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Abstract. Meta-heuristics utilizing numerous parameters are more complicated
than meta-heuristics with a couple of parameters for various reasons. In essence,
the effort expected to tune the strategy-particular parameters is far more promi-
nent as the quantity of parameters increases and furthermore, complex algorithms
are liable for the presence of further parameter interactions. Jaya meta-heuristic
does not involve any strategy-specific parameters and is a one-stage technique. It
has demonstrated its effectiveness compared to major types of meta-heuristics and
it introduces various points of interest, such as its easy deployment and set-up in
industrial applications and its low complexity to be studied. In this work, a new
meta-heuristic, Enhanced Jaya (EJaya) is proposed to overcome the inconsistency
of Jaya in diverse situations, introducing coherent attraction and repulsion move-
ments and restrained intensity for flight. Comparative results of EJaya in a set
of benchmark problems including statistical tests show that it is feasible to in-
crease the accuracy, scalability and exploitation capability of Jaya while keeping its
specific parameter-free feature. EJaya is especially suitable for a priori undefined
characteristics optimization functions or applications where the set-up time of the
optimization process is critical and parameters tuning and interactions must be
avoided.
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1 INTRODUCTION

Meta-heuristics, in their genuine definition, are solution techniques that organize
an association between local solution methods and more complex methodologies
to make a procedure able to escape from local optima and playing out a vigor-
ous inquiry of a solution space [8]. Over time, these techniques have incorporated
new methodologies to avoid getting trapped on local optima in complex search
spaces, particularly those strategies that use at least one neighbourhood structure
as a method for characterizing permissible movements to change from a solution to
the next, or to implement or destroy solutions in diverse applications.

Some instruments and strategies that have risen up out of research in meta-
heuristic techniques have ended up being surprisingly viable, to such an extent that
meta-heuristics have moved into the spotlight lately as a favoured line of assault for
facing numerous sorts of complex issues, especially those of a combinatorial nature,
for example, optimization in robotics [16], cloud and grid computing [6, 7], energy
consumption [3], bioinformatics [18], manufacturing planning and scheduling [27],
image processing [17], filter modelling [1], etc. While meta-heuristics cannot confirm
the optimal character of their solutions, exact methods (which hypothetically can
give such an accreditation, if permitted to run long enough) have generally demon-
strated to be unable to discover solutions whose quality is near of that provided
by the main meta-heuristics, especially for real-world applications, which frequently
present a more complex nature. Additionally, a portion of the more effective uses
of exact techniques has come to fruition with consolidating meta-heuristic method-
ologies inside them. These results have propelled further research and utilization of
novel and enhanced meta-heuristic procedures.

It is known that there does not exist a single strategy to achieve the more ef-
ficient solution for all optimization problems, also explained as the no “free lunch”
theorems for optimization [24], and since the characteristics of the problems at hand
are unknown a priori in many real applications, the selection of the optimization
strategy could be arbitrary. Nevertheless, even considering that the selected strat-
egy is the most suitable for the problem in hand, generally a tuning process must be
considered to adjust the value of its control parameters, what delays or even makes
not feasible the consideration of optimization processes to increase the system’s effi-
ciency. All meta-heuristics are probabilistic strategies that make use of basic control
parameters such as population size, number of dimensions, etc. Beyond the regular
control parameters, most strategies use particular control parameters. In this way,
Genetic Algorithms (GA) consider mutation, crossover and selection rates [8, 9, 28],
Particle Swarm Optimization (PSO) requires the specification of inertia weight, so-
cial and cognitive controlling factors [10, 13], Artificial Bee Colony (ABC) [11, 12]
must define the amount of onlooker, employed and scout bees and also, a bound fac-
tor, Harmony Search (HS) makes use of memory and pitch adjusting rates, and the
amount of improvisations. Likewise, different algorithms, for example, Differential
Evolution (DE), Heat Transfer Search (HTS), Biogeography-Based Optimization
(BBO), Adaptive Segregational Constraint Handling Evolutionary Algorithm (AS-
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CHEA), etc., require the tuning of strategy-particular parameters [8, 19, 20, 23]. The
tuning of the strategy-particular parameters is an exceptionally significant aspect
which highly influences the successful execution of most meta-heuristics. An inef-
ficient tuning of strategy-particular parameters either increases the computational
cost or offers local optimal solutions. Henceforth, if two meta-heuristics generate
comparable results but, however, one is fundamentally less complex than the other,
then the simplest is a better strategy [8]. Less complex algorithms have various
points of interest, including being easy to deploy and set up in an industrial setting
and being less complex to be studied.

Jaya [20] is an extremely simple algorithm, whose main virtue is given by the
fact that it is not necessary to configure any control parameter to make it work
beyond the own associated to the problem to be solved (e.g., delimitation of the
search space, number of variables, fitness function, etc.), which makes it especially
suitable for problems where characteristics are unknown a priori. Jaya efficiency
has been tested in a diverse test-bed of benchmark functions [20] and the outcomes
have been compared to the accomplishments of major types of algorithms, such
as GA [9], PSO [13], DE [23], ABC [11] and recent simple meta-heuristics such as
Teaching-Learning-Based Optimization (TLBO) [2, 21]. Results show the satisfac-
tory performance of Jaya in a wide range of optimization problems and statistical
tests additionally accredit the success of this technique. As stated before, there may
not exist a better algorithm for all different types of applications, but Jaya emerges
as a competitive strategy to be considered in the field of optimization. What can
be stated with certainty is that Jaya is a strategy easy to implement, it requires no
strategy-particular parameters and it gives the optimal solutions with slightly less
time complexity and exactly the same computational complexity than major types
of meta-heuristics such as the ones cited above. Thus, the optimization research
community is urged to make changes to Jaya in a way that the strategy can turn
out to be a great deal more accurate with a more efficient performance [20].

In this work, Jaya is redefined and the new proposal is called EJaya. EJaya over-
comes Jaya inconsistency in diverse conditions through the introduction of coherent
attraction and repulsion movements and restrained intensity for flight. The pro-
posal is tested considering a wide range of benchmark problems from the Congress
on Evolutionary Computation (CEC) [15]. The field of meta-heuristics, included
within what is known as Evolutionary Computation, has its own space within CEC
annually where the latest developments are discussed on this matter and a number
of objective functions or benchmark functions to be optimized by meta-heuristics
algorithms are presented as well as modifications to traditional functions in opti-
mization problems, each with a number of features that have different impacts on
the performance of meta-heuristics. Thus, benchmark functions from the CEC for
the single objective real-parameter numerical optimization 2014 [15] are considered
to test the enhanced strategy performance. Results including statistical tests show
that it is feasible to increase the accuracy, scalability and exploitation capability
of Jaya while keeping its control parameter-free feature, what makes it especially
suitable for a priori undefined characteristics optimization functions or applications
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where the set-up time of the optimization is critical and tuning and interactions of
parameters must be avoided.

This paper is organized as follows. In Section 2, an analysis of the complexity
of meta-heuristics and related works are presented. Next, the fundamentals and
accomplishments of Jaya are presented in Section 3 and the proposed meta-heuristic
EJaya is explained in Section 4. In Section 5, the experimental results are presented
and discussed and finally, in Section 6, the main conclusions of the work are drawn.

2 BACKGROUND

Various measures of complexity exist for meta-heuristics [8]. Some measurements
incorporate the quantity of phases of pseudo-code expected to depict the strategy or
the quantity of lines of program expected to execute the meta-heuristic. In any case,
this kind of measurements are not especially helpful, as they differ in the light of
the programming language, the style and the level of the description of the pseudo-
code. A more relevant measure for the complexity nature of a meta-heuristic is
the quantity of parameters utilized as a part of the strategy. Parameters can be
defined as the adaptable factors of a meta-heuristic that can be tuned to adjust its
execution. They can be specified statically (e.g., selection rate of 0.4) or depending
on the specific case (e.g., selection rate of 0.01 n, where n is the number of variables
to be optimized for each individual in the population). In both of these cases, the
steady estimation of the parameter or its relation to other factor in the problem in
hand must be specified a priori by the strategy designer.

Most sorts of algorithms consider various specific parameters to be determined
before their execution.

Table 1 presents fundamental parameters required for main types of strategies.
Although these are just examples to show some typical specific parameters in vari-
ous sorts of algorithms, most meta-heuristics need a diverse amount of parameters.
For example, Tabu Search (TS) technique can only have one parameter, the Tabu
rundown length. Nevertheless, in [26] TS in the vehicle routing issue utilizes 32 pa-
rameters. Similarly, algorithms can require less than the “base” amount of param-
eters by joining parameters with similar esteem. For example, the GA strategy for
the spanning tree problem [25] utilizes only one specific parameter, which lets both
control the population size and fix the end criteria.

Meta-heuristics utilizing numerous parameters present further complexity than
the methodologies with a couple of parameters for various reasons. To begin with,
the cost expected to set up and comprehend a wide set of parameters is far more
prominent as the quantity of parameters increases. A brute force strategy aiming to
tune m parameter values for each of the n parameters in the problem in hand, must
test mn combinations for each problem instance. Let us consider that three values
can be assigned to each parameter of a strategy which requires the use of two pa-
rameters and seven parameters. In the first case, this would mean 9 evaluations and
in the second case, 37 = 2 187. If this number could be considered viable, the eval-
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Meta-Heuristics Specific Control Parameters

Genetic Algorithms Mutation probability
Crossover probability
Selection operator

Particle Swarm Optimization Inertia weight
Social parameter
Cognitive parameter

Differential Evolution Mutation rate
Recombination rate

Artificial Bee Colony Onlooker bees
Employed bees
Scout bees
Limit

Harmony Search Distance bandwidth
Memory size
Pitch adjustment rate
Rate of choosing from memory

Table 1. Specific control parameters for major types of meta-heuristics

uations required for a 32 parameter meta-heuristic, 332 = 1 853 020 188 851 841, are
not feasible in most real-world applications. Moreover, the number of possibilities
for strategies with a higher number of parameters increases exponentially, making
the set-up of algorithms much harder. Despite the fact that there are approaches
to search for good combinations of parameters, the number of options still increases
with the quantity of parameters, which means that the set up is much more trou-
blesome. Greater quantities of parameters additionally make the understanding of
the optimization process much more difficult.

Furthermore, the complexity in setting up it is not the only drawback of complex
meta-heuristics. A major problem is given by the greater possibilities of a vast pa-
rameter set to present complicated parameter interactions. Complex interactions of
parameters can derive in, for example, finding numerous local solutions. In general,
it is proved that the optimization of parameters independently or in small sets is not
effective and the problem becomes harder as the number of parameters increases.
There exist a number of works related to parameter interactions. For example, in [4]
the researchers could appreciate non-trifling interactions in GA considering just three
parameters. It was observed that the adequacy of a given parameter combination
is frequently subject to the problem and functions to be optimized and so, it was
difficult to classify and automatize the analysis of interactions. Thus, it is frequently
extremely hard to keep away from parameter interactions and the level of these in-
teractions increases drastically with the quantity of parameters once again. This has
also aimed research in optimization. The recently presented TLBO [2, 20, 21] and
Jaya [20] meta-heuristics do not use any strategy-particular parameters. However,
it must be noted that TLBO requires two differentiated stages (i.e., educator and
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learner stages), whereas Jaya considers only one stage and thus, it is more straight-
forward to use. Furthermore, as shown in the next section, results for Jaya in a wide
range of benchmark functions provide better results than TLBO.

Hence, considering the relevance of the parameters in the performance of meta-
heuristics, it is important to propose and analyse new ways of reducing the complex-
ity of meta-heuristics while offering good solutions and this work represents a new
effort in this sense.

3 FUNDAMENTALS AND ACCOMPLISHMENTS OF JAYA

Jaya could be defined as a swarm type strategy in which the attraction to the best
local is eliminated and replaced by a repulsion to the worst particle in the popu-
lation [20]. Moreover, the inertial weight of the particles is removed: its value is
fixed to the unity and it is not modified at any time during the execution of the
algorithm. In addition, particles have no memory: they do not keep a record of the
best solution found, neither globally nor locally (i.e., the best position of the swarm
and the best position of the particle, respectively), because the particles do not
move from their position if they do not find a better solution in the next iteration.
Thus, interaction with the best local position of the particle is not considered, but
instead a new relationship is added: a movement of escape from the worst position
within the swarm in the current iteration. On the other hand, the movement of
approach to the best particle in the population is preserved. The intensity of both
movements, attraction and repulsion, depends solely on the distance between the
particle that makes the movement and those that affect it, that is, the best and worst
positions in the swarm, respectively. Hence, there are no adjustment parameters to
tune the exploration of the search space (such as c1 and c2 in most swarm-based
strategies [14]).

Next, the algorithm Jaya is formulated formally. Consider f(x) the objec-
tive function to be optimized, m the number of design factors or variables (i.e.,
j = 1, 2, . . . ,m) and n the population size (i.e., k = 1, 2, . . . , n). Also, consider the
best individual of the population to be the candidate solution obtaining the current
optimal result of f(x) (i.e., f(x)best) and, analogously, the worst candidate to be the
individual obtaining the current optimal result of f(x) (i.e., f(x)worst) in the popu-
lation. If X t

j,k represents the value of the jth factor or variable for the kth solution

during the tth iteration, then this value is modified by following Equation (1):

X t+1
j,k = X t

j,k + r1,j,t
(
X t

j,best − |X t
j,k|

)
− r2,j,t

(
X t

j,worst − |X t
j,k|

)
(1)

where X t
j,best is the value of the jth factor of the best individual, X t

j,worst, is the value

of the jth variable of the worst candidate and X t+1
j,k is the updated value of X t

j,k,

r1,j,t, r2,j,t being random numbers in the range [0, 1]. The term r1,j,t
(
X t

j,best − |X t
j,k|

)
shows the leaning of the candidate to move towards the best solution or attraction
factor AF t

j,k and the term r2,j,t(X
t
j,worst−|X t

j,k|) indicates the leaning of the solution
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to go away from the worst solution or rejection factor RF t
j,k. X t+1

j,k performance
is tested. All particles whose modification represents an improvement in the final
results are kept up and they are considered in the following steps of the strategy.
Jaya algorithm is detailed in Algorithm 1. As observed, the algorithm continuously
tries to get nearer to the best solution and tries to maintain a strategic distance
from the worst solution. Jaya aims to wind up successful in achieving the best
solution and thus, it is named Jaya (i.e., triumph). These characteristics provide
Jaya a strong convergent behaviour mainly due to its large exploration capacities
and the elimination of the possibility for particles to move towards positions offering
worse results than the current solution.

Algorithm 1 Jaya pseudo-code
1: —– Data
2: N: Number of individuals
3: D: Number of dimensions
4: —– Algorithm
5: Population initialization
6: while !end condition do
7: Find (Xt

j,best) and worst (Xt
j,worst) individual in the population

8: for k ¡ N do
9: for j ¡ D do

10: Xt+1
j,k = Xt

j,k + r1,j,t

(
Xt

j,best − |Xt
j,k|

)
− r2,j,t

(
Xt

j,worst − |Xt
j,k|

)
11: end for
12: if Better solution found over particle’s actual solution then
13: Update particle’s solution
14: else
15: Preserve previous particle’s solution
16: end if
17: end for
18: end while

In [20], Jaya is evaluated in a test-bed of well-known benchmark functions in
the optimization literature with diverse features like unimodality and multimodal-
ity, separability and non-separability, regularity and non-regularity, etc., where the
quantity of design factors and their extents are diverse for every case. To assess
the execution of the proposed algorithm based on Jaya in this work, the outcomes
obtained by Jaya are contrasted to the outcomes of diverse optimization meta-
heuristics, such as GA, PSO, DE, ABC and TLBO. This selection of strategies for
comparison considers both the more competitive and well-known strategies (e.g.,
GA, PSO and DE) and the more recent and simple optimization meta-heuristics
(e.g., ABC and TLBO) of those extensively analysed in [20]. Obtained mean results
are reproduced in Table 2 for the diverse strategies.

From Table 2 it is observed that the results of Jaya are either equal or more
accurate than the rest of the strategies in the test-bed. This can be further proved
considering statistical tests. The p-value of Friedman Ranks test of these results is
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f GA PSO DE ABC TLBO Jaya

Sphere 1.11e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

SumSquares 1.48e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Beale 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Easom −1.00e+00 −1.00e+00−1.00e+00−1.00e+00−1.00e+00−1.00e+00

Matyas 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Colville 1.49e−02 0.00e+00 4.09e−02 9.29e−02 0.00e+00 0.00e+00

Trid 6 −4.99e+01 −5.00e+01−5.00e+01−5.00e+01−5.00e+01−5.00e+01

Trid 10 1.93e−01 0.00e+00 0.00e+00 0.00e+00 0.00e+00−2.10e+02

Zakharov 1.33e−02 0.00e+00 0.00e+00 2.47e−04 0.00e+00 0.00e+00

Schwefel 1.2 7.40e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Rosenbrock 1.96e+05 1.50e+01 1.82e+01 8.87e−02 1.62e−05 0.00e+00

Dixon-Price 1.22e+03 6.67e−01 6.67e−01 0.00e+00 6.67e−01 0.00e+00

Foxholes 9.98e−01 9.98e−01 9.98e−01 9.98e−01 9.98e−01 9.98e−01

Branin 3.97e−01 3.97e−01 3.97e−01 3.97e−01 3.97e−01 3.97e−01

Bohachevsky 1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Booth 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Michalewicz 2 −1.80e+00 −1.57e+00−1.80e+00−1.80e+00−1.80e+00−1.80e+00

Michalewicz 5 −4.64e+00 −2.49e+00−4.68e+00−4.68e+00−4.67e+00−4.68e+00

Bohachevsky 2 6.829e−02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Bohachevsky 3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

GoldStein-Price 5.87e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00

Perm 3.02e−01 3.60e−02 2.40e−02 4.11e−02 6.76e−04 0.00e+00

Hartman 3 −3.86e+00 −3.63e+00−3.86e+00−3.86e+00−3.86e+00−3.86e+00

Ackley 1.46e+01 1.64e−01 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Penalized 2 1.25e+02 7.67e−03 2.19e−03 0.00e+00 2.34e−08 0.00e+00

Langerman 2 −1.08e+00 −6.79e−01−1.08e+00−1.08e+00−1.08e+00−1.08e+00

Angerman 5 2.87e−01 2.13e−01 0.00e+00 2.08e−04 1.55e−05−1.24e+00

Langerman 10 −0.63e−01−2.566e−03−1.05e+00−4.46e−01−6.49e−01−6.20e−01

FletcherPowell 5 4.30e−03 1.45e+03 5.98e+00 1.73e−01 2.20e+00 1.59e−04

FletcherPowell 10 2.95e+01 1.36e+03 7.81e+02 8.23e+00 3.59e+01 5.43e−04

Table 2. Comparative results of Jaya with major types of meta-heuristics (mean)

1.475e−06, indicating that there are significant differences between the algorithms
(considering a level of significance of p-value = 0.05). Moreover, in Table 3 the
Friedman Ranks Post-Hoc test for Jaya against GA, PSO, DE, ABC and TLBO
is presented for peer analysis based on data in Table 2. As shown, Jaya algorithm
presents a statistically significant improvement over GA and PSO and no differences
are statistically significant for DE, ABC and TLBO. However, considering that Jaya
is a much simpler algorithm than DE, ABC and TLBO, it can be inferred that
Jaya provides equally good results, but with the difference of its noticeable greater
simplicity. Therefore, it can be said that Jaya is a better algorithm, what justifies
research to reach improvements like the ones presented in this work.
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Also, it is important to highlight that the competitive results of Jaya in com-
parison to major types of optimization algorithms are achieved in fair conditions
in terms of computational effort. As known, the complexity of meta-heuristics can
be measured based on two different criteria. Time and computational complexity.
On the one hand, time complexity is based on the overall time taken by the differ-
ent steps of the algorithm involving the generation of initial population, updating
solution, etc. In short, Jaya is a swarm-type optimization algorithm directly de-
rived from PSO in which the attraction to the best local particle is eliminated and
replaced by a repulsion to the worst particle in the population, and in which the
consideration of the inertial weight in the update of particles and the step for its
modification is removed. Furthermore, particles have no record of the best solution
found and no adjustment parameters (denoted as c1 and c2 in PSO) in most swarm-
based strategies are considered. Hence, as a whole, the total time complexity is
slightly reduced from the canonical PSO in which it is based. On the other hand,
the computational complexity refers to the number of function evaluations required
to achieve the final result. Also, in [20], it is shown that to test the performance of
Jaya compared with the results obtained by the other optimization algorithms such
as GA, PSO, DE, ABC and TLBO it is done considering the exactly same amount
of function evaluations for the different meta-heuristics and the process is repeated
30 times for each algorithm and benchmark function. Thus, the consistency in the
comparison in time and complexity effort is kept in the comparison of the Jaya
algorithm with other meta-heuristics.

Algorithm of Study Comparison Algorithm p-Value

GA 2.137193e−06

PSO 2.527065e−03

Jaya DE 5.230299e−01

ABC 9.147621e−01

TLBO 8.438326e−01

Table 3. Friedman Ranks Post-Hoc test for Jaya and major types of meta-heuristics
(p-values)

4 PROPOSED META-HEURISTIC: EJAYA

From the study of Jaya, two incongruities between its philosophy and its implemen-
tation can be found. Firstly, it is an incoherence associated with the attraction and
repulsion factors that govern the fundamental equation of Jaya, Equation (1), and
secondly, an incoherence related to the intensity of the flight in relation to the dis-
tance to the worst particle. Considering these problems and the benefits associated
with the simplicity of Jaya, two new improvements are proposed in this work. And
the combination of them has resulted in the proposed strategy named EJaya.
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4.1 Coherent Attraction and Repulsion Factors

In certain situations, it is possible that the design of Jaya goes against its own phi-
losophy: particles are attracted to the worst solution of the population and repulsed
of the best individual of the population. As explained in the previous section, Jaya
is designed to attract particles, X t

j,k, to the best particle found, X t
j,best, and move

them away from the worst particle found, X t
j,worst, as indicated in Equation (1).

However, derived from the analysis of its mathematical formulation, conditions may
appear where the opposite behaviour, i.e., a departure from the best particle or an
approach to the worst particle, may take place. As can be seen, both the attraction
and repulsion factors in Equation (1) involve the absolute value of the position of
the moving particle and this caused diverse incongruent situations. In case X t

j,k¡
0 and |X t

j,k| > |X t
j,best|, the proposed attraction factor moves the particle away

from the overall best one. The same applies to the second part of the equation, in
which a movement of rapprochement to the worst particle is suggested if X t

j,k¡ 0 and
|X t

j,k| > |X t
j,worst|.

In Table 4, we have presented four examples (i.e., cases A-D) of different sit-
uations where Jaya is wrong in its formulation to achieve its goal. Specifically,
a particle X t

k focusing in dimension j = 5 is considered in all cases for simplic-
ity (X t

5,k). In case A, the studied conditions are X t
j,k¡ 0, |X t

j,k| > |X t
j,best| and

X t
j,best < 0 when j = 5. In this case it can be deduced that being X t

5,k = −9
and X t

5,best = −6, the attraction factor or Jaya term inducing an approach to the

best particle, AF t
5,k = +r1,j,t

(
X t

5,best − |X t
5,k|

)
, should give a positive value to let an

approach of X t
5,k to X t

5,best.

However, the attraction factor given by Jaya provides a negative attraction
factor, AF t

5,k = −15 · r1,j,t , which would result in a departure from the best particle
when it should be an approach to it. On the other hand, case B corresponds to the
situation where X t

j,k¡ 0, |X t
j,k| > |X t

j,worst| and X t
j,worst < 0 when j = 5 . Considering

X t
5,k = −9 and X t

5,worst = −4 the factor inducing the particle to move away from the

worst particle or repulsion factor, RF t
5,k = −r2,j,t

(
X t

5,worst − |X t
5,k|

)
, should provide

a positive value to increase the distance. However, as can be seen, a positive value
for the repulsion factor is obtained, RF t

5,k = 13 · r2,j,t > 0, leading to an approach
to the worst particle X t

j,worst. Case C corresponds to the situation where X t
j,k¡ 0,

|X t
j,k| > |X t

j,best| and X t
j,best > 0 when j = 5. In this case X t

5,k = −9 and X t
5,best = 5,

therefore, in this case the attraction factor AF should be positive in order to attract
particle X t

5,k to X t
5,best but instead AF t

5,k = −4 · r1,j,t < 0. Finally, an example of
the situation presented when X t

j,k¡ 0, |X t
j,k| > |X t

j,worst| and X t
j,worst > 0 for j = 5, is

shown in case D. In this case, the RF should be negative to achieve a repulsion of X t
5,k

from X t
5,worst. However, once again, the original algorithm in this situation would get

the opposite effect, i.e., an approach to the worst particle, since RF t
5,k = 6 ·r2,j,t > 0.

Hence, from these examples it can be understood that although Jaya is designed
to approach particles to the best current solution and escape from the worst existing
solution in the population, the equation of motion that governs Jaya does not always
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Xt
k = [2 7 4 8 − 9 1 3 4 6]⇒ Xt

5,k = −9

Case A: Xt
j,k < 0, |Xt

j,k| > |Xt
j,best|, Xt

j,best < 0

Xt
best = [8 1 3 4 − 6 7 2 3 1]⇒ Xt

5,best = −6

Xt
5,best − |Xt

5,k| = −6− 9 = −15

AF t
5,k = +r1,j,t

(
Xt

5,best − |Xt
5,k|

)
= −15 · r1,j,t; r1,j,t ∈ [0, 1]

AF t
5,k = −15 · r1,j,t < 0

⇒ AF t
5,k should be > 0 to attract Xt+1

5,k to Xt
5,best

Case B: Xt
j,k < 0, |Xt

j,k| > |Xt
j,worst|, Xt

j,worst < 0

Xt
worst = [2 5 7 2 − 4 9 8 5 9]⇒ Xt

5,worst = −4

Xt
5,worst − |Xt

5,k| = −4− 9 = −13

RF t
5,k = −r2,j,t

(
Xt

5,worst − |Xt
5,k|

)
= 13 · r2,j,t; r2,j,t ∈ [0, 1]

RF t
5,k = 13 · r2,j,t > 0

⇒ RF t
5,k should be < 0 to move away Xt+1

5,k fromXt
5,worst

Case C: Xt
j,k < 0, |Xt

j,k| > |Xt
j,best|, Xt

j,best > 0

Xt
best = [8 1 3 4 5 7 2 3 1]⇒ Xt

5,best = 5

Xt
5,best − |Xt

5,k| = 5− 9 = −4

AF t
5,k = +r1,j,t

(
Xt

5,best − |Xt
5,k|

)
= −4 · r1,j,t; r1,j,t ∈ [0, 1]

AF t
5,k = −4 · r1,j,t < 0

⇒ AF t
5,k should be > 0 to attract Xt+1

5,k to Xt
5,best

Case D: Xt
j,k < 0, |Xt

j,k| > |, Xt
j,worst > 0

Xt
worst = [2 5 7 2 3 9 8 5 9]⇒ Xt

5,worst = 3

Xt
5,worst − |Xt

5,k| = 3− 9 = −6

RF t
5,k = −r2,j,t

(
Xt

5,worst − |Xt
5,k|

)
= 6 · r2,j,t; r2,j,t ∈ [0, 1]

RF t
5,k = 6 · r2,j,t > 0

⇒ RF t
5,k should be < 0 to move away Xt+1

5,k from Xt
5,worst

Table 4. Incoherent cases in Jaya (A-D)
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meet the premise of the algorithm. According to the sign and relative position of
each particle to the best and worst particles in the population, situations occur in
which the particles go far away from the leader and closer to the worst individual,
as studied in the previous examples. Alternatively, in this paper we have proposed
to eliminate the absolute values of the equation of motion of Jaya, formulating it in
the following terms:

|X t
j,k| → X t

j,k,

X t+1
j,k = X t

j,k + r1,j,t
(
X t

j,best −X t
j,k

)
− r2,j,t(X

t
j,worst −X t

j,k).
(2)

This change ensures that regardless of X t
j,k is greater or lower than 0, X t

j,best or
X t

j,worst are greater or lower than 0 and |X t
j,k| is greater or lower than |X t

j,best| or
|X t

j,worst|, a coherent attraction AF t
j,k or coherent repulsion RF t

j,k is obtained. In
Table 5, the new values obtained considering the adopted solution in the cases A-D
(Table 4) are presented. As can be seen, in all the cases the proposed amendment
manages to offer a coherent response to the value of the particles. Thus, this first
variant, Convergent Jaya (CJaya), allows to enhance the convergence of the original
algorithm slightly sacrificing its ability to explore.

4.2 Restrained Intensity for Flight

If Equation (2) is analysed, it could be observed that the flight movement, governed
by |X t

j,worst−X t
j,k|, wins intensity when the distance is longer to the worst particle,

which gives rise to contradictory situations: when a particle is close to the overall
worst, it moves away from it very slowly, while if it is far from it, it will move
away very quickly. In addition, the first proposed variant of Jaya (CJaya), can still
lead to situations in which each individual can see its approach to the best particle,
whose intensity is governed by |X t

j,best − X t
j,k|, diminished by the presence of the

worst particle. This problem can be analysed considering the example presented in
Table 6, case E. In case E, it can be observed that the escape movement of particle
X t

5,k = −900 from the worst particle X t
5,worst = 40 000 is more intense than the

attraction movement of the particle X t
5,k = −900 to the best X t

5,best = −6, although
it is much farther away from the worst particle. That is, when |X t

j,best − X t
j,k| <

|X t
j,worst−X t

j,k| (in this particular case 894 ¡ 40900) the flight movement overshadows
the approach towards the best particle. In case E, it is shown that after the proposed
movements of approach and flight, the resulting particle, X t+1

5,k = −20 012, is farther
from the best particle X t

5,best = −6 than before carrying out such operations. As
can be inferred, it is incoherent that moving a particle away from a bad distant
individual can harm its approach to a good nearby solution.

Hence, this work also proposes to perform a moderate flight movement that
takes into account a balance between attraction and repulsion between particles.
The second variant of the proposal (EJaya) raises the same equation of motion
that the first variant (CJaya), Equation (2), but it performs an additional checking
of the movement of the particles. Specifically, to prevent the approach to the best
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Xt
k = [2 7 4 8 − 9 1 3 4 6]⇒ Xt

5,k = −9

Solved case A: Xt
j,k < 0, |Xt

j,k| > |Xt
j,best|, Xt

j,best < 0

Xt
best = [8 1 3 4 − 6 7 2 3 1]⇒ Xt

5,best = −6

Xt
5,best −Xt

5,k = −6 + 9 = 3

AF t
5,k = +r1,j,t

(
Xt

5,best −Xt
5,k

)
= 3 · r1,j,t; r1,j,t ∈ [0, 1]

AF t
5,k = 3 · r1,j,t > 0

⇒ AF t
5,k attracts Xt+1

5,k to Xt
5,best

Solved case B: Xt
j,k < 0, |Xt

j,k| > |Xt
j,worst|, Xt

j,worst < 0

Xt
worst = [2 5 7 2 − 4 9 8 5 9]⇒ Xt

5,worst = −4

Xt
5,worst −Xt

5,k = −4 + 9 = 5

RF t
5,k = −r2,j,t

(
Xt

5,worst −Xt
5,k

)
= −5 · r2,j,t; r2,j,t ∈ [0, 1]

RF t
5,k = −5 · r2,j,t < 0

⇒ RF t
5,k moves away Xt+1

5,k from Xt
5,worst

Solved case C: Xt
j,k < 0, |Xt

j,k| > |Xt
j,best|, Xt

j,best > 0

Xt
best = [8 1 3 4 5 7 2 3 1]⇒ Xt

5,best = 5

Xt
5,best −Xt

5,k = 5 + 9 = 14

AF t
5,k = +r1,j,t

(
Xt

5,best −Xt
5,k

)
= 14 · r1,j,t; r1,j,t ∈ [0, 1]

AF t
5,k = 14 · r1,j,t > 0

⇒ AF t
5,k attracts X

t+1
5,k to Xt

5,best

Solved case D: Xt
j,k < 0, |Xt

j,k| > |, Xt
j,worst > 0

Xt
worst = [2 5 7 2 3 9 8 5 9]⇒ Xt

5,worst = 3

Xt
5,worst −Xt

5,k = 3 + 9 = 12

RF t
5,k = −r2,j,t

(
Xt

5,worst −Xt
5,k

)
= −12 · r2,j,t; r2,j,t ∈ [0, 1]

RF t
5,k = −12 · r2,j,t > 0

⇒ RF t
5,k moves away Xt+1

5,k from Xt
5,worst

Table 5. Incoherent cases in Jaya solved with the first improvement of EJaya (CJaya)
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Xt
k = [2 7 4 8 − 900 1 3 4 6]⇒ Xt

5,k = −900

Xt
best = [8 1 3 4 − 6 7 2 3 1]⇒ Xt

5,best = −6

Xt
worst = [2 5 7 2 40 000 9 8 5 9]⇒ Xt

5,worst = 40 000

r1,j,t = r2,j,t = 0.5

Case E: |Xt
j,best −Xt

j,k| < |Xt
j,worst −Xt

j,k|

Xt
5,best −Xt

5,k = −6 + 900 = 894

Xt
5,worst −Xt

5,k = 40 000 + 900 = 40 900

Xt+1
5,k = Xt

5,k + r1,j,t(X
t
j,best −Xt

5,k)− r2,j,t(X
t
j,worst −Xt

5,k)

= −9 + r1,j,t · 894− r2,j,t · 40 900 = −20 012

⇒ Xt+1
5,k moves away from Xt

5,best

Table 6. Incoherent cases in Jaya (E)

particle being eroded by the distance to the worst particle, a check of the movements
of attraction and repulsion for each dimension is included, in a way that if the
movement of repulsion is greater than the movement of attraction, the movement
of repulsion is halved in consecutive iterations (bisection technique or binary-search
method) until its magnitude is lower than the movement of attraction, avoiding
oscillations of particles in problems with numerous dimensions. Analytically:

while |X t
j,best −X t

j,k| < |X t
j,worst −X t

j,k|

|X t
j,worst −X t

j,k| =
|Xt
j,worst−Xt

j,k|
2

end

X t+1
j,k = X t

j,k + r1,j,t
(
X t

j,best −X t
j,k

)
− r2,j,t

(
X t

j,worst −X t
j,k

)

In Table 7, the results of applying EJaya for case E are presented.

It can be observed that when the movement of flight is moderated in relation
to the movement towards the best particle, a departure from the worst particle,
X t

5,worst = 40 000, can be achieved simultaneously to an approximation to the best

one, X t
5,best = −6, being the resulting solution X t+1

5,k ' 118.4687 instead of X t+1
5,k =

−20 012, which was obtained by only applying the first improvement of Jaya, CJaya.
The pseudocode of EJaya is shown in Algorithm 2.
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Xt
k = [2 7 4 8 − 900 1 3 4 6]⇒ Xt

5,k = −900

Xt
best = [8 1 3 4 − 6 7 2 3 1]⇒ Xt

5,best = −6

Xt
worst = [2 5 7 2 40 000 9 8 5 9]⇒ Xt

5,worst = 40 000

r1,j,t = r2,j,t = 0.5

Solved case E: |Xt
j,best −Xt

j,k| < |Xt
j,worst −Xt

j,k|

Xt
5,best −Xt

5,k = −6 + 900 = 894

Xt
5,worst −Xt

5,k = 40 000 + 900 = 40 900

while |Xt
5,best −Xt

5,k| < |Xt
5,worst −Xt

5,k| ⇒

|Xt
j,worst −Xt

j,k| =
|Xt
j,worst−Xt

j,k|
2

end

|Xt
j,worst −Xt

j,k| =
40 900
26 = 639.0625

Xt+1
5,k = Xt

5,k + r1,j,t(X
t
j,best −Xt

5,k)− r2,j,t(X
t
j,worst −Xt

5,k)

= −9 + 0.5 · 894− 0.5 · 639.0625 ' 118.4687

⇒ Xt+1
5,k is attracted to Xt

5,best

Table 7. Incoherent case in Jaya solved with EJaya

5 EXPERIMENTAL EVALUATION AND DISCUSSION

To make an extensive comparison of the proposed improvements to Jaya, experi-
ments of global optimization with functions of various kinds, including low, medium
and high number of dimensions D (10, 50, 100), unimodal and multimodal functions,
with and without random components and with a search space with restricted and
unrestricted areas have been conducted in a way that the reader is provided with
a wide range of data to distinguish the strengths and weaknesses of the proposal.
Some functions are retrieved from the classic literature on global optimization (uni-
modal functions) and most of them have been presented in CEC 2014 (multimodal
functions) [15]. The characteristics that make up each function are described briefly
in Table 8. For each meta-heuristic to be examined, the objective functions are
tested considering 40 runs. In each run, 50 random initial solutions are generated
and meta-heuristics can evaluate possible solutions up to 2 000 per number of dimen-
sion of the objective function times. The set of 40 runs is called an experiment and
each experiment is configured to evaluate the objective functions considering 10,
50 and 100 dimensions or variables. For each dimension, solutions in the range
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Algorithm 2 EJaya pseudocode
1: —– Data
2: N: Number of individuals
3: D: Number of dimensions
4: —– Algorithm
5: Population initialization
6: while !end condition do
7: Find

(
Xt

j,best

)
and worst

(
Xt

j,worst

)
individual in the population

8: for k ¡ N do
9: for j ¡ D do

10: while |Xt
j,best −Xt

j,k| < |Xt
j,worst −Xt

j,k| do

11: |Xt
j,worst −Xt

j,k| =
|Xt
j,worst−Xt

j,k|
2

12: end while
13: Xt+1

j,k = Xt
j,k + r1,j,t

(
Xt

j,best −Xt
j,k

)
− r2,j,t

(
Xt

j,worst −Xt
j,k

)
14: end for
15: if Better solution found over particle’s actual solution then
16: Update particle’s solution
17: else
18: Preserve previous particle’s solution
19: end if
20: end for
21: end while

[−100, 100] are accepted unless the objective function specifies a different range, as
indicated in Table 8.

This section presents the results obtained by each of the algorithms differenti-
ating the evaluation of unimodal and multimodal functions and finally, conducting
a global analysis of all of them. Results for 10, 50 and 100 dimensions (Tables 9, 10
and 11, respectively) are listed by objective functions (rows) and each function con-
tains four sub-rows indicating the average of the found solutions, the best solution
reached, the average runtime and the classification of those heuristics depending
on the quality of the average reached solution. Finally, a statistical analysis of the
results is presented.

Unimodal Functions Analysis

In Tables 9, 10 and 11 it can be observed that the most appropriate heuristic for
solving benchmark unimodal functions (f01, f02, f03) is EJaya, which obtains for all
dimensions D (10, 50 and 100) results at least an order of magnitude better than
its competitor in second place, CJaya. Unimodal functions are simple functions in
which algorithms with high qualities for exploitation render exceptionally. Thus,
these results are an indication of the high exploitation capability of EJaya, what
makes this heuristic particularly suitable for problems with a reduced or limited
search space.
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Benchmark
Function

Formulation Minima

High-
Conditioned
Elliptic

f1(x) =
∑D
i=1(106)

i−1
D−1 x2i 0

Bent-Cigar f2(x) = x21 + 106∑D
i=2 x

2
i 0

Discus f3(x) = 106x21 +
∑D
i=2 x

2
i 0

Rosenbrock f4(x) =
∑D−1
i=1

(
100

(
x2i − xi+1

)
+ (xi − 1)2

)
0

Ackley’s path f5(x) = −20exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e 0

Weierstrass f6(x) =
∑D
i=1

(∑kmax
k=0

[
ak cos

(
2πbk(xi + 0.05)

)])
−D

∑kmax
k=0

[
ak cos

(
πbk

)]
4

Griewank’s
Function 8

f7(x) =
∑D
i=1

x2i
4000

−
∏D
i=1 cos

(
xi√
i

)
+ 1 0

Rastrigin f8(x) =
∑D
i=1

(
x2i − 10 cos(2πxi) + 10

)
0

Modified
Swchefel

f9(x) = 418.9829D −
∑D
i=1 g(zi), zi = xi + 4.209687462275036e+002 –

g(zi) =


zi sin(

√
|zi|), |zi| ≤ 500,

(500−mod(zi, 500)) sin
(√
|500−mod(zi, 500)|

)
− (zi−500)2

10000D
, zi > 500,

(mod(|zi|, 500)− 500) sin
(√
|mod(|zi|, 500)− 500|

)
− (zi+500)2

10000D
, zi < −500

–

Katsuura f10(x) = 10
D2

∏D
i=1

(
1 + i

∑32
j=1

|2jxi−round(2
jxi)|

2j

) 10
D1.2 − 10

D2 0

HappyCat f11(x) =
∣∣∣∑D

i=1 x
2
i −D

∣∣∣ 14 +
0.5

∑D
i=1 x

2
i+
∑D
i=1 xi

D
+ 0.5 –

HGBat f12(x) =

∣∣∣∣(∑D
i=1 x

2
i

)2
− (
∑D
i=1 xi)

2
∣∣∣∣1/2 +

0.5
∑D
i=1 x

2
i+
∑D
i=1 xi

D
+ 0.5 –

Expanded
Griewank’s plus
Rosenbrock’s

f13(x) = f7(f4(x1, x2)) + f7(f4(x2, x3)) + . . . + f7(f4(xD−1, xD)) + f7(f4(xD, x1))

Expanded
Schaffer Func-
tion 6

f14(x) = g(x1, x2) + g(x2, x3) + . . . + g(xD−1, xD), g(xD, x1) –

g(x, y) = 0.5 +

(
sin2

(√
x2+y2

)
−0.5

)
(
1+0.001

(
x2+y2

))2
Langermann f15(x) = −

∑5
i=1

ci cos
{
π
[
(x1−ai)

2+(x2−bu)2
]}

e

(x1−ai)2+(x2−bu)2

π

−5.1621259

Eggholder f16(x) = −x1 sin
(√
|x1− x2− 47|

)
− (x2 + 47) sin

(√
| 1
2
x1 + x2 + 47

)
−959.64066

Holder’s table f17(x) = −

∣∣∣∣∣∣∣∣∣e
∣∣∣∣∣∣1−

√
x21+x22
π

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ sin(x1) cos(x2) –

DropWave f18(x) = −
1+cos

(
12
√∑D

i
x2
i

)
2+0.5

∑D
i=1

x2
i

0

Bohachevsky f19(x) =
∑D−1
i

[
x2i + 2x2i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7

]
0

Whitley f20(x) =
∑D
i=1

∑D
j=1

 (100(x2i−xj)2+(1−xj)
2
)2

4 000
− cos

(
100

(
x2i − xj

)2
+ (1− xj)2

)
+ 1

 0

Table 8. Benchmark functions testbed
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f Stats Jaya CJaya EJaya
f01 Mean 2.163e−02 8.794e−06 4.893e−11

Best 5.739e−03 1.352e−06 8.380e−12
Runtime (s) 2.101e+00 2.081e+00 2.127e+00
Rank 3 2 1

f02 Mean 7.577e+00 2.714e−03 1.559e−08
Best 1.907e+00 5.027e−04 1.769e−09
Runtime (s) 2.071e+00 2.049e+00 2.151e+00
Rank 3 2 1

f03 Mean 1.436e−04 3.124e−08 1.633e−13
Best 2.060e−05 5.067e−09 2.139e−14
Runtime (s) 2.081e+00 2.064e+00 2.130e+00
Rank 3 2 1

f04 Mean 8.751e+11 9.059e+11 9.203e+11
Best 1.237e+11 1.558e+11 2.087e+11
Runtime (s) 2.081e+00 2.054e+00 2.128e+00
Rank 1 2 3

f05 Mean 2.000e+01 2.000e+01 2.000e+01
Best 2.000e+01 2.000e+01 2.000e+01
Runtime (s) 2.084e+00 2.092e+00 2.115e+00
Rank 1 2 3

f06 Mean 1.800e+02 1.800e+02 1.800e+02
Best 1.800e+02 1.800e+02 1.800e+02
Runtime (s) 2.090e+00 2.049e+00 2.123e+00
Rank 2 3 1

f07 Mean 5.802e−01 5.232e−01 4.015e−01
Best 3.096e−01 2.868e−01 2.256e−01
Runtime (s) 2.047e+00 2.059e+00 2.115e+00
Rank 3 2 1

f08 Mean 4.250e+01 3.932e+01 2.619e+01
Best 2.954e+01 1.975e+01 9.750e+00
Runtime (s) 2.084e+00 2.070e+00 2.129e+00
Rank 3 2 1

f09 Mean 1.325e−04 1.273e−04 1.273e−04
Best 1.280e−04 1.273e−04 1.273e−04
Runtime (s) 2.057e+00 2.068e+00 2.117e+00
Rank 3 2 1

f10 Mean 0.000e+00 0.000e+00 0.000e+00
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 2.095e+00 2.110e+00 2.149e+00
Rank 1 2 3

f Stats Jaya CJaya EJaya
f11 Mean 3.709e−01 1.633e−01 1.456e−01

Best 3.011e−01 8.737e−02 5.084e−02
Runtime (s) 9.867e+00 9.849e+00 1.036e+01
Rank 3 2 1

f12 Mean 2.411e−01 1.331e−01 1.279e−01
Best 1.490e−01 6.492e−02 7.453e−02
Runtime (s) 9.645e+00 9.525e+00 1.021e+01
Rank 3 2 1

f13 Mean 1.487e−01 9.338e−02 5.099e−02
Best 1.273e−02 4.638e−02 2.637e−03
Runtime (s) 9.847e+00 9.663e+00 9.967e+00
Rank 3 2 1

f14 Mean 0.000e+00 5.551e−18 0.000e+00
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 3.057e+00 3.085e+00 3.163e+00
Rank 1 3 2

f15 Mean −5.162e+00 −5.162e+00 −5.162e+00
Best −5.162e+00 −5.162e+00 −5.162e+00
Runtime (s) 1.036e+01 1.030e+01 1.059e+01
Rank 1 2 3

f16 Mean −9.596e+02 −9.596e+02 −9.596e+02
Best −9.596e+02 −9.596e+02 −9.596e+02
Runtime (s) 2.971e+00 3.094e+00 3.147e+00
Rank 3 2 1

f17 Mean −9.140e+18 −9.140e+18 −9.140e+18
Best −9.140e+18 −9.140e+18 −9.140e+18
Runtime (s) 3.068e+00 3.040e+00 3.066e+00
Rank 1 2 3

f18 Mean −9.362e−01 −9.362e−01 −9.362e−01
Best −9.362e−01 −9.362e−01 −9.362e−01
Runtime (s) 1.039e+01 1.015e+01 1.058e+01
Rank 2 3 1

f19 Mean 2.776e−17 5.551e−17 3.886e−17
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 1.038e+01 1.016e+01 1.044e+01
Rank 1 3 2

f20 Mean 4.039e+01 4.852e+01 3.604e+01
Best 0.000e+00 0.000e+00 9.894e+00
Runtime (s) 1.040e+01 1.031e+01 1.059e+01
Rank 2 3 1

Table 9. Benchmark functions f01-f20 results with Jaya and improvements of Jaya, CJaya
and EJaya, D = 10

Multimodal Functions Analysis

Multimodal functions have many local minima, and they are more difficult to op-
timize than unimodal functions. Hence, the end results of this type of functions
are more relevant since they mirror the capacity of the strategy to get away from
local optima and finding a result close to the global optimum [22]. In this case,
although there is no clear supremacy of an algorithm, CJaya and EJaya emerge as
the most effective meta-heuristics in optimizing the benchmark functions. This can
be observed from Tables 9, 10 and 11 for functions f04 − f20. CJaya and EJaya
are also more scalable than Jaya, since increasing the number of dimensions in the
experiments significantly improves their efficiency, and they scale positions in the
rank.
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f Stats Jaya CJaya EJaya
f01 Mean 3.005e+02 5.849e+00 1.007e−05

Best 2.404e+00 2.258e−03 7.029e−07
Runtime (s) 4.572e+01 4.531e+01 4.708e+01
Rank 3 2 1

f02 Mean 3.828e−03 1.674e−05 3.141e−09
Best 1.453e−03 3.388e−06 9.776e−10
Runtime (s) 4.546e+01 4.536e+01 4.761e+01
Rank 3 2 1

f03 Mean 3.828e−03 1.674e−05 3.141e−09
Best 1.453e−03 3.388e−06 9.776e−10
Runtime (s) 4.546e+01 4.536e+01 4.761e+01
Rank 3 2 1

f04 Mean 4.979e+12 4.988e+12 4.987e+12
Best 4.747e+12 4.749e+12 4.708e+12
Runtime (s) 4.568e+01 4.514e+01 4.686e+01
Rank 1 3 2

f05 Mean 2.000e+01 2.000e+01 2.000e+01
Best 2.000e+01 2.000e+01 2.000e+01
Runtime (s) 4.612e+01 4.568e+01 4.732e+01
Rank 3 1 2

f06 Mean 4.900e+03 4.900e+03 4.900e+03
Best 4.900e+03 4.900e+03 4.900e+03
Runtime (s) 4.540e+01 4.494e+01 4.693e+01
Rank 3 1 2

f07 Mean 2.628e−02 1.441e−02 4.800e−03
Best 2.090e−05 6.990e−08 3.203e−11
Runtime (s) 4.655e+01 4.605e+01 4.724e+01
Rank 3 2 1

f08 Mean 4.780e+02 4.330e+02 4.191e+02
Best 3.802e+02 3.059e+02 3.465e+02
Runtime (s) 4.689e+01 4.648e+01 4.794e+01
Rank 3 2 1

f09 Mean 2.768e+01 9.228e+00 6.364e−04
Best 7.062e−04 6.367e−04 6.364e−04
Runtime (s) 4.636e+01 4.554e+01 4.737e+01
Rank 3 2 1

f10 Mean 4.231e−05 0.000e+00 0.000e+00
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 4.550e+01 4.529e+01 4.705e+01
Rank 3 1 2

f Stats Jaya CJaya EJaya
f11 Mean 1.307e+00 6.960e−01 6.543e−01

Best 1.083e+00 4.676e−01 4.874e−01
Runtime (s) 4.517e+01 4.584e+01 4.736e+01
Rank 3 2 1

f12 Mean 1.382e+00 6.722e−01 6.740e−01
Best 1.125e+00 2.959e−01 3.345e−01
Runtime (s) 4.567e+01 4.549e+01 4.699e+01
Rank 3 1 2

f13 Mean 2.396e+04 1.277e+00 3.971e−01
Best 1.869e+01 5.963e−01 7.343e−03
Runtime (s) 4.551e+01 4.522e+01 4.740e+01
Rank 3 2 1

f14 Mean 2.776e−18 0.000e+00 5.551e−18
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 3.013e+00 3.016e+00 3.057e+00
Rank 2 1 3

f15 Mean −5.162e+00 −5.162e+00 −5.162e+00
Best −5.162e+00 −5.162e+00 −5.162e+00
Runtime (s) 4.538e+01 4.533e+01 4.698e+01
Rank 1 2 3

f16 Mean −9.589e+02 −9.580e+02 −9.596e+02
Best −9.596e+02 −9.596e+02 −9.596e+02
Runtime (s) 2.936e+00 2.976e+00 3.026e+00
Rank 2 3 1

f17 Mean −9.140e+18 −9.140e+18 −9.140e+18
Best −9.140e+18 −9.140e+18 −9.140e+18
Runtime (s) 2.972e+00 2.926e+00 3.075e+00
Rank 1 2 3

f18 Mean −5.885e−03 −2.969e−02 −1.862e−01
Best −1.651e−02 −7.774e−02 −2.888e−01
Runtime (s) 4.544e+01 4.550e+01 4.711e+01
Rank 3 2 1

f19 Mean 7.752e+00 5.088e+00 2.512e+00
Best 2.554e+00 4.720e−01 3.801e−07
Runtime (s) 4.607e+01 4.565e+01 4.716e+01
Rank 3 2 1

f20 Mean 1.998e+05 2.250e+03 2.184e+03
Best 1.715e+03 1.256e+03 1.940e+03
Runtime (s) 4.536e+01 4.550e+01 4.684e+01
Rank 3 2 1

Table 10. Benchmark functions f01-f20 results with Jaya and improvements of Jaya,
CJaya and EJaya, D = 50

From this analysis, it is noteworthy that CJaya and EJaya obtain better or
equal (when all the algorithms reach the global minimum) results than Jaya more
than half of the times: for D = 10 this condition occurs in 14 functions, and for
D = 50 and D = 100 this occurs in 17 functions out of 20. Moreover, EJaya
reaches the top position in the rank in most cases, sometimes with a lead of several
orders of magnitude over Jaya, and most of the time providing an improvement
between 20 and 60 percentage points over. Although statistical tests results are to
be presented in the next section, it can be concluded in view of these experiments
that both CJaya as EJaya, and especially the latter, offer an improvement in the
performance of Jaya, with very small increases in runtime (around 5 % in the case
of EJaya).
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f Stats Jaya CJaya EJaya
f01 Mean 9.525e+03 1.689e+00 1.147e−04

Best 1.978e+01 3.283e−02 4.053e−06
Runtime (s) 1.792e+02 1.775e+02 1.866e+02
Rank 3 2 1

f02 Mean 1.621e+04 7.249e+00 7.974e−03
Best 2.506e+03 1.578e+00 1.622e−03
Runtime (s) 1.788e+02 1.784e+02 1.872e+02
Rank 3 2 1

f03 Mean 3.689e−02 2.463e−05 1.684e−08
Best 6.813e−03 4.110e−06 5.686e−09
Runtime (s) 1.793e+02 1.776e+02 1.870e+02
Rank 3 2 1

f04 Mean 1.000e+13 9.936e+12 1.003e+13
Best 9.701e+12 9.527e+12 9.524e+12
Runtime (s) 1.811e+02 1.803e+02 1.845e+02
Rank 2 1 3

f05 Mean 2.001e+01 2.000e+01 2.000e+01
Best 2.000e+01 2.000e+01 2.000e+01
Runtime (s) 1.803e+02 1.798e+02 1.852e+02
Rank 3 1 2

f06 Mean 1.980e+04 1.980e+04 1.980e+04
Best 1.980e+04 1.980e+04 1.980e+04
Runtime (s) 1.800e+02 1.780e+02 1.846e+02
Rank 3 2 1

f07 Mean 7.049e−03 3.078e−03 2.772e−03
Best 6.537e−05 2.726e−08 3.404e−11
Runtime (s) 1.802e+02 1.784e+02 1.852e+02
Rank 3 2 1

f08 Mean 1.100e+03 7.472e+02 9.940e+02
Best 6.421e+02 4.371e+02 4.835e+02
Runtime (s) 1.789e+02 1.785e+02 1.858e+02
Rank 3 1 2

f09 Mean 3.285e−03 1.846e+01 3.691e+01
Best 1.809e−03 1.273e−03 1.273e−03
Runtime (s) 1.790e+02 1.776e+02 1.840e+02
Rank 1 2 3

f10 Mean 2.367e−04 1.637e−07 2.447e−06
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 1.806e+02 1.783e+02 1.852e+02
Rank 3 1 2

f Stats Jaya CJaya EJaya
f11 Mean 1.581e+00 7.363e−01 7.407e−01

Best 1.377e+00 5.524e−01 6.278e−01
Runtime (s) 1.796e+02 1.789e+02 1.872e+02
Rank 3 1 2

f12 Mean 1.574e+00 7.183e−01 7.068e−01
Best 1.405e+00 3.325e−01 3.416e−01
Runtime (s) 1.795e+02 1.834e+02 1.938e+02
Rank 3 2 1

f13 Mean 1.437e+07 1.281e+01 1.682e+00
Best 3.025e+05 4.059e+00 1.359e+00
Runtime (s) 1.802e+02 1.776e+02 1.848e+02
Rank 3 2 1

f14 Mean 2.776e−18 0.000e+00 2.776e−18
Best 0.000e+00 0.000e+00 0.000e+00
Runtime (s) 5.908e+00 5.886e+00 6.021e+00
Rank 2 1 3

f15 Mean −5.162e+00 −5.162e+00 −5.162e+00
Best −5.162e+00 −5.162e+00 −5.162e+00
Runtime (s) 1.802e+02 1.798e+02 1.847e+02
Rank 1 2 3

f16 Mean −9.558e+02 −9.580e+02 −9.596e+02
Best −9.596e+02 −9.596e+02 −9.596e+02
Runtime (s) 6.016e+00 5.971e+00 6.005e+00
Rank 3 2 1

f17 Mean −9.140e+18 −9.140e+18 −9.140e+18
Best −9.140e+18 −9.140e+18 −9.140e+18
Runtime (s) 5.861e+00 5.918e+00 6.016e+00
Rank 1 2 3

f18 Mean −5.684e−04 −2.680e−03 −1.271e−02
Best −9.462e−04 −5.352e−03 −3.199e−02
Runtime (s) 1.780e+02 1.770e+02 1.841e+02
Rank 3 2 1

f19 Mean 2.986e+01 2.553e+01 1.492e+01
Best 1.966e+01 1.680e+01 8.398e+00
Runtime (s) 1.782e+02 1.781e+02 1.857e+02
Rank 3 2 1

f20 Mean 3.600e+08 9.062e+03 7.475e+03
Best 8.277e+06 4.638e+03 9.412e+02
Runtime (s) 1.784e+02 1.777e+02 1.843e+02
Rank 3 2 1

Table 11. Benchmark functions f01-f20 results with Jaya and improvements of Jaya,
CJaya and EJaya, D = 100

Statistical Tests

The best known procedure for multiple comparison to check differences between
more than two related samples is the Friedman Ranks test [5]. Given a certain
value of statistical significance limit (generally, p-value = 0.05) it is determined
whether the null hypothesis H0 (H0: algorithms have a similar behaviour) can be
rejected. On the other hand, it must be born in mind that the main drawback is
that Friedman Ranks test can only detect significant differences with respect to any
multiple comparison, but it is unable to establish appropriate comparisons between
some considered algorithms. When the goal is not only to know whether there are
differences between the methods, but to compare which relations have more statis-
tical significance, a series of ad-hoc hypotheses using a post-hoc test must be done
after the Friedman Ranks test. In this work, the Friedman Ranks Post-Hoc test
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is used to get the unadjusted p-values that allow the comparison of the statistical
significance among all the implemented algorithms. The Friedman Ranks Post-Hoc
test obtains a set of p-values that determine the degree of rejection of each null hy-
pothesis for each pair of algorithms. It must be noted that for this analysis it is not
possible to make a comparison between pairs by type, such as in the Wilcoxon test
because they involve a set of results where the Family-Wise Error Rate (FWER) is
not controlled.

The Friedman Ranks and Friedman Ranks Post-Hoc tests are conducted in this
work for the set of algorithms in the case of 10, 50 and 100 dimensions for average
value, better results as well as runtime.

Stats D = 10 D = 50 D = 100

Mean 3.379e−04 1.008e−04 4.800e−04

Best 2.410e−02 5.615e−04 2.390e−02

Runtime 6.772e−07 7.126e−08 1.219e−08

Table 12. Friedman Ranks test p-values for mean, best and runtime results

First, in Table 12, Friedman Ranks test results are presented. It can be observed
that for all the cases the Friedman Ranks test indicates that the null hypothesis
should be rejected, that is, there are statistically significant differences (considering
a statistical significance limit of p-value = 0.05) between the strategies for the dif-
ferent analysed results (i.e., mean, best and runtime) and dimensions (i.e., 10, 50
and 100), so it makes sense to conduct a Friedman Ranks Post-Hoc test in each case.
Table 13 shows p-values for 10, 50 and 100 dimensions, for all the parameters to be
analysed and for all the possible comparisons. First, regarding mean results, it is ob-
served that EJaya improves Jaya with statistical significance in all dimensions while
CJaya improves Jaya with statistically significance for medium and high dimensions,
50 and 100, respectively. In addition, it can be seen that EJaya and CJaya show
similar results in a statistical significance sense. As for the best results analysis,
the statistical significance corroborates the results related to the mean, being EJaya
once again the strategy presenting the best behaviour. Finally, as expected, the
introduction of modifications to achieve coherent attraction and repulsion factors
and restrained intensity for flight slows down Jaya variants as more control checks
are introduced. In this way, it can be observed that statistically significant differ-
ences are found in runtime between EJaya and both Jaya and CJaya, except for
high dimensions case (i.e., 100), no statistical significance is found between CJaya
and Jaya.

6 CONCLUSIONS

In recent years, several meta-heuristics have been proposed and research in this sense
is still in the spotlight due to the wide range of applications requiring more efficient
optimization procedures in industrial and scientific areas. A major issue in the im-
plementation and comparison of meta-heuristics is given by their simplicity, which
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Stats Comparison D = 10 D = 50 D = 100

EJaya-CJaya 2.305e−01 1.709e−01 8.521e−01
Mean Jaya-CJaya 6.895e−02 5.116e−02 3.522e−03

Jaya-EJaya 4.097e−04 9.807e−05 5.1319e−04

EJaya-CJaya 5.882e−01 5.891e−01 4.602e−01
Best Jaya-CJaya 2.302e−01 1.656e−02 3.097e−03

Jaya-EJaya 2.391e−02 5.763e−04 3.070e−05

EJaya-CJaya 5.571e−07 7.333e−08 1.051e−08
Runtime Jaya-CJaya 3.289e−01 2.537e−01 1.965e−02

Jaya-EJaya 4.184e−04 2.468e−04 4.474e−03

Table 13. Friedman Ranks Post-Hoc test p-values for mean, best and runtime results

is directly related to the number of parameters and their associated interactions.
Jaya algorithm is a recent and simple meta-heuristic offering better or comparable
results to a large set of major meta-heuristics nowadays such as GA, PSO, DE,
ABC and TLBO. In this work, Jaya algorithm is improved to offer a more efficient
specific parameter-free meta-heuristic of one phase, EJaya. EJaya includes coherent
attraction and repulsion movements and restrained intensity for flights that over-
come limitations of Jaya and the contributions of these improvements to general
success are analysed gradually (CJaya and EJaya) to valid each of the suggested
incremental solutions. The proposal has been tested on a set of various standard
benchmark functions from CEC. The results obtained by EJaya offer more efficient
results than Jaya in terms of mean and best accomplishments, as proved by sta-
tistical tests showing statistical significance, a higher exploitation capability and
scalability. Finally, it must be highlighted that EJaya does not require tuning of al-
gorithm specific parameters what may be beneficial to applications where the setup
of optimization may be critical for the whole performance of the systems. Hence,
this work presents one more step towards the development of simpler and fast opti-
mization strategies.

In future works, EJaya will be applied to a problem of practical importance
nowadays that can greatly benefit from the simplicity and speed of EJaya in its
set-up. Specifically, EJaya will be considered for the learning of Fuzzy Rule-Based
Schedulers in Cloud Computing. Cloud Computing is a very dynamic environment
where a fast knowledge acquisition strategy can achieve significant improvement
in terms of time and power saving in the allocation of workload among the large
number of involved computational resources. Further, results will be compared to
other meta-heuristics.
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Abstract. One important benefit of servers’ virtualization is the reduction of the
maintenance complexity of infrastructures. A key feature is servers’ live migration
which allows virtual servers to be exchanged between physical machines without
stopping their services. However, virtualization also has some drawbacks caused by
the overhead generated. Our research evaluated live migration process overhead, on
real and virtual environments, noticed from the client’s side regarding two different
services: web and database. YCSB and ab Benchmark were adopted as workloads.
Almost all tests on real environment overcame those on virtual, with both bench-
marks. The impact of the live migration in the services was evident, proving to be
more effective on real machines than on virtual machines. We found the DB service
accommodated better to the virtual environment and to migration than Web ser-
vice. We also considered an environment with multiple migrations which presented
a higher degradation than when only one migration is performed.
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1 INTRODUCTION

Cloud computing is currently the most important technology to support on-demand
allocation and delivery of computing resources. These resources can be servers,
storage systems, networking, databases, etc. These cloud computing resources are
organized in levels as a service aiming to better address customers’ requirements.
In the market view, cloud computing in recent years has had a rapid growth, as
highlighted in [1] presenting the US spending projection in cloud computing between
2010–2015. An annual growth of around 40 % was predicted, reaching an investment
of USD 7 billion. Around that period, analysts predicted a growth in cloud’s global
market estimated at USD 95 billion in addition to 12 % of software migration to the
cloud market. At this point, these growths have driven the research community to
investigate topics concerning cloud computing.

According to [2], it is possible to migrate a computational infrastructure to a re-
mote location with a minimal impact on system performance. This is one of the
advantages obtained with the use of cloud computing. Many companies have mi-
grated their computing infrastructures to cloud environments because of the benefits
of virtualization [3]. However, it is necessary to know the performance of services
deployed in Virtual Machines (VMs) when they are running in a cloud computing
environment [5]. When you migrate an IT infrastructure to a public cloud, knowl-
edge of how your services can be impacted is crucial. It is worth noting that in cloud
environments the goal is often to save energy and make the best use of available re-
sources [4]. These goals may be antagonistic in relation to the better performance
of the services deployed in VM.

A technology commonly adopted by cloud computing providers is virtualiza-
tion [2, 8]. This approach involves a software layer, located between the hardware
and Operating System (OS), which is called a Virtual Machine Monitor (VMM)
or hypervisor [6]. It allows running different VMs with different OS on a single
physical machine at the same time. There are many advantages obtained through
virtualization, among them we can quote:

1. Server consolidation: The possibility of running many virtualized servers at the
same time in a single physical server facilitates financial savings in acquisition
and hardware maintenance.

2. Energy savings: Each instance of VM running in a server represents a physical
machine, thus, as many more VMs can be running on single server, the power
consumption would be less compared to installing new physical machines to run
new services.
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3. Load balance: The number of VMs on a single physical server should not com-
promise the level of services offered by virtualized servers.

4. Easy management: VMs adoptions facilitate server management, for instance,
in backup procedures.

5. Migration: A feature reached by virtualization, migration allows movement of
a server between different hosts [4].

This procedure can be undertaken without interference or downtime to its services,
which is called live migration.

Live migration itself brings many benefits to a cloud provider’s environment.
For example, the reallocation VM procedure, which uses server’s migration, allows
better usage of a physical machine, savings in resources and maximizing profit.
Nevertheless, despite the benefits of virtualization, overhead generated through vir-
tualization layer has already been the target of many investigations. Regardless of
migration, such studies show the impact on the performance of the services hosted
on virtualized servers [7].

In this paper, we are interested in checking the impact perceived by a client
host accessing services, such as web server and DBMS, running on a virtual server
during a live virtual machine migration process, in contrast to most investigations
about virtualization overhead which only adopted benchmarks that run on the server
side, consequently only checking the overhead effect on server side. The goal of our
research is to analyze the overhead effect on the client’s side, contrary to what has
been proposed by other investigations. This is important because the users through
their hosts (clients) are the most interested and affected by services performance.
Furthermore, these overhead effects were observed during a live migration procedure.
We believe that our findings can help decision makers in cloud computing better
address their requirements and to decide if/when a migration might be performed
to reduce its impact.

The remainder of the article is organized as follows: Section 2 presents techniques
responsible for performing the virtualization process. In Section 3 we have the
related works. Then in Section 4 we describe the experiment setup and materials.
The analysis of the data is in Section 5. We move on with performance evaluation
based on our experiment setup in Section 6. In Section 7, we conclude this paper
and discuss the future work.

2 RESOURCE VIRTUALIZATION

There are some techniques responsible for performing the virtualization process ac-
cording to the way how physical resources will be accessed and allocated to the
virtual machines.
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2.1 Virtualization Techniques

These techniques allow the isolation and abstraction of the underlying hardware and
lower level functions [11]. Different approaches are:

Full Virtualization: Here, the VMM runs on top of a host operating system sim-
ilarly to other applications, in the user space. In this case, the entire physical
platform (CPU, memory, disk, etc.) is being virtualized. The overhead caused
by this form of virtualization can be quite significant.

OS-Layer Virtualization: In this approach, the guests’ OS is being virtualized
instead of the hardware. The virtualizations here occur by running more in-
stances of the same OS in parallel. Because of that, the VMs must use the same
kernel as the host OS, not being possible to virtualize a different OS. This is
a restriction of this approach.

Paravirtualization: The main difference from the full virtualization is that, in
paravirtualization, the guest’s OS must be modified. This technique allows
specific guest machines to communicate directly with the hardware, rather than
communicating with the VMM. For this reason, it offers better performance but
has the restriction of having to modify the guest OS.

2.2 Strategies for VM Migration

The VM migration is a very important characteristic for cloud computing environ-
ments. The two main ways to perform VM migration are:

Stop-and-copy (or non-live migration): In this approach, the VM is suspended
on the source host, it migrates to the destination host through copies of the
memory pages and other necessary information, and then the VM is activated
again at its destination. It is a more simple way to perform the migration
procedure, besides being faster than live migration. However, it presents greater
downtime of the applications running on the virtualized server.

Live migration: In live migration, there are several iterations of copying the mem-
ory pages from the source host to the destination host. During this process, the
services deployed in the VM are still in operation. In this way, the downtime
of the applications is minimized and being more interesting in some situations.
However, the total migration time is greater in this approach than in stop-and-
copy.

3 RELATED WORK

The virtualization theme has been very exploited in cloud computing community,
and the performance analysis is a major subject of these investigations. The most
employed strategy to compare hypervisors is to apply series of benchmark software to
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test a wide range of system devices, for example I/O, disk, memory, networking and
processors [10, 12, 13, 14]. Although being the excellent sources of research, none
of the cited studies took into consideration the performance evaluation of a specific
application running on VM. In those articles, the authors use benchmark software
to test a device of the evaluated system.

The following two studies considered the performance evaluation of a specific
application running on VM.

In [9], they evaluated two virtualization technologies, Xen and OpenVZ, compar-
ing both technologies to a base system in terms of application performance, resource
consumption and scalability, among others. The workload used in this study was
RUBiS. They found that the average response time could increase over 400 % in
Xen and 100 % in OpenVZ as the number of application instances grew from one to
four.

Another similar study using databases running on VM, and focused on the im-
pact of virtualization layer, can be found in [15]. In this study, the overhead of the
virtualization layer was evaluated in different databases deployed in VMs, Cassandra
and MongoDB, the overhead was observed to consider different virtualization tech-
niques, full virtualization and paravirtualization, when compared to a physical host.
The authors executed the YCSB benchmark to evaluate databases’ performances.
In the findings, virtualization technique was the factor that showed a higher influ-
ence over databases’ performance compared to that obtained from a physical host.
MongoDB reached better performance in most of scenarios.

None of those articles developed a performance analysis of applications running
on VMs during the occurrence of a VM live migration process. The other studies in
sequence did that.

Another interesting paper, similar to what has been developed, can be found
in [16]. In this study, the VM migration was evaluated regarding performance during
migration, performance of cloud architecture during VM migration and the energy
cost of real-time migration. The goal was to understand how the cloud architecture
would respond and deal with real time migrations. The results obtained showed how
a virtual machine performs during a live migration. This differs from our proposal
in two aspects: we are not interested in evaluating the energy cost and our study
was made without the use of the cloud.

In [17], the authors demonstrated how resource consumption and latency can
be substantially reduced, allowing better VMs migration performance. Initially,
they experimentally studied the factors that contributed to the growth of these two
variables on migration. They proposed an alternative technique of remote access
memory which significantly reduces the overhead on the migration of VMs. Through
simulations and experiments, the authors reduced the overhead in the migration of
VMs, resulting in improvements in energy and resource efficiency over the techniques
that already exist.

The main distinction of our work is that our objective is to evaluate the impact,
from the client’s point of view, that a live migration process cause in applications
running on VM.



296 P. Bezerra, M. Santos, E. Alves, F. Albuquerque, G. Martins, R. Gomes, A. Costa

4 EXPERIMENT SETUP

This paper investigates the overhead caused by a live migration of a server in two
common applications on the client’s side. Like many other studies, we also use
benchmarks tools to measure performance. Most research that uses benchmarks do
this on server’s side, instead, here benchmark software it was used on client’s side.
This is a differential from other researches.

In this experiment, aspects of performing a VM live migration were evaluated.
The aspect concerned was the performance of the services, perceived by a client
when a live migration is running on a server. To support machines virtualization
and migration Xen hypervisor1 was used. Xen is an open source hypervisor which
enables to use full virtualization and paravirtualization techniques. In our study,
only the paravirtualization technique was used, in which guest systems know they
are being virtualized because their kernels need to be modified, improving the per-
formance achieved compared to full virtualization approach [9]. Xen was chosen as
a virtualization platform for our experiment because it is an open source platform,
commonly adopted in investigations concerning live migration [7, 9, 10].

The services used were Apache Web ServiceTM2 and the Apache CassandraTM3

a Database Management System (DBMS). Two benchmarks (ab and YCSB) were
used in our experiments to fulfill a series of performance tests, they are described
below:

Apache HTTP Server Benchmarking Tool (ab)4: Is a tool for benchmarking
Apache Hypertext Transfer Protocol (HTTP) servers. It is designed to test how
the Apache installation performs. In our experiments, it was used with the
objective of generating workload to the VMs on Xen servers. It is important
to highlight that this benchmark will simulate the requests made by a user
to a web server. With ab, it was measured the mean number of requests per
second.

Yahoo! Cloud Serving Benchmark (YCSB)5: This benchmark aims to gener-
ate workload for non-relational database (NoSQL). It is possible to evaluate the
performance of the database through information such as average latency and
throughput. In our experiments the Apache Cassandra NoSQL database was
used. With YCSB the number of operations per second was measured using the
Workload option, which makes 50 % of load operations and 50 % of select and
update operations.

Initially, the experiments were divided into phases – with environment totally
virtualized, with only real machines and with multiple migrations.

1 http://www.xenproject.org/
2 http://www.apache.org/
3 http://cassandra.apache.org/
4 https://httpd.apache.org/docs/2.4/programs/ab.html
5 https://github.com/brianfrankcooper/YCSB/wiki

http://www.xenproject.org/
http://www.apache.org/
http://cassandra.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/brianfrankcooper/YCSB/wiki
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A. Virtualized Servers

1. The Environment: It consisted of one real machine which contained all the
virtualized hosts. Figure 1 gives a representation of the simulation environ-
ment. It is possible to see the host machine where whole experiments of this
phase took place. This host contained four VMs: XenServer1, XenServer2,
Client, Network File System (NFS) Server and a Virtual Ethernet Switch.
These VMs were virtualized by the VMware Workstation Player6 free hyper-
visor.

The concept of nested virtualization is not new and can be found in [18].

The Apache Web Server and DBMS Cassandra were installed on the same
server, which was called WebServer and was virtualized by Xen. The Hyper-
visor Xen was installed on two Xen Servers (XenServer 1 and 2) that were
used for migration of the Web Server host. NFS is the server responsible
for sharing virtual machines’ images and virtual disks involved in the mi-
gration process. The existence of this element is one of the requirements of
the Xen hypervisor [19]. The live migration process is highlighted in Fig-
ure 1.

2. Hosts Settings: The real machine used to install the virtual hosts in this
phase had 16 GB RAM, Intel R© CoreTM i7-4790 CPU @ 3.60 GHz 64 bits and
680 GB of disk. This CPU was the same used at all virtualized hosts. Ta-
ble 1 gives the virtual machine descriptions. All the machines (real and
virtual) used on the experiment had Ubuntu 14.04 Desktop as the Oper-
ating System (OS), except the Web Server host, which had Ubuntu 14.04
Server.

Figure 1. Environment totally with virtualized machines

6 http://www.vmware.com/br/products/workstation

http://www.vmware.com/br/products/workstation
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Hardware XenServer1/XenServer2 WebServer NFS Client

Memory 6 GB 2 GB 4 GB 2 GB
Disc Size 40 GB 10 GB 25 GB 25 GB

Table 1. Virtual machines descriptions

B. Physical Servers

1. The Environment: it consisted of four real machines with one virtualized
host that migrated between Xen Servers 1 and 2 using the same organization
presented in Figure 1. The real hosts were: XenServer1, XenServer2, Client,
the NFS and an Ethernet Switch. The Apache Web Server and DBMS
Cassandra were installed on the same server, which was called Web Server
and was virtualized by Xen. The Xen Hypervisor was installed on two Xen
Servers (1 and 2) that were used for migration of the Web Server host. The
real environment used the same machine’s configurations as presented on
virtual environment.

C. Experimental Design

Our experiments consisted of a 2kr factorial design [20] to determine the effect
of k factors, in our case k = 2 that are two factors each at two levels. We used
r = 10, which means we made ten repetitions in each treatment. Following this
design, it was made 2kr = 2210 = 40 observations for each benchmark.

Table 2 gives the factor level combinations for each experiment made with bench-
marks YCSB and ab. We considered two factors, Environment and Condition,
each with two levels that were Real Machine or Virtual Machine in Environment
factor and With Migration or Without Migration in Condition factor. These are
our primary factors whose effects were quantified.

Factor Level − 1 Level 1

Environment Real Machine Virtual Machine
Condition With Migration Without Migration

Table 2. Factors and levels of the design

We know there are secondary factors that impact the performance but such
impacts were not considered in quantifying. For example, we were not interested
in determining whether performance with ab is better than that of with YCSB.

5 STATISTICAL ANALYSIS

To decide how to analyze the data collected, some statistical reviews were performed
as follows. Two factors A and B are said to interact if the effect of one depends
upon the level of the other one. Figures 2 a) and 2 b) give the interaction between
Condition and Environment levels for ab and YCSB benchmarks. As shown in the
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graph for ab, the lines of Real and Virtual Machines are not parallel, indicating
an interaction between them [20]. The same can be observed from YCSB’s graph.

a) ab benchmark

b) YCSB benchmark

Figure 2. Graphical presentation of interacting factors for a) ab benchmark and b) YCSB
benchmark

Many statistical techniques assume the data are normally distributed, facili-
tating data analysis. Our data were evaluated aiming to verify whether data meets
normal distribution. Some statistical tests were performed, as the Shapiro-Wilk test
(whose parameter is W), and p-values less than 0.05 with W < 1.0 were found. In
almost all results the null hypothesis was refuted (i.e., if p-value is less than the 0.05
significance level and W < 1.0, the null hypothesis is rejected). Only one test with
a p-value = 0.9963 (> 0.05) and W very close to 1.0 (W = 0.9896) was that with
ab on VM and with live migration. This result agrees with the chart on Figure 3 a)
upper left where it is possible to see the most points fall along on a straight line.

As can be observed from all the others charts on Figure 3, few points fall along
on a straight line. We conclude that the data samples collected come from a dif-
ferent distribution than normally. These results, based on graphs and in statistical
test analysis lead to the decision to use non-parametric statistical tests. From the
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a)

analysis made, we could conclude that the most appropriate test for these sam-
ples is the Mann-Whitney-Wilcoxon Test (or Wilcoxon rank sum test, or Mann-
Whitney U-test), a non-parametric test by which we can decide whether the popu-
lation distributions are identical not assuming they would follow the normal distri-
bution [21].

Many hypotheses could be tested with our results but, we believe the most
important for statistical testing is to identify in which environment (real or virtual)
a service deployed on VM provides a better performance during a migration event.
This information is important to understand the client’s perception of the service.

With this objective, the following hypotheses were tested:

• For the Web server tested through benchmark ab:

H-I0: The performance obtained by the benchmark ab on real environment,
during a migration process, is equal to the performance obtained on a vir-
tual environment.

H-I1: The performance obtained by the benchmark ab on the real environment,
during a migration process, is greater than the performance obtained on
a virtual environment.
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b)

Figure 3. Normal quantile-quantile plot data for a) ab benchmark on Virtual and Real
environments and b) YCSB benchmark on Virtual and Real environments

• For the DBMS server tested through benchmark YCSB:

H-II0: The performance obtained by the benchmark YCSB on real environ-
ment, during a migration process, is equal to the performance obtained on
a virtual environment.

H-II1: The performance obtained by the benchmark YCSB on the real environ-
ment, during a migration process, is greater than the performance obtained
on a virtual environment.

6 PERFORMANCE EVALUATION

To measure the impact, perceived by the host client, of the live migration of the
applications running inside the virtual server, two benchmarks were used, one for
each of the tested services (web server and DBMS). The benchmarks were running
individually on the Client to test the web server and DBMS on remote Web Server
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host, which was virtualized on Xen Server1. Measurements were made on servers
both with and without migration. Benchmarks were configured as follows:

Apache benchmark (ab): The concurrency level was fixed in 10 parallel users
using services. The number of multiple requests to the URL of the web server
was fixed at 10 000 000. The maximum number of seconds to spend for bench-
marking was fixed at 400 seconds. And 10 repetitions were made with these
configurations. The response metric was the number of answered requests per
second.

Yahoo! Cloud Serving Benchmark (YCSB): The number of client threads was
fixed on 5, which indicates the amount of load offered against the database. The
number of records to be used on the test was fixed at 100 000. The core work-
load used was a mix of 50 %/50 % of load and select and update operations. The
number of operations to perform was fixed at 600 000. In the same way, 10 rep-
etitions of the test with these configurations were performed. The evaluated
metric was the number of operations per second.

A. Performance with Benchmark ab

A performance reduction is common for a system under migration, which is
a function of time (i.e., conditions are different at each stage: pre-migration,
mid-migration and post-migration). It is possible to see this pattern with data
collected on client, with ab benchmark, during a migration event in Figure 4
(the same behavior was observed with YCSB’s data). However, for the purpose
of this work, it is desired to establish an idea of the impact caused in a service,
running in VM, during a complete migration process. To this end, the temporal
variations were discarded aiming the interpretation of the process as a whole.

Given a few factors that affect the system performance, it is important to know
the effects of each factor individually [20].

Table 3 gives the factor level combinations for each experiment made with bench-
mark ab. The effects were quantified using the mean of ten repetitions by treat-
ment.

From Table 3 we can see that, on average, the virtual machine processing ca-
pacity in number of requests/seconds was equivalent to 33 % of the capacity
reached by real machines in a non-migration environment. The results obtained
with migration show that the virtual machines had 46 % of the capacity when
compared with the real machines.

Environment With Migration Without Migration

Real Machine 3 840.81 8 697.43
Virtual Machine 1 761.77 2 873.10

Table 3. Performance in number of answered requests/sec with ab

Figure 5 demonstrates the performance of the ab benchmark running on vir-
tual and real environments. The lines above each bar in the bar graphs are
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Figure 4. Throughput during a complete ab benchmark run on real environment

the standard errors bars. As shown in the graph, the performance of the web
server was better running without migration than when a migration occurs as
expected.

Comparing the individual means on the virtual environment, the results with
migration reached the equivalent of 61 % of the number of requests/seconds ob-
tained by the experiments without migration, indicating a considerable reduction
in processing capacity because of the migration process.

When analyzing the results of ab on the real environment (Figure 5), the en-
hancer of performance on real machine when comparing with the results on VM
is clear. Again, the performance without migration exceeded the one with live
migration in all ten rounds, with a larger contrast between the conditions than
that observed on VM.

In the real machine environment, experiments with migration only obtained 44 %
of the processing capacity of the environment without migration. The overhead
caused by the imposition of a virtualization layer in the computing environment
as well as the live migration process becomes evident. This simply reflects the
services offered by virtualized servers. This fact was also noticed in testing with
DBMS.

Considering all the comparisons, it is possible to check that the impact of mi-
gration on the real environment was high, however, lower than on the virtual
environment, since in the former we had a reduction of 44 % of the capacity
without migration, while with the virtual machines a reduction of 61 % of the
capacity can be observed when comparing the environment with and without
migration.

Based on these results, we want to highlight that the decision makers should
have a better understanding of the impact on the services offered by virtual
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Figure 5. Performance of ab on virtual and real environments (higher is better)

servers. In this way, they can weigh the pros and cons and decide more safely
whether to move or not their services to Cloud providers.

B. Performance with Benchmark YCSB

Table 4 gives the factor level combinations for each experiment made with bench-
mark YCSB. As with ab, the effects were quantified taken the mean of ten
repetitions by treatment.

The results of the ten rounds on virtual and real environments with YCSB can
be seen in Figure 6. As with the results of ab, YCSB on VM also prevailed
in all rounds when running without migration, when compared with the envi-
ronment migrating the server. Analyzing the individual means on the virtual
environment, the results with migration reached the equivalent of 45 % of the
performance of the ones without migration in number of operations/second.

Figure 6. Performance of YCSB on virtual and real environments (higher is better)

When analyzing the performance of the YCSB, with and without migration,
on the real environment, the results show that the tests without migration also
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Environment With Migration Without Migration

Real Machine 756.26 2 316.85
Virtual Machine 814.49 1 802.68

Table 4. Performance in operations/sec with YCSB

overcame those with live migration with a significant difference, since migra-
tion condition obtained only 32 % of the performance from the non-migrating
environment.

A very interesting result from YCSB evaluation is that, when migrating the
machines, the virtual environment obtained better results than the real one,
as presented in Table 4. Analyzing the migration logs, it was possible to see
that the number of pages transferred during migration was equivalent in both
environments (about to 1.4 million pages), but transferring rate was higher
on the virtual environment than on the real environment. Since a consider-
able amount of information from the virtual machines remains only in memory,
to reallocate this memory to another process in the same machines was faster
than to transmit this information over the network. Because of it, the bench-
mark started to run without migration overhead faster on the virtual environ-
ment than on the real one (approximately 2 minutes), what was not noticed
in ab benchmark, since it obtained the same migration time in both environ-
ments.

Also, performance without migration on real environment was much closer to the
virtual environment than the result obtained using the Web Server. Using DB,
the virtual environment had 78 % of the performance of the real environment,
while using Web Server, the virtual machine obtained only 33 % of the capac-
ity when running without migration. It is possible to note with these results
that DB service (which demands more processing capacity) has been accom-
modated much better to the virtual environment and to migration than Web
service (demanding more access to stored information).

To test the previously made null-hypotheses we applied the Mann-Whitney-
Wilcoxon U-test, using the R7 statistical software, all tests used a significance
level of 0.05. The results were as follows:

For the Web server tested through benchmark ab: the p-value turns
out to be 5.413e−06, and is less than the 0.05 significance level, we reject
the null hypothesis H-I0 and accept the alternative H-I1. That is, the per-
formance obtained by the benchmark ab on the real environment, during a
migration process, is superior to the performance obtained on the virtual
environment.

For the DBMS server tested through benchmark YCSB: the p-value
turns out to be 0.9173, greater than the 0.05 significance level, in this case,

7 https://www.r-project.org/

https://www.r-project.org/
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we can accept the hypothesis H-II0 of statistical equality of the means of two
groups. That is, the performance obtained by the benchmark YCSB on the
real environment, during a migration process, is equal to the performance
obtained on the virtual environment.

C. Allocation of Variation

As the data from the experiments suggests, there is a difference between the
treatments and the interaction between factors, as shown in Figure 2. We
would like to confirm those expectations. To do so, box plots were made (ab
and YCSB benchmarks on virtual and real machine environments), in Fig-
ures 7 a) and 7 b) we have the results for ab, and in Figures 8 a) and 8 b) we
have the results for YCSB. As can be seen, the graphs suggest differences be-
tween the treatments used. Then, it was decided to measure the allocation
of variation. The percentage of variation explained by each factor is help-
ful in deciding whether a factor has a significant impact on the response [20].
The factors which explain a high percentage of variation are considered impor-
tant.

With the factors and levels of Table 2, following the 2kr factorial design described
in [20], let us define two variables xA and xB as follows:

xA =

{
−1, with migration,

1, without migration,
(1)

xB =

{
−1, real machine,

1, virtual machine.
(2)

The performance y in number of requests/second (for ab) or operations/second
(for YCSB) can now be regressed on xA and xB using a nonlinear regression
model of the form:

y = q0 + qAxA + qBxB + qABxAxB + e. (3)

The terms in (3) are: y is mean performance; xA is the effect of condition; xB is
the effect of the environment; xAB is the effect of interactions between environ-
ment and condition; q0, qA, qB and qAB are the effects; and e is the experimental
error.

First, we used the sign table to analyze our 2kr factorial design and compute
the effects, as described in [20].

1. Allocation of Variation for ab: following (3) and with the data from Table 3
through the sign table, the model (4) of mean performance from ab was
developed:

y = 4 293.28 + 1 491.99xA − 1 975.84xB − 936.32xAxB + e. (4)
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Thus, making the calculations, we found that the total variation can be
divided into four parts. Factor B (environment) explains 55.58 % of the vari-
ation. Factor A (condition) explains 31.69 % of the variation and interaction
AB explains 12.48 % of the variation. The remaining 0.24 % is unexplained
and attributed to errors.

From these ab results, we can conclude that the environment had more im-
pact in ab tests than the condition (using VM live migration or not).

2. Allocation of Variation for YCSB : following (3) and with the data from Ta-
ble 4 through the sign table, the model (5) of mean performance from YCSB
was developed:

y = 1 422.57 + 637.19xA − 113.98xB − 143.10xAxB + e. (5)

Thus, making the calculations, we found that the Factor A (condition) ex-
plains 90.46 % of the variation. Factor B (environment) explains 2.89 %
of the variation, it can be ignored, and interaction AB explains 4.56 % of
the variation. The remaining 2.08 % is unexplained and is attributed to
errors.

From the YCSB results, we can conclude that the condition had almost all
impact in YCSB tests. Use the DB on the real or virtual machine makes no
difference in our tests since each environment had an advantage in one of the
tests.

In deriving the expressions for effects, we made some assumptions. These
assumptions lead to the observations being independent and normally dis-
tributed with constant variance. To verify these assumptions, that were made
with the regression model, it was decided to use visual tests. To do that,
Figures 9 a) and 9 b) give a plot of residuals and a normal quantile-quantile
plot for ab. As there is no trend in Figure 9 a), we can assume the errors
are independently and identically distributed. In Figure 9 b) the residuals
appear to be approximately normally distributed. Thus, the model appears
to be valid for our experiment with ab.

The same analysis made for ab can be applied to YCSB, using Figures 10 a)
and 10 b). We can assume the errors are independently and identically dis-
tributed, and the residuals appear to be approximately normally distributed
as well. Thereby, the model also seems to be valid for our experiment with
YCSB.

D. Confidence Intervals for the Effects

As seen in Section 4, the errors were normally distributed and, as calculated,
this distribution has zero mean, it was possible to discover the confidence in-
tervals for the effects. This information makes possible to find if the effects are
significant. The standard deviation of errors can be estimated from the sum of
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a)

b)

Figure 7. Box plot of ab performance on a) VM and b) Real Machine (higher is better)
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a)

b)

Figure 8. Box plot of YCSB performance on a) VM and b) Real Machine (higher is better)
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a) b)

Figure 9. Plot of a) residuals versus predicted response and b) normal quantile-quantile
for ab

the squared errors (SSE) as follows:

Se =

√
SSE

22(r − 1)
(6)

and the standard deviation of effects is

Sqi =
Se√
22r

. (7)

Then, the confidence intervals for the effects is

qi ∓ t[ 1−α2 ;22(r−1)]Sqi . (8)

The t-value is read at 22(r − 1) degrees of freedom, for our data the degrees of
freedom is 36, and it was used 90 % of confidence interval. So, the t-value at
36 degrees of freedom and 90 % of confidence is 1.6883.

Table 5 has the Confidence Intervals (CI) for data from benchmarks ab and
YCSB for q0, qA, qB and qAB.

As can be seen from Table 5, none of the intervals include a zero, therefore, all
the effects are significant.

E. Performance Impact with Multiple Migrations

Considering the initial evaluations, it is possible to see that the impact of the
migration in virtualized environments was less representative than in real envi-
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a) b)

Figure 10. Plot of a) residuals versus predicted response and b) normal quantile-quantile
for YCSB

Effects CI for ab CI for YCSB

q0 (4 256.769, 4 329.785) (1 395.356, 1 449.780)
qA (1 455.481, 1 528.496) (609.982, 664.406)
qB (−2 012.349,−1 939.334) (−141.194,−86.771)
qAB (−972.831,−899.815) (−170.314,−115.890)

Table 5. Confidence intervals for effects from ab and YCSB

ronments, even the virtualized services presented lower performance. Services
virtualization is one of the key points in the development of many new computing
paradigms during the last years.

One of them that can be highlighted is cloud computing, where thousands of
services can be deployed in a shared infrastructure using Virtual Machines.

In cloud computing systems, it is usual to find the virtualized server migrating
at the same time, arriving or leaving a host server. Therefore, we decided to
evaluate the impact on service’s performance caused when multiple migrations
are made. We wanted to know, for instance, what is the Web Server performance
on one VM that is migrating from a host when there is another VM arriving
at the same time in the same host. Those tests were made only on the virtual
environment, implemented on a server with 16 GB of memory and 500 GB of
disk.

Figure 11 shows the architecture of this environment, indicating the funda-
mental elements for the migration process to be executed. The VM Client
is responsible for generating the requests to the Apache Web server through
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Figure 11. Environment totally with virtualized machines and with simultaneous migra-
tions

the ab benchmark, as well as performing the transactions for the Cassandra
database through the YCSB benchmark. It was from this machine that the
benchmarks generated the triggered workload for Server1 and Server2, these
two virtual servers were virtualized by Xen. The Hypervisor Xen was in-
stalled on two Xen Servers (XenServer 1 and 2) that were used for migration
of the Server1 and Server2, as source and destination machines. They have
the same memory, disk, and operating system settings as can be seen in Ta-
ble 6.

The Server1 and Server2 VMs are hosting the Apache Web Server, as well as the
DBMS Cassandra server. During the migration process, these were the servers
that were migrated. The NFS was used the same way as described in previous
sections.

Table 6 shows the hardware and software configurations of all VMs involved in
the migration process. In all hosts, the OS used was Ubuntu 14.04.

VMs Memory (GB) HD (GB)

Client 2 25
XenServer1 4 40
XenServer2 4 40
Server1 2 10
Server2 2 10
Storage NFS 1 25

Table 6. Virtual machines descriptions

In the experiments, two virtual servers (Server1 and Server2) were used, one with
Apache Web Server and another with Cassandra DB. Server1 was initially vir-
tualized on XenServer1 and Server2 on XenServer2, then Server1 was migrated
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to XenServer2 and, at the same time, Server2 was migrated to XenServer1.
Measurements were made on these virtual servers with only one migration, si-
multaneous migrations, and without migration. Benchmarks ab and YCSB used
the same configurations of the initial experiment and 10 repetitions of each test
were performed to guarantee statistical representativeness.

Here, we call ”with migration” when just one VM is migrating and receiving
requests from a client; and we call “with simultaneous migration” when the two
virtual servers (Web Server and DBMS) are migrating simultaneously, and both
are receiving requests from clients. The results of these simulations can be seen
in Figures 12 and 13.

Analyzing the requests per second metric, Figure 12 shows that, on average, the
execution of ab with simultaneous migration resulted in a reduction of 31.3 %
when compared to the non-migration approach, and 14.6 % when compared to
a single migration. In this way, it is observed that for this case the simultaneous
migration was the one that resulted in a greater impact on the performance of
the service.

As can be seen in Figure 13, the data collected shows the migration performance
implied, on average, an approximate reduction of 61.8 % in the YCSB through-
put. However, it is also possible to note that the approaches with a single and
with simultaneous migrations presented approximate values, that is, a simulta-
neous migration execution scenario implies, in average, a reduction equivalent
to the single migration approach for this service.

As a conclusion from these results, it was possible to confirm with YCSB’s data
that the migration process imposes a significant overhead compared to non-
migration tests on the virtualized environment. In addition, the occurrence of
single migration or multiple migrations apparently did not imply significant dif-
ferences, which should be confirmed by statistical tests. Regarding the tests
with the ab benchmark, it was also possible to observe the migration impact in
the Web service, however, not as significantly as with the DBMS Cassandra. If
we observe the events with simultaneous migrations, we can see that this situ-
ation further degrades the Web service, reaching a 31.3 % drop in performance.
These results confirm the results of the initial experiment, which indicates that
non-relational database service was less affected by migration process than web
content service.

To confirm the results obtained in the tests with simultaneous migrations, we
performed a series of statistical tests of Mann-Whitney-Wilcoxon U-test, all with
a significance level of 0.05, using statistical software R. The results were:

• With respect to ab benchmark, comparing the data from the tests with
migration and with simultaneous migration, the p-value turns out to be
1.083e−05, less than the 0.05 significance level, in this case, we reject the
null hypothesis of statistical equality of the means of the two groups. That is,
the performance obtained by the ab benchmark with only one server migrating
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Figure 12. Performance of ab benchmark on virtual environment (higher is better)

Figure 13. Performance of YCSB benchmark on virtual environment (higher is better)

is different from the performance obtained when simultaneous migrations
were occurring.

• The YCSB chart (Figure 13) indicated that the occurrence of single migra-
tion or multiple migrations did not imply, apparently, significant differences
in the performances of the Cassandra DB. To test this hypothesis, the same
statistical test was performed comparing the data of single migration and
multiple migrations from YCSB benchmark. As the p-value turns out to be
0.8534, greater than the 0.05 significance level, in this case, we can accept
the null hypothesis of statistical equality of the means of the two groups.
That is, it is not possible to statistically affirm, with a significance level of
5 %, that there are differences between the performance obtained by the YCSB
benchmark when only one server is migrating and when multiple migrations
are taking place.

The results obtained with the statistical tests were confirmed with the box
plot charts available in Figures 14 a) and 14 b). The difference between sim-
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a)

b)

Figure 14. Box plot of the performance with single and with simultaneous migration of
a) ab and b) YCSB (higher is better)
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ple migration and multiple migrations is evident from ab benchmark data.
Whereas, for the YCSB, it is not possible to state that there is a statistical
difference.

7 CONCLUSION AND FUTURE WORK

Experiments were conducted in fully virtual and real environments migrating and
not migrating the content servers. As achievements, we can highlight:

• The overhead caused by live migration process is significant, noting that on both
benchmarks ab as YCSB, the number of operations or requests per second were
significantly reduced.

• The results showed that the ab benchmark had superior performance when run-
ning on a fully real environment, regardless of the scenario being with or without
live migration. This is because the benchmark ab makes much use of the net-
work interface which eventually becomes a bottleneck for operations, since the
performance of network resources with virtual machines is reduced.

• Comparing the results of the YCSB benchmark in a fully virtualized environment
with real, it was observed that the fully virtualized presented lower performance
without migration scenario, but exceeded the real environment when there was
live migration. Here there is the intense transfer bottleneck of data between hosts
since the YCSB performs operations on the host database server. Therefore,
the performance without live migration was higher in the real machine. In
the case of migration, we have the Ethernet bridge factor that, in the virtual
scenario, favored runtime since all hosts and the bridge were on the same real
machine.

• When multiple migrations were conducted in the environment two different be-
haviors could be observed according to the service used. When web service was
in place there was a significant reduction in performance. However, running
Cassandra no additional reduction was observed.

In summary, we have identified that the overhead caused by the virtual machine
live migration process observed from the client’s point of view is very impactful,
since performance was degraded in all results of the benchmark execution on real
environment when compared to virtual environment.

As future work, we are going to plan to deploy different services to check the
impact perceived in each one, to extend the experiments with multiple migrations
and to use a heterogeneous environment where we would find virtual and real
servers used as hosts for migration process. It is also intended to include KVM
as a hypervisor, as well as measuring the impact of network infrastructure on re-
sults.
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Abstract. Existing histogram based reversible data hiding schemes use only ab-
solute difference values between the neighboring pixels of a cover image. In these
schemes, maxima and minima points at maximum distance are selected in all the
blocks of the image which causes shifting of the large number of pixels to embed
the secret data. This shifting produces more degradation in the visual quality of
the marked image. In this work, the cover image is segmented into blocks, which
are classified further into complex and smooth blocks using a threshold value. This
threshold value is optimized using firefly algorithm. Simple difference values be-
tween the neighboring pixels of complex blocks have been utilized to embed the
secret data bits. The closest maxima and minima points in the histogram of the
difference blocks are selected so that number of shifted pixels get reduced, which
further reduces the distortion in the marked image. Experimental results prove that
the proposed scheme has better performance as compared to the existing schemes.
The scheme shows minimum distortion and large embedding capacity. Novelty of
work is the usage of negative difference values of complex blocks for secret data
embedding with the minimal number of pixel shifting.

Keywords: Reversible data hiding, complexity, MSE, PSNR, histogram shifting,
BPCS, firefly
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1 INTRODUCTION

With the growth in multimedia communication, security of digital data being trans-
ferred and stored has been an important concern. Data hiding is one of the ap-
proaches used for security of digital data. It allows the sender to embed the infor-
mation into digital contents like text, images, audio and video. The digital object
in which the information is embedded is termed as cover object and the information
to be embedded is termed as secret data. The cover object after embedding the
secret data is known as marked object. In a Reversible Data Hiding (RDH ) the
secret data is embedded inside some cover media in such a way that it should not be
visible with the human eyes. At the receiver side, the scheme should have the ability
to restore the cover media as well as the secret data without any distortion [1, 14].
Specific research has been done on the sensitive images like medical images, satellite
images, etc. [22].

Histogram modification based schemes are a remarkable contribution in RDH
schemes. In these approaches, the statistical properties of the image are used to
embed the secret data. Ni et al. [14] proposed the RDH scheme, in which the zero
and peak points of a cover image histogram are recorded. All the pixel values lying
in between these zero and peak values are shifted by one to create the empty spaces.
These spaces are then used to embed the secret data bits. Peak Signal to Noise
Ratio (PSNR) of this scheme is around 48 dB with a good embedding capacity.
A modification of this scheme was proposed by the same author and it was used
as an authentication scheme for semi fragile images [15]. This scheme was further
improved by Fallahpour et al. [3] who proposed that instead of hiding the data in
the entire image, the image can be divided into blocks and then the same histogram
shifting using the peak and the zero points can be repeated for all the blocks, thereby
enhancing the embedding capacity. This embedding capacity was further enhanced
by Tsai et al. [23] by embedding the secret data in the residual images instead of
image histograms. The pixels within the image were classified as wall pixels and non
wall pixels, and then the interpolation error of the wall pixels, and the difference
values of the non wall pixels and the parent pixels were used for data embedding.
The embedding capacity was further enhanced by exploring the prediction values in
a rhombus prediction scheme in Chang et al. [2]. Another variation in the histogram
based approach was proposed by Wang et al. [24] by introducing the concept of
location maps and manipulating the maximum frequency values of the histogram
assuming their intensity values and updating these peak values with the other pixel
value of the same segment. Hong et al. [7] enhanced the embedding capacity by using
the dual binary trees instead of shifting the difference values. To construct a sharper
histogram, Lin et al. [11] utilized difference image histograms. The correlation of
two adjacent pixels is considered in this scheme. In [10], the host image is divided
into sub-images by sampling. One of these sub-images is selected as a reference
image to compute differences with others and the secret message is embedded by
multilevel histogram modification. Luo et al. [12] improved this scheme by selecting
the median of every block to construct a reference image, which leads to a sharper
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histogram. In Pan et al. scheme [18], histogram is constructed for every block, and
the peak point is selected as the reference pixel to compute differences with other
pixels.

1.1 Motivation for the Proposed Work

From the literature survey, it is concluded that most of the existing histogram shift-
ing based RDH schemes [3, 14, 11] have not considered the following points:

1. The regions within an image are not uniform; some regions are smooth while
some are complex. Block based histogram shifting schemes did not consider the
complexity of the blocks in the embedding process.

2. Usually in the existing histogram based shifting schemes, maxima and minima
are selected to shift the in-between pixels to embed the data. The maxima and
the minima point are selected corresponding with the pixels having maximum
and minimum frequency value respectively in the image. Out of the various
minima (zero) points, any random minima is selected in these schemes. If this
is selected judiciously, shifting can be minimized, thereby, minimizing image
distortion.

3. In the existing difference image schemes, negative maxima points have not been
utilized for data embedding, i.e., in the existing histogram shifting approaches
only the absolute differences between the neighboring pixels have been used for
data embedding.

1.2 Contribution

The novelty of the proposed scheme is summarized as follows:

1. Complexity of the blocks is evaluated by using Bit Plane Complexity Segmen-
tation (BPCS ). An optimized threshold value is evaluated by using firefly algo-
rithm and is used to classify a block as smooth or complex. The complex blocks
have been used to embed the data, which helps in enhancing the embedding
capacity as well as the imperceptibility.

2. Maxima and minima (zero) points of difference blocks are chosen in such a way
that the distance between them is least, due to which the shifting of the pixels get
minimized, hence reduction in distortion, thereby enhancing the visual quality
of the image.

3. In the proposed scheme, the difference blocks contain simple difference values,
i.e. positive as well as negative difference values, in which the negative difference
value pixels are able to store more than one bit of secret data, which enhances
the embedding capacity accordingly maintaining the similar visual quality of the
image.
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1.3 Organization of the Work

The paper has been organized into following sections. Section 2 discusses the back-
ground of the proposed scheme. The proposed scheme itself, which comprises of
the schemes of data embedding, and data extraction and handling of the side in-
formation are discussed in Section 3. Experimental results and comparisons of the
proposed scheme with existing schemes have been illustrated in Section 4 followed
by the conclusion in Section 5.

2 RELATED WORK

The concepts of histogram shifting, image complexity and firefly algorithm, used in
the proposed scheme, are discussed in this section.

2.1 Histogram Shifting

Reversible Data Hiding using Histogram Shifting was proposed by Ni et al. [14] in
2006. The main concept of the shifted-histogram data hiding method is to find a pair
of maxima and minima in the histogram of the image and then shift the intensity
of the pixels, which lie between the maxima and minima by one level, towards the
minima. If the minima lies to the right of the maxima, all the pixel values between
them are incremented by 1, while if the minima lies to the left of the maxima, all
the values are decremented by 1, as shown in the Figure 1. This creates an empty
space on the shifted histogram around the maxima pixel value. To embed a data
stream, the shifted image is re-scanned and when the pixel of maximum frequency
is encountered its gray value is incremented by one, if the corresponding bit in the
embedding stream is ‘1’ otherwise it remains unaltered. Thus, the largest number of
bits which can be hidden into the image is equal to the maximum frequency of the
histogram. Owing to the created gap, the data hiding mechanism is reversible. The
values of the pixels with maximum and minimum frequency are also recorded as side
information. If the minimum frequency is non-zero, then their numbers also need
to be embedded as the side information, which reduces the data hiding capacity of
the system.

2.2 RDH Based on Histogram Modification of Difference Images

In this section, Lin et al. scheme [11] is briefly reviewed in which the cover image is
divided into non-overlapping blocks of equal size and difference image is generated
for every block. In the histogram based data hiding schemes, the higher the number
of peak points, the larger will be its hiding capacity. With the help of the histogram
approach, peak values are recorded for every block from its difference image. In
the difference image, the grayscale value of the maximum occurrence tends to be
around 0. The objective in their scheme is to increase the occurrence of peak point
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Figure 1. Shifting of pixels in the histogram of an image

and hence the hiding capacity of the proposed scheme. During the hiding phase,
empty space is created in the difference image by shifting the histogram and hiding
the secret data by using the histogram shifting process. The marked image is gen-
erated using original cover image and modified difference image. For the receiver
part, same steps are applied in the reverse order to retrieve the original image from
the marked image.

2.3 Image Complexity

The data hiding scheme outlined in this paper uses the complex region of the image
to embed data. Image complexity has no standard measure. Kawaguchi [9] proposed
the measure to evaluate image complexity, which is also known as black-and-white
(B-W ) border image complexity.

The black-and-white border length is recorded in the binary image to measure
the image complexity. The longer border indicates complex image, else it is a simple
image. The length of the border is calculated by the summation over the number of
times the color changes along all the rows and columns of the image. For example,
if a black pixel is surrounded by white background pixels, then it has the border
length of 4. The image complexity is defined as follows:

α =
k

m
(1)

where m is maximum possible B-W changes in the image and k is the total length
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of B-W border in the image. Hence the value ranges over, 0 ≤ α ≤ 1. The above
complexity measure is defined only for binary images. The 8-bit grayscale images
are split into 8 binary planes. This splitting of image into its constituent binary
planes is called Bit-Plane Slicing. This is performed in Pure-Binary Coding system
(PBC ) where the intensity values are represented as 8 bit binary numbers, but it
suffers from a serious drawback, known as Hamming Cliff [20]. This issue is resolved
by using the coding system called Canonical Gray Coding System (CGC ), where
successive decimal numbers differ in their representation by just one bit. Thus in
BPCS firstly the absolute intensity values are converted into CGC by PBC-to-CGC
mapping. This is followed by bit-plane decomposition on the CGC values, and the
8 binary images obtained are called the CGC images. These CGC images do not
suffer from Hamming cliffs.

The complexity measure for the grayscale image is explained with the help of
an example in Figure 2. An image block and its binary representation is shown
in the figure. This block is divided into 8 bit planes. ki is calculated for every
block, where i ∈ [1, 8]. ki is length of B-W border which equals summation of
number of color changes along the rows and columns in the image block. Maximum
length (m) = size of image× number of bit planes. For the given image block, size
of image = 3× 3 and number of bit planes = 8. Then, complexity (α) is calculated
using Equation (1).

2.4 Firefly Algorithm

Firefly Algorithm (FA), proposed by Yang et al. [25], is a swarm intelligence op-
timization technique. FA is inspired by flashing behavior of fireflies. Two basic
functions of the flash light are to attract mating partners and to attract potential
prey. FA is based upon the assumption that solution of an optimization problem can
be perceived as fireflies whose brightness is proportional to the value of its objective
function within a given problem space. In the FA, there are three idealized rules:

1. All fireflies are unisexual, so that any individual firefly will be attracted to all
other fireflies.

2. Attractiveness is proportional to their brightness, and for any two fireflies, the
less bright one will be attracted by (and thus move towards) the brighter one;
however, the intensity (apparent brightness) decreases as their mutual distance
increases.

3. If there are no fireflies brighter than a given firefly, it will move randomly.

3 PROPOSED SCHEME

In this section, the data embedding algorithm, data extraction algorithm and pre-
vention of overflow or underflow has been discussed.
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Figure 2. Representation of bit plane slicing and complexity measure
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Algorithm 1 Firefly algorithm for maximum optimization

Objective function: f(x), where x = (x1, x2, x3, . . . , xt);
Generate Initial Population of fireflies xi where i = 1, 2, 3, . . . , t;
Formulate light intensity I in association with f(x)
Define absorption coefficient γ
while (t < MaxGeneration) do

for i← 1 to t do
for j ← 1 to t do

if (Ii > Ij) then
Vary attractiveness with distance r via exp(−γr);
move firefly i towards j
Evaluate new solutions and update light intensity

Rank fireflies and find current best

3.1 Data Embedding

Let CI be the cover image of size M ×N and SI be the Secret Data. A functional
block diagram of the embedding procedure is represented in Figure 3 and discussed
in Algorithm 2.

Algorithm 2 Embedding Algorithm

Input: Cover Image CI of size M ×N , Secret Data Image SI
Output: Marked Image MI

1: The cover image CI is divided into blocks CIb of size r × c. The number of

blocks n created for the image would be: n =
M ×N
r × c

2: Complexity value is calculated for all the blocks using Kawaguchi et al.
scheme [9], described in Section 2.3. Then blocks are categorized into two cate-
gories: Complex and Smooth. The set of blocks having complexity value greater
than the threshold are considered as Complex Blocks while the set of blocks
having complexity value lesser than the threshold are considered as Smooth
Blocks. An optimized threshold value is evaluated by using FA, mentioned in
Algorithm 1. The set of complex blocks is used for data embedding.

An example representing embedding algorithm has been shown in Figure 4.

3.2 Data Extraction

In this procedure, the embedded secret data bits are extracted from the marked
image MI and it is restored to its original image without any distortion. The steps
within the extraction procedure are discussed in Algorithm 3:
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3: From every selected complex block CIb, absolute difference image block CAD b of
size r × (c− 1) is evaluated by using the formula:

CAD b(i, j) = |CIb(i, j)− CIb(i, j + 1)|, (2)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c− 2, 1 ≤ b ≤ n
4: A simple difference image CSDb of size r × (c − 1) of each block b is evaluated

by using the formula:

CSDb(i, j) = CIb(i, j)− CIb(i, j + 1), (3)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c− 2, 1 ≤ b ≤ n
5: For all the absolute difference image blocks CAD b, histograms are generated and

maxima maxb and minima minb are recorded for every block. The minima is
chosen in such a way that the value of |maxb−minb | should be minimum. All
the maximas are copied from CSDb to CAD b so that CAD b should consist of
positive and negative maximas and other pixels as absolute values.

6: All the pixel values between maxb and minb are incremented or decremented by
1 depending on the case that the minima minb is present on the right or left
of the corresponding maxima maxb. Rest all the pixel values CAD b(i, j) remain
unchanged. Both cases can be mathematically described in Equations (4) and (5)
as follows:

CAD ′b(i, j) =

{
CAD b(i, j) + 1, if CAD b(i, j) > maxb,

CAD b(i, j), otherwise,
(4)

CAD ′b(i, j) =

{
CAD b(i, j)− 1, if CAD b(i, j) < maxb,

CAD b(i, j), otherwise,
(5)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c− 2, 1 ≤ b ≤ n.
7: The secret data bits m of the secret data, SI, are embedded in the shifted differ-

ence image blocks CAD ′b by modifying their pixels having grayscale equal to the
maxima maxb, with the help of the following principle:

CAD ′′b (i, j) =


CAD ′b(i, j) +m, if CAD ′b(i, j) = maxb,

|CAD ′b(i, j)|+m1, if CAD ′b(i, j) = −maxb,

CAD ′b(i, j), otherwise,

(6)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c − 2, 1 ≤ b ≤ n, m ∈ {0, 1} and m1 ∈ {0, 2L} where
L = log2(d), d is the difference between negative and positive maximas of the
block.
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8: The blocks of marked image MI are created with the help of blocks of the original
cover image CI and the blocks of the updated difference image CAD ′′ with the
help of the following transformations:

MIb(i, 0) =

{
CIb(i, 0), if CIb(i, 0) < CIb(i, 1),

CIb(i, 1) + CAD ′′b (i, 0), otherwise.
(7)

MIb(i, 1) =

{
CIb(i, 0) + CAD ′′b (i, 0), if CIb(i, 0) > CIb(i, 1),

CIb(i, 1), otherwise,
(8)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c− 2, 1 ≤ b ≤ n.
9: For other remaining pixels, the following operation is performed

MIb(i, j) =

{
MIb(i, j − 1) + CAD ′′b (i, j − 1), if CIb(i, j − 1) ≥ CI ′b(i, j),

MIb(i, j − 1)− CAD ′′b (i, j − 1), otherwise,
(9)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c− 2, 1 ≤ b ≤ n.

3.3 Preventing Possible Overflow or Underflow

In the marked image, the grayscale values of some pixels of the cover may exceed
the upper bound (2bd−1 for cover image having bd depth pixels) or the lower bound
(0 for cover image having bd depth pixels). This is possible due to the shifting
operations performed on pixel values that are close to 2bd− 1 or 0. To overcome the
overflow or underflow problem, the modulo operation proposed by Goljan et al. [4]
and Honsinger et al. [5], is adopted. For the marked image, we define each pixel
Sb(i, j) as

Sb(i, j) = Sb(i, j) mod 256.

On the receiver side, whether the received pixel, for example, Sb(i, j) = 255, was
derived from 255 or −1, must be distinguished. Considering the characteristics of
an image, no tremendous variations exist for adjacent pixels. Therefore, in case of
a significant difference between Sb(i, j − 1) and Sb(i, j), Sb(i, j) was conducted by
a modulo operation.

Two evaluations are presented here to restore the original value of Sb(i, j) after
the modulo operation is performed. If Sb(i, j − 1) is larger than TH1, Sb(i, j) is
restored as

Sb(i, 1) =

{
Sb(i, 1) + 256, if |Sb(i, j − 1)− Sb(i, j)| ≥ TH2,

Sb(i, 1), otherwise,

where TH1 and TH2 are the threshold values.
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Algorithm 3 Extraction Algorithm

Input: Marked Image MI
Output: Original image CI and secret data image SI.

1: The received marked image is divided into n blocks of size r × c.
2: The complexity values are calculated for all the blocks using scheme described

in Section 2.3. These blocks are classified into complex and smooth on the
basis of their comparison with the threshold value. An optimized threshold
value is evaluated using FA described in Algorithm 1. The set of blocks having
complexity value greater than the threshold are considered as Complex Blocks
while the set of blocks having complexity value lesser than the threshold are
considered as Smooth Blocks. Only the complex blocks are used for extraction
as the data was embedded only in the complex blocks.

3: Difference image complex blocks RCAD b are calculated from the received
marked image by using the formula:

RCAD b(i, j) = |MIb(i, j)−MIb(i, j + 1)| (10)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c− 2, 1 ≤ b ≤ n.
4: Values of maxima maxb and minima minb are recieved as side information.
5: The difference image generated in Step 3 is traversed and the embedded secret

data bits m are extracted by using the following rules.

m =


0, if RCAD b(i, j) = maxb,

1, if RCAD b(i, j) = maxb +1,

de2bi(RCAD b(i, j)), if RCAD b(i, j) ∈ [−maxb,maxb−1),

(11)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c − 2, 1 ≤ b ≤ n where de2bi is the conversion
function of any decimal number to its equivalent binary number. maxb is the
received maxima of block b and m is the array of bits extracted. The entire
difference image blocks b are scanned and bit 0 is extracted, if the pixel value
maxb is encountered and 1 is extracted if the pixel value maxb +1 is encountered.
If pixels within the range [−maxb,maxb+1) are encountered, L number of bits
are retrieved by following Equation (11), where

L = blog2(d)c (12)

L is the number of bits embedded in every negative maxima and

d = maxb − (−maxb) + 2 (13)

maxb is the positive peak value and −maxb is the negative peak value.
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Figure 3. Flowchart of data embedding procedure

6: The difference image blocks RCAD ′b are retrieved back by using the formula:

RCAD ′b =


RCAD b(i, j)− 1, if RCAD b(i, j) = maxb +1,

RCAD b(i, j), if RCAD b(i, j) = maxb,

−maxb, if RCAD b(i, j) ∈ [−maxb,maxb−1),

(14)

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c− 2, 1 ≤ b ≤ n where maxb is the maxima of block
b and −maxb is the negative maxima of block b.

7: The original image CI is recovered back by applying the inverse shifting opera-
tions.
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Figure 4. Example for data embedding in proposed scheme

If Sb(i, j − 1) is smaller than TH1, Sb(i, j) is restored as

Sb(i, 1) =

{
Sb(i, 1)− 256, if |Sb(i, j − 1)− Sb(i, j)| ≥ TH2,

Sb(i, 1), otherwise.

This approach is an efficient approach to prevent underflow and overflow and is also
used by Lin et al. [11].
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4 EXPERIMENTAL RESULTS

Figure 5. a)–e) Original cover images; f)–j) marked images after embedding 5 000 bits;
k)–o) marked images after embedding 10 000 bits; p)–t) marked images after embedding
25 000 bits

Image
Capacity →

5 000 10 000 20 000 50 000
Threshold ↓

Lena 0.0983 64.65 61.43 58.61 54.86

Boat 0.0635 65.68 62.65 59.83 56.10

Baboon 0.065 67.42 63.84 60.67 55.94

Barbara 0.0762 48.40 45.26 42.11 37.81

Peppers 0.0683 64.59 61.46 58.40 54.57

Table 1. PSNR (dB) values at different capacities (in bits) for different images at opti-
mized threshold

Proposed scheme is implemented using MATLAB. The input images considered
for this work are uncompressed grayscale images named Lena, Boat, Peppers, Ba-
boon and Barbara. These images are generally used by the researchers to compare
their results with existing schemes. Each of the image is 512×512 size and they are
shown in Figure 5. Figures 5 a)–e) show the original images and their marked images
at different embedding data, are shown in Figures 5 f)–t). Block sizes considered in



Adaptive Reversible Data Hiding Scheme for Digital Images 335

Image → Lena Barbara Boat Baboon Peppers
Scheme ↓ Capacity PSNR Capacity PSNR Capacity PSNR Capacity PSNR Capacity PSNR
Tsai et al. [23] 38 310 49.11 25 370 48.97 12 739 48.85
Kim et al. [10] 78 071 41.09 52 924 40.65 65 293 40.84
Hong et al. [6] 54 457 48.17 34 148 48.17 34 025 48.77
Ni et al. [14] 5 446 48.21 11 473 48.26 5 447 48.21
Ou et al. [16] 60 000 50.5 47 500 51.1 – – 20 000 50.1
Ma el al. [13] 50 000 50.5 40 000 51.5 17 000 50 38 000 50.5
Qu and Kim el al. [19] 49 000 50.5 38 000 50.5 15 000 50.5 34 000 51.5
Ou et al. [17] 54 000 49 43 000 49 18 000 49 43 000 49
Hong et al. [8] 46 839 49.19 29 824 49.02 14 154 48.86
Proposed 102 431 51.85 154 237 33.01 91 687 53.23 88 807 53.28 97 767 51.60

Table 2. PSNR (dB) vs. Capacity (in bits) comparison of proposed scheme with the ex-
isting schemes

Block Size → 4× 4 8× 8 16× 16

Image ↓ Capacity PSNR Capacity PSNR Capacity PSNR

Lena 102 431 51.85 77 206 47.97 65 496 43.30

Baboon 88 807 53.28 54 817 50.54 40 932 46.58

Peppers 97 767 51.60 72 332 47.89 61 611 43.35

Barbara 154 237 33.01 134 238 27.57 113 465 23.18

Boat 91 687 53.23 62 294 49.96 40 086 45.77

Table 3. PSNR (dB) vs. Capacity (in bits) comparison of proposed scheme for different
block sizes

the proposed work are 4× 4, 8× 8 and 16× 16. In this experiment, a binary image
is taken as secret data. PSNR is taken as one of the quality parameters which is
defined as

PSNR = 10× log10

(2bd − 1)2

MSE
(15)

where bd is the bit depth of the image and MSE is defined as

MSE =
M∑
i=1

N∑
j=1

δ(i, j)2

M ×N
, (16)

δ(i, j) = MI(i, j)− CI(i, j) (17)

Sachnev Ma Qu Ou Proposed Proposed Proposed
Schemes et al. [21] et al. [13] et al. [19] et al. [16] Scheme Scheme Scheme

4× 4 8× 8 16× 16

Lena 20 785 144 390 10 370 10 290 4 758 3 027 1 440

Baboon 60 312 53 715 57 549 52 008 4 266 4 257 7 821

Barbara 21 068 16 177 11 512 10 223 2 093 798 420

Peppers 42 296 23 239 17 741 16 369 5 048 4 347 4 895

Table 4. Shifting (in pixels) comparison for different images for 10 000 embedding capacity
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Sachnev Ma Qu Ou Proposed Proposed Proposed
Schemes et al. [21] et al. [13] et al. [19] et al. [16] Scheme Scheme Scheme

4× 4 8× 8 16× 16

Lena 43 420 33 795 27 176 26 825 9 879 7 085 3 540

Barbara 43 420 34 371 29 644 28 420 4 027 1 636 909

Peppers 90 388 52 460 43 250 43 191 10 012 8 675 5 089

Table 5. Shifting (in pixels) comparison for different images for 20 000 embedding capacity

a)

b)

Figure 6. Embedding capacity (in bits) and PSNR (dB) comparison of proposed scheme
with existing schemes for a) Lena image and b) Peppers image

where MI(i, j) is the pixel of marked image and CI(i, j) is the pixel of cover image,
M and N are the height and width of image, respectively.

Objective function used to optimize the threshold is

fobj = embedding capacity× PSNR (18)

where embedding capacity is the total amount of secret data embedded and PSNR
is taken between original and marked image.

In Table 1, PSNR values have been given for the proposed scheme for different
embedding capacities for different images at their respective optimized thresholds.
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a)

Minimum bits embedded are 5 000 and maximum bits embedded are 50 000 for all
images, considered in this work. One can observe that PSNR values decrease with
the increase in the embedded bits. This is due to the reason as number of embedded
bits decreases the distortion in the marked image, which further decreases PSNR
between cover and marked images.

In Table 2, the PSNR vs. the maximum embedding capacity of the proposed
scheme and various existing schemes have been presented. It can be inferred that the
embedding capacity and PSNR of the proposed scheme are better when compared
to the existing schemes. The embedding capacity has been increased using negative
pixels of the difference image for embedding. PSNR has been maintained by choosing
the closest minima to the maxima of every difference block of the image and also
by using just the complex blocks for the host image. In case of Barbara image,
PSNR value is lesser than the existing schemes, but the embedding capacity has
been increased remarkably as compared to the existing schemes. Table 3 shows
PSNR and embedding capacity for the proposed scheme for different block sizes, i.e.
4× 4, 8× 8 and 16× 16. In Tables 4 and 5, the comparison of the shifting of pixels
of the proposed scheme with the existing schemes at 10 000 and 20 000 embedding
capacities has been shown. It can be seen that the shifting of pixels in the proposed
scheme has been reduced remarkably in comparison to the shifting of the existing
schemes.

PSNR vs. embedding capacity comparison of the proposed scheme with the
existing schemes has been shown in Figure 6 for Lena and Pepper images. It can
be observed from this figure that the proposed scheme maintains the highest PSNR
vs. embedding capacity ratio for both the images. Though Kim et al. [10] manage
to have larger embedding capacity for Lena image, but its PSNR for the same is
quite low as compared to the proposed scheme.

Comparison of the proposed scheme with the existing schemes in terms of shifting
of pixels has been shown in Figure 7. It can be observed that the proposed scheme
has minimum shifting of pixels, which helps in reducing the distortion, thereby
enhancing the visual quality of the image.
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b)

c)

d)

Figure 7. Shifting (in pixels) comparison of the proposed scheme with the existing schemes
for different images for a) block size 4 × 4 and embedding capacity 10 000, b) block size
4×4 and embedding capacity 20 000, c) block size 16×16 and embedding capacity 10 000,
and d) block size 16× 16 and embedding capacity 20 000
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5 CONCLUSION

In this paper, an adaptive reversible data hiding scheme for digital images has
been proposed. The blocks of the image have been categorized into complex and
smooth blocks on the basis of their complexity, and only complex blocks have been
used for embedding, which helped in maintaining the PSNR value. Secret data
bits are embedded in the difference blocks of the image, in which both the positive
and negative difference maxima have been utilized for data embedding, as they
are able to embed more than one bit, thereby increasing the embedding capacity.
Histogram shifting has been minimized by choosing the closest pairs of maxima and
minima which further minimizes the distortion in the marked image. The embedding
capacity and the PSNR of the proposed scheme have proven to be better as compared
to the existing schemes.
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Abstract. Steganography is considered to be not only a science, but also a craft
of concealing ongoing communication by hiding messages in unsuspicious cover do-
cuments, such as texts, digital images, audio and video sequences. Its essential
feature is the constant search for – often exceptionally creative – possibilities of
concealing information. In computers, steganography often uses secondary memory
and exchangeable memory media utilising file systems. This paper deals with the
current state of the issues related to information hiding by means of hard disks,
being the most important source of forensic data. This paper focuses on information
hiding using the File Allocation Table (FAT) file system. It also proposes a novel
multi-carrier algorithm of hiding information in file fragmentation. The algorithm
provides flexibility of encoding the information to be hidden and makes steps toward
optimization that allows reduction of interference with the current state of the file
system, represented by the statistical values of the file fragmentation parameters.
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1 INTRODUCTION

Currently, computer system security and telecommunications’ specialists are strong-
ly focusing on encryption. This method of protection, if used as the sole solution,
is considered to be insufficient in certain cases. Encrypted information attracts
attention, and sometimes the existence of encrypted communication may even re-
present a piece of very valuable information. A solution to this problem may be
the use of steganography. Steganography can be defined as the art of hiding the
presence of communication by embedding secret messages into innocent, innocuos
looking cover documents, such as texts, digital images, sound and video files [1].

Steganography has seen a significant development with the advent of compu-
ters, computer networks and especially the Internet; this development includes also
the introduction of specific steganographic procedures, connected exclusively to the
use of computers. Digital steganography employs traditional digital media, such as
text, bitmap or vector graphic images, audio and video files. Excellent carriers of
concealed messages are graphic image files, most frequently using the following tech-
niques: Least Significant Bit (LSB) modification, frequency domain techniques [2, 3]
and spread spectrum techniques. An overview of these techniques may be found
in [4]. However, steganography is constantly seeking new, yet unused media and
communication channel types, providing a possibility to expand to further territo-
ries. An example of this is the appearance of mobile phones, especially smartphones
equipped with modern operating systems, such as Android or iOS. An overview on
the use of steganography in smartphones is available in [5]. Very useful general
overview of the development of steganography is available in [6, 7].

This paper focuses on the use of secondary storage devices and especially file
systems to hide confidential information into file fragmentation. It also describes
a multi-carrier algorithm which, unlike the other available algorithms, uses a set of
files to conceal the information. On the contrary to the existing solutions – such
as the steganographic file system proposed in [8], which adds further files to the
file system and increases the fragmentation of files – the algorithm presented in this
paper aims to minimize the interference with the fragmentation of files and allows to
make steps to keep the statistical data concerning file fragmentation untouched, both
in the whole file system and in the subset of files used to encode the information. It
does not require placing fragments of two or more files into relative positions (i.e.
as interlaced files) in the same part of the file system, as the solution proposed by
Morkevičius et al. in [9].

In spite of the fact that the FAT file system is not a default file system in modern
operating systems anymore, they still support it. Moreover, the FAT file system is
still widely used on diskettes, pen drives, various memory media using flash memory
chips, as well as solid-state disks (SSD). It is also utilised in numerous types of
mobile devices, including mobile phones, MP3 players, cameras, embedded devices
and consumer electronics devices, such as set-top boxes and multimedia players. In
industry and research and development area software solutions along with specialized
hardware are used with secondary storage [10, 11, 12] that often implements FAT
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as file system because of relatively easy implementation. Therefore we selected the
FAT32 variant of the file system to verify the possibilities of implementation of the
algorithm proposed in this paper.

The rest of this paper is organised as follows:

• Section 2 includes the works related to the usage of hard disks and file systems
for the purposes of steganography and cryptography, focusing on the algorithms
utilising the FAT table and file fragmentation to conceal the information.

• Section 3 contains the proposal of the algorithm developed within this research,
allowing hiding information into the file allocation table of the FAT file system.
The algorithm encodes the information in the fragmentation of a set of files
stored in the file system.

• Section 4 discusses the possibilities of making steps toward optimisation of the
encoding of the confidential message with the goal to minimise changes in the file
fragment parameters, as well as the possibilities of compensating these changes
while keeping the original statistical values of the file fragmentation parameters
after the encoding of the confidential message as much as possible.

• Finally, Section 5 lists the achieved results and shows the future research per-
spectives within this field.

2 RELATED WORKS

Storage devices utilising file systems – especially hard disks – are still the most im-
portant storage media used both in enterprise-grade and consumer-grade equipment.
Significant amounts of confidential data – both private data and also strategically
and financially valuable data of businesses and the state administration – are stored
on hard disks [13]. Thus, hard disks belong to the most important sources of foren-
sic analysis. Both the physical and logical structure of hard disks and the methods
of storing information on the disk allow relatively many ways of concealing infor-
mation. These approaches allow hiding the existence of the hidden data from the
operating system or the users employing conventional file managers and other soft-
ware working with folders and files of the file system. Therefore, special software
is needed for this purpose. Some of these methods allow fully transparent disk us-
age, i.e. avoiding random destruction of the hidden information due to conventional
usage of the media. On the other hand, other approaches may be vulnerable to
random destruction of the concealed data by standard use.

Hard disk drives (HDD) and solid-state drives (SSD) may contain a so-called
Host Protected Area (HPA), commonly referred to as “Hidden Protected Area”.
This part of the disk is not available to the user, to the BIOS, the operating system
(OS) or any not-HPA-aware standard software. Therefore, the content of this area
may not be read or modified using standard methods. Computer manufacturers may
use the HPA to store data protected from the interference of normal users, such as
diagnostic software or software used to restore the standard software installation to
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its factory-state. It is possible to create software allowing access to the disk sectors
of the aforementioned area, storing information in these and reading information
from them. Steganography makes a good use of this [14, 15].

A further possibility of using hard disks in steganography is dividing physical
storage space used to store data on the disk – i.e. sectors and clusters – into con-
tiguous regions called partitions. By not including a set of sectors in any partition,
these sectors may be used to store data, invisible to the standard access methods of
the operating system. This unallocated space is called the disk slack or the volume
slack. The related issues are described in detail in [16].

Since the sectors belonging to the partition may be addressed only by whole
clusters and the size of the partition may be defined in such a way that when dividing
the number of sectors of the partition by the number of sectors in the cluster the
remainder is not an integer, there may remain some sectors at the end of the partition
not addressable using standard file system methods, thus, this remaining area may
be used to store the confidential information. These sectors are then commonly
referred to as the partition slack [17].

Figure 1. A volume with two partitions, showing the existence of a partition slack and
disk slack and/or volume slack

Figure 1 shows a volume having two partitions. The first of them does not
occupy the whole last cluster in the volume, so it cannot use it. The allocated but
unusable part of the cluster is the partition slack. A further part of the disk not
allocated to any of the partitions is the disk slack/volume slack.

If there are clusters in the partition not used for the storage of regular data –
i.e. “empty clusters” – these are not accessible by standard means and thus may
be used to store confidential information. Even if this area is large, allowing the
storage of huge amounts of data – potentially up to hundreds of GB – any unused
cluster may be used anytime to store regular file content and so the hidden data
may be overwritten, leading to their loss.

The DOS/Windows operating system reserves the first sector of the hard disk
for the Master Boot Record (MBR), which stores the information required to load
the operating system and also the disk partitioning information. Even if the size of
the MBR itself is small and it takes up only a single sector, the whole track, on which
it is stored, is reserved and the sector containing the track cannot be addressed and
used by the file system. This allows the existence of an eventually large space on the
disk, usually amounting to tens of sectors, which may be used to store the concealed
information [18].
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Analogous to the MBR is the case of the Extended Master Boot Record (EMBR)
of the extended partition. This space is commonly referred to as the MBR slack and
the EMBR slack, respectively. The hidden data, stored in the MBR are protected
not only from formatting, but also from the change of partition count and size on
the disk.

In the file systems used by the Windows operating system, the size of a cluster
may range from 512 B to 64 kB, while each file written into the file system may use
one or more clusters. Since the remainder of the division of the length of the stored
files in bytes and the size of the cluster is not necessarily 0, the last cluster used to
store the file is being used only partly. Therefore, it may happen that one or more
sectors in the last cluster are unused and so this space may be used to store the
hidden information. This space is called the file slack.

Last sector used in the cluster to store the regular data of the file need not
be fully used; also this unused space may be used to store hidden information.
This space is commonly referred to as the RAM slack. The term RAM slack is
a historical term – in the past, upon writing the last part of the file from the
operating memory to the sector on the disk, 512 B of operating memory was copied
to this space, even though some bytes had nothing in common with the content of
the file. When using the file slack or the RAM slack, it is very probable that the
concealed data shall be overwritten any time the size of the regular file occupying
the cluster changes.

Figure 2 shows the FILE.EXT file occupying two clusters (each consisting of
four sectors), while the last cluster of the file is not being fully occupied. Its first
sector is not completely filled with file data and so the empty part is the RAM
slack. The following three sectors of the cluster are fully unused – these are the file
slack.

Figure 2. A file occupying two clusters, with the RAM slack and the file slack depicted

In [19], Aycock and de Castro proposed to utilise the fact that the order of files
and directories displayed to the user does not correspond to their order of storage
in the directories of the File Allocation Table (FAT). Permutations of their storage
order allow concealing information.

As a feature of the FAT file system, the FAT table allows marking clusters in
the damaged parts of the storage media as bad clusters, indicating their inappropri-
ateness for data storage. By falsely marking fully functional clusters as bad clusters
one may ensure that these will not be used by the file system. However, these are
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fully functional and one may hide information in these, using a special software
tool [19, 20].

A multi-carrier steganographic algorithm, storing information in file fragmenta-
tion and the relative location of these fragments in the file system was proposed by
Morkevičius et al. in [9].

The utilisation of the file system as a carrier to hide information is being used
not only in steganography, but also in cryptography. There are numerous imple-
mentations of cryptographic file systems available, such as the Cryptographic File
System (CFS) for the UNIX operating system [21], the Transparent Cryptographic
File System (TCFS) for the Linux operating system [22], the Encrypting File Sys-
tem (EFS) for the Microsoft Windows 2000/XP operating systems [23] or the Secure
File System (SFS) for the same [24, 25]. Further cryptographic file systems include
the E4M [26] and PGPDisk [27] systems.

Cryptographic file systems encode individual files and whole disk partitions,
protecting user data from unwanted recovery of their content. On the other hand,
the use of cryptographic functionality tells the eventual attacker that the data pro-
tected are truly confidential and important. Such a situation draws attention of the
potential attackers and may inspire them to try to crack the encryption or to force
the authorised user to decrypt the data under pressure. A solution to this problem
may be the use of steganography, which allows masking the existence of concealed
files from unauthorised users. This allows also the use of plausible deniability con-
cept, i.e. allowing the authorised user to deny the existence of confidential data or,
eventually, disclose only the existence of less important data. The attacker might
not be sure and cannot prove, whether there are any further, more important data,
remaining concealed.

Anderson et al. proposed in [28] a steganographic file system. In this, the user
may access the requested file only by knowing its name and the appropriate pass-
word. The proposed file system inspired Van Schaik and Schmeddle to implement
such a steganographic file system for the LINUX operating system [25]. In [29],
Hand and Roscoe proposed an enhancement to this scheme for peer-to-peer plat-
forms by replacing simple file replication with the Information Dispersal Algorithm
(IDA).

A further implementation of a steganographic file system based on [28] was
StegFS, proposed in [30]. This was an extension of the standard file system of
the LINUX operating system by encryption functions allowing plausible deniability.
An implementation of the steganographic file system for the Windows environment
is ScramDisk, presented in [31].

A steganographic file system based on JPEG files was proposed in [32, 33].
It allowed the creation of a virtual disk, a Virtual File System (VFS), hidden in
multiple cover media – images in JPEG format. The hidden content is available
only to the user knowing the correct key.

The following section describes the proposed algorithm, aimed at hiding infor-
mation in the FAT file system by using file fragmentation.
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3 NEW MULTI-CARRIER FILE FRAGMENTATION
BASED STEGANOGRAPHIC ALGORITHM

For the purposes of the algorithm, the information stored in the FAT system (files)
form the set V . The total file count is x, thus x = |V | (cardinality). So, the following
applies:

V = {Fo, F1, . . . , Fx−1}. (1)

On hard disks of real-life personal computers (with an installed operating system,
software and user data files), the size of this set amounts to hundreds of thousands.

The files stored in the FAT are separated into fragments. A fragment consists
of data of a specific file stored in a contiguous sequence of clusters allocated so that
in the FAT table the record of the cluster at the address n points to the next cluster
at the address n + 1. An exception to this rule is the last cluster of the fragment
at the address n, pointing to the first cluster of the next fragment, which must not
be located at the address n + 1. A fragment may be limited from above and from
below by unallocated clusters or clusters allocated by another fragment. It may be
limited also by other fragments of the same file, while the fragment is not a subset
of another fragment. Thus, we may define the set A, formed by all fragments of all
files stored in the file system.

A = {fo, f1, . . . , fy−1}. (2)

Obviously, y = |A|, while the value depends on the current file fragmentation
and is variable. From below, it is limited by the value of x – the number of files
stored in the file system – because if a file is not fragmented, we may assume that it
consists of a single fragment. If all files were unfragmented, the number of fragments
in the file system would be equal to the number of files. In theory, the upper limit
of the total fragment count is the sum of clusters allocated to the individual files
of the set V , being an extreme state, when each fragment of each file consists of
a single cluster. A limiting factor is also the maximum amount of clusters available
to the file system. Each fragment may be part only of a single file.

In the proposed algorithm, each fz ∈ A : z ∈ 〈0, y − 1〉, z ∈ N0 fragment is
an ordered set of fragment parameters:

fz = {α1, α2, α3, α4, α5} (3)

where

• α1 is the address of the first cluster of the fragment in the FAT table,

• α2 is the length of the fragment in clusters,

• α3 is the address of the last cluster of the fragment in the FAT table,

• α4 is the length to the next fragment of the file in clusters,

• α5 is the address of the first cluster of the next fragment of the file.
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In case of the last fragment in the sequence of fragments of the given file, the
parameters α4 and α5 are set to 0. The set of fragment parameters is not complete,
currently it is only a proof of concept.

The algorithm defines the O set of operations

O = {β1(x), β2(x), β3(x), β4(x), β5(x), β6(x)} (4)

where

• β1(x) is writing (reading) 0, if x is even and 1 if x is odd,

• β2(x) is writing (reading) 1, if x is even and 0 if x is odd,

• β3(x) is a shift to the next file in the file set, if x is even and to the previous file
in the file set, if x is odd,

• β4(x) is a shift to the previous file in the file set, if x is even and to the next file
in the file set, if x is odd,

• β5(x) is a shift ahead in the file by 1 fragment, if x is even and by 2 fragments,
if x is odd,

• β6(x) is a shift ahead in the file by 2 fragments, if x is even and by 1 fragment,
if x is odd.

Some of the operations are aimed at writing/reading bits of the concealed in-
formation into/from the fragment parameters. Other operations serve the purpose
of determining the position shifts between the files and fragments at the time of
performing the respective steps of the algorithm for the purpose of writing and/or
reading confidential information. The set of operations – similarly to the set of
fragment parameters – is not complete and currently still a proof of concept.

For the purposes of the proposed algorithm, the Carthesian product of the sets
O × fz where z ∈ 〈0, y − 1〉, z ∈ N0 allows the creation of the R set of encoding
rules. Since neither the set of operations, nor the set of fragment parameters are
not fully defined, similarly, the set R is not final either and currently still the proof
of concept:

R = {β1(α1), β1(α2), β1(α3), . . . , β6(α3), β6(α4), β6(α5)}. (5)

The encoding rule β1(α1) may be then interpreted as the application of the
operation β1(x) ∈ O, where x is the α1 ∈ fz : z ∈ 〈0, y − 1〉, z ∈ N0.

The interpretation of the encoding rules is different when hiding and extracting
confidential information. For example, to the encoding rule β1(α1) the following
applies:

When writing confidential information, this encoding rule must ensure that
the 0 bit is written – after the application of the encoding rule – by setting
the address of the first cluster of the fragment used for writing the bit even,
and that the 1 bit is written – after the application of the encoding rule – by
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setting the address of the first cluster of the fragment used for writing the bit
to an odd value.

If the current value of this fragment parameter does not correspond to the value
required by the rule, the value of this fragment parameter shall be changed to the
appropriate value.

When reading the hidden information, the application of this encoding rule does
not change the value of the given fragment parameter. Depending on whether the
fragment parameter is even/odd, a 0/1 value is read as the part of the hidden
message.

3.1 Information Hiding

To apply the algorithm hiding the confidential message M represented by a final
stream of bits into the fragmentation of the files stored in the file system, we have
to know the sets V , A, ∀Fn ∈ V and ∀fz ∈ A, characterising the current state of
the specific file system, into which the information shall be hidden. Moreover, also
the above sets O and R have to be known and the input parameters of information
hiding have to be known as the ordered set H:

H = {V ′, R′, f(s)} (6)

where

• V ′ is an ordered set of files and V ′ ⊂ V ,

• R′ is an ordered set of encoding rules and R′ ⊂ R,

• fs is a fragment of a file, for which ∃Fn ∈ V ′ : fs ∈ Fn.

Thus, from the V set of files we have to select certain files and create the
subset V ′, into which the hidden information shall be encoded and order them
according to the required order. Then, the R′ subset of information encoding rules
has to be selected from the R set of rules; this subset has to be ordered, too.
Finally, the fs starting fragment has to be selected, from which the encoding shall be
performed. This fragment must belong to one of the selected files, though it need not
be the first fragment of the given file. The information hiding parameters included
in the set H form a steganographic key, used to store the concealed message – it has
to be known also to extract the hidden information.

The information hiding algorithm consists of the following steps:

Step 1. Files of the set V ′, into which the confidential information shall be hidden,
have to be ordered by their selected feature or by any permutation of their order;
this order is one of the elements of the steganographic key. After ordering the
files, each file shall be assigned an identifier: fi ∈ 〈0;x′ − 1〉, where x′ = |V ′|.

Step 2. For ∀Fn ∈ V ′, its file fragments have to be ordered in the order of accessing
them when reading the file. Fragment fn is the successor of fragment fm, if
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∃α5 ∈ fm ∧ ∃α1 ∈ fn : α5 = α1. Next, to each fragment, an ordinal number
has to be assigned: fr ∈ 〈0; d − 1〉, where d is the number of fragments of the
file Fn.

Step 3. In this step, the identifier fi of the file containing the starting fragment fs
and the fr ordinal number of the fragment in the corresponding file is found;
these are registered as fia and fra, if fia = fi and fra = fr of starting frag-
ment fs. The variables fia and fra will later serve as pointers to the location
of the currently processed fragment.

Step 4. In this step, the pointer ma pointing at the current bit of the string M to
be encoded is set to 0. Thus, it points to the first bit of the string M .

Step 5. To the current fragment, i.e. the one, to which the pointers fia and fra
point to, we apply all encoding rules of the set R′ – being part of the key – one
by one, in the specified order (this order is important, because one can encode
multiple bits of the concealed information using multiple rules into a single frag-
ment, therefore the order of their encoding into the fragment must be known).
If the specific rule serves for writing a bit into the corresponding fragment fea-
ture, the bit shall be written and the pointer ma shall be incremented by 1. If,
upon application of any of the rules, the last bit of the confidential message is
encoded, the execution of the algorithm ends.

Step 6. The application of rules in Step 5, leading to the change of some fragment
parameters requires an additional compensation of this change in some other
fragment of the particular file to make sure that the information stored in the
file is not corrupted and to prevent the corruption of the part of the hidden
message M , already encoded in the set V ′. An example may be a change of the
length of the specific fragment – a lengthening by one cluster requires a short-
ening of another fragment of the same file by a cluster. Subsequently, ∀fz ∈ A
which is representing changed fragment must be updated to store all changes of
the file fragment parameters.

Step 7. If no rule applied in Step 5 contains information as to what shift of the
current file pointer – fia – has to be performed, this pointer shall be incremented
by 1 (shift to the next file in the set V ′). If the current file pointer is set to
the last file, the execution continues with the first file, thus if fia = x′ − 1 then
fia = 0 shall apply and vice versa: if fia = 0 and a shift backwards by a file is
required, fia = x′ − 1 shall be set. (This principle is applied also to the shifts
within the files, performed by applying the rules specified in Step 5).

Step 8. If no rule applied in Step 5 contains any information as to what shift of
the pointer to the current fragment – fra – has to be performed, this pointer
shall be incremented by 1 (shift to the next fragment).

Step 9. Continue with Step 5.

The application of the rule storing the value of the bit of the confidential message
into the corresponding fragment parameter requires setting the appropriate value



Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 353

of the parameter. For example, if it is the address of the first cluster of the given
fragment and it should be even but it is not, the fragment has to be shifted by
a cluster towards the lower address or a higher address, depending on which is
better, considering the current situation in the file system. The advantage of this
approach is that – in up to 50 % of the cases – the specific fragment parameter
contains the appropriate value in the given state of the file system, so it need not
be changed at all.

Upon the application of the rules determining the file containing the fragment,
in which the encoding performed in the next application of Step 5 of the algorithm
shall happen, i.e. the rules modifying the pointer fia and upon the application of
the rules determining the fragments count of the shift, i.e. the rules modifying the
pointer fra, there are two alternatives. The first is to accept the current setting
of the fragment of the parameter used by the specific encoding rule (i.e., leave the
parameter unchanged); the second alternative is to change it (from even to odd and
vice versa). The choice of accepting or modifying the parameter shall then modify
the further execution of the encoding procedure. This freedom is the strength of the
proposed algorithm – as far as information hiding is concerned – and it also provides
sufficient flexibility to perform the least possible intervention into the current state
file fragmentation during the encoding.

3.1.1 Usage Example

The following example shows a FAT file system containing four files, that are forming
set V :

V = {F0, F1, F2, F3}.

The file system contains 16 file fragments

A = {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15}.

The structure of the four respective files, which are constructed by the use of
fragments from the set A, is defined by the sets F0 to F3:

F0 = {f0, f1, f2, f3},

F1 = {f4, f5, f6, f7},

F2 = {f8, f9, f10, f11},

F3 = {f12, f13, f14, f15}.
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The parameters of the respective fragments are defined by the sets f0 to f15

f0 = {2, 4, 5, 1, 7}, f8 = {55, 3, 57, 1, 59},
f1 = {7, 3, 9, 1, 11}, f9 = {59, 2, 60, 2, 63},
f2 = {11, 2, 12, 5, 18}, f10 = {63, 1, 63, 3, 67},
f3 = {18, 4, 21, 0, 0}, f11 = {67, 4, 70, 0, 0},
f4 = {28, 3, 30, 1, 32}, f12 = {48, 2, 49, 1, 51},
f5 = {32, 4, 35, 2, 38}, f13 = {51, 3, 53, 24, 78},
f6 = {38, 2, 39, 3, 43}, f14 = {78, 4, 81, 3, 85},
f7 = {43, 5, 47, 0, 0}, f15 = {85, 2, 86, 0, 0}.

The binary string to be stored consists of three bits: M = ”011”. Next, the
set V ′, R′ and the fragment f(s) have to be selected. The V ′ set of files, used
to store the hidden information, was selected as F0, F1, F2 in the aforementioned
order:

V ′ = {F0, F1, F2}.

Two encoding rules – β1(α1) and β3(α2) – were selected, forming the set R′ in
the aforementioned order:

R′ = {β1(α1), β3(α2)}.

The selected encoding rule β1(α1) ensures that the bits of the confidential mes-
sage shall be written to the position of the starting cluster of the fragment as follows:
will it be stored at an even address in the FAT table, the bit of the encoded message
shall be set to 0; will the starting cluster of the fragment be stored at an odd address
in the FAT table, the bit of the encoded message shall be set to 1. According to
rule β3(α2), if the length of the fragment is even, the next fragment should be in
the file being at the next position in the V ′ set of files; if the length of the fragment
is odd, the next fragment should be stored in the file being at the previous position
in the V ′ set of files. No rule of the set R′ specifies how many fragments should the
algorithm jump when shifting after the encoding step, therefore we will select the
basic shift as a shift by one fragment ahead.

As the starting fragment fs we selected fragment f5, being the second fragment
in file F1.

Figure 3 shows the current state of the file system. It contains four files – F0

to F3 – while each of the files is fragmented into four fragments. Each line contains
fragments belonging to the particular file in the order of appearance in the file. The
length of the rectangle representing the fragment shows its length in clusters, with
the value printed just below it. Within the fragment, the figure shows its first cluster
with its address in the file allocation table (FAT).

Figure 4 shows the situation after encoding the confidential message. The frag-
ments affected by encoding – either the confidential message was encoded in their
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Figure 3. The current state of file fragmentation in the file system, before encoding the
confidential message

Figure 4. The confidential message M = ”011” stored in the fragmentation of files forming
set V ′

parameters, their position or their length was changed in the file system – have been
set in grey.

Encoding started in fragment f5, its first cluster is stored as an even address
and the application of rule β1(α1) in Step 5 of the algorithm encoded the first bit
of the message – bit 0 – into the fragment. The parameter of the fragment was set
correctly (i.e. even), no change was needed. The following parameter of fragment f5,
used for the purpose of encoding, was the fragment length. The current fragment
length is even, and the decision was taken not to change it. By applying rule β3(α2),
the next fragment to be used for encoding was fragment f10, due to the shift to the
next file and next fragment.

The application of Step 5 of the algorithm to fragment f10 required the applica-
tion of rule β1(α1), which encoded a further bit of the confidential message – bit 1.
So it was necessary to start the fragment on an odd address in the FAT. The current
setting of the parameter met the requirement, no change was necessary. We also
applied rule β3(α2) and decided that the current value of the parameter shall be
modified from odd to even. So a shift to the subsequent file was coded, however,
this caused that in the next step, file F0 became the current file (containing frag-
ment f3), since file F2 was the last in the list of files in set V ′. Since fragment f10
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was prolonged by one cluster, fragment f11 of file F2 had to be shortened by one
cluster to maintain the file length in clusters.

The application of Step 5 of the algorithm to fragment f3 required the application
of rule β1(α1). This stored another bit of the message into the fragment. This was
bit 1. This required a change of the address of the first cluster of fragment f3 to
an odd value and to shift the whole fragment by a cluster. Since the last bit of the
confidential message was written, the execution of the algorithm ended.

Figure 5. The confidential message M = ”011” stored in the fragmentation of files forming
set V ′

Figure 5 shows an alternative encoding of the confidential message into the
fragments of files forming set V ′. The length of fragment f5 was modified to be able
to continue with fragment f2, the parameters of which were left unchanged. The
next fragment, into which the information was encoded, was fragment f7.

Its parameters were left unchanged due to the encoding of the confidential mes-
sage; however, it had to be shortened by a cluster to maintain the length of file F4,
since its fragment f5 became longer by a cluster.

3.2 Information Extraction

Information extraction is analogous to information hiding. However, one needs not
know the total current state of the file system, i.e. the sets V , A, ∀Fn ∈ V and
∀fz ∈ A. It is enough to know the steganographic key H, i.e. the sets V ′, R′, fs
and also ∀Fn ∈ V ′ a ∀fz ∈ Fn : Fn ∈ V ′. So it is necessary to know the set of files,
into which the confidential information was hidden, the fragments forming these files
and their specific order. We also need to know the set of rules used to encode the
information and also their order; moreover, one has to know the starting fragment,
used to implement the encoding.

When extracting the hidden information, an algorithm with steps identical to
the steps of the information hiding algorithm shall be used. When applying the rules
of Step 5, we only read the bits of the message M by applying the corresponding
rules and performing jumps to their respective files and fragments by applying the
correct rules, without performing any changes to the file system. When reading the
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message, Step 6 is not being performed. We repeatedly apply Steps 5, 7, 8 and 9,
until the last bit of the hidden message M is read.

4 RESULTS AND DISCUSSION

One of the goals connected with the algorithm was to provide a flexible way of en-
coding the information into the parameters of the fragments of files stored in the
file system. As the example in Section 3.1.1 shows, the algorithm met this require-
ment when it allowed encoding alternatives. Two of these are depicted in Figures 4
and 5. This allows comparison of the individual encoding alternatives, consider-
ing the number of changes of the respective fragment parameters and finding the
optimum encoding, which would modify the least possible individual file fragment
parameters in the current state of the file system, the specified steganographic key
and the confidential message M, i.e., perform only minimal file fragmentation pa-
rameter changes.

In the example in Section 3.1.1, a single rule β3(α2), allowing modification of
the encoding before each application in Step 5 of the proposed algorithm, was used.
Each application of this rule allows the existence of two alternatives of the follow-
ing encoding procedure – in case of a message of n bits it means 2n−1 encoding
alternatives (n − 1, since the last iteration of the application of the steps ends in
Step 5, by encoding the last bit of the message, before the last application of the
rule β3(α2). In the specific example, the number of alternative encodings is 22, i.e. 4,
since message M is 3 bits long.

If the complete steganographic key is not specified – such as the V ′ set of files,
on which the encoding should be implemented, is missing – during the search for
the optimum encoding, the search for this set may be included in the search for
the optimum encoding. In the example specified in Section 3.1.1 we may search
for an appropriate permutation of the three files selected from the overall total file
count (four) stored in the file system. The total number of applicable alternatives
is then (x).(x − 1).(x − 2), where x = |V |. Thus, the specified example allows
24 alternatives.

The use of rule β3(α2) without specifying set V ′ allows – in the example of
Section 3.1.1 – a total of (x).(x−1).(x−2).2n−1, i.e. 24.4 = 96 encoding alternatives.
To each of these alternatives, a natural number representing the number of changes
to be made to the file fragment parameters to encode the specified string into the set
of files using the given alternative may be assigned. Subsequently, the alternative
with the lowest change count may be selected. Alternative in Figure 4 required three
fragment parameter changes – in two cases, the fragment length in clusters changed
and in one case, the fragment position shifted by a cluster. The alternative specified
in Figure 5 required two parameter changes, with two fragment length modifications.
The alternative specified in Figure 5 involved fewer file fragmentation parameter
changes, so its use may be considered more advantageous.
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If, during the search for the optimum encoding alternative, not even the starting
fragment of the encoding is specified, the total count of encoding alternatives Nalt

amounts to the following:

Nalt =
x!

(x− x′)!
.2m(n−1)

.y (7)

where

• x = |V | is the number of files in the file system,

• x′ = |V ′| is the number of files, into which the information shall be encoded,

• n is the bit count of the M confidential message,

• m is the number of rules used to modify the encoding procedure,

• y is the number of fragments of set V ′, where the message encoding may start.

From the above it is evident that for real-life file systems containing tens or
hundreds of thousands of files and the minimum length of the confidential message
being tens of bits, the search for the optimum encoding alternative is an excep-
tionally computing-intensive task, so it is rather a theoretical concept than a useful
procedure.

However, one may search effectively for suboptimal solutions, e.g. when en-
coding the confidential information into the specific fragment, alternatives for de-
fined number of applications of Steps 5 to 9 of the algorithm shall be searched for
selecting the optimum encoding alternative for the given fragment and only this
search window is considered. This limits the computing requirements of the pro-
cedure and allows controlling it by setting the size of the aforementioned search
window.

A further design ambition related to the algorithm was to allow the least possible
interference with the statistical parameters of file fragmentation in the file system
and thus lower the chances of recognition of the use of this algorithm by using ste-
ganalytic methods. When encoding confidential information in the specific example
set out in Section 3.1.1, we used fragment parameters α1 and α2, i.e. the position of
the first cluster of the fragment and fragment length, checking them for being even
or odd. We may also monitor the statistical values of these parameters for the set V
of all files, as well as the set of files used to store the confidential information, i.e.
set V ′. Table 1 summarises these parameters for the situation before the encoding
(Original state) of the confidential information, following the encoding by the alter-
native specified in Figure 4 and following the encoding by the alternative specified
in Figure 5, respectively.

As it is evident from Table 1, following the encoding of the confidential informa-
tion using the alternative specified in Figure 4, the statistical values of parameter α1

change in comparison to the original state, when the number of even settings of the
parameter decreases by 6.25 % (from 43.75 % to 37.50 %), and the number of odd
settings of the parameter increases by 6.25 % (from 56.25 % to 62.50 %) in the set V.



Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 359

Parameter α1 Parameter α2

Even Odd Even Odd
No. % No. % No. % No. %

Original state V 7 43.75 9 56.25 10 62.50 6 37.50
V ′ 5 41.67 7 58.33 7 58.33 5 41.67

Encoding I V 6 37.50 10 62.50 10 62.50 6 37.50
(Figure 4) V ′ 4 33.33 8 66.67 7 58.33 5 41.67

Encoding II V 7 43.75 9 56.25 10 62.50 6 37.50
(Figure 5) V ′ 5 41.67 7 58.33 7 58.33 5 41.67

Table 1. Statistical values of parameters α1 and α2 for the sets V and V ′ before encoding
confidential information and after the encoding using the two alternatives

The number of even settings of the parameter decreased by 8.34 % (from 41.67 %
to 33.3 %), and the number of odd settings of the parameter increased by 8.34 %
(from 58.33 % to 66.67 %) in the set V ′.

The statistical values of parameter α2 remained unchanged, both in set V and
also in set V ′. In this aspect, the alternative specified in Figure 5 is more advan-
tageous, since the statistical values of parameter α1 and parameter α2 remained
unchanged, both in the case of set V as well as in the case of set V ′.

Analogous to the previous case of searching the optimum encoding considering
the minimum amount of fragment parameter changes, in this case we could assign
each of the alternatives a value showing the degree of equality of the statistical
values of the monitored parameters before and after the encoding and select the
optimum alternative, thus the one with the highest degree of equality. However,
the amount of encoding alternatives is identical to the previous case of searching for
the optimum encoding, thus also the computing requirements of this procedure are
beyond the limits of practical use.

Nevertheless, we may introduce a procedure allowing the compensation of chan-
ges to the respective fragment parameters during their execution in Step 5 of the
proposed algorithm. If in the current Step 5 of the encoding a fragment with the
identifiers fia and fra is selected, i.e., the fragment belonging to the file fia, being
the at position fra in the file, and some of its parameters have to be changed, e.g.
the parameter α2 – its length – has to be changed from even to odd (for instance),
this change may be compensated by changing the parameter from odd to even in
any other fragment, to which it applies that its fr > fra and fi may be of any
permissible value, so the fragment may be part of any file of the set V ′. If we add
the condition of fi = fia, thus the compensating fragment (the parameter change
of which serves as the compensation of the change of the fragment parameter, into
which the information is encoded) and the fragment used for encoding must be from
the same file, the changes of statistical values of the respective parameters shall be
compensated in each individual file from the set V ′.

When evaluating the statistical values of the fragment parameters, we may also
consider their absolute length in clusters. The state before encoding the confiden-
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Figure 6. Distribution of fragments by their length values before encoding the confidential
information and after the encoding using the first and the second alternative

tial message and after its encoding using the example in Section 3.1.1 is shown in
Figure 6.

It is evident that following the encoding depicted in Figure 5, the lengths of the
individual fragments are compensated to make them identical with the values they
had before the encoding of the confidential information (original state). One could
design an algorithm taking also the distribution of fragment lengths into account and
perform compensations of these fragment parameter changes during the encoding of
the information. However, practical testing performed on real-life secondary memory
devices using the FAT32 file system showed that the fragment lengths were from
a quite large interval – 〈1; 1 862〉 – and it was not always possible to compensate
change of length of one fragment by changing the length of another fragment in the
way that statistical values of the set of fragments stays unchanged. Fragment length
changes amounting to a single cluster do not represent significant changes in the file
system as a whole, therefore we refrained from the effort to compensate the changes
of this parameter.

5 CONCLUSIONS

In the introductory part, this paper analysed the current state of using secondary
data storage devices, especially hard disks and the FAT file system in steganography.
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Then, an algorithm using the fragmentation of a set of files stored in the FAT file
system as a carrier of storing confidential information was proposed. As a proof of
the concept, a set of fragment parameters, a set of available operations and a set
of encoding rules were specified in the algorithm. As part of further research, these
sets shall be completed with the aim to find the optimum elements. The paper also
included a usage example for the information hiding algorithm and it also evaluated
the computation requirements of finding the optimum encoding of the confidential
information, as well as the compensation possibilities of the algorithm, considering
the changes of the respective fragment parameters of the files stored within the file
system.

The advantage of this algorithm is the flexibility of encoding information into
a set of files, which significantly increases the complexity of extracting the confi-
dential information using brute force attacks and allows the application of plausible
deniability. The algorithm does not store any additional information on the disk
and allows finding alternative encodings of the confidential information, which de-
creases the number of fragment parameter changes during the encoding procedure
and simultaneously allows compensation of these changes to minimise the changes
to the statistical values of the file fragment parameters.

A disadvantage of the algorithm is, similarly to all algorithms aiming at storing
information in the fragmentation of files, the loss of information upon defragmenting
the file system. This risk is limited by multiple factors. First of all, the user may
forbid the process of defragmenting. The advantage of using the FAT32 file system
is the possibility to use it on secondary memory media, such as pen drives, various
kinds of memory cards and SSD devices, where defragmenting is suppressed due to
the technology of the memory chips used. Many devices, such as mobile multimedia
players, digital cameras, set-top boxes and other devices – using even traditional
hard disks – often use firmware incapable of defragmenting.

Future research should focus on the development of methods allowing search of
suboptimal solutions of encoding confidential information minimising the amount of
interference with the file fragment parameters and procedures allowing the compen-
sation of these changes with acceptable algorithmic complexity.
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Košice in 2003. He defended his Ph.D. in the field of computers
and computer systems in 2007, his thesis title was “Contribu-
tion to Simulation of Feed-Forward Neural Networks on Parallel
Computer Architectures”. Since 2006 he has been working as
Professor Assistant at the Department of Computers and Infor-
matics. Since 2008 he is the Head of the Computer Architectures
and Security Laboratory at the Department of Computers and

Informatics. His scientific research is focused on the parallel computers architectures.
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Abstract. We aim to speed up approximate keyword matching with the use of
a lightweight, fixed-size block of data for each string, called a fingerprint. These
work in a similar way to hash values; however, they can be also used for matching
with errors. They store information regarding symbol occurrences using individual
bits, and they can be compared against each other with a constant number of
bitwise operations. In this way, certain strings can be deduced to be at least within
the distance k from each other (using Hamming or Levenshtein distance) without
performing an explicit verification. We show experimentally that for a preprocessed
collection of strings, fingerprints can provide substantial speedups for k = 1, namely
over 2.5 times for the Hamming distance and over 30 times for the Levenshtein
distance. Tests were conducted on synthetic and real-world English and URL data.

Keywords: Fingerprint, keyword matching, approximate matching, bitwise

Mathematics Subject Classification 2010: 68W32

1 INTRODUCTION

This study deals with strings, that is, finite sequences of symbols. We assume that
a string S is 1-indexed, i.e., index 1 refers to the first symbol S[1], index 2 refers
to the second symbol S[2], etc. All strings are specified over the same alphabet Σ,
with alphabet size σ = |Σ|.
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Exact string comparison refers to checking whether two strings S1 and S2 of equal
length n have the same characters at all corresponding positions. The strings can
store, e.g., natural language data or DNA sequences. Assuming that each character
occupies 1 byte, calculation of such a comparison takes O(n) time in the worst case;
however, the average case is O(1), using no additional memory. Specifically, the
complexity of the average case of comparing two strings depends on the alphabet
size. Assuming a uniform random symbol distribution, the chance that first two
symbols match (i.e., that S1[1] = S2[1]) is equal to 1/σ, the chance that both first
and second symbol pairs match (i.e., that S1[1] = S2[1] and S1[2] = S2[2]) is equal
to 1/σ2, etc. More generally, the probability that there is a match between all
characters up to a 1-indexed position i is equal to 1/σi.

Nonetheless, it is often faster to compare hash values for two strings (in con-
stant time) and perform an explicit verification only when these hashes are equal
to each other. This is particularly true in a situation where one would compare
a single string, that is a query (pattern), against a preprocessed collection (dictio-
nary) of strings. The hash-based approach forms the basis of, e.g., the well-known
Rabin–Karp [16] algorithm for online exact matching.

Aside from exact matching, there has been a substantial interest in approxi-
mate string comparison, for instance for spelling suggestions or matching biological
data [22, 26, 21]. Approximate string matching defines whether two strings are equal
according to a specified similarity metric, and the number of errors is denoted by k
in the following text. Two popular measures include:

• the Hamming distance [15] (later referred to as Ham), which defines the number
of mismatching characters at corresponding positions between two strings of
equal length,

• the Levenshtein distance [17] (also called edit distance, later referred to as Lev),
which determines the minimum number of edits (insertions, deletions, and sub-
stitutions) required for transforming one string into another.

Hash values cannot be easily used in the approximate context. This work has
focused on approximate matching in practice, and we introduce the concept of
lightweight fingerprints, whose goal is to speed up approximate string comparison.
The speedup can be achieved for preprocessed collections of strings, at the cost of
a fixed-sized amount of space per each word in the collection. This means that
we evaluate fingerprints for a keyword indexing problem, also known as dictionary
matching or keyword matching ; see, e.g., [3, 5, 6, 8, 9, 10]. Specifically, in this set-
ting a pattern P is compared against a string collection D = {S1, . . . , S|D|}. In the
following, the text size is generally denoted by n, and the pattern size is denoted by
m (i.e., |P | = m).
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2 RELATED WORK

The original idea of a string fingerprint, which is also called a “sketch” in selected
publications [1], goes back to the work of Rabin and Karp [28, 16]. They used a vari-
ant of a hash function called a rolling hash, which can be quickly (incrementally)
calculated for each successive substring of the input text, in order to speed up exact
online substring matching. This technique was later used also in the context of
multiple pattern matching [20, 30] and matching over a two-dimensional text [33].
Bille et al. [4] extended this idea and demonstrated how to construct fingerprints
for substrings of a string which is compressed by a context-free grammar. Policriti
et al. [25] generalized the classical Rabin–Karp algorithm in order to be used with
the Hamming distance.

At the conceptual level, fingerprints may be perceived as a form of lossy com-
pression over the input text, nevertheless, they cannot replace the text – rather,
they can be used as additional information. Bar-Yossef et al. [1] show that it is not
possible to use only a fingerprint (reducing the text by more than a constant factor)
in order to answer a match query. Moreover, they prove that for answering decision
queries under the Hamming distance – such that the existence of the pattern in the
text with less than k Hamming errors is reported as “a match” and no such occur-
rence yields the “no match” output – the size of the fingerprint must be Ω(n/m),
where k = εm, for a fixed 0 < ε < 1.

Policriti and Prezza [24] presented a related idea called de Bruijn hash func-
tion, where shifting the substring by one character results in a corresponding one-
character shift in its hash value. Grabowski and Raniszewski [13] used fingerprints
in order to speed up verifying tentative matches in their SamSAMi (sampled suffix
array with minimizers) full-text index. Fingerprints, which are concatenations of
selected bits taken from a short string, allow them to reject most candidate matches
without accessing the indexed text and thus avoiding many cache misses. Recently,
fingerprints have been applied to the longest common extension (LCE) problem [27],
allowing to solve the LCE queries in logarithmic time in essentially the same space
as the input text (replacing the text with a data structure of the same size).

Ramaswamy et al. [29] described a technique called “approximate” fingerprint-
ing; however, it refers to exact pattern matching with false positives rather than
matching based on similarity metrics. Fingerprints have also been used for match-
ing at a larger scale, i.a., for determining similarity between audio recordings [7]
and files [19]. The term fingerprint has also been used with a different meaning
in the domain of string processing, where it refers to the set of distinct characters
contained in one of the substrings of a given string, with the ongoing recent work,
e.g., a study by Belazzougui et al. [2].

3 FINGERPRINTS

In this section we introduce the notion of a fingerprint, describe its construction and
demonstrate how to compare two fingerprints. For a given string S, a fingerprint S ′
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is constructed as S ′ := f(S) using a function f which returns a fixed-sized block
of data. In particular, for two strings S1 and S2, we would like to determine that
Ham(S1, S2) > k or Lev(S1, S2) > k by comparing only fingerprints S ′1 and S ′2 for
a given k ∈ N+. In other words, fingerprints allow for a quick rejection of a candidate
for an approximate match (up to k errors) between two strings.

Fingerprint comparison might be indecisive, i.e., it might not be sufficient to
indicate that the above stated inequalities hold. In that case (we explain later when
this occurs), we still have to perform an explicit verification on S1 and S2, but
fingerprints allow for reducing the overall number of such operations. There exists
a similarity between fingerprints and hash functions; nonetheless, hash comparison
works only in the context of exact matching. Let us clarify that in this work the
term fingerprint refers to a short (having at most a few bytes in length) block of
data which can be used for the aforementioned approximate matching.

As far as the complexity of a single verification (string comparison) is concerned,
the worst case is equal to O(n) for the Hamming distance (considering two strings of
equal size n) and O(kmin(|S1|, |S2|)) for the Levenshtein distance, using Ukkonen’s
algorithm [32]. Assuming a uniform random alphabet distribution, the average case
complexity is equal to O(k) for both metrics.

In our proposal, fingerprints use individual bits in order to store information
about symbol frequencies or positions in the string S[1, n]. Let Σ′ ⊆ Σ be a subset
of the original alphabet with σ′ = |Σ′| denoting its size. We propose the following
approaches.

• Occurrence (occ in short): we store information in each bit that indicates
whether a certain symbol from Σ′occ occurs in a string using σ′occ bits in total.

• Occurrence halved: the fingerprint refers to occurrences in the first and second
halves of S, that is, S[1, bn/2c] and S[bn/2c + 1, n], respectively. We store
information whether each of the σ′occh symbols occurs in the first half of S using
the first σ′occh bits of the fingerprint, and we store information whether each of
the same σ′occh symbols occurs in the second half of S using the second σ′occh bits
of the fingerprint. The occurrence halved scheme works only for the Hamming
distance.

• Count: we store a count (i.e., the number of occurrences) of each symbol us-
ing b bits per symbol. The count can be in the range [0, 2b − 1], where 2b − 1
indicates that there are 2b − 1 or more occurrences of a given symbol. We use
σ′count symbols from Σ′count.

• Position (pos in short): we can encode information regarding the first (leftmost,
i.e., the one with the lowest index) position in S of each symbol from Σ′pos using
p bits per symbol, where p ≤ dlog2ne. This position can be in the range [1, 2p−1]
encoded in the fingerprint as 0-indexed, where index 0 refers to the first symbol,
index 1 refers to the second symbol, etc, and the value of 2p − 1 indicates that
the first occurrence is either at one of the positions from the range [2p, n] or
the symbol does not occur in S (we do not know which one is true). We use
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σ′pos · p bits in order to encode positions of σ′pos symbols. The remaining bits,
e.g., 1 bit for σ′pos = 5, p = 3 and 16 bits per fingerprint, are used in order
to store information about the occurrences of additional symbols, in the same
fashion as in the occurrence fingerprint which was introduced previously. The
position-based scheme works only for the Hamming distance.

Fingerprints can be also differentiated based on the symbols which they refer
to. The choice of the specific symbol set is important when it comes to an empirical
evaluation and it is discussed in more detail in Section 4. We have identified the
following possibilities.

• Common: A set of symbols which appear most commonly in a given collection.

• Rare: A set of symbols which appear least commonly in a given collection.

• Mixed: A mixed set where half of the symbols comes from the common set
while the other half comes from the rare set.

3.1 Fingerprint Examples

In the following examples, we constrain ourselves to the variant of 2-byte (16-bit)
fingerprints with common letters. Fingerprints could in principle have any size, and
the longer the fingerprint, the more information we can store about the character
distribution in the string. Still, we regard 2 bytes, which correspond to the size of
2 characters in the original string, to be a desirable compromise between size and
performance (consult the following section for experimental results). The choice
of common letters is arbitrary at this point and it only serves the purpose of idea
illustration.

In the following examples, occurrence fingerprint is constructed using selected
16 most common letters of the English alphabet, namely {e, t, a, o, i, n, s, h, r, d, l, c,
u, m, w, f} [18, p. 36]. For the occurrence halved and count fingerprints (with b = 2
bits per count), we use the first 8 letters from this set. In the case of a position
fingerprint (with p = 3 bits per letter), we use the first 5 letters for storing their
positions and the sixth letter n for the last (single) occurrence bit.

Each fingerprint type would be as follows for the word instance (spaces are
added only for visual presentation):

• Occurrence:
1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0

The first (leftmost) bit corresponds to the occurrence of the letter e (which
does occur in the word, hence it is set to 1), the second bit corresponds to the
occurrence of the letter t, etc.

• Occurrence halved:
01 10 01 00 10 11 10 00

The first (leftmost) bit corresponds to the occurrence of the letter e in the first
half of the word, that is inst; the second bit corresponds to the occurrence of the
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letter e in the second half of the word, that is ance; the third bit corresponds
to the occurrence of the letter t in the first half of the word, the fourth bit
corresponds to the occurrence of the letter t in the second half of the word, etc.

• Count:
01 01 01 00 01 11 01 00

For reasons which will become clear later (see proof of Theorem 1), we use
a Gray code [12], in which the 2-bit encodings of numbers {0, 1, 2, 3} are 00, 01,
11, and 10, respectively. The first two (leftmost) bits correspond to the count
of the letter e (it occurs once, hence the count is 01, that is 1), the second two
bits correspond to the count of the letter t (it occurs once, hence the count is
01, that is 1), etc.

• Position:
111 011 100 111 000 1

The first three (leftmost) bits correspond to the position of the first occurrence
of the letter e (this 0-indexed position is equal to 7, hence it is set to 111),
the second three bits correspond to the position of the first occurrence of the
letter t (this 0-indexed position is equal to 3, hence it is set to 011), etc. The
last (rightmost) occurrence bit indicates the occurrence of n, and since this letter
does occur in the input string, this bit is set to 1.

3.2 Construction

The construction of various fingerprint types is described below. For the description
of symbols and types, consult preceding subsections. At the beginning, each bit of
the fingerprint is always set to 0.

• Occurrence: Let us remind the reader that the length of the fingerprint is
equal to σ′occ for a selected alphabet Σ′occ of letters whose occurrences are stored.
A string is iterated characterwise. For each character c, a mask 0x1 is shifted
q times to the left, where q ∈ {0, . . . , σ′occ − 1} is a corresponding shift for the
character c. In other words, there exists a mapping c → q for each character
c ∈ Σ′occ. A natural approach to this mapping is to take the position of a symbol
in the alphabet Σ′occ (assuming that the alphabet is ordered). The fingerprint is
then or-ed with the mask in order to set the bit which corresponds to character
c to 1. For a string of length n, time complexity of this operation is equal to
O(n).

• Occurrence halved: The fingerprint is constructed in an analogous way to the
occurrence approach described above. We start with iterating the first half of
the string, setting corresponding bits depending on letter occurrences, and then
we iterate the second half of the string, again setting corresponding bits, which
are shifted by 1 position with respect to bits set while iterating the first half of
the string. Character mapping is adapted accordingly.
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• Count: A string is again iterated characterwise. The length of the fingerprint
is equal to b · σ′count for a selected alphabet Σ′count of letters whose counts are
stored. Similarly to the occurrence fingerprint, there exists a mapping c → q
for each character c ∈ Σ′count. However, since we need b bits in order to store
a count, it holds that q ∈ {0, b, . . . , σ′count − b}, assuming that b divides σ′count.
A selected bit mask is set and the fingerprint is then or-ed with the mask in
order to increase the current count of character c which is stored using b bits at
positions {q, q + 1, . . . , q + b− 1}.
Instead of a natural binary encoding, we however use a Gray code, in which the
encodings for any pair of successive values (e.g., 1 and 2) differ at a single bit
position. To increment a b-bit field, from value i to i+ 1 (where 0 ≤ i < i+ 1 <
2b), it is sufficient to extract this Gray-encoded field into a machine word W ,
and perform the operation W := W ⊕ (W � 1). The lowest b bits of W will
then store the Gray-encoded value i + 1. Naturally, we subsequently need to
overwrite the original field with the obtained value from W . All of the above
steps can be realized using a few simple bitwise operations. Assuming fixed b,
for a string of length n, the time complexity of this operation is equal to O(n).

• Position: In the case of position fingerprints, the length of the fingerprint is
equal to σ′pos · p for a selected alphabet Σ′pos of letters whose positions are stored
and a chosen constant p which indicates the number of bits per position. Here,
we iterate the alphabet, and for each character c ∈ Σ′pos we search for the first
(leftmost) occurrence of c in the string. Each position of such an occurrence is
then successively encoded in the fingerprint, or the position pos is set to all 1s
if pos ≥ 2p − 1. For a string of length n, the time complexity of this operation
is equal to O(n · σ′pos).

3.3 Comparison

We can quickly compare two occurrence (or occurrence halved) fingerprints by per-
forming a binary xor operation and counting the number of bits which are set in
the result (that is, calculating the Hamming weight, HW ). Let us note that HW

can be determined in constant time using a lookup table with 28|S′| entries, where
|S ′| is the fingerprint size in bytes. We denote the fingerprint distance with FD, and
for occurrence fingerprints FD(S ′1, S

′
2) = HW (S ′1 ⊕ S ′2). In other words, we count

the number of mismatching character occurrences which are stored in individual
bits.

However, let us note that FD does not determine the true number of errors.
For instance, for S1 = run and S2 = ran, FD might be equal to 2 (occurrence
differences for a and u) but there is still only one mismatch. On the other extreme,
for two strings of length n, where each string consists of a repeated occurrence of one
different symbol, FD might be equal to 1 (or even 0, if the symbols are not included
in the fingerprints), but the number of mismatches is n. In general, FD can be used
in order to provide a lower bound on the true number of errors, and the following
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relation holds (the right-hand side can be calculated quickly using a lookup table,
since 0 ≤ FD ≤ 8|S ′|):

D(S1, S2) ≥ dFD(S ′1, S
′
2)/2e, D ∈ {Ham,Lev}. (1)

This formula also holds for the count fingerprint. Let us observe that with the
use of a Gray code, the value of FD might be underestimated, e.g., for comparing two
4-bit counters storing values 4 and 7, we have HW (0110⊕ 0100) = HW (0010) = 1,
however, it is not overestimated. As far as the position fingerprint (which is relevant
only to the Hamming metric) is concerned, after calculating the xor value, we do not
compute the Hamming weight, rather, we compare each set of bits (p-gram) which
describes a single position. The value of FD is equal to the number of mismatching
p-grams. Similarly to other fingerprint types, these values can be preprocessed and
stored in a lookup table in order to reduce calculation time.

The relationship between the fingerprint error and the true number of errors
is further explored in Theorem 1 and Theorem 2. In plain words, manipulating
a single symbol in either string makes the fingerprint distance grow by at most 2.
Let us note that Formula (1) follows as a direct consequence of this statement, with
the round-up on the right-hand side resulting from the fact that fingerprint distance
might be odd.

Theorem 1. Consider F = {occ, count} and assume a distance function D ∈
{Ham,Lev}. For any two strings S1 and S2, with their fingerprints S ′1 and S ′2,
respectively, and the fingerprint distance between them FD(S ′1, S

′
2) = f(S ′1, S

′
2),

where f ∈ F , we have that for any string S3 such that D(S2, S3) = 1, the following
relation holds: FD(S ′1, S

′
3) ≤ FD(S ′1, S

′
2) + 2.

Proof. Let us first consider the occurrence fingerprints and Hamming distance (that
is D = Ham). For this distance, two strings must be of equal length (otherwise the
distance is infinite), and we set |S1| = |S2| = n. The string S2 can be obtained from
S1 by changing some of its k = D(S1, S2) symbols, at positions 1 ≤ i1 < i2 < . . . <
ik ≤ n. Let V0 be an initial copy of S1 and in k successive steps we transform it
into V1, V2, . . . , Vk = S2, by changing one of its symbols at a time. For clarity, we
shall modify the symbols in the order of their occurrence in the strings (from left
to right). We shall observe how the changes affect the value of FD(S ′1, V

′
j ), which is

initially (i.e., for j = 0) equal to zero.
Consider a jth step, for any 1 ≤ j ≤ k. We have four cases:

(i) both Vj−1[ij] ∈ Σ′ and Vj[ij] ∈ Σ′,

(ii) both Vj−1[ij] 6∈ Σ′ and Vj[ij] 6∈ Σ′,

(iii) Vj−1[ij] ∈ Σ′ but Vj[ij] 6∈ Σ′,

(iv) Vj−1[ij] 6∈ Σ′ but Vj[ij] ∈ Σ′.

Let us notice that:
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• in case (i) HW (V ′j ) − HW (V ′j−1) ∈ {−1, 0, 1}, yet since Vj−1[ij] 6= Vj[ij], we
may obtain new mismatches at (at most) two positions of the fingerprints, i.e.,
FD(S ′1, V

′
j )− FD(S ′1, V

′
j−1) ≤ 2,

• in case (ii) V ′j = V ′j−1 and thus FD(S ′1, V
′
j ) = FD(S ′1, V

′
j−1),

• in case (iii) HW (V ′j−1)−HW (V ′j ) ∈ {0, 1} and FD(S ′1, V
′
j )− FD(S ′1, V

′
j−1) ≤ 1,

• in case (iv) HW (V ′j )−HW (V ′j−1) ∈ {0, 1} and FD(S ′1, V
′
j )− FD(S ′1, V

′
j−1) ≤ 1.

From the shown cases and by the triangle inequality we conclude that replacing
a symbol with another makes the fingerprint distance grow by at most 2.

Now we change the distance measure to the Levenshtein metric (i.e., we set
D = Lev). Note that the set of available operations transforming one string into
another is extended; not only substitutions are allowed, but also insertions and
deletions. The overall reasoning follows the case of Hamming distance, yet we need
to consider all three operations. A single substitution in Vj, for a jth step, makes
the fingerprint distance grow by at most 2, in the same manner as shown above for
the Hamming distance. Inserting a symbol c into Vj (at any position) implies one
of three following cases:

(i) c 6∈ Σ′, where the fingerprint distance remains unchanged,

(ii) c ∈ Σ′ and c ∈ S1, where again the fingerprint distance does not change, or

(iii) c ∈ Σ′ and c 6∈ S1, where the fingerprint distance grows by 1.

Deleting a symbol c from Vj (at any position) implies one of three following
cases:

(i) c 6∈ Σ′, where the fingerprint distance remains unchanged (same as for the insert
operation),

(ii) c ∈ Σ′ and c ∈ S1, where the fingerprint distance might not change (if Vj
contains at least two copies of c) or it might grow by 1, or

(iii) c ∈ Σ′ and c 6∈ S1, where the fingerprint distance might not change or it might
decrease by 1. Note, however, that the last case for the delete operation never
occurs in an edit script transforming S1 into S2 using a minimum number of
Levenshtein operations.

Handling f = count is analogous to the presented reasoning for f = occ, both for
the Hamming and the Levenshtein distance. Note that changing a symbol’s count
by 1, where the count is stored in a b-bit field, may change up to b bits in natural
binary encoding while it changes only 1 bit in Gray encoding, which is why we use
the latter representation. �

Theorem 2. Consider FD = pos and assume a distance function D = Ham.
For any two strings S1 and S2, with their fingerprints S ′1 and S ′2, respectively, we
have that for any string S3 such that D(S2, S3) = 1, the following relation holds:
FD(S ′1, S

′
3) ≤ FD(S ′1, S

′
2) + 2.
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Proof. For the Hamming distance, two strings must be of equal length and let us
set |S1| = |S2| = n. Similarly to the case of occurrence and count fingerprints, the
string S2 can be obtained from S1 by changing some of its k = D(S1, S2) symbols.
This proof follows the same logic as presented in proof for Theorem 1. Let us note
that the only difference lies in the fact that we compare the first position of a given
letter rather than its occurrence. We deal with the same four cases depending on
whether a modified letter belongs to Σ′, and modifying a single letter may change:
in case (i) at most two p-grams (which describe the position of the first occurrence
of a given letter), in case (ii) 0 p-grams, in case (iii) at most one p-gram, and
in case (iv) at most one p-gram (that is, the result of these two latter cases is
equivalent). Again, as before, the number of modified p-grams corresponds directly
to the maximum change in fingerprint distance. �

3.4 Storage

Even though the true distance is higher than the fingerprint distance FD, finger-
prints can still be used in order to speed up comparisons because certain strings
will be compared (and rejected) in constant time using only a fixed number of fast
bitwise operations and array lookups. As mentioned before, we consider a scenario
where a number of strings is preprocessed and stored in a collection. Since the con-
struction of a fingerprint for the query string might be time-consuming, fingerprints
are useful when the number of strings in a collection is relatively high. When it
comes to the space overhead incurred by the fingerprints, for a dictionary D con-
taining |D| keywords, it is equal to O(|D||S ′| + 2|S

′| + σ), |S ′| being the (constant)
fingerprint size in bytes. This holds since we have to store one constant size finger-
print per keyword together with the lookup tables which are used in order to speed
up fingerprint comparison. These tables include one for determining the number
of mismatches between two fingerprints (depending on fingerprint type: between
occurrences, between counts, etc.) and one for the resulting number of errors (see
Formula (1)). Let us note that this overhead is relatively small, especially when the
size of each string is large (this is further discussed in the next section).

4 EMPIRICAL STUDY

Experimental results were obtained on the machine equipped with the Intel i7-4930K
processor running at 3.4 GHz and 64 GB DDR3 RAM (1.6 GHz, latency timing 9-9-
9-27). The source code and a compiled Linux binary executable (using gcc 64-bit
version 5.4.0) are publicly available under the following link: https://github.com/
MrAlexSee/Fingerprints. Consult Appendix A for more information regarding the
usage of this tool.

The following data sets were used in order to obtain the experimental results.

• Synthetic data: 9.0 MB, generated based on English language letter frequen-
cies [18, p. 36], 500 000 words.

https://github.com/MrAlexSee/Fingerprints
https://github.com/MrAlexSee/Fingerprints
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• English insane (real-world data): 3.18 MB, American English language dictio-
nary, 350 518 words.

• English 200 (real-world data): 7.41 MB, words extracted from the English
200 collection from the Pizza&Chili index (http://pizzachili.dcc.uchile.
cl/texts/nlang/english.200MB.gz), 815 935 words. This might be regarded
as a kind of a middle-ground between synthetic and real-world data. Sequences
were split on any white space and they included only printable characters. These
words are usually not actual English language words (they contain, e.g., punc-
tuation marks), however, they appear as part of the English text (hence they
might be searched for in practice).

• URLs (real-world URL data): 95.02 MB of web addresses, available online:
http://data.law.di.unimi.it/webdata/in-2004/, 1 382 908 words.

All dictionaries were filtered in order to contain only ASCII characters (given
sizes pertain to dictionaries after said filtering, not counting duplicate words or de-
limiters, 1 MB = 106 B). All dictionaries and query collections are available directly
from the Github repository mentioned above, with the exception of URLs, owing to
size limitations.

The number of queries of a given size (letter count) was equal to 10 000, and
the number of iterations was set to 100. Each iteration consisted in a single search
for each query within the dictionary. All presented results, including searching
and construction, refer to single-thread performance, measured as elapsed CPU
time. For the calculation of the Hamming distance, a regular loop which compares
each consecutive character until k mismatches are found was used. It turned out
that this implementation was faster than any other low-level approach (e.g., di-
rectly using certain processor instructions from the SSE extension set) when full
compiler optimization (level O3) was used. For the Levenshtein distance, we used
our own implementation based on the optimal calculation of the 2k + 1 strip and
the 2-row window [14]. It turned out to be faster than publicly available im-
plementations, for instance the version from the Edlib library [31] or the SeqAn
library [11]. This was probably caused by the fact that we could use the most
lightweight solution and thus omit certain layers of abstractions from the libraries,
especially since the comparison function was invoked multiple times for relatively
short strings.

Queries were extracted randomly from the dictionary and compared against this
dictionary. We have also tried distorting the queries by inserting a number of errors.
For each query, the number of errors was uniformly sampled in the range [1, e], and
the timing results were consistent for any e in the [1, . . . , 4] range. In the case of
English language dictionaries, we have also tested queries which consisted of the
most common words extracted from a large corpus of the English language, and
identical behavior was observed as in the case of queries which were sampled from
the dictionary. This test was performed in order to check whether the words which
are more likely to be searched for in practice exhibit the same behavior as other
words.

http://pizzachili.dcc.uchile.cl/texts/nlang/english.200MB.gz
http://pizzachili.dcc.uchile.cl/texts/nlang/english.200MB.gz
http://data.law.di.unimi.it/webdata/in-2004/
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Each fingerprint occupied 2 bytes, since 1-byte fingerprints turned out to be
ineffective, and we regarded this as the optimal value with respect to a reasonable
keyword size. The mode length in English dictionaries was equal to 8, which means
that each fingerprint roughly incurred a 25 % storage penalty on average; however,
the mode length in the URL collection was equal to 69, which means that each fin-
gerprint roughly incurred only a 3 % storage penalty on average. Count fingerprints
used 2 bits per count, that is, we set b = 2 and a natural binary encoding (i.e., not
a Gray code). For correctness, in the case of the count variant, multiple mismatches
between 2-bit counters were treated as a single mismatch. This was the case since,
e.g., the difference between 1 and 2 is equal to 1, but 01⊕ 10 = 11 (the Hamming
weight of such result is equal to 2 and not to 1). Position fingerprints used 3 bits
per position, that is, we set p = 3 (consult Section 3 for details). Given the selected
fingerprint size of 2 bytes (16 bits), these values allow for the use of 8 letters for
count fingerprints and 5 letters for position fingerprints, with an extra occurrence
bit in the latter case.

In our implementation, fingerprint comparison requires performing one bitwise
operation and 2 array lookups, that is, 3 constant operations in total. We analyze
the comparison time between two strings using various fingerprint types versus an
explicit verification. When the fingerprint comparison was not decisive (i.e., we
could not reject the match based solely on the use of fingerprints), a verification
consisting in distance calculation was performed and it contributed to the elapsed
time. The fingerprint is calculated once per query and it is then reused for the
comparison with consecutive keywords. This means that we examine the situation
where a single query is compared against a set (dictionary) of keywords.

4.1 Results

Figure 1 demonstrates the results for synthetic English data, which allowed us to
check a wide range of word sizes (which occur infrequently or not at all in natural lan-
guage corpora) for occurrence, count, and position fingerprints. Hamming distance
was used as a similarity metric in this case. As described in the previous section,
common, mixed, and rare letter sets were selected based on English alphabet letter
frequencies. We can observe that the effectiveness of various approaches depends
substantially on the word size, and the performance of letter sets also depends on
the fingerprint type. The highest speedup was provided by occurrence fingerprints
for common letters in the case of words of 10 characters, and it was equal to over
2.5 times with respect to the naive comparison.

In Tables 1 and 2 we present the speedup for k = 1 that was achieved for two
English dictionaries and the URL data. Word lengths of 8 (in total 48 636 words
for English insane and 104 753 words for English 200) and 69 (in total 34 044 words
for URLs) were used, which corresponded to mode length values in the tested dic-
tionaries. The speedup S was calculated using the following formula: S = Tn/Tf ,
where Tn refers to the average time required for a naive comparison (i.e., not using
fingerprints), and Tf refers to the average time required for comparison using fin-
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Figure 1. Comparison time vs. word size for 1 mismatch (Hamming distance) for syn-
thetic data. Words were generated over the English alphabet. Time refers to average
comparison time between a single pair of words. The upper figure shows results for oc-
currence fingerprints, the middle figure shows results for count fingerprints, and the
bottom figure shows results for position fingerprints.
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gerprints. For instance, 2.0 means that the time required for comparison decreased
twofold when fingerprints were used.

A higher speedup in certain cases for the URL data was caused by a higher
level of similarity between the data. In particular, the data set comprised some
URLs which referred to different resources that were located on the same server.
This resulted in certain words sharing a common prefix, requiring a naive algo-
rithm to proceed with checking at least several first characters of each word. Pre-
sented results also demonstrate a limitation of our technique, which is apparent in
the case of shorter words, where using fingerprints may increase the comparison
time. Position fingerprints are not listed for the URL data, since they were com-
pletely ineffective due to multiple common prefixes between words and a large word
length (almost no words were rejected). Let us also note that Hamming distance
results for the English words are consistent with those reported for synthetic English
data.

English Insane Common Mixed Rare

Occurrence 2.66 1.45 0.72
Occurrence halved 2.05 0.97 0.69
Count 1.26 0.64 0.72
Position 1.03 0.55 0.80

English 200 Common Mixed Rare

Occurrence 2.12 1.03 0.54
Occurrence halved 1.35 0.61 0.75
Count 0.88 0.50 0.77
Position 0.71 0.52 0.82

URLs Common Mixed Rare

Occurrence 1.46 1.19 2.27
Occurrence halved 1.78 1.93 1.53
Count 1.82 1.78 1.38

Table 1. Speedup for various fingerprint types relative to a naive comparison for k = 1
using Hamming distance for real-world data (English and URL dictionaries). Values
smaller than 1.0 indicate that there was no speedup and the time required for comparison
increased. The results in upper and middle table were calculated for the set of English
language words of length 8, and the results in the lower table were calculated for the set
of URLs of length 69 (both length values were modes of the word lengths in the respective
dictionaries).

In Table 3 we list percentages of words that were rejected for the same data sets
for k = 1 as a hardware-independent method of comparing our approaches. The
rejection rate is naturally positively correlated with the speedup in comparison time.
Table 4 presents the construction speed. Time measured during the construction
covered (i) creating fingerprints, (ii) storing fingerprints in our custom dynamic
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container, (iii) storing words from the input dictionary (not counting disk I/O) in
the same container. It is assumed that the words in the dictionary are already sorted,
a stage which can be easily performed as preprocessing (most available dictionaries
are already sorted anyway).

English Insane Common Mixed Rare

Occurrence 33.38 10.19 3.44
Count 8.34 2.95 1.05

English 200 Common Mixed Rare

Occurrence 22.62 6.50 1.98
Count 5.11 1.98 1.01

URLs Common Mixed Rare

Occurrence 3.60 2.19 14.35
Count 5.52 5.87 3.06

Table 2. Speedup for various fingerprint types relative to a naive comparison for k = 1
using Levenshtein distance for real-world data (English and URL dictionaries). The
results in upper and middle table were calculated for the set of English language words of
length 8, and the results in the lower table were calculated for the set of URLs of length 69.

Let us also discuss a related method, namely neighborhood (permutation) gen-
eration [23]. For a given pattern P , it consists in constructing all combinations of
perturbed words derived from P , whose presence in the dictionary is then checked in
an exact manner (using, e.g., a hash table). For instance, using Hamming distance
for a word cat and English alphabet, one would first check a perturbation using
letter a: aat, cat (can be ignored, since it is the same as the pattern), and caa,
then using letter b: bat, cbt, cab, etc.

If the neighborhood size (that is, the count of generated candidates), which
depends on the pattern length and the alphabet size, is relatively small and the
dictionary size (that is, the total word count) is relatively large, this might turn out
to be a promising approach. On the other hand, fingerprints are a more versatile
method, which can be used for speeding up a comparison of any two strings. This
stands in contrast to only checking for the presence of a string in a dictionary (as is
the case for the neighborhood method), and fingerprints can be used for augmenting
another data structure (see Section 5 for more information).

For the comparison of neighborhood generation and a fingerprint-based search
when querying a dictionary, consult Figure 2. The search was performed for Ham-
ming and Levenshtein metrics with k = 1. Time refers to average comparison
time between a single pair of words, in the same manner as for fingerprint com-
parison presented in Figure 1. Both dictionaries were subsampled in order to con-
tain the tested number of words, namely [26, 27, . . . , 216]. This consisted in ran-
domly selecting words of size 8, which was the mode length in both dictionaries.
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English Insane Common Mixed Rare

Occurrence (Ham, Lev) 98.45 % 92.53 % 75.84 %
Occurrence halved (Ham) 96.72 % 85.30 % 10.12 %
Count (Ham, Lev) 90.55 % 71.37 % 7.01 %
Position (Ham) 87.80 % 50.30 % 0.65 %

English 200 Common Mixed Rare

Occurrence (Ham, Lev) 97.22 % 87.73 % 55.07 %
Occurrence halved (Ham) 92.34 % 71.39 % 3.17 %
Count (Ham, Lev) 84.02 % 55.30 % 2.19 %
Position (Ham) 78.47 % 39 42 % 0.23 %

URLs Common Mixed Rare

Occurrence (Ham, Lev) 71.00 % 55.72 % 89.39 %
Occurrence halved (Ham) 80.33 % 84.03 % 73.41 %
Count (Ham, Lev) 80.87 % 80.55 % 67.33 %

Table 3. Percentage of rejected words for various fingerprint types for k = 1 for real-
world data (English and URL dictionaries). Rejection means that the true error was
determined to be more than k based only on fingerprint comparison. The results in upper
and middle table were calculated for the set of English language words of length 8, and
the results in the lower table were calculated for the set of URLs of length 69.

English Insane Common Mixed Rare

Occurrence 498.56 499.10 497.62
Occurrence halved 475.70 475.18 474.26
Count 155.14 165.36 316.29
Position 154.35 167.62 196.97

English 200 Common Mixed Rare

Occurrence 485.61 485.76 485.61
Occurrence halved 458.59 458.68 461.25
Count 165.13 190.57 335.54
Position 160.57 170.90 198.26

URLs Common Mixed Rare

Occurrence 418.75 419.07 419.05
Occurrence halved 405.91 406.03 405.93
Count 244.99 270.82 357.00

Table 4. Construction speed given in MB/s (1 MB = 106 B) for various fingerprint
types for real-world data (English and URL dictionaries). The results in upper and
middle table were calculated for the set of English language words of length 8, and the
results in the lower table were calculated for the set of URLs of length 69.
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The largest value (216 = 65 536) was used only for the English 200 dictionary,
since the English insane dictionary did not contain such number of words having
8 characters. The alphabet size is equal to 53 and 94 for English insane and En-
glish 200, respectively, and it was accordingly smaller for subsampled dictionaries
(e.g., 33 and 56 characters for English dictionaries with 64 words, respectively).
All these dictionaries can be inspected at the Github repository. The number of
iterations for neighborhood generation was equal to 100 (the same as for the finger-
prints).

We can see that fingerprints outperform the neighborhood generation method
for smaller dictionaries, up to around 2 orders of magnitude for the smallest one
(which is, admittedly, not likely to be used in a real-world scenario). As the dictio-
nary size increases, the gap becomes smaller, with neighborhood generation being
faster for the largest subsampled dictionaries. In regard to the Levenshtein distance,
on the one hand there exist more combinations which need to be checked by the per-
mutation algorithm (insertions, deletions), on the other hand, Levenshtein distance
is also more expensive to calculate when the fingerprint comparison is not decisive.
Nevertheless, the neighborhood generation algorithm was slower for the Levenshtein
metric when compared to the Hamming metric very roughly by a factor of 5, and
fingerprints were relatively slower very roughly by a factor of 2. This meant that
for dictionaries where the fingerprint-based approach turned out to be faster, it out-
performed neighborhood generation by a wider margin for the Levenshtein than for
the Hamming distance.

Let us note that the time required to extract the alphabet from the dictio-
nary (which was needed for generating the neighborhood) did not contribute to the
measured elapsed time. The tested implementation of the neighborhood generation
method can be also found in the Github repository referenced previously.

In general, the choice of the optimal strategy, viz. fingerprint type, letters data
set, and how many bits are used per single counter or position in a fingerprint, de-
pends chiefly on the input data. Larger fingerprints would allow for obtaining a bet-
ter rejection rate, but this would come at the cost of increased space usage. Once
the rejection rate is close to the optimal 100 %, larger fingerprints would provide
only a negligible reduction in processing time. In our case, the simplest approach,
that is, occurrence fingerprints with common letters, seemed to offer the best per-
formance. Still, we would like to point out that a practical evaluation on a specific
data set would be advised in a real-world scenario.

5 CONCLUSIONS

We have evaluated fingerprints in the context of dictionary matching. Still, we
would like to emphasize the fact that fingerprints are not a data structure in it-
self, rather, they are a string augmentation technique which we believe may prove
useful in various applications. For instance, they can be used in any data struc-
ture which performs multiple internal approximate string comparisons, providing
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Figure 2. Comparison time vs. dictionary size for 1 error using fingerprints (occurrence
common variant, which turned out to be the fastest one) and the related neighborhood
generation method. Results for the English insane dictionary (upper figure) and the
English 200 dictionary (lower figure) are presented, both for words of size 8. Note the
logarithmic y-scale.

substantial speedups at a modest increase in the occupied space. In particular, for
longer strings such as URL sequences the space overhead can be considered negligi-
ble.

Fingerprints take advantage of the letter distribution, and for this reason they
were not effective for strings sampled over the alphabet with a uniform random
distribution. They are also not recommended for the DNA data due to the small
size of the alphabet and a large average word size. These two combined properties
result in a scenario where each word contains multiple occurrences of each possible
letter with a high probability.
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In the future, we would like to extend the notion of a fingerprint by encoding
information regarding not only single symbol distributions, but rather q-gram dis-
tributions. The set of q-grams could be determined either heuristically or using an
exhaustive search, and their use might provide a speedup for any real-world data set
(possibly including DNA sequences). We believe that it may be also beneficial for
processing larger k values. Another possibility lies in combining different fingerprint
types for a single word in order to further decrease comparison time at the cost of
increased space usage. We also plan to employ fingerprints in order to speed up
internal substring comparison in another data structure which we have previously
created, namely the split index [9].
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A TOOL USAGE

The source code and a compiled Linux binary executable of the fingerprints tool
are publicly available under the following link: https://github.com/MrAlexSee/

Fingerprints. This description refers to the release version v1.3.0 (in order to di-
rectly obtain the binary executable use the link: https://github.com/MrAlexSee/
Fingerprints/releases/download/v1.3.0/fingerprints).

In order to reproduce experiments described in this paper, download the source
code, set the path to Boost library in the makefile (variable BOOST DIR) and is-
sue a command make in the main directory. Alternatively, download directly the
aforementioned compiled executable for the Linux operating system.

As mentioned in the chapter on empirical study, dictionaries and corresponding
queries can be found in the data folder, with the exception of the URLs dictionary,
which should be downloaded separately due to size restrictions (the relevant link is
provided in Section 4).

In order to test the synthetic data, use the test synth.sh script, and in order
to test the real-world data, use the test real.sh script. Both scripts automatically
examine all fingerprint and letters type combinations. In order to compare finger-
prints performance with a related neighborhood generation method, refer to the
folder related. A complete list of command-line parameters which can be provided
to the executable is located in Table 5.

https://github.com/MrAlexSee/Fingerprints
https://github.com/MrAlexSee/Fingerprints
https://github.com/MrAlexSee/Fingerprints/releases/download/v1.3.0/fingerprints
https://github.com/MrAlexSee/Fingerprints/releases/download/v1.3.0/fingerprints
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Short Name Long Name Parameter Description

--calc-rejection
calculate percentages of rejected words in-
stead of measuring time

-d --dump

dump input files and parameters info with
elapsed time and throughput to output file
(useful for testing)

--dump-construction dump fingerprint construction time

-D --distance arg
distance metric: ham (Hamming), lev

(Levenshtein) (default = ham)

-f --fingerprint-type arg
fingerprint type: none, occ (occurrence),
occhalved (occurrence halved), count,
pos (position) (default = occ)

-h --help display help message

-i --in-dict-file arg
input dictionary file path (positional argu-
ment 1)

-I --in-pattern-file arg
input pattern file path (positional argu-
ment 2)

--iter arg
number of iterations per pattern lookup
(default = 1)

-k --approx arg
perform approximate search (Hamming or
Levenshtein) for k errors

-l --letters-type arg
letters type: common, mixed, rare (default
= common)

-o --out-file arg output file path (default = res.txt)

-p --pattern-count arg
maximum number of patterns read from
top of the pattern file

--pattern-size arg
if set, only patterns of this size (letter
count) will be read from the pattern file

-s --separator arg input data (dictionary and patterns) sep-
arator (default = newline)

-v --version display version info

-w --word-count arg
maximum number of words read from top
of the dictionary file

Table 5. A complete list of command-line parameters for the fingerprints tool
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Abstract. Over the past decade, the fast advance of network technologies, hard-
ware and middleware, as well as software resource sophistication has contributed
to the emergence of new computational models. Consequently, there was a ca-
pacity increasing for efficient and effective use of resources distributed aiming to
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integrate them, in order to provide a widely distributed environment, which com-
putational capacity could be used to solve complex computer problems. The two
most challenging aspects of distributed systems are resource management and task
scheduling. This work contributes to minimize such problems by i) aiming to reduce
this problem through the use of migration techniques; ii) implementing a multiclus-
ter simulation environment with mechanisms for load balancing; iii) plus, the gang
scheduling implementation algorithms will be analyzed through the use of metrics,
in order to measure the schedulers performance in different situations. Thus, the
results showed a better use of resources, implying operating costs reduction.

Keywords: Multicluster, parallel jobs, migration, gang scheduling, distributed sys-
tem

Mathematics Subject Classification 2010: 68M14

1 INTRODUCTION

Over the past decade, computing platforms (Cluster, Grid and Cloud) have emerged
as important computational power sources [48, 49]. Traditionally, the industry main
focus has been the performance improvement of computational systems, through
efficient projects increasing the components density and associated with exponential
growth of data size in simulation/scientific instrumentation, storage and information
published on the Internet. The computational power increase from such systems
has boosted investments by Internet Service Providers, Government and Research
Laboratories in computing environments, which are increasingly powerful, in order
to host applications ranging from social networks to scientific workflows [44].

In such context, distributed systems arise as an interesting solution providing
physical resources on demand, because it allows to add computing power of many
nodes interconnected through a network to perform tasks [44]. Computer distributed
systems have been used due to their important attributes, such as: efficient cost,
scalability, performance and reliability [46, 48, 49]. In computational grid, there are
three important aspects that should be treated: task management, tasks scheduling
and resources management [1]. In particular, Grid Task Scheduling (GTS) performs
an important role in the whole system, where the algorithms have a direct effect
on the grid. Task scheduling in heterogeneous computing environment has proven
to be an NP-complete problem [2, 3, 4, 46], and it still has attracted researchers’
attention.

In order to solve this problem, many types of scheduling algorithms have been
proposed for distributed environments being classified in several ways, i.e., in [6],
a hierarchical classification is proposed in the tree form, which divides algorithms
in the higher hierarchy into local and global. For instance, [7] defines a taxonomy
for scheduling problems on grid computing platforms. Smanchat and Viriyapant [8]
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have extended the grid taxonomy in order to define a scheduling problem taxonomy
in cloud computing. In [9], it is defined a general taxonomy providing conceptual
models for problems and solutions for scheduling which allows researchers the solu-
tion properties for scheduling in a clear way.

In addition, they presented an impact analysis of this matter in the research.
Extra to the set of features presented about taxonomy, there are many heuristics for
task scheduling in distributed environments. In literature, there are many scheduling
algorithms [12, 13, 46, 48] which deal with different types of problems and systems.
Among them, we highlighted the most traditional, such as First Come First Served
(FCFS), Shortest Job First (SJF), Opportunistic Load Balancing (OLB), Minimum
Execution Time (MET), Minimum Completion Time (MCT), MinMin and MaxMin.

Among existent scheduling techniques, we highlighted the scheduling group or
gang scheduling or co-schedulers [14, 47], which are considered to be efficient algo-
rithms for parallel jobs scheduling, which consist of tasks that must be allocated
and executed simultaneously on different processors. These types of scheduling al-
gorithms provide interactive response time for tasks with low execution time by
means of preemption, but, as a disadvantage, cause a fragmentation by reducing the
system performance [17, 19, 20, 25].

In a similar way to external fragmentation in memory, resources fragmentation
occurs in a grid computing consisting of a cluster set when it cannot find a cluster
that can perform job tasks simultaneously, being the total number of idle compu-
tational resources across the grid larger than this number of tasks. Fragmentation
occurs in the system when it presents free processors, but job computational re-
quirements cannot be completed, thus remaining inactive resources [21]. Resources
fragmentation has been a common research topic in the past two decades. Many
approaches to resources fragmentation have been developed, best-fit and task mi-
gration are the most common.

Based on the points made above, the goal of this study is to invest in reducing
the fragmentation caused by scheduling group as well as in response time. Among
the main contributions of this work, we can highlight:

1. Heuristics implementation, Adapted First Come First Served (AFCFS), Largest
Slowdown First (LXF) and Largest Job First Served (LJFS) using gang mech-
anism. Based on the assumption that gang scheduling causes fragmentation in
the environment, we seek to use migration mechanisms; e.g, check clusters that
have available processors, analyzing which jobs have their tasks at the beginning
of the queue in the latter and checking the job that has the lowest number of
tasks to migrate. In addition to these migration strategies, we used mechanisms
to avoid unnecessary migrations, as well as system overhead.

2. Implementation of techniques and algorithms, Join the Shortest Execution
Queue (JSEQ) and Opportunistic Load Balancing (OLB) for load balancing
in dispatchers, grid and local, aiming to distribute jobs for clusters, in order
to reduce task waiting time, and consequently improve system efficiency. We
emphasize that the JSEQ is a new proposed algorithm.
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3. Based on simulator study for grids, the simulation environment composition
uses a Multicore Multicluster Architecture, aiming to analyze dispatchers perfor-
mance in different situations, as well as the system behavior in different contexts.
This proposed environment is named as Grid Schedule Management Simulator
(GSMSim).

4. Plus, the scheduling algorithms implemented will be analyzed in different con-
texts by metrics, Average Wait Time, Average Response Time, Loss of Capacity
and Utilization, in order to measure both use of the system and its fragmenta-
tion.

This paper is structured as follows: First, the related work is presented (Sec-
tion 2). Section 3 presents the proposed system model. After that, we describe the
system operation (Section 4). Sections 5 and 6 present the gang scheduling and mi-
gration mechanisms. In addition, we present metrics performances, which are used
to analyze the scheduler performance in different situations (Section 7). Section 8
presents the results of the simulations. Finally, we present some conclusions and
motivation for future work (Section 9).

2 RELATED WORK

This work aims to invest in reducing the fragmentation caused by gang schedules [12,
20, 23, 24, 25], as well as reducing the response time of jobs. Researchers are
looking for efficient mechanisms to reduce execution time, as well as improve resource
utilization and hence minimize the fragmentation. The latter happens on the system
when there are jobs waiting in the queue to run and there are idle processors but
they still cannot perform the waiting jobs. Some works in this area are presented
below.

The authors [18, 35, 25] propose migration mechanisms in order to minimize the
fragmentation caused by gang schedules in these environments. They implement
local and grid migration strategies in the Adapted First Come First Served (AFCFS)
and Largest Gang First Served (LGFS) gang schedulers in a homogeneous cluster
simulation model. In the case of local migration, it is the transfer of a task from
one processor queue to another that belongs to the same cluster, and grid migration
involves transferring a task from one cluster to another. In addition, they use
simulation in parallel job and sequential job. The latter is composed of a single
task, which takes priority at the time of allocation of the task in the resource, e.g,
stopping the execution of a parallel job for its execution, thus leading to an increase
in the response time of this job. The authors [19] use the migration strategies
proposed by the authors [18, 35, 25] in gang schedulers AFCFS and Largest Job
First Served (LJFS) [18], in a single cluster simulation model, which consists of one
hundred and twenty (120) Virtual Machines (VMs). These are connected through
a Dispatcher Virtual Machine (DVM) dispatch, which includes a queue for jobs that
cannot be dispatched at the time of their arrival to the VMs, which is when VMs
are unavailable or overloaded.
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As far as minimizing the fragmentation caused by gang schedulers is concerned,
this was presented in the previous work [26, 27]. In these works, we apply migration
strategies in the AFCFS and LGFS [18], in a multicluster simulation environment,
using a hierarchical structure of two layers, consisting of managers, Grid Dispatcher
(GD) and Local Dispatcher (LD) to the allocation jobs to resources. Aiming at
a more efficient load balancing, these authors considered a set of load balancing
strategies: the first strategy was to introduce in the GD, before sending the jobs to
the clusters, a feedback of information about the clusters loads, for more efficient
load balancing; and, second strategy, we used an algorithm in LD, Join the Shortest
Queue (JSQ), that applies the technique in the distribution of the tasks to the
processors queue. This distribution is done according to the number of tasks in the
processor queue plus the running task, that is not taking into account the execution
time of the tasks. Differently from the work [26], the authors of [27] analyzed the
AFCFS and LGFS algorithms in a multicluster heterogeneous simulation system
in relation to the amount of resources by clusters. In addition, they used different
workload sizes in the system.

Differently from the works cited above, this proposal uses a Multicore Multiclus-
ter Architecture (MCMCA) in the simulation model [43], in order to meet a larger
data set demand. In this environment, the heterogeneity happens in relation to the
number of resources per cluster, the resource clock rate and resource characteristics
in each cluster. In addition, data consists of two different types of jobs, sequential
and parallel. The latter consists of several tasks that are independent and executed
simultaneously. In this work, it is considered that a sequential job is a priority task
that requires only one processor for execution and the least estimated processing
time compared to other jobs. Therefore, upon reaching the environment, the job
is sent to the best available processor, that is not paralyzing another job for ex-
ecution. In case, all processors are busy, the sequential job is sent to the queue
of the processor which has the shortest runtime. This is to reduce the execution
time of the jobs. In addition to the above proposals, two algorithms are introduced
in the LD: Join the Shortest Execution Queue (JSEQ) and Opportunistic Load
Balancing (OLB) [10], which apply techniques in the distribution of tasks to the
queue of processors. We emphasize that the JSEQ is a new proposed algorithm.
These algorithms are intended to reduce queuing time, as well as the response time
of a job and, therefore, fragmentation. In addition, the following policies are ap-
plied for the queues scheduling: AFCFS, LJFS [19] and Largest Slowdown First
(LXF) [36]. These algorithms will be implemented and adapted to the gang mech-
anism in order to scale the tasks of the jobs allocated in queues and implemented
in the simulation environment. These policies are evaluated separately in the sys-
tem in different situations, using metrics to measure both system utilization and
fragmentation.

In view of this, the results (see Section 8) show (compared to other gang
schedulers with and without migration, different strategies in LD and changes in
the priority of a sequential job and heterogeneous workloads), that the migrating
AFCFS gang scheduler presented the best results efficiently in all scenarios. Thus,
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the efficiency of AFCFS with migration was confirmed, as presented by the au-
thors [18, 35, 25, 19, 26, 27]. Different from these, we analyzed the LXF gang
algorithm with and without migration in the same AFCFS and LJFS scenarios.
The LXF algorithm presented a lower average response time of the jobs in relation
to the LJFS algorithm. In addition, through the Loss of Capacity (LoC) metric,
we evaluate the fragmentation caused by the gang algorithms (AFCFS, LXF and
LJFS) in an MCMA environment. According to the results, the AFCFS and LXF
algorithms cause less fragmentation in the environment.

3 SIMULATOR PROPOSAL: GSMSIM

This work proposes a multicore multicluster simulator model based on queues.
A simulation methodology is applied in order to validate the model and to quantify
the performance under realistic conditions (see Figure 1). The simulation system
(Grid Schedule Management Simulator – GSMSim) consists of a multicore multi-
cluster environment using a two-layer hierarchical structure. It was implemented in
order to analyze schedulers performance in different situations, as well as environ-
ment behavior in different contexts. This system was implemented in the Laboratory
of Research Group in Applied Computer Modeling at the Federal University of Ceará
(UFC).

GSMSim model is based on queueing theory (Figure 1), which is useful for system
analysis – in which conflicts occur when many entities try to simultaneously access
the same resource – [28] as well as in scheduling modeling for distributed systems [29].
GSMSim is composed by managers, Grid Dispatch (GD), Local Dispatch (LD), and
clusters administrators.

GD is in charge for sending sequential and parallel jobs to clusters, and LD for
sending tasks belonging to the jobs in processor queues. Each LD is composed of
a cluster (Ci) (i ranging from 1 to m) consisting of a multicore processor set (Pl)
(l ranging from 1 to M), being {M, i, l,m ∈ N}. Additionally, each Pl has its own
queue in the system.

In the system, there were different scenarios concerning the number of processors,
machines features and quantity of clusters, in order to simulate workloads, which
have jobs with multiple levels of parallelism. In this study, it is considered that
a system is homogeneous when machines clock rate is equal and each Ci possesses
a different quantity of processors; likewise, a system is heterogeneous when machines
clock rate is different ranging from 1 500, 1 600, 1 700, 1 800, 1 900, 2 000, 2 500,
3 000, 3 500 (megahertz), randomly generated at the time of creating resources in
the simulation environment. Therefore, there is heterogeneity in resources of the
same cluster and, consequently, among clusters. Thus, the proposed environment
can be used in different scenarios.

In the developed environment, clusters belong to an administrative domain, so
that they are able to communicate with GD. Besides, the communication among
processors is free contention. Hence, the communication latency is calculated as
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Figure 1. Multicore multicluster simulator model based on queues – GSMSim

follows [30, 31]: T (z) = α + z
ρ

in which α is a constant, z represents the job size

(megabytes) and ρ is the bandwidth (megabytes).

3.1 Workload

Workloads were extracted from a real distributed environment and present char-
acteristics of Standard Workload Format (SWF) [33]. They are composed of two
different types of jobs, which are competing for the same resources: sequential and
parallel jobs. A workload W = {J1, J2, . . . , Jj} (j = 1, 2, 3, . . .) is composed of mul-
tiple jobs, where a job Jj is represented by a tuple (idj, atj, sj, ptj). See parameters
description in Table 1.

Parameters Description

idj Identification of the job, (idj = 1, 2, 3 . . .).
atj Time of arrival, (atj ≥ 0).
sj Number of tasks in a job, (sj ≥ 1).
ptj Estimate of the processing time of a job, (ptj > 0).

Table 1. The workload parameters

A job Jj is composed of one or more tasks, e.g., Jj = {v1,j, . . . , vi,j}. If Jj =
{v1,j}, then, Jj = 1 is a sequential job consisting of a single task, which requires
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only one processor for its execution. Therefore, it is a high priority task, since when
it arrives in the environment, it is sent to the highest speed available processor.
This only happens when this task presents the shorter processing time estimated ptj
regarding to other jobs. In the case of all processors being busy, this task is sent to
the processor queue that has lower execution time.

A parallel job Jj consists in vj,|Jj | tasks which |Jj| > 1. Mapping among tasks
and processors must be one to one. Therefore, job tasks cannot be attributed to
the same processor queue. In addition, tasks belonging to a parallel job will be
scheduling for execution according to the technique scheduling in the system queue.

4 GSMSIM OPERATION

This section describes in detail the operation of system managers: GD and LD, as
it is shown in Figure 1.

4.1 Grid Dispatch

GD sends jobs to clusters. This submission is based on a feedback information about
the total load of each cluster, i.e., the total number of jobs in queues plus the number
of tasks in execution on processors (Algorithms 1 and 2). These information about
clusters load will only be sent upon a GD request, because excessive feedback may
cause system overload. It is very important to know the load value of each cluster
for an efficient load balancing. In case of clusters are balanced, it occurs a random
dispatching.

In Equation 1, it is defined the load calculation of each cluster,

LCi =
1

|PM |
×
|PM |∑
p=1

[f(p) + k] (1)

in which LCi is the total load associated to cluster Ci (i ranging from 1 to m),
|PM | is the total number of processors per cluster, f(p) is the total number of tasks
queued for each processor of Ci, and k represents the existence or not of a task
running on processor: k = 1, there is a task running; otherwise, k = 0.

4.2 Local Dispatch

After a parallel job Jj has been sent to cluster Ci, according to the lowest workload of
LCi, LD assigns job tasks to available queues based on Opportunistic Load Balancing
(OLB) algorithm, or Join The Shortest Execution Queue (JSEQ) algorithm, which
were adapted and implemented in LDs.
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Algorithm 1 Grid dispatcher(job)

Input: jobs
Output: T (job can be run by the system) or F (system cannot run the job)
1: set S ← empty
2: clusters select← 0
3: for i = 1 to number clusters do
4: if (cluster[i].number processor) < (job.number task) then
5: S ← S U (cluster[i])
6: clusters select← clusters select + 1
7: else if (clusters select > 0) then
8: if (job.num tasks > 1) then
9: Cluster← lower load(S)

10: Cluster.LocalDispatcher(job)
11: else
12: Cluster← random(S)
13: Cluster.LocalDispatcher(job)
14: end if
15: else
16: return T
17: end if
18: return F
19: end for

4.2.1 Opportunistic Load Balancing

OLB (Algorithm 3) sends tasks belonging to a job for available processors or to
their queues, regardless tasks execution time expected on processors [11]. It has
the advantage of keeping machines busy but also the disadvantage of not paying
due attention to about minimizing task wait time in queue, consequently, the job
response time.

4.2.2 Join the Shortest Execution Queue

JSEQ algorithm, is an adjustment proposed in this work, based on Join the Shortest
Queue (JSQ) [26, 27, 34]. JSEQ (Algorithm 4) is in charge for sending tasks that
belong to a job for processors queues, in a way that the tasks already queued have
lower execution time. It is important to notice that the execution time value sent to
LD is the sum execution time of task in the queue plus the execution time of task in
the processor; differently from JSQ, in which the sending of tasks to processors occurs
through the quantity of tasks in processors queues. This can lead to an increase of
task waiting time in queues. Thus, when a sequential job reaches the GSMSim, it
has priority, as explained in Section 3.1, regardless of the algorithm that is applied in
LD. Furthermore, the information feedback regarding to processors queues behavior
only occurs when LD calls, thus avoiding system overload.
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Algorithm 2 lower load(cluster [n])

Input: set of n clusters
Output: cluster that has the lowest load
1: for (i = 1 to n) do
2: if (i

.
= 1) then

3: lower← i
4: size← cluster[i].number task()

cluster[i].number machine()

5: else
6: if ( cluster[i].number task()

cluster[i].number machine()
< size) then

7: lower← i
8: size← cluster[i].number task()

cluster[i].number machine()

9: end if
10: end if
11: end for
12: return cluster(lower)

After distributing tasks in queues by one of the machine algorithms (OLB
or JSEQ), it is used one of scheduling queues Adapted First Come First Served
(AFCFS); Largest Job First Served (LJFS) [18, 19, 25] or Largest Slowdown First
(LXF) [36] to scheduling tasks in queues.

The next section will present such schedulers using the gang technique adapted
to task scheduling in processors queues.

Algorithm 3 OLB(Gang g)

Input: gang g
1: list S ← empty
2: list T ← empty
3: for i← 1 to cluster.number processor do
4: if (cluster.processor[i].task executed = null) then
5: S.include(cluster.processor[i])
6: else
7: T.include(cluster.processor[i])
8: end if
9: end for

10: sort random(S)
11: sort random(T )
12: cluster.processor← empty
13: cluster.processor← S.concatenate(T )
14: for i← to g.number task do
15: cluster.processor[i].include(g.number task[i])
16: end for
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Algorithm 4 JSEQ(Gang g)

Input: gang g
1: for i← 1 to cluster.number processor do
2: select← cluster.processor[i]
3: j ← i− 1
4: while (j ≥ 0) and (select.time estimated <

cluster.processor[j].time estimated) do
5: cluster.processor[j + 1] := cluster.processor[j]
6: j := j − 1
7: end while
8: cluster.processor[j + 1]← select
9: end for

10: for i← 1 to g.number task do
11: cluster.processor[i].include(g.task[i])
12: end for

5 GANG SCHEDULING

It is very often applied in job scheduling, in which each job is composed by a task
set that must be performed simultaneously on different processors [22, 16]. This
type of technique is considered efficient for scheduling parallel jobs in distributed
environments, but, as a disadvantage, it results in a fragmentation reducing system
performance [5, 15, 16, 19, 25].

In the simulation system, the following policies were applied for scheduling
queues: Adapted First Come First Served (AFCFS), Largest Job First Served
(LJFS) and Largest Slowdown First (LXF). They were adapted to gang mechanism,
in order to dispatch jobs tasks allocated to queues, and implemented in a simulation
environment.

5.1 AFCFS

AFCFS (Algorithm 5) tends to favor jobs with lower task number, and, consequently,
requires lower number of processors. On the other hand, this may cause an increase
in response time concerning larger jobs. In Algorithm 5, line 1, it is to initialize
the search procedure in processors queues by jobs that have lower task number, and
then, in line 6, it starts tasks exchange ordination.

Figure 2 describes the scenario where tasks belonging to jobs J1 = v1,1, . . . ,
v4,1; J2 = v1,2, . . . , v3,2; J3 = v1,3, . . . , v3,3; J4 = v1,4, . . . , v4,4; J5 = v1,5, v2,5 were
distributed to processors queues according to their arrival time in the system. As
we can see, jobs require different quantities of processors, J1 = 4; J2 = 3; J3 = 3;
J4 = 4; J5 = 2, respectively. Considering the job sizes, these will be scheduled
according to Algorithm 5: J5 = v1,5, v2,5; J2 = v1,2, . . . , v3,2; J3 = v1,3, . . . , v3,3;
J1 = v1,1, . . . , v4,1; J4 = v1,4, . . . , v4,4, as it is shown in Figure 3. These tasks were
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Algorithm 5 AFCFS(Processor queue p.q)

Input: queue q of tasks of a processor p
1: if p.q.begin 6= null then
2: if start(p.q.begin) 6= null then
3: if p.q.begin.netx 6= null then
4: shorter← p.q.begin
5: aux← p.q.begin.next
6: while aux 6= null do
7: if aux.number task berlongs job < shorter.number task berlongs job

then
8: shorter← aux
9: else

10: aux← aux.next
11: end if
12: end while
13: aux← p.q.begin
14: p.q.begin← shorter
15: p.q.begin← aux
16: remove duplicate(p.q.begin)
17: end if
18: end if
19: end if

distributed in queues according to LD algorithm (OLB or JSEQ) and were then
scheduled according to AFCFS policy.

before scheduling
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Figure 2. Jobs in queues – before scheduling

AFCFS has complexity O(n), in which n is the task number in queues, which
will be scheduled. It is only O(n) because the scheduler passes by the queue once to
check which job has the lowest number of tasks, and then forwards to the beginning
of the queue where the jobs have fewer sister tasks. This situation can be performed
in constant time that would be O(1). Thus, complexity O(n) +O(1) = O(n).
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5.2 LJFS

LJFS (Algorithm 6) tends to favor larger jobs performance at the expense of the
smaller ones, i.e., the larger jobs have tasks allocated in processors queues before
any other smaller task belonging to a job, causing an increase of response time in
smaller jobs.

Algorithm 6 LJFS processor.queue p.q

Input: queue q of tasks of a processor p
1: for i← 1 to p.q.size do
2: select processor← p.q[i]
3: i← i− 1
4: while (j ≥ 0) and (select.number task sisters > p.q[j].number task sisters)

do
5: p.q[j + 1] := p.q[j]
6: j := j − 1
7: end while
8: p.q[j + 1]← select processor
9: end for

It is presented a new scenario using LJFS for the same jobs from previous ex-
ample (Figure 2). Considering parallel job size (Figure 4), it will be scheduled
in the following order: J1 = v1,1, . . . , v4,1; J4 = v1,4, . . . , v4,4; J2 = v1,2, . . . , v3,2;
J3 = v1,3, . . . , v3,3; J5 = v1,5, v2,5, as shown in Figure 5.

LJFS has complexity O(n∗ log(n)), in which n is the task number in queue that
will be scheduled. As the scheduler comes down to reorder the queue in descending
order according to tasks number belonging to the job, this complexity is the same
as a common ordering method, therefore, it is based on the merge sort ordering
method [37].
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5.3 LXF

LXF (Algorithm 7) tends to benefit jobs that have larger Expansion Factor (XF),
which is often used when comparing scheduling algorithms. It is related to metric
XF, which is given by the objective function of Algorithm 7 (line 4), in which
the select.t processing is a job processing estimate time and select.t wait is the job
waiting time in the system.

Algorithm 7 LXF(Processor.queue p.q)

Input: queue q of tasks of a processor p
1: for i← 1 to p.q.size do
2: select← p.q[i]
3: i← i− 1
4: t1 ← (select.t processing+select.t wait)

select.t processing

5: while (j ≥ 0) and (t1 <
(p.q[j].t processing+p.q[j].t wait)

p.q[j].t processing)
do

6: p.q[j + 1] := p.q[j]
7: j := j − 1
8: end while
9: p.q[j + 1]← select

10: end for
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Based on the example of Section 5.1 in Figure 7, a scenario using LXF is shown.
The parallel jobs J1, J2, J3, J4 and J5 present the following XF, respectively: 1.6; 2.5;
1.8; 1.7; 1.3. These results were calculated using the equation in line 4 (Algorithm 7),
where the values of the select.t processing and select.t wait are collected from the jobs
information, J1, J2, J3, J4 and J5, which will be executed. Considering jobs that
have larger XF, they will be scheduled in the following order J2 = v1,2, . . . , v3,2;
J3 = v1,3, . . . , v3,3; J4 = v1,4, . . . , v4,4; J1 = v1,1, . . . , v4,1; J5 = v1,5, v2,5, as shown in
Figure 7.
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Figure 6. Jobs in queues – before scheduling
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Figure 7. After scheduling – using LXF

LXF has complexity O(n ∗ log(n)), in which n is the task number in processor
queue. This algorithm puts tasks in descending order, depending on the XF outcome
(Section 5.3). The XF of each job is calculated in a constant time. Thus, it is
considered the merge sort method as the LXF ordering algorithm.

6 MIGRATION

On the assumption that gang scheduling causes environment fragmentation, we seek
to reduce fragmentation by means of task migration. In this study, we studied
many migration ways for heterogeneous system aiming to minimize such problems.
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Thus, we assumed two types of migration: local ml (Algorithm 8) and external me

(Algorithm 9).
As me involves task transfer from one cluster to another, some strategies were

proposed to avoid unnecessary migrations and, consequently, system overload. They
are

1. checking all clusters that have available processors;

2. analyzing which jobs have their tasks at the beginning of the queue of idle
processors;

3. based on the analysis above, checking a job which has the lowest number of
tasks and that is less than or equal the number of idle processors;

4. finally, migrating job tasks which have the lowest number of tasks.

Algorithm 8 local migration(cluster)

Input: one of the grid clusters
Output: T (migration done) and F (migration did not happen)
1: set S ← machines available in the clust
2: set T ← empty
3: for i← 1 to clust.number of machines() do
4: if (clust.machines[i].queue[1]) and (clust.run(cluster.machines[i].queue[1]) =

F ) then
5: T ← T U (clust.machines[i].queue[1])
6: end if
7: end for
8: task← T.shorter number migration()
9: if (number of migration ≤ S.cardinality()) then

10: for i← 1 to clust.number of machines() do
11: if (clust.machine[i] queue(task.id job) = T )

and (clust.machine[i].queue[1].id job) 6= (task.id job) then
12: clust.migration(clust.machine[i].task with id(task.id job),
13: S.shorter queue())
14: end if
15: end for
16: return T
17: end if
18: return F

Figure 8 presents a migration scenario. Processors P1, P2 and P3 are available,
tasks v1,1 and v2,1 are, respectively, at the beginning of processors queues P1 and P2,
and task v3,1 is in P6 queue, the latter is busy and presenting other tasks in queue
ahead of task v3,1. Therefore, to ensure that tasks v1,1, v2,1 and v3,1 ∈ J1 are
immediately taken, v3,1 is migrated to P3.
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Algorithm 9 external migration(cluster[n])

Input: all n clusters of the grid
Output: T (migration done) and F (migration did not happen)
1: set S ← empty
2: set T ← empty
3: for i← 1 to n do
4: for j ← 1 to cluster[i].number machines() do
5: if (exist cluster[i].machine[j].queue[1])

and (cluster.run(cluster[i].machine[j].queue[1]) = F ) then
6: S ← S U (cluster[i].machine[j].queue[1])
7: end if
8: end for
9: end for

10: job← capture job id(T.shorter number task().id job)
11: for i← 1 to n do
12: if (cluster[i].number machine available() ≥ job.number task) then
13: T ← T U (cluster[i])
14: end if
15: end for
16: cluster target← T.minimum machine available
17: amount task← 0
18: for i← 1 to cluster target.number of machine() do
19: if (not exist target.number machine[i].running)

and (amount task ≤ job.number task) then
20: migrate(job, cluster target.machine[i])
21: amount task← amount task + 1
22: end if
23: end for

During task migration, destination processors are reserved in order to prevent
that other tasks can use them. Reserving a destination processor will ensure that
the migrated tasks start their executions immediately. It is important to note that
the me is only applied when the ml does not solve the problem.

Migration Strategies were applied in scheduling algorithms: AFCFS, LJFS and
LXF (Section 5), which were used as a queue scheduler in the simulation envi-
ronment. Therefore, these algorithms with migration will be defined as AFCFSm,
LJFSm and LXFm. Scheduling hierarchy requires that, firstly, the scheduling algo-
rithms are run (AFCFS, LXF or LJFS), and then, the ml migration tries to dispatch
the jobs not allocated by the scheduling algorithm. The me migration will only be
used in an attempt of using more resources.

In the next section, it will be described the performance metrics that were
applied to analyze the system model behavior in different situations.
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Figure 8. Example of a migration scenario

7 PERFORMANCE METRICS

In this study, the following performance metrics were applied: Average Waiting Time
(AWT), Average Response Time (ART), Loss of Capacity (LoC) and Utilization
(U) [38, 39, 40, 41], all in order to analyze the schedulers performance in different
situations, as well as the system behavior in different contexts.

7.1 AWT

AWT measures the job average waiting time in the system, AWT = 1
w
×
∑w

j=1wt(j)
in which wt(j) measures the time between the job arrival in the system and the
beginning of its execution, and w is the total number of job executed.

7.2 ART

The metric response time (in seconds) measures the time interval between the job
arrival in the system until the end of its execution, ART = 1

w
×
∑w

j=1 rt(j) in which
rt(j) represents the job response time and w is the total number of jobs executed.

7.3 LoC

This metric is relevant to measure both the use and the fragmentation of the system.
Then, fragmentation happens when

1. there are tasks waiting in queue to execute;

2. there are idle nodes, but they still cannot perform tasks on hold.

LoC metric has been used in some studies, such as [26, 27, 38, 39, 40, 41]. In
this work, LoC metric is calculated as follows:

LoC =

∑q−1
j=1 nj(tj+1 − tj)δj
N(tq − t1)

× 100, (2)
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nj represents the idle processors number during the time (tj+1 − tj); N is the total
number of processors in the system; tq − t1 represents the arrival time of the first
job in the system and the output of the latter one; and δj is the real condition of
processor and jobs in the system. If δj = 1, it indicates the existence of available
processors to execute at least one job in queue by the moment a new job is dis-
patched; and δj = 0 indicates that the queues are empty or that does not exist in
queues jobs of size less than or equal to the number of idle processors.

Bellow is an example of LoC calculation, with a total of N = 96 processors, see
Table 2.

LoC =

[
5(10− 0)1 + 3(13− 10)0 + 6(17− 13)1 + 4(30− 17)0 + 8(100− 30)1

96(100− 0)

]
× 100

.
= 6.6% (3)

tj δj and nj
t1 = 0; t2 = 10 δ1 = 1 and n1 = 5

t2 = 10; t3 = 13 δ2 = 0 and n2 = 3

t3 = 13; t4 = 17 δ3 = 1 and n3 = 6

t4 = 17; t5 = 30 δ4 = 0 and n4 = 4

t5 = 30; tq = 100 δ5 = 1 and n5 = 8

Table 2. LoC calculation example

The result corresponds to the fragmentation occurred in the system of the in-
terval time tq − t1 = 100 (6.6 % of system fragmentation).

7.4 Utilization

In simulation studies, the utilization rate (U) of clusters is simply an indirect mea-
sure of Makespan [42, 45], calculation is given by Equation (4):

U =

∑w
j=1 sj × rt(j)

Makespan×N
(4)

where U is the clustering utilization rate, sj represents the task number of a job Jj
and, consequently, as each job task must be performed in a separate processor at
the same time, sj also expresses the number of processors required to execute it,
and Makespan is the difference between the initial execution time of the first job
and the end time of the last one.

8 SIMULATION AND ANALYSIS OF RESULTS

8.1 Input Parameters

Simulations were carried out on GSMSim system, Java implemented, which was
developed in the GrPeC Laboratory of UFC, allowing entity simulation in parallel
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and distributed computing systems, such as users, applications, resource managers
and schedulers.

The simulation environment used for the experiment consists of heterogeneous
clusters with 128 and 256 processors, respectively, belonging to the same adminis-
trative domain. GD receives the necessary information from each cluster. Commu-
nication among processors is a free containment. What is more, latency (Section 3)
is included in the job time service.

The simulator receives a workload as input and, according to scheduling policy
of the current scheduling, makes a decision in order to meet the user demands. For
environment analysis, many traces extracted from a real distributed environment
were used [32, 33]. In addition, many tests were performed with heterogeneous and
homogeneous environment using different workloads. However, in this article, the
workload installed in the GSMSim is from the repository [32], which is provided
by the HPC Systems of the San Diego Supercomputer Center group (SDSC). This
SDSC load consists of 3 000 jobs totalling 140 441 tasks, which are described in tuple
(idj, atj, sj, ptj) (Subsection 3.1). These jobs have very different small, medium, or
large characteristics, such as: 1 860 jobs require 32 processors; 30, 90, 60, 60, 570
and 330 jobs require 1, 2, 4, 8, 64 and 128 processors, respectively. Therefore, on
average, 366 tasks are handled by each processor.

For simulation, two scenarios were proposed: (i) In the first scenario (S1), it
was used the OLB algorithm in LD, in order to assign tasks to queues in a random
way to available processors; (ii) in the second scenario (S2), it was used the JSEQ
algorithm in LD, in order to assign task to queues, according to tasks execution time
on processors.

It is worth mentioning that the scheduling queues: AFCFS, LJFS and LXF
(without migration) and AFCFSm, LJFSm and LXFm (with migration) were ap-
plied both in S1 and S2. For each scenario, ten simulations were executed and from
that it was made the calculation of the average values of waiting times, response
times, clustering percentage use and LoC. In each scheduling algorithm, previously
mentioned, a 95 % confidence interval for average response time was used.

In the next section we present the results of simulations performed using the met-
rics described in Section 7. These results describe the impact on system performance
mentioned above, regarding the migration applied in gang schedulers: AFCFS, LJFS
and LXF. Furthermore, the impact of OLB (scenario S1) and JSEQ (scenario S2)
in LD will be analyzed.

8.2 Average Response Time vs. Number of Executed Jobs

8.2.1 Scenario S1 – Using OLB Algorithm and Queue Schedulers

Figure 9 (scenario S1) shows the ART, using OLB algorithm and schedulers
AFCFS, LXF and LJFS, and AFCFSm, LXFm and LJFSm, respectively, in which
the x-axis represents the quantity of executed jobs. In this scenario, AFCFS algo-
rithm submitted the lowest ART in all ranges of executed jobs regarding to LXF and
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LJFS. LXF policy showed better results regarding to LJFS. This is justified because
LXF policy tends to favor jobs that have higher XF (Subsection 5.3), differently
from LJFS, which aims to benefit larger jobs, since it is not always true that the
system offers processors to meet the smaller jobs causing an increase in response
time.

Figure 9. Scenario OLB – ART versus number of executed jobs

As shown in Figure 9 and Table 3, AFCFSm, LXFm and LJFSm algorithms
show a significant decrease in ART concerning them without migration. This shows
that using migration causes a big impact on response time. Therefore, the sug-
gested method was able to use available processors more efficiently reducing the
jobs response time. AFCFSm policy visibly presented the best result.

Number Average Response Time (ART) – Seconds
of Jobs AFCFS AFCFSm LXF LXFm LJFS LJFSm

500 40 133.44 10 719.64 57 826.43 26 209.00 82 580.55 46 161.78

1 000 85 287.65 19 498.69 118 982.20 59 897.42 197 405.05 113 076.48

1 500 116 247.61 29 175 47 171 619.96 90 376.76 307 561.28 200 460.79

2 000 164 252.48 35 410.80 240 306.39 116 669.94 397 360.80 277 986.15

2 500 190 661.94 42 315.17 298 628.58 147 463.46 492 325.32 337 005.26

3 000 185 395.03 40 170.85 301.549 44 165.735 51 465 193.56 333 426.95

Table 3. Scenario S1 – using the OLB algorithm and queue schedulers
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8.2.2 Scenario S2 – Using JSEQ Algorithm and Queue Schedulers

In Figure 10 (scenario S2), it is shown the ART using JSEQ algorithm and schedulers
AFCFS, LXF and LJFS, and AFCFSm, LXFm and LJFSm, respectively, in which
x-axis represents the quantity of executed jobs. In this scenario, AFCFS algorithm
had been presented the lowest ART in all quantities of jobs performed regarding to
LXF and LJFS. LXF also showed better results regarding to LJFS. According to
Subsection 8.2.1, LXF tends to favor jobs with higher XF.

Figure 10. Scenario JSEQ – ART versus number of executed jobs

AFCFSm, LXFm and LJFSm algorithms in S2 (Table 4) have confirmed that the
migration technique reduces response time, because it uses the available processors
more efficiently.

Comparing results of AFCFS, LXF and LJFS algorithms in scenarios S1 and S2
(Tables 3 and 4), it is noted that in S2, ART is considerably reduced regardless of the
scheduler queue used. This shows that JSEQ distributes tasks in queues more fairly.
The information on total value of the task processing, i.e., the task processing time
in queue plus the existence or not of the task that is running on processor, imply
the task waiting time reduction and, consequently, the response time. On the other
hand, algorithms with migration in scenario S1 (Figure 9) present ARTs similar
to S2.

Based on the above, the results of AFCFSm, LXFm, and LJFSm in both sce-
narios are satisfactory, since they have reduced ART using the migration proposed
mechanisms.
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Number Average Response Time (ART) – Seconds
of Jobs AFCFS AFCFSm LXF LXFm LJFS LJFSm

500 22 432.98 11 940.57 43 339.01 27 840.66 76 982.39 50 044.96

1 000 61 298.36 20 463.54 92 728.93 62 541.50 170 497.66 119 391.59

1 500 87 077.07 29 937.91 138 066.91 93 214.22 265 064.16 215 580.81

2 000 120 630.94 36 003.33 193 861.07 117 629.26 355 929.28 284 934.41

2 500 149 538.01 41 998.61 242 923.46 147 423.36 445 306.99 349 568.18

3 000 143 846.61 40 030.39 245 386.95 162 278.49 429 514.51 340 029.61

Table 4. Scenario S2 – using the JSEQ algorithm and queue schedulers

8.3 Loss of Capacity in the System

8.3.1 Scenario S1 – Using OLB Algorithm and Queue Schedulers
and Scenario S2 – Using JSEQ Algorithm and Queue Schedulers

In Figure 11 (scenario S1) and Figure 12 (scenario S2), the Loss of Capacity (in
percentage) in the system is detailed. Comparing both graphic scenarios, the results
of scheduling policies AFCFS, LXF and LJFS, and AFCFSm, LXFm and LJFSm
showed equivalent LoC percentages. Using OLB or JSEQ implemented in LD does
not influence the LoC metric results.

Figure 11. S1 – (%) LoC in the system

Figure 12. S2 – (%) LoC in the system
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In scenarios S1 and S2, the AFCFS, LXF and LJFS algorithms cause ap-
proximately on average LoC = 50 % in the system. Analyzing AFCFSm, LXFm
and LJFSm, respectively, AFCFSm presents percentages of LoC = 3.48 % and
LoC = 3.39 %, lower results regarding to LXFm (LoC = 16.63 % and LoC = 16.2 %),
and LJFSm (LoC = 9.63 % and LoC = 6.89 %). This implies that AFCFSm
dispatches jobs more effectively, minimising system fragmentation. LXFm tends
to present greater fragmentation concerning to LJFSm. The results confirm that
scheduling algorithms with migration minimizes system fragmentation.

8.4 Cluster Utilization Rate

8.4.1 Scenario S1 – Using OLB Algorithm and Queue Schedulers
and Scenario S2 – Using JSEQ Algorithm and Queue Schedulers

In Figure 13 (scenario S1) and Figure 14 (scenario S2), it is shown the percentage
of cluster utilization regarding to interaction number. It is considered an interac-
tion the job arrival to the GD and its completion. Comparing scenarios S1 and
S2, AFCFS, LXF and LJFS and AFCFSm, LXFm and LJFSm algorithms present
similar average use of resources.

Figure 13. Scenario S1 – utilization rate (%)

In AFCFS, LXF and LJFS, in Figures 13 and 14, the clustering use average
remains constant in intervals of 1 000–4 900. AFCFS presents lower percentages
regarding to LXF and LJFS. This is because the algorithm tends to favor smaller
jobs, generating an increase in idle processors. But LXF and LJFS have better
results in the clusters use. Analyzing AFCFSm, LXFm and LJFSm, Figures 13
and 14, confirmed that algorithms with migration strategy are more efficient when
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Figure 14. Scenario S2 – utilization rate (%)

it comes to the use of resources. In addition, we can see in Figures 13 and 14 that
after 5 000 interactions a considerable decline happens; this implies that all jobs
have been serviced and the processors are becoming available.

9 CONCLUSIONS AND FUTURE WORK

This study has proposed and implemented a Multicore Multicluster GSMSim sim-
ulation system, using a two-layer hierarchical structure, GD and LD. GSMSim was
developed in order to analyze the scheduling performance in different situations,
as well as the environment behavior in different contexts. In LD, two scenarios
were implemented and adapted, OLB (S1) and JSEQ (S2), in order to distribute
tasks efficiently in the system, which act before scheduling queues. Additionally,
the schedulers AFCFS, LXF and LJFS were used and adapted to gang technique
for scheduling tasks in processor queues. As aforementioned, such schedulers cause
environment fragmentation, therefore, migration mechanisms were implemented in
order to minimize this problem. In the experiment analysis, performance metrics
were used aiming to assess the scheduler behavior in different situations.

In scenario S2, the tasks were distributed more efficiently in queues, minimizing
the task waiting time. As a consequence, the scheduling queues AFCFS, LXF and
LJFS showed the most significant results regarding to ART metric in scenario S1.
In these scenarios, AFCFSm, LXFm and LJFSm presented satisfactory ARTs. This
implies that the suggested migration technique was able to use idle processors more
efficiently, thereby reducing system fragmentation. Adapted by nodes in this con-
text, the metric LoC measures the impact that schedulers cause in the system,
regarding to fragmentation. Results obtained (Figures 11 and 12), in AFCFS, LXF
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and LJFS cause ≈ 50 % of system fragmentation. In the proposed mechanisms, the
fragmentation was considerably reduced in AFCFSm (3.48 % and 3.39 %), LXFm
(15.63 % and 16.2 %) and LJFSm (9.63 % and 6.89 %) (Figures 11 and 12). Re-
garding to clustering metric (Figures 13 and 14), it was confirmed that migration
technique reduces the number of idle processors in the system, as well as fragmen-
tation.

The results showed that there was a fragmentation reduction using task migra-
tion among processor queues in a heterogeneous multicluster environment, as well
as a better use of them, implying operating cost reduction on the part of providers,
meeting the expectations of users QoS. It is worth pointing out that scenario S2 pre-
sented satisfactory results in all metrics, unlike S1, which in ART metric (AFCFS,
LXF and LJFS) was not as efficient. AFCFSm presented the best results in both
scenarios.

As future work, a wide research may be carried out in the scheduling field for
computational grids. In this study, only OLB and JSEQ algorithms were used in LD.
Then, we intended to apply other heuristics in order to analyze the system behavior
in different approaches. Besides, a new scheduling heuristics for applications such as
DAG could be created. In another perspective, the migration techniques applied in
AFCFS, LXF and LJFS could be implemented in other schedulers, e.g., in genetic
algorithms, comparing them with the ones used in this work. Moreover, a proposed
model validation in real context was evaluating a large number of experimental
results.
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Abstract. In the present paper, we propose RDGC, a reuse distance-based perfor-
mance analysis approach for GPU cache hierarchy. RDGC models the thread-level
parallelism in GPUs to generate appropriate cache reference sequence. Further,
reuse distance analysis is extended to model the multi-partition/multi-port paral-
lel caches and employed by RDGC to analyze GPU cache memories. RDGC can
be utilized for architectural space exploration and parallel application development
through providing hit ratios and transaction counts. The results of the present
study demonstrate that the proposed model has an average error of 3.72 % and
4.5 % (for L1 and L2 hit ratios, respectively). The results also indicate that the
slowdown of RDGC is equal to 47 000 times compared to hardware execution, while
it is 59 times faster than GPGPU-Sim simulator.

Keywords: GPU cache memory, reuse distance analysis, performance modeling,
hit ratio
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1 INTRODUCTION

Many modern high performance computing systems rely on GPUs along with CPUs
to deliver high amounts of computing power. Since GPU usage is no longer limited
to the graphical processing applications, architectures of modern GPUs are modified
towards the benefit of general computations. One of the most significant changes in
GPU architectures is the utilization of cache memories in GPUs [1]. Cache memories
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can alleviate the traditional problem of memory wall through exploiting the data
localities which inherently exist in many general applications. Modern GPUs employ
two levels of hardware-managed cache memories. Although cache hit ratios in GPUs
are not generally as high as CPUs, the overall GPU performance is highly affected
by cache performance in many data parallel applications [2]. In modern CPUs,
approximately one-third of the chip area is devoted to cache memories, while the
per-core cache size in GPUs is very limited. Moreover, since GPUs use thread
switching, a huge number of in-flight threads run concurrently, what results in many
attempts to access cache memory lines and causes cache thrashing. Hence, given the
limited size of the available cache memory in GPUs, the detailed cache performance
modeling is essential. For instance, hardware architects who intend to organize
cache memories and application developers who work toward optimum application
implementation would highly benefit from detailed cache performance modeling.

There are three main approaches to evaluating how processors function: mea-
surement, simulation, and mathematical performance modeling [3]. To evaluate
GPU cache memory performance, appropriate tools and techniques should be de-
veloped based on the architectural characteristics of GPUs. It should be noted that
the existing CPU cache performance modeling techniques are not applicable for
GPUs and require considerable modifications prior to use because of the substantial
architectural differences between CPUs and GPUs.

In the present paper, a reuse distance-based approach, called RDGC, is proposed
to analyze the performance of GPU cache memory hierarchy. RDGC embodies two
models: logical and physical. In the former, the trace information is first extracted,
then compressed, and finally ordered logically. In this case, the trace memory ac-
cesses ordering is performed regardless of the GPU physical resource limitation, i.e.,
for unlimited number of processing resources. Hence, the logical model is GPU
independent. In the latter case, the physical limitations of a specific GPU, which
are essential to the performance estimation of a given GPU, are modeled to define
the cache reference sequence. The extended reuse distance (RD) analysis algorithm
proposed by the present study is then applied by the physical model to generate the
performance metrics for the cache reference sequence. The merit of using these two
separate models is that the logical model is not specific to any GPU generation, and
its outputs can be used for any GPU machines modeled by the physical model.

Given that GPUs place emphasis on parallelism and the fact that GPU caches
may have multiple banks with multiple access ports, RD analysis algorithm [4] was
extended in the present study to model such cache memories. In addition, since
GPUs employ two levels of cache memories, two cache levels are modeled by RDGC:
per-SM (Streaming Multiprocessor) private L1 caches and shared L2 cache.

RDGC provides hardware architects with exploration of GPU cache design
space. Additionally, the presented method can be used by application developers
to optimize the data locality exploited by cache memories. To analyze the per-
formance of GPU cache memories, different cache design parameters were modeled,
including capacity, associativity, block size, bypassing, mapping (indexing) function,
and replacement policy. Further, several mapping policies of thread blocks to SMs
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were modeled. Finally, the effects of L2 parallelisms were investigated. Moreover,
the RDGC was validated against the performance counters provided by NVIDIA’s
NVPROF profiler. The Polybench/GPU applications [5] and several applications
selected from Rodinia benchmarks [6] were executed on a Maxwell and a Kepler
GPU, and the results provided by NVPROF were used to validate RDGC. Further,
the performance of a selection of applications were evaluated for different cache
memory parameters and GPU thread mapping policies.

RD analysis has been adapted for GPU cache memories in studies conducted
by Tang et al. [7] and Nugteren et al. [8], in which only a single cache level (L1)
is modeled. In this paper, the RD model presented by [8] was extended to in-
clude cache parallelism, i.e. multi-port and multi-bank cache memories. In addition,
compared to previous studies, the present work is more comprehensive, and two
levels of cache memories with different cache parameters are analyzed. Instead of
solely generating hit ratios, the transaction counts were also provided by the model
as a performance metric which is essential when modeling average memory access
time [9]. Furthermore, RDGC was validated for newer GPU generations.

The utilization of cycle-accurate simulators for architectural space exploration
is immensely popular with hardware architects. However, simulators are extremely
slow and it is exceedingly time consuming to investigate the performance of different
cache configurations using a cycle-accurate simulator. The slowdown of GPGPU-
sim (V 3.2.2), as a popular simulator, is around 2760000 times for the workload in
the present study. Applications with run-times of several milliseconds took hours
to be simulated. RDGC has an average simulation slowdown of 47K times, thereby
generating the demanded results within several minutes. In addition, the RDGC
computations have a degree of parallelism and can be accelerated by parallel pro-
gramming [10], whereas parallelizing simulators is challenging [11]. In addition,
since we use RD analysis, the results of one simulation can be used to predict other
cache organizations [12, 9], or it can be employed as a basis to estimate the total
processor performance and power [13]. Consequently, RDGC can be used to narrow
down the broad architectural space of cache organizations, and the optimal archi-
tecture candidates can be later simulated in more details. Last but not least, the
older GPU generations are usually simulated by GPU simulators, but their pace
of evolution is not in line with GPUs. For instance, the NVIDIA Fermi GPUs are
simulated by GPGPU-Sim, while RDGC is designed based on the newer Maxwell
GPU generation.

The main contributions of this paper are summarized as follows:

1. A reuse distance analysis algorithm is proposed for modeling the multi-port and
multi-bank cache memories. Further, the effects of Miss Status Holding Registers
(MSHRs) and cache memory latency are included in the presented model.

2. An appropriate model is developed to model the GPU thread level parallelism
and generate the cache reference sequence.

3. Different cache organizational parameters are analyzed in this paper.
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4. The effects of L2 cache parallelism in terms of multiple cache partitions and
banks are analyzed to quantify the effects of parallelism on the resultant reuse
profile.

The present paper embodies the following sections: Section 2 deals with litera-
ture review, and a background on NVIDIA GPUs and RD analysis is presented in
Section 3. Next, RDGC is explained in Section 4. Later, the evaluation results are
presented and discussed in Section 5, and finally, the paper is concluded in Section 6.

2 RELATED WORK

A great deal of studies have been conducted about cache performance modeling in
CPUs, whereas the very same subject has not been dealt extensively in the case of
GPUs. In the following, we review the related researches to the context of our study.

2.1 GPU Cycle-Accurate Simulators

Hardware architects rely on cycle-accurate simulators to explore the architectural
space of GPUs, but its main limitation is the extreme slowdowns of simulators.
Although detailed results are provided by simulators, they may fail to provide good
insights into some detailed results about the architectural aspects of processors.
Further, architectural space exploration with cycle-accurate simulation is very time
consuming since it requires to simulate every one of architecture candidates. Some
of the prime examples of GPU simulators are GPGPU-sim [14] and Multi2Sim [15].

2.2 Analytical and Empirical Performance Models

An analytical performance model was introduced for GPUs by Hong and Kim [16],
but its main problem was that the cache memory effects were not addressed in the
proposed model. Later, the said model was extended by Sim and Kim [17] to include
the effects of cache memories, which were supposed to be known in advance. In an-
other study performed by Baghsorkhi et al. [18], a hierarchical memory model, based
on statistical sampling and trace file analysis, was proposed to predict the perfor-
mance of the GPU’s memory hierarchy. To generate an appropriate memory access
sequence, the Monte Carlo simulation method was exploited by the authors of the
said study. In another study performed by Huang et al., known as GPUMech [19],
the interval analysis technique was extended, in which the parameters affecting
the performance of GPUs were modeled, including the effects of multithreading,
MSHRs limitation, and DRAM bandwidths. To determine the sequence of memory
accesses, the Round Robin (RR) and Greedy-Then-Oldest (GTO) policies were em-
ployed. GPURoofline [20] is an empirical approach for performance evaluation and
optimization of GPU applications towards observing the performance bottlenecks
of applications and manually optimizing the performance of applications. Machine
learning was adopted by some researchers to develop predicting performance models
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for GPUs. For example, Dao et al. [21] concluded that linear analytical models fail
to capture the effects of GPU memory systems and presented a machine learning-
based model for GPUs that run the OpenCL kernels to accurately estimate the
performance of running kernels. Recently, Kiani and Rajabzadeh proposed a model
to approximate the locality in CUDA kernels with regular access patterns [22].

2.3 Reuse Distance-Based Cache Performance Modeling

Multicore CPUs: Although RD analysis is basically designed for single thread
analysis, the prevalence of multicore CPUs has motivated many researches to-
ward employing RD analysis for multicore CPUs. Both private and shared
caches may exist across a multicore cache hierarchy, each requiring proper mech-
anisms to calculate the reuse profile. Ding and Chimbili [23] proposed a locality
estimation model for multi-threaded applications. The authors modeled thread
interleaving and data sharing to profile the locality in shared caches. Similarly,
Jiang et al. [24] extended RD profile for shared caches by introducing Concur-
rent Reuse Distance (CRD) profiles. Their work relies on probabilistic models
to estimate CRD profiles from the individual threads memory references. As
the authors pointed out, in contrary to RD profiles, CRD profiles are not ar-
chitecture independent. However, in many applications with similar memory
behaviors across threads, CRD can be considered as a virtually hardware inde-
pendent metric and once acquired for a given architecture, it can be estimated
for other architectures [12, 9]. Schuff et al. [25] consider both private and shared
caches in multicore systems and extended RD analysis to account for write-
invalidation in private and inter-core data sharing in shared caches. Moreover,
Wu and Yeung [26] consider loop-level parallelism in which the threads exhibit
very similar memory behaviors. The authors used CRD profiles to predict reuse
profiles for different core counts in Large-scale Chip Multi-Processors (LCMPs).
Their method is useful to conduct core count and problem size scaling analysis.
Later Wu and Yeung [12, 9] extended their prior work by employing Private
RD (PRD) along with CRD profiles to explore the cache hierarchy architectural
space in multicore CPUs. They show that using RD profiles the average mem-
ory access time, which is one of the most important performance parameters
in CPUs, can be estimated using simple analytical models. Recently, Badamo
et al. [13] employed RD analysis and analytical modeling to predict the perfor-
mance and power consumption and identify power-efficient cache organizations
in LCMPs.

Acquiring RD profiles for every possible cache organization is costly thus some
techniques have been developed to reduce the analysis time. The first tech-
nique is prediction through which the RD profile is acquired for several hard-
ware configurations and then predicted for all other configurations, hence ex-
tensively reduces the analysis cost [26]. Another alternative is using statistical
sampling methods. In this technique, a small yet representative subset of the
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memory references is analyzed which yields a similar profile achievable through
full analysis [27]. In addition, RD analysis can be accelerated through paral-
lel execution [10]. It should be noted that applying prediction, sampling, and
parallelization techniques is not straightforward in the case of cycle-accurate
simulation [11].

GPUs: GPU threads execute the same code (Single Instruction Multiple Threads),
thus threads generally exhibit similar memory behaviors. Further, no coherency
protocol is employed at L1 level, and only one shared L2 exists in GPUs (see
Section 3). Consequently, when adapting RD analysis for GPUs, there is no
need to model coherency effects as modeled in multicore CPUs.

Some researchers adapted RD analysis for GPU kernels. In [8], RD analysis algo-
rithm was extended for GPUs to evaluate the performance of L1 cache memory.
In addition, the trace file was generated by Ocelot and the access sequence
was defined based on the RR scheduling policy. The results demonstrated that
hit ratios were chiefly governed by cache capacity, associativity, and block size.
However, they do not consider cache level parallelism, and, as the result of the
present study shows, cache parallelism can significantly change the achieved
reuse distance values. In addition, the authors do not model write accesses and
in this article we include writes by considering write-evict policy (which is the
policy used in GPUs). Further, Tang et al. also proposed the reuse distance-
based algorithm for L1 cache analysis [7]. The problem was divided into two
parts. Firstly, a stack (reuse) distance algorithm was developed for a single
CUDA block in which the RR policy was assumed for warp scheduling. Sec-
ondly, the contention effects, caused by the simultaneous execution of multiple
blocks on the very same SM, were modeled. Tang et al., however, do not give any
detail regarding the way they modeled the GPU physical limitations. Moreover,
they do not model the effects of MSHRs. Recently, RD analysis was employed
by Wang et al. to analyze the access patterns of GPU applications [28]. They
provide reuse distance breakdown calculated from the memory access informa-
tion generated by GPGPU-sim. Since their approach relies on GPGPU-sim to
generate the memory access information, a considerable time should be devoted
for memory trace extraction, thus it is not a time-efficient approach. All in all,
RD analysis in the context of GPUs is in its early stages and as a step forward,
we try to enhance the existing algorithms by including both cache levels, cache
parallelism, and modeling write accesses.

2.4 GPU Cache Memory Organizational Space Exploration

One of the main objectives of the present study is the analysis of the behaviors of
cache memories in GPUs in the case of different cache organizations. The organiza-
tional space of cache memories and the architectural techniques for cache memories
have been investigated in many previous studies [29]. Warp scheduling [30], cache
prefetching [31], cache bypassing [32] and cache indexing [33] are among the most



RDGC: A Reuse Distance-Based Approach 427

important areas in cache memory organizational investigation that have received
a great deal of attention.

3 FUNDAMENTALS: NVIDIA-GPU, CUDA, AND RD ANALYSIS

NVIDIA GPUs: NVIDIA GPUs consists of several streaming multiprocessors
(SMs), memory controllers, and an L2 cache memory connected to an off-chip
global memory shared between the SMs via an interconnection network. Each
SM is composed of processing and memory resources. The former includes pro-
cessing cores, load/store units, special function units (SFUs), and the latter
includes a register file, a shared memory, and an L1 cache. The internal or-
ganization of SMs and memory hierarchy varies from one GPU generation to
another.

Compute Unified Device Architecture (CUDA): This programming model
was developed by NVIDIA for its GPUs towards the development of scalable
GPU applications [34]. A CUDA application can be performed on different gen-
erations of CUDA-enabled GPUs, possibly with different number of computing
resources. In the CUDA programming model, computations are done via sev-
eral parallel kernels. Each kernel consists of a grid of thread-blocks (blocks for
the sake of brevity), where each block is carrying a number of threads. Since no
inter-block data dependencies exist in CUDA kernels, the blocks can be executed
in any order.

CUDA Memory Model: Logically, in addition to the registers devoted to each
thread, each of them possesses a private memory space. A shared memory space
is shared between all of the threads in the same block. The global memory is
accessible from all of the threads of all blocks.

CUDA Execution Model: When a CUDA kernel is launched on a GPU, the
kernel blocks are first mapped onto the GPU SMs. Each SM is capable of
performing a given number of blocks concurrently. If the number of mapped
blocks exceeds the limit, the extra number of blocks stall until the in-flight
blocks are completed. When a block starts executing on a SMs, it is divided
into several warps that consist of 32 threads. Ready warps are scheduled onto
the available intra-SM resources by warp schedulers. A warp may be stalled, for
example, due to a memory reference or an instruction dependency. The number
of in-flight warps in a SM is also limited and can further restrict the number
of in-flight blocks. The number of warp schedulers and their scheduling policies
are different from one GPU generation to another.

3.1 Cache Memory Hierarchy of Maxwell GPUs

In Maxwell GPUs (GM), L1 and Texture caches are integrated. Each SM has
a total of 48 kB of L1/Texture cache divided into two 24 kB slices, where each slice
is shared by a group of 64 processing cores. In addition to data caching, L1 cache is
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also used for register spilling during the execution. L2 cache, consisting of a number
of partitions/banks, is shared among all SMs, and all the global memory accesses
go to the main memory through the L2 cache. Memory addresses are interleaved
among the banks. Maxwell GPUs have several L2 partitions, where each partition
consists of two 128 KB banks. An overview of memory hierarchy of Maxwell GPUs
(GM) is presented in Figure 1 a). Moreover, the structure and mapping of L2 cache
memory of GTX 970, which is used in our evaluations, are shown in Figure 1 b).

L1 caches bypass all the global write memory accesses (a write hit imposes
an eviction), while the global read memory accesses can be optionally cached into
or bypassed from the L1 depending on the bypassing strategy (not all the NVIDIA
GPUs are capable of optional L1 global caching [35]). The bypassing strategy can
be defined by compiler flags at the time of compilation.

Miss Status Holding Registers (MSHRs) are a set of registers that track the
outstanding missed accesses. A missed access is first compared with the existing
content of allocated MSHRs. Consequently, if the requested address is already
present in a MSHR (requested by a prior access), the new access will be merged with
the existing one, otherwise, a free MSHR will be assigned to the access. When the
requested cache block arrives from the backing store, the reserved MSHR becomes
free and cache will be filled using the arrived block. The number of MSHRs assigned
to each cache is limited, and a reservation fail happens when a missed access does not
obtain a MSHR. In this case, the missed access keeps trying to obtain a free MSHR
in the next cycles, and the issuing load/store unit stalls during the reservation fail.
In addition to the number of MSHRs, the maximum number of per-entry merges is
also limited. MSHRs have an important role in delivering the non-blocking cache
property, thereby highly affecting the performance of the memory [36]. Accordingly,
MSHRs should be modeled as part of modeling the performance of cache memories.
Further, it should be noted that the atomic instructions that are handled at L2 level
are not considered in the present paper.

3.2 Reuse Distance Analysis

The aim of reuse distance (RD) analysis [4] is to profile the locality of applications.
In addition, RD analysis can be used for modeling the cache performance of fully-
associative caches with LRU replacement policy. The memory sequences (trace) of
accessed cache blocks (or memory addresses) are analyzed to calculate their RDs.
The value of RD for a given access to an address is calculated as the number of
unique accessed addresses between the current and previous access. Although RD
can be calculated with either of memory addresses or cache block granularity, the
latter is considered in the present study.

Basically, the main property of RD analysis is its hardware independence. How-
ever, for a LRU cache with a given number of blocks, the resulting hit ratio of
an application can be calculated based on the RD values of memory accesses. For
a fully associative cache with K cache blocks, an access is a hit if its RD value is less
than K, otherwise it is a miss. Based on the RD analysis algorithm, the RD value is
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Figure 1. Overview of memory hierarchy of NVIDIA Maxwell GPUs [35], and two-level
address mapping scheme of L2 in GTX 970

equal to infinity for the first access to an address, and therefore, access with infinite
RD values represent the cold misses. When the intention of RD analysis is hit ratio
calculation, a MRU stack is considered that its first block is the most recently used
one. An array of counters (denoted by C[K + 1]), which consists of K+1 counters,
is used to count the hits and misses of the memory accesses, where C[n] holds the
number of accesses with RD values of n. C[K] holds the number of accesses with
RD > K missing the cache. Given the counter values of a cache with K blocks, the
hit ratios of caches with fewer K blocks (e.g., K ′) can also be calculated through
summing up the first K ′ counters.

As for the set-associative cache memories, the same set of counters can be used
for all the cache sets. In the present paper, RD analysis was used to model the
performance of set-associative cache memories, and the same set of counters were
employed for all cache sets. In Table 1, a typical example is given for RD calculation.
In the case of caches with four blocks, the hit ratio equals 50 % without any capacity
miss, while for a cache with two blocks, the hit ratio equals 25 %.

Step 0 1 2 3 4 5 6 7

Sequence A B C D A A D C

RD ∞ ∞ ∞ ∞ 3 0 1 2

The alphabet letters stand for the accessed cache blocks

Table 1. An example for RD analysis
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4 RDGC PERFORMANCE MODEL

RDGC, short for reuse distance-based GPU cache, aims to model cache performance.
In this method, cache memory hierarchies are analyzed through processing mem-
ory access sequences. To do so, the extracted memory trace of parallel blocks are
converted into coalesced warp serial access and then analyzed by the RD algorithm
that is presented in Section 4.4. In Figure 2, two components of RDGC, namely
logical and physical models, are shown.

To analyze the cache performance, the logical model provides the memory access
information which is independent of GPU. Then L1 and L2 cache memories are
analyzed by the physical model based on the logical trace information along with
the physical cache parameters and GPU specifications.
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Figure 2. The RDGC components

4.1 Logical Model

To analyze the performance of kernels, the per-thread raw information is first ex-
tracted by the logical model. Then the trace file is reduced, and finally the accesses
are ordered based on the logical execution model of CUDA. The three phases of the
logical model are as follows:

Trace extraction. In the present study, the per-thread memory trace information
is extracted through manual probing then executing the kernel. A considerable
number of concurrent threads are performed by GPUs. Thus, recording the
detailed information for each thread seems impractical and only represents the
execution ordering on a specific device. Further, even recording the raw infor-
mation of all GPU threads at once requires large buffers to store the recorded
information temporarily during the trace generation. Consequently, to keep the
trace file independent of GPU and to avoid large buffers, the following approach
was adopted:

1. Only the raw memory access information (without time stamp) was recorded,
and no information was recorded about the thread and instruction ordering
and the block to SM mapping. Later, different block mapping and warp
scheduling policies can be enforced by the physical model.
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2. According to CUDA, blocks can be executed in any order, thus they were
separately traced to further alleviate the buffer size. Recording the access
information of all the blocks at the same execution run requires a consid-
erable memory space. By separate block trace extraction, the kernel can
be launched multiple times, where the information of only several blocks is
recorded in each launch.

In Figure 3, the organization of the trace file is depicted, in which each line in
the trace file contains the access information of one thread, denoted by ACC.
ACC is a five-tuple set in the form of ACC = {AN,BID,TID, S, ADD}, where

• AN denotes a per-block access number assigned to each access of the block,

• BID is a unique block ID which is assigned to each thread block,

• TID represents the per-block thread identifier,

• S is a Boolean access specifier to define whether the access is a read or
a write, and

• ADD denotes the accessed global memory address.

In Figure 3 an example is shown for M blocks and N threads per block (BID =
{0, . . . ,M − 1}, TID = {0, . . . N − 1} where L denotes the maximum number
of accesses within each thread (AN = {0, . . . , L− 1}). It should be noted that
not all the threads within a block necessarily appear in the trace file, e.g., due
to a warp divergence.

Block(0)

Block(1)

Block(M-1)

...

Access(0)

Access(1)

Access(L-1)

...

Thread(0)

Thread(1)

Thread(N-1)

...

Block(i) Access(i)Trace file

a

AN   BID   TID     S       ADD

0        0        t      R/W     address

1        0        t      R/W     address

...

L-1     0        t      R/W     address

0        1        t      R/W     address

1        1        t      R/W     address

...

L-1     1        t      R/W     address

….....

0        M-1     t      R/W     address

1        M-1     t      R/W     address

...

L-1     M-1     t      R/W     address

R/W: Read or Write specifier
t: Thread indexes (0 to N-1)

b

Figure 3. a) The hierarchical structure, b) and overview of the memory trace file

Trace File Reduction. For a kernel with high levels of memory access, the size of
the trace file tends to grow rapidly. To alleviate the space overhead of a trace
file and to accelerate its processing speed, the generated trace files are reduced
through converting the thread access to the coalesced warp access. Moreover,
the information of a warp access is stored by each line of the reduced trace
file as {AN,BID,WID, S,NT, {ADD}}, where WID is the warp index that is
calculated by dividing the thread indexes to the warp size (i.e., 32). Further, NT
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denotes the number of active threads of the warp, and the accessed addresses
are stored in {ADD}. As a result, the size of the trace files dropped by 2.3 times
in the workload used in this paper.

Trace File Ordering. The memory accesses are ordered by the logical model with-
out enforcing any physical limitations. No GPU related parameters, e.g., warp
scheduling policy, are modeled at this step. In the logical model, it is assumed
that the accesses to all blocks with the same access numbers (AN) can be ex-
ecuted in parallel with each other. The trace file is ordered according to ANs.
Additionally, since the trace files are huge and stored on disks, their ordering
is a time consuming operation. In addition to the logically-ordered trace files,
grid dimensions (denoted by NB), block dimensions (denoted by Bdim), and
maximum numbers of per-thread accesses (denoted by L) are generated by the
logical model.

4.2 Physical Model

In addition to the trace file information, GPU and cache memory architectural
information (listed in Table 2) are received by the physical model. The physical
model calculates the MRU counters and then the L1 and L2 cache hit ratios and
transaction counts are calculated from the MRU counters. Figure 4 shows the work-
flow of the physical model. In this figure, C1R/C1W and C2R/C2W denote L1
and L2 cache memory MRU counter arrays for read and write accesses, respectively.
Further, the trace files are depicted as dashed rectangles, and the RD analysis,
described in Section 4.4, is employed within the physical model to calculate the
MRU counters.
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  Block 
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Trace 
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C1R, C1W

C2R, 
C2W

Metrics

Figure 4. The structure of the physical model

The physical model operates according to Algorithms 1 to 3. As shown in
Algorithm 1, the per-SM L1 cache memories are first analyzed (line 3), and the MRU
counters (denoted by C1R and C1W , for read and write accesses, respectively) are
updated accordingly. C1R and C1W are counter arrays with K1 elements (K1 is
the L1 cache associativity), used cumulatively for all L1 caches. After analyzing the
L1 caches, the L2 cache trace file is constructed through retrieving and analyzing
the missed or bypassed L1 accesses (line 5) to calculate the L2 MRU counter arrays
(denoted by C2R and C2W ) (line 6). Finally, the output metrics (see Section 5)
are calculated based on the MRU counters.
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Parameter Value/Options Comment

Capacity S Capacity of the cache

Associativity K Cache’s associativity

Block size B Block size in bytes

Parallelism Partition Number of cache Partitions
Bank Number of cache banks per each partition
Port Number of ports per each cache bank

Indexing function MOD Modulo indexing
SMODn Shifted MOD: [i+m+n, . . . , i+n] index bits

used instead of [i+m, . . . , i] (m, n are #shifts
and index bits [37])

PRI Prime modulo Indexing [33]
XOR Xor based indexing

Replacement2 LRU Least Recently Used
LFU Least Frequently Used
FIFO First In First Out
RANDOM Random

Bypassing policy WON Writes ON, bypass all the write accesses
RWON Reads and Writes ON, all accesses are by-

passed
OFF Bypassing disabled

MSHR #MSHR sets Number of MSHR sets
MSHR Size Number of MSHRs per each MSHR set
Max#Merges Maximum number of merges per MSHR

Resources P Number of SMs of the GPU
n scheduler Number of Schedulers per SM
MAXCW Max number of in-flight warps
MAXCB Max number of in-flight blocks

Blocks-SM mapping RR Round-Robin
BPART1/2 Partitioning, partitions of four/eight blocks
RAND Random

1 Cache parameters are defined for both the L1 and L2
2 For non-LRU policies, only hit ratio is calculated and the counters do not contain
the corresponding RD values.

Table 2. Cache and GPU related inputs to the physical model1

4.3 L1 Cache Analysis

The L1 cache analysis algorithm is shown in Algorithm 2. In this algorithm, first,
the assigned blocks to the SM are defined based on the given mapping policy (line 1).
Then, the access information of the blocks is retrieved from the trace file and stored
in a file, called L1 access file (line 3), which is analyzed according to the execution
model of the GPU to calculate the MRU counters. In the algorithm, B is an array
that contains the block indexes of the SM, and BSM denotes the number of blocks
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mapped to the SM. As noted before, due to the resource limitations, the number
of warps and blocks that can be simultaneously executing on each SM is limited.
The maximum in-flight warps and the maximum in-flight blocks per each SM, which
are GPU specific parameters, are denoted by MAXCW and MAXCB, respectively.
Further, CB denotes the number of in-flight blocks on a SM that is defined based on:

1. two kernel-related parameters: grid dimension (denoted by NB) and block di-
mension (denoted by Bdim);

2. two GPU-related parameters: maximum number of in-flight blocks (denoted by
MAXCB) and maximum number of in-flight warps (denoted by MAXCW ).

Algorithm 3 is used to define both CB and the number of iterations (denoted by
Nitr) required to analyze all the blocks. The number of blocks of the SM (denoted by
BSM), is defined based on the chosen blocks to SM mapping policy. In Algorithm 2,
when CB and Nitr are defined through invoking Algorithm 3 (line 4), the analysis is
performed Nitr times, each time for the maximum of CB blocks, through retrieving
and processing the information of the in-flight blocks. In each iteration, the order
of accesses is the very same order defined by the logical model.

To analyze each access within an inflight-block, the information with memory
address granularity is converted to a coalesced cache block access. The coalesced
access information of one or more warps (depending on the number of schedulers per
SM, n scheduler) is stored within a list (denoted by W ), and then the RD analysis
is applied to W (line 11). Once all in-flight blocks are analyzed, they will be retired
and a new set of blocks (if any) will be processed (line 5 to 15) to analyze all BSM
blocks of the SM.

Due to space limitation and its similarities to L1 analysis, the L2 analysis algo-
rithms are not covered here.

Algorithm 1: Physical model
Input: Trace, cache parameters, GPU specification
Output: Metrics

initialize();
for sm := 1 to P do

L1 cache analysis(sm,Trace); /* Update C1R, C1W . Algorithm 2 */
end for
L2 trace construction();
L2 cache analysis(); /* Calculate C2R, C2W */
Metrics = calculate metrics(C1R,C1W,C2R,C2W );

4.4 RD Calculation for Parallel Cache Memories

In this section, an RD analysis algorithm is proposed for parallel caches with multiple
banks and access ports. Since GPU hardware parameters affect the resulting RD
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Algorithm 2: L1 cache analysis
Input: sm, Trace,
Output: Update C1R, C1W
1: {B,BSM} = block mapping(sm,NB); /* Define the blocks of the SM */
2: WpB ← d Bdim

Wsizee
3: L1 accesses = trace retrieval(B,BSM,Trace);
4: {CB,Nitr} = define concurrent blocks(WpB,BSM); /* Algorithm 3 */
5: for i := 0 to Nitr− 1 do
6: get inflight trace(B,L1 accesses); /* retrieve access info of the in-flight

blocks */
7: for j := 0 to L− 1 do
8: for k := 0 to CB − 1 do
9: for l := 0 to dWpB/n schedulere − 1 do

10: W = create access list(i, SB[k], l);
11: RD profile(W ); /* Section 4.4 */
12: end for
13: end for
14: end for
15: end for

Algorithm 3: Defining concurrent blocks
Input: WpB,BSM
Output: CB,Nitr
1: CB ← BSM
2: if BSM > MAXCB then
3: CB ←MAXCB
4: end if
5: if WpB × CB > MAXCW then
6: CB ← bMAXCW

WpB c
7: end if
8: Nitr← dBSM

CB e
9: return CB,Nitr

values, it is no longer a hardware independent algorithm. As explained above, the
physical model properly generates the warps to cache access sequence. Therefore,
the cache reference sequence is known in this stage, however, the sequence is not pure
serial and satisfies cache level parallelism (several warp schedulers issue coalesced
accesses). The coalesced accesses are mapped onto the cache banks and ports.
The proposed RD analysis method is similar to the method introduced in [8]. The
following summarizes the differences of the present study with the mentioned work.

• Nugteren et al. modeled serial caches. However, cache level parallelism can
change the achieved RD profile (see Section 5.3.3) and the present work included
cache level parallelism.
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• The authors only modeled L1 cache while both L1 and L2 caches are included
in our model. Further, more cache related organizational parameters are inves-
tigated in our work.

• Since L1 cache bypasses the write accesses, Nugteren et al. only considered read
accesses. However, for write-evict policy, ignoring the write accesses can cause
considerable errors in write intensive applications. In the present study, both
read and write accesses are included and L1 either caches read accesses (enabled)
or bypasses read and write accesses (disabled). When enabled, L1 follows the
write-evict policy [34].

• Nugteren et al. assumed that a reservation fail cancels the failed access while
other accesses of the same warp, possibly from later instructions, can proceed.
This means that load/store instructions may be executed out of order, which is
not realistic. In this paper, like some other researchers [36], a reservation fail
stalls the warp until all the accesses of the warp are serviced.

• In the mentioned research, the notion of latency miss is introduced to count the
event in which a miss encounters a pending previous miss to the same cache block
(which exists in a MSHR). In this article, since such requests are merged into
the existing MSHR, this parameter is equal to the number of merged requests.

• The probabilistic latency model introduced by the authors can repeatedly change
the access order while, as described in the following sub-section, the adaptive
latency model can produce smoother and more realistic latency values for the
missed accesses.

In Table 3, an example of RD calculation is shown for three warps that access
{A, B, C, D}, {E, F, G, H}, and {A, D} cache blocks, respectively. Each cache
block is mapped to one of the cache banks. The assumed cache has two banks
(B0, B1), each having two ports (P0, P1), and two MSHRs are shared between the
banks. Further, it is supposed that A, C, E, and G are mapped to B0 and the other
blocks to B1. Note that RD is calculated for each bank separately. The first row
of the table shows the steps of RD calculation. The next three rows demonstrate
the accessed blocks that mapped to each cache bank/port and their corresponding
RDs. In addition, the fifth row shows the number of free MSHR entries and the
next two rows illustrate the corresponding status of each access (hit (h), miss (m),
or reservation fail (rf)). Finally, the last row represents the updated cache blocks
which is done by the arrived blocks from the backing store. It is assumed that there
are two warp schedulers that coalesce and issue the warp accesses.

Each step of RD calculation includes two phases. In the first phase, the requested
blocks are mapped onto the cache banks (according to a given mapping scheme) and
access the banks through the available ports (if any). If an access misses the cache,
a MSHR entry is reserved when possible, otherwise (denoted by rf in Table 3), the
failed access will keep trying to reserve an MSHR in the subsequent steps.

In the second phase, the state of the cache is updated by the cache blocks arriving
from the backing store, their assigned MSHR entries become free and update the
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cache state so that they are available in the next steps. It should be noted that
a hit access also causes some cache updates. In Table 3, the latency of missed
access equals two steps. Hence, the requested block by a missed access in the ith

step arrives at the end of the step i+1 and updates the cache state. As a result,
this block will be available from the step i+2 forward. It should be noted that
’step’ denotes a virtual notion and is not the same as clock cycle. It can be used,
nevertheless, as a performance criterion in RD calculation.

The number of cache banks and access ports of each bank can alter the resulted
RDs, thus their inclusion in the model is necessary. In the proposed algorithm, to
define the exact warp sequence, the following assumptions are considered:

• Warps with smaller indexes have higher priorities in accessing banks and MSHRs.

• Warp schedulers stall until all issued accesses are resolved [36].

• In each step, multiple accesses can be inserted to or removed from the MSHRs.

• Multiple cache blocks can arrive from the backing store within the same step
and fill the cache at the end of that step. In this case, the cache state is updated
within the same order that the arrived access has been inserted into the MSHRs.
This order affects the subsequent RD calculations.

Step 0 1 2 3 4

B0 P0 A E E – A
P1 C G G – –

B1 P0 B B F F D
P1 D D H H –

∞ – ∞ – 3
RD ∞ – ∞ – –

∞ – ∞ 2
∞ – ∞ –

#Free MSHR 0 0 0 0 2

Status, B0 m rf m – h
m rf m – –

Status,B1 rf m rf m h
rf m rf m –

Update – A B E F
– C D G H

Table 3. An example of RD calculation in Parallel cache memories

4.4.1 The Latency Model for RD Calculation

In the RD analysis algorithm, an appropriate model is required to properly define the
latency of missed accesses, based on which the cache state is updated. The values of
access latency within a real GPU depend on many parameters, e.g., the instruction
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mix, memory access pattern, and the L1-L2 and L2-main memory bandwidths.
The probabilistic model used by Nugteren et al. can produce substantially different
latency values for two close accesses and even may re-order them, thus we ignore
this model. Instead, two types of latency models are tested in the present study.
The first latency model sets the latency of the missed accesses to a fixed value,
whereas the second is an adaptive model that calculates the latency values based
on some dynamic run-time statistics and can provide smoother and more realistic
latency values than a probabilistic model. For L1, the latency is calculated by the
adaptive model as K1+K2× #MSHR Busy×#active SMs

L2P
, where K1 and K2 are constant

values, #MSHR Busy represents the number of outstanding misses, #active SMs
is the number of active SMs during the execution, and L2P denotes the L2 cache
parallelism. The constant values should be defined according to the GPUs data
transfer bandwidths. It should be noted that the possible bottlenecks are ignored in
the proposed model at L2-main memory transfers. A similar model can be derived
for L2. We performed an analysis to investigate the effects of the mentioned latency
models on the resultant performance parameters and presented the analysis results
in Section 5.1.

4.4.2 L1 and L2 Cache Parallelism Modeling

In the present paper, the default configuration of L1 caches were a double-ported
single-bank caches with a set of 32 MSHRs and the maximum number of eight
merges per entry. Further, L2 cache was modeled based on the organization shown
in Figure 1 (b), and four MSHR sets with 32 entries were used for L2. The first
three MSHRs sets were assigned to the first six L2 partitions (one MSHR set shared
between two partitions) and the last MSHR set was assigned to the last partition.

5 RDGC EVALUATION

In the present study, mainly, Polybench/GPU benchmark suite [5] is used as the
main workload. In addition, several cache intensive kernels were included from
Rodinia [6]. Polybench/GPU kernels immensely rely on the hardware managed
cache memories thus put more pressure on the cache hierarchy, which is the focus
of this paper. On the other hand, most other benchmarks heavily used shared
memory and thus most of the data transfers are handled by the shared memory.
Consequently, the hardware managed caches are only used to transfer the required
data to shared memory. As a result, such benchmarks may fail to properly stress
the L1 cache and especially L2 cache, which is an order of magnitude bigger than
L1 caches. It should be noted that, none of the used benchmarks utilized atomic
instructions, and texture caches. The benchmarks with their main specifications are
listed in Table 4. RDGC evaluation was performed within three steps. In the first
step, the latency models introduced in Section 4.4.1 were tested (Section 5.1). In the
next step, RDGC was validated by comparing its outputs with the values recorded
by the performance counters (accessed through NVPROF) on two GPUs including
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a Kepler GT 740M and a Maxwell GTX 970 (Section 5.2). In the last step, different
cache organizational parameters, including cache capacity, associativity, block size,
mapping functions and replacement policies, were evaluated. In addition, multiple
blocks to SM mapping policies were evaluated and, finally, the effects of multiple L2
cache parallelism levels on the achieved RD values were analyzed (Section 5.3).

The outputs are provided by RDGC as several metrics. It should be noted that
in GT 740M GPU, L1 is disabled for both load and store accesses. Further, in GTX
970 GPU, the texture cache (denoted by tex in the figure) is the same as L1 cache.
As mentioned earlier, two compiling options are available for GTX 970: ”-Xptxas
-dlcm=cg” option to disable L1 and ”-Xptxas -dlcm=ca” option to enable the L1,
which in this case L1 only caches the read accesses. Although NVPROF provides
a metric to represent the texture cache hit ratios, this counter also counts the other
non-workload accesses, e.g., register spilling. Hence, this value is not the exact
value of the hit ratios of the requested workload data. In this work, L1 hit ratios
are calculated indirectly from other counters. The same phenomenon also occurs at
L2 level. Typically, since L2 is significantly greater than L1 and the fact that most
of the non-workload traffics are filtered at L1, the resultant errors are likely to be
negligible. The brief explanation of the output parameters calculated by RDGC is
as follows:

• L1 R Hit is the read hit ratio of L1, when L1 is enabled.

• L2 Hit is the hit ratio of L2 when L1 is enabled.

• L2 Hit L1B is the hit ratio of L2 when L1 is disabled (bypassed).

• L1 R Trans is the read transaction count of L1, when L1 is enabled.

• L2 Trans is the transaction count of L2 when L1 is enabled.

• L2 Trans L1B is the transaction count of L2, when L1 is disabled.

5.1 Latency Models Evaluation

In this section, the latency models, including the fixed and adaptive models in-
troduced in Section 4.4.1, are tested to reveal the effects of latency on L1 cache
performance. The analyzed system has eight SMs, 32 KB of four-way set-associative
LRU L1 caches with 32 B blocks, and a set of 32 MSHRs per L1 with maximum
of eight per-entry merges. Figure 5 shows the effects of latency on a) hit ratios,
b) reservation fails, c) MSHR address merges, and d) steps variations in RD calcu-
lation. For the adaptive model, four different values of (K1, K2) are tested including
(1, 0.125), (2, 0.25), (4, 0.5) and (8, 1) which are denoted by A1 to A4, respectively.
Furthermore, to observe the RD calculation performance, the variability of steps in
RD calculation is also given in the figure with respect to the number of step counts
of the fixed latency with value of one. As can be seen, by changing the latency, the
resultant merged and reservation fails are significantly changed, however, hit ratio
is not witnessed extreme changes. In the rest of this paper, A2 model is used (the
constant values are defined based on the GPU specifications).
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Application Size (N) Kernels L RDGC GPGPU-Sim
slowdown (103) slowdown (103)

2DCONV† 4 096 2DCONV 10 212 3 084
2MM† 384 K1 3N 59.2 1 068
3DCONV† 256 3DCONV 12N 69.2 3 409
ATAX† 4 096 K1,K2 1 + 3N 56.4 6 546
BICG† 4 096 K1, K2 1 + 3N 45.6 2 663
CORR† 256 CORR (3N + 2)N + 1 2.7 190
COVAR† 256 COVAR (3N + 2)N 2.6 219
FDTD† 2 048 Step1, 2, 3 6, 4, 6 58.4 3 887
GESUMMV† 4 096 GESUMMV 8N + 2 64.8 5 043
GRAMSC.† 128 K3 7N2 1.5 91
MVT† 4 096 K1, K2 3N + 1 14.4 4 810
SYR2K† 256 SYR2K 5N + 1 80.3 9 900
SYRK† 256 SYRK 3N + 2 57 4 085
BP‡ 262 144 K1, K2 16 28.6 800
CFD‡ 0.2 M Flux 83 51.7 1 626
HSPOT‡ 1 024 HSPOT 3 14.1 817
NW‡ 4 096 K1, K2 8 384 13.6 819
SRAD V2‡ 2 048 K1, K2 12 11.4 639
Average 46.9 2 761

† From Polybench/GPU [5], ‡From Rodinia V3.1 [6]

Table 4. Polybench/GPU and Rodinia benchmarks, specifications, and slowdowns of
RDGC and GPGPU-Sim with respect to the executions performed on a GTX 970 GPU
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5.2 RDGC Validation

RDGC is validated through comparing its outputs with the results provided by
NVPROF for profiling the same workload on a Maxwell GTX 970 GPU and a Kepler
GT 740M. Table 5 gives the parameter values used by RDGC. These values are
selected based on the available NVIDIA documents [35] and the findings of previous
studies [37]. However, some important cache parameters are neither reported by
NVIDIA, nor discovered by the research community, e.g., L2 mapping function, the
number of L1/L2 access ports, and L2 replacement policy. The analysis results
of GTX 970 are shown in Figure 6 (hit ratios), Figure 7 (transaction counts). In
addition, Figure 8 gives a comparison between the profiling results on a GT 740M
and analysis results provided by RDGC.

Parameter GTX 970 GT 740M
P 261 2
L1 (¡S1,K1, B1, Map., Repl.¿) 24KB, 192, 32B, XOR, LRU –
L2 (¡S2,K2, B2, Map., Repl.¿) 1792KB , 8, 32B, XOR, LRU 512KB, 8, 32B, XOR, LRU
Blocks to SM mapping RR RR
1 GTX 970 has 13 SMs and each SM has two 24KB L1 cache partitions, hence P and S1 were
set to 26 and 24KB, respectively.

Table 5. The main configuration parameters of RDGC

5.2.1 The Physical Model Slowdowns

The physical model slowdowns were calculated through dividing their execution
times measured on a system with Ubuntu 12.04 OS, Core i5 CPU, 4 GB of RAM,
by the kernel execution times measured on a GTX 970 GPU (CUDA 7.0). All
the kernel data transfer times are excluded. Further, the time overheads of the
logical model were not included in the slowdown calculations. As shown in Table 4,
the physical model had an average slowdown of 47K times, where 3DCONV had
the highest slowdown (212 K times) as opposed to Gramschmidt with the lowest
slowdown (1 504 times). It is worth mentioning that the performance of RDGC can
be enhanced by employing some techniques such as parallel execution and statistical
sampling methods [27]. The average slowdown of GPGPU-Sim measured 2 761 K
(power simulation and visualizer was disabled). Therefore, RDGC (taking several
minutes per application) is 59 times faster than the cycle-accurate simulation, while
most of the applications take several hours to be simulated by GPGPU-Sim.

5.2.2 Discussion

According to the findings presented in Figures 6 to 8, the model has a fair accuracy
in predicting the hit ratios and transaction counts. For the Maxwell GPU, The
average absolute errors of L1 R Hit, L2 Hit and L2 Hit L1B, were 3.72 %, 4.5 %,
and 4.52 %, respectively. Further, the average error of L1 R Trans, L2 Trans and
L2 Trans L1B were 15.0 %, 11.9 %, and 7.6 %, respectively. In the case of the
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Figure 6. RDGC correlation with Maxwell GPU (GTX 970) (hit ratios)

Kepler GPU, the results has the average error of 5.4 % for L2 Hit L1B and the
average error of 5.6 % were observed for L2 Trans L1B. Furthermore, GPGPU-Sim
has an average error of 23.3 % and 11.7 % for L1 R Hit and L2 Hit, respectively.
Note that any error in L1 R Hit may cause a high amount of error in L2 Trans
(and L2 Hit). Moreover, since the size of the L1 cache is limited, L1 R Hit is
sensitive to L1 cache parameters. Moreover, in some kernels which extensively use
shared memory, if the content of shared memory is spilled to the global memory,
some transactions are generated at L1 and L2 caches to carry the spilled data. In our
model, this phenomenon is ignored at L2 which can cause some error. Nevertheless,
this phenomenon has only occurred in NW benchmark.



RDGC: A Reuse Distance-Based Approach 443

2
D

C
O

N
V

2
M

M

3
D

C
O

N
V

A
T
A

X
1

A
T
A

X
2

B
IC

G
1

B
IC

G
2

C
O

R
R

C
O

V
A

R

F
D

T
D

1

F
D

T
D

2

F
D

T
D

3

G
E

S
U

M
.

G
R

A
M

.

M
V

T
1

M
V

T
2

S
Y

R
2

K

S
Y

R
K

B
P

1

B
P

2

C
F

D

H
S

P
O

T

N
W

1

N
W

2

S
R

A
D

1

S
R

A
D

2

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

3.0E+7

3.5E+7

4.0E+7

4.5E+7
L1_R_Trans

T
ra

n
s

a
c

ti
o

n
 c

o
u

n
t

NVPROF RDGC

Figure 7. RDGC correlation with Maxwell GPU (GTX 970) (transaction counts)
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Figure 8. RDGC correlation with Kepler GPU (GT 740M)

Table 6 compares the RDGC model and the work of Nugteren et al. [8].

5.3 The Architectural Space Exploration of GPU Cache

In this section, different cache design parameters are explored. Only 2DCONV,
2MM, ATAX1 and CORR kernels were included in the evaluation. The selected
kernels have diverse specifications in terms of their maximum number of per-thread
accesses, grid dimensions, and block dimensions. The baseline GPU parameters
applied for the simulations include 8 SMs, 32 KB L1 4-way set-associative in the
form of a double-ported cache bank, 1 024 KB L2 8-way set-associative with four
partitions and two 128 KB banks per partition, PRI mapping for L1 and L2, LRU
replacement for L1 and L2, 128 B cache block size, and RR thread block to SM
mapping policy. In total, 263 simulations were performed.

5.3.1 Analyzing the Effects of Cache Organizational Parameters

Cache size: The results of different cache sizes are shown in Figure 9. As can
be seen, even small L1 caches result in large hit ratios in 2MM. In addition,
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Specification RDGC Nugteren et al.

Coverage L1 and L2 L1
Modeled GPU Kepler (GT 740M), Fermi (GTX 470)

Maxwell (GTX 970)
Cache parallelism multiple partitions, banks, ports None
Mem. latency model Adaptive Probabilistic
Cache bypassing Coarse –
parameters Hit ratio, Transaction count Miss rates
Cache parameters Capacity, associativity, Capacity, associativity

block size block size
Cache replacement LRU, LFU, FIFO, Random LRU
Mapping function PRI, XOR, MOD, SMOD Custom XOR
Block to SM mapping RR, Partitioned, Random RR

Table 6. Comparison of RDGC with the work of Nugterent et al. [8]

2DCONV highly benefits from increasing the L1 cache capacity. For instance,
doubling the size of the 8 KB L1 cache led to increasing the hit ratio by 78 %.
(Figure 9 a)).
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Figure 9. L1 and L2 performance for different cache sizes

Cache Mapping Function: In Figure 10, the L1 R Hit, L2 R Hit1 and
L2 R Hit2 metrics are presented for different cache mapping functions. As
it can be observed, PRI functioned better than others, while the resultant hit
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ratios significantly declined in several cases in MOD and shifted MOD map-
pings.
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Figure 10. L1 and L2 performance for different cache mapping functions

Replacement Policy: In Figure 11, the metrics for different cache replacement
policies are shown. For L1 cache, the performance of CORR was enhanced
by LFU, whereas the performance of other three kernels was reduced. Fur-
ther, ATAX1 achieved the best performance with random replacement in both
L1 and L2 caches. Additionally, the performance of 2DCONV diminished as
a result of employing LFU, but remained the same for other policies. On the
other hand, 2MM showed less sensitivity to replacement policies than the other
kernels. Overall, cache replacement policy is an important organizational pa-
rameter in cache memories, especially in L1 cache. Since no replacement policy
functions the best all the time, employing the adaptive replacement policies is
a promising approach.

Cache Block Size: In Figure 12, the resultant performance of different cache block
sizes in L1 and L2 caches are illustrated. Except for ATAX1, the performance of
L1 did not significantly change. Note that when L1 hit ratio is high, any small
changes in L1 hit may result in radical changes in the transaction counts and
hit ratios of L2 caches.

Cache Associativity: In Figure 13, the resultant metrics for different associativ-
ity (32 KB L1 and 1 MB L2) are shown. Figure 14 shows the RD profile for L2
cache including both read and write transactions. Note that the RD8+ in this
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Figure 11. L1 and L2 performance for different cache replacement policies
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Figure 12. Cache performance for different cache block sizes

figure shows the missed Access. Moreover, RD profile is very helpful for perfor-
mance analysis and characterization of application data reuse in many memory
intensive GPU applications [28].

5.3.2 Blocks to SM Mapping

In Figure 15 the results of different CUDA thread blocks to SM mappings (see
Table 2) are shown. Since CORR has only eight blocks, its results are not presented
here. The results indicated that L1 cache performance was more sensitive to the
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Figure 13. L1 and L2 performance for different cache associativity
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Figure 14. RD profile for L2 Cache (RWON)

blocks to SM mapping policies than L2. For example, ATAX1 achieved 65 % and
62.5 % of hit ratios for PART1 and PART2 and 45 % and 42 % of hit ratios for RR
and Random block mapping policies, respectively.
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Figure 15. Cache performance for different thread blocks to SMs mapping policies

5.3.3 L2 Cache Parallelism Modeling

In this section, the performance of L2 cache (L1 disabled) for different cache paral-
lelism levels are presented (see Figure 1 b)). Since GESUMMV has a considerable



448 M. Kiani, A. Rajabzadeh

number of transactions, it is included in this experiment. The two-level interleav-
ing scheme was used for address mapping. In Figure 16, calculated MRU counters
are presented. As it can be observed, cache parallelism changes the achieved reuse
distance values, thus it is necessary to include the effects of cache parallelism in RD
calculation. Even in 2DCONV and 2MM kernels that the hit ratios remained the
same with different L2 parallelism levels, the reuse distance values were changed.
These changes show that for bigger workload sizes or cache capacities, cache paral-
lelism can alter the resultant hit ratios. Finally, Figure 17 shows the change in step
counts as a function of L2 cache parallelism level.
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Figure 16. Reuse stack distances for different L2 parallelism levels (partitions (P), banks
(B))

5.3.4 Discussion

While exploring the architectural space of cache memories through cycle-accurate
simulation is extensively time-consuming, RDGC offers a more time-efficient ap-
proach to profile data locality and to model cache performance. However, RDGC is
not a replacement for cycle-accurate simulation. Instead, it can be employed to nar-
row down the vast architectural space of GPU cache memories by analyzing different
candidates for cache memory organization. RDGC can also be used by application
developers to profile the data reuse. In addition, RDGC is agile to changes and can
be modified to analyze caches in newer GPUs, without spending much effort.
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6 CONCLUSION

GPU architects and application developers need to analyze cache memory perfor-
mance for different cache design parameters and different application configurations.
Analyzing the performance of cache memories is a time-consuming task, especially
for GPUs that execute threads in massive parallelism. This paper proposes a perfor-
mance analysis approach, called RDGC, that applies reuse distance analysis to ana-
lyze the performance of GPU cache memory hierarchy. The evaluation results show
that RDGC has fair performance and accuracy: 59 times speedup over GPGPU-
Sim and an absolute error of 3.72 % and 4.5 % for L1 and L2 cache read hit ra-
tios. Further, RDGC facilitates the architectural space exploration of GPU cache
hierarchy. Different cache architectural parameters were modeled including: capac-
ity, associativity, mapping (indexing), block size, replacement policy, and bypass-
ing. In addition, the effects of cache parallelism (multi-bank and multi-port caches)
were modeled. RDGC can be enhanced through including more advanced architec-
tural specifications, i.e., adaptive replacement policies, advanced indexing functions,
fine-grained access bypassing, warp scheduling algorithms. Further, RDGC can be
adapted for modeling cache performance in multiple simultaneous kernel execution
scenarios. In addition, RDGC can benefit from introducing more realistic latency
models and inclusion of atomic instructions and cache coherency protocols.
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Abstract. A conceptual data persistence architecture and methodology to evaluate
its performance is created. Results of the empirical research indicate that the
architecture created is convenient for high intensity processing of large ECM data
volumes. The synthesis of SQL and NoSQL technology allows to handle high volume
transactions on current data and full-text search on large sets of history data. The
history data is moved from SQL to NoSQL data store thus allowing to use a cluster
of commodity hardware to store major volume of ECM data. Scaling out (increasing
a number of cluster nodes) is less expensive than scaling up (buying a more powerful
server hardware) that is normally needed to upgrade SQL database.
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1 INTRODUCTION

Forrester research [10] shows 40 % of firms were implementing and expanding big
data technology adoption. Another 30 % were planning to adopt big data in the
next 12 months. 25 % annual growth for NoSQL technologies is predicted.

Large number of technologies (Google BigTable, Apache Hadoop, NoSQL data-
bases of all types, etc.) evolved to address big data. They propel a number of
important paradigm shifts; the most important being:
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• understanding the importance of clustered solutions;

• understanding there is no “one best choice” for all cases [19];

• understanding it might be not enough to employ one data persistence technology
for the use case.

The third shift caused the introduction of the polyglot persistence – a process
for storing data in the best database available, no matter the data model and data
storage technology [9].

ECM (Enterprise Content Management) solutions deal with a large and fast
expanding amounts of data and user requests. Traditionally SQL databases are
used to persist ECM data. The SQL solutions do not scale out well, but it is
a general opinion that NoSQL databases are not good on transaction support hence
they do not qualify.

The aim of the research is to show that ECM data can be split into two parts
(current and history data) that each are manipulated differently. The current data is
one that is created or updated and need transaction support. The history data is not
updated but searched, aggregated or retrieved instead. The history data accounts
for the major part of the data volume hence clustered NoSQL database might be
the best fit for this part of data.

The MS SQL database is used to store and manipulate current data while Elas-
ticsearch (ES) [3, 13] – to store and query current and history data. Current data is
replicated from MS SQL to ES as it is changed while history data is removed from
MS SQL and stored in ES exclusively.

The research aims as well to create a methodology and a tool for performance
measurement of a data persistence solution on a representative ECM data and
request flows consisting of randomly dispersed sequences of user requests. The
methodology is based on results of the earlier research [17].

Section 2 outlines the related work. The typical workflow scenario, objects in-
volved and data statistics are described in Section 3, Section 4 gives a brief descrip-
tion of the technology used, while Section 5 illustrates the architecture proposed
by the research. They are followed by Section 6 describing test data, Section 7
describing the methodology used to evaluate the performance of the proposed ar-
chitecture, and Section 8 analyzing the results of the evaluation. Section 9 outlines
the conclusions and is followed by acknowledgements.

2 RELATED WORK

The term NoSQL (Not only SQL) was initially used by Carlo Strozzi [11] in 1998.
More than 225 NoSQL platforms of various kinds have been developed since [8].
The new platforms generally are aimed at specific problem areas and there are no
general suggestions on what solution would be the best for a specific use case.

Polyglot persistence paradigm has been researched by various authors. A con-
temporary outline is given by Sadalage and Fowler [18]. They write that using
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a single database engine for all of the requirements usually leads to non-performant
solutions; storing transactional data, caching session information, traversing graph
of customers and the products their friends bought are essentially different prob-
lems [18]. Use of several technologies should be considered instead of sticking to
one. Document store is the most convenient NoSQL technology for ECM [16], still
the polyglot persistence approach would be the best fit here to use strong trans-
action support of relational database for data maintenance and NoSQL document
store for fast information search and retrieval. Some solutions already use a similar
approach, e.g. using MySQL database together with Elasticsearch [21].

Clustered solutions allow to cope with large and rapidly expanding data and
request volumes, but they are inherently more complicated than their one server
counterparts. The complexity relates, in particular, to the increased number of
parameters to watch and configure to tune the solution as well to the methods of
performance measurement.

To develop a performance measurement tool for the performance evaluation of
the data persistence architecture proposed, the number of benchmarking tools have
been reviewed, e.g. YCSB [1], BigBench [12], GridMix [14], PigMix [6],
HBench:java [20] and GraySort [7]. GridMix, PigMix, HBench:java and GraySort
are dedicated for benchmarking of specific systems. BigBench is a benchmark pro-
posal dedicated for a specific business model (product retailer) and specific two layer
data model with ETL backed data transfer between layers.

Figure 1. Data model

YCSB (Yahoo! Cloud Service Benchmark) is a generic framework and tool used
for benchmarking of a number of distributed systems (Cassandra, HBase, MongoDB,
Elasticsearch, Redis etc.). The shortcomings are as follows:

• It is assumed (see e.g. [5, 12]) that a request flow (workload) consists of mutually
independent data requests; in reality user requests are grouped in a sequences
of dependent requests, the model should be expanded to cover this.

• All test data ([5, 12]), including the texts used for full-text search, is generated –
the generated text does not represent real data well when measuring search
request performance.
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3 ECM DATA ANALYSIS

The research is focused on a document management, but the patterns are the same
for web content management, records management and workflow management as
well. Figure 1 shows the data model used in our research. Table 1 gives the detailed
description of the data attributes.

D A T Comments

docNum x x x Document number. Replicated from the document
object to all child attachment and task objects.

inCharge x x x Person in charge of the document (Document and
child Attachments) or for the task (Task object).

author x Creator of the task.

canRead x x List of user ids having access to the document and
its attachments because they are authors or per-
sons in charge of some child task of the document.
Replicated to the child attachment objects.

case x x Case the document is attached to. Replicated.

docType x Document type.

date x x x Indexing date and time of the document. Repli-
cated to all child attachments and tasks. Deter-
mines the ES index the document and its children
are allocated to.

deadline x Task deadline.

folder x x Folder the document is attached to. Replicated.

project x List of projects a document is attached to.

status x x Document or task status.

summary x x Document title, attachment title.

content x Attachment content.

name x Task type.

comment x Task comments.

Table 1. Document, attachment and task attributes

The document here is a placeholder for zero or more attachment files, that
an organization receives (or sends) in one go. The task is an action that an employee
has to perform on the document to move it along the workflow. Tasks are of several
types and multiple tasks may be related to a document.

One of regular scenarios is – an organization receives e-mail with one or several
attachments from a partner or a customer (the document), a new document is
created, the document and attachments are indexed, a workflow of tasks (assigned to
one or more employees) is manually or automatically attached. Employees complete
tasks (and/or assign new ones), create a response document (with one or several
attachments) that is sent back to the correspondent. Described data items form the
major part of data volume for document management process.
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The analysis shows that users mostly interact with the current data and the rest
is accessed scarcely. Figure 2 shows this dependency of user activity volume from
the document age for 5 customer databases (K1–K5). The figure shows percentage
of data requests (mixed read, write, search, aggregate) addressed to data of each
document age group (up to 1 month, 1 to 2 months, etc.).

Figure 2. Data age for document create, update and view requests

To make use of the fact that most of the data is accessed scarcely we should
build our persistence model in a way that allows separate storage and processing of
frequently and scarcely used data. We propose to create two data stores:

• Current data store for create, update and delete requests;

• General data store for search, aggregation and retrieval.

This model would allow to use separate persistence technologies for transaction
support (Current data store) and for search and aggregation in a large, expanding
data volumes (General data store).
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4 ELASTICSEARCH

Elasticsearch (ES [3, 13]) is a search engine built on top of Apache Lucene [15] –
perhaps the most advanced, high-performance, and fully featured search engine
library in existence today. Elasticsearch uses Lucene internally for indexing and
searching, but it aims to make full-text search easy by hiding the complexities of
Lucene. Elasticsearch is used for our research because of its advanced text searching
features and because it is:

• a distributed real-time document store where every field is indexed and search-
able;

• a real-time analytics engine;

• capable of easy scaling to hundreds of servers and petabytes of structured and
unstructured data.

Unlike the relational databases ES stores all the data into indexes. Indexes store
both the data and all the information necessary for search. ES index does not have
a predefined structure, but it can be configured (through field mappings) according
to the types of search anticipated for the particular fields. One might define if the
particular field is to be searched or not, should it be ready for full-text search, ranged
search, exact match, geographic search, etc.

Figure 3. Proposed architecture
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5 THE PERSISTENCE ARCHITECTURE

Figure 3 shows the proposed architecture. General data store consists here of a time
dependent ES indexes. Time-dependent means here that an index contains data
related to a particular time period (e.g. a month or a year). This allows to store
data for different time periods on different nodes in a distributed infrastructure.

The following features are shown there:

• user creates, updates and deletes data in the Current data store;

• changes in the Current data store are replicated to the General data store;

• user searches, aggregates and retrieves data from the General data store;

• data in the General data store are split into time dependent indexes;

• as time passes indexes are switched to read-only mode (indexes highlighted in
blue);

• as long as indexes of the General data store are switched to read-only mode, the
data of the matching time periods may be removed from the Current data store.

Indexes in blue thus differ from the white ones because they are read-only and
they may have no backing data in the Current data store. When implementing the
architecture customer may decide when to make time periods read-only and when
to remove data from the Current data store. Customer may decide as well to keep
all the history time periods online, or put them offline at some point. The latter
option allows to reduce infrastructure costs at an expense of increased latency for
some rare user requests.

5.1 Hot-Warm Architecture Model

As concerns the General data store, this research follows the hot-warm architecture
paradigm [2] for separate handling of frequently and scarcely used data. The hot-
warm paradigm suggests to use different groups of cluster nodes to store frequently
used (hot) data and scarcely used (warm) data. In respect to our data model new
time periods are allocated to hot nodes and older time periods are switched to
warm nodes when appropriate. ES allows to do this easily and transparently from
the application. One has to issue a simple request that changes appropriate attribute
of the index and ES automatically moves the index from hot nodes to some warm
nodes. It is important to stress that moving data from hot to warm nodes concerns
only the General data store, and it is independent from the process of moving data
from the Current to General data store.

Figure 4 shows hot-warm ES cluster with 2 hot nodes and 3 warm nodes. Cluster
has as well 3 master eligible nodes. These nodes elect a single master node of the
cluster that is responsible for the cluster management functionality. Other two are
here to replace master in case of emergency. 3 master eligible nodes and two of
them available is the minimal configuration for the healthy cluster as this prevents
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so called split brain scenario [2] when more than one node is elected (because of the
lost communication) as a master. This situation is dangerous as two masters act on
a cluster data concurrently that may lead to data corruption or loss.

Figure 4. Hot-warm Elasticsearch cluster

With the architecture in place we will discuss below its advantages.

5.2 No Locking

ES uses Lucene [15] immutable indexes thus there is no need to lock index when
writing data [3]. New index segments are created to index new data instead while
index segments are merged in background later on. Thus General data store is
available for search and data retrieval no matter how intense is the flow of new data
replicated from the Current data store.

Downside of the immutable index technology is that newly indexed data does
not become available for search instantly but with a delay instead. The delay varies
from below a second normally to tens of seconds or more when system is heavy
loaded. In contrary to the relational database case this does not result though in
all search requests waiting while locks are released. Latest updates might not be
included in the search results instead. ES provides several options to deal with this
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problem – application may return the control to user not waiting for index refresh
(to proceed with his work) or waiting for index to be refreshed (if user wants to see
his changes before to proceed).

5.3 Scale Out

ES index consists of number of shards. When the data volume grows new nodes can
be added to the cluster. ES automatically relocates shards when new nodes added.
Thus ES index with e.g. 5 shards can run on 1 to 5 node cluster.

Replicas allow to scale out ES database even more. Primary shard and its
replicas are allocated each to a different cluster node to achieve this. ES index with
5 shards and one replica can run on 2 to 10 node cluster.

Parameter Comments

Time
phased
indexes

Major part of user requests is directed to the current data,
that way major part of the all requests may be addressed
to a small part of all indexes; this makes the request lighter
and decreases the response time.

Read-only
indexes

ES provides for optimization of read-only indexes; normally
ES index shard consists of multiple (several tens to hun-
dreds) segments, every search request is executed against
all the segments; if index is not supposed to be changed
anymore, segments can be merged into one; this speeds up
search requests.

Hot-warm
architec-
ture

Having separate groups of cluster nodes for current (hot)
and history (warm) data allows to deploy more powerful
hardware for hot nodes to support low search latency (and
save money on hardware for warm nodes).

Table 2. Means to improve search speed

5.4 Availability and Fast Search

Replicas are redundant data copies. Thus in addition to decreased search request
latency they provide increased data availability. Index shard is available if the
primary shard or one of replicas is available.

Elasticsearch has proven to be one of the fastest and richest search engines capa-
ble of handling very large data and user request volumes. The proposed architecture
provides a couple of means to profit from these ES advantages (Table 2).

6 TEST DATA

The test data stores are created following the methodology presented in [17], ela-
borated and tuned for the current use case. Values for all but the fields employed
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for the full text search are generated according to the frequencies calculated out of
the real data in five customer databases (see Section 3). Texts for the two fields
used for performance measurement of full-text search (attachment content and task
comments) are extracted from Common Crawl – the open repository of web crawl
data [4]. The data set of September 2017 is used that contains extracted texts from
more than 2 billion pages in English or similar (Latin based charset) languages. This
enables for creating of large data sets usable for full-text search.

ES hot-warm cluster of 6 nodes is created in MS Azure cloud and three large
volume test data stores are generated (using statistics of the customer databases
mentioned in Section 3) for performance tests (Table 3). Store names indicate data
model and time span used. Shared model uses shared index for all three data objects
(documents, attachments, tasks) while multi model stores each object in a separate
index (see Section 4 for ES storage explanation). Yearly model uses index for a year
of data while monthly – for a month of data.

Store Time Span Index Shards Object Count (millions) Volume (GB)

Shared-year 6 years 2 months 35 1140 1 200

Shared-month 14 months 14 145 160

Multi-month 14 months 42 145 160

Table 3. Test databases

7 METHODOLOGY FOR PERFORMANCE EVALUATION

The aim of the evaluation is to measure how the solution performs:

• on large volumes of data specific for the use case in question;

• on a user request flow specific for the use case in question;

• on a specific cluster configuration one has or would like to change.

The methodology developed in our earlier research [17] is expanded to:

• support time partitioned data model to allow separate management of current
and history data;

• support specific user request flows for current and history data;

• comprise a number of cluster configuration parameters.

Below these three dimensions of the proposed methodology are described in more
detail.

7.1 Time Partitioned Data Model

The data storage is split into time specific ES indexes (see Section 4). The yearly
and monthly indexes are analyzed for comparison. The date field of the document
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determines an index where the document and all its child attachments and tasks are
routed to.

To ensure realistic search results test database is generated according to the
following principles:

• Document, attachment and task metadata are generated in accordance with
the frequencies typical for the real databases (based on statistics of 5 customer
databases, described in Section 3).

• Attachment content and task comment data is extracted from the common-
crawl.org repository that contains texts of the real web pages; these fields are
used for full-text search.

7.2 User Request Flow

The performance measurements are based on a user interaction flow (interaction
schedule) model developed in our earlier research [17]. The user interaction flow is
decomposed into user business activities (like – show my urgent tasks). The business
activities are represented as sequences of user interactions (i.e., user request that
can be executed by one or more data requests without user intervention) as shown in
Figure 5 in a portion of a sample user interaction flow specification. User interactions
are further decomposed as series of data requests not shown in a specification sample.

Figure 5. Sample user request flow description

The specification describes sequences (user business activities), tasks (user in-
teractions and data requests) and time functions (tf). A sequence description:

• lists user interactions (tasks) of the sequence, e.g., a sequence consisting of two
user interactions – aD (add a document) and aA (add an attachment),
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• specifies an average times (per year) an average user would run the sequence
(user business activity).

A task (user interaction) description specifies if the interaction is addressed
to current data (“archi”: false), specifies the user interaction name (addDoc) and
optional parameters, and specifies the time function used for performance measure-
ments.

A time function description (tf) specifies what latency (in milliseconds) has to
be assured for what percentage of the user interaction (e.g. 1 second for 90 % of
interactions, 5 seconds for all the interactions). Figure 6 shows the first 30 seconds
of the sample evenly distributed user interaction schedule for 8000 users.

To evaluate performance a set of user interaction sequences is used that includes
search (e.g., full-text search inside document content), filtering and processing of
aggregates, as well as document, attachment and task creation and modification.
The results of the research [17] are used to assume frequencies of execution of the
user interaction sequences by an ECM user. The list of user interaction sequences
includes the requests to the current as well to the history data. User interaction
simulation model is tuned to the time dependent index structure of our architecture
model allowing to explicitly direct a part of requests to a particular index (or several
indexes).

7.3 Cluster Parameters

Measuring a performance of a clustered solution is a challenge because we have to
assess both performance of a healthy cluster and emergency performance (recovery
from node unavailability). On a production cluster we can measure mainly a per-
formance of a healthy cluster (as it mainly is healthy). Therefore we need a sibling
cluster to play with crashes and recoveries. This is a costly option hence a cloud
infrastructure should be considered as the sibling cluster might be created there
when needed and disposed afterwards.

The performance tests are executed on a number of configurations. A number
of parameters analyzed are described below.

Data model. Elasticsearch nested objects and parent-child constructs are not used
as they are resource hungry. Relationship between documents and child attach-
ments and tasks are maintained at an application level. Two different data
models are evaluated – all three types of objects stored in a single ES index
(shared model), and each object type stored in separate index (multi model).
The shared model needs 3 times less indexes while the multi model takes less
storage space.

Time span for a single index. Yearly and monthly index is tested. The first one
needs less indexes, the second one allows more control over data (e.g. indexes
may be moved from hot to warm nodes on a monthly basis).
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Figure 6. Sample request flow by request types

Cluster configuration and node count. The impact of overall node count, as
well as of several role configurations (e.g. dedicated master eligible nodes versus
warm nodes configured as master eligible nodes) are assessed.

Number of replicas. Cluster performance is evaluated for 1-3 replicas for an index
shard.

Node hardware characteristics. RAM and heap volume as well as disk volume
and speed impact the overall cluster performance. Several configurations of these
parameters are evaluated.

Overall data volume. The performance of the cluster for data object volumes
worth of 3 to 6 years of data is evaluated. The yearly amount of data is 190 mil-
lion of data objects (documents, attachments and tasks).

User interaction flow characteristics. Measurements are performed for user in-
teraction flows of different volumes (up to average 27 user interactions per sec-
ond). User interaction flows are generated to contain mixed sequence of search,
aggregation, retrieval, as well as data insert and update requests. User inter-
action flows are generated for 13 minute test runs (3 minutes warming and
10 minute rating phase) and contain 230 to 18 870 data requests each.
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Figure 7. Latency with or without waiting for index refresh

8 RESULTS OF THE MEASUREMENTS

240 tests are executed to measure different configurations of above described pa-
rameters. One test here is an execution of a 13 minute (3 minute warming and
10 minute rating phase) long request flow.

Generally the analysis of the results supports the opinion dominant in ES sup-
port forums and elsewhere that cluster and data model parameters must be tuned
for a particular use case. A number of interesting patterns have been observed and
they are explained in the Sections 8.1, 8.2 and 8.3.

8.1 RAM and Index Volume Ratio

ES node loads index data from disk to RAM when started. The volume of data to be
loaded in RAM depends on the total index data volume and on field mappings (see
Section 4). A number of configurable ES parameters may influence this (e.g. types
of indexing mapped for particular fields). If RAM volume of the node is too small to
load all the necessary data, it is not possible to start the node. The RAM and index
volume ratio (to be loaded on node start-up) thus must be carefully watched by the
administrator. Our tests show that at least 7 GB RAM is necessary for a node to
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handle 1.2 TB of disk index volume for our index mappings. To be on the safe side
it is better to have excess amount of RAM though.

Figure 8. Latency of 3-6 node cluster for 7 GB node RAM

8.2 Index Refresh

ES by default refreshes indexes every second. This means that every second ES
takes the index segments with freshly indexed data and makes them available for
search (further indexing requests go to newly created segments). New data gets
available to search though only when this index refresh process is complete. When
cluster load grows index refresh process may slow down considerably to take several
tenths of seconds or more. Figure 7 shows the pattern for shared-year data store
(1.14 billion objects), cluster with 5 data nodes, 1 replica, 7 GB RAM, HDD disks.

Index requests must be implemented to wait for index refresh only when it is
absolutely necessary, e.g. if user needs to immediately see the new/changed data.
Index requests that do not wait for index refresh perform better when cluster load
grows.
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Figure 9. Latency by node RAM volume for cluster with 3 nodes

8.3 Scale Up or Scale Out

Scaling up or out are two options that frequently are compared. The performance
tests executed show that ES cluster node performs better when it has plenty of RAM
volume. Nodes with 7 GB and 14 GB RAM are tested and it appears (see Figures 8
and 9) that for large data request amounts it is better to expand RAM from 7 GB
to 14 GB than to double the cluster node count.

For larger RAM volumes it might be more convenient to increase node count as
smaller nodes mean less damage and shorter recovery times when a node gets down.

8.4 Cloud Infrastructure Costs

The performance tests show what could be the potential infrastructure costs for
a data store and user request volume we are interested in (see Table 4).
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Data volume (years) 6 years 2 months

Data volume (million objects) Documents – 120, attachments – 120, tasks – 900

Data request flow Up to 27 per second

Hot node specifications 14 GB RAM, SSD 1 TB

Warm node specifications 14 GB RAM, HDD 2 TB

MS Azure cloud cost per month
(EUR)

2 090

Table 4. MS Azure cloud cluster configuration and costs

The data and request volumes correspond to the ones of comparatively large
organization (8 000 users, 1.3 million documents per month).

9 CONCLUSIONS

The polyglot persistence architecture is defined consisting of two data stores – the
Current data store and the General data store. Data is inserted/updated into the
Current data store and searched/accessed in the General data store. MS SQL is
employed for the Current data store to ensure strong transaction support while
Elasticsearch is used for the General data store to provide fast execution of large
volumes of search requests on large volumes of data. The General data store is split
into time dependent indexes and handled by a clustered ES solution of a hot-warm
architecture to allow for separate management of current and history data.

The methodology and tools for performance evaluation of the proposed archi-
tecture are created. The methodology allows for creation of test data and test
workloads used to measure the performance and to evaluate impact of a number of
parameters (node count and configuration, replica count, RAM volume, disk speed,
total data amount, user request volume, etc.). Analysis of the evaluation results
uncovers a number of interesting patterns. The results on several sets of parameters
may be used to evaluate and compare alternative ways of cluster scaling (e.g. more
nodes against more node RAM) for a production system.

The architecture is considered to be convenient for ECM solutions of large data
and user request amounts. The measurements performed show that MS Azure
hosted cluster configuration costing about EUR 2 000 per month would handle
database of 1.14 billion objects (documents, attachments and tasks) for average
27 per second flow of mixed data create, update, read, search and aggregate re-
quests.
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Abstract. Materialized views are important for optimizing Business Intelligence
(BI) systems when they are designed without data cubes. Selecting candidate
queries from large number of queries for materialized views is a challenging task.
Most of the work done in the past involves finding out frequent queries from the
past workload and creating materialized views from such queries by either manually
analyzing workload or using approximate string matching algorithms using query
text. Most of the existing methods suggest complete queries but ignore query com-
ponents such as sub queries for creation of materialized views. This paper presents
a novel method to determine on which queries and query components materialized
views can be created to optimize aggregate and join queries by mining database
of query execution plans which are in the form of binary trees. The proposed
algorithm showed significant improvement in terms of more number of optimized
queries because it is using the execution plan tree of the query as a basis of selec-
tion of query to be optimized using materialized views rather than choosing query
text which is used by traditional methods. For selecting a correct set of queries
to be optimized using materialized views, the paper proposes efficient specialized
frequent tree component mining algorithm with novel heuristics to prune search
space. These frequent components are used to determine the possible set of candi-
date queries for creation of materialized views. Experimentation on standard, real
and synthetic data sets, and also the theoretical basis, proved that the proposed
method is able to optimize a large number of queries with less number of mate-
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rialized views and showed a significant improvement in performance compared to
traditional methods.

Keywords: Query optimization, view selection, tree mining, query plans, materi-
alized views, query response time

Mathematics Subject Classification 2010: 68Uxx

1 INTRODUCTION

Most of the BI systems are implemented using data cube architecture. Generation
of data cubes for processing user queries helps in reducing time, but has storage and
data synchronization overheads. In some cases, storage overheads are so large that
it becomes extremely prohibitive to generate a cube. If it is not feasible to generate
a cube, the user queries are processed using on the fly aggregation. The “on the fly”
aggregation demands very good query optimization, which otherwise would lead to
high response time for user queries. Query optimization [31] plays a vital role in
such BIS. Most of the time, the query optimization is done using techniques like
indexing, but unfortunately this technique is not able to optimize aggregate queries.
Hence, the idea of materialized views has been proposed to optimize such queries.
A materialized view [17] is like a normal view with storage used for storing results
of a view query. When a materialized view is referred, rows are directly retrieved
from the storage rather than the execution of the query again, thereby reducing the
processing time of the query. The stored rows of materialized view are refreshed
when base tables of materialized views are updated to keep the data synchronized.
Thus, materialized views have data synchronization costs which may reduce the
overall advantage of improving query response time [29]. If the system has many
materialized views, then the performance of the system deteriorates due to high data
synchronization overheads. Therefore, it is necessary to have a minimum number of
materialized views to improve the queries, which otherwise cannot be optimized by
conventional methods.

The aim of this paper is to create a set of materialized views with minimum
cardinality, which can optimize most of the queries. Our approach is to find fre-
quent components in queries and create materialized views on them to optimize
them. Such frequent components may represent frequent subqueries. The tradi-
tional approaches like approximate string matching algorithm [2] will not be useful
here because similar queries may not have the same text. For example, if two differ-
ent queries have the same subquery, then by using normal string matching technique,
the queries are treated differently. Therefore, we propose a new approach of find-
ing frequent components in queries by analyzing the query execution plan rather
than query text using data mining techniques. Most of the database management
systems construct query execution plan in the form of a binary tree. This paper
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uses this property to build a recursive tree mining algorithm to find the frequent
components of a query. In most of the applications, the query workload follows
80–20 rule, i.e., almost 20 % queries form 80 % of the work load. As the number
of queries increases, the probability of a query component to repeat also increases.
The creation of materialized views on these frequent components will result in the
overall optimization of queries that reuse the same components. Generalized graph
mining algorithms like G-Span are already developed to obtain frequent graphs from
a memory dump of graphs [30]. However, this is a highly generalized algorithm and
such conventional graph mining algorithms are not useful for mining the “execution
plan tree components” because of the specialized nature of these trees. Node in the
tree represents an operation, whereas the level of the node indicates the order in
which the operation is performed. In this paper, we have proposed a new tree mining
algorithm for identifying the frequent tree components in a set of such specialized
trees.

The algorithm proposed in this paper analyzes multiple queries and recom-
mends queries as well as query components. Creation of materialized views on
these components will result in the optimization of all the queries having these com-
ponents. Many database systems contain hundreds and even thousands of tables.
Such database applications may have millions of queries [1]. These queries may have
many frequent components. Mining of frequent components that can be translated
as candidate queries is a challenging task [4]. The proposed tree mining algorithm
for finding these components should be able to handle the work load by pruning the
search space efficiently.

For a given workload, we have found that the candidate queries using our method
are more in number as compared to the queries resolved using the conventional
method. We have also shown that the materialized views created using candidate
queries used by our algorithm show a considerable improvement in terms of “reduc-
tion of the logical block reads (GAIN MEASURE)” as a performance measure [12].
The contributions of the proposed work are as follows:

1. We have introduced the creation of a materialized view based on query compo-
nents and subqueries rather than creating it only on the full query.

2. We have proposed a method of finding query components by analyzing execu-
tion plans of past query workload rather than analyzing query texts. This is
a fundamental change in approach as compared to traditional methods because
it helps in getting a larger set of queries which can be optimized with a lesser
number of materialized views and thus improving system performance to a very
large extent.

3. We have proposed new tree mining algorithms for specialized trees, which rep-
resent query execution plans to handle large query loads by providing efficient
pruning techniques to reduce search space. We have also provided correctness
proof of our newly designed algorithm and proved that it will mine all necessary
frequent subcomponents from the given set.
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4. We have done exhaustive experimentation on standard, real and synthetic work-
load to show that the number of candidate queries reported by our algorithm
is expected to be higher than the number of candidate queries reported by the
state of the art algorithms by the traditional methods.

The rest of the paper is organized as follows: Section 2 describes the related work,
followed by Section 3 which describes the proposed work and the algorithm in detail.
Section 4 describes how the output of the tree mining algorithm helps to create
materialized views, Section 4 describes the experimentation and results and Section 5
contains the conclusion and future work.

2 RELATED WORK

View materialization is a widely-used strategy employed in data warehouses of
the Business Information System to improve the performance of decision support
queries. Decision support queries are highly complex in nature and make heavy use
of joins and aggregations. Moreover, solving decision support queries involves com-
putations on huge volumes of historical data, as these queries are more inclined to
find trends rather than individual facts. Historical data is continuously generated by
multiple fast operational OLTP (Online Transaction Processing) systems and gets
accumulated in warehousing systems. Since access to a materialized view is faster
than computing the views on demand, using the materialized view can speed up the
analytical query processing in a data warehouse. Hence, naturally it is desirable to
materialize all the possible views in a data warehouse, but this is not feasible be-
cause of resource constraints such as disk space, computation time and maintenance
cost. Especially, creation of materialized views incurs an overhead after update of
the base database objects which demands refreshing of all the affected materialized
views.

Hence, to acquire a quick response to analytical queries within the system’s
resource constraints, selection of a proper set of views to materialize is an im-
portant decision while designing the warehousing system. The most commonly
used technique is materializing frequent queries, which are obtained by text match-
ing [13].

Gong in his paper [13] proposed clustering based dynamic materialized view
selection algorithm (CBDMVS). It finds a cluster of SQL queries using a similarity
threshold τ and if a new query’s similarity is below τ for all the existing clusters,
then a new cluster is formed. Similarity between queries is measured based on
certain parameters like base table sets, equivalence connectivity conditions, scope
connectivity conditions and output column sets. These queries are mined using
text mining. CBDMVS dynamically adjusts the materialized view set, by replacing
views with lowest gains where the system lacks storage space for the new query.
Basically, it not only improves the overall query response time, but also reduces the
computational cost that is spent while updating materialized view. Rajyalakshmi
in paper [26] proposed association rule mining based materialized view selection
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algorithm (ARMMVVM) for improving the performance of materialized view selec-
tion and materialized view maintenance using association rule mining. It integrates
the technique of improving query response time by using frequent mining algorithm
along with adjustments of the view set.

Sohrabi and Ghods in their paper [28] explored the view selection problem as
a two-step process where, the first step is finding the candidate views and the second
step decides the final view set from a set of candidate views under the system
resource constraints such as storage space and view maintenance cost. This paper
discussed the usage of Directed Acyclic Graphs (DAGs) and data cube lattice in
candidate generation step, and various heuristic algorithms in the view selection
step. The authors also proposed a novel algorithm based on frequent item set
mining technique which aims at minimizing the view creation and maintenance
cost. Paper [14] proposed a systematic review of various view selection techniques
in which various techniques are compared in terms of memory storage space, cost,
and query processing time. By means of this review of available literature, the
authors have drawn several conclusions about the status quo of materialized view
selection and a future outlook is predicted on bridging the large gaps that were
found in the existing methods.

In paper [27], the authors proposed a greedy materialized view selection algo-
rithm, which extracts query-processing and view maintenance cost related infor-
mation from multiple query processing plans into a table-like structure and the
algorithm also computes the optimal view set. In paper [21], the authors pro-
posed a similarity interaction operator-based particle swarm optimization (SIPSO),
in which materializing an appropriate subset of views was suggested for achieving
acceptable response times for analytical queries. The proposed SIPSO-based view
selection algorithm (SIPSOVSA) selects the Top-K views from a multidimensional
lattice. Paper [5] proposed a game theory based framework for the materialized
view selection. In the proposed framework, query processing and view maintenance
costs play a game against each other as two players and continue the game until
they reach the equilibrium.

The authors in paper [20] talk about a uniform query framework that can be
used for traditional relational databases and NOSQL databases. This query frame-
work can also perform joins, aggregates, filter on the data from various data sources
in a single query. Hung et al. in their paper [18] proposed a cost model, having
well-defined gain and loss metrics used for deciding the member views in a view set.
For candidate generation, data cube is represented as lattice, and lattice is expressed
in the vector form. This vector is then used to search for other dependent views.
Afrati in the paper [1] addresses the problem of view selection for aggregate queries
considering rewritings with multiple view sub-goals and multi-aggregate views. This
paper explains how to answer aggregate queries using aggregate views by construct-
ing equivalent rewritings and how to optimally select aggregate views to materialize,
for use in those rewritings.

The authors in the paper [15] present a greedy view selection algorithm in
AND/OR view graphs, which describes all possible ways to generate warehouse
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views. It describes different approaches to address the view selection problem, se-
lects the best query path which can be maximally utilized to optimize the response
time of most of the queries, under the maintenance cost constraints. In the pa-
per [25] the authors present the heuristics to determine the additional set of views
to materialize under given storage constraints to reduce the overall maintenance cost
of all the views. The algorithms aim at minimizing the query response time and view
maintenance overheads under the given storage constraints. The paper [19] proposes
a greedy-repaired genetic algorithm which selects a set of materialized cubes from
the data cubes under storage space constraints, in order to reduce the amount of
query cost as well as the cube maintenance cost.

In a paper [22] authors gave importance on integration of computational methods
for design optimization based on data mining and knowledge discovery. This paper
proposes to use radial basis function neural networks to analyze the large database
generated from evolutionary algorithms and to extract the cause-effect relationship,
between the objective functions and the input design variables. Gupta and Mumick
in the paper [16] developed a method to deliver the optimal set of views to optimize
the total query response time for a given workload under constraints that the selected
set of views should incur less collective maintenance overheads than the specified
amount of maintenance time. The paper proposed approximation greedy algorithm
for query load having view OR graphs and A* heuristics algorithm for query load
with general AND-OR view graphs. This paper has kept the storage constraints out
of all the equations.

The authors in the paper [3] proposed a framework for materialized view se-
lection that exploits data mining technique (clustering), to determine clusters of
similar queries. The paper also proposed a view merging algorithm that builds a set
of candidate views, by iteratively building the lattice of views. To determine the
final view set, a greedy process was used where the selection criteria considered
cost of storing and accessing data from views. Ashadevi in her paper [4] presented
a critical survey of the past and present methodologies and solutions for the view
selection problem.

Mohania and Kambayashi in the paper [24] showed that the warehouse views
could be made self-maintainable if additional auxiliary relations were derived from
the intermediate results of view computation in the warehouse. This paper proposed
an algorithm for determining what auxiliary relations needed to be materialized to
make a materialized view self-maintainable, i.e., maintainability could be viewed as
an incremental process that computes the updates to both the materialized view
and the additional relations.

Daneshpour and Barfourosh in their paper [9] proposed a dynamic view man-
agement system to select materialized views with new and improved architecture,
which could predict incoming queries through association rule mining and three
probabilistic reasoning approaches: Conditional probability, Bayes’ rule, and Näıve
Bayes’ rule.



A Novel View Selection Approach in BI Systems 479

3 PROPOSED WORK

3.1 Problem Statement

A materialized view is a proven technique to optimize queries such as aggregate
queries which otherwise cannot be optimized using conventional optimization tech-
niques like indexing or clustering. Since materialized views have additional storage
and data synchronization overheads it is better to create less number of materialized
views. If a query load consists of millions of queries, it is very costly to create mate-
rialized view. It is reasonable to use less number of materialized views for optimizing
computationally intensive queries.

3.2 Theoretical Analysis and Motivation

Matching query text can be used to find out frequent queries, but this approach
may not work if the queries are written differently or, if several queries are doing
similar operations. For example, the following queries, i.e. queries Q1 and Q2, are
computationally similar to query Q3, but their textual representations are different.

Q1: select avg (salary) from emp company group by cname;

Q2: select max (salary) from emp company group by cname;

Q3: select max (salary), avg (salary) from emp company group by cname.

Unlike the tree mining algorithm, the string matching algorithm will not be able to
find any correlation between these queries. But, if we create materialized view for
the query Q3, both the queries Q1 and Q2 will get optimized. Another example
could be queries that are different, but they use the same subqueries. For example,
the following queries are different, but use the same subquery.

Q4: select ename from emp company where salary > all (select avg (salary) from
emp company);

Q5: select cname from emp company where salary > all (select avg (salary) from
emp company).

Both the queries are using the same subquery, but they are not textually similar.
Both can be optimized by creating materialized view of the subquery. The text
matching algorithm which is used by traditional researchers will fail to detect such
kind of commonality amongst the queries Q4 and Q5. To overcome this problem we
have used the execution plan tree as a basis for finding similarity between trees and
detecting similar subqueries because of the following facts.

1. If the two queries are similar, then their execution plans trees are also the same.

2. If the two queries are having the same subquery, then their execution plan trees
are having the same subtree components.
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With tree mining, we will be able to find a common subtree in the query plan trees
of Q4 and Q5. Therefore, the problem statement is defined as “To find a set of
materialized view queries” [4] from the existing query load by mining database of
query execution plans such that:

1. The set of materialized views should optimize a large number of time consuming
queries.

2. The set should have low cardinality to avoid storage overheads and data syn-
chronization costs.

Once “execution plan tree” is decided as the basis of similarity then the next chal-
lenge is to design algorithm which efficiently mines frequent tree components from
the set of millions of trees. General frequent itemset mining or graph mining algo-
rithms cannot be applied because of specialized nature of plan trees. So the spe-
cialized frequent tree algorithm is designed by providing heuristics and correctness
proof of the algorithm is provided.

3.3 Terminologies and Examples

In this section, we first define a few terminologies used for explaining our tree mining
algorithm which is used to mine database of query execution plans which are in the
form of binary trees.

View: A view is a derived relation, defined by a query in terms of base relations
and/or other views.

Materialized view: A view is said to be materialized if its query result is persis-
tently stored, otherwise it is said to be virtual. We refer to a set of selected
views to materialize as a set of materialized views.

Workload: A workload or a query workload is a given set of queries, Q = {Q1, Q2,
. . . , Qn}. Each query in the query workload can be described using its frequency
and cost of execution.

View selection: Given a database schema and a query workload, the objective
is to select an appropriate set of materialized views to improve performance
of database in processing the workload, i.e. in executing queries in the work-
load. The ideal view set can comprise queries which are useful in optimizing the
performance of a large number of queries in the workload.

Tree: Tree is a directed acyclic graph denoted as T (R, V, L,E), where V is the set
of nodes in T ; R is one of the node of T and is the root of T ; L is the set of the
labels of the nodes; and E is the set of directed edges in T . All trees considered
in this paper are rooted labeled trees.

Query and query plans: Every query has a query plan associated with it. A query
plan shows the execution path of the query [12]. Most of the Database Manage-
ment Systems (DBMS) use binary trees to represent the query execution plans
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where leaves indicate the data source and node indicates the type of operation
such as join. Though we have designed an algorithm based on the assumption
that the query plan is in the form of binary tree, the algorithm can be easily ex-
tended for generalized plan tree. Figure 1 indicates query plan for the following
query.

Select e.ename, e.city from employee e where e.ename in (select c.ename from
emp company c where c.cname = ’ACC’ and c.salary > (select avg (salary) from
emp company)).

SELECT

HASH JOIN- RIGHT SEMI

VIEW VW _NSO_1 TABLE ACCESS EMPLOYEE
TABLE FULL

TABLE ACCESS EMP_COMPANY
TABLE FULL

SORT AGGREGATE

TABLE ACCESS
EMP_COMPANY TABLE FULL

 

Figure 1. Query plan for the query

Each node in the query plan tree represents an operation. We extract these
query plans from all the queries present in the query load. These plans constitute
the tree database (TDB) which is used as an input for the tree mining algorithm.
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3.3.1 Query Subtree and Supertree

Consider the two trees T (R, V, L,E) and T ′(R′, V ′, L′, E ′) based on tree definition in
Section 3.2.5. Assuming T ′ as a subtree (embedded tree) of T (T ′ ⊂ T ). It implies
that V ′ ⊂ V , E ′ ⊂ E, L′ ⊂ L, L′(V ) = L(V ). If (v1, v2) ∈ E ′ and v1 is the ancestor
of v2 in T , then it is preserved in T ′ also. If T ′ is subtree of T then T is called
a supertree of T ′.

In our paper we are considering only those embedded trees whose set of leaf nodes
is a subset of leaf nodes of a tree. Any embedded tree which does not terminate
strictly at the leaf level of an enclosing supertree is not considered a valid subtree.
Only such subtrees represent a valid query component like subquery or part of query
on which materialized view can be created. Figure 2 indicates the subtree.

A

D E

F G

H I

 

Figure 2. Subtree which represents a subexpression or a subquery

3.3.2 Tree Database (TDB)

It is a set of query execution plan trees collected from traces of database management
system. The dataset containing query plans is in the form of binary trees. This data
can be easily obtained from the trace utility provided by database management
systems. The trace utilities normally dump data in relational tables which includes
sql query text, query execution plans. Each query plan in the TDB is associated with
an identifier (SQL ID). It also provides information like number of logical reads, cost
of query and number of executions of each query. All such information is available
in the dynamic dictionary views which can be easily extracted. The tree database
which is extracted from such views is referred to as the query workload.

3.3.3 Support

Given the tree database TDB, assuming a tree T ∈ TDB, and S ′ is a subtree of T ,
then support of subtree S ′ equals to the number of instances of S ′ in TDB including
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the instance(s) in T . The task of frequent subtree mining from TDB with given
minimum support σ is to find all the candidate subtrees that has support at least
equal to σ. The support for subtree given in Figure 3 in the database given in
Figure 5 is 2.

A

D E

Figure 3. Support of a subtree (i.e. a subquery) is the number of its occurrences in all the
query plans

The subtree A-D-E is present in two trees shown in Figures 5 and 6.

B

A C

D E

F

A G

D E

A

D B

Figure 4. Sample tree dataset (4.1, 4.2, 4.3)

3.3.4 Threshold and Frequent Subtree

It is the minimum support value which qualifies the subtree to be get included into
a list of frequent sub-trees. If the support of a sub-tree is greater than or equal to
the specified threshold (% value of total trees), then that subtree is called a frequent
subtree. The support of subtree S given in Figure 3 is 2. If threshold is 2, then
sub-tree S is frequent. If the minimum support value is decreased then more trees
will be qualified as frequent trees and more number of materialized views will be
created. If more materialized views are present then the high synchronization cost
of the materialized views will have adverse impact on performance so the minimum
support value should be carefully chosen according to requirement of application.
In this paper, for experimentation, the support value is chosen as 50 % so that the
optimization is done with less number of materialized views. If the application is
having a large number of transactions then this value can be increased to create less
number of views, and if the application is having only a large number of retrievals
where materialized view synchronization cost is negligible then the support count
can be decreased to optimize more queries using materialized views. The value of
50 % allows the user to check performance and adjust it according to the nature of
the application.
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3.3.5 Maximal Frequent Subtree

The subtree S of any tree T is said to be maximal frequent subtree if S is frequent
and there is no supertree S ′ of S in tree T such that S ′ is frequent. In other words,
there does not exist any frequent tree whose subtree is S. If materialized view is
created on maximal frequent subtree then large part of the query is optimized [30].

3.3.6 GAIN Measure (GM)

It is percentage reduction in the number of logical block reads after a query set
is optimized using materialized views. For example, a user fires a query “Select
sum (salary) from employee group by department name” then it will require 2 000
logical block reads if the table “employee” occupies 2 000 blocks on the disk. If the
materialized view is created on the same query then it will store department wise
salary which will take very less space on the disk. If the size of materialized view is
10 blocks then the percentage reduction (GM) is (1 990/2 000) ∗ 100.

3.4 Tree Mining Algorithm

The proposed algorithm for mining frequent subtrees uses a recursive bottom up
approach, i.e., it traverses the search space in a bottom up manner starting from
the leaf. The method to mine the components is given below.

Input
TDB: Set of query execution plans
δ: Support Threshold
Output
FTDB: The list of frequent components (Subtrees) in trees and list of queries
associated with them.

3.4.1 Preprocessing

As, all the queries do not require optimization using materialized view, queries which
have very less cost, or which are very infrequent do not need to be optimized using
materialized views. To reduce the query load, the following preprocessing is done.

• Query cost is calculated in terms of the number of logical block reads. The
query is placed in the experimental load if (number of logical reads)∗ (frequency
of query) is greater than some threshold (theta).

• If the base tables of queries are frequently updated then refresh cost of materi-
alized view is high and such queries can be removed from experimental load.

• Within experimental load the queries are ordered using level of execution plan
tree.
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Variables
TreeNode: It is a data structure pointing to the node of the tree. All nodes in
a tree that are the children of TreeNode are accessible from this data structure.
In fact, each tree is represented by its root TreeNode.
TreeNode→ Left: Left node of TreeNode
TreeNode→ Right: Right node of TreeNode
N : number of query plans in dataset TDB
Tr: Parameter required for Threshold Pruning. Tr = N ∗ ((1− σ)÷ 100)
FrequentTreeMap<FrequentTree, List Of Sql Ids>: Map of frequent subtrees,
present along with their sql ids in which the subtrees are present.
TreeList: List in which all query plans are stored in the form of binary trees. In
this list, all elements are TreeNodes [refer]. All TreeNodes are pointing to root of
trees.
SQL Id List (T): List of all SQL IDs of which sql queries that includes component
subtree T .
MaximalFrequentSubtreeList: It is list containing all maximal frequent subtrees
encountered.

Algorithm: FrequentTreeMiner
Preprocessing;
FrequentTreeMap = ();
MaximalFrequentSubtreeList = ();
begin
for i = 0; i < N ; i++ do

MineSubTree(TreeList[i]); . (1)
end for

3.4.2 Analysis

For each query execution plan, all components are searched and if the component is
frequent then it is inserted in the frequent tree set as given in step (4) of the algo-
rithm. For each component, searching is done by calling function searchsubtree ()
in step (6), which tries to find out whether the tree component is a subtree of the
existing tree and then the database of all the search trees is scanned as given in

Function: MineSubTree . The function MineSubTree returns
a query list which contains the subtree T only if T is frequent subtree, otherwise
it returns a null list.
Input
TreeNode: Tree which is to be tested as maximal subtree
Output
FrequentTreeMap: List of frequent subtrees
Status: Boolean variable to indicate whether specified tree is maximal subtree.
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Function MineSubTree (TreeNode) return boolean
if T is null then

return true
else

if T is already subtree of any tree in MaximalFrequentSubtreeList then . (2)
return true

else
if MineSubTree (T → left) and MineSubTree (T → right) then . (3)

if CheckSubtreeIfFrequent (T ) then
FrequentTreeMap. Insert (T, SQL Id List(T )); . (4)
return true

else
return false

end if
end if

end if
end if

Function: CheckSubtreeIfFrequent (TreeNode) . The
function CheckSubtreeIfFrequent (TreeNode T ) will check if support of the T is
greater than threshold, i.e., if T is frequent.
Input
TreeNode: Tree representing query plan or component of query plan
Output
Status: Boolean variable indicating whether the given tree is frequent.

Function CheckSubtreeIfFrequent (TreeNode T ) return boolean
startIndex = index for tree next to tree that contains component T .
count = 1;
for i = startIndex; i < N ; i++ do . (5)

if searchSubtree (TreeList[i], T ) == True then . (6)
count = count + 1 . (7)

end if
end for
if count >= ceil (Tr ∗N) then return true; else return false;
end if

Function: searchSubtree (TreeNode T , TreeNode subT)
This function checks whether any tree subT is present in tree T (subT represents
the TreeNode, i.e., root node of tree to be searched as explained earlier and
similarly, T represents TreeNode, i.e., root of tree in which subT is to be searched).
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step (5). Step (1) executes N (size of query database) times while step (3) which
recursively searches for each component in tree executes (L − 1) times where L is
level of the tree. For each component, the database of query plans is searched in
step (5) which will also be executed N times and each such search at step (6) takes
time proportional to (L − 1). Therefore, the total complexity of the algorithm is
(N ∗ (L − 1))2. To get all frequent components, the usual method is to enumerate
all components that are in the dataset, and count the support of these item sets,
and decide whether they are frequent or not. However, when the number of distinct
items is huge, the algorithm that explores the entire search space may be inefficient
due to the exponential increase in permutations. To avoid this problem, we employ
a few techniques to reduce the search space. Here L, level of the tree, is dependent
on the user query and it cannot be controlled, therefore the only way to reduce the
cost of the algorithm is to reduce “N” by considering only queries which require
performance improvement. Thus, N can be reduced using the following steps.

(1) Threshold pruning: While determining whether a new component is frequent
or not, after verifying Tr trees [where Tr = N ∗ (1 − Threshold/100)] without
a single instance of a new component, the new component is automatically
considered infrequent. A component which does not occur even once in Tr trees
(where Tr is Tr = N ∗ (1− Threshold/100) and N is the number of trees in the
dataset) is considered infrequent. This is because even if it occurs in every tree
after Tr trees, it still will not cross the threshold. Thus, new components are
not mined after Tr trees. This step can be introduced after step (7) as follows.
If (count < Tr) break.

(2) Bottom up pruning: If the component containing two children of a tree
node are infrequent then the component containing their parent will also be
infrequent. So, while parsing any tree, suppose we find one node infrequent,
we do not need to consider its parent, resulting in pruning the search space
significantly. This is implemented in step (3).

(3) Maximal frequent lookup pruning: If a component is already frequent then
there is no need to check it again as a lookup list of all maximal frequent subtrees
is maintained. Every time a component is encountered, it is first searched in the
look up list to check if it is a subtree of any other maximal frequent subtree,
if it is found in the list, no further checks are carried out to find it is frequent
or not, thereby reducing the search space drastically. In absence of the above
mentioned look up lists, for every instance of each frequent component, we would
have to search in the complete tree database resulting in huge inefficiency for
large datasets. This is implemented in step (2).

(4) Filtering based on data source: Step (3) ensures that all the query com-
ponents are searched and “for loop” specified in step (1) ensures that the whole
database of query plans is searched so that the algorithm ensures that if some
component is frequent then it is stored in the frequent set. If the component is
not frequent then it will not be inserted in the frequent set as given in step (4).
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The algorithm ensures that the output frequent set contains all possible frequent
components in the database and components that are not frequent will never
get a place in the output set.

3.5 Candidate Queries for Materialized View Creation

The aim of the proposed method is to find candidate queries for generating the
materialized views, which otherwise cannot be obtained by conventional state of
the art methods. The tree mining algorithm discussed in the previous section gives
frequently occurring subtrees (components) and list of queries associated with each
frequent subtree as an output. These frequent components are then analyzed and
used to create materialized views. The following examples shows how the candi-
date queries are obtained by the algorithm which otherwise cannot be obtained by
conventional methods. For example, suppose there are two queries:

Query 1: select e.cname from emp company e where e.salary > (select avg (salary)
from emp company) group by cname;

Query 2: select e.ename, e.city from employee e where e.ename in (select c.ename
from emp company c where c.cname = ’ACC’ and c.salary > (select avg (salary)
from emp company)).

The execution plans of both the queries are shown in Figures 5 and 6, respectively,
with the frequent component associated with them.

The materialized view mv2 is created on this frequent component as of the
queries on the schema of the data warehouse which contains five dimension tables
PRODUCTS:

select cname, max(salary), avg(salary), sum(salary), min(salary),
count(salary) from emp company group by cname.

The materialized view mv2 will optimize both queries.

4 EXPERIMENTAL EVALUATION AND RESULTS

The experimentation was performed on a 2.3 GHz Intel core i5 processor with 4 GB
main memory, running on Mac OS X. This experimentation was done using standard
query workload mentioned in [26] on Oracle 11g Database Management System.
The workload consisted of TIMES, CHANNELS, PROMOTIONS, CUSTOMERS
having 15, 31, 4, 8 and 15 attributes (columns), respectively. It also contains one
FACT table named SALES which contains two measures “QUANTITIES SOLD”
and “AMOUNT SOLD”. The performance on standard workload is compared to
the recent established algorithms MVFI [26], ARMMVVM [13] and CBMVS [28]
using GAIN measure (GM) [28] as a performance criterion. The optimization tests
were carried out using standard query workload of data warehouse in which size is



A Novel View Selection Approach in BI Systems 489

SELECT( CNAME )

HASH JOIN- RIGHT SEMI

VIEW VW _NSO_1 TABLE ACCESS EMPLOYEE
TABLE FULL

TABLE ACCESS EMP_COMPANY
TABLE FULL

SORT AGGREGATE

TABLE ACCESS
EMP_COMPANY TABLE FULL

 

Frequent Component 

Figure 5. Query plan for Query1

Sr.
Dataset Size

View Selection Algorithms (Gain Measure)
No. MVFI ARMMVVM CBMVS Proposed

1 0.5 GB 5.5 5 4.4 6.1

2 1.0 GB 11 9 7.7 12.5

3 1.5 GB 17.4 13 10.5 19.8

4 2.0 GB 22.4 18 14.5 25.1

• MVFI – Materialized view selection based on frequent itemset mining algorithm.

• ARMMVVM – An association rule mining for materialized view selection.

• CBMVS or CBDMVS – Clustering based dynamic materialization view selection algo-
rithm.

• GM – Gain Measure.

Table 1. Comparison between recent algorithms with proposed algorithms on the standard
query workload
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SELECT ( ENAME, CITY )

HASH JOIN- RIGHT SEMI

VIEW VW _NSO_1 TABLE ACCESS EMPLOYEE
TABLE FULL

TABLE ACCESS EMP_COMPANY
TABLE FULL

SORT AGGREGATE

TABLE ACCESS
EMP_COMPANY TABLE FULL

 

Frequent Component 

Figure 6. Query plan for Query2

varied from 0.5 GB to 2 GB by controlling the number of rows in table SALES. The
result of the experimentation is given in Table 1.

The experimentation results in Table 1 indicate that there is large improvement
in GM compared to recent methods for all sizes of query work load by the proposed
method. We have also used synthetic and real life datasets for the experimentation,
to test the applicability of proposed method on varying types of queries. The real
data set is obtained from Management Information System of National Institute
of Technology, Nagpur. The majority of queries in almost all real life applications
consist of time consuming operations such as joins, aggregations and groupings,
hence we have taken query load which is a mixture of queries having such operations.
We have composed three query sets QS1, QS2 and QS3 having different composition
of join and aggregate queries. The tables referred in the queries use different columns
which are aggregated and grouped. We make sure to have more variations in datasets
in the form of aggregations and joins. The composition of data sets is described in
Table 2. The first row indicates query set QS1 executed on real database of “MIS-
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VNIT” which contains 2087 queries having 48 % join queries, 17 % aggregate queries
and 29 % queries using both joins and aggregates. The other query sets are shown
in successive rows.

Sr. No. QL DS N QJ QA QJA

1 QS1 Real MIS-VNIT 2 087 48 17 29

2 QS2 Synthetic 3 086 26 28 35

3 QS3 Synthetic 2 809 20 39 32

• QL – Query Load

• DS – Data Source

• N – Number of Queries (Total number of complex queries in the query workload)

• QJ – Percentage of queries involving only joins

• QA – Percentage of queries involving only aggregations

• QJA – Percentage of queries involving both joins and aggregations

Table 2. Dataset characteristics

The datasets were cached in the main memory during the algorithms processing
stage, to avoid high data access costs. The numbers of frequent trees which are
to be mined are controlled by parameter “frequency threshold”. If the threshold
is higher, then the algorithm produces less frequent trees and lesser number of
materialized views are created. Since the number of materialized views cannot be
large because of synchronization overheads, we have done the experimentation by
setting the threshold to 50 % of the total candidate trees (threshold is taken as
50 % with the assumption that around 50 % of the total workload will be having
frequent patterns. If more queries are to be optimized then the threshold can be
reduced). The performance is measured using GM. The performance results are
shown in Table 3 with different query loads. The proposed tree mining algorithm is
implemented in Java.

QL LR
View Selection Algorithms (Gain Measure)

MVFI ARMMVVM CBMVS Proposed

QS1 3 560 642 24.34 21.21 15.38 40.62

QS2 4 701 867 33.68 29.24 27.45 37.80

QS3 3 857 673 31.25 28.41 24.37 40.10

• QL – Query Load

• LR – Logical Reads before creation of materialized views

Table 3. Results showing comparative analysis of best known algorithms with proposed
algorithm on real and synthetic datasets described in Table 2

From Table 3, it is interpreted that the GM is considerably increased with the
proposed tree mining algorithm when compared to state of the art algorithms in all
types of query load because the proposed algorithm is designed to mine frequent
queries as well as frequent subquery components. It has also been observed that
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for the large datasets of query workload of the size 4 million, the improvement is
considerable.

4.1 Scalability

The scalability of the tree mining algorithm was analyzed by using query load of
three different sized datasets. The query load is obtained by using queries mentioned
in Table 2 multiple times. It was found that due to efficient pruning techniques,
the processing time increased linearly with size, though the worst case complexity
could be O(N2). The reason behind the experimental linearity is that if the tree is
already a part of the frequent tree, then the cost of finding the frequency of the tree
or the database scan is minimized.

Another reason for linearity could be that if a subtree is not frequent then its
supertree is also not frequent, hence there is no cost of extra database scan. The
performance of the algorithm is given in Table 4. In general, execution plans for
groupings and aggregations have trees of larger length and hence mining frequent
components takes more time. Since the algorithm is executed offline without any
hard time constraint, practically the execution time mentioned in the table is well
within acceptance level.

Datasets
No. of Queries in the Dataset

100 000 200 000 300 000 400 000

QS1 381 708 1 020 1 343

QS2 335 592 829 1 087

QS3 467 931 1 330 1 683

Table 4. Execution time of tree mining algorithm on different datasets with different sizes
(number of queries) of query load (time in seconds)

5 CONCLUSION AND FUTURE WORK

It is a challenging task to select a set of queries from a huge query load, for creating
materialized views. This is because such a set should not only be small, but should
also provide maximum benefit for optimizing most of the queries. Most of the earlier
methods rely on approximate text matching algorithms or finding frequent patterns
in queries which refers to same set of tables. Such an approach may not work if
frequent queries appear as sub queries.

In this paper, an attempt has been made to find frequent queries as well as
frequent subqueries. The proposed method uses “query execution plan” for finding
frequent query components instead of operating on query text. Such query plan is
represented as a binary tree which can then be extracted from dynamic dictionary
views which are provided by most of the databases and data warehouse systems,
making the proposed method feasible. In the proposed method, finding frequent
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components in a large set of queries is translated as finding frequent subtrees, and
efficient algorithms are proposed to extract subtrees with the correctness proof of the
algorithm. The proposed method suggests various pruning techniques to effectively
reduce the search space and to combat the huge query load. Certain queries which do
not require materialized views are preprocessed and removed from the experimental
load. The proposed method is compared with standard workload mentioned in the
literature and its performance is compared with the recent methods available in
the literature. The experimental evaluation indicates that the proposed method
gives better performance than all the recent methods irrespective of query load
size. The detailed study is done on real and synthetics data sets to check the
performance on various types of workloads. The experimental evaluation indicates
that the performance is improved to very large extent by the proposed method in
all types of query workloads.

In the future, the selected queries can be analyzed using data synchronization
costs of materialized views and total optimization can be done considering reduc-
tion of query cost and increase in data synchronization costs. The queries having
high data synchronization costs can be modified and optimized using conventional
methods and can be pruned in preprocessing steps.
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Abstract. This paper presents an approach to handling frequent variations of mod-
eling languages and models. The approach is based on Domain-Specific Modeling
and linking of modeling tools with adaptive Run-Time Systems. The applicabil-
ity of our solution is illustrated on an example of domain-specific languages for
robot control. Special attention was given to the following problems: 1) model-
level debugging; 2) performing fast transformation of models to native code for
various hardware platforms and operating systems; and 3) specification of views
and view-based generation of applications for validation of meta-models, models,
and generated code. The feedback for automated refinement of models and meta-
models is provided by a custom adaptive Run-Time System. For the purpose of
synchronizing models, meta-models, and the target Run-Time System, we introduce
action reports, which allow model-level debugging. In order to simplify handling of
frequent model variations, we have introduced the linguistic concept of a modifier.
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1 INTRODUCTION

In this paper, we communicate our experience concerning the development and
application of Domain-Specific Modeling (DSM) and adaptive Run-Time Systems
(RTS) for robot control. We present typical problems and our solutions related to
the practice of:

1. constructing and applying robot-motion control languages (RMCL);

2. frequent variations of robot control models;

3. model execution and model-level debugging, i.e., incremental updating of control
logic; and

4. parallel refinement of robot control models and modeling languages.

Our approach, which is based on the DSM architecture [1], is named the DVMEx Ap-
proach. In order to verify the approach in practice, we developed run-time systems,
compilers, interpreters, and modeling tools, all of which comprise the DVMEx IDE.
Besides using our components to verify the approach, we also employed MetaEdit+
WB and MetaEdit Modeler [2]. These tools have been successfully used in various
domains, e.g., automation, control and embedded systems.

There is a need for significant improvements of software development in automa-
tion and robot control, especially in the development of tools for:

1. formal specification and execution of control processes, and

2. construction and application of RMCLs.

For each level in the architecture of DSM solution, we specify one of the most
important problems.

The level of the modeling languages. General purpose graphical languages
(e.g., UML) are often used for modeling of specific processes, but they are not
sufficiently understandable to users in a particular application domain.

The level of the model transformations. Transformations are complicated for
an average programmer. Moreover, they are focused, or even limited, to a single
target general purpose programming language (GPL).

The level of the target interpreter or run-time system. The target inter-
preter in most cases does not contain meta-data describing the semantics of
a control process, but only commands concerning the semantics of basic log-
ical and arithmetic operations. A single invalid basic operation may lead to
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an unexpected or unresolvable state. Parsers used for reverse construction of
class diagrams or state diagrams are part of most UML tools, but they do not
solve the problem of losing the relationships between the modeling tools and the
target interpreter of specification.

The DVMEx Approach solves these problems in the following manner:

The level of the modeling languages. Instead of GPLs and existing robot-
motion control languages or operating systems, such as Robot Operating System
(ROS [3]), more DSLs are constructed and used. Over the DSL models, three
views are initially defined, one of which is focused on the topological properties
of a robot arm, the other on motion and control logic, and the third on the
real-world environment where the robot performs actions. Due to the usage of
DSLs, all these views are close and comprehensible to end-users, domain spe-
cialists, and software architects. Figure 1 shows the three views on the robot
control model. Three different DSLs, which are integrated at the meta-model
level, are used simultaneously for the modeling robot task. The first language,
which is presented in the left-hand side in Figure 1, is aimed at specification
of topological properties of a robot arm, such as number of joints and fingers,
length of each segment, constraints for rotation and elevation, etc. The second
language, which is presented in the middle of Figure 1, is used for description
of a state machine, i.e., an initial set of actions and states, as well as their re-
lations with signals coming through various sensors, and commands explicitly
issued by end-users. Since the function-block language (IEC 61131-3) is used in
the automation and industry, it is convenient that this DSL uses function-block
diagrams with graphical syntax that is close to users from the concrete appli-
cation domain. The third language and submodel (right-hand side in Figure 1)
are used for description of environment in which a robot performs actions. It
is to the greatest extent specific for the application domain. When it comes to
the drawing of portraits or sketches, this language is used to specify motions,
canvas dimensions, canvas distance, rotation and elevation in 3D space, relative
to the reference point of the robot arm. When there are obstacles between the
canvas and robot arm, then the DSL for motion specification should include
concepts for expressing the effects of obstacles on motion. Figure 1 presents
an example of a motion variation, where curve is shifted upward, and then ro-
tated.

The first and second DSLs are being constructed quickly in practice, and the
validity of the specification can be more easily verified than in the third lan-
guage. A simple construction of language concepts for 3D representation of
motion is not expected from a general purpose DSM tool. Therefore, this spe-
cific problem is solved by using action reports [4] and more advanced libraries
or 3D visualization components, which are not part of DSM tools. Additional
descriptions may be found in the section devoted to the model-level debug-
ging.
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Figure 1. Views on the DSL for robot control

The level of the code generators. An interpreter of MERL-like specifications
is implemented [2] for M2T (model to text) transformations, to create code and
code generators (generators of generators). Starting from an instance of a model
of certain type, the interpreter of MERL-like specifications generates the code
concerning the control logic, “meta-logic”, and “meta-arithmetic”, as well as ac-
tion reports [4]. Action reports synchronize the state between the model, RTS,
and monitoring application, unless the modeling tool is used for monitoring.
They are the means for model-level debugging and model execution. The code
concerning the “meta-logic” and “meta-arithmetic” is described in Section 5. In
brief, this code serves two basic purposes:

1. it increases reliability of control logic by implementing different strategies
for recovering the system from an invalid state; and

2. it detects atypical states of the control logic and provides feedback to the
modeling tool, which is used to refine the DSL.

The level of the target interpreter or run-time system. The Run-Time
System (RTS) is conceived and implemented as an adaptive component that

1. executes both the instructions belonging to a high level of abstraction and
binary (native) code;

2. receives and links specification increments without interruption; and

3. simultaneously executes the basic control logic and “meta-logic”.
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When compared to the similar Programmable Logic Controllers (PLC) used
to execute IEC 61131-3 programs [5], it is extended with the concepts from
IEC 61499 [6] and a set of libraries for various application domains. In this
manner, the modeling of distributed controllers, which is based on finite state
automata, is simplified.

Besides Introduction and Conclusion, this paper has six sections. We first give
a short description of the architecture of our DVMEx solution for robot con-
trol (Section 2). Different approaches to solving the problem of unexpected
system states, frequent model variations and their implications regarding the
construction of modeling languages are described in Section 3. This section
also features a short review of papers related to the RTS-driven approach to
the application refinement and the construction of UML profiles for the pur-
pose of model-driven development of industrial process control applications.
In Section 4, there is an overview on the evolution of modeling languages,
from more general to more domain-specific. We outline different approaches
to language construction, from the classification using subtypes to modifica-
tions, which are a linguistic concept allowing specification of robot actions
at different abstraction levels. In Section 5, we elaborate on ways to specify
the “meta-logic” and “meta-arithmetic” at the level of the model, code gen-
erator, compiler and run-time system. In Section 6, we describe a platform
for model-level debugging, which includes visual tracing. Section 7 contains
related work. In Section 8, we conclude this paper by outlining our generic
model of DSL refinement and listing our theoretical and practical contribu-
tions.

2 THE ARCHITECTURE OF A DVMEX SOLUTION
FOR THE ROBOT CONTROL

The architecture of DVMEx Solution for the robot-motion control (Figure 2) repre-
sents an extension and a concretization of the basic architecture of DSM solutions [1],
which encompasses a DSL, code generator, domain framework, and interpreter or
target system. Special attention is devoted to:

1. extending a target interpreter (run-time system), which, in addition to executing
complex control operations, executes also meta-logic operations and provides
feedback to modeling tools;

2. extending code generators, to which we added action reports, which synchro-
nize the state of the run-time system with tools for modeling and meta-modeling,
and various applications; and

3. using modifiers to construct, slice and merge modeling languages.

The meta-modeler creates DSLs using tools for meta-modeling. These languages
may be created separately for each domain, i.e., each type of the task that the robot
is supposed to execute.
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Figure 2. The architecture of the DVMEx solution

There are several groups of code generators. The first one includes generators
that generate source code in IEC 61131-3, some GPL, quasi assembly instructions of
higher abstraction level or, directly, native code for a particular processor type. The
second group includes “generators generating generators”, i.e., generators of action
reports. They provide the high-level synchronization between the modeling tools,
target RTS, and monitoring applications. The third group of generators is used
to specify the semantic actions executed during model changes. These generators
define rules concerning the integrity of models and transactions, as well as states
in which there is synchronization between abstract models and code executed in
the RTS. The fourth group includes generators that generate documentation in the
PDF or HTML format, either directly or by using document description DSLs as
intermediaries.

The framework of the DVMEx solution for robot control includes

1. compilers created to support more thorough specifications of control processes;

2. libraries; and

3. web services.

At the framework level, there are also libraries used to implement complex 3D
motions and actions, rules of “meta-logic” and “meta-arithmetic”, which is further
elaborated on in Section 5.

The run-time system interprets or executes specifications created from abstract
models. The available versions support Linux, WinCE and Win XP/7/8/10, from
which they utilize memory and file managers, as well as the TCP/IP protocols. The
RTS features a preemptive adaptive scheduler managing tasks of different types and
priorities, synchronized with the drivers and monitoring applications. Unless the
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modeling tool is used for monitoring, client applications are generated using a code
generator. In this manner, the action report interpreters, which also support Linux,
WinCE and Windows platforms, are used as default applications for the model-level
debugging. The visual debugging also uses services of DVDocGen Framework ([7])
to generate PDF or HTML documents. Document scripts, which are specified using
a textual DSL for documents, are dynamically generated during the model debug-
ging, providing PDF and HTML documentation for the verification of test cases.

The mechanism concerning the feedback from the RTS to the other levels that
are part of the DVMEx architecture is implemented by monitoring the model execu-
tion in the RTS and by event triggering. The RTS recognizes predefined (or built-in)
states of the interpretation or execution of control logic: Before variable initializa-
tion; After variable initialization; Before state changed; After state changed, etc.
The monitoring application or modeling tool sets a filter that determines the par-
ticular state changes together with the parameter they produce, which are relevant
and should be considered. Besides the default states of the RTS, the IEC 61131-3
language and compiler are extended with events, similarly to GPLs. The request for
state change is defined as a 4-tuple (Condition, Event ID, Parameters, RTS State).
These requests may originate from the hardware level, drivers, control logic and
meta-logic code.

In addition to these states, which are considered valid, the RTS detects the
invalid variable values or wrongly executed arithmetic and logical operations. The
strategy for resolving these situations is presented in detail in Section 5. Each of the
feedback connections from the lower to the higher abstraction levels provided meta-
data that are sufficient to make a reference to an instance of the object, relationship,
role, model, and code generators that generated certain code portion.

We conclude the overview of the architecture of the DVMEx solution with a re-
mark that it is an extension of DSM architecture. The level of the code generator
is extended with action reports, enabling the visual debugging and model-execution
without additional programming. The RTS is adaptive and supports updating of
the code that is responsible for control logic and meta-logic during run-time.

3 UNEXPECTED STATE OF THE MODELS
AND CODE AND MODEL VARIATIONS

An unexpected state represents a paradigm uncovering problems that are related
to errors in RTS or in models, model variations, the incompleteness of a modeling
language, or the non-adaptivity of the run-time system. There are at least three
environmental causes of unexpected states of a system:

1. the lack of appropriate modeling concepts (an incomplete DSL);

2. the lack of code generators; and

3. insufficient power or flexibility of the target RTS that interprets or executes the
generated code.
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The software for automation and robot control that handles a large number
of unexpected states is inefficient and expensive, particularly if general purpose
languages or tools are used to create and maintain the software. The appearance of
an unexpected state diverts production activities from the expected workflow and
decreases the level of their automation. The main characteristics of the unexpected
state with respect to the impact on the automation and robot control process are:

• during the execution of a task, an unexpected state cannot be abstracted as any
existing model or pattern, described using the existing DSL concepts;

• the actors of a control process are capable of perceiving unexpected states by
using their own experience, personal creativity, and the level of knowledge of
the modeling framework and language;

• unexpected states are also the ones for which code generators cannot produce
the expected code; and

• the control logic of systems in which unexpected states are frequent is most often
generated or programmed again, and, during the switch to the new code, the
whole control process is temporarily stopped.

A significant amount of research aims at providing support for modeling variant-rich
software systems (Software Product Lines) in general. Patterns play an important
role in solving the problem of specifying variations. There are a lot of references
covering application of patterns in DSM. In [8], the process of creating UML pro-
files for particular domains is presented. In [9], the authors discussed the role of
patterns in the construction of valid DSLs. One of the languages for this purpose is
the Common Variability Language (CVL) [10]. CVL is a generic language for mod-
eling variability in models in any DSL based on the Meta Object Facility (MOF).
Although conceptually quite comprehensive, CVL still does not offer an adequate
support for systematic refinement of models and modeling languages. The following
practical constraints limit the use of CVL for this purpose:

• specifying CVL fragments and their referencing need to be more intuitive and
thus easier for average users;

• specification of a large number of variations at the level of a model significantly
diminishes model understanding and usability;

• specification of variations needs to be provided as a User-Driven Modeling
(UDM) activity or influenced by the run-time system, due to the requirement
of systematic gathering and classification of variations; and

• a specification of variations needs to be provided not only at the level of models,
but also at the level of a target language to which the models are transformed.
In practice, this is motivated by the requirement that the effects of a variation
may be scoped to different abstraction levels. For example, variation effects may
be scoped both to main control logic and monitoring applications.
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For the purpose of synchronization we worked out incremental modeling, which
includes reliable “on the fly” validation of as many states as possible at the side of the
running target system, instead of emulators. We propose improving synchronization
that provides:

1. specifications of model variations and synchronization of abstract models, and
executable code at the level of meta-model and code generators;

2. systematic refinement of the DSL by means of an analysis system states; and

3. the introduction of the concept of a modifier, as means to flexible systematic
classification of system states and model variations.

In Figure 3, we present a DSL for modeling of a robot arm. This language, with
minor additions, may be used in practice for modeling different types of grippers
and industrial robots. This model serves as a running example that illustrates how
our approach may alleviate some of the important problems in construction and
refinement of DSLs and models, multilevel modeling, model variations and model
execution.

The robot arm consists of one or more fingers, each further composed of one
or more segments. FingerSegment represents the base object type in the DSL for
arm. By modifying this type, we created additional types: Joint, Phalangs and
DistalPhalangs (see the upper section of Figure 3). Each modification is represented
by modifier object, a modification relationship and the roles of the base object
and the modified object. Furthermore, the arm also includes Carpals, RootJoint
and Underarm. The ArmAction object acts as a provider of position, elevation
and rotation of finger segments. During language testing, it may be convenient
to test only some of its elements or submodels, e.g., only two fingers. The formed
relationships with the ArmAction object determine which of the fingers are included
in model interpretation. The purpose of such an approach to DSL construction is
to modify the metamodel through a model instance. This is achieved by modifying
default values, and introducing (or removing) attributes and relationships in order
to create new types, supertypes, subtypes and object instances. On each model
change, during visual debugging, the following activities are performed:

1. control logic code is generated;

2. a description of the arm’s topology is generated; and

3. the model is executed to serve as a visual debugger [11].

Modifiers may be used to express significantly more complex relationships that
are used for:

1. multilevel modeling, which combines inheritance and instantiation;

2. inheritance of a type from an instance, a type from a type, an instance from
an instance, a type and an instance from the generated code; and

3. specification of a set of allowed model variations.
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Figure 3. Modifiers as means to DSL refinement

In Figure 3, the modification relationship is represented by a diamond shape
with the M symbol inside. Modified objects are denoted by 〈Mod:modName〉. The
semantic of property modification may be: instance, denoted by the (:); new prop-
erty, denoted by the (+); or inapplicable property, denoted by the (-) symbol. Within
relationships, modifications can change and remove relation and role types. The first
two property roles are intuitively clear as they are available with the same meaning
in the majority of contemporary modeling languages. The inapplicable property is
introduced as a counterpart of the potency concept from the UML extension [12].
However, in our solution it does not require predefining the allowed depth of instan-



Model Variations and Automated Refinement of DSM Languages for RMC 507

tiation and does not restrict any attribute to be applicable again to some subtype
or instance.

The example from Figure 3 shows a portion of the DSL, in which the types of
robot arms are described. At the most general level, the FingerSegment is defined
as a segment for which the elevation and the size are known. For the sake of the
completeness of the RMCL specification, a constraint must be used to explicitly ex-
press the rule that the Elevation depends on the elevation of the previous sequential
segments. The Joint object is a modification of a segment with the default size of
1 cm and the default elevation of 90 degrees that is also extended with the values for
the position of the joint center and the rotation angle (with respect to the X axis
in an XY coordinate plane). Joint is a subtype of FingerSegment. The Phalanges
object has the default size of 3 cm. However, the rotation angle is not applicable
to this object because the corresponding segment may move only along a single
axis. The same is true for the position because Phalanges is linked to a joint. As
it is necessary to know the base joint for each Phalanges, we introduced the Fin-
gerRoot property. Although it may appear that DistalPhalanges is a subtype of
the Phalanges object, that is not the case here. It has the default size of 2 cm and
the FingerRoot property is redundant because there is at least one joint between
Phalanges and DistalPhalanges that is not the root of the finger.

The presented sequence or hierarchy of object modifications is only one possible
case, as variations and their semantics depend on mechanical and topological prop-
erties of the robot arm for which various types of programs have to be generated.
The given example is an illustration of the problem of frequent variations of mod-
els and modeling languages, which may be solved by multilevel modeling, i.e., by
integrating modeling and metamodeling.

In order to illustrate such an approach to language construction, we provide
an examples of textual representation (the so-called DSL script) of robot arm ob-
jects. Each arm specification is a sequence of the DSL scripts given below.

〈Joint.Size:1.5 cm,Position(10,20,10)〉
The joint of size 1.5 cm at the initial position (10, 20, 10)

〈Phalanges〉
The default Phalanges of size 3 cm

〈DistalPhalanges.Size:2.2 cm〉
DistalPhalanges of size 2.2 cm

One expected purpose of the RMCL is to simultaneously express different as-
pects of robot control which may depend on mechanical, thermal, electrical or visual
properties. For the purpose of integrating the languages used to model individual
aspects, it is necessary to provide a sufficiently flexible mechanism for establishing
semantic relationships between language concepts that are related to different as-
pects. The herein introduced modifiers could be the mechanism for this kind of
meta-modeling. The code generators, together with action reports, which act as an
interface between the model and the DSL scripts, allow for different interpretations
of the examples from Figures 3 and 4.
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4 DSL REFINEMENT ON EXAMPLES

The practical benefits of using DSM and modifiers are illustrated in the development
of software for the robot that paints. We set up a small DSM team consisting of
a software engineer (a DSM specialist), domain expert (a mechanics constructor)
and end-user (a painter). The software engineer constructs the language, trying to
identify domain-specific concepts from the lower to higher level of abstraction. In
this process, the greatest assistance is rapid DSL verification using a set of initial
models and a target interpreter, or run-time system supporting an incremental up-
date. The domain expert knows the problems that his or her robot is capable of
solving, current and potential user requests, and what kind of robot arm can be
made. The greatest assistance is a graphical language and a software tool for quick
functional specification, and verification of the application of existing and planned
robot models in various environments. The end user, or a person in charge of the
application testing, expects to have applications, which without special training, can
be used for a variety of robots, and also to automatically document the ability to
use them for various tasks.

Figure 4 shows several examples of motions of a robot arm that draws por-
traits and sketches using a set of curves. Curve parameters are specified by an end
user or they are obtained automatically by analyzing the image or 3D objects and
recognizing its parts. Figure 4 a) is obtained by combining the basic types of mo-
tion in 2D, such as straight lines, arbitrary jumps, circle, sinusoids, impulses, and
Bezier curves. The DSL concepts for modeling robot motion logic that allows draw-
ing a portrait on a canvas consists of: a canvas, base type “Motion” and subtypes
that match curve types, as well as concepts for describing a robot arm topology.
Target framework may be an existing robot control language, but after the con-
struction of the first DSL for the robot motion control, it is already clear that the
framework should be also improved and simplified. In our case, the DVRobCon
Motion Framework reduces all the motions to the finite set of curves with prop-
erties: the start and end point in space, curve type, amplitude height, number of
impulses or oscillations, rotation angle, and curve offset. With such a framework,
model objects representing motions can be mapped one-to-one into motion frame-
work or library. When a DSL should include concepts such as eye, nose, eyelash,
such instances from a model are transformed into 1..M commands of the motion
framework.

Figure 4 b) shows the motion where a user at the time of motion sends a signal
or a command to the robot to draw the straight line of a certain length, relative
to the current point, and then return and continue the motion. Such a request
is solved by introducing a new language concept named Deviation Point, which
is not a true subtype of the basic motion types, because it also contains an event
(triggering an operation). If a robot arm uses a brush instead of a pencil or pen,
some of the lines can be drawn with different thicknesses – thinner to the ends,
and thicker in the middle (Figure 4 c)). We introduce a new DSL concept named
EyeLash, as a modification of the Bezier curve. Considering the domain expert
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Figure 4. Refinement of robot motion control language

experience (painter) the line from Figure 4 c) can be obtained by setting rotation
angle to 70 degrees and line (brush) offset to 5 mm (Figure 4 d)).

Further steps in refinement of the DSL for painting bring a modification of Bezier
curve, which contains impulses (Figure 4 e)). In the electronics terms, this is the
modulation of a Bezier curve with impulses. The curve performing modulation is
called a modulation pattern. Therefore, the DSL is extended with the concept
Motion Modulator. This modulator is a curve that affects one or a group of
curves, and depending on the orientation in the space, it produces new, complex
or composite motions. Although it is mostly clear, from the mathematical point of
view, how to implement such a path, things coalesce when it is necessary to ensure
continuous motion of uniform speed, accelerated, or motions which are re-modulated
at the run time. Such modulators, even the simplest ones, solve the problems of
performing complex 3D operations in CNC machines. These modulations give us the
freedom to decide about the portrait while painting, not in advance. In Figures 4 e)
and 4 f), modulation patterns are shown in the bottom, while in the top it is shown
resulting modulated Bezier curve for EyeLash.

The extension of the DSL for painting from 2D to 3D, i.e., from the DSL for
painting to the DSL for sculpting, is presented in Figure 4 g). A modern artist
desires wired lashes bent in a pulse-like shape. We introduce a new DSL concept
named 3D EyeLashes, whose shape, dimensions, inclination, thickness, etc., are
parameterized.

When it comes to a robot as a painter and Domain-specific Modeling, in the
process of refining DSLs, the goal is to create a set of modeling concepts that express
important characteristics of

1. painting epochs and directions,
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2. techniques and materials, as well as

3. individual characteristics of the painter.

We are convinced that objectives 1 and 2 can be realized to a significant extent
with at most two levels of modulation, i.e., modification of the base curves at the
time of painting or sculpting. When it comes to the construction of painter-specific
language concepts, modulation patterns should also express the motoric, intellectual
and emotional properties of painters or sculptors. Such patterns are formed both in
advance and at the time of work on a particular painting or sculpture.

Refining the DSL with concepts such as EyeLash that reflects the characteristics
of a painting direction or a painter also affects the objects of the control logic and
painting environment. Figure 5 shows the modifiers for identifying the subtype
of the function block that calculates the points in 3D space (libID), the brush size
(disCarpSize), the position of the canvas, the rotation center, and the set of curves for
drawing EyeLash (motAndPos). All individual modifiers are grouped into EyeLash,
as modification type. Default specifications of user applications are generated in
a human-readable XML format for interpreting under different operating systems
and hardware platforms (Listing 1). The specification contains several parts:

• submodels, or forms and subforms;

• visual properties of form elements in applications;

• commands for communication with the target RTS, and their invocation rules
(cyclic or upon event occurrence);

• commands for the exchanging properties or events between the form elements;
and

• list of modifiers with an identifier of the group they belong to.

ModelModifiers contain object modifications related to control logic, arm topol-
ogy, and objects in the environment, as well as their different layouts. During the
interpretation, an end user can select a group or individual modifier, to select view
and associated layout. The end user is also allowed to change properties in the
execution time. The DSL semantics cannot be changed through user applications,
but some properties, having influence on default values, can be changed. Updated
properties are taken from the modeling tool in run-time, and serve as the basis
for updating default property values or domain definitions. Beside meta-logic and
meta-arithmetic, which are described in the next session, feedback gained from the
target interpreter of applications is also used for automated refinement. The soft-
ware architect and end-users simultaneously “debug” the model and the generated
code. In the scenario of model execution, or visual debugging, after each change in
the model, the increment of program code for the robot controller, user applications
and action reports are regenerated. The time elapsed from the change in a model to
the new start of control logic and user applications is a few seconds. In most cases,
this is also the time spent for demonstrating the code and application validity.
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Figure 5. Representing and grouping of modifiers

5 META-LOGIC AND META-ARITHMETIC

By meta-logic and meta-arithmetic we denote a set of operations that provide ad-
ditional information about the context of the execution of logical and arithmetic
operations. In short, meta-logic includes tracking the status of logical operations,
while meta-arithmetic includes tracking the status of arithmetic operations. Both
operation types calculate the logical value regarding the correctness of operations
during execution and, by applying different strategies, may help make the control
process as stable as possible. Herein, both operation types are often referred to as
meta-logic. The DVMEx approach allows for the definition of meta-logic at each of
the levels forming the architecture of the DSM solution:

1. at the level of the meta-model and model, by means of language concepts, by
specifying the semantic domains of attributes and model constraints;

2. at the level of code generator, where code is generated for the rules of meta-logic,
as well as when rules are not explicitly expressed by the model;
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<Submodels>
<Submodel name=”Control l o g i c ” , . . . >

<SubmodelElems>
<Element name=”l ib ID ” Value=”MotLib 2 ” , . . . / >

</SubmodelElems>
</Submodel>

</Submodels>
<Application>

<Object name=”Canvas” Le f t =”60.0” , . . . />
</Application>
<RTS Commands>

<Events>
<event ob j e c t=”DVRobCon . doMotions” name=”OnSetValue”>

< ! [CDATA[DB SV ”DVRobCon . doMotions ” , ” ( ( ) ) ” ] ] >
</event>

</Events>
<Cyc l i c time=”200”>

<cmd cond i t i on=”CycleID=1” ac t i on=”DB GV ( varL i s t )”]]></cmd>
</Cycl ic>

<DirectMappings>
<mapping>

< ! [CDATA[ : . motionSpeed . SendToRTS( Value ) ; ] ] >
</mapping>

</DirectMappings>
</RTS Commands>
<ModelModifiers>

<ModelModif ier name=”motAndPos” GroupID=”EyeLash”>
<Object name=”Canvas”>

<update prop Items = ” . . . ” />
<update prop Le f t =”55.0” />

</Object>
</ModelModifier>

</ModelModifiers>

Listing 1. Specification of an end-user application

3. at the level of the target language compilers (in this case an IEC 61131-3), by
using properties that define meta-logic for certain types of data and operations;
and

4. at the level of the RTS, by defining filters that determine the detection and
reporting rules about the operation status and unexpected states.

In Figure 6 there is an example of meta-logic that is explicitly specified by the
model. The rounded upper right section of the figure illustrates the meta-model,
i.e., the modifier type, while the central section of the figure is devoted to the
model instance. The instance of the function block div2: DIV, which uses division
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i f Type='DIV ' then
'VAR

v a l i d a t e 1 :VALIDATE;
END VAR'
/∗ Code f o r DIV( s l i d e r 1 , s l i d e r 2 ) ∗/
v a l i d a t e 1 := VALIDATE( div2 .OUT, SDef ) ; '

e n d i f

Listing 2. An example of program code for validation

to calculate the length of the robot step based on the distance to some object
(sliders to the left), produces the undefined value. The domain-specific function
block VALIDATE determines the length of the step based on the input value shown
(produced) by the scale Sdef to the left. In order to resolve the unexpected state
of control logic, which is also invalid in this case, function block VALIDATE is
used.

In relation to the discussion of the modeling approaches in the previous section,
the approach is most similar to the modeling using modifiers. This kind of a DSL is
to a great extent an example of a modeling language (RMCL), which is often used in
practice. The textual representation (DSL script) of the model featured in Figure 6
may be of the form 〈DIV.validate〉valRepl Val.

In case the modeling language does not feature VALIDATE, but that kind of
a function block is available in the target language or library, the same meta-logic
may be specified using a code generator as presented in Listing 2.

Figure 6. Meta-logic at the level of the meta-model and model

In case function block VALIDATE is not available, the native code that checks
the input parameters IN1 and IN2 for DIV is generated. When a compiler is used
to implement the meta-logic, it generates additional native code instructions. The
native code checks the processor registers to determine the operation status (e.g.,
overflow, underflow, and divByZero) and assigns the status to a temporary result or
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variable. Native code for the meta-logic may be of the form shown below. In order
to be more readable, Assembly for Intel x86 processors is given in Listing 3. instead.
The assembly code sets status for a variable named DIV2. If any of variables used
for calculating is invalid, then the variable status will be also invalid.

Irrespective of the level at which the code for meta-logic is provided, we de-
fined several strategies concerning the evaluation of meta-logic expressions (Fig-
ure 7):

1. propagate – where operation statuses are propagated to all subsequent operations
in which some variable or temporary result is used;

2. reset assign – where the status is reset to valid whenever a valid value is assigned
to some variable;

3. reset cycle – where the statuses of variables are reset before each new program
execution cycle; and

4. ignore – where meta-logic is not executed, i.e., operation statuses are not tracked.

In the example in Figure 7, a function block for the data type conversion is
used, from a long to real value, but the input lreal value 5e+38 is greater than the
maximum real value. The type convertor is marked by tc:lreal to real, and the
symbol above which there is only tc is a graphical representation for assigning the
constant, which changes the output variable.

Figure 7. Different strategies concerning the meta-logic

The RTS allows for incremental updating of the code and dynamic change of the
meta-logic strategy. For the reliable functioning of control logic, the most suitable
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mov DIV2$status , 1
mov al , SLIDER1$status
cmp al , 0
jne ok3
mov DIV2$status , 0
ok3 :
movsx ebx , WORD PTR SLIDER1
mov al , SLIDER2$status
cmp al , 0
jne ok4
mov DIV2$status , 0
ok4 :
movsx ecx , WORD PTR SLIDER2
cmp ecx , 0
jne ok5
mov DIV2$status , 0
jmp sk ip6
ok5 :
mov eax , ebx
cdq
i d i v ecx
mov ebx , eax
mov DIV2 , bx

Listing 3. An example of generated Assembly code

strategy is reset assign. For the testing of control logic and model-level debugging,
the most suitable strategy is propagate. For the detection of deviations in the status
of control logic between the cycles of program execution, the most suitable strategy
is reset cycle. The ignore strategy is used in well-checked control programs, which
are automatically generated from well-checked models using well-checked modeling
languages.

6 PLATFORM FOR DSL MERGING
AND MODEL-LEVEL DEBUGGING

The efficacy of the construction, testing and application of new DSLs depends on
swift and simple utilization and adaption of existing languages (DSL reusability),
patterns and target systems that execute specifications. In the context of the the-
oretical discussion concerning syntax and semantics merging [13], we present our
practical solution – a platform that supports model merging and model-level debug-
ging which utilizes merged languages.

For the purpose of modeling in robotics and automation we use three DSLs,
which were merged by meta-model integration. In the example from Figure 8, the
first DSL (RMCL) is used to model topological properties of arm, foot or body, their
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motions and actions. The constructs from this DSL are shown in the form of a blue
hand. The positions of segments, with the exception of RootJoint, are not relevant.
However, relationships between segments do matter, as they determine topological
characteristics of the hand. The particular layout of the segments was chosen for
its more appealing look. For new cases, the construction of a DSL from the group
requires several days.

Figure 8. Platform for model execution and model-level debugging

The second DSL is a language for function blocks diagrams. The elements of
the language (named FBD DSL) are depicted as green rounded rectangles with in-
put and output ports. This language contains constructs of the target framework
according to the IEC 61131-3 specification. It is also extensible and acts as an in-
terface to an auto-adaptive run-time system. Code generators that are specifically
written for FBD DSL are generic and applicable to the merged language. FBD DSL
supports using a model to describe control logic to the greatest detail (the level of
variables and operations), instead of making it part of the code generator. The rela-
tionships between objects of different DLSs are expressed by mapping the properties
of RMCL objects to the ports of function blocks in FBD DSL and vice versa. The
complexity of the model may arise as a result of the presence of objects from differ-
ent DSLs and redefinitions of linguistic concepts in the same instance (Figure 8, left
part). However, this may be resolved through the DSM tool by utilizing different
model views (application, control-logic, topological, domain-specific) and applying
decomposition.

The third DSL features linguistic concepts that describe objects and properties
of the environment in which the robot operates. It is constructed by modifying
a set of general-purpose linguistic concepts, such as analog and digital controllers,
sensors, scales, switches, sliders, displays, etc. In the previous figure, the elements
of this language include sliders in the upper left section and green switches. By
using the objects of this DSL, it is possible to simply construct virtual signals and
generate controller drivers [11]. This method of generating “domain-specific drivers”
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from models is beneficial as it leads to better utilization of hardware resources and
faster native code, which is comparable to the optimized code provided by a C++
compiler. This DSL is part of the development environment and, therefore, it does
not require additional time for its construction. Any additional modification requires
at most one day of work.

Visual debugging is a process of executing models that is performed in parallel
with editing “on hot” without stopping the execution of the current program within
the RTS. On model change, the generated code may be forwarded to the parser or
the native code may be directly generated. The target RTS uses a dynamic linker
to receive specification increments and links the control logic code to variables.
Changes are performed within transactions. The completion of a transaction is
reported to the modeling tool by the RTS. Visual tracing is achieved by MERL-like
generators (action reports), which change model state within the DSM Tool based
on the state of interpretation or program execution. The average time between
a model change and the start of the execution of new native code is approximately
200 ms.

7 RELATED WORK

Software engineers demand significantly improved methodologies and tools to de-
velop and maintain reliable robotic applications. Robotic systems are inherently
complex, and developers must integrate various software tools and electronics from
different manufacturers ([14]). Recently significant efforts have been invested into
the research of model-based approaches and tools aimed to facilitate software de-
velopment in robotics ([15, 16, 17, 18, 19]). Also, numerous successful applications
of DSLs are reported in various domains including robotics [20]. Our research is
directed toward further evolution of the DSM approach with model execution and
modifiers. The model-execution concept has recently attracted significant attention
from the academic community. It may be found under different names, such as live
programing [21]. Model execution proved to be a powerful means for the dynamic
validation and verification of models. We implemented this concept using action re-
ports that are extended with a set of commands for communication with the target
RTS [22]. Also, we introduced modifiers and illustrated their use in several exam-
ples. In the context of graphical DSLs, modifiers are means to simple and intuitive
merging and customization of languages, as well as language application to new
problems.

In [23], Hästbacka et al. describe the application of the MDD and DSM ap-
proaches to the development of industrial process control applications. Their ap-
proach is based on the utilization of the UML Automation Profile modeling concepts
(UML AP). Based on our experience, there are several reasons why the application
of this approach to the generation of process control applications is limited. First,
both UML and the construction of UML profiles are complicated and, to the average
user in the domain of automation and process control, they do not offer a faster re-
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sponse to requests or a better insight into the system being modeled. Second, OPC
interfaces are not abstract in the manner that they could be described using a simple
language. For that reason, the high-level synchronization between the models and
the generated process control applications is limited. Third, the approach described
by Hästbacka et al. does not provide sufficient attention to run-time systems as in-
terpreters of models that solve numerous shortcomings in the generation of code for
GPL compilers, instead of doing that for domain-specific RTSs.

Song et al. [24] introduce an approach for connecting architectural models with
run-time systems with bidirectional transformation and automated changing of ar-
chitectural models according to changes in the run-time system. When compared
to the approach of Song et al., our approach does not use architectural but domain
specific models and, as a result, it may be suited to a wide variety of audiences, not
only software architects. Furthermore, in our approach the implementation and its
connection to models are automatically generated, which adds more reliability to
the implementation of the approach. Moreover, the approach of Sung et al. allows
only changes in the model that can be captured in the architectural language meta-
model, while our approach also allows changes in the metamodel, i.e., introduction
of new concepts for modeling systems. Finally, our approach also enables incremen-
tal changes of models and run-time systems during execution including changes in
which novel modeling elements are introduced.

There is an analogy between the two seemingly unrelated domains of application:
document engineering and robot-motion control. In both domains, the efficacy of
modeling tools depends on their support for merging languages that model different
dimensions/aspects of documents or robot control. A document is a multidimen-
sional entity featuring the following dimensions: content, layout, structure, role in
a real system and states. In some cases, it may not be possible to generate valid
code for control logic, e.g., during robot motion modeling, when a robot step cannot
be related to foot shape and other objects in the environment where the robot is
moving. However, by using solutions for syntax and semantics merging of DSLs,
we may simplify parallel viewing and modeling of different document dimensions
or aspects of robot usage. In [25], the authors present some preconditions, as well
as problems in merging syntax and semantics, and meta-model inheriting and slic-
ing. On the other hand, our discussion and contributions are more of a practical
nature. We introduced modifiers and illustrated their use in several examples. In
the context of graphical DSLs, modifiers are means to simple and intuitive merg-
ing and customization of languages, as well as language application to new prob-
lems.

Another topic of related research is about multilevel modeling. The most recent
advances in this field are related to the concept of deep instantiation, supported
by DeepJava. The authors in [26, 12] propose a way for avoiding the shortcom-
ings of programming languages that result from their two-level architecture, seen
as type–instances paradigm. The proposed concept of deep instantiation is not
applicable to the description of model variations because of the following three rea-
sons:
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1. it requires the instantiation depth to be specified in advance;

2. it does not support the relationships in which an attribute from the supertype
may be removed from the subtype; and

3. it does not support meta-data-based inheritance of the type from an instance.

8 CONCLUSIONS

In model-driven software development (MDSD), meta-model refinement is an ac-
tivity which improves the current expressiveness of a language, i.e., improves the
capacity of the language to precisely express the properties of the real system be-
ing modeled. The DVMEx approach provides the means to refine each level of the
DSM solution: the DSL, the code generator, the framework, and the RTS. The
synchronization between the tools used separately for each level may provide good
productivity and validity in the DSL refinement. In most of the existing tools, the
synchronization between the levels is unidirectional.

In Figure 9 we outline the process of refinement. The left column containing
the ellipses denotes standard activities that are related to DSM. In the right col-
umn, there are activities that are specific for the DVMEx approach. At the higher
abstraction level, it is the modifier construction, which acts as means to flexible
evolutionary extension of the language semantics. The second level is the usage of
modifiers. Underneath that level, there is the execution of models or automatically
generated applications. For each model, at least one default client application for
model debugging and monitoring the model execution is generated. Since arbitrary
controls may be used for monitoring by mapping the DSL concepts to user control
properties during execution, model variations may be tested very fast. Modifiers
may also be used at the level of the code generator. In this manner, there is a tem-
porary solution for problems arising from the imprecisely specified hierarchy of DSL
objects or imprecisely described relationships or object roles. During execution, the
RTS detects unexpected states. Some of them may be trivial, such as division by
zero, but they may also include states that cannot be recognized in the predefined
state space of the control logic program.

For the purpose of developing intelligent controllers for robots, we have devised
an approach that is based on the DSM approach. We significantly improved each
of the levels of the DSM architecture. For the purpose of verifying the DVMEx
approach, we created the tools that, together with MetaEdit+, may be used to
verify the reliability, flexibility, speed, and the simplicity of the integration of the
control logic into an arbitrarily complex real system. In the rest of Conclusion, we
list the theoretical and practical contributions, whose application may improve the
development of intelligent robot controllers and the development of measurement
and control systems in general.

Contributions to the theory. The RTS is conceived as an adaptive system with
dynamic scheduling and linking of the code of control logic and meta-logic.
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Figure 9. A generic model of DSL refinement

Changes in the rules of scheduling of control tasks in run time, as well as dy-
namic mapping of the signals of a real system to the variables of the control code
allow for full flexibility when changing the purpose and behavior of the robot,
even for the states that have not been programmed in advance. The generators
are simultaneously used for code generation, debugging, execution and monitor-
ing of the control processes. At the level of the code generator, modifiers may be
described, as model or submodel variations, whose purpose is systematic collec-
tion and processing of knowledge for the refinement of the DSLs. We extended
the IEC 61131-3 with concepts for the description for finite state machines and
message exchange protocols, which simplifies the implementation of the event-
driven control logic. At the level of DSL construction and usage, we define an
approach of evolutionary refinement with modeling variations. We introduced
the modifier concept, which integrates inheritance, instantiation and supports
multilevel modeling.

Contributions to the practice. We made an auto-adaptive RTS for ARM and
Intel hardware platforms. It is applicable to problems involving simple control
logic in embedded systems, as well as complex problems, such as automatization
of the whole production process or the control of intelligent human, bird or
snake-like robots, in which the RTS interprets complex motion models, models
of energy consumption and models for the recognition of the signal of a real
system.

The IEC 61131-3 compiler with different variants of meta-logic offers a signifi-
cant advantage over the existing GPL compilers, where the logic has to be embedded
into source code. The code generator level provides synchronization of RTS, mod-
eling tools and monitoring applications without the need for programming. This
is achieved using the code generators that generate code generators. Despite the
fact that nesting a language in another language may be bad because of the low-
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ered readability, this approach to the generation of monitoring applications provides
good productivity in software development. The issue of the lower readability of the
generators that generate generators is straightforwardly overcome within tools that
support the construction of DSLs (meta-modeling) using a graphical interface. The
semantics of such generators is described at the level of the meta-model. All compo-
nents that are part of the DVMEx solution are simply integrated into various tools
for meta-modeling and modeling.

In addition to software engineering, validity of the approach, devoted to han-
dling variation of products and DSL models describing these products, has been
demonstrated in electronics, and partly mechanics. We made several usable proto-
types of controllers for managing robots with sensors, for which drivers and virtual
signals are also generated from the model. Also, we have developed several variants
of pneumo-mechanical grippers for robots in the textile industry, which perform
complex operations in a confined space. Model-level debugging is not limited to
generating and debugging the control logic and user applications program code, but
it is also applicable to debugging in the electronics and mechanics domain.

Our further research work is aimed at extending the DVMEx approach to the
needs of the development of intelligent robots of various shapes and purposes, but
primarily for those that need to learn the command language during task execution
and provide information about the need to refine these languages.
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[11] Djukić, V.: Various Demos of DSL Construction, Application and Refinement in
Robotics, Automation and Design of Medical Devices. Availaible at: https://www.

youtube.com/channel/UCqyYnYD6J5fEeb6Ni3YLuKg.

[12] Kühne, T.—Schreiber, D.: Can Programming Be Liberated from the Two-Level
Style: Multi-Level Programming with DeepJava. Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems and Appli-
cations (OOPSLA ’07), 2007, pp. 229–244, doi: 10.1145/1297027.1297044.

[13] Degueule, T.—Combemale, B.—Blouin, A.—Barais, O.—Jézéquel, J. M.:
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