor place to tj. In the latter case the supervisor is not able to
detect the firing of the transition – i.e. there is no arc from any transition of the PN
model of the plant to the supervisor place. In other words, the feedback from the
PN model of the plant to the supervisor is missing. It means that there are neither
arcs from an unobservable transition tj to any controller place pi, i = 1, . . . s, nor
the arc from any controller place pi, i = 1, . . . s to tj.

It appears that a transition being unobservable is also uncontrollable. Therefore,
controllability of a transition implies its observability. Consequently, three different
kinds of transitions are distinguished:

1. controllable;

2. uncontrollable, but observable; and

3. uncontrollable and unobservable.

Accordingly, the set T of transitions has three following subsets T = To,c ∪ To,uc ∪
Tuo,uc. Hence, it can be written that Tuc = To,uc ∪ Tuo,uc. Here, To,c and Tuc are,
respectively, the subsets of controllable and uncontrollable transitions. To,uc rep-
resents the set of uncontrollable but observable transitions, and Tuo,uc consists of
transitions that are both uncontrollable and unobservable.

1.4 Errors and Error Recovery

Many times errors of different kinds occur during DES operation. They bring an-
other kind of nondeterminism into DES performance. For instance, in a specific
kind of FMS like robotic cells a part may drop out (i.e. fall down) from the robot
gripper, in a simple railroad crossing the control system of crossing gate may fail
(e.g. the premature gate raising), etc. After the occurrence of the fault the system
development is different than the standard one. In such a case the system has to
detect what was wrong and recover the normal behaviour, i.e. to eliminate the in-
fluence of the error on the system behaviour. Namely, the error recovery is the set
of actions that must be performed in order to return the system to its normal state.
To do this, it is necessary

1. to synthesize the recovery sequence, and

2. to extend the scope of the controller activity in order to deal with the fault.

The problem is directly connected with reachability.

It is necessary to emphasize that errors of the mentioned kinds cannot be ex-
cluded, either in deterministic PN models or in PN models with uncontrollable/un-
observable transitions.
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1.5 The Paper Organization

The paper is organized as follows:

1. the discussion about the nondeterminism caused by unobservable/uncontrollable
transitions and unmeasurable (unobservable) places in PN models of DES and
about how to deal with it;

2. the discussion about how to model errors/failures and the dealing with the
matter of the error recovery in DES;

3. the introduction of three case studies, the first one based on the IPN model,
the second one on the LbPN model and the third one (specific one) based on
the PN model of RAS (resource allocation systems) where a special kind of
nondeterminism occurs.

2 DEALING WITH UNCONTROLLABLE
AND UNOBSERVABLE TRANSITIONS

In case when solely controllable and observable transitions occur, the PN model (1)
may be used, and the supervisor may be synthesized by means of (6). In the opposite
case, i.e. when uncontrollable and/or unobservable transitions occur, the situation
is much more complicated.

2.1 Presence of Uncontrollable and/or Unobservable Transitions

Taking into account the previous relations concerning the PN model, the supervisor
synthesis, and the indexing the particular part of transitions described in the Sec-
tion 1.3 we have to cogitate about how to express the PN model and the supervisor
synthesis in this case. We can assume that the incidence matrix B of the PN model
of plant has the form

B = [Bo,cBuc] = [Bo,cBo,ucBuo,uc] (8)

where Buc = [Bo,ucBuo,uc]. Such a configuration of submatrices of B corresponds to
ordering the transitions:

1. t1, . . . , tmc (for controllable and observable transitions);

2. tmc+1, . . . , tmc+mo (for uncontrollable, but observable, transitions);

3. and tmc+mo+1, . . . , tm (for uncontrollable and unobservable transitions).

2.1.1 Ideal Enforceability

The ideal enforceability of control interferences occurs if there are no arcs from
controller places to transitions t ∈ Tuc and no arcs from transitions t ∈ Tuo,uc to
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controller places. It can be easily checked. The controller incidence matrix:

Bs = −LB = −L [Bo,cBuc] = −L [Bo,cBo,ucBuo,uc] . (9)

In such a case the following inequality has to be valid:

−LBo,uc ≥ 0 (10)

where the signs of the inequality are performed element by element. This relation
expresses the fact that the firing of any uncontrollable, but observable, transition
does not depend on the number of tokens in a controller place, but may increase
this number. Moreover, the following relation has to be valid:

LBuo,uc = 0. (11)

This equation expresses the fact that the firing of any uncontrollable and unobserv-
able transition will not affect the number of tokens in a controller place. Finally, for
the initial state of the supervisor, the following relation has to hold:

xs
0 = b− Lx0 ≥ 0. (12)

This inequality expresses that the initial state vector (i.e. initial marking) xs
0 of the

supervisor is a nonzero vector. Note, that it is the same relation as Lx0 ≤ b.

Supervisory control is a procedure of enforcing the external constraints on a sys-
tem to be controlled. If a desired control specification is ideally enforceable, the
supervisor respects the observability and controllability constraints. When the su-
pervisor respects the uncontrollability and unobservability constraints of the plant,
it is marked as admissible. Consequently, the presence of uncontrollable and/or un-
observable transitions does not pose any problem. However, in real conditions the
enforceability may not exist. Even, the ideal enforceability does not exist.

The specification (4) or (5) is said to be ideally enforceable, if the (ideal) super-
visor/controller represented by Bs and xs

0 can be realized (i.e., if it is feasible) – i.e.,
if in case of unobservable and uncontrollable transitions there are no arcs from con-
troller places to transitions in Tuc and no arcs from transitions in Tuo,uc to controller
places. In models of real systems it is not always possible.

2.1.2 Real Enforceability

In real conditions the ideal enforceability does not exist. In general, the solution will
not be possible in terms of the original specification. In such a case it is necessary to
find modified constrains (control specifications) in the form L′.x ≤ b′ and compute
the controller Bs = −L′B for the new specifications. Here, xs

0 = b′ − L′x0. The
problem is solved when we succeed in finding a suitable L′ an b′.
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As it was proved in [15], the specifications can have the following form:

L′ = (R1 + R2L), (13)

b′ = R2(b + 1ns×1)− 1ns×1 (14)

where 1ns×1 = (1, . . . , 1)T , R1 ∈ Zns×n satisfies R1.x ≥ 0, ∀x, R2 ∈ Zns×ns be
a diagonal matrix of natural numbers (i.e. positive-definite diagonal matrix of inte-
gers).

Choose the entries for R1 and R2 to ensure the ideal enforceability. According
to conditions (10)–(12) concerning the ideal enforceability introduced and described
above, the following relations have to hold:

(R1 + R2L)Bo,uc ≤ 0, (15)

(R1 + R2L)Buo,uc = 0, (16)

(R1 + R2L)x0 ≤ R2(b + 1ns×1)− 1ns×1. (17)

In [15] it was proved that when

[R1R2] .

[
Buc Buo −Buo x0

L.Buc L.Buo −L.Buo L.x0 − b− 1nc×1

]
≤
[
0 0 0 −1nc×1

]
,

(18)
then the controller

Bs = −(R1 + R2L)B = −L′B, (19)

x0
s = R2(b + 1nc×1)− 1nc×1 − (R1 + R2L)x0 = b′ − L′x0 (20)

exists. Moreover, it causes that all subsequent markings of the closed loop system
satisfy the constraint Lx ≤ b. This is achieved without any attempt to inhibit
uncontrollable transitions and without detecting unobservable transitions. The ad-
vantage of such an approach is that the matrices R1, R2 can be generated.

2.1.3 Example – Comparison of Ideal and Real Enforceability

To illustrate the difference between the ideal and real enforceability of control in-
terferences let us introduce the simple PN given in Figure 1 where the transition t4
is uncontrollable. Namely, the matrix B consists of two submatrices (Bo,c,Bo,uc) as
follows:

B = (Bo,c,Bo,uc) =


0 −1 0 | 0
1 0 −1 | 0
0 1 0 | −1
0 0 0 | 1

. (21)

Suppose, that in each step k of the system evolution the condition

σp2 + 3.σp4 ≤ 3, k = 0, 1, . . . (22)
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Figure 1. The given uncontrolled PN model

Figure 2. The trial to apply the ideal enforceability

has to be met. Consequently,

L = (0, 1, 0, 3), b = 3. (23)

Because x0 = (1, 0, 0, 0)T , with respect to (4)–(7) we can obtain the supervisor
(corresponding to the ideal enforcing) given in Figure 2 where the structure of the
supervisor and its initial state are the following:

Bs = −L.B = (−1, 0, 1,−3); x0
s = b− L.x0 = 3. (24)

However, the condition (10) is not satisfied, because

−L.Bo,uc = −(0, 1, 0, 3).(0, 0,−1, 1)T = −3 � 0. (25)

It means that the ideal enforceability is impossible. Consequently, the real enforce-
ability approach has to be applied. Therefore, consider

R1 = (0, 0, 3, 0); R2 = 1. (26)

Then, because of (13), (14),

L′ = (0, 1, 3, 3); b′ = 3, (27)

B′s = −L′.B = (−1,−3, 1, 0); x0
s = b′ − L′.x0 = 3. (28)

The supervised system is given in Figure 3. Here, the inequality (15) is fulfilled
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because

(R1 + R2L)Bo,uc = L′.Bo,uc = (0, 1, 3, 3).(0, 0,−1, 1)T = 0 (29)

and it should be ≤ 0.

Figure 3. The real enforceability

The reachability trees of the three versions of the PN model structure are given
in Figure 4.

Figure 4. The reachability trees corresponding (from the left to the right) with the PN
models in Figures 1, 2 and 3, respectively, with the corresponding reachability matrices
Xa, Xb, Xc
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Corresponding nodes of these trees are represented by the columns of the reach-
ability matrices as follows:

Xa =


1 1 0 0 0 0
0 ω 0 ω 0 ω
0 0 1 1 0 0
0 0 0 0 1 1

 (30)

where ω means unlimited number of tokens in the place p2 in three reachable states,
namely x1, x3 and x5, because of the self-loops in the RT nodes x1 and x3, and

Xb =


1 1 0 1 0 0 1 0 0
0 1 0 2 1 0 3 2 3
0 0 1 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0
3 2 3 1 2 0 0 1 0

, (31)

Xc =


1 1 0 1 0 1
0 1 0 2 0 3
0 0 1 0 0 0
0 0 0 0 1 0
3 2 0 1 0 0

. (32)

2.1.4 Local Summary

In case where no uncontrollable and unobservable transitions occur, the controller
can directly observe and prevent all transitions of PN model of the plant. However,
it is much more realistic to abandon such an assumption in PN models of DES
working in practice. Namely:

1. Transition tj may be uncontrollable. It means, that the controller will not be
able to directly prevent the transition from firing. In such a case, there will be
no arc from any controller place to tj ∈ T .

2. Transition tj ∈ T may be unobservable. It means, that the controller will not be
able to directly detect the firing of the transition. Thus, the firing of tj cannot
affect the number of tokens in any controller place (i.e. the feedback from the
plant to the controller is missing).

This implies that there are neither arcs from an unobservable transition tj to
any controller place pi, i = 1, . . . s, j = 1, . . .m nor the arc from any controller
place pi to tj.

Hence, a transition being unobservable implies that it is also uncontrollable.
Therefore, controllability of a transition implies its observability. Three different
kinds of transitions are distinguished:
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1. controllable;

2. uncontrollable but observable; and

3. uncontrollable and unobservable.

In such a case the enforceability of control interferences needs not always be ideal
and the supervisor synthesis has to by modified – compare the pair (6), (7) with the
pair (19), (20).

3 ERROR RECOVERY

As it was mentioned in the Section 1.4, many times errors (failures) occur during
DES operation. For example in FMS a part may drop out from the robot gripper.
The system has to detect what was wrong and recover the normal behaviour – i.e.,
to eliminate the influence of the error on the system behaviour. The error recovery
is a set of actions that must be performed in order to return the system to its normal
state. It is necessary

1. to synthesize the recovery sequence, and

2. to extend the scope of the controller activity in order to deal with the fault.

The problem is directly connected with reachability.
After the occurrence of the fault the system development is different than

the standard one. Consider the situation after the occurrence of the fault fj =
(0, . . . , 0, 1, 0, . . . , 0)T being the unit vector with dimensionality m (the number of
transitions). Here xk = xj + Bf .fj, where Bf is the structural matrix of the faulty
system submodel.

In practice, there are many areas where it comes toward errors of different kinds.
Let us illustrate two such areas – FMS and a transport system – namely, the robo-
tized cell and the railroad crossing.

3.1 Error Recovery of a Kind of FMS

Figure 5. The scheme of the robotized assembly cell
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Consider the robotized cell schematically displayed in Figure 5. Here, C1 rep-
resents a conveyor feeding parts of a kind A into the cell, C2 expresses a conveyor
feeding parts of a kind B into the cell, and C3 pictures a conveyor carrying away
the final product – i.e. the assembled part C (i.e. A + B) prepared in the assembly
place AP – from the cell. The robot R plays the central role in the cell, because it
serves all other devices inside the cell (i.e. C1–C3 and AP).

Figure 6. The PN model of the fragment of the plant (left), its full RT including firing
of t5 (middle) and the RT of the model without firing of t5, i.e. without the occurrence of
the error event (right)

The fragment of the global PN model of the robotized cell, displayed in Figure 6
left, models the handling of first two belts by R. The robot consecutively takes away
parts A, B from two transport belts C1 and C2, respectively. In the PN model the
supplying is realized by means of the places p1 and p4, respectively. The operations
of taking parts are modelled by p2, p5, respectively. The parts A, B prepared to
be inserted into the assembly place are modelled by places p3, p6, respectively. The
robot puts them subsequently into AP modelled by p8. Although the process is
deterministic a fault can occur. The transition t5 represents the error event – i.e.
the fault when a part A drops out from the robot gripper. The fault itself is modelled
by firing the transition t5. The corresponding RT of the model segment, where the
fault occurs, is displayed in the middle of the Figure 6. The RT corresponding to
the normal situation, when no fault occur, is given in Figure 6 right. The state
space of the system (the nodes of the full RT) are represented by the columns of the
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matrix (33):

Xr =



1 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0
1 1 0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1


. (33)

Because the fault event is spontaneous, it cannot be prevented. There is only
a possibility (if any) for trying to recover the system operation after occurring the
fault, i.e. to remove the effects of the fault on the system operation. We must
watch the consecutive states of the system after occurring the fault – i.e. the states
x4 = (0 0 0 1 0 0 1 0)T and x10 = (0 0 0 0 0 1 1 0)T . From these states the recovery
procedure has to be evolved. Note, that the first column of the matrix (33) is x0.
Consequenly, x4 and x10 are displayed, respectively, as 5th and 11th columns of the
matrix). However, the state x10 is inadmissible. Moreover, no further development
is allowed from it, i.e. x10 has a form of a deadlock. Instead of x10 the recovered
state x9 = (0 0 1 0 0 1 1 0)T is expected. Also the states of PN without the fault –
i.e. without firing t5 – has to be taken into account in order to see the correct devel-
opment. The form of the PN is the same like that on the left side of Figure 6, only
the transition t5 is not firing (i.e. as if missing). RT of such a PN model is given on
the right side of the Figure 6. Its nodes are the columns of the matrix

Xr =



1 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0
1 1 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0
1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1


. (34)

A trial how the fault can be recovered in order to normalize the system behaviour
is expressed by amending the PN model. The PN model able to recover the fault
is given in Figure 7. The model covers both the normal behaviour and the recovery
of the fault behaviour. Its RT is given in Figure 8. The trajectory of the system
development when the fault occurred (i.e. when t5 was fired) and then its entail was

recovered is the following: x0
t1→ x1

t5→ x5
t3→ x11

t4→ x18
t7→ x25

t8→ x31
t1→ x35

t2→
x38

t6→ x39. Of course, also the sideways branch starting from x5: x5
t7→ x12 . . .

t4→ x38

may be taken into account. However, the RT expresses also the trajectories of the
system development where the firing of t5 does not occur (i.e. when no fault occurs),
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Figure 7. The PN model of the recovered system

e.g.: x0
t1→ x1

t2→ x4
t3→ x9

t4→ x15
t6→ x22 . . .

t2→ x37 (together with its sideways
branches). The RT nodes are represented by the columns of the matrix

Xr =



1 0 1 2 0 0 1 1 2 0 1 0 0 0 2 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 2 0 0 0 0 1 2 0 1 0 2 0 1 1 1 0
1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0
1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1


. (35)

3.2 Error Recovery in a Segment of Transport Systems

Consider an example of the simple railroad crossing (RC). The RC gate prevents
a direct contact of trains with vehicles on the road. The global PN model of RC
given in Figure 9 consists of three cooperating sub-models expressing the behaviour
of the

1. train,

2. crossing gate, and

3. control system.

The firing of the transition tf5 models the occurrence of the failure(s). In general,
the failure can occur more times. Thus, the marking of the place p14 (i.e. the
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Figure 8. The RT of the PN model of the recovered system

number of its tokens) represents the number of the failure occurrences. What is
very dangerous in doing so is that the firing of tf5 involves an erroneous generation
of a token in pl0 which directly influences the position of the barrier. Such an error
may cause accidents. Many accidents allover the world has been caused due to such
errors.

The following depicts the purport of places in the failure-free cases: As to the
train, its states regarding the crossing are: p1 = approaching; p2 = being before;
p3 = being within; p4 = being after. The states of the barrier are: p11 = up;
p12 = down. The transitions t6 and t7 model, respectively, the events of raising and
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Figure 9. The PN model of the RC with the failure expressed by firing tf5

Figure 10. The RT of the PN model of RC with only one possible occurrence of the failure
represented by tf5 (left), and the corresponding RG (right)



744 F. Čapkovič

lowering the barrier. The states of the control system are: p5 − p10. The place p13
models the interlock. Being active (having token) it gives the warning signal for the
train – the alert that the barrier is still up.

Very dangerous (critical as to safety reasons) is the situation when the barrier is
going up, and simultaneously, the failure tf5 occurs. For detection of such situation
the redundant information is needed. The control system must issue such informa-
tion. It can be seen that the places p6 and p7 in the control system correspond to p11
and p12 in the real crossing gate. If p7 and p11 are active simultaneously, a contra-
diction between the fault situation (real) and the standard situation (normal, error
free) is detected. For the error recovery it is necessary to set what state is accepted
to be the true one. Supposing that the barrier is up and drops down, the recovery
is realized by means of the transition tr1 .

Considerably simpler situation occurs when the barrier is up and none train is
approaching. Namely, by means of the transition tr2 the fail signal p10 from the
control system in a close touch with the activity of the place p11 ensures that the
fail signal can be practically ignored.

The RT and RG of the failed system are given in Figure 10. The particular
nodes of RT/RG are the columns of the reachability matrix

Xreach =



1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 2 0 1
1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0



. (36)

The PN model of the system with the recovered error is given in Figure 11, while
the RT and RG are displayed in Figure 12.
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Figure 11. The PN model of the system with the recovered failure and with the supervisor
removing the deadlock occurring during the process of the failure recovery

The RT/RG nodes corresponding to such model are represented by the columns
of the reachability matrix

Xs
reach =



1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1
0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1
0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 2 0 0 1 1 0
1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 2 3 0 2 3 0 0 2 1 0 0 1 1 1 0 2 1 2 1 3 2 2 1 3 2 3



(37)

where the last row represents the states (marking) of the supervisor in particular
RT/RG nodes. More details concerning the multiplicity of the error occurrence are
discussed in [4].
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Figure 12. The RT of the recovered system with removed deadlock by means of the su-
pervisor (left) and the corresponding RG (right)

4 CASE STUDY ON CONTROL OF COMPLETE FMS
BY MEANS OF IPN

Having resolved the error recovery of the FMS fragment in Section 3.1, let us apply
the IPN-based approach to control the complete FMS including the error. The
uncontrolled PN model of the plant is the expanded form of the fragment given in
Figure 6 with the same fault, of course. The IPN-based control of it (before the
error recovering) is presented in Figure 13.

Figure 13. The PN model of the controlled system
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The RT of the PN model is given in Figure 14. To save a space, it is turned by
90 degrees to the left.

Figure 14. RT of the PN model of the controlled system

The reachability set, i.e. the particular nodes of the RT in the form of the state
vectors are represented by means of the columns of the following matrix

Xr =



0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



. (38)

4.1 Error Recovery

Let us recover the fault analogically to the approach presented in Figure 7. As we can
see in Figure 14, the occurrence of the fault represented by the transition t16 (when
it is firing) tends to the deadlock state x14 (see the column 15 of the matrix (38)
because RT node N1 corresponds to x0) presented by active places p2, p6, p8, p9,
p14, p16, all of them with marking equal to 1. To prevent such situation the recovery
must tend to the elimination of the deadlock state x14 (caused by firing t16) and
simultaneously recover the system operation.

A trial directed towards the error recovery proposal is given in Figure 15. The
RT of the system is given in Figure 16 while the corresponding complete RG of the
recovered system representing all system trajectories is displayed in Figure 17.
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There exist four production cycles – i.e. the trajectories/paths starting from x0

and ending also in x0 – in the RG of the recovered system displayed in Figure 17.
Their lengths are 15, 22, 29, and 30 steps (a step represents the firing of a transition).
They can be analyzed separately. These cycles include the internal sub-cycles (sub-
trajectories).

Figure 15. The PN model of the controlled system able to recover the failure

Figure 16. The RT of the PN model of the controlled system with the recovered failure

Let us analyze in detail the shortest cycle with 15 steps – it is given in Figure 18.
It contains four sub-cycles (sub-trajectories). None of them contains a deadlock.
Particular steps in the trajectories are realized by successive firing of transitions in
corresponding sequences. They realize the transition from a state to another (next)
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Figure 17. The corresponding RG of the recovered system

state in the trajectories.

Xr =



0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(39)

Let as analyze the shortest path in details. As we can see from the RT/RG, as
a matter of fact the trajectory (path) aggregates four sub-trajectories:
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Figure 18. The 15 steps cycle in the RG of the recovered system

1. x0
t4−→ x2

t1−→ x3
t12−→ x4

t5−→ x6
t6−→ x9

t2−→ x13
t3−→ x14

t13−→ x18
t7−→ x22

t8−→
x26

t9−→ x29
t10−→ x31

t14−→ x32
t11−→ x33

t15−→ x0;

2. x0
t4−→ x2

t1−→ x3
t12−→ x4

t2−→ x5
t3−→ x7

t5−→ x10
t4−→ x14

t13−→ x18
t7−→ x22

t8−→
x26

t9−→ x29
t10−→ x31

t14−→ x32
t11−→ x33

t15−→ x0;

3. x0
t1−→ x1

t4−→ x3
t12−→ x4

t5−→ x6
t6−→ x9

t2−→ x13
t3−→ x14

t13−→ x18
t7−→ x22

t8−→
x26

t9−→ x29
t10−→ x31

t14−→ x32
t11−→ x33

t15−→ x0;

4. x0
t1−→ x1

t4−→ x3
t12−→ x4

t2−→ x5
t3−→ x7

t5−→ x10
t4−→ x14

t13−→ x18
t7−→ x22

t8−→
x26

t9−→ x29
t10−→ x31

t14−→ x32
t11−→ x33

t15−→ x0.

Other longer cycles have 22 (with 18 sub-trajectories), 29 (with 32 sub-trajecto-
ries), and 30 (with 16 sub-trajectories) steps. The last of them represents practically
two consecutive shortest trajectories (i.e. two successive cycles without a failure).
While any of the sub-trajectories of the shortest cycle introduced above does not
contain the transition t16 representing the failure, the sub-trajectories of the longer
cycles (namely with 22 steps and 29 steps) do. In spite of this they operate correctly,
because of the successful error recovery. It means that the cycle consisting of 15 steps
represents the normal operation of the controlled plant, i.e., the situations when no
failure occurs. However, the longer cycles are able to deal with the failure (occurring
event represented by firing t16) successfully.

Unfortunately, there is not a sufficient space here for a graphical presentation of
the trajectories, or all their sub-trajectories. Nevertheless, they can be traced from
Figure 17. For illustration, let us introduce them at least in the aggregated form
in Figure 19 (up) and Figure 19 (down). They show that the system is able to deal
with the failure – i.e., the error recovery was successful.

4.2 Local Summary

The application of IPN for modelling and control of DES with nondeterminism rep-
resented by uncontrollable and/or unobservable transitions was presented in this
section. IPN seems to be a suitable, sound and relatively simple approach for re-
solving such tasks, especially technical ones. In Section 5 the application of LbPN
will be presented pointing out the difference from IPN.
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Figure 19. The aggregated form of the path with 22 steps (up) and 29 steps (down). In
both cases on the horizontal axes the numbers of steps are displayed, while on the vertical
axes the numbers of state vectors (shifted by +1) are displayed – namely, the RG nodes
Ni+1 corresponds to xi, i = 0, 1 . . .
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5 CASE STUDY ON CONTROL OF FMS BY MEANS OF LBPN

Consider the plant (a robotic cell) schematically displayed in Figure 20. There are
two production lines producing two different kinds of final products. The plant
consists of four machines (M1–M4), four robots (R1–R4), one automatically guided
vehicle (AGV) system, one buffer (B) with the finite capacity, two input transport
belts I1 and I2 feeding the cell, respectively, by parts of a kind Pa1 and of a kind Pa2.
Finally, the output transport belts O1 and O2 export, respectively, the processed
final parts Fp1, Fp2 from the cell. A similar production plant was used for another
reason in [5], based on [26].

Figure 20. The scheme of the plant

While in an ideal P/T PN model all transitions are considered to be control-
lable and no faults occur in the plant, in the model of a real plant none of those
presumptions holds true. However, when there occur uncontrollable transitions and
even some errors, the situation changes. Therefore, let us use the LbPN model given
in Figure 21.

The particular sections of the model are denoted by framed badges corresponding
to individual devices.

The marking of the place p1 represents the number of parts (in general α) of the
type Pa1 entering the production line PL1 (the left column of devices in Figure 20),
while the marking of the place p16 represents the number of parts (in general β)
of the type Pa2 entering the production line PL2 (the right column of devices in
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Figure 21. The LbPN model of the real plant with unobservable/uncontrollable transi-
tions

Figure 20). Devices in the central column in Figure 20 – R1, R2 as well as B and
AGV – are common for both production lines. The robot R3 belongs solely to PL1
and R4 solely to PL2.

Formally said, p1 and p16 are fed, respectively, by means of I1 and I2. On the
other hand t15 and t33 feed, respectively, O1 with final products Fp1 and O2 with
final products Fp2. The marking of the place p43 expresses the number of free slots
in B (they should be two minimally).

Places from the set {p33, p34, p38, p39, p46} represent the faulty behavior, i.e. errors.
They are marked only if a fault has occurred. Transitions t18, t36, t37, t38, filled in the
black color, model (by means of their firing) occurrence of the failures. Segments
of the PN model containing those faults are demarcated by means of the dashed
rectangles with the vertical dimension being greater than the horizontal dimension.
The transition t18 models a fault of the robot R3 that moves a part from the output
buffer of the machine M1 to the input buffer of the machine M2 instead of putting
it into the buffer B. In the like manner t36 models a fault in the robot R4 that
moves a part from the output buffer of the machine M3 to the input buffer of the
machine M4 instead of to insert it into the buffer B. Finally, t37, t38 model a fault
in the AGV. When AGV is working correctly, a completely finished part exits from
the robotic cell and a new part enters AGV. If a fault occurs in AGV, parts are
not exiting the production lines. Hence, they cannot be replaced by new input
parts.

In the model we can see three kinds of transitions:

1. observable transitions t1, t6, t8, t13, t15, t19, t24, t26, t31, t33, t16, t34, t39. They are
drawn by means of thick lines. The dashed rectangles with the greater width
than their height are added in order to cover also t8 along with t7 and t26 along
with t25;
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2. unobservable but regular transitions t2, t3, t4, t5, t7, t9, t10, t11, t12, t14, t20, t21,
t22, t23, t25, t27, t28, t29, t30, t32. Using the mark ε established in [3] (the Part 1
of this paper), the transitions may be renamed as ε2, ε3, ε4, ε5, ε7, ε9, ε10, ε11,
ε12, ε14, ε20, ε21, ε22, ε23, ε25, ε27, ε28, ε29, ε30, ε32, respectively. They are drawn
normally, i.e. by means of thin lines;

3. fault transitions t18, t36, t37, t38. They are filled in by black colour.

The LbPN model has 46 places and 39 transitions. Because of the great number
of places and transitions, and rather complicated structure, the RT/RG may have
the extensive number of nodes (i.e. reachable states of the model from a given initial
state) depending on the initial state x0. At the initial state displayed in Figure 21 –
i.e., when each of the places p1, p41, p16, p31, p36, p32, p37, p35, p40, p44, p45 possesses
one token and p43 possesses two tokens – the number of nodes is 1640. The RT was
computed in Matlab using the toolbox SPNBOX elaborated in [21]. Consequently,
neither RT nor RG can be displayed here because of insufficient space.

It is not easy to compute the RT/RG of such large dimensionality because of
long computational time, sometimes also for the limited capacity of the computer
memory, especially in case of the initial state containing more entering parts –
represented by number of tokens α, β stationed, respectively, in p1, p16 – and/or
the higher capacity of the buffer B represented by the number of tokens stationed
in p43.

Suppose that each robot is equipped with a sensor. Thus, it always can be
observed whether the robot grasps a part (e.g. from a belt) and/or inserts it (e.g.
into a machine or B) or not. Taking [3] into account, in LbPN the term L = L ∪ ε
is an alphabet representing a finite set of events, where L represents observable
events and ε represents unobservable events. In our case in particular, we can set
for observable transitions the following:

1. for R1 L(t1) = a and L(t19) = e;

2. for R2 L(t13) = c and L(t31) = l;

3. for R3 L(t6) = L(t8) = L(t16) = b;

4. for R4 L(t24) = L(t26) = L(t34) = g;

5. providing that it is possible to observe each time when a part is moved by the
AGV, also L(t15) = L(t33) = L(t39) = d.

The robot R1 always starts taking one part from the first production line. Having
denoted (see above) the number of tokens in p1 as α, while the number of tokens in
p16 as β, we can analyze the LbPN model behaviour in detail.

All cases in which α = 0 present only one node corresponding to M0. Moreover,
all cases in which β = 0 present 19 nodes in RG.

For α 6= 0 and β 6= 0 many of states occur in RG. For example for initial state
where p1 = 1, p16 = 1, p31 = 1, p32 = 1, p35 = 1, p36 = 1, p39 = 1, p40 = 1, p41 = 1,
p43 = 2, p44 = 1, p45 = 1, 592 nodes occur in RG. However, it is valid for cases
without failures.
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When the failures occur in the model, the situation is changed. For example
when p1 = 1, p16 = 0, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1, p38 = 1, p39 = 1,
p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1, p46 = 1 the number of RG nodes is 1266.
When p1 = 0, p16 = 1, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1, p38 = 1, p39 = 1,
p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1, p46 = 1 the number of RG nodes is 19.

However, in case when p1 = 0, p16 = 1, p31 = 1, p32 = 1, p33 = 1, p35 = 1,
p36 = 1, p37 = 1, p38 = 1, p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1 the number
of RG nodes is 10, for p1 = 1, p16 = 0, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1,
p37 = 1, p38 = 1, p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1 the number of RG nodes
is 516.

But, for p1 = 1, p16 = 1, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1, p37 = 1,
p38 = 1, p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1 the number of RG nodes is 2 904,
for p1 = 2, p16 = 1, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1, p37 = 1, p38 = 1,
p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1 the number of RG nodes is 20 356.

For greater α, β the numbers of RG nodes reach tens thousands, even hundred
thousands.

Because PL1 is perfectly symmetric with PL2, the number of RG nodes does
not change by altering α with β.

Local Summary. In [22] the observation of events is considered as outputs in
most problem settings, such as state estimation and fault diagnosis. Some au-
thors, e.g. [18, 20], consider an extended LbPN model enriched with state obser-
vations. It is assumed there that the token content in some places of the net is
measurable. Such understanding of the extension of LbPN is named as Interpreted
PN (IPN). It is suitable especially for technical applications, as shown in the Sec-
tion 4.

However, in [20] we can see that such a type of LbPN can always be converted
into an equivalent standard LbPN by a suitable re-definition of the transition labels,
and hence the LbPN-based models and the IPN-based models have the same mod-
eling power. In spite of this it is interesting and useful to utilize the IPN models
along with the LbPN models. In general, the scope of LbPN abilities seems to be
a little wider than that of IPN because LbPN are suitable also for the fault diagnosis
and state estimation (as it was pointed out in this Section). Although both of the
approaches are very suitable for analysing and modelling DES containing nondeter-
minism (as it was demonstrated above), the successful applicability of both kinds of
PN (i.e. IPN and LbPN) in the supervisor synthesis may be limited by the complex-
ity of the modelled plant (and especially by the consecutive complexity of its PN
model). Namely, the so called curse of dimensionality well known in respect of the
Bellman’s dynamic programming [2] is, unfortunately, in force also in many other
cases including the computation and analysis of RT/RG in PN at the supervisor syn-
thesis. This is generally true for the PN-based control synthesis utilizing RT/RG
and it has nothing to do with the convenience of the IPN and LbPN applicability
to DES with nondeterminism.
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In case of the estimation of the LbPN marking, the representative markings and
corresponding representative marking graphs are defined [12] in order to find the
consistent markings. The consistent marking set consists of all markings that are
reachable from initial marking by firing some sequences whose observation is a word
(a sequence of transitions being consecutively fired). In [13] the PN reachability
problem is analyzed by means of defining the basis marking. There, the set T of PN
transitions is partitioned into two subsets – the explicit and implicit transitions. The
subset of implicit transitions does not contain directed cycles. The reachability set
obtained by firing of implicit transitions is created by a subset of reachable markings
called basis makings. Consequently, the basis reachability graph (BRG) can be
obtained by means of the efficient algorithm presented just in [13]. It is suitable for
bounded PN and after an extension also for unbounded PN. For unbounded PN the
newest approach to computing basis coverability graph (BCG) is presented in [10].
Such approaches help to reduce an enormity (hugeness) of RT/RG sometimes also
exponentially – see [10].

To avoid the problem with the huge RT/RG at the DES control synthesis by
means of PN, also the theory of regions – see e.g. [16, 8, 9, 1, 23, 17, 14] – can be
used. Consider the labelled transition system given as a tuple (S,L, T→), where S is
a set of states, L is a set of labels and T→ is a set of labelled transitions. A region r
of such transition system is a mapping assigning to each state s ∈ S a number σ(s)
(natural number for P/T PN, binary number for some event structures) and to each
transition label ` a number τ(`) such that consistency condition σ(s′) = σ(s) + τ(`)
holds whenever (s, `, s′) ∈ T→. So, a region r corresponds to a place of the Petri net
which we would like to associate with a given step transition system. Consequently,
the PN structure is, of course, enriched in such a way. This makes possible to find
a more favourable structure in comparison with the original one. However, this topic
is out of the scope of this paper.

6 ILLUSTRATIVE EXAMPLE OF ANOTHER KIND
OF NONDETERMINISM IN FMS

Let us introduce, exclusively for illustration, another situation in complicated FMS
leading to the nondeterminism. It concerns the problems occurring at sharing re-
sources in a plant during cooperation of its subsystems. In FMS such systems are
named as Resource Allocation Systems (RAS).

There are frequently used the systems of simple sequential processes with resour-
ces (S3PRs) in FMS. In such systems the part being produced uses only one copy
of one resource at each processing step. Such systems create a subclass of a higher
(upper) class S∗PRs [24, 7] where more copies of one resource are allowed. Consider
the production system with the principal scheme given in Figure 22 performing the
production routing with the scheme given in Figure 23.

Here, M1–M4 are four machine tools each using some of the four sets of cut-
ting/surfacing tools h1–h4. Three robots R1–R3, being the crucial devices, serve
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Figure 22. The scheme of the RAS plant

Figure 23. The production routing scheme of the RAS plant

these machines as well as buffers B1, B2, the input and output belts I1, I2 and
O1, O2. The symbol Mi(hj/hk) in the routing scheme in Figure 23 means that the
machine Mi uses the tools from the sets hj and hk, namely at first the tool from hj
and then the tool from hk.

In the PN terminology, the resource(s) can be understood in a wider sense – e.g.,
in our case the instantaneous availability of a machine (because it can be either idle,
i.e. available for an interested device, or not), cutting/surfacing tool, robot, buffer,
etc.

The principle of PN model of a resource can be illustrated by means of Figure 24.
In general, two or more production lines working as parallel processes sharing com-
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mon resources, bring problems of different kinds to be solved, especially deadlocks
because of a lack of resources in one or more of the processes. The simplest case of
a resource is illustrated in Figure 24 left, while two simple parallel processes with
common resource(s) are given in Figure 24 right. The parallel running of these
processes is impossible when n = 1 while it is possible when n > 1.

Figure 24. Resorce(s). In case of S3PRs n = 1 (left). In case of S∗PRs n > 1 (right).
Here, two parallel processes share the common resource(s). When n = 1 the simultaneous
using of the resource by the upper process and lower one is mutually excluded. However,
for n > 1 both processes can run simultaneously.

The PN model of the RAS plant is displayed in Figure 25.
In general, the symbol px |= Dy means that a place px models the activity of

a device Dy. Then, in the PN model the following relations between PN places and
the FMS devices are actual: p6 |= M1, p9 |= B1, p10 |= M2, p17 |= B2, p19 |= M4,
p21 |= R1, p22 |= h1, p23 |= h3, p24 |= M3, p25 |= R2, p26 |= h4, p27 |= h2,
p28 |= R3.

This model corresponds to the situation when all resources are reliable. At the
given initial state x0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 2, 10, 4, 0, 2, 10, 1, 2, 2, 2, 0, 1, 2, 2,
1, 0)T there exist 63 469 reachable states – e.g. the last of them is x63439 = (0, 0, 2, 1, 1,
1, 0, 0, 2, 0, 1, 3, 0, 2, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2)T . For that reason, neither
RT/RG nor the reachability matrix (containing state vectors being RT/RG nodes
as its columns) cannot be introduced here.

In case of the unreliable resources the situation is more complicated. The PN
model of such a case is given in Figure 27. Here, in comparison with Figure 25
five sub-nets represented by the dashed boxes are added. Namely, any unreliable
resource has to be equipped by an additional place which represents waiting for the
recovery of the resource failure. The scheme of such a sub-net is given in Figure 26.
The dashed boxes in Figure 27 represent just such sub-nets. Of course, the model
itself is not able to deal with such a nondeterminism. The recovery consists in the
renewal of the state of resources.

As it follows from Figure 26 and especially from the dashed sub-nets in Figure 27,
no transition having pu as its input place (i.e. t9, t12, t13, t25, t27) cannot be fired
during the occurrence of the rest of the corresponding breakdown. Any supervisor
being synthesized for such a PN model has to respect this rule. Namely, the token
in pw (i.e. p2, p6, p12, p20, p29) cannot be returned to pu (i.e. p3, p5, p13, p16, p28)
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Figure 25. The PN model of the RAS plant with multiple resources equipped with the
waiting places Pw, w = 2, 6, 12, 20, 29 waiting for the error recovery of unreliable resources

Figure 26. Unreliable resource x is represented by the place pu, while the place pw repre-
sents the process of waiting for the recovery. Transitions ts and tf represent, respectively,
the start and finish of the waiting.
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Figure 27. The PN model of the plant with multiple resources

until all faults related to pu are corrected. The corrections have to be performed by
error recovery subsystems.

Local Summary. The plant (FMS of a kind RAS) being the DES consists of
a set of versatile resources i.e. machine tools, robots, buffers, cutting/surfacing
tools, etc. Usually, there is a limited number of such resources shared by the
plant sub-processes. Consequently, a lot of deadlocks can originate for this rea-
son. Of course, deadlocks in FMS are undesirable, and highly unfavorable. Namely,
the entire plant or at least a part of it remains stagnate and the primal inten-
tion of the production cannot be achieved. Such a situation can also be under-
stood to be a form of nondeterminism, which is very unsafe. The recovery of re-
source failures is very complicated in this case. A fault-tolerant supervisor able
to handle resource failures has to be used in order to resolve deadlocks, e.g. the
Banker’s algorithm [6] or its newer modifications. Another approaches to removal
of deadlocks can be used as well – e.g. the supervisor based on PN siphons [25, 11,
19].
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The error recovery of this kind of FMS (i.e. ARS) is out of the focus of this
paper. However, dealing with such a problem may be an idea for further research
in the DES containing nondeterminism.

7 CONCLUSION

This paper is a continuation of the paper [3]. It represents the Part 2 of the paper [3]
being the Part 1. Both parts are inseparable components of one topic. While in [3]
the different kinds of PN (especially P/T PN, timed PN, controlled PN, labelled PN,
interpreted PN) were described and their applicability for DES modelling, analysis
and control were indicated, the Part 2 brings more examples and case studies from
PN-based modelling FMS and transport systems with nondeterminism.

The main aim of the article was to apply the results of article [3] particularly
on more kinds of DES with the nondeterminism of different types. Some essential
preliminaries were introduced at the beginning. Then, the particular topics were
discussed. At first, the nondeterminism resulting from unobservable/uncontrollable
transitions and/or unobservable (unmeasurable) places of PN-based models was
dealt with. The ideal and real enforceability of control interferences were confronted
in the example. After that, the problem of the error recovery was analyzed and two
case studies on error recovery in real systems were introduced – namely, the case
of the segment of the robotic cell of FMS and the segment of the transport system
(the railroad crossing). Next, the case study on the error recovery of the complete
robotic cell by means of IPN-based model was introduced. Afterward, the case
study on the error recovery of another complex FMS by means of the LbPN-based
model was presented. After all, the example of the specific kind of nondeterminism
in the special kind of FMS – RAS (Resource Allocation Systems) was introduced
for illustration.

The case studies and examples bear witness to applicability of PN in general,
and especially IPN and LbPN, on dealing with nondeterminism in PN models of
DES.

Because the local summaries were introduced at the end of the particular sec-
tions, they need not to be repeated here.
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