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Abstract. Real-time Online Interactive Application (ROIA) is an emerging class
of large-scale distributed application which can support millions of concurrent users
around the world. Due to the dynamic changes in the number of concurrent users as
well as the uncertainty of user operations, the dynamic load balancing is a key issue
for ROIA. However, most of previous works are dedicated to the load balancing
in a single ROIA without considering the variety of different type ROIAs. We
take the advantage of differences between ROIAs and propose a new load balancing
algorithm for multi-ROIA to improve the scalability of ROIA and increase the
resource utilization of system. This paper firstly describes the motivation of the new
load balancing algorithm, then presents the dynamic load balancing algorithm for
multi-ROIA. Finally, the simulation results are also presented to show the efficiency
and feasibility of the new algorithm.
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1 INTRODUCTION

Load balancing is one of the key issues for improving system performance and re-
source utilization in distributed and parallel computing, and can be divided into
two categories: Static Load Balancing (SLB) and Dynamic Load Balancing (DLB).
If the load can be determined and divided by a certain method before execution, it
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belongs to SLB. But, if it can only keep monitoring the system load and dynamically
adjusting the load while executing, it belongs to DLB.

Real-time Online Interactive Application (ROIA) [1] is an emerging type of
large-scale distributed application. The popular and market-relevant representatives
of ROIA are Massively Multi-player Online Game (MMOG), as well as real-time
training and e-learning based on high-performance simulation. Therefore, without
losing its universality, this paper takes MMOG as a case study of ROIA.

In ROIA, due to dynamic changes in the number of concurrent users as well
as the uncertainty of user operations, the loads of computing and communication
are difficult to estimate before running. Therefore, SLB strategy is not suitable for
ROIA. And many researchers have done some researches on DLB in ROIA. But
most of these works are dedicated to DLB in a single ROIA without considering the
variety of different ROIAs in some aspects, such as latency tolerance or interaction
complexity. The resource utilization of the system and the ability to deal with load
peaks still have some limitations. Therefore, ROIA providers have to overprovision
their operating infrastructure to cope with the uncertain peak load, which leads to
a low and inefficient resource utilization. On the contrary, if ROIA providers do
not overprovision the infrastructure, which may acquire high and efficient resource
utilization, but also may reduce the ability of the system to deal with an uncertain
peak load. To address this problem, we analyze differences between different types
of ROIA, and we take an advantage of these differences for complementing each
other; we hope that the new system can achieve higher resource utilization and
better ability to deal with the peak load.

In previous works [2], we proposed the Multi-ROIA Cloud Platform (MRCP),
a new structure to achieve high scalability in ROIA. In this paper, we focus on
the corresponding load balancing algorithm of MRCP. We first describe in Sec-
tion 2 the differences of different type of ROIA, and our new load balancing al-
gorithm is motivated by these differences. In Section 3, we propose the new load
balancing algorithm in detail. The new algorithm uses a mixed strategy of the
centralized and distributed strategy, and it uses a different strategy in a differ-
ent layer. Finally, we present experimental results showing that the new system
achieves higher resource utilization and better ability to deal with the uncertain
peak load.

2 THE MOTIVATION OF NEW LOAD BALANCING ALGORITHM

ROIA contains many types, and the different type of ROIAs have some difference in
latency tolerance, interaction complexity and so on. Motivated by these character-
istics, this paper proposes a new load balancing algorithm (named Dynamic Load
Balancing Algorithm for Multi-ROIA, DLBAM) to improve the scalability of ROIA,
to increase the system resource utilization and enhance the ability to cope with load
peaks. The specific characteristics are as follows.
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2.1 Difference in Latency Tolerance of ROIA

Mark Claypool and other researchers [3, 4] found that different types of ROIA have
different sensitivity to network delay because of a different type of a player action.
For example, First-Person Shooting (FPS) games are more sensitive to network
delay than Real-Time Strategy (RTS) games. With the increase of network delay,
the performance of FPS games decline sharply. On the contrary, the performance of
RTS games declines slowly with the increasing network delay. So FPS games need
obviously a lower network delay to ensure the good user experience than RTS games
need.

Based on this characteristic of ROIA, we can deploy a variety of ROIAs on
the same hardware platform. If load balancing is needed, the difference in latency
tolerance will be considered. The partial load of ROIA which has a low delay
sensitive degree in the heavier loaded server will be migrated to other underloaded
server. It can improve the resource utilization, and will not cause a great impact on
the user experience.

2.2 Difference in Interaction Complexity of ROIA

ROIAs have differences not only in the latency tolerance but also in the frequency
and scale of user interaction. Nae et al. [5] used interaction complexity to divide
ROIAs by the frequency and scale of user interaction. Assuming that the number
of users is n, the interaction complexity may range from O(n) for ROIAs in which
users are mostly solitary or the ROIA does not need to make many state changes
or compute complex interactions (e.g. puzzle games), to O(n2) for ROIA in which
many users are interacting individually, and to O(n3) for ROIA in which groups of
many players are interacting.

According to this characteristic of ROIA, if we consider the different interac-
tion complexity in the process of dynamic load balance, we can get more satisfac-
tory results for load balancing. That is, when there is a need for load transfer, it
should avoid migrating the load of ROIA which has high interaction complexity. Be-
cause such migration may lead to producing a new large communication overhead.
Therefore the preference should be given to the ROIA which has a low interaction
complexity.

2.3 Difference in Load Change of ROIA

Another feature of ROIA is that the variation of load has a certain regularity, and
not causing any mess. Although using a single user on ROIA is rather subjective,
but the huge number of users makes the load change of ROIA showing a certain
regularity. Moreover, due to time zone differences, the use of ROIA in the various
regions of the world is not the same. And it makes the differences in load changes
of ROIAs depending which servers are located in the various time zone.
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Vlad Nae and other researchers selected the popular MMOG (RuneScape [6])
as the object of study. They collected a lot of data of RuneScape servers and
statistically analyzed the variation of the simultaneous online users in RuneScape
servers. Through the analysis of literature [5], we can see that, on the one hand, the
load of ROIA changes obviously, and the difference between upper and lower load
peak is huge, so it needs to have good scalability to improve the system resource
utilization; on the other hand, generally, the load of ROIA is showing certain rules
of change. This is propably affected by the time of day, the load is roughly in
accordance with the day cycle up and down fluctuation. Moreover, the load peak is
associated with the local time, so that the load peaks of different regions in different
time zones generally do not appear in the same time period.

This characteristics is favorable for improving the degree of system resources
utilization. If several resource centers are deployed in the different time zones in the
world, due to the load peaks of the different resource centers at different times, then
the part load can be migrated between the different resource centers.

3 DYNAMIC LOAD BALANCING ALGORITHM FOR MULTI-ROIA

Based on the characteristics of ROIA analyzed above, this section presents a new
dynamic load balancing algorithm for multi-ROIA (DLBAM) to enhance the ability
to cope with the peak load and to improve the utilization rate of system resources.

3.1 Classification of ROIA and Basic Idea of Algorithm

In order to facilitate the new algorithm, we firstly need to properly classify the
ROIAs according to the above mentioned characteristics.

3.1.1 Classification of ROIA

In order to facilitate the load migration, this paper divides ROIA into two categories
(named by Dynamic ROIA and Static ROIA) based on the characteristics of ROIA.

Dynamic ROIA refers to the ROIAs which have high latency tolerance and low
interaction complexity. Because of the high latency tolerance, it will not impact the
user experience when the part load is migrated to another resource center and the
delay increased. Furthermore, because of the low interaction complexity, it will not
increase the traffic between the two resource centers when the part load migrated
to another resource center. So, the part load of dynamic ROIAs is suitable for
migration between the resource centers which are located in different places.

Static ROIA refers to the ROIAs which have low latency tolerance and high
interaction complexity. Because of the low latency tolerance, it will greatly impact
the user experience when the delay is increased. And due to the high interaction
complexity, the traffic between the resource centers will greatly increase when the
part load is migrated to another resource center. So, this type of ROIA is not
suitable for load migration between the resource centers. It is worth noting that the
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static ROIAs refer to ROIAs not suitable for migration between the resource centers
but saying that we are not saying that they cannot be migrated. They also may be
migrated between the internal servers in a local resource center.

Table 1 summarizes the classification of ROIA in the new algorithm.

Name Latency Tolerance Ideal Delay Threshold Interaction Complexity

Dynamic ROIA High 1 000 ms O(n)
Static ROIA Low < 500 ms > O(n ∗ logn)

Table 1. Classification of ROIA in DLBAM

3.1.2 Basic Idea of DLBAM

According to the analysis of ROIA’s load changes in the above section, the load
generally fluctuates by the cycle of one day. And because of the difference of time
zone, the emergence times of load peak in different resource center are different. For
example, in Figure 1, if there is a load peak in place A, the servers in place C may
just have a low peak load. So, it shows a complementary characteristics.

If using the complementary characteristics, each resource center will not need
to deploy enough hardware resources to deal with the peak load, it is enough just
to deploy appropriate hardware resources. When the high peak load is coming, it
can migrate a part of load to the resource center which is in the low peak at that
moment.

Moreover, this paper divides ROIA into Dynamic ROIAs and Static ROIAs
based on the characteristics of ROIA. The mixing deployment of these two kinds of
ROIAs ensures the feasibility of load migrating between resource centers.

According to the idea, this paper presents a new hierarchical balancing algo-
rithm. There are three layers of load balancing in the algorithm. The bottom layer
is the load balancing inside of each ROIA in each resource center. The middle layer
is the load balancing between ROIAs in each resource center. And the top layer is
responsible for the load balancing between the resource centers.

The DLBAM algorithm uses a mixed strategy of the centralized and distributed
strategy, and it uses a different strategy in a different layer. In the bottom and
middle layer, it uses the centralized strategy, and the distributed strategy is taken
in the top layer.

Figure 1 shows the structure of the system using DLBAM. In Figure 1, there are
four resource centers deployed in globally distributed four locations. Each resource
center has deployed some Dynamic ROIAs and some Static ROIAs at the same
time. Each ROIA has a ROIA Scheduler which is responsible for load balancing
between the internal servers of each ROIA. In addition, ROIA Scheduler will apply
for new resources or release occupied resources to MRCP Local Controller (MLC)
according to the load condition of servers in the ROIA. MLC is responsible for the
load balancing between the ROIAs in the local resource center and also responsible
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Figure 1. Structure diagram of the system using DLBAM

for putting forward the load migration application to the MLC of other resource
center when it is necessary.

3.2 Related Definition and Formula

Before introducing the DLBAM algorithm, some variables are defined as follows:

Assumed that there are n ROIAs in the local resource center, and the current
number of the kth ROIA’s servers is SNk. The kth ROIA has ANk avatars and
the number of other entities (such as non-player characters, NPC) is represented by
ENk.

The server e of ROIA k is indicated by Sk
e ; the avatar i in ROIA k is indicated

by aki . And aki ∈ Sk
e shows that the avatar aki is in the server Sk

e .

C(aki ) represents the calculating cost of avatar aki , such as state updating, game
logic computing, environment rendering.
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I(aki , a
k
j ) represents the amount of information exchanged between the avatar aki

and akj (i 6= j). When aki and akj are in the same server, the interaction between aki
and akj will only increase the computing cost without traffic cost. Only when aki and

akj are in the different server, the interaction between them will increase the traffic
load.

V (x) represents the computational load increased by the interaction between
the avatars in the same server, and W (x) represents the traffic load caused by the
interaction between the avatars in the different servers. x is the amount of interaction
information.

Let MROIA(Sk
e ) denote the basic amount of memory used for the ROIA server

Sk
e under no user links situation. Mas(a

k
i ) is the amount of memory used for the

information of avatar aki . And mes is the amount of memory used for the information
of one NPC entity.

The hardware resources which have great impact on the ROIA performance are
mainly CPU, network bandwidth and memory. Therefore, the three main aspects
needed to be considered when performing load balance: the computational load,
traffic load and memory load.

The computational load of server Sk
e can be represented by Equation (1):

LC(Sk
e ) =

∑
aki ∈Sk

e

C(aki ) +
∑

aki ,a
k
j∈Sk

e

V (I(aki , a
k
j )) (i 6= j). (1)

The first part of Equation (1) is the computing cost sum of server Sk
e , such as for

state updating, game logic computing, environment rendering, etc. The last part is
the sum of computing cost caused by interaction between avatars in the server Sk

e .

The traffic load of server Sk
e can be represented by Equation (2):

LN(Sk
e ) =

SNk∑
d=1∩d6=e

(
∑
aki ∈Sk

e

∑
akj∈Sk

d

W (I(aki , a
k
j ))). (2)

The memory load of server Sk
e can be represented by Equation (3):

LM(Sk
e ) =

ANk∑
i=1

Mas(a
k
i ) + ENk ·mes + MROIA(Sk

e ). (3)

So, the total load on server can roughly be estimated by Equation (4):

L(Sk
e ) = LC(Sk

e ) + LN(Sk
e ) + LM(Sk

e ). (4)

Assume that LCserver(S
k
e ), LNserver(S

k
e ) and LMserver(S

k
e ) respectively are the

max computational load, traffic load and memory load of server Sk
e without degrad-

ing the user experience. So, the resource utilization of server Sk
e can be estimated
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by Equations (5),(6) and (7), respectively.

UC(Sk
e ) =

LC(Sk
e )

LCserver(Sk
e )
, (5)

UN(Sk
e ) =

LN(Sk
e )

LNserver(Sk
e )
, (6)

UM(Sk
e ) =

LM(Sk
e )

LMserver(Sk
e )
. (7)

Let Threshold over denote the server overload threshold. When the resource uti-
lization of the server exceeds this threshold, it shows that the load of the server is
too much and asks for load migration. In addition, because dynamic ROIA and
static ROIA have a great difference in latency tolerance, therefore they may have
different overload threshold.

Threshold over =

{
1, dynamic ROIA,

0.95, static ROIA.
(8)

Let Threshold light denote the underloading threshold. When the server resource
utilization is under Threshold light, it shows that the server load is too light. To
avoid the problem of load jitter between servers, it uses the threshold Thresholdtop
for setting the upper limit of the server resource utilization after load balancing.

3.3 The Internal Load Balancing in Each ROIA

The internal load balancing works on each ROIA scheduler. Each one is responsible
for load balancing between the servers of each ROIA. It will provide an application
to MRCP Local Controller (MLC) for more hardware resources when the resources
are not enough for this ROIA. Also, it will release some resources to MLC when
there are excess idle resources in this ROIA.

The internal load balancing of ROIA k roughly shows as follows:

Step 1. Update the ServerList which contains the information of servers in ROIA
k, compute the resource utilization (denoted by Uk

i ) of each server in ROIA k
and update the ServerList in descending order.

Step 2. Select the first server (Sk
x) from ServerList, if the resource utilization (Uk

x )
of Sk

x is greater than ThresholdOver then continue to the next step, otherwise
skip to Step 6.

Step 3. Depending on the load capacity required to migrate, select some appro-
priate servers from the tail of ServerList . And according to Equation (2) to
estimate the cost of communication, the servers will be selected in accordance
with the size of the communication cost in ascending order to form an alternative
destination server list – CanList .
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Step 4. If CanList is empty, the ROIA Scheduler will apply to MRCP Local Con-
troller for resources and jump to Step 6. Otherwise, choose the first server
(denoted by Sk

y ) from CanList , use Equation (4) to estimate the resource uti-

lization of Sk
y (denoted by Uk

y ), if Uk
y is greater than ThresholdTop then remove Sk

y

from CanList and repeat Step 4, otherwise continue to the next step.

Step 5. Migrate the load to Sk
y , update Uk

x , Uk
y and ServerList, and then jump to

Step 2.

Step 6. Select the last server (Sk
x) from ServerList , if the resource utilization (Uk

x )
is less than ThresholdLight then continue to next step, else skip to Step 11.

Step 7. Whether the application is a local application, if it is to continue to the
next step, otherwise ready to migrate back to the original resource center, and
remove it from ServerList , then jump to Step 6.

Step 8. Depending on the load capacity which needs to be migrated, select some
appropriate servers from the tail of ServerList . And use Equation (2) to estimate
the cost of communication, the servers will be selected in accordance with the size
of the communication cost in ascending order to form an alternative destination
server list – CanList .

Step 9. If CanList is empty, then jump to Step 11. Otherwise, choose the first
server (Sk

y ) from CanList , use Equation (4) to estimate the resource utilization

of Sk
y (Uk

y ), if Uk
y greater than ThresholdTop then remove Sk

y from CanList and
repeat Step 9, otherwise continue to the next step.

Step 10. Migrate the load to Sk
y , release the resource of Sk

x , update Uk
y and

ServerList , then jump to Step 6.

Step 11. Sleep a certain time, and then jump to Step 1.

The algorithm consists of two main parts: Step 2 to Step 5 in algorithm are
the processing of overloading, and Step 6 to Step 10 in algorithm are the processing
of underloading. The applications in local resource center are divided into two
classes: local applications and external applications. The external applications are
the applications migrated from other resource center which is overloading. For such
applications, the processing of underloading is different with the local applications.
The external applications prefer to migrate back to the original resource center,
rather than to remain in this local resource center.

3.4 The Load Balancing Between ROIAs and Resource Centers

The load balancing between ROIAs and resource centers works on MRCP Local
Controller. It mainly includes the processing of the local resources application, the
processing of receiving the response to migration application, and the processing of
receiving the application for resources release.

In the system, the applications for local resources can be divided into the fol-
lowing three categories:
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1. The resource applications proposed by local static ROIA (SAppList represents
the queue with such applications)

2. The resource applications proposed by local dynamic ROIA (DAppList repre-
sents the queue with such applications)

3. The foreign resource applications proposed by other resources center
(InMAppList represents the queue with such applications)

These three types of resource applications have different priorities when they
are processed. To minimize the resource migration between the resource centers the
local resource application has its priority. Moreover, due to static ROIA has low
latency tolerance, so it will give priority to the resource application proposed by the
static ROIA.

In addition, the local resource center may send resource application to another
resource center during the peak period. This type of application ensures migrating
the load to other resource center, hence named the migration application.

In order to distinguish the above mentioned resource applications, it uses two
additional queues: OSAppList and ODAppList . OSAppList stores static ROIA’s
resource applications which made the system to send migration application but
temporarily has not received any response. ODAppList stores similar applications
of dynamic ROIA.

Therefore, the priority order is as follows:

OSAppList > SAppList > ODAppList > DAppList > InMAppList .

The processing algorithm for resource applications roughly shows as follows.
FreeList stores the relevant information of available resource in the local resource
center.

Step 1. If SAppList 6= ∅, select the first resource item (SA1) from SAppList and
continue to the next step. Otherwise, jump to Step 4.

Step 2. If FreeList 6= ∅, then search the appropriate resource (Sx) for SA1 in
FreeList . And if found then continue to the next step, else move SA1 from
SAppList into OSAppList , send migration application and jump to Step 1.

If FreeList = ∅ , move SA1 from SAppList into OSAppList , send migration
application and jump to Step 10.

Step 3. Assign the resource of (Sx) to SA1 and delete SA1 from SAppList . Then
jump to Step 1.

Step 4. If DAppList 6= ∅, select the first resource item (DA1) from DAppList and
continue to next step. Otherwise, jump to Step 7.

Step 5. If FreeList 6= ∅, then search the appropriate resource (Sy) for DA1 in
FreeList . And if found then continue to the next step, else move DA1 from
DAppList into ODAppList , send migration application and jump to Step 1.
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If FreeList = ∅, move DA1 from DAppList into ODAppList , send migration
application and jump to Step 10.

Step 6. Assign the resource of (Sy) to DA1 and delete DA1 from DAppList . Then
jump to Step 1.

Step 7. If InMAppList 6= ∅, select the first item IMA1 from InMAppList and
continue to next step. Otherwise, jump to Step 10.

Step 8. If FreeList 6= ∅, then search the appropriate resource (Sz) for IMA1 in
FreeList . And if found then continue to the next step, else send message (“no
appropriate resource”) to the requester, delete IMA1 from InMAppList and
jump to Step 1.

If FreeList = ∅, send message (“no appropriate resource”) to all the requester
of InMAppList , delete all from InMAppList and jump to Step 10.

Step 9. Send message (“found appropriate resource”) to the requester of IMA1,
delete Sz from FreeList , delete IMA1 from InMAppList and jump to Step 1.

Step 10. Sleep a certain time, and then jump to Step 1.

In addition to the above-described algorithm, there is the processing of receiving
the response to migration application, the processing of receiving the application for
resource release, and so on, in the system.

4 SIMULATION AND RESULTS ANALYSIS

This section describes the simulation of DLBAM and the comparative analysis of
relevant results.

4.1 Experimental Environment

Experiments using Python 3.0 ran a simulation system of DLBAM and traditional
dynamic load balancing algorithm, and designed a simulation environment.

4.1.1 Simulation of Hardware Resources and Applications

In the experiment environment, it has simulated four resource centers in different
time zones. Each center has deployed six different ROIA and the proportion of
dynamic ROIA and static ROIA is 2 : 1. Each resource center has 180 servers and
assumed each ROIA assigned 30 servers initially. For simplicity, the experiment
mainly used the number of concurrent online users to simulate the load size. Under
the premise to ensure good quality of service, the assumed maximum load for each
server is 2 000 online users. If there are more than 2 000 users on one server, the
quality of service begin to decline and may even crash in severe cases (but our
experiment did not simulate the case of crash).
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In addition, the traditional algorithm for comparison has the same simulation
hardware resource. But in the traditional method, the six ROIAs are deployed
independently, and there is no load balancing between the resource centers.

4.1.2 Simulation of Each Server Load

The experiment refers to the actual server load data in reference [5] and produces the
fluctuant load data for each server. Moreover, the peak load time of each resource
center (four resource centers are numbered by Center 0, Center 1, Center 2 and
Center 3) is different. It simulates the impact of different time zones to the load
changes.

(a) The load changes of server (0,0) in Center 0

(b) The load changes of server (0,0) in Center 1

(c) The load changes of server (0,0) in Center 2

(d) The load changes of server (0,0) in Center 3

Figure 2. The simulation load changes of server (0, 0) in 4 centers

Figure 2 shows the simulated load changes of the server (0, 0) in each resource
center. The ordinate unit of Figure 2 is the number of concurrent online users; the
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horizontal axis unit is the timestamp. The interval between two time points in figure
represents two minutes. Figure takes a total of 1081 data points of time, i.e., the
figure shows the load variations during 36 hours (1 080 ∗ 2/60 = 36 hours).

4.2 Experimental Results and Analysis

The following results are all based on the simulate load change data which is de-
scribed in Figure 2. Figure 3 shows the difference between the results of traditional
algorithm and DLBAM based on the same server and same load input.

Figure 3 shows the load changes of server (0, 0) in Center 2 during the tra-
ditional algorithm and DLBAM running. The blue line represents results of the
traditional algorithm run. Due to the peak load of each server on the same re-
source center appears approximately at the same time and no migration between
resource centers in the traditional algorithm, so it happens that no resources are
available during the peak period, but too much resources are available during the
idle period, as blue line shows. Moreover, the number of users exceeds 2 000 approx-
imately during that time from 400 to 700. According to the pre-set experiments
standard, it is indicating that the quality of service begins to decline and may even
crash.

U
ser num

ber

Timestamp
DLBAMTraditional Algorithm

Figure 3. The load changes of server (0, 0) in center 2 during algorithm running

On the contrary, due to having migration between centers in the DBLAM, the
user number does not exceed 2 000 during the experiment time, hence the decline
of quality of service is avoided. In addition, due to receiving the load of other
centers, this server maintains relatively high resource utilization during the low
peak period.

Figure 3 shows the difference between the traditional algorithm and DLBAM
on one single server and Figure 4 shows the difference from the perspective of entire
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resource center. In order to facilitate the representation, it takes the ratio of the
actual user number to the maximum load as the ordinate (the ratio is multiplied
by 100 in Figure 4). The maximum load is assumed having 2 000 online users for
each server to ensure good quality of service. The ratio may reflect the resource
utilization.

In Figure 4, it shows the ratio changes of each center during algorithm running.
The red lines in the figure generally vary between 40 and 100. This indicates that
it is not overloaded during the peak period and keeps some suitable load during the
low peak period. But the blue lines generally vary between 5 and 130. That means
it is overloaded during the peak period and a lot of free resources appears during
the low peak period.

From the above analysis, it can be seen that the performance of DLBAM on
a single server or on the whole center is better than the performance of traditional
algorithm.

5 RELATED WORK

Because some of related work has been introduced in the previous section, only a few
other related works about dynamic load balancing are introduced here.

Ren [7] proposed a dynamic load balancing algorithm for cloud computing on the
basis of an existing algorithm called WLC (Weighted Least Connection) [8]. WLC
assigned a new task based on the number of links on each node. Firstly, it calcu-
lated the number of links on each node in the cloud, and then selected the node with
minimum links and assigned the task to the node. So WLC algorithm did not con-
sider the other current situation of each node, such as CPU speed, storage capacity
and network bandwidth, etc. Ren proposed an improved algorithm called ESWLC
(Exponential Smooth Forecast based on Weighted Least Connection). ESWLC al-
gorithm determined whether the node receives a new task after achieving a relative
performance of the node, such as CPU power, memory performance, number of links
etc.

Mehta and other researchers took a variety of distributed computing environ-
ments (such as cloud computing, grid and cluster) into account and proposed WCAP
(Workload and Client Aware Policy) [9] based on content-aware dynamic load bal-
ancing algorithm. WCAP is a hybrid approach. However, the performance of WCAP
in the real distributed environment (e.g. Hadoop) needs a further research verifica-
tion.

Wang and other researchers proposed a hierarchy load balancing algorithm,
called LBMM (Load Balancing Min-Min) [10], based on the OLB (Opportunistic
Load Balancing) algorithm [11]. OLB algorithm is a static load balancing strategy
for the purpose of keeping each node of cloud with a certain load. It does not consider
the execution time of each node, which may lead to slow down of the task process-
ing and also a bottleneck problem may appear. In order to solve these problems,
LBMM algorithm takes three-layer architecture. The first layer is Request Manager
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(d) The ratio changes of Center 3

Figure 4. The ratio changes of centers during algorithm running
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which is responsible for receiving task requests and assigning the task requests to
a Service Manager. When Service Manager receives a task request, it divides it into
some subtasks in order to accelerate the processing speed. After the division Service
Manager assigns the subtask to service node which is responsible for the execution
of subtask.

Bezerra [12] presented a load balancing strategy which uses KD-tree algorithm to
dynamically divide the virtual world of ROIA. Kim [13] presented an adaptive load
algorithm for solving the problem of traditional graph partitioning method in ROIA.
Li [14, 15, 16] and Balogh [17] have done some related works on cloud computing
security problems. Nguyen [18] presented a novel development and deployment
framework for cloud distributed applications.

In addition, we have also done some preliminary related works on ROIA. Refer-
ence [2] proposed a first step of new approach to achieve high scalability in ROIA
under cloud environment. And to solve some problem in the traditional Dead Reck-
oning algorithm, the reference [19] proposed an improved DR algorithm based on
target-extrapolation in ROIA.

6 CONCLUSIONS

ROIA is an emerging class of large-scale distributed application which can support
millions of concurrent users spread across the world. MMOG is one of the popular
and market-relevant representatives of ROIA. Due to the dynamic changes in the
number of concurrent users as well as the uncertainty of user operations, the dynamic
load balancing is a key issue for ROIA. However, most of the previous works are
dedicated to the load balancing in a single ROIA without considering the variety of
ROIAs. We take the advantage of differences between ROIAs and propose a new
load balancing algorithm for multi-ROIA to improve the scalability of ROIA and
increase the resource utilization of the system.

This paper firstly describes the motivation of the new load balancing algo-
rithm. ROIA contains a variety of types, and the different type ROIA has some
differences in latency tolerance, interaction complexity, etc. We take an advan-
tage of these characteristics to improve the scalability of ROIA. In Section 3, we
present the basic idea of the new algorithm, related definition and formula and the
main part of the dynamic load balancing algorithm for multi-ROIA. At the end
we describe the simulation of DLBAM and the comparative analyses of relevant
results.
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Abstract. Most of the previously known evaluation methods for deductive data-
bases are either breadth-first or depth-first (and recursive). There are cases when
these strategies are not the best ones. It is desirable to have an evaluation framework
for stratified Datalog¬ that is goal-driven, set-at-a-time (as opposed to tuple-at-a-
time) and adjustable w.r.t. flow-of-control strategies. These properties are impor-
tant for efficient query evaluation on large and complex deductive databases. In
this paper, by incorporating stratified negation into so-called query-subquery nets,
we develop an evaluation framework, called QSQN-STR, with such properties for
evaluating queries to stratified Datalog¬ databases. A variety of flow-of-control
strategies can be used for QSQN-STR. The generic evaluation method QSQN-STR
for stratified Datalog¬ is sound, complete and has a PTIME data complexity.

Keywords: Deductive databases, datalog with negation, query processing
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1 INTRODUCTION

Datalog is a well-known rule-based query language for deductive databases. In [24],
Huang et al. wrote “we are witnessing an exciting revival of interest in recursive
Datalog queries in a variety of emerging application domains such as data inte-
gration, information extraction, networking, program analysis, security, and cloud
computing” (see also, e.g., [23, 7]). Datalog expresses the Horn fragment with the
safety condition1 and without function symbols of first-order logic and uses the tra-
ditional monotonic semantics. The extension Datalog¬ of Datalog allows expressing
non-monotonic queries by using negation in the bodies of program clauses. It uses
a non-monotonic semantics like the standard semantics for stratified Datalog¬ pro-
grams and the well-founded semantics for the general case. A Datalog¬ program is
stratifiable if it can be divided into strata such that, if a negative literal of a predi-
cate p occurs in the body of a program clause in a stratum, then the clauses defining p
must belong to an earlier stratum. A deductive database consists of a Datalog/Da-
talog¬ program (for defining intensional predicates) and an instance of extensional
predicates.

This work studies query processing for stratified Datalog¬ databases. The topic
is worthy of consideration due to practical applications of deductive databases.

1.1 Related Work

Researchers have developed a number of evaluation methods for Datalog databases,
such as QSQ [43, 1], QSQR [43, 31], QoSaQ [44] and Magic-Sets [5, 6] (by Magic-
Sets we mean the evaluation method that combines the magic-set transformation
with the improved semi-naive evaluation method).

QSQ (Query-Subquery) [43, 1] is a framework for evaluating queries to Data-
log databases. Its approach is top-down (i.e., query processing is closely related
to the main goal) and set-at-a-time (i.e., operations are set-oriented but not tuple-
oriented). It implements a tabulation (tabling/memoing) technique by using so-
called input, answer and supplement relations to guarantee termination. Adorn-
ments for intensional predicates (and their corresponding input and answer rela-
tions) are used to enable exploiting relational operations like join and projection. In
general, QSQ uses adornments to simulate SLD-resolution in pushing constant sym-
bols from goals to subgoals. An enhanced version of QSQ, called annotated QSQ,
also uses annotations to simulate SLD-resolution in pushing repeats of variables
from goals to subgoals. A variety of flow-of-control strategies (which are similar to
search strategies and called control strategies for short) can be used for QSQ.

1 For a definition of the safety condition, see the paragraph after Definition 1.
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QSQR (QSQ Recursive), introduced by Vieille in [43], is a query evaluation
method for Datalog databases that follows the QSQ approach and uses a recursive
strategy. Roughly speaking, the strategy is depth-first, but due to tabulation, as
observed by Vieille [44], the QSQR approach is like iterative deepening search. The
versions of QSQR presented in [43, 1] are incomplete [31, 44, 29]. This is corrected
in [29] by using an outer loop that clears global input relations for each iteration.

In [44], Vieille introduced another method, called QoSaQ, for evaluating queries
to Datalog databases. It is an adaptation of SLD-AL resolution. The method can
be implemented as a set-oriented procedure, but as stated by Vieille himself, the
practical interest of the method lies in its one-inference-at-a-time basis, as opposed
to the set-at-a-time approach. The intention is to permit an advanced analysis of
the duplicate elimination issue.

The magic-sets technique [5, 6] simulates the top-down QSQ approach by rewrit-
ing the Datalog program together with the given query to another equivalent one
that when evaluated using a bottom-up technique (e.g., the improved semi-naive
evaluation) produces only facts produced by the QSQ evaluation. Adornments are
used as in the QSQ approach. To simulate annotations, the magic-sets transforma-
tion is augmented with subgoal rectification (see, e.g., [1]).

In [11, 9], we provided a framework called QSQN (Query-Subquery Nets) for
evaluating queries to Horn knowledge bases. It uses a parameter for the limit on the
nesting depths of terms occurring in the computation. When this limit is set to 0,
the framework can be used for evaluating queries to Datalog databases. QSQN is
an adaptation and a generalization of the QSQ approach for Horn knowledge bases.
One of the key differences is that it does not use adornments and annotations, but
uses substitutions instead. This is natural for the case with function symbols and
without the safety condition. Like QSQ, every control strategy can be used for
QSQN. The notion of query-subquery net makes a linkage to flow networks and is
intuitive for developing efficient evaluation algorithms.

A top-down approach with tabulation for dealing with stratified Datalog¬ was
proposed in [26, 41, 37]. The evaluation procedures given in [26, 41, 37] are similar to
each other, with some differences as discussed in [37]. They are called “QSQR/SLS-
procedure” in [26, 37] and we will refer to them as the QSQR/SLS method. This
method relies on using a derivation forest (of global SLS-resolution) with tabulation
and is implemented using the recursive approach like QSQR.

In [37], apart from QSQR/SLS, Ross also proposed a bottom-up evaluation
method for stratified Datalog¬ by presenting a magic-sets transformation, which
simulates the top-down QSQR/SLS method, but the program obtained from the
transformation can be evaluated using a bottom-up technique. Programs obtained
from the transformation are not stratified Datalog¬ programs, as they use special
“literals” for checking whether the computation of the corresponding negative goals
has been completed.

In [4], Balbin et al. proposed another bottom-up evaluation method for strati-
fied Datalog¬. Their method applies a magic-sets transformation and a bottom-up
computation with recursive calls for evaluating negative goals.
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The well-founded semantics is a commonly accepted choice for (general) Data-
log¬, as it coincides with the standard semantics for stratified Datalog¬, and using
it Datalog¬ has a PTIME data complexity. This semantics was first introduced by
Van Gelder et al. for normal logic programs [19] and can be characterized by the
alternating fixpoint [18]. Several calculi for normal logic programs that are sound
and complete w.r.t. the well-founded semantics have been developed. One of them is
SLG-resolution. In [15], Chen et al. presented efficient techniques for implementing
SLG-resolution. Their method maintains positive and negative dependencies among
subgoals in a top-down evaluation, detects positive and negative loops, delays sub-
goals when possible loops occur, checks completion of subgoals and resumes their
activeness when possible. It is tuple-oriented and its implementation XSB [40] can
be used as an engine for in-memory Datalog¬ databases.

Kemp et al. [25] and Morishita [30] proposed bottom-up evaluation methods
for Datalog¬ under the well-founded semantics. Their methods are based on Van
Gelder’s alternating fixpoint characterization and use a magic-sets transformation
with adornments but without annotations.

In [14], together with a colleague we extended QSQN to obtain a method called
QSQN-WF for evaluating queries to Datalog¬ databases under the well-founded
semantics. It follows Przymusinski’s SLS-resolution [34], with Van Gelder’s alter-
nating fixpoint semantics [18] on the background, but uses a query-subquery net to
implement tabulation and the set-at-a-time technique.

1.2 Motivations

We first discuss some important aspects of query evaluation (in Sections 1.2.1–1.2.3),
and then state motivations of our work (in Section 1.2.4).

1.2.1 Adjustability w.r.t. Control Strategies

The techniques used for query evaluation are usually separated into two classes de-
pending on whether they focus on top-down or bottom-up evaluation [1]. Here,
“top-down” is understood as “goal-driven” (i.e., query processing is relevant to the
subgoals and therefore closely related to the main goal). As the bottom-up eval-
uation methods based on the magic-sets technique simulate the top-down evalua-
tion, they are also goal-driven. Since the terms “top-down” and “bottom-up” are
antonyms, it is better to classify top-down evaluation as goal-driven and character-
ize bottom-up evaluation methods by an additional property. Being goal-driven can
be treated as a requirement for efficient evaluation methods.

The aforementioned bottom-up evaluation methods for Datalog [5, 6], stratified
Datalog¬ [37, 4] and Datalog¬ [25, 30] use a magic-sets transformation and a bottom-
up computation like the improved semi-naive evaluation. So, they can be charac-
terized as goal-driven and breadth-first (i.e., based on using a breadth-first control
strategy).2 On the other hand, the top-down evaluation methods QSQR [43, 31]

2 The naive evaluation can be described as follows: repeat applying all of the rules
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and QoSaQ [44] (for Datalog), QSQR/SLS [26, 41, 37] (for stratified Datalog¬)
and SLG-resolution [15, 40] (for normal logic programs and Datalog¬ databases)
can be characterized as goal-driven and depth-first.3 The frameworks QSQ [43, 1]
(for Datalog), QSQN [11, 9] (for Horn knowledge bases and Datalog databases)
and QSQN-WF [14] (for Datalog¬) follow the goal-driven approach but allow every
control strategy.

The breadth-first and depth-first approaches are just two among possible ap-
proaches. There are cases when they are not the best ones [11]. When developing
a framework for query evaluation one should make it general to a certain extent so
that a variety of control strategies can be used. In particular, it is desirable to be
able to control the computation flow dynamically.

1.2.2 Set-at-a-Time vs. Tuple-at-a-Time

The evaluation methods QoSaQ [44] (for Datalog) and SLG-resolution [15, 40] (for
normal logic programs and Datalog¬ databases) are tuple-at-a-time (tuple-oriented).
They use complex data structures for handling individual subgoals (tuples), and
when the extensional relations and the search space are too large, in-memory com-
putation may be impossible. XSB [40] is an efficient engine for in-memory deduc-
tive databases due to the suspension-resumption mechanism, advantages of WAM
(Warren Abstract Machine) and other optimizations. Such techniques are highly
tuple-oriented. When the extensional relations are too large and the program defin-
ing intensional predicates is sophisticated, accesses to the secondary storage may be
unavoidable, and the set-at-a-time approach is preferable.

Regarding the evaluation methods QSQR [43, 31] (for Datalog) and
QSQR/SLS [26, 41, 37] (for stratified Datalog¬), they can be implemented using
either the tuple-at-a-time approach or the set-at-a-time approach. But, using the
latter one the recursive strategy is unavoidable. As observed in [29, Remark 3.2],
using the recursive approach, input relations should be cleared occasionally (e.g., at
the beginning of each iteration of the main loop) in order to allow recomputations
using updated answer relations. This causes redundant computations.

1.2.3 Why Are Evaluation Methods for Stratified Datalog¬ Needed?

The question is rather “are the known evaluation methods for (general) Datalog¬

efficient for evaluating queries to stratified Datalog¬ databases?”. The general an-
swer is “they are not as efficient as expected for that kind of tasks”. The reason is
that they were developed to cope with unstratified negation and are thus superflu-
ous. For example, the methods proposed in [25, 30, 14] are based on Van Gelder’s

sequentially, one after the other, until no new facts were derived during the last iteration.
Its approach is like breadth-first search. The improved semi-naive evaluation (see, e.g., [1])
shares this property.

3 The mentioned methods use a recursive control strategy, which is like the depth-first
search strategy implemented using recursive calls.
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alternating fixpoint characterization and use an (additional) outer loop to guarantee
that an alternating fixpoint can be reached. When applied to stratified Datalog¬,
that causes certain redundant (re)computations.

Apart from the well-founded semantics, the stable model semantics [20] is also
a well-known semantics for normal logic programs (see, e.g., the survey [3]). These
two semantics coincide for certain classes of logic programs [35, 16, 21], including
stratified logic programs and stratified Datalog¬ programs. The stable model se-
mantics is used for answer set programming (ASP), and systems like DLV [27],
NP Datalog [22] and clasp [17], which deal among others with ASP, can be used
for answering queries to stratified Datalog¬ databases. However, as the main aim of
ASP engines is to find an answer set (i.e., a stable model) for a given logic program,
they are not goal-driven and, in general, not as efficient as expected for answering
queries to stratified Datalog¬ databases.

1.2.4 The Need for a New Evaluation Framework for Stratified Datalog¬

As discussed in Sections 1.1–1.2.3, the previously known methods that can be used
for evaluating queries to stratified Datalog¬ databases are:

• breadth-first [4, 37, 25, 30] or depth-first [26, 41, 37, 15, 40]; or/and

• tuple-at-a-time [15, 40]; or/and

• designed for (general) Datalog¬ [25, 30, 14] or normal logic programs [15, 40],
and not as efficient as expected for stratified Datalog¬.

That is, none of the previously known evaluation methods is goal-driven, set-at-a-
time, adjustable w.r.t. control strategies, and designed specially for stratified Da-
talog¬ but not (general) Datalog¬. As these properties are important for efficient
query evaluation on large and complex stratified Datalog¬ databases, it is desirable
to develop an evaluation framework for stratified Datalog¬ with such properties.

1.3 Our Contributions

In this paper, we provide a novel framework, called QSQN-STR, for evaluating
queries to stratified Datalog¬ databases. It extends the QSQN framework [11, 9]
with the ability to handle stratified negation (but is formulated for stratified Data-
log¬ databases instead of stratified knowledge bases in first-order logic). QSQN-STR
is goal-driven, set-at-a-time and allows a variety of control strategies. In partic-
ular, every control strategy “admissible w.r.t. strata’s stability” can be used for
QSQN-STR. Roughly speaking, the admissibility w.r.t. strata’s stability only re-
quires that the computation can check whether a (ground) negative goal ∼B of an
intensional predicate p succeeds by searching the answer relation of p only after the
(goal-driven) processing for the lower strata up to the stratum containing clauses
defining p has been completed. QSQN-STR uses a net of nodes that correspond to
input, answer and supplement relations like the ones used for QSQ [43, 1] but with-
out adornments. The net is constructed from the given stratified Datalog¬ program.
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It contains simple data structures that are needed for performing query evaluation.
At the abstract level, the skeleton of QSQN-STR is as follows:

while there are edges (u, v) such that u contains data to be processed for the
edge (u, v), do:

• select such an edge so that the selection is admissible w.r.t. strata’s sta-
bility;

• process the data at u to produce and transfer data through the edge (u, v).

As QSQN-STR allows every control strategy that is admissible w.r.t. strata’s
stability, it is really a framework. We also refer to it as a generic evaluation method
for stratified Datalog¬. This method is sound, complete and has a PTIME data
complexity.

What control strategies should be used for QSQN-STR is left for the implemen-
tation and experimentation phases. Besides, operations specified for QSQN-STR
can be optimized at the implementation phase. We have implemented a prototype
of QSQN-STR in Java, using a control strategy named IDFS2, which is specified
in [9]. The prototype has not yet been optimized. So, in general, it cannot compete
with highly optimized engines like XSB [40]. Nevertheless, we have performed exper-
iments and made a comparison between our prototype of QSQN-STR, DES-DBMS4

(version 5.0.1) and SWI-Prolog5 (version 6.4) w.r.t. the execution time by using
a number of tests. The experimental results show that our prototype of QSQN-STR
outperforms DES-DBMS by a few orders of magnitude for all of the tests. It is com-
petitive with SWI-Prolog for the tests for which SWI-Prolog can terminate properly.

This paper is a revised and extended/modified version of the conference paper [8]
and a chapter of the first author’s PhD dissertation [9]. The QSQN-STR framework
presented in this paper is formulated for stratified Datalog¬ databases but not strat-
ified knowledge bases in first-order logic. It has been improved by allowing a larger
class of control strategies and adopting an essential optimization6. Consequently,
the proof of soundness and completeness has been updated. Furthermore, the pre-
sentation has been significantly improved.

1.4 The Structure of This Paper

The rest of this paper is structured as follows. Section 2 recalls the most important
concepts and definitions. In Section 3, we give a new presentation of the QSQN
framework, which is thorough and more understandable than the one in [11, 9]. In
Section 4, we incorporate stratified negation into query-subquery nets and extend
QSQN to QSQN-STR. (To get the gist of QSQN-STR, the reader may watch
the demonstration [12] in the PowerPoint-like mode first.) Conclusions are given

4 The Datalog Education System (DES) with a DBMS via ODBC, available at http:

//des.sourceforge.net (see also, e.g., [39]).
5 Available at http://www.swi-prolog.org/
6 See the step 2a of fire′(u, v) in Definition 23.

http://des.sourceforge.net
http://des.sourceforge.net
http://www.swi-prolog.org/
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in Section 5. Due to the lack of space, our proofs and experimental results are
presented only in the online appendix [13].

2 PRELIMINARIES

We assume that the reader is familiar with basic notions of first-order logic. In this
section, we recall only the most important definitions and notions that are needed
for our work, which are based on [1, 2, 14, 23, 28, 33]. We refer the reader to [1, 28]
for further reading.

A signature for Datalog¬ consists of constants, variables and predicates. Each
predicate is classified either as intensional or as extensional. Due to the absence of
function symbols, a term is defined to be either a constant or a variable. An atom
is an expression of the form p(t1, . . . , tn), where n ≥ 0, p is an n-ary predicate
and each ti is a term. A literal is either an atom (called a positive literal) or the
negation of an atom (called a negative literal). Formulas are defined in the usual
way. An expression is a term, a tuple of terms, a formula without quantifiers or a list
of formulas without quantifiers. A simple expression is either a term or an atom.
An expression is ground if it does not contain variables.

2.1 Substitution and Unification

A substitution is a finite set θ = {x1/t1, . . . , xk/tk}, where x1, . . . , xk are pairwise
distinct variables, t1, . . . , tk are terms, and ti 6= xi for all 1 ≤ i ≤ k. The set
dom(θ) = {x1, . . . , xk} is called the domain of θ, and range(θ) = {t1, . . . , tk} the
range of θ. The restriction of a substitution θ to a set X of variables is the substi-
tution θ|X = {(x/t) ∈ θ | x ∈ X}. By ε we denote the empty substitution.

Given an expression E and a substitution θ = {x1/t1, . . . , xk/tk}, the instance
of E by θ, denoted by Eθ, is defined to be the expression obtained from E by
simultaneously replacing every occurrence of xi in E by ti, for all 1 ≤ i ≤ k.

Given substitutions θ = {x1/t1, . . . , xk/tk} and δ = {y1/s1, . . . , yh/sh}, the
composition θδ of θ and δ is defined to be the substitution obtained from the
sequence {x1/(t1δ), . . . , xk/(tkδ), y1/s1, . . . , yh/sh} by deleting any binding xi/(tiδ)
with xi = (tiδ) and deleting any binding yj/sj with yj ∈ {x1, . . . , xk}.

A substitution θ is idempotent if θθ = θ. It is known that θ = {x1/t1, . . . , xk/tk}
is idempotent if and only if none of x1, . . . , xk occurs in any t1, . . . , tk. If θ and δ are
substitutions such that θδ = δθ = ε, then we call them renaming substitutions.
A substitution θ is more general than a substitution δ if there exists a substitu-
tion γ such that δ = θγ. According to this definition, θ is more general than
itself.

Let Γ be a set of simple expressions. A substitution θ is called a unifier for Γ if
Γθ is a singleton. If Γθ = {ϕ}, then we say that θ unifies Γ (into ϕ). A unifier θ for
Γ is called a most general unifier (mgu) for Γ if θ is more general than every unifier
of Γ. There is an effective algorithm, called the unification algorithm, for checking
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whether a set Γ of simple expressions is unifiable (i.e., has a unifier) and computing
an idempotent mgu for Γ if Γ is unifiable (see, e.g., [28]).

2.2 Stratified Datalog¬

We recall here the definition of databases in Datalog and (stratified) Datalog¬.

Definition 1. A safe Datalog¬ program clause (w.r.t. the leftmost selection func-
tion) has the form A← B1, . . . , Bk, with k ≥ 0, and satisfies the following conditions:

1. A is an atom and each Bi is a literal, where negation is denoted by ∼,

2. every variable occurring in A also occurs in (B1, . . . , Bk),

3. every variable occurring in a negative literal Bj also occurs in some positive
literal Bi with 1 ≤ i < j.

The atom A is called the head and (B1, . . . , Bk) the body of the program clause.
When k = 0, the body is empty and the clause can be written without ←. If p is
the predicate of A, then the program clause is called a program clause defining p.
Such a program clause is treated as an expression (so we can talk about its in-
stances).

A safe Datalog¬ program (w.r.t. the leftmost selection function) is a finite set of
safe Datalog¬ program clauses. A safe Datalog¬ program without negative literals
in the clauses’ bodies is called a safe Datalog program. From now on, by a Da-
talog¬ (resp. Datalog) program we mean a safe Datalog¬ (resp. Datalog) program.
The second and third conditions in Definition 1 are called the safety condition of
Datalog¬. The second condition itself is also called the safety condition of Datalog.

Given a Datalog¬ program P , a stratification of P is a partition P = P1∪. . .∪Pn

such that, for each 1 ≤ i ≤ n, we have that:7

• if an intensional predicate p occurs in a positive literal in the body of a clause
from Pi, then the clauses defining p must belong to P1 ∪ . . . ∪ Pi,

• if an intensional predicate p occurs in a negative literal in the body of a clause
from Pi, then i > 1 and the clauses defining p must belong to P1 ∪ . . . ∪ Pi−1.

Each Pi is called a stratum of the stratification. A Datalog¬ program is called
a stratified Datalog¬ program if it has a stratification.

An instance of extensional predicates is a mapping I that associates each exten-
sional n-ary predicate p to a finite set I(p) of n-ary tuples of constants. Sometimes,
I is treated as the set {p(t) | t ∈ I(p)} and each p(t) ∈ I is treated as the program
clause p(t)←. The size of I is defined to be the cardinality of the mentioned set.

A Datalog¬ (resp. Datalog) database is a pair (P, I), where P is a Datalog¬

(resp. Datalog) program consisting of clauses defining intensional predicates and I is
an instance of extensional predicates. A stratified Datalog¬ database is a Datalog¬

database (P, I) with P being a stratified Datalog¬ program.

7 All of the sets P1, . . . , Pn are assumed to be non-empty.
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2.3 The Standard Semantics of Stratified Datalog¬

In this subsection, let (P, I) be a stratified Datalog¬ database. The Herbrand uni-
verse of (P, I), denoted by UP,I , is the set of all constants occurring in (P, I). The
Herbrand base of (P, I), denoted by BP,I , is the set of all ground atoms of the
form p(t1, . . . , tn), where p is a predicate used in (P, I) and each ti belongs to UP,I .
A Herbrand interpretation for (P, I) is a subset of BP,I .

If I is a Herbrand interpretation and p(t) a ground atom, then by I(p(t)) we
denote that p(t) ∈ I, and by I(∼p(t)) we denote that p(t) /∈ I.

Let ground(P ∪ I) be the set of all ground instances of clauses in P ∪ I, and I
a Herbrand interpretation for (P, I). The immediate consequence operator of (P, I),
denoted by TP,I , is defined on I as follows:

TP,I(I) = {A | A← B1, . . . , Bk ∈ ground(P ∪ I) and I(Bi) holds for all 1 ≤ i ≤ k}.

Let TP,I ↑ ω be defined as follows:

TP,I ↑ 0 = I,

TP,I ↑ (n+ 1) = TP,I(TP,I ↑ n) ∪ TP,I ↑ n, for n ∈ N,

TP,I ↑ ω =
ω⋃

n=0

TP,I ↑ n.

Let P1 ∪ . . . ∪ Pn be a stratification of P . We define

M∅,I = I,

MP1,I = TP1,I ↑ ω,
MP1∪P2,I = TP2,MP1,I

↑ ω,
...

MP1∪...∪Pn,I = TPn,MP1∪...∪Pn−1,I
↑ ω.

We call MP,I = MP1∪...∪Pn,I the standard Herbrand model of (P, I).
It can be shown that the standard Herbrand model of (P, I) does not depend

on the chosen stratification of P (see, e.g., [2, Theorem 11]).

Example 1. Consider the stratified Datalog¬ database (P, I) given below, where
P is a modified version of a Datalog¬ program given in [36], path and acyclic are
intensional predicates, edge is an extensional predicate, x, y and z are variables and
a–f are constants. An atom edge(x, y) means that there is an edge from the node
x to the node y. An atom path(x, y) means that there exists a path (consisting of
edges) that connects the node x to the node y. An atom acyclic(x, y) means that
the node x is connected by a path to the node y, but not vice versa.
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• P consists of the following clauses:

path(x, y) ← edge(x, y),

path(x, y) ← path(x, z), edge(z, y),

acyclic(x, y) ← path(x, y), ∼path(y, x).

• I is specified and illustrated as follows: I(edge) = {(a, b), (a, c), (c, d), (d, a)}.?>=<89:;b?>=<89:;a
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The only stratification of P is P1 ∪ P2, where:

P1 : path(x, y)← edge(x, y),

path(x, y)← path(x, z), edge(z, y),

P2 : acyclic(x, y)← path(x, y), ∼path(y, x).

The standard Herbrand model MP,I of (P, I) is constructed as follows:

M∅,I = I,

MP1,I = M∅,I ∪ {path(x, y) | (x, y) ∈ {a, c, d} × {a, b, c, d}},
MP1∪P2,I = MP1,I ∪ {acyclic(a, b), acyclic(c, b), acyclic(d, b)}.

Thus, MP,I = MP1∪P2,I is the standard Herbrand model of (P, I).

We define a query to a stratified Datalog¬ database (P, I) to be a formula of the
form q(x), where q is an intensional predicate and x is a tuple of pairwise distinct
variables (of the same arity as q). A correct answer for a query q(x) to a stratified
Datalog¬ database (P, I) is a tuple t of constants of the same arity as x such that
q(t) ∈MP,I . The data complexity of an algorithm for computing all (correct) answers
for a query q(x) to a stratified Datalog¬ database (P, I) is measured in the size of I.

Remark 1. Note that, if ϕ can be the body of a Datalog¬ program clause, then it
can be treated as a query to a stratified Datalog¬ database (P, I) by adding to P
a new program clause q(x)← ϕ to obtain P ′, where q is a new intensional predicate
and x consists of all the variables occurring in ϕ, and then using the query q(x) to
the stratified Datalog¬ database (P ′, I).
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2.4 SLD-Resolution

SLD-resolution [2, 28] is a calculus for the Horn fragment of first-order logic, which
is more general than Datalog in that function symbols are allowed and program
clauses do not need to satisfy the safety condition. In this subsection, we recall
a formulation of SLD-resolution for Datalog, which is useful for our introduction of
QSQN in the next section.

If E is an expression or a substitution, then by Vars(E) we denote the set of all
variables occurring in E. We say that an expression E is a variant of an expression
E ′ if there exist renaming substitutions θ and γ such that E = E ′θ and E ′ = Eγ.
In a computational process, a fresh variant of ϕ, where ϕ can be a term, a tuple of
terms, an atom or a program clause A ← B1, . . . , Bk, is ϕθ, where θ is a renaming
substitution such that dom(θ) = Vars(ϕ) and range(θ) consists of variables that
were not used earlier in the computation.

A goal (without negation) has the form ← B1, . . . , Bk, where B1, . . . , Bk are
atoms. If k = 0, then the goal is called the empty goal and denoted by �.

A goal G′ is derived from a goal G = ← A1, . . . , Ai, . . . , Ak and a Datalog
program clause ϕ = (A ← B1, . . . , Bh) using an mgu θ and the selected atom Ai

if θ is an mgu for Ai and A, and G′ = ← (A1, . . . , Ai−1, B1, . . . , Bh, Ai+1, . . . , Ak)θ.
In that case, G′ is called a resolvent of G and ϕ. If i = 1, then we say that G′ is
derived from G and ϕ using the leftmost selection function.

In the rest of this subsection, let P be a Datalog program and G a goal.
An SLD-derivation from P ∪{G} consists of a (finite or infinite) sequence G0 =

G, G1, G2, . . . of goals, a sequence ϕ1, ϕ2, . . . of variants of program clauses of P
and a sequence θ1, θ2, . . . of mgu’s such that each Gi+1 is derived from Gi and ϕi+1

using θi+1. Each ϕi is called an input program clause.
When constructing an SLD-derivation, for generality and clarity, it is assumed

that each ϕi does not have any variable that already appears in the derivation up
to Gi−1. The simplest way to guarantee this is to choose each ϕi as a fresh variant
of a program clause from P .

An SLD-refutation of P ∪ {G} is a finite SLD-derivation from P ∪ {G} with
the empty goal as the last goal in the derivation.

A computed answer θ for P ∪{G} is the substitution obtained by restricting the
composition θ1 . . . θn to the variables of G, where θ1, . . . , θn is the sequence of mgu’s
occurring in an SLD-refutation of P ∪ {G}.

3 QUERY-SUBQUERY NETS REVISITED

The notion of query-subquery net and the related evaluation framework QSQN for
evaluating queries to Horn knowledge bases were introduced by us in [11, 9]. They
can be used for evaluating queries to Datalog databases by setting the term-depth
limit to 0. In this section, we present a thorough and more understandable descrip-
tion of QSQN by using a running example and relating QSQN to SLD-resolution
with tabulation.
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3.1 An Example Illustrating SLD-Resolution with Tabulation

Consider the stratum P1 from Example 1 and let I be the extensional instance
specified by I(edge) = {(a, b), (b, c)}. Let P = P1 ∪ I, with I treated as a set
of atoms of edge. Thus, P is the Datalog program consisting of the following
clauses:

(1) path(x, y)← edge(x, y), (3) edge(a, b),
(2) path(x, y)← path(x, z), edge(z, y), (4) edge(b, c).

Consider the goal ← path(x, y). It is easy to see that there are three computed
answers for P ∪ {← path(x, y)}: {x/a, y/b}, {x/b, y/c} and {x/a, y/c}. We first
demonstrate how to use SLD-resolution (with the leftmost selection function) to-
gether with a technique called tabulation to obtain these answers and justify that
there are no more computed answers. The process is summarized in Figure 1 and
explained in detail below. We use one sequence of natural numbers to name clauses,
tuples in relations, and steps in the process (enumerated in the following list). When
a tuple is added to a relation at a step k, it is also numbered k.

(1) path(x, y) edge(x, y) input path ans path
(2) path(x, y) path(x, z), edge(z, y) (5) (x, y) (7) (a, b)
(3) edge(a, b) (9) (x, z2) (8) (b, c)
(4) edge(b, c) (11) (a, c)

 path(x, y)
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NNN
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 edge(x, y)
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 path(x, z2), edge(z2, y)

10:(7)
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12:(8)
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13:(11)
LLL

LLL

%%LL
LLL

L

⇤
{x/a, y/b}

⇤
{x/b, y/c}  edge(b, y)

11:(4)

✏✏

 edge(c, y)  edge(c, y)

⇤
{x/a, y/c}

Figure 1. An illustration of SLD-resolution with tabulation. The considered Datalog pro-
gram consists of the clauses (1)–(4), and the goal is ← path(x, y). A label of the form
m : (n) of an edge from a node v to a node w in the displayed tree means that: at the
step m the goal at the node v is resolved by using the clause or the answer atom num-
bered n, resulting in the goal (the resolvent) at the node w. Steps of the process are
numbered from 6, as the smaller numbers are reserved for the clauses and the first input
atom. Details are given in Section 3.1.
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(5) As the clauses of P are numbered 1–4, we enumerate this list from 5. To keep
the fact that we have started to deal with the goal ← path(x, y), we store the
tuple (x, y) in the relation named input path. Tuples of this relation represent
so called input atoms of the predicate path.

(6) Resolving the goal← path(x, y) by using a fresh variant path(x1, y1)← edge(x1,
y1) of the clause (1) and the mgu {x1/x, y1/y} results in the goal ← edge(x, y).

(7) Resolving the goal ← edge(x, y) by using the atom edge(a, b) from I and the
mgu {x/a, y/b} results in the empty goal. We obtain the first computed answer
{x/a, y/b}. As the main goal is ← path(x, y), this computed answer can be
represented by path(a, b). To keep this answer, we store the tuple (a, b) in the
relation named ans path. Tuples of this relation represent so called answer atoms
of the predicate path.

(8) Returning to the moment after Step 6 and resolving the goal← edge(x, y) by us-
ing the atom edge(b, c) from I and the mgu {x/b, y/c} results in the empty goal.
We obtain the second computed answer {x/b, y/c}. Analogously as explained
above, we add the tuple (b, c) to the relation ans path.

(9) Returning to the moment after Step 5 and resolving the goal ← path(x, y) by
using a fresh variant path(x2, y2)← path(x2, z2), edge(z2, y2) of the clause (2) and
the mgu {x2/x, y2/y} results in the goal ← path(x, z2), edge(z2, y). To resolve
this goal using path(x, z2) as the selected atom (i.e., using the leftmost selection
function), we can use:

• either a program clause defining path from P ,

• or an answer atom of path that has been tabled earlier in ans path.

Resolving the subgoal ← path(x, z2) by using a program clause defining path
from P can be done in a similar way as we have been doing for the main goal
← path(x, y) of the process. That is, one can continue by adding the tuple
(x, z2) to the relation input path and so on. However, we first check whether
this task can be ignored. Since (x, z2) is an instance of (a fresh variant of) the
existing tuple (x, y) in input path, which stands for the goal ← path(x, y) that
has already been dealt with and is more general than the goal ← path(x, z2),
storing (x, z2) in input path and processing the goal ← path(x, z2) in the usual
way are unnecessary and therefore skipped.

Resolving the subgoal ← path(x, z2) by using an answer atom of path repre-
sented by a tuple in the relation ans path is reported below. We have here
a backtracking point, as there are a few of such tuples.

(10) Resolving the goal ← path(x, z2), edge(z2, y) by selecting the atom path(x, z2)
and using the tuple (a, b) in the relation ans path and the mgu {x/a, z2/b} results
in the goal ← edge(b, y).

(11) Resolving the goal ← edge(b, y) using the atom edge(b, c) from I and the mgu
{y/c} results in the empty goal. We obtain the third computed answer {x/a,
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y/c} for the main goal ← path(x, y), which is the restriction of the composition
{x2/x, y2/y}{x/a, z2/b}{y/c} to the set {x, y}. We store this answer by adding
the tuple (a, c) to the relation ans path.

(12) Returning to the backtracking point mentioned at Step 9 and resolving the
goal ← path(x, z2), edge(z2, y) by selecting the atom path(x, z2) and using the
tuple (b, c) in the relation ans path and the mgu {x/b, z2/c} results in the goal
← edge(c, y). This goal cannot be resolved by using any atom of edge from I.
So, we finish this search branch (derivation).

(13) Returning to the backtracking point mentioned at Step 9 and resolving the
goal ← path(x, z2), edge(z2, y) by selecting the atom path(x, z2) and using the
tuple (a, c) in the relation ans path and the mgu {x/a, z2/c} results in the goal
← edge(c, y). Once again, this goal cannot be resolved by using any atom of
edge from I. As there are no active backtracking points, we finish the process.
The computed answers are represented by the tuples in the relation ans path.8

Consider the return to the backtracking point mentioned at Step 9 and the
continuation at Step 13. It uses the tuple (a, c), which was added to the relation
ans path at Step 11, i.e., after the creation of the backtracking point. The con-
sidered example is simple and after Step 13 we can finish the process. But, what
would happen if the used Datalog program was more complicated and the search
tree (as displayed in Figure 1) had the third branch departing from the root with
more computed answers? How could they be supplied for resolving the subgoal
← path(x, z2) in the second branch departing from the root? SLD-resolution sys-
tems with tabulation like OLDT use the “suspension-resumption mechanism” and
the “stack-wise representation” to deal with this problem [42]. Both of these tech-
niques are tuple-oriented (tuple-at-a-time) and not suitable for processing queries to
deductive databases, as the task should be done set-at-a-time in order to deal with
big data and reduce the number of accesses to the secondary storage.

3.2 Query-Subquery Nets as Data Structures for Processing Queries

Let us discuss a design of data structures for processing queries by simulating SLD-
resolution with tabulation in the way so that the processing can be done set-at-a-
time and every strategy for searching for answers (called a control strategy) can be
applied. That leads to the notion of query-subquery net.

3.2.1 An Illustrative Example

Before defining query-subquery nets formally, we discuss the data structures needed
for processing queries to the Datalog database (P1, I) considered in Section 3.1.

8 In the general case, only answer atoms that are instances of the main input atom are
taken. In this concrete case, all the answer atoms path(a, b), path(b, c) and path(a, c) are
instances of the main input atom path(x, y).
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In general, we want to use a net for the processing, called a query-subquery net
(or QSQ-net for short). It is a directed graph with nodes being appropriate data
structures.

As discussed in Section 3.1, the approach uses the relations input path and
ans path, so let the net have two nodes named input path and ans path. Each
of these nodes has an attribute named tuples, which represents the corresponding
relation. Thus, by writing tuples(input path) (resp. tuples(ans path)) we have in
mind the relation input path (resp. ans path) mentioned in Section 3.1.

Tuples in the node input path stand for goal atoms of the predicate path. That
is, a tuple t ∈ tuples(input path) stands for the goal ← path(t). Assume that, when
a tuple is added to tuples(input path), its variables have already been renamed so
that they do not occur in the Datalog program P1. In this way, when resolve a goal
using a program clause of P1, we do not have to rename variables of the program
clause.

How can a tuple t ∈ tuples(input path) be processed? We can resolve the goal
← path(t) by using the program clause (1) or (2).

• Consider the case when the goal ← path(t) is resolved by using the program
clause (1) (i.e., path(x, y)← edge(x, y)). To do the task, let the node input path
have a connection to a node named pre filter1, where the subscript denotes the
program clause’s number. As attributes of pre filter 1, we have atom(pre filter 1)
= path(x, y), which is the head of the program clause, and post vars(pre filter 1)
= {x, y}, which is the set of variables occurring in the body of the program
clause. Then, the task can be done by transferring the tuple t from the node
input path to the node pre filter 1. At pre filter 1, path(t) is unified with
atom(pre filter 1) (i.e., path(x, y)) by using an mgu γ, and the pair
(tγ, γ|post vars(pre filter1)) is transfered to the unique successor of pre filter 1, which is
named filter 1,1. The tuple tγ in that pair is needed for further computation. In
general, such tuples will be updated on-the-fly by taking into account subsequent
mgu’s in the derivation and at the end will represent answers for the goal related
to the tuple taken from input path. Similarly, the substitution γ|post vars(pre filter1)

is also needed for further computation. We restrict γ to post vars(pre filter 1)
because the other bindings in γ are redundant for further computation. We call
the pair (tγ, γ|post vars(pre filter1)) a subquery.

After resolving the goal ← path(t) using the program clause (1) (i.e., path(x, y)
← edge(x, y)) and the mgu γ, the resulting resolvent is ← edge(x, y)γ. So, the
node filter 1,1 is related to processing this goal. In general, the subscript (i, j) of
a node filteri,j states that the node is related with the atom numbered j in the
body of the program clause numbered i. As attributes of filter 1,1, at least we
need atom(filter 1,1) = edge(x, y). For convenience, we also use the attributes
pred(filter 1,1) = edge (the predicate of atom(filter 1,1)) and kind(filter 1,1) =
extensional (the kind of the predicate edge). For the general case of filter i,j, we
also need the attribute pre vars(filter i,j) (resp. post vars(filter i,j)) for keeping
variables occurring in the atoms numbered from j (resp. j + 1) in the body of
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the program clause numbered i. For the currently considered example, we have
pre vars(filter 1,1) = {x, y} and post vars(filter 1,1) = ∅.
What should be done with the subquery (tγ, γ|post vars(pre filter1)) transferred to
filter 1,1 from pre filter 1? We can either process it immediately or store it in
filter 1,1 in order to accumulate more and more subqueries at the node filter 1,1

before processing them set-at-a-time. The Boolean option for this is called
the memorizing type of filter 1,1 and denoted by T (filter 1,1). In the case when
T (filter 1,1) = true, if the subquery (tγ, γ|post vars(pre filter1)) has not yet been con-
sidered for the node filter 1,1, we add it to the relations subqueries(filter 1,1)
and unprocessed subqueries(filter 1,1), which are additional attributes of
filter 1,1. A subquery is said to have already been considered for filter 1,1 if it is
less general than a subquery from subqueries(filter 1,1) (see Definition 5). When
a subquery from unprocessed subqueries(filter 1,1) is processed, it is deleted from
this relation.

For abbreviation, let (t
′
, δ) denote (tγ, γ|post vars(pre filter1)). How can the subquery

(t
′
, δ) be processed at the node filter 1,1? That is, how can the earlier mentioned

goal ← edge(x, y)γ be processed at filter 1,1? We unify atom(filter 1,1)δ (i.e.,
edge(x, y)γ) with each atom edge(s) ∈ I using an mgu γ′ and transfer the
tuple t

′
γ′ to the unique successor of filter 1,1, which is named post filter 1. In

general, each node filter i,j with kind(filter i,j) = extensional has exactly one
successor, which is either filter i,j+1 (if it exists) or post filteri. For the currently
considered example, we do not have a node named filter 1,2 because the program
clause (1) has only one atom in its body.

What should be done with the tuple t
′
γ′ transferred to post filter 1 from filter 1,1?

We have that γγ′|Vars(t)
is a computed answer for the goal ← path(t). Thus, the

tuple t
′
γ′ = tγγ′ specifies this computed answer. So, let the node post filter 1

have a connection to the node ans path, then all we need to do is to transfer the
tuple t

′
γ′ through this connection to add it to the relation tuples(ans path).

Summing up, to process a tuple from input path by using the program clause (1)
(i.e., path(x, y)← edge(x, y)), the designed QSQ-net uses the following path of
nodes with appropriate attributes:

input path −→ pre filter 1 −→ filter 1,1 −→ post filter 1 −→ ans path.

• Consider the case when the goal ← path(t) is resolved by using the program
clause (2) (i.e., path(x, y) ← path(x, z), edge(z, y)). Analogously as for the pre-
vious case, the designed QSQ-net uses the following path of nodes:

input path −→ pre filter 2 −→ filter 2,1 −→ filter 2,2 −→ post filter 2 −→ ans path

where:

– atom(pre filter 2) = path(x, y),
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– atom(filter 2,1) = path(x, z) and kind(filter 2,1) = intensional,

– atom(filter 2,2) = edge(z, y) and kind(filter 2,2) = extensional.

Consider a subquery (t
′
, δ) in the node filter 2,1. It stands for the goal ←

path(x, z)δ, edge(z, y)δ. Let us pay attention to the subgoal ← path(x, z)δ. As
demonstrated for SLD-resolution with tabulation, to process this subgoal we
should consider adding an appropriate tuple to input path. In addition, to re-
solve the subgoal ← path(x, z)δ we can use not only the program clauses of P1

but also the answer atoms of path represented by the tuples stored in ans path.

To deal with the first matter, let the node filter 2,1 have a connection to the node
input path, then we can transfer the tuple (x, z)δ through that connection. If
this tuple has not yet been considered for input path, we add a fresh variant
of it to tuples(input path). A tuple is said to have already been considered for
input path if its fresh variant is an instance of a tuple from tuples(input path).

Like the case of filter 1,1, the attribute unprocessed subqueries(filter 2,1) of filter 2,1

keeps subqueries that have not been processed at filter 2,1 to produce data to
transfer to filter 2,2. The node filter 2,1 has, however, also a connection to the node
input path. So, we also need an attribute unprocessed subqueries2(filter 2,1)
to keep subqueries that have not been processed at filter 2,1 to produce data to
transfer to input path.

At the node filter 2,1, to resolve the subgoal ← path(x, z)δ by using the answer
atoms of path represented by the tuples stored in ans path, we need a con-
nection from the node ans path to the node filter 2,1. New tuples added to
ans path are transferred through that connection and accumulated in the relation
unprocessed tuples(filter 2,1) before being processed (at some later steps).
This relation is an additional attribute of filter 2,1.

Summing up, the QSQ-net designed for the considered Datalog program has the
following topological structure:

pre filter1
// filter1,1

// post filter1

,,ZZZZZZ
ZZZZZZZ

ZZZZZZZ

input path

44jjjjjj

**TTT
TTT

ans path

uu
pre filter2

// filter2,1
//

oo

filter2,2
// post filter2

55jjjjjj

It is illustrated in Figure 2 together with attributes of the nodes. The node
input path has an attribute unprocessed(E) for each outgoing edge E. A tuple
t ∈ unprocessed(E) at the node input path means that the tuple t has not been
transferred from this node through the edge E (i.e., it has not been processed at the
node input path for the edge E). The case of the node ans path is similar. Also note
that we do not use the attribute T (filter 2,1) because kind(filter 2,1) = intensional.
In other words, subqueries transferred to a node filter i,j with kind(filter i,j) =
intensional are always memorized.
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Figure 2. An example of a QSQ-net, where path is an intensional predicate, edge is an
extensional predicate, and x, y, z are variables
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3.2.2 A Formal Definition of Query-Subquery Nets

We now recall a formal definition of QSQ-nets [11]. From now to the end of Section 3,
let P be a Datalog program and ϕ1, . . . , ϕm all the program clauses of P , with
ϕi = (Ai ← Bi,1, . . . , Bi,ni

) for 1 ≤ i ≤ m, where ni ≥ 0.

Definition 2. A query-subquery net structure (QSQN structure for short) of P is
a tuple (V,E, T ) such that:

• V is a set of nodes that consists of:

– input p and ans p, for each intensional predicate p of P ,

– pre filter i, filter i,1, . . . , filter i,ni
, post filter i, for each 1 ≤ i ≤ m.

• E is a set of edges that consists of:

– (filter i,1, filter i,2), . . . , (filter i,ni−1, filter i,ni
), for each 1 ≤ i ≤ m,

– (pre filter i, filter i,1) and (filter i,ni
, post filter i), for each 1 ≤ i ≤ m with

ni ≥ 1,

– (pre filter i, post filter i), for each 1 ≤ i ≤ m with ni = 0,

– (input p, pre filter i) and (post filter i, ans p), for each 1 ≤ i ≤ m, where p is
the predicate of Ai,

– (filter i,j, input p) and (ans p, filter i,j), for each intensional predicate p and
each 1 ≤ i ≤ m and 1 ≤ j ≤ ni such that Bi,j is a literal of p.9

• T is a function, called the memorizing type of the QSQN structure, mapping
each node filter i,j ∈ V such that the predicate of Bi,j is extensional to true or
false.10

In a QSQN structure (V,E, T ) of P , if (v, w) ∈ E then we call w a successor of
v, and v a predecessor of w. Note that V and E are uniquely specified by P . We
call the pair (V,E) the QSQN topological structure of P .

By a subquery we mean a pair of the form (t, δ), where t is a tuple of terms and δ
an idempotent substitution such that dom(δ) ∩ Vars(t) = ∅.

Definition 3. A query-subquery net (QSQ-net for short) of P is a tuple (V,E, T, C)
such that (V,E, T ) is a QSQN structure of P , C is a mapping that associates each
node v ∈ V with a structure called the contents of v, and the following conditions
are satisfied:

• C(v), where v = input p or v = ans p, consists of:

– tuples(v) : a set of tuples of terms with the same arity as p,

9 We use the term “literal” here instead of “atom” or “positive literal” so that the
definition can be extended for stratified Datalog¬ easily.
10 Recall that the aim of T is that if T (filter i,j) = false then subqueries for filter i,j are

always processed immediately without being accumulated at filter i,j .
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– unprocessed(v, w) for each (v, w) ∈ E: a subset of tuples(v).

• C(v), where v = pre filter i, consists of:

– atom(v) = Ai and post vars(v) = Vars((Bi,1, . . . , Bi,ni
)).

• C(v), where v = post filter i, is empty.

• C(v), where v = filter i,j and p is the predicate of Bi,j, consists of:

– kind(v) = extensional if p is extensional, and kind(v) = intensional other-
wise,

– pred(v) = p and atom(v) = Bi,j,

– pre vars(v) = Vars((Bi,j, . . . , Bi,ni
)) and post vars(v) = Vars((Bi,j+1, . . . ,

Bi,ni
)),

– subqueries(v): a set of subqueries (t, δ) such that t has the same arity as the
predicate of Ai,

– unprocessed subqueries(v) ⊆ subqueries(v),

– in the case when p is intensional:

∗ unprocessed subqueries2 (v) ⊆ subqueries(v),
∗ unprocessed tuples(v) : a set of tuples of terms with the same arity as p.

• if v = filter i,j, kind(v) = extensional and T (v) = false, then subqueries(v) = ∅
(and both subqueries(v) and unprocessed subqueries(v) can be ignored).

We use the term QSQ-net as a noun and QSQN mostly as an adjective. Both
of them are abbreviations of “query-subquery net”. When standing alone, QSQN
refers to the related evaluation framework, which is specified and discussed in the
next subsection.

An empty QSQ-net of P is a QSQ-net of P such that all the sets of the form
tuples(v), unprocessed(v, w), subqueries(v), unprocessed subqueries(v),
unprocessed subqueries2 (v) or unprocessed tuples(v) of the net are empty.

In a QSQ-net, if v = pre filter i or v = post filter i or (v = filter i,j and kind(v) =
extensional), then v has exactly one successor, which we denote by succ(v).

If v is filter i,j with kind(v) = intensional and pred(v) = p, then v has exactly
two successors. In that case, let succ(v) be filter i,j+1 if ni > j, and post filter i oth-
erwise, and let succ2(v) = input p. The set unprocessed subqueries(v) is used for the
edge (v, succ(v)), while unprocessed subqueries2 (v) is used for the edge (v, succ2(v)).

For convenience, we denote pre vars(post filter i) = ∅. Thus, if v = succ(u),
where u is pre filter i of filter i,j, then post vars(u) = pre vars(v).

3.3 The QSQN Framework for Evaluating Queries

Based on QSQ-nets, in [11, 9] we proposed the QSQN framework for evaluating
queries to Horn knowledge bases. We recall here its version restricted to the case
without function symbols for evaluating queries to Datalog databases.
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The QSQN method for evaluating a query q(x) to a Datalog database (P, I) can
be described informally as follows:

1. create an empty QSQ-net (V,E, T, C) of P ;

2. let x′ be a fresh variant of x;

3. add x′ to tuples(input q);

4. for each (input q, v) ∈ E, add x′ to unprocessed(input q, v);

5. while there are edges (u, v) ∈ E such that there are data at u to be processed
for the edge (u, v), do:

(a) select such an edge (any strategy can be used);

(b) process the data at u to produce data to transfer through the edge (u, v);

6. return tuples(ans q).

A strategy for selecting an edge at the step 5a is called a control strategy. As
every strategy can be used, the QSQN method is really a framework for evaluating
queries.

Definition 4 (active-edge). The data at a node u to be processed for an edge
(u, v) ∈ E are:

• unprocessed(u, v) if u is input p or ans p (for some p),

• unprocessed subqueries(u) if u is filter i,j, kind(u) = extensional and T (u) =
true,

• unprocessed subqueries(u) ∪ unprocessed tuples(u) if u is filter i,j, kind(u) =
intensional and v = succ(u),

• unprocessed subqueries2 (u) if u is filter i,j, kind(u) = intensional and
v = succ2(u),

• the empty set otherwise.

Let active-edge(u, v) be the Boolean function stating that the set representing data
at the node u to be processed for the edge (u, v) is not empty. If active-edge(u, v)
holds, then we say that the edge (u, v) is active.

We will specify what is “processing the data at a node u to produce data to
transfer through an edge (u, v)”. We call that processing “firing the edge (u, v)”
and let fire(u, v) be a procedure for doing it. Thus, the main loop of the QSQN
method (i.e., the step 5) can be rewritten to: “while there exists (u, v) ∈ E such
that active-edge(u, v) holds, select such a pair (u, v) and fire(u, v)”.

The types of data transferred through edges of a QSQ-net are as follows:

• data transferred through an edge of the form (input p, v), (v, input p), (v, ans p)
or (ans p, v) are a set of tuples (of terms) of the same arity as p,
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• data transferred through an edge (u, v) with v = filter i,j and u not being of the
form ans p are a set of subqueries that can be added to subqueries(v),

• data transferred through an edge (v, post filter i) are a set of subqueries (t, ε)
such that t is a tuple (of constants) of the same arity as the predicate of Ai.

Before specifying the transfer of data through edges, we first give some auxiliary
definitions.

Definition 5. If (t, δ) and (t
′
, δ′) are subqueries that can be transferred through

an edge to v, then we say that (t, δ) is more general than (t
′
, δ′) w.r.t. v, and (t

′
, δ′)

is less general than (t, δ) w.r.t. v, if there exists a substitution γ such that tγ = t
′

and (δγ)|pre vars(v) = δ′.

Definition 6 (add-subquery). We define add-subquery(t, δ,Γ, v) as a procedure
that adds the subquery (t, δ) to the set Γ but keeps in Γ only the most general
subqueries w.r.t. the node v. It can be implemented as follows:

if no subquery in Γ is more general than (t, δ) w.r.t. v then:

• delete from Γ all subqueries less general than (t, δ) w.r.t. v;

• add (t, δ) to Γ.

Definition 7 (add-tuple). We define add-tuple(t,Γ) as a procedure that adds
a fresh variant of the tuple t to the set Γ but keeps in Γ only the most general
tuples. It can be implemented as follows:

• let t
′

be a fresh variant of t;

• if t
′

is not an instance of any tuple from Γ then:

– delete from Γ all tuples that are instances of t
′
;

– add t
′

to Γ.

Definition 8 (transfer). We define transfer(D, u, v) as the following procedure
for transferring the data D through the edge (u, v), using some subroutines specified
later:

1. if D = ∅ then return;

2. if v is post filter i then transfer({t | (t, ε) ∈ D}, v, succ(v));

3. else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;

4. else if v is ans p then transfer1(D, u, v);

5. else if v is input p then transfer2(D, u, v);

6. else if u is input p then transfer3(D, u, v);

7. else if v is filter i,j, kind(v) = extensional and T (v) = false then
transfer4(D, u, v);

8. else transfer5(D, u, v).
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Observe that the case specified by the last “else” in the above definition (i.e., the
step 8) is characterized by the conjunction that v is filter i,j, (kind(v) = extensional
and T (v) = true or kind(v) = intensional) and u is not of the form ans p. The
procedure transfer5(D, u, v) is defined only for this case, with D being a set of
subqueries. Roughly speaking, it just accumulates the subqueries from D at v but
ignores the ones that have already been considered for v and keeps only the most
general ones.

Definition 9 (transfer5). The procedure transfer5(D, u, v) for the aforemen-
tioned case is (can be) implemented as follows:

for each (t, δ) ∈ D do:

if no subquery in subqueries(v) is more general than (t, δ) w.r.t. v
then

• delete from subqueries(v) and unprocessed subqueries(v) all
subqueries less general than (t, δ) w.r.t. v;

• add (t, δ) to both subqueries(v) and unprocessed subqueries(v);
• if kind(v) = intensional then:

– delete from unprocessed subqueries2 (v) all subqueries less
general than (t, δ) w.r.t. v;

– add (t, δ) to unprocessed subqueries2 (v).

Definition 10 (transfer1). The procedure transfer1(D, u, v) for the case when
v = ans p (and u = post filter i for some i and D is a set of tuples of constants) is
(can be) implemented as follows:

for each t ∈ D − tuples(v) do:

• add t to tuples(v);

• for each (v, w) ∈ E, add t to unprocessed(v, w).

The procedure transfer2(D, u, v) is defined only for the case when v = input p,
with u = filter i,j (for some i and j) and D being a set of tuples of terms. Roughly
speaking, it just accumulates fresh variants of the tuples from D at v but ignores
the ones that have already been considered for v and keeps only the most general
ones. Recall that we apply variable renaming for input atoms but not program
clauses.

Definition 11 (transfer2). The procedure transfer2(D, u, v) for the case v =
input p is (can be) implemented as follows:

for each t ∈ D do:

• let t
′

be a fresh variant of t;

• if t
′

is not an instance of any tuple from tuples(v) then

– delete from tuples(v) all tuples that are instances of t
′
;

– add t
′

to tuples(v);
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– for each (v, w) ∈ E do

∗ delete from unprocessed(v, w) all tuples that are instances of t
′
;

∗ add t
′

to unprocessed(v, w).

The procedure transfer3(D, u, v) is defined only for the case when u is input p,
with v = pre filter i for some i. It does not accumulate D at v but processes it imme-
diately to create data, which are then transferred to succ(v). The reader can recall
the example on page 34 of using pre filter 1 to process a tuple t ∈ tuples(input path).
In general, the node pre filter i is used for resolving an input atom (represented by a
tuple from D) by unifying it with the head of the program clause numbered i.

Definition 12 (transfer3). The procedure transfer3(D, u, v) for the case u is
input p is (can be) implemented as follows:

• Γ := ∅;
• for each t ∈ D do

if p(t) and atom(v) are unifiable by an mgu γ then

add-subquery(tγ, γ|post vars(v),Γ, succ(v));

• transfer(Γ, v, succ(v)).

The procedure transfer4(D, u, v) is defined only for the case when u is not of the
form ans p, v is filter i,j, kind(v) = extensional and T (v) = false. According to the
intention of the memorizing type T , it does not accumulate the subqueries from D
at v but processes them immediately to create data, which are then transferred to
succ(v). The reader can recall the example on page 35 of processing a subquery
(t
′
, δ) at the node filter 1,1.

Definition 13 (transfer4). The procedure transfer4(D, u, v) for the aforemen-
tioned case is (can be) implemented as follows:

• let p = pred(v) and set Γ := ∅;
• for each (t, δ) ∈ D and each t

′ ∈ I(p) do

if atom(v)δ and p(t
′
) are unifiable by an mgu γ then

add-subquery(tγ, (δγ)|post vars(v),Γ, succ(v));

• transfer(Γ, v, succ(v)).

We have fully specified the procedure transfer(D, u, v) for transferring the data
D through the edge (u, v). We now specify the procedure fire(u, v) for “firing the
edge (u, v)”, i.e., for processing the data at u to produce data to transfer through
the edge (u, v). Recall that this procedure is called only for active edges (u, v).

Definition 14 (fire). The procedure fire(u, v) is implemented as follows, using
some subroutines specified later:
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• if u is input p or ans p then

– transfer(unprocessed(u, v), u, v);

– unprocessed(u, v) := ∅;

• else if v is input p then fire1(u, v);

• else if u is filter i,j and kind(u) = extensional then fire2(u, v);

• else if u is filter i,j and kind(u) = intensional then fire3(u, v).

The procedure fire1(u, v) is defined only for the case when v is input p, with u
being filter i,j (for some i and j) and kind(u) = intensional. For each subquery (t, δ)
at u that has not yet been processed for the edge (u, v), the procedure transfers
a fresh variant of t

′
, where p(t

′
) = atom(u)δ, through the edge (u, v) in order to add

it to tuples(input p) if it has not been considered for v. The reader can recall the
example on page 36 of dealing with the edge (filter 2,1, input path).

Definition 15 (fire1). The procedure fire1(u, v) for the case v is input p is (can
be) implemented as follows:

• let p = pred(u) and set Γ := ∅;
• for each (t, δ) ∈ unprocessed subqueries2 (u) do

– let p(t
′
) = atom(u)δ;

– add-tuple(t
′
,Γ);

• unprocessed subqueries2 (u) := ∅;
• transfer(Γ, u, v).

The procedure fire2(u, v) is defined only for the case when u is filter i,j and
kind(u) = extensional. In this case, as the edge (u, v) is active, we must have that
T (u) = true. Before specifying this procedure, recall the procedure
transfer4(D, x, u

′) defined in Definition 13 for the case when u′ is filter i,j = succ(x),
kind(u′) = extensional and T (u′) = false. This latter procedure processes the data
D immediately at u′ to create data, which are then transferred to succ(u′). The pro-
cedure fire2(u, v) processes unprocessed subqueries(u, v) at u in a similar way and
then empties unprocessed subqueries(u, v). The reader can also recall the example
on page 35 of processing a subquery at the node filter 1,1.

Definition 16 (fire2). The procedure fire2(u, v) for the aforementioned case is
(can be) implemented as follows:

• let p = pred(u) and set Γ := ∅;
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• for each (t, δ) ∈ unprocessed subqueries(u) and each t
′ ∈ I(p) do

if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

add-subquery(tγ, (δγ)|post vars(u),Γ, v);

• unprocessed subqueries(u) := ∅;
• transfer(Γ, u, v).

The procedure fire3(u, v) is defined only for the case when u is filter i,j, kind =
intensional and v = succ(u). Let p = pred(u). For each subquery (t, δ) at u and
each tuple t

′ ∈ tuples(ans p), if they (as a pair) have not been processed at u, then
the procedure processes them in a similar way as the procedure fire2(u, v) does for
a subquery (t, δ) at u and a tuple t

′
from the extensional relation of the predicate

of atom(u). Note, however, that for fire3(u, v) we have two subcases: either the
subquery (t, δ) has not been processed at u for the tuple t

′
, or the tuple t

′
has not

been processed at u for the subquery (t, δ).

Definition 17 (fire3). The procedure fire3(u, v) for the aforementioned case is
(can be) implemented as follows:

• let p = pred(u) and set Γ := ∅;
• for each (t, δ) ∈ unprocessed subqueries(u) and each t

′ ∈ tuples(ans p) do

if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

add-subquery(tγ, (δγ)|post vars(u),Γ, v);

• unprocessed subqueries(u) := ∅;
• for each (t, δ) ∈ subqueries(u) and each t

′ ∈ unprocessed tuples(u) do

if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

add-subquery(tγ, (δγ)|post vars(u),Γ, v);

• unprocessed tuples(u) := ∅;
• transfer(Γ, u, v).

We have fully specified the QSQN method for evaluating queries to Datalog
databases. An example illustrating the QSQN method can be found in [9]. Note
that, in this method, processing subqueries has been designed so that:

• every subquery that is subsumed by another one is ignored,

• for input relations, every tuple that is subsumed by another one is ignored,

• the processing is divided into smaller steps which can be delayed at each node
to maximize adjustability and allow various control strategies,

• the processing is done set-at-a-time (e.g., for all the unprocessed subqueries or
tuples accumulated in a given node).

In [9, 32] we have proved that the QSQN method for evaluating queries to
Datalog databases is sound, complete and has a PTIME data complexity.
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4 QUERY-SUBQUERY NETS WITH STRATIFIED NEGATION

In this section, we present our framework called QSQN-STR for evaluating queries to
stratified Datalog¬ databases. It is based on query-subquery nets that are extended
to deal with stratified negation.

In what follows, let P be a stratified Datalog¬ program and ϕ1, . . . , ϕm all the
clauses of P , with ϕi = (Ai ← Bi,1, . . . , Bi,ni

) for 1 ≤ i ≤ m, where ni ≥ 0.

Definition 18. A query-subquery net structure with stratified negation (QSQN-STR
structure for short) of P , is a tuple (V,E, T ) defined as in the case of QSQN structure
(see Definition 2) with the following modification:

for each intensional predicate p and each 1 ≤ i ≤ m and 1 ≤ j ≤ ni such that
Bi,j is a literal of p, the pair (ans p,filter i,j) is an edge (i.e., belongs to E) iff
Bi,j is a positive literal.

The pair (V,E) is called the QSQN-STR topological structure of P .

Figure 3 illustrates the QSQN-STR topological structure of the stratified Data-
log¬ program given in Example 1.

path(x, y) edge(x, y)
path(x, y) path(x, z), edge(z, y)

acyclic(x, y) path(x, y), ⇠path(y, x).

pre filter1
// filter1,1

// post filter1

++WWWW
WWWWW

WWWWW
WWWWW

WW

input path

66nnnnnnnnnn

((PP
PPP

PPP
PP

ans path

ww

ss

pre filter2
// filter2,1

//

pp

filter2,2
// post filter2

77nnnnnnnnnn

input acyclic // pre filter3
// filter3,1

//

WW

filter3,2
//

__

post filter3
// ans acyclic

Figure 3. The QSQN-STR topological structure of the program given in Example 1

Definition 19. A query-subquery net with stratified negation (QSQ-STR-net for
short)11 of P , is a tuple (V,E, T, C) such that (V,E, T ) is a QSQN-STR structure
of P , and C is a mapping that associates each node v ∈ V with a structure called

11 We use the term QSQ-STR-net as a noun, and QSQN-STR mostly as an adjective.



Incorporating Stratified Negation into Query-Subquery Nets 47

the contents of v, which differs from the one for QSQ-net (see Definition 3) in the
following:

If v = filter i,j and p is the predicate of Bi,j , then:

• C(v) also contains neg(v), where neg(v) = true if Bi,j is a negative literal,
and neg(v) = false otherwise,

• atom(v) is redefined as follows: atom(v) = Bi,j if Bi,j is a positive literal,
and atom(v) = B′ if Bi,j = ∼B′,

• in the case when p is intensional and neg(v) = true: unprocessed tuples(v)
is empty and can thus be ignored.

The notion of being empty is defined for QSQ-STR-net similarly as for QSQ-net.

The addition of the attribute neg(v) and the modification of the attribute
atom(v) in the above definition are natural and do not require explanation. The
below remark justifies the third difference stated in the above definition and the one
in Definition 18.

From now on, by a goal we mean an expression of the form← B1, . . . , Bk, where
each Bi is a (positive or negative) literal.

Remark 2. Consider the QSQ-STR-net of the Datalog program P given in Exam-
ple 1, whose structure is illustrated in Figure 3. We have atom(filter 3,2) = path(y, x)
and neg(filter 3,2) = true. Since P is safe, any (t, δ) ∈ subqueries(filter 3,2) has the
properties that t is ground and δ has the form {x/c1, y/c2} for some constants c1
and c2. The subquery (t, δ) corresponds to the goal ← ∼ atom(filter 3,2)δ, which is
←∼path(c2, c1). To resolve it, using the “negation as failure” approach, we deal with
the goal← path(c2, c1). As this goal is ground, the answer can be either ε or failure.
As usual, we transfer the tuple (c2, c1) through the edge (filter 3,2, input path) and add
it to tuples(input path) if it is not an instance of another one in tuples(input path),
and then proceed to check whether the tuple will be added to tuples(ans path). De-
spite that check, we do not need to transfer any tuple from ans path through the
edge (ans path, filter 3,2) to add to unprocessed tuples(filter 3,2). That is why we do
not need the edge (ans path, filter 3,2) and the set unprocessed tuples(filter 3,2) will
always be empty.

Based on QSQ-STR-nets we now specify our QSQN-STR method for evaluating
queries to stratified Datalog¬ databases. We will use some subroutines defined earlier
for the QSQN method, including active-edge(u, v), add-subquery(t, δ,Γ, v) and
add-tuple(t,Γ).

For transferring data D through an edge (u, v) the QSQN-STR method uses
a procedure named transfer′(D, u, v), which differs from transfer(D, u, v) only
in processing the case when v is filter i,j, kind(v) = extensional, T (v) = false
and neg(v) = true. In this case, a subquery (t, δ) ∈ D corresponds to the goal
← ∼ atom(v)δ, Bi,j+1δ, . . . , Bi,ni

δ. If atom(v)δ does not belong to the instance of
the extensional predicate p = pred(v), then the subquery is transferred further
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to succ(v) after restricting δ to post vars(v). The task is done by the procedure
transfer′4b(D, u, v) specified below.

Definition 20 (transfer′4b). The procedure transfer′4b(D, u, v) for the afore-
mentioned case is (can be) implemented as follows:

• let p = pred(v) and set Γ := ∅;
• for each (t, δ) ∈ D do

if atom(v)δ /∈ {p(t′) | t′ ∈ I(p)} then

add-subquery(t, δ|post vars(u),Γ, succ(v));

• transfer′(Γ, v, succ(v)).

Recall that the procedures transfer1(D, u, v), transfer2(D, u, v) and
transfer5(D, u, v) do not call the procedure transfer, but transfer3(D, u, v) and
transfer4(D, u, v) do.

Definition 21 (transfer′, cf. Definition 8). Let transfer′3(D, u, v) and
transfer′4(D, u, v) be the procedures obtained from transfer3(D, u, v) and
transfer4(D, u, v), respectively, by replacing the call transfer(Γ, v, succ(v)) with
transfer′(Γ, v, succ(v)). Then, the procedure transfer′(D, u, v) is (can be) imple-
mented as follows:

1. if D = ∅ then return;

2. if v is post filter i then transfer′({t | (t, ε) ∈ D}, v, succ(v));

3. else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;

4. else if v is ans p then transfer1(D, u, v);

5. else if v is input p then transfer2(D, u, v);

6. else if u is input p then transfer′3(D, u, v);

7. else if v is filter i,j, kind(v) = extensional and T (v) = false then

(a) if neg(v) = false then transfer′4(D, u, v);

(b) else transfer′4b(D, u, v);

8. else transfer5(D, u, v).

Assume that an edge (u, v) is active (i.e., active-edge(u, v) holds) and is se-
lected by an admissible control strategy, which will be specified later. Then, the
QSQN-STR method uses a procedure named fire′(u, v) instead of fire(u, v) for
processing the data at u to produce data to transfer through the edge (u, v). With-
out optimizations it would differ from fire(u, v) only in processing the case when
u is filter i,j, neg(u) = true and v = succ(u). In this case, a subquery (t, δ) ∈
unprocessed subqueries(u) corresponds to the goal← ∼atom(u)δ, Bi,j+1δ, . . . , Bi,ni

δ.
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Let p = pred(u) and let R be I(p) if kind(u) = extensional, and tuples(ans p) oth-
erwise. If atom(u)δ is different from p(t

′
) for every t

′ ∈ R, then the subquery is
transferred to v after restricting δ to post vars(u). The task is done by the proce-
dure fire′4(u, v) specified below.

Definition 22 (fire′4). The procedure fire′4(u, v) for the aforementioned case is
implemented as follows:

• let p = pred(u) and set Γ := ∅;
• let R be I(p) if kind(u) = extensional, and tuples(ans p) otherwise;

• for each (t, δ) ∈ unprocessed subqueries(u) do

if atom(u)δ /∈ {p(t′) | t′ ∈ R} then

add-subquery(t, δ|post vars(u),Γ, v);

• unprocessed subqueries(u) := ∅;
• transfer′(Γ, u, v).

Observe that, when u = filter i,j, neg(u) = true, v = succ(u) and
active-edge(u, v) holds, if kind(u) = extensional, then T (u) = true. The pro-
cedure fire′4(u, v) for the subcase when kind(u) = extensional (and T (u) = true)
processes the data at u to transfer through the edge (u, v) in a similar way as the
procedure transfer′4b(D, x, u

′) (see Definition 20) processes the data D immedi-
ately at u′ to create data, which are then transferred to succ(u′). Here, u′ plays
a similar role as u, but T (u′) = false, while T (u) = true.

Consider the procedure fire′4(u, v) for the subcase when kind(u) = intensional.
For a subquery (t, δ) ∈ unprocessed subqueries(u), the check whether atom(u)δ does
not belong to {p(t′) | t ∈ tuples(ans p)} for p = pred(u) should be done only
at a suitable moment, i.e., when necessary work has been done to guarantee that
an answer for the goal ← atom(u)δ, if it exists, has been stored in tuples(ans p) as
the tuple s with p(s) = atom(u)δ. This means that, if u = filter i,j, neg(u) = true,
kind(u) = intensional and v = succ(u), then the edge (u, v) can be selected for
“firing” (by fire′(u, v), which calls fire′4(u, v)) only when it is active and, addi-
tionally, satisfies appropriate conditions. In other words, the used control strategy
(for selecting an edge to fire) should satisfy appropriate conditions. We will intro-
duce a class of such control strategies shortly, which consists of so called control
strategies admissible w.r.t. strata’s stability.

The following definition formally specifies the procedure fire′(u, v). Recall that
this procedure is called only for active edges (u, v).

Definition 23 (fire′, cf. Definition 14). Let fire′1(u, v), fire′2(u, v) and
fire′3(u, v) be the procedures obtained from fire1(u, v), fire2(u, v) and
fire3(u, v), respectively, by replacing the call transfer(Γ, u, v) with
transfer′(Γ, u, v). Then, the procedure fire′(u, v) is (can be) implemented as
follows:
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1. if u is ans p then

(a) transfer′(unprocessed(u, v), u, v);

(b) unprocessed(u, v) := ∅;

2. else if u is input p then

(a) transfer′(unprocessed(u, v)− tuples(ans p), u, v);

(b) unprocessed(u, v) := ∅;

3. else if v is input p then fire′1(u, v);

4. else if u is filter i,j, neg(u) = false and kind(u) = extensional then fire′2(u, v);

5. else if u is filter i,j, neg(u) = false and kind(u) = intensional then fire′3(u, v);

6. else if u is filter i,j and neg(u) = true then fire′4(u, v).

The exclusion of tuples belonging to tuples(ans p) from the transfer at the step 2a
of fire′(u, v) is an optimization. Note that every processed goal of the form←∼p(t)
is ground, and before processing the goal← p(t) (for “negation as failure”) by using
a program clause of P , one can check whether t ∈ tuples(ans p). If so, then we
already have the answer ε and can ignore the goal← p(t). One can also optimize the
procedure transfer2(D, u, input p) by excluding tuples belonging to tuples(ans p).

We now define control strategies admissible w.r.t. strata’s stability.
From now on, let P be a stratified Datalog¬ program and P1 ∪ . . .∪PK a strat-

ification of P . The notions defined below are dependent on this fixed stratification.
Given a QSQ-STR-net (V,E, T, C) of P , we say that a node v ∈ V belongs to

the layer k, where 1 ≤ k ≤ K, if v is constructed by some program clauses in Pk.12

In that case, we say that the layer number of v is k, denoted by layer(v) = k.
A QSQ-STR-net of P is said to be stable up to a layer k if every edge (u, v) such

that the layer numbers of u and v are less than or equal to k is not active.

Definition 24 (Admissibility w.r.t. Strata’s Stability). A control strategy for a gi-
ven QSQ-STR-net of P (i.e., a strategy for selecting an edge to apply the procedure
fire′ to it) is said to be admissible w.r.t. strata’s stability if at the moment when
an edge (v, succ(v)) with v = filter i,j is selected, if neg(v) = true, layer(v) = k,
pred(v) = p and p is an intensional predicate with layer(input p) = h, then the
QSQ-STR-net is stable up to the layer h and the edge (v, input p) is not active.

By restricting to the case neg(v) = true, the condition of admissibility w.r.t.
strata’s stability in the above definition is weaker than the ones in [8, 9]. That is,
we have extended the class of control strategies admissible w.r.t. strata’s stability
in comparison with the ones in [8, 9].

Finally, our QSQN-STR method for evaluating queries to stratified Datalog¬

databases is formulated by Algorithm 1. To ease the checking we have gathered

12 That is, Pk contains a clause ϕi such that v is of the form input p, pre filter i, filter i,j ,
post filter i, or ans p, where p is the predicate of Ai.
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Algorithm 1: evaluating a query q(x) to a stratified Datalog¬ database
(P, I).

Input: a stratified Datalog¬ database (P, I), a stratification P = P1 ∪ . . . ∪ PK

of P and a query q(x).
Output: the set of all correct answers for the query q(x) on (P, I).

1 let (V,E, T ) be a QSQN-STR structure of P ;
// T can be chosen arbitrarily or appropriately

2 set C so that (V,E, T,C) is an empty QSQ-STR-net of P ;

3 let x′ be a fresh variant of x;
4 tuples(input q) := {x′};
5 foreach (input q, v) ∈ E do unprocessed(input q, v) := {x′};
6 while there exists (u, v) ∈ E such that active-edge(u, v) holds do
7 select any edge (u, v) ∈ E such that active-edge(u, v) holds and the

selection satisfies the admissibility w.r.t. strata’s stability;

8 fire′(u, v);

9 return tuples(ans q);

its full pseudocode into the online appendix [13]. An example illustrating how
Algorithm 1 works step by step is also provided in [13]. A more friendly presentation
of that example in the PowerPoint-like mode is also available online [12].

Observe that, if P is a Datalog program, then a run of Algorithm 1 coincides
with an application of the QSQN evaluation method. That is, QSQN-STR coincides
with QSQN when restricted to Datalog.

Theorem 1. The QSQN-STR method formulated by Algorithm 1 for evaluating
queries to stratified Datalog¬ databases is sound, complete and has a PTIME data
complexity.

The proof of this theorem is provided in the online appendix [13].

5 CONCLUSIONS

The previously known methods that can be used for evaluating queries to stratified
Datalog¬ databases, except QSQN-WF [14], are either breadth-first [4, 37, 25, 30]
or depth-first (and recursive) [26, 41, 37, 15, 40]. There are cases when these con-
trol strategies are not the best ones. QSQN-WF [14] is an evaluation framework
for (general) Datalog¬ under the well-founded semantics and is not efficient when
applied to stratified Datalog¬ because it would execute a considerable amount of
redundant computation in order to guarantee that the alternative fixpoint has been
reached.

In this paper, we have developed QSQN-STR as a novel evaluation framework
for stratified Datalog¬. It is goal-driven, set-at-a-time and adjustable w.r.t. control
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strategies. These properties are important for efficient query evaluation on large
and complex deductive databases. Every control strategy admissible w.r.t. strata’s
stability can be used for QSQN-STR. The generic method QSQN-STR is sound,
complete and has a PTIME data complexity for evaluating queries to stratified
Datalog¬ databases.

QSQN-STR extends QSQN [11, 9] with the ability to handle stratified negation.
Restricting to Datalog, QSQN is similar to QSQ [43, 1] but has some essential differ-
ences. First, it is formulated so that all operations can be precisely specified. Second,
it does not use adornments for intensional predicates and their corresponding input
and answer relations. This has some advantages:

• Operations of the same kind on an intensional predicate can be grouped and
done together, independently from the adornments. This allows reducing the
number of accesses to the secondary storage. The matter of how to efficiently
execute the evaluation by using relational operations like join and projection is
left for the implementation phase.

• Input relations contain tuples of terms possibly with variables, and information
about repeats of variables in a goal is exploited. In the case of QSQ, input
relations contain tuples of constant symbols, and only the annotated version of
QSQ keeps and exploits information about repeats of variables in a goal.

• Only the most general tuples are kept in input relations. (Similarly, only the
most general tuples and subqueries are kept in the other relations.) This allows
reducing redundant computation. In the case of QSQ, tuples from different
adorned input relations of the same intensional predicate are not compared to
each other, and thus QSQ executes certain amount of redundant recomputation.

QSQN-STR inherits the aforementioned good properties of QSQN. As future work,
further (conditional) optimizations can be incorporated into QSQN-STR. For ex-
ample, we can extend QSQN-STR with tail-recursion elimination [38] in the way as
QSQN-TRE [10, 9] extends QSQN.
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Online Appendix

for the Paper “Incorporating Stratified Negation into Query-Subquery Nets
for Evaluating Queries to Stratified Deductive Databases” [3]

This appendix contains:
− an example illustrating the QSQN-STR method (Section A),
− proofs of data complexity, soundness and completeness of the QSQN-STR method (Section B),
− experimental results (Section C), and
− the pseudocode of the QSQN-STR method (Section D).

A An Illustrative Example

The aim of this example is to illustrate how Algorithm 1 works step by step. It uses the stratified
Datalog¬ database (P, I) and the stratification P = P1 ∪ P2 given in [3, Example 2.2]. The
QSQN-STR topological structure of the program P is illustrated in Figure 1.

path(x, y)← edge(x, y)
path(x, y)← path(x, z), edge(z, y)

acyclic(x, y)← path(x, y), ∼path(y, x).

pre filter1

E8 // filter1,1
E9 // post filter1

E10

++VVVVVVVVVVVVVVVVVVVVVV

input path

E7

88pppppppppppp

E4

&&NNNNNNNNNNNN ans path
E11

xx

E15

tt

pre filter2
E5

// filter2,1
E12

//

E6
oo

filter2,2
E13

// post filter2

E14

88qqqqqqqqqqq

input acyclic
E1

// pre filter3
E2

// filter3,1
E16

//

E3

UU

filter3,2
E18

//

E17

]]

post filter3
E19

// ans acyclic

Fig. 1. The QSQN-STR topological structure of the program given in [3, Example 2.2]

Recall that the extensional instance I is specified by I(edge) = {(a, b),(a, c),(c, d),(d, a)} and
illustrated below:

?>=<89:;b
?>=<89:;a

99sssssss
//?>=<89:;c

yyttttttt

?>=<89:;d
eeKKKKKKK

We give below a trace of running Algorithm 1 for the query acyclic(x, y) on the stratified
Datalog¬ database (P, I). For convenience, we name the edges of the net by Ei with 1 ≤ i ≤ 19,
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as shown in Figure 1. Let T (v) = false for each v = filter i,j with kind(v) = extensional. Assume
that Algorithm 1 evaluates the query acyclic(x, y) to the knowledge base (P, I) using a control
strategy that selects active edges for “firing” in the order (E1, E3, E4, E6, E7, E11, E12, E11,
E12, E11, E12, E15, E16, E17, E18), which is admissible w.r.t. strata’s stability and corresponds
to the IDFS2 control strategy specified in [1]. Recall that, by [3, Example 2.2], the set of answers
should be {(a, b), (c, b), (d, b)}. To ease the checking, the reader can use the full pseudocode
of Algorithm 1 gathered in Section D. In addition, a much more friendly presentation of this
example in the PowerPoint-like mode is available online [4].

Algorithm 1 starts with an empty QSQN-STR and then adds a fresh variant (x1, y1) of (x, y)
to the empty sets tuples(input acyclic) and unprocessed(E1). This makes the edge E1 active.

1. E1–E2

Firing the active edge E1 (by fire′), the algorithm transfers (x1, y1) through this edge and
empties the set unprocessed(E1). This produces {((x1, y1), {x/x1, y/y1})} (by transfer′3
via transfer′), which is then transferred through the edge E2 and added to the empty sets
subqueries(filter3,1), unprocessed subqueries(filter3,1) and unprocessed subqueries2 (filter3,1)
(by transfer5 via transfer′).

2. E3

Firing the active edge E3 (by fire′1 via fire′), the algorithm empties the set
unprocessed subqueries2 (filter3,1) and transfers (x2, y2), a fresh variant of (x1, y1), through
the edge E3 and adds its fresh variant (x3, y3) to the empty sets tuples(input path),
unprocessed(E4) and unprocessed(E7) (by transfer2 via transfer′).

3. E4–E5

Firing the active edge E4 (by fire′), the algorithm transfers (x3, y3) through this edge and
empties the set unprocessed(E4). This produces {((x3, y3), {x/x3, y/y3})} (by transfer′3
via transfer′), which is then transferred through the edge E5 and added to the empty sets
subqueries(filter2,1), unprocessed subqueries(filter2,1) and unprocessed subqueries2 (filter2,1)
(by transfer5 via transfer′).

4. E6

Firing the active edge E6 (by fire′1 via fire′), the algorithm empties the set
unprocessed subqueries2 (filter2,1) and transfers (x4, z4), a fresh variant of (x3, z), through
the edge E6 and adds nothing to tuples(input path) (by transfer2 via transfer′), because
there exists (x3, y3) ∈ tuples(input path), which is more general than any other tuples.

5. E7–E8–E9–E10

Firing the active edge E7 (by fire′), the algorithm transfers (x3, y3) through this
edge and empties the set unprocessed(E7). This produces {((x3, y3), {x/x3, y/y3})} (by
transfer′3 via transfer′), which is then transferred through the edge E8, producing
{((a, b), ε), ((a, c), ε), ((c, d), ε), ((d, a), ε)} (by transfer′4 via transfer′), which is then trans-
ferred through the edge E9, producing {(a, b), (a, c), (c, d), (d, a)} (by transfer′), which in
turn is then transferred through the edge E10 and added to the empty sets tuples(ans path),
unprocessed(E11) and unprocessed(E15) (by transfer1 via transfer′).

6. E11

Firing the active edge E11 (by fire′), the algorithm transfers {(a, b), (a, c), (c, d), (d, a)}
through this edge and empties the set unprocessed(E11). This adds those tuples to the empty
set unprocessed tuples(filter2,1) (by transfer′).
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7. E12–E13–E14

Firing the active edge E12 (by fire′3 via fire′) and processing the sets
unprocessed subqueries(filter2,1) and unprocessed tuples(filter2,1), the algorithm empties
these sets and produces the set of subqueries {((a, y3), {y/y3, z/b}), ((a, y3), {y/y3, z/c}),
((c, y3), {y/y3, z/d}), ((d, y3), {y/y3, z/a})}, which is transferred through the edge E12, pro-
ducing {((a, d), ε), ((c, a), ε), ((d, b), ε), ((d, c), ε)} (by transfer′4 via transfer′), which is
then transferred through the edge E13, producing {(a, d), (c, a), (d, b), (d, c)} (by transfer′),
which in turn is then transferred through the edge E14 and added to the sets tuples(ans path),
unprocessed(E11) and unprocessed(E15) (by transfer′1 via transfer′). After these steps,
we have:

− tuples(ans path) = {(a, b), (a, c), (c, d), (d, a), (a, d), (c, a), (d, b), (d, c)},
− unprocessed(E11) = {(a, d), (c, a), (d, b), (d, c)},
− unprocessed(E15) = tuples(ans path).

8. E11 and E12–E13–E14

The algorithm repeatedly fires the edges E11 and E12 until no new tuple is added to
tuples(ans path), unprocessed(E11) and unprocessed(E15). This takes two rounds and after
such steps, the edges E11 and E12 become inactive and we have:

− tuples(ans path) = unprocessed(E15) = {(a, b), (a, c), (c, d), (d, a), (a, d), (c, a), (d, b),
(d, c), (a, a), (c, b), (c, c), (d, d)}.

9. E15

Firing the active edge E15 (by fire′), the algorithm transfers the aforementioned tuples of
unprocessed(E15) through this edge and empties the set unprocessed(E15). This adds those
tuples to the empty set unprocessed tuples(filter3,1) (by transfer′). After these steps, we
have:

− subqueries(filter3,1) = unprocessed subqueries(filter3,1) = {((x1, y1), {x/x1, y/y1})},
− unprocessed tuples(filter3,1) = {(a, b), (a, c), (c, d), (d, a), (a, d), (c, a), (d, b), (d, c), (a, a),

(c, b), (c, c), (d, d)}.

10. E16

Firing the active edge E16 (by fire′3 via fire′) and processing the sets
unprocessed subqueries(filter3,1) and unprocessed tuples(filter3,1), the algorithm empties
these sets and produces the set of subqueries {((a, b), {x/a, y/b}), ((a, c), {x/a, y/c}),
((c, d), {x/c, y/d}), ((d, a), {x/d, y/a}), ((a, d), {x/a, y/d}), ((c, a), {x/c, y/a}),
((d, b), {x/d, y/b}), ((d, c), {x/d, y/c}), ((a, a), {x/a, y/a}), ((c, b), {x/c, y/b}),
((c, c), {x/c, y/c}), ((d, d), {x/d, y/d})}, which is transferred through the edge E16

and added to the empty sets subqueries(filter3,2), unprocessed subqueries(filter3,2) and
unprocessed subqueries2 (filter3,2) (by transfer5 via transfer′).

11. E17

Firing the active edge E17 (by fire′1 via fire′), the algorithm empties the set
unprocessed subqueries2 (filter3,2) and transfers the set of tuples {(b, a), (c, a), (d, c), (a, d),
(d, a), (a, c), (b, d), (c, d), (a, a), (b, c), (c, c), (d, d)} through the edge E17 and adds noth-
ing to tuples(input path) (by transfer2 via transfer′), because there exists (x3, y3) ∈
tuples(input path), which is more general than any other tuples.

3



12. E18–E19

Observe that the edge E18 is active, the current net is stable up to the layer 1 (no edge
among E4–E14 is active), and the edge E17 is inactive. Thus, selecting the edge E18 (for
firing) satisfies the admissibility w.r.t. strata’s stability. Firing this edge (by fire′4 via fire′)
and processing unprocessed subqueries(filter3,2), the algorithm empties this set and produces
the set of subqueries {((a, b), {ε}), ((d, b), {ε}), ((c, b), {ε})}, which is transferred through the
edge E18, producing {(a, b), (d, b), (c, b)} (by transfer′), which, in turn, is then transferred
through the edge E19 and added to the empty set tuples(ans acyclic) (by transfer1 via
transfer′).

At this point, no edge in the net is active. The algorithm terminates and returns the set
tuples(ans acyclic) = {(a, b), (d, b), (c, b)}.

B Data Complexity, Soundness and Completeness

In this section, we prove that the QSQN-STR evaluation method for stratified Datalog¬ is sound,
complete and has a PTIME data complexity.

The following lemma states a property of Algorithm 1.

Lemma 1. For every intensional predicate r used in P , if t ∈ tuples(ans r), then t is a ground
tuple (i.e., a tuple without variables).

This property follows from the safety conditions of the Datalog¬ program P . Technically,
one can prove it by induction on the moment of adding t to tuples(ans r) and an inner induction
on j that, if a subquery (t

′
, δ) is transferred to a node filter i,j , where the predicate of Ai

is r, then Vars(t
′
) ⊆ Vars((Bi,j , . . . , Bi,ni)δ) and, for every x ∈ Vars((Bi,1, . . . , Bi,j−1)) ∩

Vars((Bi,j , . . . , Bi,ni)), δ(x) is a constant (i.e., δ contains a pair x/c for some constant c).
Additionally, as the next step, if a subquery (t, δ) is transferred to the node post filter i, then
δ = ε and t is a ground tuple. The proof is straightforward and omitted.

Lemma 2. Algorithm 1 runs in polynomial time in the size of I.

Proof. Let n be the size of I. Without loss of generality, we assume that all intensional predicates
of the signature are used in P . As the Datalog¬ program P is fixed, the arities of all intensional
predicates are bounded by a constant, and the number of constant symbols occurring in P is
also bounded by a constant.

For each intensional predicate p, let all tuples(input p) denote the set of all tuples that are
added to tuples(input p) during the run of the algorithm (including the ones that are deleted
from tuples(input p) at some later steps). The cardinality of all tuples(input p) is bounded by
a polynomial in n. The reasons are as follows:

− Let k be the arity of p. Before a tuple t is added to tuples(input p), t is not an instance
of a fresh variant of any t

′ ∈ tuples(input p), hence there exists a renaming substitution θt
such that dom(θt) = Vars(t), range(θt) ⊆ {x1, . . . , xk} and tθt is not an instance of a fresh
variant of any t

′ ∈ tuples(input p). When a tuple is deleted from tuples(input p), its fresh
variant must be an instance of a tuple that will be added to tuples(input p) at the next step.
Hence, if {t, t′} ⊆ all tuples(input p) and t 6= t

′
, then tθt 6= t

′
θt′ .

− The sets all tuples(input p) and {tθt | t ∈ all tuples(input p)} have the same cardinality,
which is bounded by a polynomial in n because each element of the latter set is a k-ary tuple
constructed from the variables x1, . . . , xk and the constants occurring in P ∪ I.

For each intensional predicate p, the cardinality of tuples(ans p) is also bounded by a poly-
nomial in n. This follows from Lemma 1.
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Each “elementary operation” executed by the algorithm is related to a t ∈ all tuples(input p)
for some p and can be labeled by the pair (t, p), which is chosen so that t ∈ all tuples(input p) is
the most direct cause of the operation. Observe that, for each (t, p), the number of “elementary
operations” executed by the algorithm and labeled by (t, p) is bounded by a polynomial in n. As
the cardinality of all tuples(input p) for each intensional predicate p is bounded by a polynomial
in n, we conclude that the algorithm runs in polynomial time in n. �

We will need the well-known Lifting Lemma, whose restriction to Datalog is presented below.
Its proof can be found in [9].

Lemma 3 (Lifting Lemma). Let P be a Datalog program, G a goal and θ a substitution.
Suppose there exists an SLD-refutation of P ∪{Gθ} using mgu’s θ1, . . . , θn such that the variables
of the input program clauses are distinct from the variables in G and θ. Then, there exist
a substitution γ and an SLD-refutation of P ∪ {G} using the same sequence of input program
clauses, the same selected atoms, and mgu’s θ′1, . . . , θ

′
n such that θθ1 . . . θn = θ′1 . . . θ

′
nγ.

For each predicate p of the signature (now called the primary signature), let p′ be a new
extensional predicate (for playing the role of ∼p). For each 1 ≤ k ≤ K, let P ′k be the Datalog
program obtained from Pk by replacing every ∼ p with p′. For each 0 ≤ k ≤ K, let Mk =
MP1∪...∪Pk,I and let Ik be the instance of extensional predicates specified as follows:

− if p is an extensional predicate from the primary signature, then Ik(p) = I(p);

− if p is an h-ary predicate from the primary signature, then Ik(p′) = {t | t is an h-ary tuple of
constants from UP,I such that p(t) /∈Mk}.

Lemma 4. For every 1 ≤ k ≤ K, every intensional predicate p of the primary signature and
every tuple t of constants, p(t) ∈Mk iff p(t) ∈ TP ′1∪...∪P ′k,Ik−1

↑ω.

This lemma immediately follows from the fact that the standard semantics of stratified
Datalog¬ agrees with the stable model semantics [5].

Lemma 5. During a run of Algorithm 1, for every intensional predicate r of P with
layer(input r) = k and for every tuples t and t

′
of terms,

a) if t ∈ tuples(ans r), then r(t) ∈MP,I ,

b) if the QSQ-STR-net is stable up to the layer k, t ∈ tuples(input r), r(t
′
) ∈MP,I and t

′
is an

instance of t, then t
′ ∈ tuples(ans r).

Proof. We prove this lemma by induction on k. The base case k = 0 is trivial.

For the induction step, we first show that a run of the QSQN-STR method for the Datalog¬

program P1 ∪ . . . ∪ Pk can be treated as a run of the QSQN method for the Datalog program
P ′1 ∪ . . . ∪ P ′k by considering each ∼p as the extensional predicate p′ specified by Ik−1. For this,
we only need to show that if pred(Ai) = r, kind(filter i,j) = intensional, neg(filter i,j) = true,
pred(filter i,j) = p, layer(input p) = h and h < k, then:

(i) if t ∈ tuples(ans p), then p′(t) /∈ Ik−1,
(ii) if (tj−1, δj−1) ∈ subqueries(filter i,j), then for every tuple t of constants from UP,I such that

p(t) is an instance of atom(filter i,j)δj−1 and p′(t) /∈ Ik−1, t was added by Algorithm 1
to tuples(ans p) at some step before the subquery (tj−1, δj−1) is processed for the edge
(filter i,j , succ(filter i,j)).

Assume that the premises of the main implication hold. Consider the assertion (i) and assume
that t ∈ tuples(ans p). By the inductive assumption (a), p(t) ∈ MP,I . Thus, p(t) ∈ Mk−1 and
hence p(t) /∈ Ik−1. For the assertion (ii), assume that (tj−1, δj−1) ∈ subqueries(filter i,j), t is
a tuple of constants from UP,I such that p(t) is an instance of atom(filter i,j)δj−1 and p′(t) /∈ Ik−1.
We have that p(t) ∈Mk−1, and hence p(t) ∈MP,I . Since the used control strategy is admissible
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w.r.t. strata’s stability, before calling fire′(filter i,j , succ(filter i,j)), the subquery (tj−1, δj−1) has
already been processed for the edge (filter i,j , input p) and, as a consequence, tuples(input p)

contains a tuple t
′′

such that a fresh variant of atom(filter i,j)δj−1 is an instance of p(t
′′
). Thus,

t is an instance of t
′′
. Furthermore, at that moment the QSQ-STR-net is stable up to the layer h.

By the inductive assumption (b) for h instead of k and p, t
′′
, t instead of r, t, t

′
, respectively, we

have that t ∈ tuples(ans p), which completes the proof of the assertion (ii).
By the assertions (i) and (ii), we can now treat a run of Algorithm 1 on the part consisting

of the layers up to k of the QSQ-STR-net as a run of the QSQN method on a QSQ-net by
considering each ∼p as the extensional predicate p′ specified by Ik−1.

1

Consider the assertion (a) and assume that the premise of the implication holds. Since
t ∈ tuples(ans r), by the soundness of the QSQN method for Datalog (see [1, Lemma 4.2] for
the case when l = 0 and T (p) = false for every intensional predicate p), t is a correct answer for
(P ′1 ∪ . . . ∪ P ′k) ∪ Ik−1 ∪ {← r(t)}. By the correctness of the fixpoint semantics of positive logic
program (see, e.g., [6, Theorems 6.5 and 6.6]), it follows that r(t) ∈ TP ′1∪...∪P ′k,Ik−1

↑ω. Hence, by

Lemma 4, r(t) ∈Mk, which implies r(t) ∈MP,I . This completes the proof of the assertion (a).
Consider the assertion (b) and assume that the premises of the implication hold. Since

r(t
′
) ∈ MP,I , we have that r(t

′
) ∈ Mk, and by Lemma 4, r(t

′
) ∈ TP ′1∪...∪P ′k,Ik−1

↑ω. By the

correctness of the fixpoint semantics of positive logic program (see, e.g., [6, Theorems 6.5
and 6.6]) and the completeness of SLD-resolution (see, e.g., [6, Theorems 8.6]), there exists

an SLD-refutation of (P ′1 ∪ . . . ∪ P ′k) ∪ Ik−1 ∪ {← r(t
′
)} with mgu’s θ1, . . . , θn. Since t

′
is an

instance of t, there exists a substitution θ such that t
′

= tθ. By the Lifting Lemma 3, there
exists an SLD-refutation of (P ′1 ∪ . . . ∪ P ′k) ∪ Ik−1 ∪ {← r(t)} with mgu’s θ′1, . . . , θ

′
n such that

θθ1 . . . θn = θ′1 . . . θ
′
nδ for some substitution δ. By the completeness of the QSQN method for

Datalog (see [1, Lemma 4.3] for the case when l = 0 and T (p) = false for every intensional

predicate p), tθ′1 . . . θ
′
n is an instance of a fresh variant of some tuple t

′′ ∈ tuples(ans r). Since

t
′

= t
′
θ1 . . . θn = tθθ1 . . . θn = tθ′1 . . . θ

′
nδ is an instance of tθ′1 . . . θ

′
n, t
′

is also an instance of t
′′
.

Since t
′′

is a ground tuple (by Lemma 1), it follows that t
′
= t
′′
. This completes the proof of the

assertion (b). �

Corollary 1. After a run of Algorithm 1 for a query q(x) to a stratified Datalog¬ database
(P, I), for every tuple of terms t, t ∈ tuples(ans q) iff q(t) ∈MP,I .

This corollary immediately follows from Lemma 5. Together with Lemma 2, it implies the
following theorem.

Theorem 1. The QSQN-STR method formulated by Algorithm 1 for evaluating queries to
stratified Datalog¬ databases is sound, complete and has a PTIME data complexity.

C Preliminary Experiments

We have implemented a prototype of QSQN-STR in Java, using a control strategy named IDFS2,
which is specified in [1]. We have made a comparison between our prototype of QSQN-STR
and Datalog Educational System (DES – a deductive database system) [7] w.r.t. the number
of generated tuples in the answer relations that correspond to intensional predicates. The
experimental results given in [1, Section 6.5] show that the number of generated tuples in the
answer relations that correspond to negated intensional predicates in the case of QSQN-STR is
often smaller than the one in the case of DES.

Our prototype of QSQN-STR [2] has not yet been optimized. So, in general, it cannot compete
with highly optimized engines like XSB [8]. Nevertheless, we have performed experiments and

1 The edge (filter i,j , input p) may cause adding more tuples to tuples(input p), but they do not affect the soundness
and completeness of the QSQN method ([1, Lemmas 4.2 and 4.3] for the case when l = 0 and T (p) = false for
every intensional predicate p).
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made a comparison between our prototype of QSQN-STR, DES-DBMS2 (version 5.0.1) and
SWI-Prolog3 (version 6.4) w.r.t. the execution time by using a number of tests. Comparing our
prototype of QSQN-STR with other existing engines is time-consuming and left as future work.4

In this section, we present the mentioned comparison between our prototype of QSQN-STR,
DES-DBMS and SWI-Prolog. In general, such a comparison does not reveal much about
advantages of the used evaluation methods, because these systems use different programming
styles and/or languages. Besides, QSQN-STR is a framework that allows every control strategy
admissible w.r.t. strata’s stability, and our prototype of QSQN-STR adopts the control strategy
IDFS2 [1], which may be further improved. The point is not the efficiency of our prototype
of QSQN-STR. The aim of our experiments and comparison is only to support the claim that
QSQN-STR is a useful evaluation framework for stratified Datalog¬.

Our prototype of QSQN-STR uses extensional relations stored in a MySQL database. DES-
DBMS was also implemented in Java using SQL DBMS’. SWI-Prolog is a well-known logic
programming software, which can easily be connected to a MySQL database through an ODBC
driver. Without using a MySQL database for storing extensional relations, SWI-Prolog runs
very fast. For a fair comparison, however, we performed tests with SWI-Prolog using extensional
relations stored in the same MySQL database as for QSQN-STR. For the tests with QSQN-STR,
we set T (v) = false for each v = filter i,j ∈ V with pred(v) = extensional.

Let P1 be the stratified Datalog¬ program consisting of the following clauses, where link1,
link2, origin and destination are extensional predicates, reachable1, reachable2, reachable, query1

and query2 are intensional predicates, x, y and z are variables:

reachable1(x, y)← link1(x, y), (1)

reachable1(x, y)← link1(x, z), reachable1(z, y), (2)

reachable2(x, y)← link2(x, y), (3)

reachable2(x, y)← link2(x, z), reachable2(z, y), (4)

reachable(x, y)← reachable1(x, y), (5)

reachable(x, y)← reachable2(x, y), (6)

query1(x, y)← origin(x), destination(y),∼reachable(x, y), (7)

query2(x, y)← origin(x), destination(y), reachable(x, y),∼reachable(y, x). (8)

Let P2 be the stratified Datalog¬ program that differs from P1 in that the clauses (2) and (4)
are replaced by the following one, with i being 1 or 2, respectively:

reachablei(x, y)← reachablei(x, z), link i(z, y).

Similarly, let P3 be the stratified Datalog¬ program that differs from P1 in that the clauses (2)
and (4) are replaced by the following one, with i being 1 or 2, respectively:

reachablei(x, y)← reachablei(x, z), reachablei(z, y).

2 The Datalog Education System (DES) with a DBMS via ODBC, available at http://des.sourceforge.net

(see also, e.g., [7]).
3 Available at http://www.swi-prolog.org/
4 XSB is known as an efficient engine for in-memory Datalog¬ databases due to the suspension-resumption

mechanism, advantages of WAM (Warren Abstract Machine) and other optimizations. We think that our
prototype of QSQN-STR cannot compete with XSB when the computation can totally be done in the memory
without accessing to the secondary storage. For a comparison with XSB, at least we want to run XSB using
very large extensional relations stored on disk. However, at the moment we have a technical problem with
connecting XSB to a MySQL DBMS via an ODBC driver. We could not find time for comparing our prototype
of QSQN-STR with other engines like DLV [29], NP Datalog [24] and clasp [19]. In general, we think that those
systems were designed and implemented to deal, among others, with answer set programming (ASP) and, as
the main aim of ASP engines is to find an answer set (i.e., a stable model) for a given logic program, they
are not goal-driven and, in general, not as efficient as expected for answering queries to stratified Datalog¬

databases. Of course, without performing experiments and comparisons, nothing can be formally stated.
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Let I1 be the extensional instance specified as follows, where n is a parameter and elements
like ai,j , ok and dk are constant symbols:

I1(origin) = {ok | 1 ≤ k ≤ n},
I1(destination) = {dk | 1 ≤ k ≤ n},

I1(link1) = {(ok, a1,1), (ai,1, ai+1,1), (an,1, dk) | 1 ≤ k ≤ n, 1 ≤ i < n},
I1(link2) = {(ok, a1,j), (ai,j , ai+1,j), (an,j , dk) | 1 ≤ k ≤ n, 1 ≤ i < n, 1 ≤ j ≤ n}.

Let I2 be the extensional instance specified as follows:

I2(origin) = I1(origin),

I2(destination) = I1(destination),

I2(link1) = I1(link1) ∪ {(ai+1,1, ai,1) | 1 ≤ i < n},
I2(link2) = I1(link2) ∪ {(ai+1,j , ai,j) | 1 ≤ i < n, 1 ≤ j ≤ n}.

The extensional instances I1 and I2 are illustrated in Figures 2 and 3, respectively.

We consider the tests specified as follows.

Test Program Extensional Instance

Test 1 P1 I1

Test 2 P1 I2

Test 3 P2 I1

Test 4 P2 I2

Test 5 P3 I1

Test 6 P3 I2

For each of the tests, we consider the following values of n:

1) n = 20, 2) n = 40, 3) n = 60, 4) n = 80, 5) n = 100

and the following queries (cf. [3, Remark 2.3]):

a) query1(x, y), b) query1(o1, d1), c) query2(x, y), d) query2(o1, d1).

Our experiments were done using a computer with Windows 10 (64-bit), Intel R©
CoreTM i5-6500 CPU 3.20 GHz and 8 GB RAM. Figures 4–9 show a comparison between
our prototype of QSQN-STR, SWI-Prolog and DES-DBMS w.r.t. the execution time for the
mentioned tests. The experimental results of SWI-Prolog are shown only for the tests for which
SWI-Prolog can terminate properly.5 For each of the mentioned engines, each test was executed
10 times and the average value of execution time in milliseconds was taken. To give a better data
visualization, the execution times are shown after being converted by log10. Detailed instructions
for verifying our experiments are included in [2].

The results presented in Figures 4–9 show that our prototype of QSQN-STR outperforms
DES-DBMS by a few orders of magnitude in term of execution time for all of the tests. It is
competitive with SWI-Prolog for the tests for which SWI-Prolog can terminate properly.

5 SWI-Prolog uses SLDNF-resolution, which can have infinite derivations even for Datalog, and for such cases
SWI-Prolog terminates with the communication “out of local stack”.
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Fig. 2. The extensional instance I1: (a) I1(link1), and (b) I1(link2)
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Fig. 3. The extensional instance I2: (a) I2(link1), and (b) I2(link2)
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Fig. 4. Experimental results for Test 1

Fig. 5. Experimental results for Test 2
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Fig. 6. Experimental results for Test 3

Fig. 7. Experimental results for Test 4

11



Fig. 8. Experimental results for Test 5

Fig. 9. Experimental results for Test 6
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D Pseudocode of the QSQN-STR Method for Stratified Datalog¬

Algorithm 1: evaluating a query q(x) to a stratified Datalog¬ database (P, I).

Input: a stratified Datalog¬ database (P, I), a stratification P = P1 ∪ . . . ∪ PK of P and
a query q(x).

Output: the set of all correct answers for the query q(x) on (P, I).

1 let (V,E, T ) be a QSQN-STR structure of P ;
// T can be chosen arbitrarily or appropriately

2 set C so that (V,E, T,C) is an empty QSQ-STR-net of P ;

3 let x′ be a fresh variant of x;
4 tuples(input q) := {x′};
5 foreach (input q, v) ∈ E do unprocessed(input q, v) := {x′};
6 while there exists (u, v) ∈ E such that active-edge(u, v) holds do
7 select any edge (u, v) ∈ E such that active-edge(u, v) holds and the

selection satisfies the admissibility w.r.t. strata’s stability;

8 fire′(u, v);

9 return tuples(ans q);
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Function active-edge(u, v)

Global data: a QSQ-STR-net (V,E, T,C) of P .
Input: an edge (u, v) ∈ E.
Output: true if there are data to transfer through the edge (u, v), and false otherwise.

1 if u is pre filter i or post filter i then return false;
2 else if u is input p or ans p then return unprocessed(u, v) 6= ∅;
3 else if u is filter i,j and kind(u) = extensional then

4 return T (u) = true ∧ unprocessed subqueries(u) 6= ∅;
5 else // u is of the form filter i,j and kind(u) = intensional

6 let p = pred(u);
7 if v = input p then return unprocessed subqueries2 (u) 6= ∅;
8 else return unprocessed subqueries(u) 6= ∅ ∨ unprocessed tuples(u) 6= ∅;

Procedure add-subquery(t, δ, Γ, v)

Purpose: add the subquery (t, δ) to Γ , but keep in Γ only the most general subqueries
w.r.t. v.

1 if no subquery in Γ is more general than (t, δ) w.r.t. v then
2 delete from Γ all subqueries less general than (t, δ) w.r.t. v;
3 add (t, δ) to Γ ;

Procedure add-tuple(t, Γ )

Purpose: add a fresh variant of the tuple t to Γ , but keep in Γ only the most general
tuples.

1 let t
′

be a fresh variant of t;

2 if t
′

is not an instance of any tuple from Γ then

3 delete from Γ all tuples that are instances of t
′
;

4 add t
′

to Γ ;

Procedure transfer′(D,u, v)

Global data: a stratified Datalog¬ database (P, I) and a QSQ-STR-net (V,E, T,C) of
P .

Input: data D to transfer through the edge (u, v) ∈ E.

1 if D = ∅ then return;
2 else if v is post filter i then transfer′({t | (t, ε) ∈ D}, v, succ(v));
3 else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;
4 else if v is ans p then transfer1(D,u, v);
5 else if v is input p then transfer2(D,u, v);
6 else if u is input p then transfer′3(D,u, v);
7 else if v is filter i,j, kind(v) = extensional and T (v) = false then

8 if neg(v) = false then transfer′4(D,u, v);
9 else transfer′4b(D,u, v);

10 else transfer5(D,u, v);
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Procedure transfer1(D,u, v)

// v = ans p, u = post filter i, D is a set of tuples of constants

1 foreach t ∈ D − tuples(v) do
2 add t to tuples(v);
3 foreach (v, w) ∈ E do add t to unprocessed(v, w);

Procedure transfer2(D,u, v)

// v = input p, u = filter i,j and kind(u) = intensional

1 foreach t ∈ D do

2 let t
′

be a fresh variant of t;

3 if t
′

is not an instance of any tuple from tuples(v) then

4 delete from tuples(v) all tuples that are instances of t
′
;

5 add t
′

to tuples(v);
6 foreach (v, w) ∈ E do

7 delete from unprocessed(v, w) all tuples that are instances of t
′
;

8 add t
′

to unprocessed(v, w);

Procedure transfer′3(D,u, v)

// u is input p and v = pre filter i

1 Γ := ∅;
2 foreach t ∈ D do
3 if p(t) and atom(v) are unifiable by an mgu γ then
4 add-subquery(tγ, γ|post vars(v), Γ, succ(v));

5 transfer′(Γ, v, succ(v));

Procedure transfer′4(D,u, v)

// v = filter i,j, kind(v) = extensional, T (v) = false and neg(v) = false

1 let p = pred(v) and set Γ := ∅;
2 foreach (t, δ) ∈ D and t

′ ∈ I(p) do

3 if atom(v)δ and p(t
′
) are unifiable by an mgu γ then

4 add-subquery(tγ, (δγ)|post vars(v), Γ, succ(v));

5 transfer′(Γ, v, succ(v));

Procedure transfer′4b(D,u, v)

// v = filter i,j, kind(v) = extensional, T (v) = false, neg(v) = true

1 let p = pred(v) and set Γ := ∅;
2 foreach (t, δ) ∈ D do

3 if atom(v)δ /∈ {p(t′) | t′ ∈ I(p)} then
4 add-subquery(t, δ|post vars(u), Γ, succ(v));

5 transfer′(Γ, v, succ(v));
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Procedure transfer5(D,u, v)

/* v = filter i,j, (kind(v) = extensional and T (v) = true or kind(v) = intensional)

and u is not of the form ans p */

1 foreach (t, δ) ∈ D do
2 if no subquery in subqueries(v) is more general than (t, δ) w.r.t. v then
3 delete from subqueries(v) and unprocessed subqueries(v) all subqueries less

general than (t, δ) w.r.t. v;
4 add (t, δ) to both subqueries(v) and unprocessed subqueries(v);
5 if kind(v) = intensional then
6 delete from unprocessed subqueries2 (v) all subqueries less general than (t, δ)

w.r.t. v;
7 add (t, δ) to unprocessed subqueries2 (v);

Procedure fire′(u, v)

Global data: a stratified Datalog¬ database (P, I) and a QSQ-STR-net (V,E, T,C) of
P .

Input: an edge (u, v) ∈ E such that active-edge(u, v) holds.

1 if u is ans p then
2 transfer′(unprocessed(u, v), u, v);
3 unprocessed(u, v) := ∅;
4 else if u is input p then
5 transfer′(unprocessed(u, v)− tuples(ans p), u, v);
6 unprocessed(u, v) := ∅;
7 else if v is input p then fire′1(u, v);
8 else if u is filter i,j and neg(u) = false then

9 if kind(u) = extensional then fire′2(u, v);
10 else fire′3(u, v);

11 else if u is filter i,j and neg(u) = true then fire′4(u, v);

Procedure fire′1(u, v)

// v = input p, u = filter i,j and kind(u) = intensional

1 let p = pred(u) and set Γ := ∅;
2 foreach (t, δ) ∈ unprocessed subqueries2 (u) do

3 let p(t
′
) = atom(u)δ;

4 add-tuple(t
′
, Γ );

5 unprocessed subqueries2 (u) := ∅;
6 transfer′(Γ, u, v);
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Procedure fire′2(u, v)

// u = filter i,j, neg(u) = false, kind(u) = extensional and T (u) = true

1 let p = pred(u) and set Γ := ∅;
2 foreach (t, δ) ∈ unprocessed subqueries(u) and t

′ ∈ I(p) do

3 if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

4 add-subquery(tγ, (δγ)|post vars(u), Γ, v);

5 unprocessed subqueries(u) := ∅;
6 transfer′(Γ, u, v);

Procedure fire′3(u, v)

// u = filter i,j, neg(u) = false, kind = intensional and v = succ(u)

1 let p = pred(u) and set Γ := ∅;
2 foreach (t, δ) ∈ unprocessed subqueries(u) and t

′ ∈ tuples(ans p) do

3 if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

4 add-subquery(tγ, (δγ)|post vars(u), Γ, v);

5 unprocessed subqueries(u) := ∅;
6 foreach (t, δ) ∈ subqueries(u) and t

′ ∈ unprocessed tuples(u) do

7 if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

8 add-subquery(tγ, (δγ)|post vars(u), Γ, v);

9 unprocessed tuples(u) := ∅;
10 transfer′(Γ, u, v);

Procedure fire′4(u, v)

// u = filter i,j, neg(u) = true and v = succ(u)

1 let p = pred(u) and set Γ := ∅;
2 let R be I(p) if kind(u) = extensional, and tuples(ans p) otherwise;
3 foreach (t, δ) ∈ unprocessed subqueries(u) do

4 if atom(u)δ /∈ {p(t′) | t′ ∈ R} then
5 add-subquery(t, δ|post vars(u), Γ, v);

6 unprocessed subqueries(u) := ∅;
7 transfer′(Γ, u, v);
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Online Appendix

A Demonstration of the QSQN-STR Method 
for Evaluating Queries to Stratified Datalog¬

(this should be displayed using the presentation mode)
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(x1, y1)



tuples
(x1, y1)

Fire the edge E1



tuples
(x1, y1)

{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

{(x2,y2)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

{((x3,y3),{x/x3, y/y3})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

{(x4, z4)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

no tuple is added to tuples(input_path) 
because the tuple (x3, y3) is more general 
than any other tuples



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

{((x3,y3),{x/x3, y/y3})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

{((a,b),{}), ((a,c),{}),
  ((c,d),{}), ((d,a),{})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

{(a,b), (a,c),
  (c,d), (d,a)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

tuples
(a,b),
(a,c),
(c,d),
(d,a),



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

tuples
(a,b),
(a,c),
(c,d),
(d,a),



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

tuples
(a,b),
(a,c),
(c,d),
(d,a),

{(a,b), (a,c), 
  (c,d), (d,a)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}
unprocessed_tuples
{(a,b), (a,c), (c,d), (d,a)}

tuples
(a,b),
(a,c),
(c,d),
(d,a),



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}
unprocessed_tuples
{(a,b), (a,c), (c,d), (d,a)}

tuples
(a,b),
(a,c),
(c,d),
(d,a),



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

tuples
(a,b),
(a,c),
(c,d),
(d,a),

{((a,y3),{y/y3,z/b}),  
  ((a,y3),{y/y3,z/c}),
  ((c,y3),{y/y3,z/d}),
  ((d,y3),{y/y3,z/a})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

tuples
(a,b),
(a,c),
(c,d),
(d,a),

{((a,d),{}), ((c,a),{}),
  ((d,b),{}), ((d,c),{})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

tuples
(a,b),
(a,c),
(c,d),
(d,a),

{(a,d), (c,a), 
  (d,b), (d,c)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

subqueries
{((x3,y3),{x/x3, y/y3})}

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c)



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c)

subqueries
{((x3,y3),{x/x3, y/y3})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c)

subqueries
{((x3,y3),{x/x3, y/y3})}

{(a,d), (c,a), 
  (d,b), (d,c)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c)

subqueries
{((x3,y3),{x/x3, y/y3})}
unprocessed_tuples
{(a,d), (c,a), (d,b), (d,c)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c)

subqueries
{((x3,y3),{x/x3, y/y3})}
unprocessed_tuples
{(a,d), (c,a), (d,b), (d,c)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c)

subqueries
{((x3,y3),{x/x3, y/y3})}

{((a,y3),{y/y3,z/d}),  
  ((c,y3),{y/y3,z/a}),
  ((d,y3),{y/y3,z/b}),
  ((d,y3),{y/y3,z/c})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c)

subqueries
{((x3,y3),{x/x3, y/y3})}

{((a,a),{}), ((c,b),{}),
  ((c,c),{}), ((d,d),{})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c)

subqueries
{((x3,y3),{x/x3, y/y3})}

{(a,a), (c,b), 
  (c,c), (d,d)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

subqueries
{((x3,y3),{x/x3, y/y3})}

(a,a), 
(c,b), 
(c,c), 
(d,d)



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

subqueries
{((x3,y3),{x/x3, y/y3})}

(a,a), 
(c,b), 
(c,c), 
(d,d)



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

subqueries
{((x3,y3),{x/x3, y/y3})}

(a,a), 
(c,b), 
(c,c), 
(d,d)

{(a,a), (c,b), 
  (c,c), (d,d)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}
unprocessed_tuples
{(a,a), (c,b), (c,c), (d,d)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}
unprocessed_tuples
{(a,a), (c,b), (c,c), (d,d)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

{((a,y3),{y/y3,z/a}),  
  ((c,y3),{y/y3,z/b}),
  ((c,y3),{y/y3,z/c}),
  ((d,y3),{y/y3,z/d})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

{((a,b),{}),((a,c),{}),
  ((c,d),{}), ((d,a),{})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

{(a,b), (a,c),
  (c,d), (d,a)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

No tuples is added 
to tuples(ans_path)



tuples
(x1, y1)

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

subqueries
{((x1,y1),{x/x1, y/y1})}

{(a,b), (a,c), (c,d), (d,a), 
  (a,d), (c,a), (d,b), (d,c), 
  (a,a), (c,b), (c,c), (d,d)}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}
unprocessed_tuples
{(a,b), (a,c), (c,d), (d,a), (a,d), (c,a), (d,b), (d,c), (a,a), (c,b), (c,c), (d,d)}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}



tuples
(x1, y1)

subqueries
{((x1,y1),{x/x1, y/y1})}
unprocessed_tuples
{(a,b), (a,c), (c,d), (d,a), (a,d), (c,a), (d,b), (d,c), (a,a), (c,b), (c,c), (d,d)}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}



tuples
(x1, y1)

subqueries
{((a,b),{x/a,y/b}), ((a,c),{x/a,y/c}), ((c,d),{x/c,y/d}), ((d,a),{x/d,y/a}),
  ((a,d),{x/a,y/d}), ((c,a),{x/c,y/a}), ((d,b),{x/d,y/b}), ((d,c),{x/d,y/c}),
  ((a,a),{x/a,y/a}), ((c,b),{x/c,y/b}), ((c,c),{x/c,y/c}), ((d,d),{x/d,y/d})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

subqueries
{((a,b),{x/a,y/b}), ((a,c),{x/a,y/c}), ((c,d),{x/c,y/d}), ((d,a),{x/d,y/a}),
  ((a,d),{x/a,y/d}), ((c,a),{x/c,y/a}), ((d,b),{x/d,y/b}), ((d,c),{x/d,y/c}),
  ((a,a),{x/a,y/a}), ((c,b),{x/c,y/b}), ((c,c),{x/c,y/c}), ((d,d),{x/d,y/d})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

subqueries
{((a,b),{x/a,y/b}), ((a,c),{x/a,y/c}), ((c,d),{x/c,y/d}), ((d,a),{x/d,y/a}),
  ((a,d),{x/a,y/d}), ((c,a),{x/c,y/a}), ((d,b),{x/d,y/b}), ((d,c),{x/d,y/c}),
  ((a,a),{x/a,y/a}), ((c,b),{x/c,y/b}), ((c,c),{x/c,y/c}), ((d,d),{x/d,y/d})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

{(b,a), (c,a), (d,c), (a,d), 
  (d,a), (a,c), (b,d), (c,d), 
  (a,a), (b,c), (c,c), (d,d)}

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

subqueries
{((a,b),{x/a,y/b}), ((a,c),{x/a,y/c}), ((c,d),{x/c,y/d}), ((d,a),{x/d,y/a}),
  ((a,d),{x/a,y/d}), ((c,a),{x/c,y/a}), ((d,b),{x/d,y/b}), ((d,c),{x/d,y/c}),
  ((a,a),{x/a,y/a}), ((c,b),{x/c,y/b}), ((c,c),{x/c,y/c}), ((d,d),{x/d,y/d})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

no tuple is added to tuples(input_path) 
because the tuple (x3, y3) is more general 
than any other tuples

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

subqueries
{((a,b),{x/a,y/b}), ((a,c),{x/a,y/c}), ((c,d),{x/c,y/d}), ((d,a),{x/d,y/a}),
  ((a,d),{x/a,y/d}), ((c,a),{x/c,y/a}), ((d,b),{x/d,y/b}), ((d,c),{x/d,y/c}),
  ((a,a),{x/a,y/a}), ((c,b),{x/c,y/b}), ((c,c),{x/c,y/c}), ((d,d),{x/d,y/d})}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

subqueries
{((a,b),{x/a,y/b}), …}

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

{((a,b),{}), ((d,b),{}), 
  ((c,b),{})}

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

{(a,b), (d,b), (c,b)}

subqueries
{((a,b),{x/a,y/b}), …}

subqueries
{((x1,y1),{x/x1, y/y1})}



tuples
(x1, y1)

tuples
(x3, y3)

tuples
(a,b),
(a,c),
(c,d),
(d,a),
(a,d), 
(c,a), 
(d,b), 
(d,c),

(a,a), 
(c,b), 
(c,c), 
(d,d)

subqueries
{((x3,y3),{x/x3, y/y3})}

tuples
(a,b),
(d,b),
(c,b)

subqueries
{((a,b),{x/a,y/b}), …}

subqueries
{((x1,y1),{x/x1, y/y1})}



At this point, no edge in the net is active.
The algorithm terminates and returns the set 
tuples(ans_acyclic) = {(a,b), (d,b), (c,b)}.
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1 INTRODUCTION

The Roman domination problem (RD problem) was introduced by ReVelle and
Rosing [1] and Cockayne et al. [2] and can be interpreted as follows.

Assuming that any province of the Roman Empire is considered to be safe if
there is at least one legion (of maximum 2) stationed within it, the RD problem
requires that every unsafe province must be adjacent to a province with at least
two legions stationed within it and the total number of stationed legions within all
provinces of the Roman Empire is minimal.

In a graph terminology, let G = (V,E) be a simple undirected graph with a ver-
tex set V such that each vertex u ∈ V represents a province of the Roman Empire
and each edge, e ∈ E, represents an existing connection between two provinces.
Let f be a function f : V → {0, 1, 2} and let the weight of the vertex u, denoted
by f(u), represent the number of legions stationed at province u. Further, let the
weight of the function f be calculated by a formula

∑
v∈V f(v). Function f is called

a Roman dominating function (RD function) if every vertex u such that f(u) = 0
is adjacent to a vertex v such that f(v) = 2. The Roman domination problem is to
find an RD function f of a graph G with the smallest weight. The smallest weight of
the RD function f , denoted by γR(G), is known as the Roman domination number.

We illustrate the Roman domination problem in the example below.

Example 1. Let us assume that the Roman Empire can be described by a graph
G = (V,E) as it is presented below, in Figure 1.

v1

v5

v2

v3
v4

v6v7

v8

Figure 1: Graph G = (V,E)

The optimal number of legions necessary to defend the given graph is 4, provinces
represented by vertices v1 and v5 are with one stationed legion, province represented
by vertex v3 is with two stationed legions and all other provinces are without sta-
tioned legions. With the given schedule, vertices v1, v3 and v5 are defended be-
cause they have at least one legion stationed within it, while v2, v4, v6, v7 and v8
are defended since they are in the neighborhood of the vertex v3, which is with
two stationed legions. The optimal solution to the proposed problem is illustrated
in Figure 2, where vertices are marked by black squares if they are representing
provinces with two stationed legions, marked by red circles if they are represent-
ing provinces with one stationed legion, and marked by white circles if they are
representing provinces without stationed legions.
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v2

v4

v6v7

v8

v1

v5
v3

Figure 2: Illustrated solution of the RD problem on a graph G defined in the Ex-
ample 1

In order to reduce the number of legions necessary to defend the Roman Empire
against a single attack, Henning and Hedetniemi [3] introduced the weak Roman
domination problem (WRD problem) as a variant of the RD problem. First, they
assumed that every province of the Roman Empire is safe if there is at least one legion
stationed within it and every unsafe province is defended if it is adjacent to a safe
province. Then they required that for every unsafe province there exists at least one
adjacent safe province whose legion could move and protect it in case it is attacked,
such that this particular legion movement does not affect the Empire’s safety, i.e.,
all provinces are considered to be defended before and after the movement.

Similarly as for the RD problem, for a graph G = (V,E) and a function f :
V → {0, 1, 2}, every vertex with positive weight is considered to be defended, and
a vertex u with property f(u) = 0 is considered to be defended if it is adjacent
to a vertex v ∈ V with positive weight. A function f is called a weak Roman
dominating function (WRD function) on a graph G if every vertex u with property
f(u) = 0 is adjacent to a vertex v with property f(v) > 0 and, with respect to
the function f ′, f ′ : V → {0, 1, 2} defined by f ′(u) = 1, f ′(v) = f(v) − 1 and
f ′(w) = f(w), w ∈ V \ {u, v}, all vertices are defended. The problem of finding
the WRD function f with the minimal weight for a given graph G is referred to
as the weak Roman domination problem (WRD problem). The minimum weight
of the WRD function f , denoted by γr(G), represents the weak Roman domination
number.

We illustrate the weak Roman domination problem in the example below.

Example 2. Let us assume that the Roman Empire can be described by the graph
G = (V,E) presented on Figure 1. The optimal solution value for the WRD problem
on the given graph is 3. Legions are stationed such that provinces represented by
vertices v1, v5 and v7 are with one stationed legion while all other provinces are
without stationed legions, see Figure 3 (vertices are marked by red circles if they
are representing provinces with one stationed legion and marked by white circles if
they are representing provinces without stationed legions).

With the given strategy, in case of an attack, provinces represented by vertices v2
and v8 are defended by the legion stationed at the province represented by the
vertex v1. In case of attack, movements of legion stationed at province v1 to province
v2 or to v8 does not affect Empire’s safety. Similarly, provinces v4 and v6 are defended
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v2

v4

v6v7

v8

v1

v5
v3

Figure 3: Illustrated solution of the WRD problem for a graph G defined in the
Example 2

by the legion from province v5, province v3 is defended by the legion from province v7,
etc.

Ivanović [6] showed that neither the CPLEX nor the Gurobi optimization solvers
were able to solve the WRD problem on a huge number of instances with more than
100 vertices. Since there is only one algorithm for solving the WRD problem (see [7]),
which is written only for block graphs, we present a Variable Neighborhood Search
solution for solving the WRD problem on any types of graphs.

We also show that the same algorithm can be applied to the RD problem,
although Burger et al. [8] showed that there are significant differences in solving
these two problems (their assumption was based on the fact that the RD problem
involves static configuration of legions on the vertices of G, while the WRD problem
involves moving a legion between the adjacent vertices).

This paper is organized as follows. Previous work is given in Section 2. The
Variable Neighborhood Search algorithm is proposed in Section 3. Computational
results are summarized in Section 4.

2 PREVIOUS WORK

The Roman domination problem was introduced by Stewart [9] and ReVelle and
Rossing [1]. Inspired by Stewart’s paper, Cockayne et al. [2] gave some properties
of the Roman domination sets. Later Henning et al. [3] introduced the WRD prob-
lem as special variant of the RD problem and observed that every RD function in
a graph G is also a WRD function in G. In the same paper they proved relation
γ(G) ≤ γr(G) ≤ γR(G) ≤ 2γ(G), where γ(G) represents cardinality of the minimum
dominating set on the graph G (dominating set is a set of vertices such that each of
the other vertices has a neighbor in the dominating set). Relations between several
different domination numbers were summarized by Chellali et al. [10].

Upper and lower bounds for γR for special types of graphs were determined,
for instance, in [2, 11, 13, 14, 15, 16, 17]. Exact values for γR for paths, cycles,
complete, complete n-partite and Petersen P (n, 2) graphs were given in [2, 11, 15,
16, 18, 19, 20, 21, 22], while cardinal and Cartesian products of paths and cycles
and lexicographic product of some graphs were given in [15, 16, 19]. Exact values of
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the γr(G) for paths, cycles, complete, complete n-partite, 2×n grid and web graphs
and values of γr(G) of corona and products of some special types of graphs were
given in [3, 12, 23, 24].

The complexity of computing γR when restricted to interval graphs was men-
tioned as an open question in [2]. In the same paper it was shown that the problem
of computing γR on trees can be solved in linear time and that it remains NP-
complete even when restricted to split graphs, bipartite graphs, and planar graphs.
Linear-time algorithm for computing γR on bounded tree-width graphs was pro-
posed in [25]. In [20] it was shown that γR can be computed in linear time on
interval graphs and co-graphs. In the same papers, the authors give a polynomial
time algorithm for computing γR on AT-graphs and graphs with d-octopus. Linear-
time approximation algorithm and a polynomial time approximation scheme for the
RD problem on unit disk graphs was given in [22]. If we assume that the size
of G is a given constant, Pavlič and Žerovnik provided algorithm for computing γR
for polygraphs, including rota-graphs and fascia-graphs, that run in constant time
in [19]. Some variants of the algorithm for solving the RD problem on a grid graph
together with theoretical properties of γR of grid graphs were given in [13]. In [13]
Currò also showed that the same algorithm can be applied to some other types of
graph.

A binary programing formulations for the RD problem, which can be used for
computing γR on arbitrary graphs by using standard optimization solvers, were
provided by ReVelle and Rossing [1] and Burger et al. [4]. Burger et al. [4] also gave
a binary programming formulations for the WRD problem. Recently Ivanović [6]
gave another formulation for the WRD problem. Ivanović compared formulations
for the WRD problem in [6], showing that neither CPLEX nor Gurobi optimization
solvers were able to solve the WRD problem, regardless of the used formulation, on
many instances with more than 100 vertices.

Peng [7] gave a linear time algorithm for computing γr on block graphs. Provid-
ing two faster algorithms, Chapelle et al. [26] broke trivial enumeration barrier of
O∗(3n) for calculating γr(G) (the notation O∗(f(n)) suppresses polynomial factors).
With the first algorithm they proved that the WRD problem can be solved in O∗(2n)
time needing exponential space. The second algorithm uses polynomial space and
time, O∗(2.2279n).

For some special classes of graphs (interval graphs, intersection graphs, co-graphs
and distance-hereditary graphs) the RD problem can be solved in linear time [15],
but in the general case, the RD problem is NP-complete, [11]. Proof that the WRD
problem is NP-complete, even when restricted to bipartite and chordal graphs, is
given in [3].

Now, since both the Roman and the weak Roman domination problems are NP-
complete problems, creating a heuristic that could be successful in finding an optimal
solution value, providing legions schedule as well, represents a challenge.

Therefore, in [13] a genetic algorithm for solving the RD problem was proposed
by Currò, and that was the only heuristic written for any type of Roman domination
problem known to the authors. In the mentioned paper, the author proposes a set
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of instances on random generated graphs which will be used in experimental results
of this paper.

In the next section we propose the Variable Neighborhood Search algorithm for
solving both the Roman and the weak Roman domination problems on graphs. The
VNS heuristic is chosen because it was previously proven to be successful for some
problems on graphs, for example [27, 28].

3 VARIABLE NEIGHBORHOOD SEARCH APPROACH
FOR SOLVING ROMAN AND WEAK ROMAN DOMINATION
PROBLEMS

The Variable Neighborhood Search (VNS) is a heuristic method, which starts from
some point from the search space, explores its neighborhoods, then changes the
starting point through some search procedures such that it moves to another point
of the search space, explores its neighborhoods, and repeats the whole procedure in
order to find a better solution. The VNS heuristic was proposed by Mladenović [29]
and later studied by Mladenović and Hansen [30] and Hansen and Mladenović in [31].

With respect to the problems’ definitions, let us assume that all Roman provinces
are represented by a set of vertices V , n = |V |, and all existing roads by the set of
edges E = {e = (i, j), i, j ∈ V, i and j are connected}, m = |E|, of some simple
undirected graph G = (V,E). Given that graph G is undirected, we will say that
e = (i, j) ∈ E implies (j, i) ∈ E. Moreover, for every vertex i ∈ V let the set of all
vertices adjacent to the vertex i be marked by Ni. Furthermore, let us assume that
each province is represented by a number i = 1, . . . , n, and the number of legions
stationed within a province i is represented by value xi. Vector X = (x1, . . . , xn) of
values xi, i = 1, . . . , n, is a feasible solution to the RD problem (WRD problem) if
f , f : V → {0, 1, 2} defined by

f(i) = xi, i ∈ V (1)

is a Roman domination function (weak Roman domination function).

Given that a feasible solution to the WRD problem does not have to be a feasible
solution to the RD problem, we define a function feasibleSolution(X, problem) which
checks if X is a feasible solution for the problem ∈ {RD, WRD}.

In order to check if vector X is a feasible solution to the RD problem, for every
element xi (i = 1, . . . , n) feasibleSolution(X, RD) checks if xi is a positive value, or
xi = 0 and there is at least one vertex vj connected to vi such that xj = 2.

In order to check if vector X is a feasible solution to the WRD problem, for
every element xi (i = 1, . . . , n) feasibleSolution(X,WRD) checks if it is a positive
value, or xi = 0 and at least one of the following two conditions holds:

1. there exists at least one element xj (j = 1, . . . , n, j 6= i) with properties xj = 2
and j ∈ Ni, i.e.
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• after a single legion movement from a province j to a province s (s 6= i, j)
there still is one legion stationed at a province j which defends provinces i
and j;

• after a single legion movement from a province j to a province i, both
provinces i and j are defended by stationed legions.

2. there exists at least one element xj, j ∈ Ni, such that xj = 1 and swapping the
values of xi and xj does not affect the feasibility of the vector X. More precisely,
after the swap, for every element xs, s ∈ Nj, with property xs = 0, there exists
at least one xk, k ∈ Ns, k 6= j, with property xk > 0, i.e.

• in order to move a single legion from a province j to a province i, all provinces
s, which are neighbors with j and which are without any stationed legion,
must have another neighbor k (k 6= j) with at least one stationed legion.

We will say that the function feasibleSolution(X, problem) is satisfied if there are
no undefended provinces with respect to the problem.

Also, we create function penalty(X, problem), which calculates the number of
undefended provinces with respect to the problem.

Further, we will say that two solutions, X and X ′, have difference of the first
order if one legion was moved from one province to another (value of one element,
with value lower than 2, of the vector X, is increased by one, while value of the other
element, with positive value, of the vector X, is decreased by one) or disbanded
(value of one element, with positive value, of the vector X, is decreased by one).
Respectively, two solutions have difference of the kth order if at most k legions were
moved, including possible disbanding.

Now, let us define a setNk(X), k = kmin, . . . , kmax as the set of all vectorsX ′ that
have difference of the kth order from the solutionX and call that set kth Neighborhood
to the solution X.

The VNS-based heuristic can be defined in such a way that it starts from the
initial feasible solution X, shakes it by creating another solution X ′ ∈ Nk(X)
(by the expression shake we mean movement of a certain number of legions) and
then applies local search method in order to create a better feasible solution X ′′.
If the feasible solution X ′′, obtained by the local search procedure, is not better
than the current incumbent X (F (X ′′) ≥ F ∗), the VNS algorithm repeats the
procedure of shaking, but in neighborhood Nk+kstep(X) (i.e., k increments by kstep)
and local search within it and so on until k reaches its maximum kmax. Otherwise,
if F (X ′′) < F ∗, X∗ becomes X ′′, F ∗ becomes F (X ′′) and k becomes kmin. Changing
neighborhoods enables one to get out from the local minima. The VNS algorithm is
presented as Algorithm 1. Functions InitialSolution(), Shake(), LocalSearch() and
StoppingCondition() are described below.

Function InitialSolution() (pseudo code is presented as Algorithm 2) is defined
so that it produces an initial feasible solution X∗ by applying random changes to
elements of the zero vector X. That is, InitialSolution() assigns randomly generated
number from the set {1, 2} to a randomly chosen element of the vector X until X
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Algorithm 1 Variable Neighborhood Search metaheuristic

1: X∗ ← InitialSolution();
2: F ∗ ← F (X∗);
3: repeat
4: k ← kmin;
5: repeat
6: X ← X∗;
7: X ′ ← Shake(X, k);
8: X ′′ ← LocalSearch(X ′);
9: if F (X ′′) < F ∗ then

10: F ∗ ← F (X ′′);
11: X∗ ← X ′′;
12: k ← kmin;
13: else
14: k ← k + kstep;

15: until k > kmax

16: until StoppingCondition()

Algorithm 2 InitialSolution()

1: X ← {0, . . . , 0};
2: repeat
3: i← random number ∈ {1, . . . , n};
4: xi ← random number ∈ {1, 2};
5: until (feasibleSolution(X, problem))
6: for i = 1, . . . , n do
7: if xi > 0 then
8: xi ← xi − 1;
9: if not(feasibleSolution(X, problem)) then

10: xi ← xi + 1;

becomes a feasible solution. Then, given that the function InitialSolution() finds
a feasible solution, and our goal is to find a feasible solution such that the objective
function value F (X) (F (X) =

∑n
i=1 xi) is minimal, the found solution will be, for

now, saved as the best one (X∗ ← X, F ∗ ← F (X∗)).

Further, in order to lower the value F ∗, i.e., to improve the incumbent, among
the elements of the vector X with positive value, InitialSolution() searches for an el-
ement whose value could be decreased by one such that the resulting vector remains
a feasible solution. If such an element is found, InitialSolution() will decrease its
value by one, and then continue to search for an element of the incumbent with
the same property. Whenever the procedure of decreasing a value of one element
produces a feasible vector, the resulting vector will be stored as the best one and
objective function value F (X) will be stored as F ∗. This procedure repeats until
there are no elements whose decreased value will result with feasible X.
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Algorithm 3 Shake()

1: X ← X∗

2: DecreasingProcedure(X);
3: for j = 1, . . . , k do
4: a← random number ∈ {1, . . . , n} such that xa 6= 0;
5: b← random number ∈ {1, . . . , n} such that xb 6= 2;
6: xa ← xa − 1;
7: xb ← xb + 1;

8: if feasibleSolution(X, problem) then
9: X∗ ← X;

10: DecreasingProcedure(X);

Now, if it is possible to find a feasible solution with the same or smaller objec-
tive function value than F ∗, the resulting solution will be better than the current
incumbent. Hence, we define the following two functions, Shake() and LocalSearch().
These two functions are defined to search for a better feasible solution than the one
with which they start the searching process.

Therefore, Shake(X∗, k) function (presented as Algorithm 3) starts with a fea-
sible solution X∗, stores it as X (X ← X∗) and then randomly chooses an ele-
ment of the solution X with positive value and decreases its value by one. If the
resulting vector is again a feasible solution, it stores it as the new best solution
and repeats the process until an infeasible solution is found. We call this process
DecreasingProcedure(). Then, among the elements of the current solution X with
value lower than 2, shake function randomly choses one element, and among the ele-
ments with positive value of the incumbent X, it randomly chooses another element
and increases a value of the first chosen element by one and decreases the value of
the second chosen element also by one (i.e., it moves one legion) and repeats this
process k times. If the resulting vector X ′ is a feasible one, given that F (X ′) < F ∗

the new best feasible is found. Therefore, X ′ will be stored as the new best feasi-
ble (X∗ ← X ′). Also, if X

′
is feasible, we will apply DecreasingProcedure() to the

vector X
′

and resulting vector denote as X ′ (note that in this case it follows that
F (X ′) ≤ F ∗ − 1).

Now, the LocalSearch(X ′) function (presented as Algorithms 4 and 5) starts with
an infeasible incumbent X ′, calculates its penalty(X ′, problem) value and stores it as
ndmin. Then it searches a neighborhood N1(X

′) of the incumbent X ′ in order to find
a feasible solution. If a solution with lower penalty value is found it will be stored
as incumbent and search for a better solution continues. If a solution with penalty
value equal to zero is found, it means that a feasible solution is found. If there is no
solution with penalty value lower or equal to ndmin within the neighborhood N1(X

′)
of the incumbent, local search procedure will continue its search in the neighborhood
N2(X

′) of the incumbent. In both cases, whenever a feasible solution is found, it
will be stored as the new best feasible solution. Also, local search procedure will
continue to search for a feasible solution within the neighborhoods of the incumbent
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Algorithm 4 LocalSearch()

1: ndmin ← penalty(X ′, problem);
2: while some improvement is made do
3: for i = 1, . . . , n such that x

′
i > 0 do

4: x
′
i ← x

′
i − 1;

5: if feasibleSolution(X ′, problem) then
6: X∗ ← X ′;
7: DecreasingProcedure(X ′);
8: ndmin ← penalty(X ′, problem);
9: go to line 3;

10: else
11: for j = 1, . . . , n, j 6= i such that x

′
j < 2 do

12: x
′
j ← x

′
j + 1;

13: nd← penalty(X ′, problem);
14: if nd = 0 then
15: execute lines 6-9;
16: else
17: if nd < ndmin then
18: X

′
better ← X ′;

19: ndmin ← nd;

20: if nd = ndmin then
21: X

′
same ← X ′ with some probability;

22: x
′
j ← x

′
j − 1;

23: x
′
i ← x

′
i + 1;

24: if X
′
better is found then

25: X
′ ← X

′
better;

26: else
27: if X

′
same is found then

28: with some probability X
′ ← X

′
same;

29: else
30: run LS2();

31: X ′′ ← X∗;

(i.e., a decreasing procedure will be applied to the feasible incumbent) until there is
no better feasible solution.

In other words, local search procedure consists of three steps. In the first step,
local search procedure searches for an element (of the incumbent X ′) with positive
value, decreases its value by one and checks if the resulting vector is a feasible
one. If the resulting vector is a feasible solution, it will be stored as X∗. If the
resulting vector is infeasible, the procedure goes to the second step of the local
search. In the second step, the local search procedure searches for an element x

′
j

of the incumbent of the local search procedure with property x
′
j < 2, such that

increasing its value by one creates a feasible solution. If the required element is
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found, its value will be increased by one and the resulting feasible solution stored
as X∗. If a feasible solution is found (both in the first and in the second step),
DecreasingProcedure() will be applied to that feasible incumbent, ndmin will be
set to be equal to penalty(X ′, problem) and the local search procedure will restart
from the beginning of the first step (lines 6-9 and 15 of Algorithm 4). If the required
element of the second step was not found, solution with the smallest penalty value
penalty(X ′, problem) will be stored as X

′

better and the solution with the penalty
value equal to the incumbent will be stored as X

′
same. Then, when the second step

is finished, in case that a better solution than the incumbent is found, it will be
set as the incumbent solution and the second step will restart from the beginning.
Similarly, if at least a solution of the same quality is found, it will be set as the
incumbent solution with some probability and the second step will restart from
the beginning. Otherwise, if there is no better solution nor a solution of the same
quality, the third step of the local search procedure will start.

In the third step of the local search procedure, we explore a neighborhoodN2(X
′)

of the incumbent in order to find a feasible solution. We denoted the third step of
the local search procedure as LS2() only because we want to make algorithm of
LocalSearch() function easier for reading.

In the third step (which is presented as Algorithm 5), the local search procedure
searches for an element x

′
i with value x

′
i = 2 and for an element x

′
j with value x

′
j < 2

(i, j = 1, . . . , n). Then, it decreases the value of x
′
i by two and increases a value of

x
′
j by one and then checks if a feasible solution is found, or if there exists an element

x
′
s < 2 such that increasing its value by one results with a feasible solution or

with a better infeasible solution. Similarly as in the first two steps, LS2() function
computes penalty() value before and after each change and stores an incumbent
solution X ′ with smaller penalty value than ndmin as X

′

better and the incumbent
with the same penalty value as X

′
same. Again, whenever a better incumbent is

found, ndmin will be set to be equal to penalty(X
′

better, problem) and the incumbent
solution of the same quality will be stored with some probability. Then, if a process
of decreasing a value of an element x

′
i by two and increasing a value of each pair

of elements x
′
j and x

′
s by one does not create a feasible solution, values of elements

xi, xj and xs will be restored and the third step will continue its search with the
next element whose value is equal to 2. In case that all element combinations are
checked and better solution is found, it will be set as the incumbent and LS2() will
restart its search within the new incumbent. Similarly, in case that all elements
combinations are checked and only a solution of the same quality is found, it will
be set as the incumbent with some probability and LS2() will restart.

During all the steps of the local search procedure we are also checking if moves
from one solution to the solution of the same quality will not make a loop, i.e., we
will not store the incumbent of the same quality if it will take us to some previous
incumbent. Given that the size of a loop may vary, we do not allow moves from
one incumbent to the incumbent of the same quality for more then kmax successive
times. This means that the second and the third step will restart with the solution
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Algorithm 5 LS2()

1: ndmin ← penalty(X ′, problem)
2: while some improvement is made do
3: for i = 1, . . . , n such that x

′
i = 2 do

4: x
′
i ← x

′
i − 2

5: for j = 1, . . . , n such that x
′
j < 2 do

6: x
′
j ← x

′
j + 1

7: if feasibleSolution(X ′, problem) then
8: X∗ ← X ′

9: DecreasingProcedure(X ′)
10: ndmin ← penalty(X ′, problem)
11: go to line 2
12: else
13: for s = 1, . . . , n, such that x

′
s < 2 do

14: x
′
s ← x

′
s + 1

15: if feasibleSolution(X ′, problem) then
16: apply lines 8− 11
17: else
18: nd← penalty(X ′)
19: if nd < ndmin then
20: X ′better ← X ′

21: ndmin ← nd

22: if nd = ndmin then
23: X ′same ← X ′ with some probability

24: x
′
s ← x

′
s − 1

25: x
′
j ← x

′
j − 1

26: x
′
i ← x

′
i + 2

27: if X
′
better is found then

28: X
′ ← X

′
better

29: else
30: if X

′
same is found then

31: with some probability X
′ ← X

′
better

32: else
33: finish LS2()

of the same quality for no more than kmax successive times. If some improvements
are made within LS2(), the local search procedure restarts from the beginning of the
first step with the new incumbent. Finally, when all three steps are finished and no
improvement is made, LocalSearch() function will finish its search and the feasible
solution X∗ will be returned as X ′′. Now, if a better feasible solution is obtained
(F (X

′′
) < F ∗), its objective function value will be stored (F ∗ ← F (X

′′
)) and k will

be set to kmin, otherwise k will be increased by kstep. The VNS algorithm continues
until k reaches its maximum or some other stopping condition occurs.
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Input parameters for the VNS heuristic are the problem, the minimal (kmin)
and the maximal (kmax) numbers of neighborhoods that should be searched, the
increment of the parameter k (kstep) and the maximum CPU time allowed (tmax).
In our implementation StoppingCondition() finishes the VNS algorithm if either
kmax or maximal CPU time allowed is reached.

The parameters used for the proposed VNS algorithm are kmin = 1, kmax = 30,
kstep = 1 and tmax = 7 200 s and probability is set to p = 0.5.

The VNS algorithm cannot guarantee finding global optima because of its non-
deterministic nature. Therefore, in order to find solution of sufficiently high quality
it is necessary to run the VNS heuristic algorithm on the same instance more than
once. Hence, in out experiments each instance was run 20 times.

4 COMPUTATIONAL RESULTS

Experimental results obtained by the proposed VNS algorithm for solving the RD
and the WRD problems are presented in this section. The VNS algorithm was im-
plemented in C++. All computational experiments have been performed on Intel R©
CoreTM i7-4700MQ CPU@2.40 GHz with 8 GB RAM, under Windows 10 operating
system.

CPLEX optimizations solver was run on all five formulations of the RD problem
presented in [5] on grid, planar, net and randomly generated sets of graphs. The
set of randomly generated graphs is the same as the one generated and proposed
by Currò in [13] (names of instances consist of the number of vertices and of the
probability that edge is incident to vertices expressed in percentage) while grid, net
and planar sets are well known sets of graphs and also provided by Currò. Since
there are several different ILP formulations of the Roman and the weak Roman
domination problems (see [5] and [6]), and that performance of CPLEX differs in
accordance with used ILP formulation, for the RD problem we present only instances
for which optimal solution value is found, while for the WRD problem the results
are presented on all instances with some known solution. In case that CPLEX was
successful in finding an optimal solution value by using more than one formulation,
the smallest running time is presented.

The results are summarized in Tables 1–8.

Tables 1–4 contain instances where CPLEX optimization solver was able to
find and prove optimality of the found solution value for the RD problem (CPLEX
was run for all five formulations of the RD problem presented in [5]). Tables 5–8
contains instances where CPLEX and Gurobi optimization solvers were success-
ful in finding some solution value by using at least one ILP formulation presented
in [6] within the given time. In all tables, whenever the optimal solution value is
found by more than one formulation, the smallest running time is shown. Also,
whenever optimization solver was unable to prove optimality of the found solution
either because of time limit or “out of memory” status, in the column tsol we put
sign “–”.



70 M. Ivanović, D. Urošević

Instances are sorted by the number of vertices and the number of edges, in
that order. Tables are organized as follows: The name of the instance is given in
the first column. The next two columns (|V |, |E|) represent the number of ver-
tices and the number of edges. In tables that correspond to the RD problem for
all instances we have optimal solution values. Therefore, in the next two columns,
opt and tcpl, optimal solution value and minimal running time are given. In tables
that correspond to the WRD problem we have three columns, the optimal solu-
tion value, the best solution value and the smallest running time, which is given
regardless the optimization solver and ILP formulation. It should be noted that for
the WRD problem optimal solution values and minimal running times of standard
optimization solvers are taken from [6]. Also note that, in case that optimization
solver could not provide an optimal solution value, a symbol “-” stands in the col-
umn tsol.

For both problems, the VNS algorithm was run 20 times for each problem in-
stance and informations of the best solution values obtained in these 20 runs are
given in the final four columns (sol, t, err, σ) of all the tables. The best solution
value obtained by the VNS algorithm is given in the column sol and whenever the
VNS solution value was equal to the optimal solution value (from opt column), it
was marked as “opt”. The best time in 20 runs, necessary for the VNS algorithm to
reach the corresponding solution in the first occurrence is given in the column t. The
final two columns err and σ contains informations on the average solution quality:
err stands for average relative error of found solutions from the best found solution,
which is calculated as err = 1

20

∑20
i=1 erri, where erri = |VNSi − sol|/|VNSi|, and

VNSi is the VNS solution obtained in the ith run. Parameter σ is the standard

deviation of the err obtained by the formula σ =
√

1
20

∑20
i=1 (erri − err)2.

The VNS algorithm for the RD problem is tested on 231 different instances and
achieves the optimal solution on 218 of them. All solutions are found within the time
limit (running time for 99 instances is lower than 1 second and only for 29 larger
than 100 seconds). For majority of instances (on 214 instances), percentage average
relative error from the found solution is lower than 2.5 %. Also, for the majority
of instances (for 121 instances) the VNS heuristic running time is lower than the
best CPLEX running time. Detailed informations of these testings are given in
Tables 1–4.

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

grid04x10 40 66 20 0.081 opt 0.01 0 0
grid05x08 40 67 21 0.081 opt 0.005 0 0
grid08x05 40 67 21 0.062 opt < 0.01 0 0
grid10x04 40 66 20 0.077 opt 0.013 0 0
grid03x14 42 67 22 0.042 opt < 0.01 0 0
grid06x07 42 71 22 0.119 opt < 0.01 0 0
grid07x06 42 71 22 0.115 opt < 0.01 0 0
grid14x03 42 67 22 0.062 opt 0.031 0 0
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Table 1 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

grid04x11 44 73 22 0.057 opt 0.013 0 0
grid11x04 44 73 22 0.046 opt < 0.01 0 0
grid03x15 45 72 24 0.046 opt 0.012 0 0
grid05x09 45 76 23 0.168 opt < 0.01 0 0
grid09x05 45 76 23 0.148 opt 0.013 0 0
grid15x03 45 72 24 0.061 opt 0.022 0 0
grid04x12 48 80 24 0.058 opt 0.034 0 0
grid06x08 48 82 24 0.05 opt 0.033 0.0040 0.0120
grid08x06 48 82 24 0.098 opt 0.012 0.0040 0.0120
grid12x04 48 80 24 0.076 opt 0.019 0 0
grid07x07 49 84 24 0.098 opt 0.029 0.0060 0.0143
grid05x10 50 85 26 0.147 opt < 0.01 0 0
grid10x05 50 85 26 0.166 opt < 0.01 0 0
grid04x13 52 87 26 0.162 opt 0.104 0 0
grid13x04 52 87 26 0.099 opt 0.017 0.0019 0.0081
grid06x09 54 93 27 0.111 opt 0.436 0.0143 0.0175
grid09x06 54 93 27 0.179 opt < 0.01 0.0071 0.0143
grid05x11 55 94 28 0.153 opt 0.013 0 0
grid11x05 55 94 28 0.184 opt < 0.01 0 0
grid04x14 56 94 28 0.059 opt 0.035 0.0017 0.0075
grid07x08 56 97 28 0.131 opt < 0.01 0 0
grid08x07 56 97 28 0.153 opt 0.033 0 0
grid14x04 56 94 28 0.06 opt 0.438 0.0356 0.0109
grid04x15 60 101 30 0.092 opt < 0.01 0.0016 0.0070
grid05x12 60 103 30 0.13 opt 0.036 0.0194 0.0158
grid06x10 60 104 30 0.092 opt 0.041 0.0048 0.0115
grid10x06 60 104 30 0.152 opt 0.163 0.0097 0.0148
grid12x05 60 103 30 0.177 opt 0.078 0.0129 0.0158
grid15x04 60 101 30 0.075 opt 0.04 0 0
grid07x09 63 110 31 0.066 opt 0.135 0.0094 0.0143
grid09x07 63 110 31 0.162 opt 0.082 0 0
grid08x08 64 112 32 0.118 opt 0.031 0.0015 0.0066
grid05x13 65 112 33 0.173 opt 0.171 0.0029 0.0088
grid13x05 65 112 33 0.204 opt 0.054 0.0044 0.0105
grid06x11 66 115 33 0.137 opt 0.045 0.0059 0.0118
grid11x06 66 115 33 0.169 opt 0.246 0.0029 0.0088
grid05x14 70 121 35 0.207 opt 0.264 0.0083 0.0127
grid07x10 70 123 34 0.146 opt 0.164 0.0171 0.0140
grid10x07 70 123 34 0.119 opt 0.699 0.0171 0.0165
grid14x05 70 121 35 0.191 opt 0.19 0.0083 0.0127
grid06x12 72 126 36 0.169 opt 0.198 0.0054 0.0108
grid08x09 72 127 35 0.153 opt 0.017 0.0069 0.0120
grid09x08 72 127 35 0.125 opt 0.037 0.0110 0.0181
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Table 1 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

grid12x06 72 126 36 0.186 opt 0.161 0.0014 0.0059
grid05x15 75 130 38 0.214 opt 0.352 0.0026 0.0077
grid15x05 75 130 38 0.247 opt 0.101 0 0
grid07x11 77 136 38 0.169 opt 0.094 0.0013 0.0056
grid11x07 77 136 38 0.186 opt 0.102 0.0026 0.0077
grid06x13 78 137 38 0.148 opt 1.553 0.0242 0.0148
grid13x06 78 137 38 0.209 opt 38 0.0256 0.0079
grid08x10 80 142 39 0.128 opt 0.132 0.0113 0.0124
grid10x08 80 142 39 0.142 opt 0.039 0.0075 0.0115
grid09x09 81 144 38 0.073 opt 2.937 0.0226 0.0236
grid06x14 84 148 41 0.134 opt 22.542 0.0306 0.0128
grid07x12 84 149 41 0.168 opt 1.727 0.0083 0.0114
grid12x07 84 149 41 0.192 opt 1.062 0.0024 0.0071
grid14x06 84 148 41 0.231 opt 7.766 0.0225 0.0116
grid08x11 88 157 42 0.192 opt 11.391 0.0275 0.0151
grid11x08 88 157 42 0.141 opt 0.778 0.0206 0.0187
grid06x15 90 159 44 0.247 opt 5.733 0.0188 0.0125
grid09x10 90 161 43 0.223 opt 1.224 0.0279 0.0184
grid10x09 90 161 43 0.237 opt 0.672 0.0102 0.0133
grid15x06 90 159 44 0.264 opt 3.141 0.0133 0.0109
grid07x13 91 162 44 0.178 opt 0.801 0.0177 0.0112
grid13x07 91 162 44 0.178 opt 0.882 0.0177 0.0131
grid08x12 96 172 46 0.21 opt 1.527 0.0178 0.0176
grid12x08 96 172 46 0.191 opt 5.175 0.0159 0.0113
grid07x14 98 175 47 0.247 opt 1.621 0.0247 0.0149
grid14x07 98 175 47 0.214 opt 2.929 0.0196 0.0137
grid09x11 99 178 47 0.194 opt 3.737 0.0124 0.0136
grid11x09 99 178 47 0.287 opt 4.522 0.0245 0.0187

grid10x10 100 180 48 0.22 opt 0.199 0.0051 0.0088
grid08x13 104 187 50 0.262 opt 0.274 0.0097 0.0130
grid13x08 104 187 50 0.401 opt 9.993 0.0146 0.0135
grid07x15 105 188 50 0.348 opt 20.739 0.0252 0.0121
grid15x07 105 188 50 0.278 opt 22.274 0.0243 0.0102
grid09x12 108 195 51 0.268 opt 9.665 0.0244 0.0204
grid12x09 108 195 51 0.29 opt 22.53 0.0208 0.0183
grid10x11 110 199 52 0.306 opt 2.545 0.0185 0.0192
grid11x10 110 199 52 0.256 opt 12.061 0.0222 0.0188
grid08x14 112 202 53 0.289 opt 6.864 0.0201 0.0138
grid14x08 112 202 53 0.284 opt 1.213 0.0228 0.0159
grid09x13 117 212 55 0.232 opt 10.045 0.0260 0.0224
grid13x09 117 212 55 0.439 opt 46.869 0.0262 0.0184
grid08x15 120 217 57 0.404 opt 5.05 0.0154 0.0119
grid10x12 120 218 56 0.236 opt 29.077 0.0381 0.0228
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Table 1 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

grid12x10 120 218 56 0.326 opt 27.666 0.0343 0.0150
grid15x08 120 217 57 0.414 opt 18.631 0.0161 0.0155
grid11x11 121 220 57 0.443 opt 2.414 0.0219 0.0198
grid09x14 126 229 58 0.25 opt 0.518 0.0397 0.0277
grid14x09 126 229 58 0.334 opt 46.688 0.0458 0.0170
grid10x13 130 237 61 0.519 opt 12.797 0.0174 0.0178
grid13x10 130 237 61 0.529 opt 1.85 0.0188 0.0226
grid11x12 132 241 62 0.453 opt 26.008 0.0248 0.0183
grid12x11 132 241 62 0.464 opt 31.964 0.0204 0.0131
grid09x15 135 246 63 0.535 opt 36.088 0.0252 0.0185
grid15x09 135 246 63 0.733 opt 23.271 0.0312 0.0168
grid10x14 140 256 65 0.478 opt 78.302 0.0339 0.0165
grid14x10 140 256 65 0.432 opt 10.337 0.0359 0.0210
grid11x13 143 262 66 0.463 opt 70.571 0.0303 0.0223
grid13x11 143 262 66 0.503 opt 21.158 0.0372 0.0250
grid12x12 144 264 67 0.516 opt 36.922 0.0349 0.0185

grid10x15 150 275 70 0.715 opt 126.053 0.0266 0.0221
grid15x10 150 275 70 0.951 opt 24.143 0.0301 0.0189
grid11x14 154 283 71 0.483 opt 59.802 0.0438 0.0246
grid14x11 154 283 71 0.67 opt 62.236 0.0382 0.0203
grid12x13 156 287 72 0.715 73 115.106 0.0232 0.0159
grid13x12 156 287 72 0.783 opt 62.928 0.0384 0.0168
grid11x15 165 304 76 0.77 opt 117.803 0.0484 0.0198
grid15x11 165 304 76 0.918 opt 52.315 0.0406 0.0193
grid12x14 168 310 77 0.614 opt 181.88 0.0389 0.0205
grid14x12 168 310 77 0.721 opt 155.635 0.0424 0.0222
grid13x13 169 312 78 0.77 opt 68.571 0.0325 0.0191
grid12x15 180 333 82 0.94 83 164.384 0.0362 0.0191
grid15x12 180 333 82 1.3 83 130.71 0.0439 0.0207
grid13x14 182 337 83 0.777 opt 75.472 0.0486 0.0249
grid14x13 182 337 83 0.776 opt 201.98 0.0441 0.0270
grid13x15 195 362 89 1.73 opt 407.358 0.0483 0.0277
grid15x13 195 362 89 1.309 opt 139.451 0.0460 0.0239
grid14x14 196 364 88 0.739 opt 353.878 0.0516 0.0254
grid14x15 210 391 95 1.198 opt 282.147 0.0508 0.0250
grid15x14 210 391 95 1.159 opt 92.424 0.0543 0.0202
grid15x15 225 420 102 1.357 opt 697.859 0.0536 0.0240
grid20x20 400 760 176 37.579 185 676.713 0.0390 0.0135
grid30x20 600 1 150 260 1 279.438 286 5 114.624 0.0330 0.0160

Table 1. Experimental results for the RD problem on grid graph instances
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From Table 1 it can be concluded that the VNS algorithm reaches the solu-
tion value equal to the optimal solution value on almost all instances (unsuccessful
on 5 among 133 instances of grid type). On instances “grid12x13”, “grid12x15”,
“grid15x12”, “grid20x20” and “grid30x20”, where an optimal solution was not
reached, percentage average relative error from the found solution is lower than
2.1 %. Further, on 123 of 133 instances, percentage average relative error from the
found solution is lower or equal to 2.5 % and on 5 instances between 2.5 % and
3 %. So, from Table 1 we can conclude that for the RD problem on grid graph
instances the VNS algorithm provides solutions of good quality and within the time
limit.

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

plan10 10 27 3 0.048 opt < 0.01 0 0
plan20 20 105 5 0.062 opt < 0.01 0 0
plan30 30 182 5 0.046 opt < 0.01 0 0
plan50 50 465 6 0.082 opt < 0.01 0 0
plan100 100 1 540 10 0.0383 opt 0.054 0 0
plan150 150 2 867 12 1.303 opt 1.166 0 0
plan200 200 4 475 16 145.262 opt 2.466 0 0

Table 2: Experimental results for the RD problem on planar graph instances

From Table 2 it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on all instances with σ equal to zero. The
VNS algorithm was also tested on instances “plan250” and “plan300” but, because
CPLEX was unable to provide optimal solution values on these instances, we will
not present the VNS algorithm results for these instances either. Also, we can
conclude that instances of planar type are easier for solving for the VNS algorithm
than for CPLEX, given the fact that the VNS algorithm provides results much more
rapidly.

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

Net-10-10 100 342 28 0.043 opt 0.129 0 0
Net-10-20 200 712 56 0.088 opt 18.013 0.0018 0.0053
Net-20-20 400 1 482 98 0.134 opt 944.94 0.0228 0.0316
Net-30-20 600 2 252 140 0.162 145 6916.4 0.0580 0.0274

Table 3: Experimental results for the RD problem on net graph instances

From Table 3 it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on 3 of 4 instances. On instance “Net-30-
20”, where an optimal solution value was not reached, percentage average relative
error is equal to 2.74 %. Instances of the net type can be considered as easy for
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solving for CPLEX given the fact that CPLEX is able to provide results for less
than 1 second.

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

Random-50-1 50 49 32 0.062 opt 0.031 0 0
Random-50-2 50 49 33 0.062 opt 0.069 0 0
Random-50-3 50 58 28 0.084 opt 0.029 0 0
Random-50-4 50 54 30 0.08 opt 0.006 0 0
Random-50-5 50 67 28 0.1 opt 0.005 0 0
Random-50-6 50 86 25 0.184 opt 0.041 0 0
Random-50-7 50 84 26 0.1 opt < 0.01 0 0
Random-50-8 50 95 23 0.121 opt < 0.01 0 0
Random-50-9 50 108 23 0.152 opt 0.011 0 0
Random-50-10 50 112 22 0.162 opt 0.021 0 0
Random-50-20 50 248 12 0.337 opt < 0.01 0 0
Random-50-30 50 373 9 0.178 opt < 0.01 0 0
Random-50-40 50 475 8 0.432 opt < 0.01 0 0
Random-50-50 50 597 6 0.285 opt < 0.01 0 0
Random-50-60 50 739 4 0.115 opt < 0.01 0 0
Random-50-70 50 860 4 0.121 opt < 0.01 0 0
Random-50-80 50 980 4 0.131 opt < 0.01 0 0
Random-50-90 50 1 103 3 0.131 opt < 0.01 0 0

Random-100-1 100 100 61 0.062 opt 4.662 0.0056 0.0092
Random-100-2 100 109 59 0.1 opt 2.744 0.0058 0.0095
Random-100-3 100 181 48 0.168 opt 3.767 0.0142 0.0113
Random-100-4 100 206 45 0.438 opt 0.895 0.0184 0.0103
Random-100-5 100 231 39 0.469 opt 3.425 0.0243 0.0251
Random-100-6 100 321 34 0.532 opt 3.572 0.0157 0.0142
Random-100-7 100 317 32 0.585 opt 3.291 0.0152 0.0152
Random-100-8 100 398 29 0.774 opt 0.669 0.0017 0.0073
Random-100-9 100 430 27 0.728 opt 0.389 0 0
Random-100-10 100 498 24 1.263 opt 3.95 0.0160 0.0196
Random-100-20 100 981 14 0.971 opt 0.086 0 0
Random-100-30 100 1 477 11 2.916 opt 0.137 0.0083 0.0250
Random-100-40 100 1 945 8 0.761 opt 0.052 0 0
Random-100-50 100 2 483 7 0.808 opt 0.049 0.0188 0.0446
Random-100-60 100 2 985 6 0.345 opt < 0.01 0 0
Random-100-70 100 3 435 5 0.285 opt 0.044 0 0
Random-100-80 100 3 935 4 0.238 opt < 0.01 0 0
Random-100-90 100 4 446 4 0.263 opt < 0.01 0 0

Random-150-1 150 157 94 0.115 opt 22.389 0.0011 0.0032
Random-150-2 150 243 78 0.332 opt 234.872 0.0290 0.0151
Random-150-3 150 322 65 0.834 opt 67.784 0.0171 0.0162
Random-150-4 150 437 53 1.046 opt 30.304 0.0264 0.0155
Random-150-5 150 557 46 3.115 opt 2.293 0.0169 0.0142
Random-150-6 150 705 38 10.362 opt 19.279 0.0165 0.0165
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Table 4 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

Random-150-7 150 778 34 5.622 opt 0.462 0.0057 0.0114
Random-150-8 150 906 31 18.691 opt 0.865 0 0
Random-150-9 150 965 30 10.489 opt 3.727 0.0064 0.0161
Random-150-10 150 1 152 27 45.44 opt 3.128 0.0054 0.0128
Random-150-20 150 2 228 16 31.857 opt 1.561 0 0
Random-150-30 150 3 318 12 21.507 opt 0.383 0 0
Random-150-40 150 4 476 9 13.628 opt 0.409 0.0700 0.0458
Random-150-50 150 5 550 8 17.671 opt 0.014 0 0
Random-150-60 150 6 734 6 1.742 opt 0.012 0 0
Random-150-70 150 7 807 6 8.667 opt 0.015 0 0
Random-150-80 150 8 924 4 0.366 opt 0.019 0 0
Random-150-90 150 10 043 4 0.839 opt 0.017 0 0

Random-200-1 200 229 116 0.132 117 173.552 0.0167 0.0119
Random-200-2 200 390 92 0.933 93 647.247 0.0294 0.0184
Random-200-3 200 581 69 2.69 opt 507.393 0.0403 0.0256
Random-200-4 200 737 60 13.301 opt 568.08 0.0433 0.0214
Random-200-5 200 1 010 47 60.589 opt 41.339 0.0354 0.0217
Random-200-6 200 1 180 42 245.778 opt 84.363 0.0518 0.0332
Random-200-7 200 1 453 36 130.93 opt 11.272 0.0093 0.0173
Random-200-30 200 5 876 12 153.586 opt 9.478 0.0110 0.0346
Random-200-40 200 7 907 10 89.663 opt 0.302 0 0
Random-200-50 200 9 895 8 30.844 opt 0.248 0 0
Random-200-60 200 11 971 6 7.707 opt 0.496 0 0
Random-200-70 200 14 059 6 19.27 opt 0.025 0 0
Random-200-80 200 15 918 4 0.831 opt 0.038 0 0
Random-200-90 200 17 821 4 0.801 opt 0.03 0 0

Random-250-1 250 345 136 0.21 137 1 111.594 0.0220 0.0130
Random-250-2 250 633 97 7.95 99 380.006 0.0304 0.0211
Random-250-3 250 956 73 257.891 opt 132.791 0.0305 0.0252
Random-250-4 250 1 194 62 1 406.04 opt 148.167 0.0224 0.0218
Random-250-30 250 9 347 13 1 408.412 14 1.005 0 0
Random-250-40 250 12 500 10 359.601 opt 0.743 0 0
Random-250-50 250 15 605 8 61.927 opt 0.621 0 0
Random-250-60 250 18 660 8 206.548 opt 0.037 0 0
Random-250-70 250 21 741 6 40.379 opt 0.037 0 0
Random-250-80 250 24 836 4 3.071 opt 0.465 0 0
Random-250-90 250 27 974 4 1.404 opt 0.052 0 0

Random-300-1 300 481 145 0.299 149 2 797.158 0.0221 0.0135
Random-300-2 300 876 103 116.818 105 1 057.238 0.0394 0.0192
Random-300-40 300 17 934 10 483.378 opt 3.232 0.0174 0.0437
Random-300-50 300 22 520 8 334.329 opt 31.909 0 0
Random-300-60 300 26 952 8 622.751 opt 0.069 0 0
Random-300-70 300 31 390 6 66.546 opt 0.286 0 0
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Table 4 continues . . .

Instance CPLEX VNS
Name |V | |E| opt tcpl sol t err σ

Random-300-80 300 35 871 5 34.579 opt 1.725 0.0667 0.0816
Random-300-90 300 40 412 4 2.191 opt 0.092 0 0

Table 4. Experimental results for the RD problem on random graph instances

Table 4 contains the results of the experimental testing on random generated
graphs. As it can be seen, the VNS algorithm reaches the solution value equal to the
optimal solution value on many instances (unsuccessful on 7 among 87 instances).
On instances where an optimal solution was not reached, standard deviation σ is
lower than 2.5 %. Instances “Random-200-8”–“Random-200-20”,
“Random-250-5”–“Random-250-20” and “Random-300-3”–“Random-300-30” are
omitted from Table 4 because CPLEX was unable to find an optimal solution value
on these instances. Nevertheless, the VNS algorithm finds some solution value for
these instances, but because we do not have an optimal solution value on these
instances, we will not present the VNS algorithm results either.

Before we present experimental results for the WRD problem on the same set
of instances, let us summarize the results presented in Tables 1-4. The VNS algo-
rithm for the RD problem finds solutions of good quality relatively fast, especially
on instances of planar type. On instances of grid and net type, using CPLEX op-
timization solver is better, but on instances of planar and random type, using the
VNS algorithm is preferable.

Experimental results of the VNS algorithm for the WRD problem are performed
on instances where some solution values are known from the literature. Given that
CPLEX was not able to solve the WRD problem on many instances within the
time limit because of the “out of memory” status or because of the time limit, we
tested the VNS algorithm both on instances where the optimal solution value is
known and on instances where the found solution is not proved to be the optimal
solution. Testings were made on 84 instances of different type. CPLEX optimization
solver was able to find the optimal solution on 64 of them. The VNS algorithm was
not able to find solutions equal to the optimal ones only on two instances. On
instances where the optimal solution value is unknown, the VNS solutions are equal
or better than the solutions found by CPLEX. Also, for almost all instances, the VNS
algorithm runtime is lower than CPLEX runtime. Detailed information considering
these testings is provided in Tables 5–8.

From Table 5 it can be concluded that the VNS reaches the solution value
equal to the optimal solution value on almost all instances (unsuccessful only on
“grid06x13”). On instances where the optimal solution value is unknown, σ is lower
than 2.2 %. Running times on instances where the optimal solution value is known
shows that the VNS rapidly reaches these solutions in lower than 150 seconds. Even
more, on many instances (38 of 42), running times are smaller than 30 seconds and
only on “grid07x14” and “grid08x12” greater than 100 seconds. On instances where
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Instance Solver VNS
Name |V | |E| opt val t sol t err σ

grid04x10 40 66 15 15 4.109 opt 0.015 0 0
grid05x08 40 67 14 14 4.64 opt 0.047 0.0333 0.0333
grid03x14 42 67 16 16 4.829 opt < 0.01 0 0
grid06x07 42 71 15 15 5.801 opt 0.08 0.0063 0.0188
grid04x11 44 73 16 16 5.5 opt 0.031 0.0088 0.0210
grid03x15 45 72 17 17 7.789 opt 0.012 0 0
grid05x09 45 76 16 16 7.908 opt 0.139 0.0235 0.0288
grid04x12 48 80 17 17 12.84 opt 0.069 0.0361 0.0265
grid06x08 48 82 18 18 25.499 opt < 0.01 0 0
grid07x07 49 84 18 18 9.845 opt 0.021 0 0
grid05x10 50 85 18 18 10.61 opt 0.055 0.0053 0.0158
grid04x13 52 87 19 19 11.813 opt 0.035 0.0050 0.0150
grid06x09 54 93 19 19 25.539 opt 0.331 0.0450 0.0150
grid05x11 55 94 19 19 11.424 opt 0.388 0.0300 0.0245
grid04x14 56 94 20 20 35.326 opt 0.082 0.0214 0.0237
grid07x08 56 97 20 20 21.882 opt 0.076 0.0286 0.0233
grid04x15 60 101 22 22 40.256 opt 0.163 0 0
grid05x12 60 103 21 21 14.88 opt 4.036 0.0271 0.0260
grid06x10 60 104 21 21 35.713 opt 0.746 0.0273 0.0223
grid07x09 63 110 22 22 70.259 opt 0.318 0.0370 0.0155
grid08x08 64 112 23 23 171.925 opt 0.037 0.0063 0.0149
grid05x13 65 112 23 23 67.007 opt 0.928 0.0208 0.0208
grid06x11 66 115 24 24 381.771 opt 0.757 0.0040 0.0120
grid05x14 70 121 24 24 73.489 opt 27.03 0.0491 0.0202
grid07x10 70 123 25 25 618.089 opt 0.67 0.0077 0.0154
grid06x12 72 126 26 26 1 166.405 opt 0.544 0.0074 0.0148
grid08x09 72 127 25 25 435.146 opt 15.935 0.0383 0.0117
grid05x15 75 130 26 26 288.06 opt 8.133 0.0313 0.0174
grid07x11 77 136 27 27 988.596 opt 0.582 0.0268 0.0155
grid06x13 78 137 27 27 1 005.126 28 0.407 0.0086 0.0149
grid08x10 80 142 28 28 2 162.812 opt 10.011 0.0375 0.0178
grid09x09 81 144 28 28 737.579 opt 12.521 0.0437 0.0251
grid06x14 84 148 30 30 – 30 2.319 0.0097 0.0148
grid07x12 84 149 29 29 4 637.38 opt 47.642 0.0441 0.0181
grid08x11 88 157 31 31 – 31 3.412 0.0278 0.0190
grid06x15 90 159 32 32 – 32 1.196 0.0179 0.0218
grid09x10 90 161 31 31 – 31 40.651 0.0443 0.0197
grid07x13 91 162 32 32 – 32 16.778 0.0272 0.0130
grid08x12 96 172 33 33 – 33 107.765 0.0403 0.0184
grid07x14 98 175 34 34 1 720.86 opt 143.804 0.0433 0.0181
grid09x11 99 178 35 35 – 35 2.261 0.0181 0.0132
grid10x10 100 180 35 35 – 35 6.63 0.0302 0.0168

Table 5: Experimental results for the WRD problem on grid graph instances
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optimization solvers were unable to prove optimality of the found solutions, the
VNS heuristic reaches the same solution values for less than 108 seconds. So, we
can conclude that the VNS heuristic solves the WRD problem on grid graph instance
significantly faster than the optimization solver CPLEX and found solutions are of
good quality.

Instance Solver VNS
Name |V | |E| opt val t sol t err σ

plan10 10 27 3 3 0.156 opt < 0.01 0 0
plan20 20 105 3 3 1.36 opt < 0.01 0 0
plan30 30 182 5 5 7.49 opt < 0.01 0 0
plan50 50 465 6 6 98.49 opt 0.01 0 0
plan100 100 1 540 9 9 – 8 4.916 0 0
plan150 150 2 867 13 13 – 10 88.248 0.0273 0.041

Table 6: Experimental results for the WRD problem on planar graph instances

From Table 6 it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on all instances. Also, on instances where
optimization solvers were unable to prove optimality of the found solution, the VNS
solution is better. Again, running time for the instances where the optimal solution
value is known is lower than 1 second. On “plan100”, where optimization solvers
were unable to prove optimality of the found solution, the proposed VNS algorithm
finds solution value with σ equal to zero. On “plan150” the VNS solution is equal
to 10 with σ = 0.0417, which can be considered as the solution of the good quality
(solution value equal to 10 was reached in 14 of 20 runnings).

Instance Solver VNS
Name |V | |E| opt val t sol t err σ

Net-10-10 100 342 20 20 148.213 opt 4.29 0.0095 0.0190
Net-10-20 200 712 40 40 – 40 67.323 0.0146 0.0119
Net-20-20 400 1 482 83 83 – 81 2 066.577 0.0180 0.0132
Net-30-20 600 2 252 122 122 – 123 6 034.018 0.0474 0.0352

Table 7: Experimental results for the WRD problem on net graph instances

In Table 7 optimization solvers were able to find optimal solution value only for
“Net-10-10”. The same solution value was found by the proposed VNS algorithm
with lower running time and with σ equal to 1.9 %. On “Net-10-20” and “Net-20-20”
the VNS algorithm reaches the same and better solution value than optimization
solvers, while for “Net-30-20” the VNS solution value is worse than the solvers’
solution value.

From Table 8 it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on almost all instances (unsuccessful only
on 1 among 25 instances of random type). On instance “Random-100-6”, where the
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Instance Solver VNS
Name |V | |E| opt val t sol t err σ

Random-50-1 50 49 24 24 0.281 opt < 0.01 0 0
Random-50-2 50 49 23 23 0.343 opt 0.034 0 0
Random-50-3 50 58 24 24 0.39 opt 0.062 0 0
Random-50-4 50 54 24 24 0.484 opt 0.225 0 0
Random-50-5 50 67 22 22 0.968 opt 0.377 0.0196 0.0216
Random-50-6 50 86 19 19 2.053 opt 0.03 0 0
Random-50-7 50 84 19 19 3.171 opt 0.889 0.0175 0.0238
Random-50-8 50 95 17 17 3.093 opt 0.131 0.0333 0.0272
Random-50-9 50 108 17 17 26.373 opt 0.129 0.0028 0.0121
Random-50-10 50 112 16 16 6.781 opt 0.047 0 0
Random-50-20 50 248 9 9 346.264 opt < 0.01 0 0
Random-50-30 50 373 7 7 476.278 opt 0.038 0 0
Random-50-40 50 475 6 6 1447.318 opt 0.092 0 0
Random-50-50 50 597 5 5 1545.06 opt 0.013 0 0
Random-50-60 50 739 4 4 210.71 opt 0.014 0 0
Random-50-70 50 860 3 3 156.14 opt 0.059 0 0
Random-50-80 50 980 3 3 90.813 opt < 0.01 0 0
Random-50-90 50 1103 2 2 36.53 opt 0.03 0 0
Random-100-1 100 100 46 46 0.64 opt 157.329 0.0354 0.0145
Random-100-2 100 109 46 46 0.843 opt 36.052 0.0148 0.0117
Random-100-3 100 181 37 37 7.421 opt 23.64 0.0445 0.0261
Random-100-4 100 206 34 34 61.702 opt 12.367 0.0213 0.0175
Random-100-5 100 231 32 32 164.502 opt 60.361 0.0299 0.0186
Random-100-6 100 321 26 26 5 806.74 27 12.441 0.0265 0.0217
Random-100-7 100 317 25 25 4 009.377 opt 204.939 0.0434 0.0234
Random-100-8 100 317 23 23 – 23 313.924 0.0448 0.0279
Random-100-9 100 430 21 21 – 21 4.98 0.0269 0.0293
Random-100-10 100 498 19 19 – 19 460.905 0.0445 0.0260
Random-100-20 100 981 12 12 – 11 8.951 0.0250 0.0382
Random-100-30 100 1 477 11 11 – 8 1 462.462 0.1056 0.0242
Random-100-40 100 1 945 9 9 – 7 1.501 0 0
Random-100-50 100 2 483 7 7 – 5 37.134 0 0

Table 8: Experimental results for the WRD problem on random generated graph
instances

optimal solution value was not reached, σ is equal to 2.17 %. Further, on instances
“Random-100-40” and “Random-100-50”, where optimization solvers were unable
to prove optimality of the found solution, the VNS algorithm finds better solutions
values with σ equal to zero for less than 38 seconds.

From Tables 5–8 we can see that optimization solvers were unable to provide
an optimal solution value on instances of grid type with number of vertices larger
than 84, on instances of planar and net type with number of vertices larger than
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100 and on large number of instances of random type with 100 vertices. Also, we
can see that, on the same set of instances, the VNS algorithm finds solutions of the
WRD problem of good quality and, for many instances, faster than optimization
solvers.

5 CONCLUSIONS

In this paper, the Variable Neighborhood Search approach for solving the Roman
and the weak Roman domination problems is proposed. Tests were run on grid, net,
planar and randomly generated graphs, with up to 600 vertices. The VNS was able
to find solutions equal to the optimal ones for the RD problem on 218 of 231 tested
instances and able to find solutions equal or better than CPLEX solutions for the
WRD problem on 84 of 86 tested instances. Therefore, we can conclude that the VNS
algorithm provides good quality solutions regardless of the type of instance and the
type of problem, which makes it efficient for solving both the Roman and the weak
Roman domination problems. Moreover, given the fact that optimization solvers
were not able to solve the WRD problem on large scale instances (i.e., instances
with more than 100 vertices) proposed algorithm can be used. Furthermore, given
the fact that this algorithm does not contain any limitations on the number of
variables and the number of conditions, it can be used for solving the RD problem
on instances where optimization solvers are not able to provide an optimal solution
value.

In future work, hybridization with some exact methods or application of some
other heuristic could lead to possible better achievements in solving the Roman and
the weak Roman domination problems.
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Abstract. This paper extends the graphical and formal language of UML-B to pro-
vide the ability to model probabilities. Discrete probabilities, interval probabilities,
and stochastic delays are added to the UML-B’s state-machine syntax, and their
corresponding semantics are defined in Event-B. In addition, as a secondary contri-
bution, UML-B (probabilistic) state-machine models are defined as MDP (Markov
Decision Process) models in order to provide a means of quantitative verification
in PRISM (Probabilistic Symbolic Model Checker). As an important feature of the
proposed method, it does not change the Event-B syntax or semantics. To evaluate
this work, as a case study, the Zeroconf protocol will be modeled in the extended
UML-B using the Rodin tool, and its Event-B counterpart is converted to a PRISM
model. The results of evaluations indicate that this study’s additions provide the
capability of modeling and verification of probabilistic and stochastic systems.

Keywords: UML-B, Event-B, probabilistic systems, interval probabilities, stochas-
tic delay, probabilistic model verification, MDP, PRISM

1 INTRODUCTION

To facilitate software specification and design, and to simplify the communication be-
tween software stakeholders (especially, software engineers), graphical, semi-formal
languages, such as UML, have been developed to model software artifacts.

In spite of the benefits that semi-formal languages provide, the lack of a precise
formal semantics can lead to ambiguity and inconsistency. For example, Reggio
et al. [27] have identified 31 problems concerning ambiguity, incompleteness, and in-
consistency in UML 1.3. But then, the difficulty of writing formal specifications and
understanding these specifications by software practitioners are serious problems. If
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the priority of a modeler is to use a means for abstract communication, a less formal
language is preferred. But in case the modeler is seeking semantic correctness and
rigor, then formal method is favored.

One approach to increase formalism is to transform specifications notated in
languages like UML to an intermediate formal language, such as Fiacre (Format
Intermédiaire pour les Architectures de Composants Répartis Embarqués) [11] to
perform formal analysis and verification.

As another approach to avoid the problems with semi-formal methods such as
UML and to overcome the difficulties in applying formal methods like Event-B while
retaining their benefits, a language called UML-B has been proposed that attempts
to combine the simplicity and intuitiveness of UML and preciseness and unambiguity
of Event-B.

Probability is one of the main concepts required for expressing aspects common
in real-time, fault-tolerant, and distributed systems because it allows the designer to
specify system’s random behavior quantitatively. Due to the importance of modeling
and verification of probabilistic systems and behaviors, various programming and
modeling languages have covered this notion. Especially, there are a number of
major approaches for formally modeling and analyzing probabilistic systems in the
literature.

Probabilistic model checking is one of the commonly used techniques. In this ap-
proach, a state-based mathematical model of the probabilistic system is constructed
from its description in a high level language, and then, it is examined whether this
model satisfies a given probabilistic property. A number of tools have been de-
veloped based on this method, with PRISM being among the most notable ones.
Güdemann et al. [14] introduced SAML (Safety Analysis Modeling Language) to
unify probabilistic and logical analysis of models to decouple the model from the
actual verification tool, by converting model.

Another formal approach to model probabilities is using proof-based methods
and languages, such as Hoare Logic [8], B [18] and Event-B [15], which have been
extended with probabilistic choice. In [18], Hoang et al. have extended Abrial’s
Generalized Substitution Language (GSL) [1] to get pGSL that includes random al-
gorithms within its scope to initiate the development of probabilistic B (pB). Haller-
stede et al. [15] have extended the Event-B formalism with a qualitative probabilistic
choice operator. When extending proof-based methods, refinements or probabilistic
invariants are used to reason about the probabilistic system. One major benefit of
this approach is its automatic nature.

A third alternative approach is to use the Higher Order Logic (HOL) to formalize
random systems. In this approach, random variables are expressed formally in the
higher order logic, and probabilistic properties are verified in a theorem prover.
Hurd’s Ph.D. thesis [19] and [17] are among works in this area.

Since, despite its advantages and applications, there has been no research on
the subject of modeling probabilities in UML-B, the main objective of this research
is to provide the ability to model probabilistic requirements in UML-B. By this
contribution, it will be possible to specify discrete and interval probabilities, as well
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as stochastic delays in UML-B and transform the resulting models to the Event-B
formal specification language. To achieve this goal, the syntax and semantics of
the mentioned notions are defined. As a secondary contribution, this paper defines
UML-B state-machines as MDP models to make it possible to convert them to
PRISM models for quantitative and probabilistic verification purposes.

Despite similarities between UML and UML-B from a syntactic viewpoint, there
are considerable differences between the semantics of these two languages. UML-B,
concerned in our work, is based on the Event-B formal methods. Therefore, our
main contribution in comparison to works like [20, 21] is our formal approach for
defining the semantics of probabilistic constructs. Relying on UML-B and Event-B,
the proposed method not only benefits from simplicity and intuitiveness of graphical
modeling languages, but also offers the advantages of formal methods, such as lack
of ambiguity in specifications, increasing accuracy and consistency, and providing
means to formal verification and reasoning. In addition, in contrast to similar works,
like [32], one of the main features of this paper is that it does not change the Event-B
syntax and semantics to achieve its goals. Therefore, the proposed method can be
directly used in the current Event-B tools.

The paper is organized as follows. In Section 2, the research background and
an overview on the most related work are briefly presented. Section 4 introduces
our extensions to UML-B. In Section 5, we show the applicability of the proposed
method by applying it to a case study. Section 6 is dedicated to the conclusions and
some directions for future work.

2 BACKGROUND

2.1 Event-B

As an evolution of B-Method developed by Jean-Raymond Abrial, Event-B [1] is
a formal method for modeling and analyzing systems. In Event-B, machines model
reactive (event-based) systems that continually execute enabled events. Event-based
systems have no interfaces or parameters. Instead, inputs are modeled as nondeter-
ministic changes. The state of the model is represented as a collection of variables.
The dynamic behavior of the system is defined by a number of events. Events modify
the system state, by executing an action [6]. An event has the following form:

e : ANY lv WHERE Ge THEN r END

where lv is a list of local variables, guard Ge is a predicate over the system state
and local variables, and action r is a multiple assignment over the system variables.
An event becomes enabled only when its corresponding guard becomes true. As a re-
sult of executing an action, one or multiple parallel assignments will be performed.
Variable assignments can be deterministic or nondeterministic. The deterministic
assignment is denoted by x := E(v) where x is a variable and E(v) is an expres-
sion over system variables. Nondeterministic assignments are denoted by x :∈ S or
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x :| BAe(x, v, x
′). S is a set, and BAe(x, v, x

′) is a predicate over system variables.
As a result of these assignments, x is assigned any value from the set S, or it gets
a value x′ such that BAe(x, v, x

′) is true [26].
An Event-B model is a tuple (C,Σ, A, v, I, S, E, Init) where C is a set of model

constants; Σ is a set of model sets; A is a set of axioms over C and Σ; v is a set of
system variables; I is a set of invariant properties; S is a set of model states, defined
by all possible values of v; E is a set of system events; and Init is a predicate defining
the set of initial states.

The semantics of events is defined using before-after (BA) predicates [2]. A be-
fore-after predicate describes a relationship between the variable values before and
after the execution of an event. An event e ∈ E is a tuple e = (Ge, BAe) where
Ge ∈ S → BOOL is the guard and BAe ∈ S × S → BOOL is the before-after
predicate [10].

Model correctness is demonstrated by generating and discharging a collection
of Proof Obligations (POs). Every Event-B model should satisfy the event feasi-
bility ((Ge(σ) ∧ I(σ′))⇒ ∃σ′.BAe(σ, σ

′)) and invariant properties ((Ge(σ) ∧ I(σ) ∧
BAe(σ, σ

′)) ⇒ I(σ′)), where σ and σ′ are states and I is the invariant. The feasi-
bility of an event means that whenever an event is enabled, there is some reachable
after-state. Each event should also preserve the model invariant.

The behavior of an Event-B model is given by a transition system for which
transition relations are given by this rule:

∃(Ge, BAe) ∈ E.∃σ, σ′ ∈ S.I(σ) ∧Ge(σ) ∧BAe(σ, σ
′) ∧ I(σ′)

σ → σ′
.

This rule states if there is a (Ge, BAe) pair in the set of system events, and there are
states σ and σ′ such that the invariant and guard Ge are true in state σ, before-after
predicate BAe holds for states σ and σ′, and finally, the invariant is true for state σ′,
then a transition exists from σ to σ′.

Event-B is supported by the Rodin tool [3]. The Rodin platform is an open
source Eclipse-based IDE that effectively supports refinement and mathematical
proof of models.

2.2 UML-B

UML-B [31] is a graphical formal notation based on the graphical notation of
UML [29]. It relies on Event-B semantically, although, its initial version was trans-
lated to classical B [1].

UML-B provides four kinds of diagrams. They are package, context, class and
state-machine diagrams. Package diagrams are used to describe the relationships
between top level components (machines and contexts). The context diagram defines
the static (constant) part of a model. Transitions of a state-machine represent
events. Class diagrams are used to describe the behavioral part of a model. For
further information see [30].
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2.3 PRISM

Analysis and verification of a system involve establishing qualitative and quantita-
tive properties of the system. For example, the property that states “the system
eventually terminates” is a qualitative one. On the other hand, the property that
states “the system terminates within a given time limit with a given probability”
is a quantitative one. To perform probabilistic and quantitative verification on the
resulting models of this work, we need to use a probabilistic model checker.

PRISM [24] is a model checking tool which supports verification of probabilistic
models. This tool takes as input a description of a probabilistic system written in the
PRISM language. It constructs a model, such as Deterministic-Time Markov Chain
(DTMC), Continuous-Time Markov Chain (CTMC), or MDP from this description.
It also accepts the properties specification in languages such as PCTL (Probabilistic
Computation Tree Logic) [16] and performs model checking to determine which
states of the model satisfy the specified property and with what probabilities. Model
checking is reduced to a combination of reachability-based computation and the
solution of linear equation systems. The PRISM kernel handles these computations
using different engines [22].

The basic syntax of PCTL [23] is given by this grammar:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | P∼p[�Φ] | P∼p[ΦUΦ]

where a is an atomic proposition, ∼ ∈ {<,≤,≥, >}, and p ∈ [0, 1]. The operator
P∼p[Φ] means that the probability of Φ being true in a state s in a model (such as an
MDP), is ∼ p. �Φ expresses that Φ is satisfied in the next step and Φ1UΦ2 means
that Φ2 is eventually satisfied and Φ1 is true until then. Other useful operators can
be derived from the basic PCTL syntax, such as ♦Φ ≡ true UΦ, meaning Φ will be
eventually true.

2.4 Markov Decision Process (MDP)

In this paper, we use MDPs as models to which probabilistic state-machines are
converted during the translation of probabilistic UML-B to the PRISM language.
So, we give a brief overview on MDPs in this subsection. An MDP [4] is a tuple
M = (S,Act,P, ιinit, AP, L), where S is a set of states, Act is a set of actions,
P : S × Act × S → [0, 1] is the transition probability function, ιinit : S → [0, 1]
is the initial distribution, AP is a set of atomic propositions (atomic propositions
represent the basic properties that hold at some point of execution), L : S → 2AP

is a labeling function, and L(s) are atomic propositions in AP satisfied in state s.

A Markov decision process is an extension of Markov chains that allows both
probabilistic and nondeterministic choices. In any state, there is a nondeterministic
choice between several discrete probability distributions over successor states.
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3 RELATED WORK

In this subsection, a brief overview on the most related work is given.

3.1 Probabilities and Stochastic Delays in UML

Jansen et al. [20] have introduced randomness to UML statechart diagrams via
enhanced statecharts, called probabilistic statecharts or P-statecharts. They have
based the semantics of P-statecharts on Markov decision process models. Figure 1
shows an example of P-statechart models.

start play p win
roll a die

roll a die
ignore

win
1
6
/get 6

lose
5
6
/get 1 to 5

Figure 1. An example of P-statecharts

Furthermore, Jansen et al. [21] have presented StoCharts, which model random
delays in statecharts. In these models, on entering a node with an outgoing edge la-
beled after(F ), a sample is taken from distribution F and a timer is set accordingly.
The corresponding edge becomes enabled once the timer expires. The semantics of
StoCharts are defined using Stochastic I/O Automata (IOSA, for short).

3.2 Probabilities in Event-B

Hallerstede et al. [15] have extended the Event-B formalism with a new operator,
qualitative probabilistic choice, denoted as ⊕|. The assignment x ⊕| BA(v, x′)
assigns a value to x with a positive, but unknown probability. Similarly, Tarasyuk
et al. [32] augmented Event-B models with the quantitative probabilistic assignment

x ⊕| x1@p1; . . . ;xn@pn

where
∑n

i=1 pi = 1. This assignment allows for specifying exact numerical probabil-
ities for each value xi; variable x will have value xi with probability pi.

As stated before, the advantage of our approach compared to these works is that
our work does not change the syntax and semantics of Event-B.
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3.3 Time in Event-B

In order to model probabilistic time delays, we first need a method to model time
in Event-B. In [5, 7, 28] a method for adding time to Event-B has been presented.

In this model, time is the current time, and at is the set of active times. Active
times are times in future where an event might be activated. For a simple clock,
at will be {time+ 1, time+ 2, . . .}. An event called tick tock, non-deterministically
chooses a value for the current time, and so the progress of time is achieved. Con-
straint at 6= ∅ ⇒ time ≤ min(at) in the INVARIANT part enforces that active
times are in the future, and time cannot be moved beyond the first active moment.

3.4 Probabilistic Model Checking of Event-B Models Using PRISM

Rodin [3] supports development and qualitative verification of Event-B and UML-B
models, but it lacks the tools required for quantitative reasoning and verification
of probabilistic systems. To enable quantitative analysis of Event-B models, one
can convert Event-B models to the PRISM language. Tarasyuk et al. [34] have
described the required mappings from Event-B models to the PRISM language.
For example, the assignment using Tarasyuk’s probabilistic choice operator ⊕|, (i.e.
x ⊕| x1@p1; . . . xn@pn)) [26] is expressed as the following command in PRISM:

[] true− > p1 : (x′ = x1) + . . .+ pn : (x′ = xn).

4 PROBABILISTIC UML-B

4.1 Overall Structure

In this section, in order to add abilities for modeling probabilistic and stochastic
systems through the notion of state-machines in UML-B, a number of new structures
are added to its graphical syntax. The corresponding semantics are also defined in
Event-B.

The most basic probabilistic structure that needs to be addressed is the ability
to specify discrete probabilities. This applies to scenarios where the set of possible
outcomes is discrete, such as a coin toss. We take one step further and also take
into account scenarios where the exact values of probabilities are unknown, but their
intervals are known. We introduce a solution to model interval probabilities in this
condition. Another important feature that can benefit modelers is the capability to
model discrete stochastic delays, where one can specify a random amount of time
before moving to the next state. Stochastic delays are present in many distributed
and networking systems, and even in biological processes. We cover three types
of stochastic delays: fixed time delay, uniform distribution delay and geometric
distribution delay.

For every structure that we define, its semantics is also defined in Event-B. For
discrete probabilities and interval probabilities, the overall approach is to update the
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current state of the UML-B machine based on probabilities specified by the modeler.
A random number will be generated, and the generated number will determine the
target state. For stochastic delays, a timeout value is calculated upon entering
a state which has an outgoing transition with a delay. The outgoing transition will
have a guard to ensure a delay. The guard protects from entering the next state
without first waiting in the current state for a duration of at least the calculated
timeout.

The ability to generate random sequences of numbers which are uniformly dis-
tributed is essential in any work related to probabilities. Event-B does not have
built-in support for generating random numbers. Therefore, we need to use an algo-
rithm that generates sequences of numbers that are close enough to a true sequence
of random numbers. Section 4.2 discusses our approach to define a random genera-
tor in Event-B. This random generator is one of the core elements of the semantics
defined for most structures in this work.

Section 4.3 discusses adding discrete probabilities to the state-machine diagrams.
Section 4.4 presents how to add interval probabilities to state-machines. Section 4.5
outlines stochastic delays and discusses Fixed-time, Uniform Distribution, and Ge-
ometric Distribution delays. Section 4.6 defines UML-B state-machines as MDPs to
provide a theoretical basis for translating UML-B state-machines to PRISM mod-
els. Using this basis, we present the translation method in Section 4.7. The result-
ing PRISM models make it possible to verify probabilistic properties in the initial
UML-B models, quantitatively.

4.2 The random Function

Throughout this section, we use the function random to generate uniform random
numbers in the range [l, u]. This function can be defined using any common pseudo-
random generators such as a linear congruential generator, which uses the recurrence

Xn = l + (aXn−1 + c) mod (u− l + 1) (1)

where Xn and Xn−1 are respectively the next and current pseudo-random numbers,
and a and c are large integer numbers. X0 is called the seed or start value. Axioms in
Figure 2 define a basic pseudo-random generator. seed can be a machine variable to
store the last generated random value as a seed to the next iteration of the function.

4.3 Adding Discrete Probabilities to the State-Machine Diagram

We first introduce a structure for specifying discrete probabilities in UML-B. It is
worth noting that only probabilities that have rational values are supported.

4.3.1 Discrete Probabilities Syntax

We propose to specify discrete probabilities using a new notion which we call pseudo-
states. The difference between a pseudo-state and a normal state is that state-



A Probabilistic Extension of UML-B 93

AXIOMS
random ∈ N×N×N→ N
∀l, u, seed, r.
l ∈ N ∧ u ∈ N ∧ seed ∈ N ∧ r ∈ N⇒

(l 7→ u 7→ seed 7→ r ∈ random⇔
r = l + (a× seed + c) mod (u− l + 1))

END

Figure 2. The random function

machines will not stay in pseudo-states; the role of pseudo-state is only to determine
how the transitions from previous states to next states are done. Figure 3 shows the
new structure to specify discrete probabilities using a pseudo-state p.

s0 p

s1

sn

evt[g]

p1/action1

pn/actionn

. . .

Figure 3. Discrete probabilities in UML-B

In Figure 3, if the edge with probability pi is selected, actioni will be performed.
For each i ∈ 1 . . . n, there exist numbers mi and d, where pi = mi

d
, and

d 6= 0 ∧ (mi ∈ N1) ∧
n∑

i=1

mi = d. (2)

Probabilities are defined by rational fractions, in form of natural numerators
and denominators. If the model’s probabilities are in form of p1 = q1/d1, . . . , pn =
qn/dn, the positive number d is the least common multiple of these denominators
(d = lcm(d1, . . . , dn)) and mi = qi

d
di

.

4.3.2 Discrete Probabilities Semantics

Intuitively, semantics of the given structure in Figure 3 can be described as follows.
When the state-machine is in state s0, if the event evt is selected, and its guard g
holds, the machine will enter into state si and will perform the correspondent actioni

with the probability pi (i ∈ 1 . . . n).
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Formally, the semantics of the given structure in Event-B is defined as in Fig-
ure 4.

evt :
WHERE

STATE = s0 ∧ g
THEN

STATE, seed :| ∃r.r = random(1 7→ d 7→ seed) ∧
seed′ = r∧
((r ≤ m1 ⇒ STATE′ = s1 ∧ action1) ∧
(r > m1 ∧ r ≤ m1 + m2 ⇒ STATE′ = s2 ∧ action2) ∧
. . .

(r >
∑i−1

j=1mj ∧ r ≤
∑i

j=1mj ⇒ STATE′ = si ∧ actioni) ∧
. . .

(r >
∑n−1

j=1 mj ∧ r ≤
∑n

j=1mj ⇒ STATE′ = sn ∧ actionn))

END

Figure 4. Discrete probabilities in Event-B

Number r is randomly selected from numbers 1 to d. The next state will be
selected as follows: If the random number r is less than or equal to m1, the next
state is s1; if r is greater than m1 and is less than or equal to m1 + m2, the next
state is s2 and so on.

Theorem 1. The semantics for discrete probabilities, given in Figure 4, provides
the expected probabilities for the corresponding actions.

Proof. Variable r is randomly chosen from one of d numbers (1 . . . d) with equal
probabilities. Now, whenever the condition:

r >

i−1∑
j=1

mj ∧ r ≤
i∑

j=1

mj (3)

holds, the assignment STATE := si will be made. So, the probability of transition
to si is:

Pr{STATE := si} =

∑i
j=1mj −

∑i−1
j=1mj

d
=
mi

d
(4)

which is equal to the expected probability pi. �

4.4 Interval Probabilities

Interval probabilities are used when the probabilistic design is abstract and under-
specified [9, 12]. It is assumed that in the specification stage, the exact values of
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probabilities are unknown, but their intervals are known, and will probably become
exact in the next stages of the refinement.

4.4.1 Interval Probabilities Syntax

Similar to the discrete case, interval probabilities are specified here via a pseudo-
state p. Figure 5 shows the structure we propose to model interval probabilities.

s0 p

s1

sn

evt[g]

[l1/d, u1/d]/action1

[ln/d, un/d]/actionn

. . .

Figure 5. Interval probabilities in UML-B

In Figure 5, ui and li (i ∈ 1 . . . n) are positive integers less than or equal to d.
Intervals that the modeler chooses must allow for selecting a number from each
interval such that the sum of the selected numbers is equal to 1. For example,
suppose there are two branches in Figure 5. If the modeler chooses interval [0, 0.3]
for the first branch and interval [0.2, 0.8] for the other branch, since the number 0.2
can be chosen from the first interval and 0.8 from the second one, and 0.2 + 0.8 = 1,
the selected intervals are allowed. But for I1 = [0, 0.3] and I2 = [0.2, 0.6], there are
no two numbers p1 ∈ I1, p2 ∈ I2 such that p1 + p2 = 1 and therefore, these intervals
are not allowed.

4.4.2 Interval Probabilities Semantics

The semantics of the structure given in Figure 5 is defined as in Figure 6. Number r
is chosen from 1 to d, and each mi (i ∈ 1 . . . n) is chosen from its respective interval.
r will fall into one of the intervals formed by mis and its value determines the next
value for STATE.

Theorem 2. The semantics for interval probabilities, given in Figure 6, provides
the expected probabilities for the corresponding actions.

Proof. We prove that the probability of moving to the state si will be within the
specified interval.

Since there exists the condition mi ∈ li . . . ui, the inequality

li
d
≤ mi

d
≤ ui

d
(5)
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evt :
WHERE

STATE = s0 ∧ g
THEN

STATE :| ∃r,m1, . . . ,mn. r = random(1 7→ d 7→ seed) ∧
seed′ = r ∧
m1 ∈ l1 . . . u1 ∧
. . .
mn ∈ ln . . . un ∧∑n

j=1mj = d ∧

((r ≤ m1 ⇒ STATE′ = s1 ∧ action1) ∧
(r > m1 ∧ r ≤ m1 + m2 ⇒ STATE′ = s2 ∧ action2) ∧
. . .

(r >
∑i−1

j=1mj ∧ r ≤
∑i

j=1mj ⇒ STATE′ = si ∧ actioni) ∧
. . .

(r >
∑n−1

j=1 mj ∧ r ≤
∑n

j=1mj ⇒ STATE′ = sn ∧ actionn))

END

Figure 6. Interval probabilities in Event-B

holds. Variable r is randomly chosen from one of d numbers (1 . . . d) with equal
probabilities. Now, whenever the condition:

r >

i−1∑
j=1

mj ∧ r ≤
i∑

j=1

mj (6)

holds, the assignment STATE′ = si will be made. Therefore, for the probability of
the transition to si, the following holds:

li
d
≤ Pr{STATE′ = si} =

∑i
j=1mj −

∑i−1
j=1mj

d
=
mi

d
≤ ui

d
. (7)

Therefore, the probability of moving to the destination state is within the desired
interval. �

4.4.3 An Alternative Method to Define the Semantics

In this subsection, one alternative semantics that can be used instead of the se-
mantics presented in Section 4.4.2 is introduced. In Section 4.7.5, we will need this
semantics to translate the probabilistic UML-B constructs to PRISM, because in
PRISM it is not possible to resolve both the non-determinism and probabilities in
one transition. This new semantics is defined using an additional state. We consider
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an additional real state P INTERVAL for resolving the non-determinism in prob-
abilities, and computing discrete probabilities based on interval probabilities, and
then, determining the next state by using these computed probabilities. In this way,
the state-machine in Figure 5 is defined as the structure in Figure 7. The proof that
the semantics given in Figure 8 provides the expected probabilities for the corre-
sponding actions, is similar to the proof given in Theorem 2 with minor differences;
so, we do not present this proof anymore. It should be noted that because of the
introduction of a new real state, and the possibility of a delay, the definition given
in Figure 8 is not exactly equivalent to the definition provided in Figure 6.

s0 P INTERVAL p

s1

sn

evt[g]/
Select m1, . . . ,mn

such that
m1 ∈ l1 . . . u1∧

. . .
mn ∈ ln . . . un ∧∑n

j=1mj = d

m1/d

mn/d
. . .

Figure 7. The semantics of interval probabilities by using an additional state

The pseudo-code for event evt is composed of evt1 and evt2 as shown in Figure 8;
for each outgoing edge with label mi/d, a machine variable mi is defined.

evt =̂ evt1 ; evt2

evt1 :
WHERE
STATE = s0 ∧ g

THEN
m1, . . . ,mn :| m′1 ∈ l1 . . . u1 ∧ . . .
∧m′n ∈ ln . . . un ∧

∑n
j=1 mj = d

STATE := P INTERVAL
END

evt2 :
WHERE
STATE = P INTERVAL

THEN
STATE :| ∃r.r = random(1 7→ d 7→ seed) ∧
seed′ = r ∧
((r > 0 ∧ r ≤ m1 ⇒ STATE′ = s1 ∧ action1) ∧
(r > m1 ∧ r ≤ m1 +m2 ⇒ STATE′ = s2 ∧ action2) ∧
. . .

(r >
∑i−1

j=1 mj ∧ r ≤
∑i

j=1 mj ⇒ STATE′ = si ∧ actioni) ∧
. . .
(r >

∑n−1
j=1 mj ∧ r ≤

∑n
j=1 mj ⇒ STATE′ = sn ∧ actionn))

END

Figure 8. The pseudo-code for evt as a composition of evt1 and evt2

4.5 Discrete Stochastic Delay

In some systems, an action may be performed when a specific amount of time is
passed after reaching to a state. The duration of this delay can be fixed or can
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be probabilistically selected based on a distribution function. In this subsection,
the delay structure is added to UML-B. We restrict our work to discrete times and
delays.

To indicate the activation of a transition after time t, guard after(t) is added
to the UML-B syntax. In addition, for specifying the notion of probabilistic time,
time t can be specified randomly. In other words, instead of after(t), after(F )
is used where F : N → [0, 1] is the distribution function of timeout. For delays
corresponding to the geometric distribution with parameter p = m

d
, and for delays

with the uniform distribution, after(G(m/d)) and after(UNIF(tmin, tmax)) are re-
spectively used, where, tmin and tmax are minimum and maximum values of delay.
We restrict our work to the uniform and geometric distributions. We also consider
distributions that have a random generator function. After passing the delay time,
one of the output edges will be activated and the machine will transit to one of the
target nodes.

Since Event-B does not have the notion of time, the method presented in [28]
and reviewed in Section 3.3, is used to express the concept of time. The auxiliary
variables and events in Figure 9 are added to the Event-B model to handle the
notion of time:

VARIABLES
time, at

INVARIANT
time ∈ 0 . . .MAX TIME ∧
at ⊆ MAX TIME ∧
(at 6= ∅⇒ time ≤ min(at))

INITIALISATION
time := 0
at := 0 . . .MAX TIME

EVENTS
tick tock :
ANY
tm

WHERE

tm ∈ MAX TIME ∧
tm > time ∧
(at 6= ∅⇒ tm ≤ min(at))

THEN
time := tm

END

process time :
WHERE
time ∈ at

THEN
at := at− time

END
END

Figure 9. Auxiliary variables and events for handling time in Event-B

In Figure 9, variable time is the current value of time, and at is the remaining
active times at which the process time event will be triggered. The tick tock event
increases the value of time, and the process time event removes the current value
of time from active times. To avoid state explosion and keeping the model finite,
times are restricted by constant MAX TIME.
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In the next subsections, we will use variable time to compute the timeout mo-
ment and also to obtain the time at which an event with a guard containing a delay
can be executed.

4.5.1 Fixed Time Delay

In this subsection, at first the syntax of the fixed time delay is introduced in UML-B,
and then, its semantics is presented.

a. Fixed Time Delay Syntax. The structure specified in Figure 10 is added to
UML-B. The parameter t ∈ N is the amount of delay before actions of evt can
be executed.

s1 s2
evt[after(t)]

Figure 10. The fixed time delay in UML-B

b. Fixed Time Delay Semantics. The structure specified in Figure 10 is trans-
lated to the structure in Figure 11. We define T as the set of all transitions
that their destinations are the starting state s1 (e.g. STATE := s1) in the ma-
chine. Every such statement must be accompanied by a parallel assignment
timeout := time+ t to specify the amount of timeout.

For every transition, starting from the state s1 that has an after condition, the
guard time ≥ timeout must be added. If there are more than one after con-
dition, different timeout variables must be defined (i.e. timeout0, timeout1, . . .),
and for each after condition, the corresponding variable must be used. All these
timeout variables should be initialized at the moment that STATE := s0 is being
done.

src0

srcn

s1 s2
timeout := time+ t

timeout := time+ t

evt[time ≥ timeout]

. . .

Figure 11. The structure equivalent to the syntax in Figure 10

The events in Figure 11 are defined as in Figure 12.

Theorem 3. The semantics for fixed time delay, given in Figure 12, provides the
expected delays for the corresponding actions.
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Proof. We prove that the lower bound of the delay for the transition STATE := s2
is the constant t. If at any moment in the interval [t0, t0 + t) (t0 is the moment
that the timeout is set), the event evt is chosen for execution, the guard time ≥
timeout = t0 + t, which is necessary for moving to the state s2, will not hold and
the transition will not be done. At the time t0 + t, the evaluation of this guard will
change to true. Therefore, the lower bound of the transition to the destination state
is t0 + t− t0 = t. �

All transitions STATE := s1 in T will be accompanied
by an assignment setting the timeout:

STATE := s1
timeout := time + t

evt :
WHERE

STATE = s1 ∧ time ≥ timeout
THEN

STATE := s2
END

Figure 12. The fixed time delay in Event-B

4.5.2 Uniform Distribution Delay

In this subsection, at first the syntax of the uniform distribution time delay is
introduced in UML-B, and then, its semantics is presented.

a. Uniform Distribution Delay Syntax. The structure in Figure 13 is added
to UML-B. The parameters U,L ∈ N are the lower and upper bounds of delay
before actions of evt can be executed.

s1 s2
evt[after(UNIF(L,U))]

Figure 13. The uniform distribution delay in UML-B

b. Uniform Distribution Delay Semantics. Intuitively, the diagram in Fig-
ure 13 expresses that when the state-machine is in s1, it will move to s2 with
a delay which equals to a random time selected uniformly in the interval L to U .
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For defining the semantics formally, the action timeout := time+ t in Figure 12
is changed to the following action:

timeout, seed :| ∃r.r = random(L 7→ U 7→ seed) ∧

timeout′ = time + r ∧ seed′ = r.
(8)

Theorem 4. The semantics for uniform distribution delay, given in Figure 11 with
the change mentioned in Equation (8), provides the expected delays for the corre-
sponding actions.

Proof. We prove that the lower bound of the delay for the transition STATE := s2
is a random number from the interval [L,U ]. We designate t0 to the moment the
variable timeout is evaluated. At t0, timeout will be assigned a random value in the
interval [t0+L, t0+U ]. If at any moment in the interval [t0, timeout), the event evt is
chosen for execution, the guard time ≥ timeout, which is necessary for moving to the
state s2, will not hold and the transition will not be done. At the time t0 + timeout,
the evaluation of this guard will change to true. Therefore, the lower bound of the
delay is an integer number in [L,U ]. �

4.5.3 Geometric Distribution Delay

Many continuous-time systems exhibit delays with exponential distribution. The
exponential distribution describes the time for a continuous process to change state
or an event to occur. The discrete analog for exponential distribution is the geomet-
ric distribution. This distribution describes the number of Bernoulli trials needed
for the first success. Therefore, the geometric distribution can be seen as describing
the number of steps a discrete process needs to change state. If X is a geometrically
distributed random variable, and the probability of success on each trial is p, the
probability of X = k, k ∈ N1 is (1− p)k−1p. In this subsection we propose a syntax
and semantics for the geometric delay.

a. Geometric Distribution Delay Syntax. Figure 14 shows the geometric dis-
tribution delay structure in UML-B. The fraction m/d is the parameter of the
geometric distribution.

s1 s2
evt[G(m/d)]

Figure 14. Geometric distribution delay in UML-B

b. Geometric Distribution Delay Semantics. The semantics for the geometric
distribution is similar to the one for the uniform distribution except that it uses
the function geometric instead of random. The main difficulty lies in the problem
of generating numbers from the geometric distribution. We define the function
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geometric as an axiom to generate numbers from the geometric distribution.
Since the seed for the random function needs to be different for each iteration of
random, we use recursion and ideas from dynamic programming for storing the
previous values of the random function in the function rand. Figure 15 shows
the definition of the function geometric.

The semantics is defined by changing the action timeout := time+t in Figure 12
to the following action:

timeout, seed :| ∃r, g.g 7→ r = geometric(m 7→ d 7→ seed)∧

timeout′ = time + g ∧ seed′ = r.
(9)

AXIOMS
∀n,X, rand,m, d, seed, g,newSeed.
n ∈ 0 . . .MAX TIME ∧X ∈ N→ 0 . . . 1 ∧m ∈ N ∧ d ∈ N ∧
rand ∈ N→ N ∧ seed ∈ N ∧ newSeed ∈ N ∧ g ∈ 0 . . .MAX TIME⇒
rand(0) = random(1 7→ d 7→ seed) ∧
rand(n) = random(1 7→ d 7→ rand(n− 1)) ∧
((rand(n) ≤ m⇔ X(n) = 0) ∧
(rand(n) > m⇔ X(n) = 1)) ∧
g = min({j|j ∈ 0 . . .MAX TIME ∧ j 7→ 1 ∈ X})∧
newSeed = rand(g) ∧
g 7→ newSeed = geometric(m 7→ d 7→ seed)

END

Figure 15. The definition of the geometric function

Theorem 5. The function geometric generates numbers from the geometric distri-
bution.

Proof. The function rand is a sequence of randomly generated numbers. The
function X is a sequence of 0 or 1s, with success probability p = m

d
. X can be

considered as a sequence of results of independent Bernoulli trials. The set S =
{j|j ∈ 0 . . .MAX TIME∧ j 7→ 1 ∈ X} is the set of indices of all successful Bernoulli
trials, and g = min(S) is the index of the first successful Bernoulli trial. For any
j (j ∈ 0 . . .MAX TIME), the probability of g = j equals to (1 − p)jp. Therefore,
geometric generates numbers with geometric distribution with parameter p = m

d
.

�

Theorem 6. The semantics for geometric distribution delay, given in Figure 11
with the change mentioned in Equation (9), provides the expected delays for the
corresponding actions.
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Proof. We prove that the lower bound of the delay for the transition STATE :=
s2 is a random number with the geometric distribution. We designate t0 to the
moment the variable timeout is evaluated. At t0, timeout will be assigned the value
t0 +geometric(m

d
). As mentioned above, values of geometric(m

d
) have the geometric

distribution with parameter p = m
d

. If at any moment in the interval [t0, timeout),
the event evt is chosen for execution, the guard time ≥ timeout, which is necessary
for moving to the state s2, will not hold and the transition will not be done. At the
time t0 + timeout, the evaluation of this guard will change to true. Therefore, the
lower bound of the delay for the transition to the destination state is a number with
the geometric distribution. �

4.5.4 Generalization – Arbitrary Discrete Distribution

For random delays with arbitrary distributions, if the generator function F is avail-
able, one can model the delay through a method similar to that of the previous
subsection. It is sufficient to replace the timeout assignment in Figure 12 with the
appropriate assignment.

4.6 UML-B State-Machine as a Probabilistic Transition System

In this subsection, the state-machine models are defined as MDPs. The objective
is to have a theoretical ground for translating UML-B state-machines to PRISM
models for quantitative and probabilistic model checking. The provided definition
is similar to the definitions in [10] and [33] in which Event-B models are defined as
Transition Systems. In addition to standard Event-B structures and assignments,
defined in [10] and [33], our definition takes into account probabilities and the current
state in UML-B state-machines.

In order to define UML-B state-machines as MDPs, we need to slightly change
the definition of the projection operator π [13] to extract a component of a tuple by
its name, not its index.

Definition 1. Let A1, . . . , An be sets, and i ∈ 1 . . . n. If T ⊆ A1 × . . . × An, then
function πi : T → Ai is defined by πi(a1, . . . , an) = ai. If the ith component of tuple
(a1, . . . , an) is denoted by variable v, we define πv(a1, . . . , an) = ai.

Definition 2. Every UML-B state-machine model is defined as tuple M = (S,E,P,
ιinit, AP, L) where:

• S is the set of states of the state-machine. Let v1, . . . , vn be the variables of
the machine. We define Vi to be the type of variable vi (i ∈ 1 . . . n). Therefore,
S = V1 × . . . × Vn. The state-machine has at least one variable STATE which
specifies the current state of the state-machine.

• E ⊆ S × S is the set of all events of the state-machine. Any event evt(s) is
defined as:

evt(s) : WHERE Gevt(s) THEN Revt(s) END
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where s is the current state of the state-machine, Gevt : S → BOOL is the
event guard, and Revt ⊆ S × S determines the relationship between the current
state and the next state (by one or multiple assignments). For example, for the
following event:

evt : WHERE x = 1 THEN x := 0 END.

We have:
∀s.s ∈ S ⇒ (πx(s) = 1⇔ Gevt(s) = true),

∀s, s′.s, s′ ∈ S ⇒ (πx(s′) = 0⇔ (s, s′) ∈ Revt).

In a state-machine, there is an edge from SM STATE to SM STATE ′ (which
are two states in the state-machine) if and only if:

∃s, s′.Gevt(s) ∧ I(s) ∧ SM STATE = πSTATE(s) ∧
(s, s′) ∈ Revt ∧ SM STATE ′ = πSTATE(s′) ∧ I(s′)

(10)

where I : S → BOOL is the machine invariant. This predicate means there ex-
ists a transition from SM STATE to SM STATE ′, if and only if the invariant
holds in states s and s′, STATE is equal to SM STATE, and s is Revt-related
to s′.

• P : S × E × S → [0, 1] is the transition probability function:

P(s, evt, s′) =

0, ¬(I(s) ∧Gevt(s) ∧ I(s′) ∧ (s, s′) ∈ Revt),

pevt(s, s
′), I(s) ∧Gevt(s) ∧ I(s′) ∧ (s, s′) ∈ Revt

(11)

where pevt(s, s
′) is the probability of going from state s to s′.

• ιinit : S → [0, 1] is the initial distribution. This is determined using the INI-
TIALIZATION statements of the machine and determines the probability of
being at various states of the machine at time 0.

• AP = ∅ is the set of atomic propositions. Since we are not labeling our MDP
states, the set of atomic propositions is empty.

• ∀s ∈ S. L(s) = ∅. We simply choose not to label any MDP state.

In state s, event evt is selected according to the transition probability function P,
and the machine is transited to state s′ according to pevt(s, s

′).

By this definition, every UML-B state-machine model can be described as a Mar-
kov Decision Process.

4.7 Translating Probabilistic UML-B State-Machines to PRISM

The PRISM tool can receive its inputs as MDP models. As indicated in Section 4.6,
a state-machine in UML-B can be interpreted as an MDP. In this subsection, we
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use this correspondence to present a method for translating a UML-B state-machine
model to a PRISM model for the purpose of quantitative model checking. To au-
tomate the process of translating from UML-B state-machines to PRISM models,
a number of straightforward conversions are presented. The proposed method is
similar to the method presented in [34], in which a number of conversions from
Event-B to PRISM are shown, including translating actions containing the ⊕| oper-
ator. The conversions proposed in this section can be performed indirectly through
the methods of the aforementioned work to translate models to PRISM models.
But, we adapt the conversions to the specific structures present in UML-B and
our probabilistic extension of it, to achieve a more readable and clear final PRISM
model.

In what follows, we present the needed translation for each UML-B construct in
order to translate a UML-B model to a PRISM model.

4.7.1 State-Machine and Its States

Let STATEMACHINE be the name of the state-machine, and its states be S1 to
Sn; now, variable SM STATE of type [0 . . . n − 1] is defined in PRISM. Constants
s1 to sn with values 0 to n − 1 are also defined to specify the different states of
the machine. The initial state of the state-machine is defined in the init section
(Figure 16).

const int s1 = 0;
. . .
const int sn = n− 1;
global SM STATE [s1 . . . sn] init s1;

Figure 16. State-machine states in PRISM

For each state-machine, a module with the name of that state-machine is defined
to model its transitions (i.e. module statemachine . . . endmodule). The body of
a module will be the transitions taking place in the module.

4.7.2 State Transition

Figure 17 indicates a state transition in UML-B and its translation in PRISM. Guard
SM STATE = s1 determines if the model is in s1. Transition SM STATE′ = s2
changes the current state.

When a transition also has guards and actions, they will be included, too (Fig-
ure 18).
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s1 s2 [] SM STATE = s1→ (SM STATE′ = s2)

Figure 17. Left: A state transition in UML-B. Right: Its translation in PRISM.

s1 s2
[g]/a := 0||b := 1 [] SM STATE = s1 & g →

(a′ = 0) & (b′ = 1) & (SM STATE′ = s2)

Figure 18. Left: A state transition with guards and actions. Right: Its translation in
PRISM.

4.7.3 Nondeterministic Transition

Nondeterministic transitions which have the same guards are translated as shown
in Figure 19.

s0 s1

sn

. . .

[] SM STATE = s0→ (SM STATE′ = s1);
. . .
[] SM STATE = s0→ (SM STATE′ = sn);

Figure 19. Left: Nondeterministic transitions. Right: Their translation in PRISM.

4.7.4 Discrete Probabilities

In order to translate the structure shown in Figure 20, the probabilistic selection in
PRISM is used.

4.7.5 Interval Probabilities

We take the approach discussed in Section 4.4.3 and Figure 7 to perform the transla-
tion of interval probabilities to PRISM. Variable INTERVALP is used for maintain-
ing the state to which the state-machine will move after the probabilistic selection.
Variables m1 to mn are defined to keep each transition probability’s fraction’s numer-
ator. Every combination of m1+. . .+mn, where L1 ≤ m1 ≤ U1, . . . , Ln ≤ mn ≤ Un,
is considered; and m1,. . . ,mn are assigned non-deterministically. d is the denomina-
tor of probabilities fractions.

In order to generate all valid transitions, for each numerator variable mi (i ∈
1 . . . n), a value is taken from its corresponding interval Li . . . Ui. For example, the
first transition shown in Figure 21 takes the lower bound of each numerator variable
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s0 p s1

sn

evt[g] (m1/d)

(mn/d)
. . .

[] SM STATE = s0 & g →
m1/d : (SM STATE′ = s1)+
. . .+
mn/d : (SM STATE′ = sn);

Figure 20. Left: A probabilistic transition in UML-B. Right: Its PRISM counterpart.

[] SM STATE = s0 & (L1 + . . . + Ln = d)→
(m1′ = L1)& . . .&(mn′ = Ln)&
(SM STATE′ = INTERVALP);

[] SM STATE = s0 & ((L1 + 1) + . . . + Ln = d)→
(m1′ = L1 + 1) & . . .& (mn′ = Ln)&
(SM STATE′ = INTERVALP);
. . .

[] SM STATE = s0 & (U1 + . . . + Un = d)→
(m1′ = U1) & . . .& (mn′ = Un) &
(SM STATE′ = INTERVALP);

[] SM STATE = INTERVALP & m1 + . . . + mn = d→
m1/d : (SM STATE′ = s0)+
. . .
mn/d : (SM STATE′ = sn);

Figure 21. Interval probabilities in PRISM

as its value, and adds a guard to check if
∑

imi equals to d. From those transitions
for which this guard is true, one is chosen non-deterministically and SM STATE will
move to INTERVALP. The last transition in Figure 21 computes the probability of
moving to every state and performs the transition of SM STATE.

4.7.6 Time

A module named tick tock is defined for advancing the integer variable time. The
transition [] time < MAX TIME− > (time′ = time+ 1); is used for advancing time.
Constant MAX TIME is used to limit the possible values of variable time to avoid
state explosion.
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4.7.7 Fixed Time Delay

In every ingoing transition to a state in which a fixed time delay exists, the integer
variable after time is set to time + t, where t is the fixed delay. In the ongoing
transitions that include guard after(t), condition time >= after time is added to
make sure those transitions are activated only when the specified time has passed.

4.7.8 Uniform Distribution Delay

This case is similar to the fixed time delay, but the after time variable is set ran-
domly. In the ingoing transitions to the state in which condition after(UNIF(L,U))
exists, after time is set to one of the values time +L, time + (L+ 1), . . . , time +U ,
with equal probability.

4.7.9 Geometric Distribution Delay

Because of the lack of recursive function support in the current version of PRISM,
the translation is not yet possible.

5 CASE STUDY

In this section the applicability of the probabilistic extension of UML-B is illustrated
through a case study.

5.1 Zeroconf Configuration Protocol

In this case study, we consider the Zeroconf configuration protocol for local ad-
dresses [25]. This protocol configures an IP address for a newly joined device to
the local network. When a host connects to the network, it first randomly selects
an IP address from a pool of 65 024 available addresses in the range of 169.254.1.0
to 169.254.254.255. The host waits for a random time between 0 and 2 seconds be-
fore starting to send four Address Resolution Protocol (ARP) packets, called probes,
to all other hosts. These probes contain the IP address selected by the host, and are
sent at 2 seconds intervals. A host which is already using this address will respond
with an ARP reply packet, and the original host will restart reconfiguration. If the
host encounters 10 IP conflicts, it remains idle for 1 minute. If the host sends four
probes without receiving any ARP reply packet, then it starts to use the chosen IP
address. This host sends two further messages, called gratuitous ARPs, at 2 seconds
intervals. A host that has started using an IP address must reply to ARP packets
containing the same IP address. It continues to use the address unless it receives
a gratuitous ARP containing the same IP address. In this case, the host can either
defend its IP address, or defer to the conflicting host. The host may only defend its
address if it has not received a previous conflicting packet within the previous ten
seconds; otherwise, it must defer. A defending host sends an ARP packet containing
the IP address. A deferring host restarts the protocol and reconfigures.
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5.2 Modeling the Zeroconf Protocol in UML-B

We consider one host, which is trying to configure its IP address in a network of N
other hosts. If the number of all available IP addresses is IP , then the probability
of the host choosing a fresh IP address is (IP − N)/IP . Possible values for IP
addresses are abstracted to values 1 and 2. Value 1 represents an IP address already
assigned to a host in the network. Value 2 represents a fresh IP address. Also, the
delay over the interval [0, 2] is abstracted to a choice over {0, 1, 2}.

Figure 22 shows the UML-B state-machine model for the host. In the RECONF
state, the host chooses a new IP address denoted by iph, by moving to the CHOOSE
state. If it has encountered 10 address conflicts, it moves to the CHOOSEWAIT
state and chooses a new address after waiting for one minute. In states CHOOSE
and CHOOSEWAIT, the host probabilistically selects an address. The random
delay before sending probes is modeled using the after structure. In order to model
probabilities and random delays, the methods discussed in Section 4 are used. In
state WAITSP, the host sends K probes before moving to the WAITSG state. In
this state, the host sends two more ARPs before moving to the USE state and using
the selected IP address. If, while in WAITSG, the host receives a packet with the
same IP address, the host moves to RESPOND. For further details refer to [25].

The model for the network is shown in Figure 23. If the network is in the
IDLE state, it moves to the NET SEND state after a delay of 0 or 1 second and
probabilistically selects the value 0 or 1 for the IP address sent by one of the hosts
of the network, denoted by ip.

Figure 23 shows the model for time. This is a simplified model that only advances
time by one. At any time, the action time := time+1 is chosen nondeterministically
among other active UML-B events.

5.3 Translating the Model to PRISM

Using the method presented in Section 4.7, the created UML-B model was trans-
lated to a PRISM model. The resulting model is an MDP with three modules,
namely host, network and time. A number of constants have been defined to repre-
sent different states. In each module, a variable holds the current state. Different
transitions start with a guard checking the current state.

The resulting PRISM model can be used to verify a number of probabilistic
properties about our model. For instance, the property saying “the maximum prob-
ability that the host finally chooses value 2 for iph and moves to state USE” is
expressed in PCTL as Pmax(♦((host state = USE) ∧ iph = 2))).

6 CONCLUSION AND FUTURE WORK

We have added abilities for modeling probabilistic and random systems in UML-B.
A number of new structures have been added to the graphical syntax of UML-B, and
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RECONF

CHOOSE CHOOSEWAIT

p p

WAITSP

WAITSG

RESPOND USE

[coll < 10] [coll = 10]

[after(60)]

p/
probes := 0||iph := 1

1− p/
probes := 0||iph := 2

p/
probes :=
0||iph := 1

1− p/
probes := 0||iph := 2

[ip = iph]/
coll :=

min({coll + 1, 10})

[after(2) ∧ probes = K]/
coll := 0||probes := 0||y :=
0

[after(2) ∧
probes ≥
1∧probes < K]/
probes :=
probes+ 1

[ip 6= iph]

[after((UNIF)(0, 2))∧
probes = 0]/
probes := 1

[after(2) ∧ probes = 1][ip = iph]

[after(2) ∧
probes <
1]/probes :=
probes+ 1

[ip 6= iph]

[defend = 0 ∨ time ≥ y +
10]/defend := 1||y := time

defend := 0

Figure 22. The UML-B state-machine model for the host component of the Zeroconf
protocol
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IDLE

p

NET SEND

[after(UNIF(0, 1))]

1− p/ip := 0

p/ip := 1

START PROGRESS
time := 1

time := time+ 1

Figure 23. The UML-B state-machine model for the network and time components of the
Zeroconf protocol

their semantics has been defined in Event-B. In addition, a method for translating
UML-B models into PRISM language has been presented in order to perform quan-
titative and probabilistic model checking. To show the applicability of the proposed
method, a case study on Zeroconf protocol was presented.

In future work, to increase the mathematical rigor of the proposed extensions,
we would like to introduce rules and proof obligations for refinement of the proposed
probabilistic structures. Furthermore, the proposed methods for translations and
conversions need an automatic tool.
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Abstract. The problem of knowledge heterogeneity in the Semantic Web or in the
context of information systems remains a major challenge for the scientific commu-
nity, in particular when several ontologies developed independently and separately
have to be exploited to exchange their knowledge. Several works have addressed
the semantic heterogeneity issue in ontologies and proposed to align them with
additional knowledge. Recently a formalism taking into account the challenge of
applied techniques to represent and reason on aligned ontologies was proposed by
the authors. The authors proposed a contribution that can be seen as an extension
of existing work on the heterogeneous ontologies integration. This formalism allows
dealing with contextual representation and reasoning where ontologies and align-
ments by pairs of ontologies are developed in different and incompatible context. In
this paper, some aspects of multi-level networked knowledge are recalled, detailing
its semantics and discussing the comparison of the two semantics, DL-approach and
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DDL-approach, according to certain criteria, in order to measure their relevance and
to give to readers a way to choose one semantics rather than another according to
the context or the intended application.

Keywords: Networked knowledge semantics, contextual ontologies, contextual
alignments

1 INTRODUCTION

Recently, a Multi-Level Networked Knowledge (MLNK) formalism was proposed
to allow contextualization of alignment representation [25, 24]. This formalism at-
tempts to solve the problem of alignments semantic heterogeneity using multiple
alignment levels. This favours dealing with the alignment complexity going up in
abstraction instead of trying to force alignment experts to provide coherent align-
ments at the lowest level of detail (increasingly hard as networks grow due to the
cognitive limits of humans). Syntactically, this formalism is defined in a very general
way and is independent of the ontologies underlying logic, exploiting the recursive
technique to build a hierarchically structured knowledge base in levels. An instanti-
ation of the generic formalism was evoked, with the interest put on OWL ontologies.

In the literature, one may find three basic semantic languages for the interpreta-
tion of Network of Aligned Ontologies: Non-Contextual and Centralized Semantics;
Contextual and Distributed Semantics; and Contextual and Integrated Semantics.
But none of those semantics can be applied directly for interpreting the MLNK
formalism.

Inspired by those, this paper proposes an extended semantics for the interpre-
tation of Network of Aligned Ontologies on several levels. The advantage of the
extended semantics lies in the fact that each alignment expressed between a source
and target ontology is independently treated, as each one possesses its own distinct
vocabulary and semantics. The first proposed semantic, Extended Non-Contextual
and Centralized Semantics (ENCACS), favours the fact that ontologies and the
alignment set expressed in pairs are heterogeneous, either expressed in the same
context or different compatible ones. The second proposed semantic, Distributed
and Contextual-on-Several-Levels Semantics (DACOSLS), is defined in order to sup-
port ontologies and alignments heterogeneity, even if those are expressed in distinct
and incompatible contexts. This semantic favours the contextualization of ontologies
as well as alignments.

The DL-approach applies Extended Non-Contextual and Centralized Seman-
tics (ENCACS), which was developed and implemented with the obtained results
presented in [25].

The approach applying Distributed and Contextual-on-Several-Levels Semantics
(DACOSLS) was developed and presented in a previous work [24]. In the present
one, the approach concepts are recalled, then we describe the prototype used to
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reason on the MLNK following the DDL-approach. Results from our test protocol
are presented and compared with the DL-approach prototype results.

In order to show the difference between the different approaches, a thorough
comparison is made in this paper. The resulting comparative study focuses on the
adaptability of one semantic over another. This will allow readers to justify the
choice of either for a given application, taken into account its context.

The organization of the rest of the article is as follows: In Section 2 the notion
of networked ontologies while highlighting the specific definitions to multi-level net-
worked knowledge is recalled. Section 3 describes the semantic approaches of MLNK
interpretation. Section 4 provides detailed information on the implementation of the
DDL-based MLNK reasoner prototype. In Section 5, the semantic approaches (DL-
approach and DDL-approach) are compared showing how they are different from
each other and in which cases one is more interesting than the other. Section 6 gives
a synthesis of related works and discussion. Finally, Section 7 addresses a general
conclusion.

2 NETWORK OF ALIGNED ONTOLOGIES

Generally, Network of Aligned Ontologies (NAO) formalisms were introduced with
one or more motivations. Syntactically, they are composed of a family of local
ontologies and alignments that bind them. They are endowed with one or more
semantics for possible reasoning on aligned knowledge.

In this section, formalisms that can handle reasoning on NAOs are presented
with their motivations, syntactic and semantic representations. Table 6 summarizes
the latter, presenting motivations, syntax and semantics of the formalisms described
in this paper.

2.1 Motivation

We start by identifying the different motivations behind existing formalisms, then
we define the motivation for the introduction of Multi-Level Networked Knowledge.

2.1.1 Motivations Behind Network of Aligned Ontologies

There are four important motivations associated with NAOs:

Ontology combination: this motivation is favoured to combine several non-hete-
rogeneous ontologies, where each one describes a separated, very different view-
points and complementary portions of a complex domain. In general, links are
used in order to link entities belonging to different ontologies (e.g.,

O1:France
is−part−of→ O2:Europe) (see Section 2.2.2). As an example, E-connec-

tion [27] is a formalism proposing a syntactic representation and a formal seman-
tics for reasoning on a Network of Aligned Ontologies, where entities in different
ontologies are connected by links.
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Resolution of semantic heterogeneity between ontologies: in order to re-
solve the semantic heterogeneity problem between ontologies. It is necessary
to use ontology mappings which are semantic relations between entities (e.g.,

O1:java
⊥→ O2:java). As an example, DDL formalism [8] proposes a syntactic

and semantic representation that permits reasoning on a Network of Aligned
Ontologies using mappings.

Ontology import: The import of ontologies is mainly used to promote the reuse
of the concepts, roles or individuals defined in other ontologies. The notion of
importing entities belonging to other ontologies with the goal of reusing them
was introduced in [7]. This is mainly interesting, as it permits reusing a number
of entities from a given ontology without importing it as a whole.

Mediation of alignment: This motivation ensures an independent management
of the alignments. As an example, one may cite the alignments composition for
exchanging and a better reusing of the latter through the network of ontologies.
The main goal is still to reuse existing alignments in order to obtain newer
ones. The IDDL formalism [33] proposes a syntactic and semantic representation
in order to manage and exploit alignments to ensure mediation through the
knowledge network.

2.1.2 Motivation Behind MLNK

The set of pair ontology alignments have their own vocabulary. They are developed
independently from each other by domain experts with different viewpoints, being
then possibly heterogeneous. In order to solve the heterogeneity problem between
alignments, the latter’s, need to be linked in the higher levels.

A real-life application example of gas turbine ontological representation is pre-
sented. Due to their wide usage in electricity production, the gas turbine is often
found in the center of large power systems that need to be managed in terms of
knowledge and maintenance. Four ontologies describing gas turbine have been de-
veloped for the purpose of this example, namely:

• an ontology for equipment (eq), modelling the turbine technical and hierarchi-
cal knowledge. This information is provided by the constructor and contains
5 033 concepts, where each concept describes an equipment or turbine compo-
nent, such as the concept flame-detector given by instance FD1;

• an ontology termed (Pr), modelling spare parts, such as the concept trim given
by the instance T1;

• an ontology for modelling the position of the equipment in the turbine hierarchy
(zn);

• an ontology created from an existing database mt, using a semi-automatic ap-
proach, covering, maintenance operations (both preventive and currative). The
mt ontology exploits the first ontologies (eq), Pr and zn) in order to provide
details on equipments and spare parts concerned by maintenance operations.
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These ontologies are independent and heterogeneous; we aim to exploit them via
a common interface without constraining or altering their internal representation.
We propose for that effect, to insert ontology alignments separately without favour-
ing any of the local representations. Correspondences of the mappings type are pro-
duced via independent tools, the case for the following correspondences:

mt:belong
⊥←→ eq:belong between (mt, eq) ontologies pair and

pr:trim
v←→ eq:instrumentation between (pr, eq). The set of produced mappings

may be enriched semi-automatically by new links (terms linking two different ontolo-
gies). This operation is performed by experts, understanding one expert for each
ontologies pair. Alignments are then developed independently by domain expert
expressing different viewpoints. It is then observed that the semantic heterogene-
ity problem occurs at the alignment level. It is the case for alignments Apr-eq and
Aeq-zn, with the terms Apr-eq:compose and Aeq-zn:part-of , these links have simi-
lar semantics. In order to reduce semantic heterogeneity between alignments and
enable knowledge inference across the global network, it is necessary to insert an
equivalence relation between the two links Apr-eq:compose and Aeq-zn:part-of . This
comes to align ontology alignments.

Example 1. An excerpt of ontologies and associated alignments are presented in
Table 1.

Ontologies Axioms
eq: flame-detector(FD1)

flame-detector v ∃belong.instrumentation
pr: trim(T1)

zn: zone(ANNA1TG01)

mt: intervention(I1)
team(TE1)
intervene(TE1, I1)
member v ∃belong.team

Alignments

Aeq-zn: eq:FD1
part-of←→ zn:ANNA1TG01

Apr-eq: pr:trim
v←→ eq:instrumentation

pr:T1
compose←→ eq:FD1

Amt-eq: mt:I1
concern←→ eq:FD1

eq:belong
⊥←→ mt:belong

AApr-eq-Aeq-zn : pr-eq:compose
≡←→ eq-zn:part-of

Table 1. An excerpt of ontologies and associated alignments

In order to solve the heterogeneity problem occurring between alignment’s vo-
cabularies, alignment at a higher level is proposed. This, however, necessitates the
introduction of a formalism permitting a representation of MLKN. Figure 1 repre-
sents the turbine example showing alignment levels.
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T

flame-detector (FD1)flame-detector      
 belong.instrumentation E 

zone(ANNA1TG01) intervention(I1), team(TE1)iintervene(TE1,I1)member        belong.teamE 

pr eq zn mt

pr:T1 consist eq:FD1 eq:FD1  part-of  zn:ANNA1TG01 mt:I1  concern  eq:DF1
    mt:belong       eq:belong

trim (T1)

pr-eq eq-zn mt-eq

pr-eq--eq-zn
pr-eq:compose       eq-zn:part-of=

Figure 1. Knowledge representation levels

None of the existing formalisms treats alignments separately and independently
with respect to ontologies and the other alignments. As a result, no proposition
was made to align alignments, making all existing formalisms not able to support
alignment’s contextualization.

2.2 The Network of Aligned Ontologies Syntax

A network of aligned ontologies is composed of a family of local ontologies also
called modular ontologies or source knowledge bases and a family of alignments.
Knowledge node is a new concept defined to formalize MLNK syntax.

2.2.1 Local Ontology

The local ontologies {Oi} of a network of aligned ontologies are indexed by a finite set
of indices I. Ontologies are developed and designed in different contexts. The notion
of information context has been extensively discussed in several works like [28, 16]
and recently [35], with a general definition of the context being a given “point of
view” or “provenance” or even “a temporal valid information”. Each ontology Oi is
represented in a knowledge representation language defined by:

• a syntax, that is a set of symbols and sentences (or formulas) that can be built
with them;

• a notion of interpretations, which defines a domain of interpretation and asso-
ciate symbols with structures over the domain;

• a satisfaction relation, which relates interpretations to the sentences they satisfy.

There are many languages for knowledge representation applied to local ontologies
definition, one may cite First-Order Logic, Modal Logic, Description Logic, etc.
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The proposed syntax for MLNK is generic and independent from any ontologies
language (see Section 2.2.3). In order to interpret it, the choice of existing logic is
given to the user, such as First-Order Logic, Modal logic, DL, etc. In the presented
work we focused on DL ontologies, as DL is fundamental for semantic web and OWL
ontologies. Table 6 resumes local ontologies languages for existing formalisms.

Let us recall some basics formulation and concepts of DL [5] that will be used
for the remainder of the paper.

DL ontology is composed of concepts, roles and individuals, as well as axioms
built out of these elements. A concept is either a primitive concept A, or, given
concepts C, D, role R, individuals a1, . . . , ak, and natural number n, ⊥, >, C t
D, C u D, ∃R.C, ∀R.C, ≤ nR.C, ≥ nR.C, ¬C or {a1, . . . , ak}. A role is either
a primitive role P , or, given roles R and S, R t S, R u S, ¬R, R−, R ◦ S and R+.

Interpretations are pairs 〈∆I , ·I〉, where ∆I is a non-empty set (the domain
of interpretation) and ·I is the function of interpretation such that for all primitive
concepts A, AI ⊆ ∆I , for all primitive roles P , P I ⊆ ∆I×∆I , and for all individuals
a, aI ∈∆I .

Interpretations of complex concepts and roles is inductively defined by ⊥I = ∅,
>I = ∆I , (C t D)I = CI ∪ DI , (C u D)I = CI ∩ DI , (∃R.C)I = {x|∃y.y ∈
CI ∧ 〈x, y〉 ∈RI}, (∀R.C)I = {x|∀y.〈x, y〉 ∈RI ⇒ y ∈CI}, (≤ nR.C)I = {x|]{y ∈
CI |〈x, y〉∈RI} ≤ n}, (≥ nR.C)I = {x|]{y∈CI |〈x, y〉∈RI} ≥ n}, (¬C)I = ∆I \CI ,
{a1, . . . , ak} = {aI1, . . . , aIk}, (RtS)I = RI ∪SI , (RuS)I = RI ∩SI , (¬R)I = (∆I ×
∆I) \RI , (R−)I = {〈x, y〉|〈y, x〉∈RI}, (R ◦S)I = {〈x, y〉|∃z.〈x, z〉∈RI ∧ 〈z, y〉∈SI}
and (R+)I is the reflexive-transitive closure of RI .

Axioms are either subsumption C v D, sub-role axioms R v S, instance asser-
tions C(a), role assertions R(a, b) and individual identities a = b, where C and D are
concepts, R and S are roles, and a and b are individuals. An interpretation I satis-
fies axiom C v D if and only if CI ⊆ DI ; it satisfies R v S if and only if RI ⊆ SI ; it
satisfies C(a) if and only if aI ∈CI ; it satisfies R(a, b) if and only if 〈aI , bI〉∈RI ; and
it satisfies a = b if and only if aI = bI . When I satisfies an axiom α, it is denoted
by I |= α.

An ontology O is composed of a set of terms (primitive concepts/roles and
individuals) called the signature of O and denoted by Sig(O), and a set of axioms
denoted by Ax(O). An interpretation I is a model of an ontology O if and only if
for all α ∈Ax(O), I |= α. In this case, we write I |= O. The set of all models of
an ontology O is denoted by Mod(O). A semantic consequence of an ontology O is
a formula α such that for all I∈Mod(O), I |= α.

An ontology is logically consistent if the ontology has a model.

2.2.2 Alignments

The correspondences represent relations between entities (terms or formulas) belong-
ing to different ontologies. The set of correspondences is termed ontology alignment.
Let us recall that there are two types of correspondences:
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• The first type of alignment (mapping) concerns the correspondences which are
associated with a predefined set of relations such as subsumption, equivalence,
disjunction, etc. where the given semantic is fixed for all interpretations (e.g.,

O1:java
⊥←→ O2:java). Which means that the java entity in the ontology O1 is

semantically different from the java entity in O2.

• The second type of alignment (links) is used to link ontologies covering com-
plementary domains, it is the case of E-connection [27], E − SHIQ [32] and
MLNK [25]. It is represented by inter-ontological roles between entities, termed

simply links (e.g., O1:France
is−part−of←→ O2:Europe).

The syntax representation of correspondences differs from one formalism to another.
As an example, DDL [8] is cited here, where mappings (DDL does not handle links)
are represented by directional arrows expressed as the target ontology point of view

(e.g., O1:A
v→ O2:B) where the inverse of the correspondence (e.g., O2:B

w→ O1:A) is
not valid. In the case of the proposed formalism, as well as for IDDL, double ar-
rows are used to express correspondences with an external “point of view” of target

and source ontologies (e.g., O1:A
v←→ O2:B) where the inverse correspondence (e.g.,

O2:B
w←→ O1:A) is valid and can be inserted. However, IDDL express correspon-

dences from a global point of view with respect to the whole ontology network. This
is quite difficult to achieve, considering the limited expert’s knowledge not allowing
a complete understanding of all domain aspects. MLNK suggests expressing corre-
spondences according to a global point of view with respect to a pair of ontologies.

Definition 1 (Initial alignment language representation). The alignment language
LA that allows expressing correspondences is initially defined as a pair 〈E,R〉 where
E is a function from any ontology O ⊆ LA which defines the matchable entities
of ontology O and R is a set of symbols that allow relating these entities, with
R = {v,≡,⊥,∈,=} [14].

Alignment language, in this case, is reduced to the terms of existing vocabularies
and does not have its own vocabulary.

Definition 2. A correspondence expressed in this language LA is given by a triplet
〈e1, r, e2〉 noted e1

r→ e2 where e1, e2 are entities belonging respectively to E(O1),
E(O2) and r ∈ R or r is a link.

These definitions do not constitute a problem if all correspondences are of map-
ping types, on the other hand, if some of them are mappings and others are links,
the problem arises necessarily. This is due to the fact that the links are terms likely
to have several interpretations, and can vary from one pair of ontologies to another.

The previous definitions of alignment language and correspondences do not per-
mit alignment contextualization. To remedy to the problem, recent definitions have
been given where the alignment language has its own vocabulary allowing to express
distinctly mappings and links.
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Definition 3 (Proposed alignment language). An alignment language LA permits
the description of correspondences between two vocabularies. It is also characterized
by a syntax (how correspondences are expressed) and a semantic (how correspon-
dences are interpreted). The syntax of LA is defined by:

• a set of terms, called links, specific to the alignment language noted V (LA);

• a function E(LA), which associates to each signature of a representation lan-
guage L a set of entities that can be aligned;

• a set of relation’s symbols R(LA).

Thus, the syntax of an alignment language LA is defined by the triple 〈V (LA), E(LA),
R(LA)〉, denoted 〈V,E,R〉 when no ambiguity exists. Two types of correspondences
might be defined as mapping and link correspondences.

Definition 4 (Mapping correspondence). Let V1 and V2 be two aligned vocabular-
ies and let the triplet 〈V,E,R〉 denote an alignment language. A mapping corre-

spondence is a triple 〈e1, e2, r〉 noted e1
r←→ e2 where:

• e1 ∈ E(V1) and e2 ∈ E(V2) are matchable entities;

• r ∈ R denotes a relation that holds between e1 and e2 with R = {v,≡,⊥,∈,=}.

Definition 5 (Link correspondence). Let us consider V1 and V2 two aligned vocab-
ularies and 〈V,E,R〉 an alignment language. A link correspondence is a formula in

the form e1
l←→ e2 where:

• e1 ∈ E(V1) and e2 ∈ E(V2) are matchable entities;

• l ∈ V denotes a relation that holds between e1 and e2.

Definition 6 (Alignment). Let V1 and V2 be two vocabularies. An alignment of V1
and V2 is a tuple Λ = 〈V, κ, λ〉 where:

• V is an alignment vocabulary;

• κ is a set of mapping correspondences, e1
r←→ e2 where e1 ∈ E(V1), e2 ∈ E(V2)

and r ∈ R;

• λ is a set of link correspondences, e1
l←→ e2 where e1 ∈ E(V1), e2 ∈ E(V2) and

l ∈ V .

2.2.3 Knowledge Node

The syntactic formalization of MLNK is defined in a very general way, independently
of any language, using a recursion technique to build a knowledge base, hierarchically
structured in levels. In other words, it is composed of a family of knowledge nodes
and alignments between any pair of nodes where each node is self-composed of a pair
of aligned sub-nodes. Hence a dynamic construction of knowledge nodes where the
most elementary node is an ontology. An ontology is therefore, a level 0 knowledge
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node, while each knowledge node of level m > 0 is constructed from a number of
nodes from an inferior level, linked using alignment. Formally the node is defined
as:

Definition 7 (Knowledge node). A knowledge node is a pair K = 〈VK , AK〉 where
VK is a vocabulary, also written Voc(K), and both VK and AK are defined recur-
sively:

• an ontology O is a knowledge node with vocabulary Voc(O) = Sig(O) and AK

is the set of axioms;

• for n ≥ 1, if K1, . . . , Kn are knowledge nodes with vocabularies Voc(K1), . . . ,
Voc(Kn), and for all i, j ∈ [1, n], Λij is an alignment of Voc(Ki) and Voc(Kj),
then K = 〈VK , AK〉 is a knowledge node with the vocabulary:

VK =
⋃

i,j∈[1,n]
{ij : l | l ∈ Voc(Λij)} ∪

⋃

i∈[1,n]
{i : e | e ∈ Voc(Ki)}

and AK = 〈(Ki)i∈[1,n], (Λij)i,j∈[1,n]〉.
If a knowledge node includes only ontologies and ontology alignments, we call it

a Network of Aligned Ontologies. If a knowledge node is neither a single ontology
nor a network of aligned ontologies, we call it a Multi-Level Networked Knowledge
base.

2.3 The Network of Aligned Ontologies Semantics

Three basic semantics associated to Network of Aligned Ontologies are defined
in [34]. Two other extended semantics inspired by basic semantics are presented
in what follows.

2.3.1 Non-Contextual and Centralized Semantics (NCACS)

This semantic is formalized by classical logic, there is a unique interpretation domain
for the whole network which is the union of all local interpretation domains (∆i for
all i ∈ [1, n]). Interpretation is a model if it satisfies all the axioms of local ontologies
(Oi for all i ∈ [1, n]) and alignments (Aij for all i, j ∈ [1, n]). See Figure 2.

2.3.2 Contextual and Distributed Semantics (CADS)

There are two variants of CADS:

• Variant 1: This semantic is formalized by distinct and separate local interpre-
tations (Ii for all i ∈ [1, . . . , n]), but linked by domain relations (rij for all
i, j ∈ [1, . . . , n]). The distributed interpretation I is composed of local interpre-
tations and domain relationships, I = 〈{Ii}, {rij}〉 for all i, j ∈ [1, . . . , n]. It is
a model of the network if (see Figure 3):
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2.3.3 Contextual And Integrated Semantics (CAIS)

CAIS can be seen as, the combination of centralized semantics (on the alignment
side) and distributed semantics (on the local ontologies side). The local interpre-
tations are distinct and separate but not directly related. They are connected by
means of the equalizing functions to an additional interpretation domain. The equal-
izing function is a projection function from local interpretation domain to a virtual
global domain. The global domain is used to interpret inter-ontological knowledge
(alignment) from a global point of view. It is the first idea that defines an inde-
pendent interpretation of the alignments but the centralization of the alignment
interpretation in a single additional domain does not allow alignment contextualiza-
tion. Distributed, integrated interpretation is composed of local interpretations and
equalizing functions I = h{Ii}, ✏ii for all i 2 [1, ..n] (see Figure 4). It is a model of
the network if:

• Local interpretations Ii satisfy source ontologies (Oi for all i 2 [1, ..n]);

• The pairs of source interpretation and target with the equalizing functions (✏i
for all i 2 [1, ..n]) satisfy the constraints imposed by the alignments (Aij for all
i, j 2 [1, ..n]).

Inspired from the basic semantics, an extended semantics for the interpretation
of Network of Aligned Ontologies on several levels is proposed. The proposed se-
mantics, have the ability to support independent alignment interpretations as well
as their contextualization.

Figure 3. Contextual and Distributed Semantics (CADS)
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2.3.4 Extended Non-Contextual And Centralized Semantics (ENCACS)

Extended Non-Contextual And Centralized Semantics considers that the set of on-
tologies with corresponding alignments are interpreted in a single domain. The
interpretation domain is the result of the union of the existing interpretation do-
mains consisting of ontologies and alignments. An interpretation is a model of the
network if it satisfies all the axioms of local ontologies and alignments. These so-
lutions are adapted for the integration of independent ontologies, independently
aligned and developed in di↵erent but compatible and not contradictory contexts.
Figure 5 shows an extension of the centralized semantics with the integration of
alignment interpretation.
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Inspired from the basic semantics, an extended semantics for the interpretation
of Network of Aligned Ontologies on several levels is proposed. The proposed se-
mantics have the ability to support independent alignment interpretations as well
as their contextualization.

2.3.4 Extended Non-Contextual and Centralized Semantics (ENCACS)

Extended Non-Contextual and Centralized Semantics considers that the set of on-
tologies with corresponding alignments are interpreted in a single domain. The
interpretation domain is the result of the union of the existing interpretation do-
mains consisting of ontologies and alignments. An interpretation is a model of the
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network if it satisfies all the axioms of local ontologies and alignments. These so-
lutions are adapted for the integration of independent ontologies, independently
aligned and developed in different but compatible and not contradictory contexts.
Figure 5 shows an extension of the centralized semantics with the integration of
alignment interpretation.
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2.3.5 Distributed and Contextual-on-Several-Levels
Semantics (DACOSLS)

This semantic is an extension of CADS semantics, where alignments are interpreted
from the target ontology point of view. In order to interpret alignments of the
source and target ontologies independently, the idea is to generate an alignment-
interpretation domain (see Figure 6). Then, local interpretations are related to
alignment-interpretations through domain relationships. The notion of independent
alignment-interpretations by a pair of ontologies which ensures the contextualization
of the alignments. A distributed interpretation is a model if:

• the local interpretations satisfy the local ontologies;

• the alignment-interpretations satisfy the constraints posed by the alignments;

• the local interpretation, the alignment-interpretations with the domain relations
satisfy the contradictions posed by the equivalence bridge rules.

3 SEMANTIC APPROACHES

Two semantic approaches are usually associated with MLNK. DL-approach is de-
fined to interpret and reason on multi-levels networked ontologies according to EN-
CACS (see [25] for more details). Where the DDL-approach is defined to inter-
pret and reason on multi-levels networked ontologies according to Distributed and
Contextual-on-Several-Levels Semantics.
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3.1 DL-Approach

This approach consists in the transformation of the multi-levels networked ontologies
into a unique description logic ontology “DL-ontology” following the steps below:

• prefix the ontologies which consist in assigning the indexes of the source ontolo-
gies to their corresponding entities;

• transformation of alignment into description logic axioms “DL-axioms”;

• generation of the global ontology, also known as a multi-level knowledge node,
obtained recursively by the union of the source ontologies with the integration
of the axioms originating from alignments;

• testing the MLNK consistency through the DLMLNKR prototype.

3.2 DDL-Approach: Syntax and Semantics

This approach consists in the transformation “SystDis” of the multi-levels networked
ontologies to a DDL system, following the steps below:

1. generation of alignment-ontology;

2. generation of equivalence bridge rules between terms of alignment-ontology and
terms belonging to corresponding source ontologies.

Let us recall the necessary definitions, so that the reader can better understand
implementation details of the DDLMLNKR prototype presented in Section 4.

Definition 8 (Indexing the ontology element). Let i be an index. We define the
function prefix on the terms, axioms and ontologies, such that prefix(X, i) = {i:X}
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when X is an atomic concept, atomic role or an individual, and if X is a formula,
prefix(X, i) is a formula where all terms are prefixed by i.

Definition 9 (Alignment-ontology signature). Let us consider a multi-level know-
ledge node K, alignment-ontology signature ΣA is defined as follows according to
the case:

• if K is an ontology then ΣA = ∅;
• if K is a multi-level knowledge node composed of sub nodes K1, . . . , Kn and Aij

which is alignment between Ki and Kj for i, j ∈ [1, n], then:

ΣA(K) =
⋃

i,j∈[1,n]
{prefix(X, i), prefix(Y, j) | i:X r←→ j:Y ∈ Aij} ∪

⋃

i,j∈[1,n]
Voc(Aij)

where X and Y are the concepts, roles or individuals and r ∈ {v,≡,⊥,∈,=}, and
Voc(Aij) means the alignment vocabulary, the links of Aij.

Alignment-ontology formulas are the set of generated formulas from correspon-
dences. Firstly, the function associating each correspondence to an axiom is defined.

Definition 10 (Correspondence transformation into axioms). Let us consider
an alignment Aij between a node i and a node j, for i, j ∈ [1, n]. We define trans

a function which assigns to each correspondence of Aij a DL axiom: trans({i:A v←→
j:B}) = {prefix(A, i) v prefix(B, j)}; trans({i:A ≡←→ j:B}) = {prefix(A, i) ≡
prefix(B, j)}; trans({i:A ⊥←→ j:B}) = {prefix(A, i) v ¬prefix(B, j)}; trans({i:u ∈←→
j:A}) = {prefix(A, j)(i:u)}; trans({i:u =←→ j:u′}) = {i:u = j:u′}; trans({i:u l←→
j:u′}) = {role(l)(i:u, j:u′)}; trans({i:A l←→ j:B}) = {prefix(A, i) v ∃role(l).
prefix(B, j)}, where A, B, u and u′ are the matchable entities and l is a link.

Definition 11 (Alignment-ontology formulas). Let us consider a multi-level know-
ledge node K, the set of alignment-ontology formulas FA is defined, according to
the cases as follows:

• if K is an ontology then FA = ∅;
• if K is a multi-level knowledge node composed of sub nodes K1, . . . , Kn and

alignments Aij between Ki and Kj for i, j ∈ [1, n] and trans is the function that
associates to any correspondence of Aij a DL-axiom (see Definition 10) then
alignment-ontology-formula set FA(K) = {f | f ∈ trans(Aij)}.

Definition 12 (Alignment-ontology). Let us consider a node K = 〈{Ki}, {Aij}〉
for i, j ∈ [1, n], Ki are local nodes and Aij is an alignment between Ki and Kj. We
define OntoAlign the alignment-ontology generated from Aij of K, OntoAlign(K) =
〈ΣA(K), FA(K)〉.

The bridge rules of multi-level knowledge node represent the equivalence corre-
spondences established between the terms of alignment-ontology and terms belong-
ing to the corresponding local ontologies.
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Definition 13 (Bridge rules toward alignment-ontology). Let us consider a know-
ledge node K. The case dependant bridge rules oriented towards the alignment-
ontology (noted B(K)) are defined as follows:

• if K is an ontology then B(K) = ∅;
• if K is a multi-level knowledge node composed of sub nodes K1, . . . , Kn and Aij

which is alignment between Ki and Kj for i, j ∈ [1, n] then B(K) contains a
bridge rules defined as follows, for i ∈ [1, n]:

– if Ki is an ontology and X is a concept or a role of Ki then
i:X

≡→ OntoAlign(K):i:X ∈ B(K);

– if Ki is an ontology and a is an individual of Ki then i:a
=→ OntoAlign(K):i:a

∈ B(K);

– if Ki is a composed node and X a concept or role of OntoAlign(Ki) then

OntoAlign(Ki):X
≡→ OntoAlign(K):ki:X ∈ B(K);

– if Ki is a composed node and a an individual of OntoAlign(Ki) then
OntoAlign(Ki):a

=→ OntoAlign(K):ki:a ∈ B(K).

The MLNK interpreted as a DDL system is composed of several local nodes
connected to their alignment-ontology through a family on bridge rules.

Definition 14 (MLNK in DDL form). Let us consider a knowledge node K.
SystDis is a DDL system of K, SystDis(K) = 〈Onto(K),Bridge(K)〉 with Onto(K)
a family of local ontologies which is recursively defined as follows:

• Onto(K) = {K}, if K is a DL-ontology;

• Onto(K) = Onto(K1)∪Onto(K2)∪· · ·∪Onto(Kn)∪OntoAlign(K) if K is a node
with Ki local nodes.

Bridge(K) is a family of bridge rules of K recursively defined as follows:

• Bridge(K) = ∅ if K is an ontology;

• Bridge(K) = Bridge(K1) ∪ · · · ∪ Bridge(Kn) ∪B(K).

We will illustrate this transformation with examples:

Example 2. Let us consider a networked ontologies K = 〈{O1, O2}, {A12}〉, with

A12 = {1:A
v←→ 2:B, 1:a

L←→ 2:b} where A,B are concepts or roles, a, b are individ-
uals and L is a link. We can say that an interpretation I satisfies K if I satisfies O1

and O2 and it also satisfies A12. To interpret K according to the DDL-approach, we
transform it into a distributed system SystDis(K) = 〈{O1, O2, O3}, {b1, b2, b3, b4}〉
with O1, O2 being the source ontologies, O3 is an alignment-ontology generated
from the alignments and b1, b2, b3, b4 are equivalence bridge rules.

• b1 = 1:A
≡→ 3:1:A;

• b2 = 1:a
≡→ 3:1:a;
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• b3 = 2:B
≡→ 3:2:B;

• b4 = 2:b
≡→ 3:2:b;

b1, b2, b3, b4 are interpreted by the domain relations that bind the corresponding local
interpretations according to the DDL semantics:

• I1, I3 |= b1 if r13(A
I1) = 1 : AI3 ;

• I1, I3 |= b2 if r13(a
I1) = 1 : aI3 ;

• I2, I3 |= b3 if r23(B
I2) = 1 : BI3 ;

• I2, I3 |= b4 if r23(b
I2) = 1 : bI3 .

The interpretation K satisfies the correspondences of K if:

• I |= 1:A
v←→ 2:B if I1, I3 |= b1 and (1 : A)I3 ⊆ (2 : B)I3 and I2, I3 |= b3;

• I |= 1:a
L←→ 2:b if I1, I3 |= b2 and L(1 : aI3 , 2 : bI3) ∈ LI3 and I2, I3 |= b4.

K distributed interpretation, I = {I1, I2, I3, r13, r23} where I1, I2 are the local
interpretations of O1, O2, I3 is the interpretation of generated alignment-ontology
and r13, r23 are domain relations for interpreting generated rule bridges.

I satisfies the ontologies network K in the DDL-approach if I satisfies SystDis(K) =
〈{O1, O2, O3}, {b1, b2, b3, b4}〉 in the basic semantics DDL.

Example 3. Ontologies and alignments of Example 1 are used to build a DDL
system. Table 2 details the contents of those nodes.

4 DDLMLNKR PROTOTYPE

The DDLMLNKR prototype exploits the distributed reasoner DRAGO [30], that
can handle OWL ontologies and RDF/XML files containing mappings and links as
inputs.

4.1 DDLMLNKR Prototype Architecture

The main components of this tool are illustrated in Figure 7 which describes the
general architecture of the DDL-approach implementation.

Each component is then described as follows:

• Alignments loading: It allows loading alignments saved in RDF files, resulting
from alignment discovery tools available on the World Wide Web. Alignment
may be enriched in a semi-automatic manner using links.

• Parser: It allows parsing RDF/XML files containing alignments, it also allows
recognizing mappings which are converted into axioms and links converted into
specific roles.
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Node Distributed System

level 0
K1 = pr B(K1) = ∅, Onto(K1) = {K1}, Bridge(K1) = ∅,

SystDis(K1) = {{K1}, ∅}
K2 = eq B(K2) = ∅, Onto(K2) = {K2},Bridge(K2) = ∅,

SystDis(K2) = {{K2}, ∅}
K3 = zn B(K3) = ∅, Onto(K3) = {K3},Bridge(K3) = ∅,

SystDis(K3) = {{K3}, ∅}
level 1
K4 = {K1,K2, AK1-K2} OntoAlign(K4) = oa4 = 〈Σ4, F4〉,

where Σ4 = {k1:G1, k2:DF1, compose}
and F4 = {compose(k1:G1, k2:DF1)}
B(K4) = {k1:G1 =→ oa4:k1:G1,

k2:DF1
=→ oa4:k2:DF1};

Onto(K4) = {K1,K2, oa4}
Bridge(K4) = B(K4);
SystDis(K4) = 〈Onto(K4),Bridge(K4)〉

K5 = {K2,K3, AK2-K3} OntoAlign(K5) = oa5 = 〈Σ5, F5〉,
where Σ5 = {k2:DF1, k3:ANNA1TG01, part-of}
and F5 = {part-of(k2:DF1, k3:ANNA1TG01)}
B(K5) = {k2:DF1 =→ oa5:k2:DF1,

k3:ANNA1TG01
=→ oa5:k3:ANNA1TG01};

Onto(K5) = {K2,K3, oa5}
Bridge(K5) = B(K5)
SystDis(K5) = 〈Onto(K5),Bridge(K5)〉

level 2
K6 = {K4,K5, AK4-K5} OntoAlign(K6) = oa6 = 〈Σ6, F6〉

where Σ6 = {oa4:compose, oa5:part-of}
and F6 = {oa4:compose ≡ oa5:part-of}
B(K6) = {oa4:compose

=→ oa6:compose,

oa5:part-of
=→ oa6:part-of

Onto(K6) = Onto(K4) ∪ Onto(K5) ∪ {oa6}
= {K1,K2,K3, oa4, oa5, oa6}

Bridge(K6) = Bridge(K4) ∪ Bridge(K5) ∪B(K6)
= B(K4) ∪B(K5) ∪B(K6)

SystDis(K6) = 〈Onto(K6),Bridge(K6)〉

Table 2. Example of an MLNK in DDL form. We rename OntoAlign(Ki) in oai for i ∈
[4, 6].
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101 104103
BROa11 BROa12 BROa21

Oa1
BROa31 BROa32

Oa2

Oa3

BROa22

Figure 8. MLNK transformation into a distributed system

• Alignment-ontology generating: In this module, the construction of an on-
tology in DL whose entities appear to the left and right of the alignment-
correspondences is performed. This module also integrates the axioms produced
from the transformation of mappings and roles from links.

• Bridges rules generating: This component is used to generate the bridge rules
between the entities belonging to the local ontologies and the corresponding en-
tities belonging to the alignment-ontologies. They are then stored as C-OWL [9]
files. C-OWL (Contextualized OWL) is an extension of OWL language designed
to express mappings in DDL [8] formalism.

• Executing module of distributed reasoner DRAGO: URLs of the target
ontology (alignment-ontology) and bridges rules are introduced and the source
ontologies are determined by DRAGO. Subsequently, it will then be possible to
determine the consistency of the networked ontologies.
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Algorithm 1 Transformation of MLNK into a distributed system

load({Aij}) // i, j ∈ [1, . . . , n]
for all Aij ∈ {Aij} do

create( Oak, BROak1, BROak2) // k ∈ [1, . . . , n]
for all correspondence c ∈ Aij do

read i:entity1, j:entity2
Oak.add(Oak:i:entity1)
Oak.add(Oak:j:entity2)
if c = map then

transform c into axiom
Oak.add(Oak:axiom)

else
transform c into Object-property // (c = link)
Oak.add(Oak:ObjectProperty)

end if
create equiv-map between i:entity1 and Oak:i:entity1
BROak1.add(equiv-map)
create equiv-map between j:entity2 and Oak:j:entity2
BROak2.add(equiv-map)

end for
end for

4.2 Implementation and Experimentation of DDLMLNKR Prototype

Experimentation tests were performed on Benchmark ontologies1. Table 3 de-
scribes the size of the used ontologies and alignments constituting the MLNK.
Inter-Ontology alignments A101−103, A101−104 were enriched by new links as they
did not contain any vocabulary. Then an Alignment, A101−103−101−104 is created be-
tween inter-ontology alignments A101−103, A101−104, enriched by mappings between
the links existing in the alignments A101−103, A101−104. Having the “Alignment API”
format [13] extended earlier, in order to store links. A part of A101−103−101−104 align-
ments is shown in Listing 1. A mapping representing an equivalence relation is
inserted between the links “evaluate” and “reviewed”.

Considering we have a MLNK, with existing alignments at several levels, K =
〈{101, 103, 104}, {A101−103, A101−104, A101−103−101−104}〉. The transformation of the
network to a distributed system SystDis(K) consists in generating (see Algorithm 1):

• Ontologies Oa1, Oa2, Oa3 for the respective alignments A101−103, A101−104,
A101−103−101−104.

• Equivalence Bridge Rules between generated ontology alignments and source
ontologies: BROa11, BROa12, BROa21, BROa22, BROa31, BROa32.

1 http://oaei.ontologymatching.org/2014/

http://oaei.ontologymatching.org/2014/
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SystDis(K) = 〈{101, 103, 104, Oa1, Oa2, Oa3, BROa11, BROa12, BROa21, BROa22,
BROa31, BROa32}〉 is the distributed obtained system. The transformation is de-
picted in Figure 8). The steps implemented during the transformation of the net-
work, K, following the DDLMLNKR prototype are:

1. Load alignments A101−103, A101−104, A101−103−101−104.

2. The prototype parses the alignments, identifies correspondences of mapping
types and transforms them into axioms. The correspondences of link types
are transformed into roles.

3. The prototype generates alignment-ontologies Oa1, Oa2, Oa3, having as a signa-
ture, entities being on the left and right of correspondences and roles resulting
from links transformation. Oa1, Oa2, Oa3 contains also axioms resulting from
correspondences transformation.

4. The prototype generates bridge rules BROa11, BROa12, BROa21, BROa22,
BROa31, BROa32. This step consists of creating the correspondences of map-
ping type between entities in alignment-ontologies and their images in source
ontologies.

5. The execution of the DRAGO reasoner for consistency test is handled as follow:

(a) Construction of the first Peer1 inserting the target ontology Oa1 and Bridge
rules BROa11, BROa12. For each bridge rule, the source ontology is identified
and automatically inserted. As an example, for BROa11 ontology 101 is
inserted, as for BROa12 it is ontology 103.

(b) The second Peer2 is constructed by inserting the target ontology Oa2 and
bridge rules BROa21, BROa22. Source ontologies 101 and 104 are identified
and inserted automatically.

(c) The third Peer3 is constructed by inserting the target ontology Oa3 and
bridge rules BROa31, BROa32, Source ontologies Oa1 and Oa2 are identified
and inserted automatically.

(d) Run the consistency test for each Peer.

A Peer is a concept of the DRAGO reasoner [30] consisting in regrouping for each
target ontology, its own mappings as well as associated ontologies.

The distributed system, SystDis(K), is consistent if and only if: the Peer1, Peer2
and Peer3 are consistent. Results with respect to the transformation time and
consistency time for the Network K, are presented in Section 5.4 for comparative
analysis with DLMLNKR results presented in the paper [25].

5 DL-APPROACH AND DDL-APPROACH COMPARISON

In this section, DL and DDL-approaches are compared, with respect to specific
criteria in order to determine for which cases one is more suitable than the other.

The two approaches are then studied with respect to both evaluation criteria
and comparative summary tables are presented in Tables 4 and 5.
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Ontologies/Alignments Size

101 71.5 kB

103 80.4 kB

104 46.1 kB

A101−103 44.4 kB

A101−104 49.3 kB

A101−103−101−104 4.45 kB

Table 3. Ontologies/alignments size

<Alignment>
<al ignment IRI = ” http : / / . . . / al ignment−101−103−101−104. rd f ”/>
<xml>yes</xml>
< l e v e l >0</ l e v e l >
<type>11</type>
<onto1>http : / / . . . / al ignment −101−103. rdf</onto1>
<onto2>http : / / . . . / al ignment −101−104. rdf</onto2>
<map>
<Cel l>
<e n t i t y 1 rd f : r e s ou r c e=

’ http : / / . . . / al ignment−101−103#evaluate ’/>
<e n t i t y 2 rd f : r e s ou r c e=

’ http : / / . . . / al ignment−101−104#reviewed ’/>
<measure rd f : datatype =’ http : / / . . . # f l o a t ’>1.0</measure>

<r e l a t i o n >=</r e l a t i o n >
</Cel l>
</map>

Listing 1. A part of alignment (A101−103−101−104)

5.1 Consistency Comparison

For consistency, the goal is to try to prove that an inconsistent multi-level networked
knowledge expressed in the DL-approach, could be consistent in the DDL-approach.

Theorem 1. If a Multi-Level Networked knowledge is inconsistent when expressed
in DL-approach, it can be consistent when expressed in DDL-approach.

This theorem can be proved by showing that the multi-level networked knowledge,
in the example is inconsistent according to DL-approach semantics (ENCACS) and
is consistent according to DDL-approach semantics (DACOSLS).

Example 4. Let us consider the ontologies O1 = {A1 v ¬B1, A1(a)}, O2 = {A2 v
B2} and the alignment A12 = {1:A1

≡←→ 2:A2, 1:B1
≡←→ 2:B2}.

Lemma 1. DL-approach consistency: Constitute a global ontology whose elements
are prefixed from source ontologies and the mappings, links are transformed into
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axioms OG = {1:A1 v ¬1:B1, 1:A1(1:a), 2:A2 v 2:B2, 1:A1 ≡ 2:A2, 1:B1 ≡ 2:B2}.

1:A1 v ¬1:B1 (1)

1:A1(1:a) (2)

2:A2 v 2:B2 (3)

1:A1 ≡ 2:A2 (4)

1:B1 ≡ 2:B2 (5)

1, 4, 5⇒ 2:A2 v ¬2:B2 (6)

2, 4⇒ 2:A2(1:a) (7)

6, 7⇒ ¬2:B2(1:a) (8)

7, 3⇒ 2:B2(1:a) (9)

Contradiction according to (8) and (9) and this implies that OG is DL-approach
inconsistent.

Lemma 2. DDL-approach consistency: Let us take the same Example 4, construct
a distributed system S according to the DDL-approach, with an alignment-ontology
constructed from the correspondences, noted O12, generating then the corresponding
bridges rules B.

We obtain an ontology O12 = {1:A1 ≡ 2:A2, 1:B1 ≡ 2:B2} and the bridges rules

B = {b1, b2, b3, b4} where: b1 = {1:A1
≡→ 12:(1:A1)}; b2 = {1:B1

≡→ 12:(1:B1)};
b3 = {2:A2

≡→ 12:(2:A2)}; b4 = {2:B2
≡→ 12:(2:B2)}.

To show that S = {O1, O2, O12,B} is consistent, then we must find a model that
satisfies all axioms and bridges rules of S.

Supposing that a model of S exists then there is a distributed interpretation
I = {I1, I2, I3, r12, r13, r23, r21, r31, r32} such that I |= S.

This implies that:I1 |= O1; I2 |= O2; I3 |= O12; I1, I3, r13 |= b1; I1, I3, r13 |= b2;
I2, I3, r23 |= b3; I2, I3, r23 |= b4.

This is equivalent to showing that there exists an interpretation I = {I1, I2, I3,
r13, r23} such that: AI1

1 ⊆ ¬BI1
1 ⊆ ∆1; a

I1 ∈ AI1 ; AI2
2 ⊆ BI2

2 ⊆ ∆2; r13(A
I1
1 ) =

(1:A1)
I3 ; r13(B

I1
1 ) = (1:B1)

I3 ; r23(A
I2
2 ) = (2:A2)

I3 ; r23(B
I2
2 ) = (2:B2)

I3 .

Consider the following domain of interpretation: ∆1 = {1}, ∆2 = {2}, ∆3 = {3},
and interpretation functions defined as follows: AI1

1 = {1}; aI1 = 1; BI1
1 = ∅;

AI2
2 = ∅; BI2

2 = ∅; (1:A1)
I3 = ∅; (1:B1)

I1 = ∅; (2:A2)
I3 = ∅; (2:BI3

2 ) = ∅; r13(AI1
1 ) = ∅;

r13(B
I1
1 ) = ∅; r23(AI2

2 ) = ∅; r23(BI2
2 ) = ∅.

So for I = 〈({1}, I1), ({2}, I2), ({3}, I3), ∅, ∅, ∅, ∅, ∅, ∅〉, we have I |= S, then S is
consistent.
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It can then be concluded that the way the alignments are treated, when expressed
in DL, is fixed and thus allows a reconciliation of local ontologies and alignments.
This approach can be used in the case of modular ontologies, alignments, where
each module is part of a global perspective in a broader domain. However, It has
limits when it comes to the Word Wide Web, where ontologies, alignments can have
contradictory points of view. On the other hand, when expressed in DDL, ontologies
with different viewpoints may collaborate, even if they are considered incompatible.

5.2 Transformation Complexity

• The complexity of transforming the multi-level networked knowledge into a DL-
ontology is linear in terms of ontologies and corresponding alignments
(comptDL). It can be calculated using the number of prefix (ontology and links
terms), noted (nbprefix) and the generated axiom number noted (nbaxiom).
Let the variables ni, l, m and p, be respectively the number of local terms be-
longing to the local ontology Oi, the number of links, the number of levels and
the number of correspondences;

nbprefix = (m− 1) ∗ l +m ∗
∑

ni, (10)

nbaxiom = p, (11)

comptDL = nbprefix + p. (12)

• The transformation complexity in a DDL distributed system (comptDDL) is
calculated according to the number of operations performed to create axioms
in the alignment ontology (Axioms are obtained from the transformation of
correspondences), and the number of bridge rules creation operations (nbbr).
Let us recall that for a correspondence there are two terms (the terms on the
right and the terms on the left of the correspondence) and for each term, a bridge
rule is created;

nbaxioma = p, (13)

nbbr = 2p, (14)

comptDDL = nbaxioma + nbbr. (15)

The transformation complexity in the case of updating local ontologies expressed in
DL is proportional to the number of updates, bearing in mind that updating local
ontologies leads to the reconstruction of a global ontology. For the DDL-approach,
the update of the local ontologies does not affect the transformation. Thus, it can be
concluded that DDL-approach is more appropriate in the case where the evolution
of local ontologies is more important than that of the correspondences.
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5.3 Reasoning Complexity

Reasoning complexity of MLNK semantic-approaches is based on the reasoning com-
plexities of the basic semantics of DL and DDL. Multi-Level Networked Knowledge
in DL-approach is transformed into DL-ontology constructed from a fusion of local
ontologies whose terms have been prefixed and alignments transformed into axioms.
The local ontologies can be formalized in different logics, with the expressivity of
the axiom’ origin alignment being very simple and possibly formalized in the de-
cidable EL language whose complexity is NPcomplete. Thus, the decidability and
the complexity of the MLNK interpreted in DL can be given by studying the decid-
ability and the complexity fusion of the local description logics and the integrated
axioms logics. In that context, a recent work addressing the reasoning complexity in
multi-viewpoint ontologies, via import from other ontologies may be of interest [23].

This aspect has not been dealt with in this paper, however, the reader is redi-
rected to [6] for a more comprehensive description. First, this work shows that
the fusion of two description logic is a fragment of the union of the latter because
reasoning on the union of the two logics requires the implementation of a new rea-
soning method. However, reasoning on the merger can be reduced to reasoning on
logical components. Moreover, reasoning on the union of two decidable logics can be
undecidable, whereas reasoning on the fusion of the same logic remains decidable.

For example, the union of logics ALCF (which is an extension of ALC by the
addition of functional roles) and ALC+,◦,∪ (which is an extension of ALC by the
addition of transitivity, composition and union of roles), is undecidable. While their
fusion is decidable. According to the same paper, the complexity of the description
logics merge, whose complexity is Pspace is also Pspace [6]. This is not valid
for the union of these logics. For example, the complexity of the union of logics
ALCFOQ (which is an extension of ALC by adding functional role, nominal and
number restriction) and the ALCI logic (which is an extension of ALC by the
addition of inverse role) is NExpTime whereas the complexity of the component
logic is PSpace [6]. This is different for the DDL-approach, where the logics are
not merged but connected by relationships, Ghidini and al. in [18] present a study
showing that the inference on mappings is decidable and the complexity ranges
between ExpTime and 2ExpTime. It can then be concluded, that the complexity
of the MLNK interpreted in DDL can be equal to the highest complexity among
local ontologies and mappings inferences.

5.4 Comparison of MLNK Prototypes

The results given by the MLNK transformation test performed by the two proto-
types DLMLNKR and DDLMLNKR on the initial ontologies (Case 1) show that
the transformation time in a distributed system is slightly improved over the one
obtained constructing a global DL ontology, see Table 4 and Figure 9 (Case 1).

Case 2 evaluates the impact of the source ontology evolution on transformation
time. Ontologies have been enriched by new entities, independent from alignments.
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This permits to enlarge the source ontology sizes, keeping the alignment size un-
changed. Then results presented in Table 4 and Figure 9 (Case 2) show that the
transformation time of the MLNK using the DDLMLNKR prototype remains un-
changed. This concludes that the DDL-approach is transparent with respect to
ontology evolution.

In Case 3, the impact of alignment evolution is tested, with the insertion of
mappings and links performed between existing entities. The goal is to increase
alignments size while keeping ontology size unchanged. The results show that trans-
formation results using both prototypes are affected. This concludes that MLNK
transformation time evolves with respect to the evolution of alignments size. Table 4
and Figure 9 (case 3) show that reasoning upon distributed semantic is context de-
pending, and more computationally expensive than reasoning based on a non contex-
tual one. However, according to Section 5.1, it has been proven that the consistency
test for contextual semantics is more efficient than that of not-contextual semantics.
Let us suppose that for a given case, the consistency test following a DL-approach
is inconsistent and that entities causing the inconsistency belong to different ontolo-
gies, however, not concerned by alignments. In that case, the network is consistent
following the DDL-approach.

Based on the consistency test for all three studied cases, it is clear that the
evolution of ontology and alignment sizes does not affect consistency at all. In other
words, evolution does not affect complexity (Table 4 and Figure 10).

Ontologies/ Size (kB) DLMLNKR DDLMLNKR
Alignments Time (ms) Time (ms)

Case 1 101 71.5
103 80.4
104 46.1 Transformation = 1 140 Transformation = 1 087
A101−103 44.4 Consistency = 460 Consistency = 8 200
A101−104 49.3
A101−103−101−104 4.45

Case 2 101 104.2
103 110.3
104 78.8 Transformation = 1 161 Transformation = 1 087
A101−103 44.4 Consistency = 464 Consistency = 8 222
A101−104 49.3
A101−103−101−104 4.45

Case 3 101 71.5
103 80.4
104 46.1 Transformation = 1 232 Transformation = 1 189
A101−103 78.2 Consistency = 477 Consistency = 8 302
A101−104 84.5
A101−103−101−104 9.01

Table 4. Comparison of MLNK prototypes results
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Figure 9. MLNK transformation test results

Figure 10. MLNK consistency test results

6 STATE OF ART SYNTHESIS AND DISCUSSION

In their previous works, the authors have surveyed research in relation to the topic
of MLNK formalisms [25, 24], and do not wish to develop them further again in
the present work, stating only the most recent ones. Previous research have been
classified into two main research categories: “aligned knowledge networks” and “con-
textual knowledge modelling”. In the first category “aligned knowledge networks”,
research focuses on representation and reasoning on heterogeneous ontologies built
independently however still aligned. This is the case in Distributed Description
Logic [8], Integrated Distributed Description Logics [33], Package-based Description
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Logics [7], E-connection [27] and E − SHIQ [32], as well as the proposed formal-
ism. Works classified in the second category “contextual knowledge modelling”
model the contexts, linking those via a meta description. Each context posseses
then its own instances and uses aggregation relations in order to link instances. As
examples, [26, 22, 21], and recently [4] as well as [19], fall into this category, with
the latter reference proposing reasoning on a hierarchical structure of the contexts.

The difference between the categories vision “contextual knowledge modelling”
and “aligned knowledge networks” is similar to the difference between the Global-As-
View (GAV) and Local-As-View (LAV) approaches used in integration data systems
formalized and expressed in terms of requests [10, 15].

The modelling principle of works in “contextual knowledge modelling” category
is the same as that of GAV where a top-down design approach is applied, proceed-
ing from global to local. On the other hand, for the works in “aligned knowledge
networks” category and LAV approaches, the upward design method is applied from
local to global.

Other works consider that every local source in a network is treated as an inde-
pendent module, permitting reasoning on the latter [20, 29].

In this paper, stress is put on formalisms that represent and reason on inde-
pendent and aligned ontologies. Differences between presented formalisms will be
discussed, with a special attention given to the contribution of the proposed formal-
ism. A summary of the above is depicted in Table 6.

6.1 Multi-Level Networked Knowledge Representation

Multi-level networked knowledge is composed of a set of aligned nodes, these in turn
are composed of the aligned sub-nodes and so on, where the most elementary nodes
are ontologies. The alignment of the nodes composed of sub-nodes and alignments
between them makes it possible to align the alignments and thanks to this structure
the alignments can be formalized. No formalism cited below tolerates a dynamic
representation of local and aligned knowledge. In addition, the syntactic formaliza-
tion of local knowledge (ontology and nodes) in the proposed formalism is described
in an abstract and independent way from any language and, consequently, can be
adapted to any logic. DDL [8], P-DL [7], E-SHIQ and IDDL [33] are developed for
a network of description logic ontologies. The ontologies in DFOL [17] formalism
can be expressed in first-order logic. In E-connection [27], the local ontologies of the
same network can be represented in various logics along with an abstract description
system.

6.2 Alignment Contextual Representation

In multi-level networked knowledge, alignments are expressed using an alignment
language independently from ontology languages. These have their own vocabular-
ies, consisting of mappings and/or links and expressed according to the point of
view of the pair of ontologies combination. In other words, according to the global
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point of view in relation to a pair of ontologies. Unlike DDL and IDDL that only
define and interpret mappings, E-connection [27] and E − SHIQ [32] express links
but do not take into account the conflict of alignment heterogeneity. This is mainly
because they are oriented and interpreted according to the target ontology corre-
spondence point of view. The definition of the correspondences for a global point
of view has already been presented in the IDDL formalism, but given the absence
of links (therefore of alignment vocabulary), it does not require alignment of higher
levels.

6.3 The Semantics Associated with Multi-Level Networked
Knowledge Formalism

For interpretation, an instantiation of the generic formalism is carried out. We are
interested in the case where ontologies are expressed in description logics (DL).

• The DL-approach that adopts ENCACS, the basic Non-Contextual and Central-
ized Semantics is applied by SomeWhere [1] and SomeRDFS [3], SomeOWL [2]
and OWL’s import semantics;

• The DDL-approach adopts Distributed and Contextual-on-several-levels Seman-
tics, the basic distributed and contextual semantics is applied using DDL, PDL,
E-connection and E − SHIQ. In our case, the alignments are not interpreted
according to the target ontology correspondence viewpoint, but they are inter-
preted in an external level. Independently of local ontologies, this external level
is represented by an interpretation domain associated to generated alignment-
ontology.

6.4 Reasoning

Several reasoning prototypes may be associated with MLNK. DLMLNKR proto-
type [25] allows reasoning on the proposed formalism adopting the DL-approach.
The SomeWhere and SomeRDF algorithms can also be exploited (but only when
links are ignored) to ensure a distributed and not-contextual reasoning. The DDL-
approach implementation (DDLMLNKR prototype, Section 4.2) is ensured using the
DRAGO reasoner and allows a distributed and contextual reasoning on the MLNK.

7 CONCLUSIONS

This work is the extension of previous works [25, 24], and proposes an extended
semantics that can be associated with MLNK. The main advantage of those seman-
tics is their ability to handle separately alignment interpretations. The DACOSLS
is not only suitable for contextual ontology reasoning, but also for contextual align-
ment reasoning. In order to prove the feasibility and efficiency of the DDL-approach
which adopts DACOSLS, a prototype based on the DRAGO reasoner and termed
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Formalism: DDL
Motivation: resolution of semantic heterogeneity between ontologies
Local sources: DL ontologies
Alignments: mappings, view point of the target ontology
Semantics: CADS variant 1
Reasoning: distributed in peer-to-peer system
Drago distributed reasoner [30]

Formalism: E-connection
Motivation: ontologies combination
Local sources: Logic ontologies with Abstract Description System
Alignments: links, view point of the target ontology
Semantics: CADS variant 2
Reasoning: distributed
Extended Pellet reasoner [31]

Formalism: P-DL
Motivation: ontologies import
Local sources: DL ontologies
Alignments: foreign term, view point of the target ontology

(e.g., Oi
t→ Oj) ontology Oj imports term t defined in ontology Oi

Semantics: CADS variant 1
Reasoning: distributed
P-DL distributed reasoner: https://sourceforge.net/projects/p-dl-reasoner/

Formalism: IDDL
Motivation: resolution of semantic heterogeneity between ontologies, mediation of alignments
Local sources: DL ontologies
Alignments: mappings, global view point
Semantics: CAIS
Reasoning: distributed
Draon distributed reasoner [12]

Formalism: E − SHIQ
Motivation: resolution of semantic heterogeneity between ontologies, ontologies combination
Local sources: DL ontologies
Alignments: mappings, links, view point of the target ontology
Semantics: CADS combination of variant 1 and variant 2
Reasoning: distributed
E − SHIQ distributed reasoner [32]

Formalism: MLNK
Motivation: resolution of semantic heterogeneity between ontologies and alignments, ontologies combi-
nation
Local sources: nodes hierarchically composed of aligned sub-nodes, independent of any language
Alignments: mappings, links, ontologies-pair view point
Semantics: DL-approach: ENCACS

DDL-approach: DACOSLS
Reasoning: centralized for DL-approach

distributed for DDL-approach
Reasoner: DLMLNKR [25], DDLMLNKR

Table 6. Summary table of state of the art

https://sourceforge.net/projects/p-dl-reasoner/


146 S. Klai, A. Zimmermann, M.T. Khadir

DDLMLNKR was designed and implemented. Results on consistency tests and
transformation time are assessed and commented, as well as compared to the ones
obtained using the DL-approach. Based on the viewpoint notion, it can be con-
cluded that DL-approach may be used in cases where interpretation domains of
the network local sources are defined in different but compatible contexts. Each
domain consists then in a portion of completing others in the larger domain. DDL-
approach is therefore recommended in the case where local sources interpretation
domains (Ontologies and Alignments) of the network are defined in different incom-
patible contexts, thus permitting contextualization of ontologies and alignments.
Other comparison criteria may be useful to help users choose the most appropriate
approach for their applications.

However, the introduction of such structures poses new practical and theoretical
issues, which we would like to explore later, may be given by:

1. One can wonder about the problem of automatic correspondences discovery
between alignments: are the tools and techniques used for ontology alignment
construction adapted to all levels of a knowledge network? Can alignments be
used at a certain level for the discovery of higher level alignments?

2. The need for a concise representation of such networks in a possible standardized
format.

3. Knowledge management or visualization tools need to be built to organize and
observe multi-level networks in order to maintain them throughout their life
cycle. In addition, the hierarchical construction of multi-level networks requires
re-evaluating knowledge modelling methodologies by detailing the steps to be
followed for their development.

4. Concerning the semantic part, the use of existing paradigms was privileged.
However, it would be interesting to reflect on another way of interpreting the
MLNK semantics by defining a formal semantics constructed directly on this
structure and then propose a correct and complete reasoning algorithm.

5. Finally, it would be important and useful to develop a system able of interro-
gating this type of network. A formalization of the federated request system is
under development and will be presented later.
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İrem Ülkü
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Çankaya University
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Abstract. In this paper, a lossy compression of hyperspectral images is realized by
using a novel online dictionary learning method in which three dimensional datasets
can be compressed. This online dictionary learning method and blind compressive
sensing (BCS) algorithm are combined in a hybrid lossy compression framework
for the first time in the literature. According to the experimental results, BCS
algorithm has the best compression performance when the compression bit rate is
higher than or equal to 0.5 bps. Apart from observing rate-distortion performance,
anomaly detection performance is also tested on the reconstructed images to mea-
sure the information preservation performance.
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1 INTRODUCTION

Hyperspectral images are composed of hundreds of contiguous narrow (generally
0.010µm) spectral bands from the visible region (0.4–0.7µm) to the near-infrared
region (about 2.4µm) of the electromagnetic spectrum. Hyperspectral images have
a huge image size. Therefore, to cope with storage or transmission issues, and to
match the available transmission bandwidth in the downlink operation, the hyper-
spectral image compression is compulsory. Compression can be realized as lossless
or lossy. Lossy compression algorithms can reach high compression ratios while ex-
periencing information loss. Quality metrics should capture the degradation which
occurs in the image.

Classification of lossy and lossless compression methods is canonically fourfold:
prediction-based [24, 31], transformation-based [9, 28], vector quantization (VQ)-
based [32], and sparse representation-based [18]. One of the transformation-based
algorithms is the principal component analysis (PCA). The PCA algorithm real-
izes the decorrelation of spectral bands. The improved version of this algorithm is
compressive-projection principal component analysis (CPPCA) algorithm [11].

Sparse representation-based methods appear to distinguish among others with
its scheme. Rather than using a pre-defined dictionary, such methods learn it directly
from the observed data. Data-dependent dictionaries are gathered using dictionary
learning [6, 27, 41, 48]. Two different learning schemes can be considered, a batch
method which uses the whole training set in the learning process at each iteration and
an online learning method which processes one sample from the entire training set at
each iteration in an alternating fashion. By using the singular value decomposition
(SVD), K-SVD algorithm is developed which can be given as a typical example of
batch methods [7]. In the work [21], online dictionary learning algorithm is proposed.

Using dictionary learning in the lossy hyperspectral image compression algo-
rithms is quite common [18, 38, 40]. In the literature [36, 37], it is shown that online
dictionary learning algorithm is more effective in processing large datasets with
sequentially arriving samples such as hyperspectral images. This sparse representa-
tion process finds the sparsest solution, which means solving the non-deterministic
polynomial-time hard (NP-hard) `0-norm minimization problem [10].

Sparse representation algorithms are analyzed in three categories [44, 48]. These
are greedy pursuit algorithms, `p-norm regularization based algorithms, and Ba-
yesian inference algorithms [33, 45]. The most popular greedy pursuit algorithms are
the matching pursuit (MP) algorithm [22], the orthogonal matching pursuit (OMP)
algorithm [35], the generalized OMP (gOMP) algorithm [39] and the compressive
sampling matching pursuit (CoSaMP) algorithm [25].

We may think of `p-norm regularization algorithms as of two kinds depending on
the value of p, namely, for p ≥ 1 and 0 < p < 1. In p ≥ 1 category, only the `1-norm
minimization is sufficiently sparse [48]. The `1-norm minimization algorithms are
divided into three such as constraint based, proximity based, and homotopy based
optimization algorithms. The constraint based optimization algorithms category
includes the truncated Newton based interior-point method (TNIPM) algorithm [20],
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the alternating direction method of the multipliers (ADMM) algorithm [5] and the
active-set algorithm with either a primal or dual type [12]. The ADMM algorithm is
used to solve the least absolute shrinkage and selection operator (LASSO) problem.
The dual active-set algorithm is used to solve the basis pursuit (BP) problem.

The proximity based optimization algorithms category covers the sparse recon-
struction by separable approximation (SpaRSA) algorithm [42], the general iterative
shrinkage and thresholding (GIST) algorithm [15], the Shotgun algorithm [13] and
the augmented Lagrangian method (ALM) algorithm which consists of the primal
ALM (PALM) and dual ALM (DALM) [43].

Basic homotopy based algorithms are the LASSO homotopy algorithm [8] and
the basis pursuit denoising (BPDN) homotopy algorithm [3].

The generalized iterated shrinkage algorithm (GISA) and the focal underdeter-
mined system solver (FOCUSS) algorithm [16] are analyzed under the non-convex
`p-norm (0 < p < 1) regularization algorithms.

The Bayesian inference algorithms category includes the Bayesian compressive
sensing projected Landweber based on three-dimensional bivariate shrinkage plus
3D wavelet packet transform (BCS PL-3DBS + 3DWPT) algorithm [17] and the
sparse Bayesian learning (SBL) algorithm [34] increase the performance when OBD-
BCS algorithm is used. This expectation is reasonable given the rate-distortion
performance results, since OBD-BCS algorithm outperforms the others.

Model-based CS algorithms aim to integrate the structured sparsity models into
CS algorithms [4]. An algorithm called JSM-2 is a model-based CS algorithm [25].

The blind compressed sensing (BCS) algorithm solves the CS problem without
prior knowledge of the sparsity basis [46]. In this case, to guarantee the unique
solution, three constraints are considered on the sparsity basis [14]. The algorithm
used in the process is called an orthonormal block diagonal BCS (OBD-BCS) algo-
rithm. Each iteration consists of an OMP algorithm and singular value decompo-
sition (SVD) algorithm. There are a handful of studies [29, 23] which use BCS for
hyperspectral image reconstruction purpose. In this paper, however, BCS is utilized
only in the solution of the sparse coding equation. It is, indeed, not a part of dic-
tionary learning, but rather a tool for finding the sparse coefficients. After finding
the sparse coefficients, online dictionary learning is performed as usual. Therefore,
previously the BCS algorithm is not implemented with online dictionary learning
method. The main contributions of this study are as follows:

1. Different sparse representation algorithms are used to compress hyperspectral
images based on online dictionary learning. The compression performances of
these algorithms are compared with the performances of the state-of-the-art
lossy compression algorithms. This study used the results from the previous
studies and therefore only the best performing sparse representation algorithms
are included.

2. This is the first time that the BCS algorithm is used in conjunction with the on-
line dictionary learning method for hyperspectral image compression purposes.
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3. The anomaly detection technique is applied to further test the information
preservation performance of the lossy hyperspectral image compression.

The lossy compression of the hyperspectral images based on online dictionary
learning is presented in Section 2. The results are presented in Section 3. The
conclusions are given in Section 4.

2 LOSSY COMPRESSION OF HYPERSPECTRAL IMAGES
BASED ON DICTIONARY LEARNING

In this section, online dictionary learning based sparse coding on hyperspectral
image compression is explained. Sparse coding models the data as the sparse linear
combination of the dictionary elements. Dictionary learning is based on learning
the dictionary to adapt it to specific data. The online dictionary learning method
relies on stochastic approximations and it is suitable for large scale datasets such
as hyperspectral images [21]. In this study, the iterative online dictionary learning
algorithm is used, which minimizes the surrogate function of the empirical cost under
particular constraints at each iteration [21].

2.1 Notation and Problem Statement

In the analysis, the number of bands in the hyperspectral image is represented by nb,
the number of lines in the hyperspectral image is represented by nl, the number of
samples in the hyperspectral image is represented by ns, and the number of columns
in the dictionary is denoted k. The initial dictionary is expressed as D0 ∈ Rnb×k.
The auxiliary matrices for updating the dictionary are denoted A0 ∈ Rk×k and
B0 ∈ Rnb×k. The number of iterations is represented by T , the error is expressed as
E ∈ Rk×1, the regularization parameter is denoted λ ∈ R, and the sparse coefficients
are shown by α ∈ Rk.

In the dictionary learning process, optimization is performed on the empirical
cost by considering a finite training set X = [x1, . . . ,xT ] in Rnb×T [26]. The empirical
cost is given as

fT (D) :=
1

T

T∑
i=1

l(xi,D), (1)

where D ∈ Rnb×k represents the dictionary and l expresses the loss function. This
loss function corresponds to the optimal value of `1 norm sparse coding [21] given
by the equation

l(xt, D) := min
α∈Rk

1

2
‖xt −Dαt‖22 + λ‖αt‖1 (2)

where λ represents the regularization parameter, xt expresses the training sample at
iteration t and αt defines the coefficient set at iteration t. In (2), `1 regularization
ensures the sparsity.
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A convex set of matrices C is defined to constraint arbitrarily large elements in
D = [d1 . . .dk] as well as arbitrarily small values of αt. This convex set C is given

C := {D ∈ Rnb×k : ‖dj‖ ≤ 1,∀j = 1, . . . k}. (3)

In the optimization, the minimization of the empirical cost fT (D) with respect
to D is not a convex operation. According to this issue, the process is modified as
a joint optimization problem. The modified optimization problem is convex when
the sparse coefficients Γ := [α1, . . . , αT ] ∈ Rk×T are fixed, while the optimization
is performed with respect to D, and when D is fixed while the optimization is
performed with respect to sparse coefficients Γ. This joint optimization problem is
as follows:

min
D∈C,Γ∈Rk×T

1

T

T∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
. (4)

Equation (4) is solved as a convex optimization problem such that D is mini-
mized when Γ is fixed, and Γ is minimized when D is fixed, respectively. Instead of
minimizing the empirical cost fT (D), minimizing the expected cost f(D) is much
more computationally efficient. This expected cost is given as

f(D) := Ex[l(x,D)] = lim
T→∞

fT (D) (5)

where the unknown probability distribution of the data is utilized to find out the
expectation. In the literature, it has been proved that the equality in (5) converges
with the probability one [21].

For large scale data sets such as hyperspectral images, stochastic gradient algo-
rithms provide a better rate of convergence [21]. Therefore, in this study, dictionary
learning is realized by using projected first order stochastic gradient descent algo-
rithm. According to this algorithm, dictionary D is updated sequentially and is
shown as [2].

Dt =
∏
C

[Dt−1 −
ρ

t
∇D l(xt,Dt−1)] (6)

where Dt represents the optimal dictionary at iteration t, ρ presents the gradient
step, and

∏
C shows the orthogonal projector on C. It is assumed that the training

set X has i.i.d. samples of the unknown distribution of the particular data [21].

2.2 Algorithm

In this study, an algorithm which consists of two parts is used. These two parts,
namely dictionary learning and dictionary update, are solved alternately. The sparse
coding equation is solved by using xt from the current iteration, and Dt−1 from the

previous iteration. When αt is found, the following f̂t(D) function is minimized over
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set C to obtain an updated dictionary Dt:

f̂t(D) :=
1

t

t∑
i=1

1

2
‖xi −Dαi‖22 + λ‖αi‖1 (7)

where αi values are obtained. In the literature, it has been proved that the empirical
cost ft(D) and the function f̂t(D), which is quadratic in the D converge is almost

surely to the same limit [21]. Therefore, the function f̂t is the surrogate for the

function ft. For the large values of t, the function f̂t is close to f̂t−1 function.
In these circumstances, Dt is also close to Dt−1 such that it is effective to use
Dt−1 as a warm restart for finding Dt. At each iteration Algorithm 1 finds the
sparse coefficients, while Algorithm 2 uses these sparse coefficients to update the
current dictionary. Using various different sparse representation algorithms for the
solution of the sparse coding equation in Algorithm 1, best performing algorithm can
be determined, enabling a comparison between state-of-the-art algorithms. Online
dictionary learning, which is the main implementation in Algorithm 2 will be used
for all scenarios.

2.2.1 Algorithm 1

In Algorithm 1 the sparse coding equation is solved. Equation (2) is called sparse
coding equation. The value of λ is set to 0.1 while T equals 200.

Algorithm 1 Dictionary Learning

1: Construct random initial dictionary D0

2: Set initial values A0 and B0 matrices to zero
3: for t = 1 to T do
4: Choose xt ∈ Rnb randomly from the image.
5: Solve sparse coding equation.
6: Update At = At−1 + αtα

T
t , Bt = Bt−1 + xtα

T
t .

7: Find Dt using Algorithm 2.
8: end for
9: Obtain learned dictionary Dt.

2.2.2 Algorithm 2

In Algorithm 2 dictionary is updated by utilizing the block-coordinate descent with
Dt−1 as a warm restart. Equation (7) is called as the dictionary update equation.
Algorithm 1 and Algorithm 2 are applied in an alternating fashion which is the online
learning strategy. Various algorithms are used to solve sparse coding equation (cf.
Table 2).
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Algorithm 2 Dictionary Update

1: Calculate Dt in dictionary update equation
2: repeat
3: for j = 1 to k do
4: Find jth column of Dt, where D = [d1 . . .dk] ∈ Rnb×k, A = [a1 . . . ak] ∈

Rk×k and B = [b1 . . .bk] ∈ Rnb×k

5: uj := 1
A(j,j)

(bj −Daj) + dj

6: dj =
1

max(‖uj‖2, 1)
uj

7: Ej =
√∑

nb
|dt

j − dt−1
j |2

8: end for
9: E = 1

k

∑k
j=1Ej

10: until E < Treshold
11: Use D in Algorithm 1.

3 RESULTS

The online dictionary learning based hyperspectral image compression is applied
by using AVIRIS and Hyperion datasets for all the different sparse representation
algorithms [19]. The compression performances of these algorithms are compared
with the performances of the state-of-the-art lossy compression algorithms such as
BCS PL-3DBS + 3DWPT and CPPCA. BCS PL-3DBS + 3DWPT and CPPCA
algorithms are not based on learning while the remaining ones are employed by an
online learning scheme. The quality metric tool is the Peak Signal-to-Noise Ratio
(PSNR). The bit rate r is calculated in terms of the bits per sample (bps), and the
formulation is as follows

r =
z

nb

(bd), z < k (8)

where z represents the number of sparse coefficients, k defines the size of the dictio-
nary, nb is the number of bands, and bd represents the bit depth.

3.1 Datasets

The information about the AVIRIS and Hyperion datasets which are used in this
study are given in Table 1 [19].

3.2 AVIRIS Datasets Results

Low Altitude, Lunar Lake, and the Jasper Ridge are used as the AVIRIS datasets (cf.
Table 1). In Table 2, the compression performances of different sparse representa-
tion algorithms are shown. The quality metric tool, which reflects the compression
performance, is PSNR in terms of dB. The PSNR values are calculated against
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the compression ratios in terms of the bps. The state-of-the-art algorithms BCS
PL-3DBS + 3DWPT and CPPCA, which are given in Table 2, are used for the com-
parison [17]. The highest three PSNR values per each compression ratio are marked
in boldface. If Table 2 is analyzed at the highest compression ratio of 0.5 bps, only
the OBD-BCS algorithm involves among the algorithms with the best three PSNR
values for all datasets.

AVIRIS HYPERSPECTRAL DATA

Name No. Samples No. Lines No. Bands Bit Depth Year

Jasper Ridge 614 2 587 224 16 1997

Lunar Lake 614 1 432 224 16 1997

Low Altitude 614 3 689 224 16 1996

HYPERION HYPERSPECTRAL DATA

Name No. Samples No. Lines No. Bands Bit Depth Year

Lake Monona 256 3 176 242 12 2009

Mt. St. Helens 256 3 242 242 12 2009

Erta Ale 256 3 187 242 12 2010

SALINAS-A HYPERSPECTRAL DATA

No. Samples No. Lines No. Bands Bit Depth Year

83 86 204 12 1998

PAVIA UNIVERSITY HYPERSPECTRAL DATA

No. Samples No. Lines No. Bands Bit Depth Year

200 200 103 12 2002

INDIANA HYPERSPECTRAL DATA

No. Samples No. Lines No. Bands Bit Depth Year

145 145 220 12 1992

Table 1. Detailed information of AVIRIS, Hyperion, Salinas-A, Pavia and Indiana hyper-
spectral datasets

3.3 Hyperion Datasets Results

The Erta Ale, Mt. St. Helens, and Lake Monona images are used as Hyperion
datasets (cf. Table 1). In Figures 1, 2 and 3, the PSNR values of these datasets
against 0.1, 0.3, and 0.5 bps compression ratios for all sparse representation algo-
rithms, are given. The PSNR values are expressed in terms of dB, and they are
plotted against the compression ratios in terms of bps. The corresponding com-
pression ratios of the algorithms with highest three PSNR values are shown in cir-
cles.

As seen from Figures 1, 2, and 3, at the highest compression ratio of 0.5 bps, the
SpaRSA algorithm appears among the best three algorithms for all the datasets,
while the OBD-BCS algorithm is situated among the best three algorithms for
the Mt. St. Helens and Lake Monona datasets. Therefore, at high compression
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Figure 1. Compression performances of sparse representation algorithms for Erta Ale im-
age (cf. Table 1)
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Figure 2. Compression performances of sparse representation algorithms for Mt. St. He-
lens image (cf. Table 1)
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Figure 3. Compression performances of sparse representation algorithms for Lake Monona
image (cf. Table 1)

ratios, the SpaRSA and OBD-BCS algorithms show better compression perfor-
mances.

3.4 Comparison with Several HCS Methods

In literature, a novel reweighted Laplace prior based hyperspectral compressive sens-
ing (RLPHCS) method named as RLPHCS Cov outperforms several state-of-the-art
HCS algorithms [47]. This compression method is not based on learning. For further
comparison, compression performance of the algorithm RLPHCS Cov is compared
to that of the sparse representation algorithms based on online dictionary learn-
ing.

The signal to noise ratio (SNR) is fixed at 20dB. Pavia University and Indiana
datasets are used (cf. Table 1). Figures 4 and 5 show PSNR curves of different
algorithms at various bps levels when Pavia University and Indiana datasets are
used, respectively. Online dictionary learning (ODL) and hyperspectral compressive
sensing (HCS) abbreviations are used.

Figures 4 and 5 indicate that the reconstruction performance of the OBD-BCS
(ODL) algorithm is superior to that of the other algorithms at 0.5 bps level. Al-
though for 0.5 bps compression level the OBD-BCS (ODL) algorithms is better for
both datasets, setting the compression ratio to moderate levels such as 0.3 bps yields
better RLPHCS Cov performance for Pavia University dataset.
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Figure 4. The reconstruction performances of different methods for Pavia University
dataset when SNR is 20 db

Figure 5. The reconstruction performances of different methods for Indiana dataset when
SNR is 20 db
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3.5 Compression Performance Analysis of OBD-BCS Algorithm

According to Table 2, the OBD-BCS algorithm involves among the top three algo-
rithms at the highest compression ratio of 0.5 bps for all the datasets.

In Figures 1, 2, and 3, the OBD-BCS algorithm belongs to the top three al-
gorithms with the highest PSNR values at the highest ratio of 0.5 bps for the
Mt. St. Helens and Lake Monona datasets.

The results indicate that the OBD-BCS algorithm shows a better compression
performance when the compression ratio gets higher. OBD-BCS algorithm is being
considered as a compressive sensing framework. However, in this study it is only
used in Algorithm 1 to solve the sparse coding equation. Since the OBD-BCS
algorithm itself includes a dictionary learning process, learning is applied not just in
Algorithms 2 for online dictionary learning, but also in Algorithm 1 while finding the
sparse coefficients. It is expected that using these more accurate sparse coefficients in
online dictionary learning will increase the performance when OBD-BCS algorithm
is used. This expectation is reasonable given the rate-distortion performance results,
since OBD-BCS algorithm outperforms the others.

3.6 Anomaly Detection Application

The anomaly detection is applied to make a further comparison between various
sparse representation methods. It is a useful tool for assessing the information
preservation ability of these methods. Reed-Xiaoli (RX) anomaly detection algo-
rithm is used [30].

Spectral signature which belongs to the input signal is compared with the mean
values of each spectral band by using Mahalanobis distance,

δRX(xi) = (xi −M)TCov−1(xi −M) (9)

where xi ∈ Rnb , M represents the mean of each spectral band and Cov indicates
the spectral covariance matrix. Covariance matrix Cov is as follows:

Cov =
1

N

N∑
i=1

(xi −M)(xi −M)T (10)

where N = nl × ns and i = 1, . . . N .

Anomalous region is assumed to be present if δRX(xi) ≥ η condition is satisfied,
where η represents the threshold value. The most appropriate threshold value is the
one that is obtained from the desired false alarm probability. Anomaly detection
is applied on Salinas-A and Low Altitute hyperspectral datasets (cf. Table 1) [1].
Sparse representation based on online dictionary learning algorithms such as BP by
using dual active set algorithm, LASSO by using ADMM algorithm, SpaRSA and
OBD-BCS are utilized.
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The anomaly detection results are illustrated in Figure 10 for Salinas-A dataset.
First, the anomaly detection is applied on the original hyperspectral dataset whose
results are presented in Figure 10 a). The desired anomaly is marked with a circle.
Figure 10 b)–e) depict anomaly detection results for OBD-BCS, BP by using dual
active set, SpaRSA and LASSO algorithms at 0.5, 0.3 and 0.1 bps levels, respectively.
None of the algorithms is able to detect the desired anomaly at 0.1 bps bit rate.
Among the anomaly detection results at 0.5 bps bit rate, OBD-BCS algorithm seems
to provide the best performance.
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Figure 6. ROC Semilog curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using
OBD-BCS
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Figure 7. ROC Semilog curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using
LASSO algorithm

The PSNR values of each sparse representation algorithms are also presented in
Table 3 for 0.1, 0.3 and 0.5 bit rates in such a way to further strengthen the anomaly
detection results obtained in Figure 10. The two highest PSNR values are marked
in boldface.
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Figure 8. ROC Semilog curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using BP
by using dual active set algorithm
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Figure 9. ROC Semilog curves for Salinas-A dataset at 0.1, 0.3 and 0.5 bps by using
SpaRSA

Anomaly detection performances of different sparse representation algorithms
can be assessed using receiver operating characteristic (ROC) curves. The ROC
curves plot detection probability versus false alarm probability. ROC curves are
plotted with a logarithmic x axis for better illustration.

Figure 6 shows the ROC Semilog curves of OBD-BCS algorithm at 0.1 bps,
0.3 bps and 0.5 bps rates when Salinas-A hyperspectral dataset is used. The prob-
ability of detection is denoted by PD and the probability of false alarm is denoted
by PFA. Anomaly detection result at 0.5 bps rate is significantly better than those
of the 0.3 bps and 0.1 bps levels.

The ROC Semilog curves of BP by using dual active set algorithm at 0.1, 0.3
and 0.5 bps bit rates are depicted in Figure 8. For the Salinas-A dataset, the ROC
Semilog curves of SpaRSA and LASSO algorithm at various bit rates are illustrated
in Figures 9 and 7, respectively.

In order to further evaluate the ROC curves, the area under curve (AUC) is
employed as a performance metric that can be obtained by calculating the area
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under the ROC curve. Calculated AUC values are presented in Table 3. In Table 3
for Salinas-A dataset, it can be seen that the best result is from OBD-BCS at 0.5 bps
bit rate which is 0.9945.

Results in Table 3 and Figures 6–7 demonstrate that the detection performance
of OBD-BCS algorithm is better than that of the other algorithms for the case where
the bit rate is high such as 0.5 bps. The illustrations in Figure 10 also suggest that
the detection performance of OBD-BCS algorithm is the best of all at 0.5 bps bit
rate.

According to the values in Table 3, OBD-BCS algorithm is among the best two
algorithms in terms of PSNR values at 0.5, 0.3 and 0.1 bps rates for Low-Altitude
dataset. Particularly at 0.5 bps level, OBD-BCS has PSNR value of 73.56 which is
the highest. The superiority of OBD-BCS algorithm at 0.5 bps rate is supported by
the results in Table 3 for Low-Altitude dataset. At 0.5 bps, OBD-BCS algorithm
has the highest AUC value which is 0.9943.
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Figure 10. RX anomaly detection results of the Salinas-A hyperspectral image: a) original
image, b) OBD-BCS with 0.5 bps, 0.3 bps and 0.1 bps, c) BP with 0.5 bps, 0.3 bps, and
0.1 bps, d) SpaRSA with 0.5 bps, 0.3 bps, and 0.1 bps, e) LASSO with 0.5 bps, 0.3 bps, and
0.1 bps

4 CONCLUSION

Sparse representation algorithms from many different categories are applied for the
purpose of hyperspectral image compression based on online dictionary learning.
The hyperspectral compression performance of these sparse representation algo-
rithms are analyzed by further analyzing the OBD-BCS algorithm. By analyzing
the results of all the datasets, the OBD-BCS algorithm shows the best compression
performance at high compression ratios. At a 0.5 bps ratio, it involves among the
best three algorithms at most for all the datasets. Other algorithms with good com-
pression performances at high ratios are BP by using dual active set, the LASSO
by using ADMM, and the SpaRSA algorithms.

According to the anomaly detection results, compressed image at bit rates of
0.5 bps or higher can be used as an estimate of the original hyperspectral image.
Anomaly detection or similar real-world applications can be applied on the com-
pressed hyperspectral image instead of the original one. Anomaly detection results
further prove that the OBD-BCS algorithm has a better information preservation
performance than that of the other algorithms as the bit rate gets higher.
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Salinas-A

Sparse Respresentation Algorithms

BPS BP OBD-BCS LASSO SpaRSA

PSNR AUC PSNR AUC PSNR AUC PSNR AUC

0.1 36.62 0.96 36.67 0.9464 36.65 0.9741 36.58 0.9424

0.3 41.54 0.9934 41.89 0.9929 41.16 0.9799 42.61 0.992

0.5 43.95 0.9943 43.98 0.9945 43.74 0.9928 43.96 0.9943

Low Altitude

Sparse Respresentation Algorithms

BPS BP OBD-BCS LASSO SpaRSA

PSNR AUC PSNR AUC PSNR AUC PSNR AUC

0.1 59.96 0.9917 60 0.9887 59.59 0.9906 59.88 0.9896

0.3 70.16 0.9932 69.99 0.9936 68.85 0.9932 69.78 0.9914

0.5 73.24 0.9942 73.56 0.9943 73.52 0.9931 72.82 0.9937

Table 3. PSNR values of sparse representation algorithms
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Abstract. Due to GPU’s improved hardware performance, many researchers have
tried to utilize the GPU for computer vision, image processing, cryptography, and
artificial intelligence. As results, the GPU could successfully speed up algorithms
from tens to hundreds of times in many cases. However, GPU programming is still
known to be difficult because of its different characteristics from the traditional CPU
programming. Also, it is hard to find the root causes of software failures because
the failures are irreproducible in many cases. Our goal is to simplify the process
of verifying intended actions when debugging GPGPU programs. To achieve this
goal, we use the visualization method of executed codes because it can increase
the human’s understanding through seeing and analyzing the real actions by each
thread. We developed a platform that can visualize the running OpenCL codes and
algorithms that can identify data race, barrier divergence, and infinite loop in the
GPU. To the best of our knowledge, this is the first study on the visualizations
of OpenCL operations and detection of infinite loops in the programs. We also
suggest an algorithm for detecting data race with GPU-specific lock-step execution
and barrier function.

Keywords: Visualization, GPGPU, debug, data race, barrier divergence, infinite
loop
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1 INTRODUCTION

To meet the user’s increasing demands for realistic software and the increasing
display resolution (e.g. Full HD (1 920 × 1 080), Ultra HD (3 840 × 2 160)), the
sizes of visual data (e.g. Texture, Vertex, Color, Normal) have become larger, and
the GPU has improved. Also with the improvements, GPGPU platforms, such
as Compute Unified Device Architecture (CUDA) [13] and Open Computing Lan-
guage (OpenCL) [20], enabled the programming of the GPU for general purposes.
Many researchers have tried to use them for performance improvements in different
fields. As a result, the GPU could successfully accelerate algorithms for computer
vision [17], image processing [7], cryptography [29], and artificial intelligence [19]
fields. Furthermore, many researchers have built GPU-based supercomputers that
are ranked highly in top 500 websites [22] and used for complex calculations.

Although the GPGPU has been widespread, most of the previous studies con-
centrated on performance improvement and correctness of results, without much
focus on debugging GPGPU programs. Recently, GPGPU has started to become
widespread in safety-critical systems, and its software faults can become impor-
tant issues, shortly. For example, computer vision algorithms, deep learning within
a car [14] or medical imaging [21] can exploit the GPGPU, but the failure of these
systems can lead to a severe accident.

Regardless of the importance of error-free GPGPU programs, GPGPU is hard to
program, and the possibilities of mistakes are high because of the following reasons.
First, GPU’s characteristics are different from the CPU. Because of it, we cannot
simply convert the codes for CPU to the ones for GPU. The simple conversion
can lead to a minor performance benefit in many cases, or the conversion can be
impossible in many cases because of different characteristics. Second, the results
of GPU codes may be different if a different number of threads or thread groups is
employed. The developers can alter the number of threads for optimization cases,
and the change may cause unexpected results from the inter-thread intervention.
Third, the number of GPU threads can be huge (e.g. 10 000 000), and some failures
can be irreproducible because their causes are from the thread scheduling or status.

In addition to the programming/debugging difficulties attributed to different
characteristics, and thread intervention, data race, barrier divergence, and infinite
loop also make the GPGPU programming error-prone. The data race can be a sig-
nificant problem particularly in the GPU because a vast number of threads may
access the same memory at the same time. These simultaneous accesses can cause
an unexpected problem depending on the access orders of many threads. The barrier
divergence is a specific problem to the GPU and can cause unexpected results in
many cases. It happens when all of the GPU threads within a group do not reach
the same barrier point. Differently from the traditional CPU case, the infinite loop
can happen by GPU-specific lock-step execution.

To minimize these difficulties in GPGPU programming and help in checking the
GPGPU programs, some tools such as Nsight systems [24], Allinea DDT [25], Pro-
filer [27] and mem-check [26] have been developed for the CUDA platform. However,
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the Nsight does not support the visualization of GPU codes but the visualization of
CPU codes only. In addition, Allinea DDT, profiler, and cuda-memcheck are devel-
oped only for the CUDA platform. To make up for these limitations, we developed
the visualization platform for the OpenCL case. The contribution of this paper
is as follows. First, we suggest a visualization method of running OpenCL codes.
Second, we propose a heuristic for finding the GPU-specific infinite loop. Third, we
suggest a method for finding data races with the GPU-specific lockstep execution
and barrier function.

The rest of this paper is organized as follows. Section 2 describes the OpenCL,
Oclgrind as well as Data Race/Barrier Divergence/Infinite Loops as backgrounds
and related works. Section 3 describes the GPU-specific characteristics and issues
in more detail. Section 4 describes our visualization methods and algorithms for
finding data races, barrier divergences, and infinite loops at the GPU and their
rationales. Section 5 describes the results through our implementations, and the
conclusion is drawn in Section 6.

2 BACKGROUND AND RELATED WORKS

In this paper, we used the OpenCL as a GPGPU language because it is an open
standard regardless of vendor and platforms. For background knowledge, this section
describes OpenCL and Oclgrind. Also for related works, this section introduces the
previous works for data race, barrier divergence and infinite loop at the GPU.

2.1 OpenCL

OpenCL is an open standard for heterogeneous computing and allows the program-
ming of the CPU or GPU. Apple Inc. [1] originally developed the OpenCL, and the
Khronos Group [15] maintains it presently. The Khronos Group defines the speci-
fication [10] of OpenCL so that all vendors should support for compatibility. The
specification defines four different models in terms of platform, execution, memory,
and programming aspects.

Platform Model: The platform model describes a host and a device. The host is
a central unit that executes the main program, divides works to each device,
and collects the results from each device. A device is a target unit that runs
the parallel parts of a program. A device can have many compute units, and
each compute unit can have many processing elements. Figure 1 illustrates these
relations.

In Figure 1, a host creates a context to compute device 1 and enqueues com-
mands to the device through the established context. The device schedules the
commands, delivers them to the compute units and the processing elements ac-
cording to its policy, and each processing element runs the commands. The CPU
or GPU can be one of the devices.
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Figure 1. OpenCL platform model

Execution Model: The execution model defines a host program and a kernel. The
host program is a program that runs on the host. A kernel is a function executed
on the compute device. When the host program sends the commands (kernel
execution, memory read, memory write), it also sends the number of work-groups
and work-items. Work-group is a group of threads that run the same operation
and runs on a compute unit. Work-item is a thread and executes on a processing
element. Figure 2 illustrates the decompositions of work-groups and work-items
handled by OpenCL.

Figure 2. The decomposition of work-groups and work-items

Figure 2 shows the relationship among work-groups and work-items in two di-
mensions. Work-groups are independent of each other and simultaneously run,
and work-items within the same work-group execute the same operation in the
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lock-step method. A compute unit runs a work-group, and a processing element
runs a work-item. If the number of work-groups and work-items are more than
those of the physical compute units or processing elements, the mapping of work-
group or work-item is scheduled according to the vendor’s policy. Work-items
within a single work-group can communicate through a shared buffer, and any
accesses to the buffer should be synchronized.

2.2 Oclgrind

Oclgrind [18] is an open-source simulator based on the OpenCL’s Standard Portable
Intermediate Representation (SPIR) [16]. It enables to create a development tool
for the OpenCL program and implements the OpenCL specification on the CPU.
As inputs, Oclgrind receives an OpenCL application or a kernel and runs it on the
CPU. Oclgrind can check barrier divergences and data races with additional options.
It also enables to debug the OpenCL application or kernel interactively and exports
some plugin interfaces so that any other applications can be developed.

Oclgrind can check the data race, but it can have some false positives because
it only checks whether the other work-items access the same memory address or not
and does not check the lock-step executions, which is described in detail in Section 3.

2.3 Data Race, Barrier Divergence, Infinite Loop

The data race happens when two or more threads access the same memory location
and one of the accesses is a write operation. If many threads access the same
memory, then the results are dependent on the threads’ read/write orders and are
unpredictable in some cases. This scenario has been a large problem to the CPU-
based multithreaded system; therefore, many researchers have tried to detect it
automatically with minimum false positives. FastTrack gave some idea to improve
the slow but precise vector-clock race detector [8]. Relay was a static race detector
based on the locksets that could be scaled to millions of lines of C code [28], and Pacer
was low-overhead sampling-based data race detector based on the FastTrack [6].
However, most of these approaches are inapplicable to the GPU because the GPU
programs only support the barrier function for synchronization [32].

The problem of a data race can be worse in the GPU case because thousands of
work-items (threads) can run simultaneously the same instruction, and simultane-
ously make accesses to the same memory. When these simultaneous accesses occur,
the different execution orders of the memory load or store can cause different results
or hard-to-reproduce errors depending on the situation. To detect the data race
at the GPU, many researchers have suggested static, dynamic, hybrid algorithms
or special hardware. GPUVerify is a static verifier [5], which translates a kernel
into a sequential Boogie [2] program, and proves the correctness of the sequential
program. LDetector is a static detector and uses a two-pass approach to detect
write-write/read-write races [11]. LD statically detects a race with a two-pass de-
tection algorithm that is atomic free and a memory-adaptive solution [12]. Oclgrind
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is a dynamic simulator, which can identify the race through monitoring the memory
accesses [18]. GRace [32] and GMRace [31] are hybrid mechanisms that combine the
static and the dynamic ways, reduces the number of statements, and monitors only
the survived memory accesses. HAccRG [9] and Hydra [30] designed special kinds of
hardware for this problem. However, these implementations have their limitations
for real use. If we want to use the GPUVerify, LD, LDetector, GRace or GMRace,
the compilers should be modified. If we want to use hardware-based approaches such
as HAccRG and Hydra, special hardware should be added. Furthermore, GPUVerify
and LDetector do not support the atomic operations. Oclgrind just includes a simple
access monitor and does not consider the GPU characteristics that all work-items
within the same work-group run the same instruction. Section 3 will describe this
limitation through an example in more detail.

Barrier divergence is one of the specific problems of the GPU, and can also cause
unexpected results. The results can be different from an architecture to an archi-
tecture or a vendor to a vendor because the OpenCL specification does not clarify
the results. The OpenCL 2.1 Reference Pages [3] and the OpenCL 2.2 Reference
Guide [4] only mentions that “All work-items in a work-group executing the kernel on
a processor must execute this function before any are allowed to continue execution
beyond the work group barrier.” “Work-items in a work-group must execute this
before any can continue.” and does not mention anything about the results. There-
fore, an unexpected result can happen according to the implementation. GPUVerify
and Oclgrind can detect this problem.

An infinite loop can occur at both the CPU and the GPU, but its causes can
be different from each other. One of the GPU-specific reasons of infinite loop is
that all work-items within the same work-group run the same operation in the GPU
case. Section 3 will also describe the barrier divergence and the infinite loop through
an example. To the best of our knowledge, no tools or algorithms can detect this
problem at this time.

3 SPECIFIC CHARACTERISTICS AND ISSUES
OF OPENCL PROGRAMMING

OpenCL programming is similar to the case of CPU programming in many aspects
and uses a subset of C or C++ language. However, it has different characteristics
and issues that this section describes.

3.1 GPU-Specific Programming Model

The GPU threads within a group run code simultaneously in lock-step method,
which highlights its difference from the CPU threads. Given that the goal of a GPU
is to maximize the parallelism, it internally has thousands of processing elements.
Given this characteristic, it is hard for each processing element to run the entirely
separate parts of codes. Therefore, all work-items within the same work-group
execute the same instruction.
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If a kernel includes a conditional statement, such as if, then the condition can
be evaluated as true at some work-items, but false at the other work-items. For
this different branch case within a single work-group, the GPU uses the predicated
executions. A processing element executes the predicated instructions only if the
condition is true. Otherwise, the processing element discards the instruction or
does not commit the result according to the GPU’s internal architecture. Figure 3
illustrates the example of a conditional statement, and Figure 4 shows the generated
instructions with a predicated form after compiling Figure 3.

Figure 3. An example of a conditional statement

Figure 4. An example of predicated execution

Although the exact instructions can be different from architecture to architec-
ture or vendor to vendor, Figure 4 illustrates the fundamental idea of predicated
executions. In Figure 4, if the condition is true, the processing element runs a = 1.
Otherwise, the processing element runs a = 2. With these predicated executions,
all work-items within the same work-group can execute the same instruction at the
same time. The loops, such as for, do, and while, also use these predicated execu-
tions. In this case, some processing elements can finish the loop earlier than other
elements, but they cannot exit the loop and are still in the loop while ignoring the
results of executed statements through this predicated executions.

3.2 Data Race

Listing 1 shows an example of a data race in the GPU case. If we run Listing 1
after setting all values in the array, g, to 1, and the number of work-items and
workgroups to 128 and 8, respectively, then the work-item 15 runs the int gid =
get global id(0) and gid becomes 15 because the get global id(0) function returns
the number of work-item. The work-item 15 runs the g[15] = g[16] + g[17], and
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the work-item 16 runs the g[16] = g[17] + g[18]. Because the work-items 15 and 16
are respectively included in work-groups 0 and 1, and the memory coherency is
not guaranteed between work-groups, g[15] can be two if g[16] and g[17] are one.
g[15] can also be three if g[16] is one and g[17] is two. g[15] can also be four.
The results are unpredictable depending on the GPU’s internal implementation,
the number of work-items, and the work-groups or the memory policy. Listing 2
illustrates the example that can resolve the data race in the Listing 1.

1 k e r n e l void data race ( g l o b a l i n t ∗g )
2 {
3 i n t g id = g e t g l o b a l i d ( 0 ) ;
4 g [ g id ] = g [ g id + 1 ] + g [ g id + 2 ] ;
5 }

Listing 1. An example of data race

1 k e r n e l void no da ta rac e 1 ( g l o b a l i n t ∗ g )
2 {
3 i n t g id = g e t g l o b a l i d ( 0 ) ;
4
5 i n t temp1 = g [ g id + 1 ] ;
6 i n t temp2 = g [ g id + 2 ] ;
7
8 b a r r i e r (CLK GLOBAL MEM FENCE) ;
9

10 g [ g id ] = temp1 + temp2 ;
11 }

Listing 2. An example of resolved data race

If a work-item meets the barrier function in Listing 2, the work-item waits until
the other work-items within the same work-group also reach the barrier function.
Therefore, work-item 15 stores the values of g[16] and g[17] into the private variables
temp1 and temp2, respectively. The work-item 16 has the values of g[17] and g[18] in
the variables temp1 and temp2. The variables temp1 and temp2 are private to each
work-item. After the barrier function, the work-item 15 runs g[15] = temp1+temp2,
and the result will be two without any data race. The work-item 16 also runs
g[16] = temp1 + temp2, and the result will be also two.

Data race can happen or not when a GPGPU kernel is executed with the different
numbers of work-groups and work-items. Listing 3 shows an example.

If we run Listing 3 with four work-items and one work-group, all of the four work-
items are included in the same work-group. Therefore, all of the four work-items
perform the same instruction in the lock-step method, and the data race cannot
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1 k e r n e l void no da ta rac e 2 ( g l o b a l i n t ∗ g )
2 {
3 i n t g id = g e t g l o b a l i d ( 0 ) ;
4
5 i n t temp1 = g [ g id + 1 ] ;
6 i n t temp2 = g [ g id + 2 ] ;
7
8 g [ g id ] = temp1 + temp2 ;
9 }

Listing 3. An example of the data race according to the number of
work-groups and work-items

happen because the private variables of each work-item, temp1 and temp2, are used
to store the values of g[gid+1] and g[gid+2], differently from the Listing 1. However,
if we run it with four work-items and four work-groups, all of the four work-items
runs separately. Therefore, the data race can occur according to the scheduling, and
we should avoid the four work-groups or use the barrier function. Oclgrind does not
consider this GPU-specific lock-step execution and report the data race even in one
work-group case.

3.3 Barrier Divergence

Listing 4 illustrates the barrier divergence at the GPU. If we run Listing 4 with
128 work-items and 8 work-groups, work-item 0 evaluates the condition as true at
line 5. Therefore, the g[0] will be zero by line 7, and work-item 0 executes the first
barrier function. Work-item 1 evaluates the condition as false; therefore, it performs
the second barrier function at line 12. If a work-item meets a barrier function, the
work-item waits until the other work-items also reach the location; therefore, work-
items 0 and 1 wait for each other at different places. In this case, the results are
unpredictable according to the implementation.

3.4 Infinite Loop

Listing 5 illustrates the infinite loop caused by the lock-step execution. When we
run the kernel infloop in Listing 5 with 128 work-items and 8 work-groups after
setting g to zero, work-item 0 calls the lock function at line 11. In the lock function,
the atom xchg function changes the global variable g into one, and returns the old
value, zero, of g. Therefore, the local variable o will be zero. Then, work-item 0
can exit the loop. Meanwhile, work-item 1 also calls the lock function, and the
atom xchg function changes the global variable, g, into one again, and returns the
old value, one, of g because it was already modified by work-item 0. Therefore, the
local variable o will be one. Then, work-item 1 continues the loop again because it
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1 k e r n e l void b a r r i e r d i v e r g e n c e ( g l o b a l i n t ∗g )
2 {
3 i n t g id = g e t g l o b a l i d ( 0 ) ;
4
5 i f ( g id % 2 == 0)
6 {
7 g [ g id ] = gid ;
8 b a r r i e r (CLK GLOBAL MEM FENCE) ;
9 }

10 e l s e
11 {
12 b a r r i e r (CLK GLOBAL MEM FENCE) ;
13 g [ g id ] = gid + g [ g id − 1 ] ;
14 }
15 }

Listing 4. An example of the barrier divergence

does not satisfy the exit condition o ≤ 0. Besides work-item 0, all work-items in
the workgroup continue the loop. Work-item 0 satisfies the exit condition, but it
cannot also exit the loop because it should run the same instruction in the lock-step
similar to other work-items. As a result, all work-items will loop forever.

1 void lock ( g l o b a l i n t ∗ g )
2 {
3 i n t o ;
4
5 do {
6 o = atom xchg (g , 1 ) ;
7 } whi le ( o > 0 ) ;
8 }
9

10 k e r n e l void i n f l o o p ( g l o b a l i n t ∗ g )
11 {
12 lock ( g ) ;
13 }

Listing 5. An example of infinite loop

We checked that Listing 5 caused the infinite loop, and the system sometimes
halts at Intel’s OpenCL implementation (HD Graphics 530, Driver version 20.19.15.4
531) and NVIDIA’s implementation (GTX 960M, Driver version 378.78). This prob-
lem is quite common because this kind of codes, such as Listing 5, works well in the
CPU case as the locking codes. In the CPU case, the thread 0 (work-item) does not
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have to loop again; therefore, the CPU does not meet the infinite loop. However,
the GPU is frozen by the lock-step execution.

4 CL-VIS: VISUALIZATION PLATFORM

This section describes our platforms for the visualization of running GPGPU codes
(CL-Vis) and algorithms to find the issues described in Section 3.

4.1 Overview

When programming the GPU, it is hard to understand what each work-item is do-
ing. Without knowing what went on, it is hard to fix the problems or the bugs
within the software. If a developer can see what the work-item does, he/she can
easily understand why the problem happens in many cases and can fix the problems.
To help understand the internal operations of each work-item, we developed a visu-
alization platform based on Oclgrind. To implement it, we used the architecture in
Figure 5.

Figure 5. The overall architecture of CL-Vis

Our visualization platform, CL-Vis, largely consists of the following components:
a visualization plugin and a reporting tool. As an input, Oclgrind receives the in-
formation file that includes the running kernel/file, the number of work-items and
work-groups, and the parameter values, and runs the kernel. During the execution,
it calls our visualization plugin that implements the callback functions. Oclgrind
supports the following basic callback functions in Table 2 so that any user can de-
velop additional tools based on Oclgrind. Besides the essential functions in Table 2,
we extended Oclgrind so that we can obtain more information and added more
functions in Table 3.

Through these callback functions in Tables 2 and 3, the visualization plugin
records the information on the executed instructions and their times to thread-
specific files. The timeline of each operation is detected through Algorithm 1.
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Through Algorithm 1, the visualization plugin records the global id (the thread
id), the time difference between the current time and the kernel’s starting time,
the C-based statement, the assembly-based instructions to a buffer, and writes the
buffer to a file that includes the execution information of a work-item. It also detects
the infinite loop, the barrier, and the data race through the algorithms described in
more detail in Subsection 4.2. The reporting tool uses the file of each work-item for
the visualization. The reporting tool receives the generated files by the visualization
plugin as inputs and generates an HTML file as outputs. After these procedures,
the HTML file can be viewed through a web browser. To summarize, our platform
can visualize the codes after the execution completes. Figure 6 presents the result
of our visualization.

ALGORITHM 1: Timeline detector
1: for each work-item w do
2: for each start and end of an instruction do
3: Record the w’s id, time difference between the current time and the w’s starting

time, the statement and the executed instruction to a buffer
4: end for
5: Write the recorded buffer to a file
6: end for

In Figure 6, the horizontal axis shows the time, and the vertical axis lists the
number of work-item and workgroup. Each blue rectangle represents an operation
that a work-item performed, and the text in the box is the executed action at the
time. If we scroll down the page, we can see other threads. We can also see the other
operations if we move the page to the left or right. We can also zoom in/out the
box through a mouse wheel. In many cases, a single line of the C-based statement
consists of many lines of assembly-based statements, and many boxes can include
the same text. Therefore, our platform generates the C-based statement first, and
the assembly-based statement within a parenthesis next to avoid confusion.

Figure 6 shows that a single work-group includes 16 work-items, and the work-
items run independently. We can also see the executed action if we move the mouse
cursor on the box or horizontally increase the box. Through this visualization, we
can check that the program operates as intended. For example, we can see that the
work-item 0 runs the true case, and the other work-items run the false case at the if
statement. We can also check the number of loops that the work-items run. Besides
the checking, this visualization can also be used for the education purpose, and we
can use this platform to describe the concepts of GPGPU programming.

4.2 Detecting Algorithms

This subsection describes the algorithms used to detect the data race, the barrier
divergence, and the infinite loop included in the CL-Vis. We designed them as
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Figure 6. Visualization of the GPGPU program

a plugin of Oclgrind, and it is an event-based program. Therefore, we described
each algorithm using events.

4.2.1 Race Detector

The visualization plugin includes the race detector that detects a data race through
Algorithms 2 and 3. Algorithm 2 monitors all memory accesses of work-item w
and reports the data race if the below conditions 1, 2, 3 are evaluated as true, and
condition 4 or 5 is evaluated as true. Algorithm 3 changes the states of memory
accesses into inactive if a work-item meets a barrier.

1. The first condition is that the address space of access is global or local. Work-
items share only the global and local memories so that these types can have
a data race.

2. The second condition is that the access to memory is active. If a work-item meets
a barrier, all of the previous memory accesses are guaranteed to be committed.
Therefore, the memory accesses become inactive in this case.
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3. The third condition is that another thread accesses the same memory, and one
of the access is the write. The data race can happen only in this case.

4. The fourth condition is that the accessing statement is the same in the case
that the current work-item and the work-item of the previously access are in
the same group. The work-items in the same work-group run an operation in
lock-step; therefore, the data race will happen only if the accessing statements
are the same.

5. The fifth condition is that the memory type is global if the work-items are
in different groups. The work-items in different groups can be simultaneously
executed based on the GPU’s internal policy; therefore, the data race can hap-
pen.

ALGORITHM 2: Race detector
1: for each work-item w do
2: for each memory access m do
3: if address space of m is global or local then
4: for each access entry e ∈ access table do
5: if e is active, another thread also accesses m’s address, and one of the

accesses is the write operation then
6: if w and the work-item of e are in the same group then
7: if the accessing statement is the same then
8: Mark the access m as a data race
9: end if

10: else
11: if address space of m is global then
12: Mark the access m as a data race
13: end if
14: end if
15: end if
16: end for
17: end if
18: Record m’s address, size, statement, memory type (global/local), access type

(read/write) and group number into the access table
19: end for
20: end for

ALGORITHM 3: Access clearing

1: for each work-item w do
2: if w meets a barrier then
3: Change the all access states of w in the access table to inactive
4: end if
5: end for
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Most of the previous dynamic algorithms for detecting the data race do not
include conditions 4 and 5. They just check conditions 1, 2 and 3, so have more
false positives. To decrease the false positives, we added condition 4 utilizing that
the work-items in a work-group run the code in lock-step. We also added condition 5
because the data race can happen in the global memory case even if the accessing
statements are different.

4.2.2 Divergence Detector

The visualization plugin includes the divergence detector that detects a barrier diver-
gence through Algorithms 4 and 5. Whenever a work-item meets a barrier function,
Algorithm 4 records the global id (the thread id), the finishing time and statement.
We record the statement because a kernel can have many barrier functions and
barrier divergence, and we need to identify the barrier function. We also record
the finishing time because our visualization platform should find the most recently
cleared barrier function. Then, when Oclgrind clears the barrier function, Algo-
rithm 4 marks the latest time among the met work-items as a barrier time because
Oclgrind is a simulator based on the CPU, which sequentially executes a kernel dif-
ferently from the GPU. Algorithm 5 uses the most recent time because all work-items
should wait for the last finished work-item.

ALGORITHM 4: Barrier recording at the divergence detector

1: for each work-item w do
2: if w meets a barrier then
3: Record the w’s id, the finishing time and the statement
4: end if
5: end for

ALGORITHM 5: Barrier clearing at the divergence detector

1: for each barrier b do
2: Mark the last finished work-item’s time among the met work-items as a barrier

time
3: end for

Algorithms 4 and 5 can find all of the barrier divergences without a false pos-
itive because Algorithm 4 records all of the work-items that meet a barrier, and
Algorithm 5 marks to all of the met work-items when a barrier is cleared.

4.2.3 Loop Detector

The visualization plugin includes the loop detector that detects a possible infinite
loop through Algorithm 6. In Algorithm 6, whenever a work-item w meets a loop l,
our visualization plugin records the used variables if they are global and modified
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within the loop. Our plugin also records the affected variable by a global variable.
Then, our plugin checks that the changed or affected variables are used at the exit
condition of the loop.

ALGORITHM 6: Loop detector

1: for each work-item w do
2: for each loop l do
3: Record the used variables if they are global and modified within the loop l
4: Record the affected variables by a global variable if they are private or local,

and modified within the loop l
5: if the global or affected variables are used as an exit condition then
6: Mark the exit condition as an infinite loop
7: end if
8: end for
9: end for

If a work-item changes the global variable and uses the variable at the exit
condition, then other work-items can also be affected because the exit condition
can also be modified. The count of a loop can be shorter, longer or even infinite.
In Listing 5, the global variable, g, is modified within the loop and affects the
private variable o. The other work-items are also affected by the modification of g,
and the exit condition is also affected by the change of o. The infinite loop at
the GPU happens in this case; therefore, our plugin detects the changes of an exit
condition.

Algorithm 6 may have a false positive if a global variable is modified or a lo-
cal/private variable is modified by a global variable within a loop, and the variable
is used as an exit condition. But, we have never met such case in many kernels until
now.

4.3 Detailed Implementation

To verify our architecture and algorithms, we implement the visualization plugin
and the reporting tool. Besides the function additions in Table 3, we also disabled
the optimization of a GPGPU kernel code because we should obtain the statement
information in our algorithms.

We implemented the algorithms in Section 4 at our visualization plugin and the
reporting tool in the Linux environment (Ubuntu 14.04), and verified the results
using Firefox 52.0. To visualize the results, we used a timeline within the vis.js
library [23] that supports powerful display functions for the web browser. To deter-
mine whether two statements are the same or not in Algorithm 2, we used their line
numbers as statement information.
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5 RESULTS OF DETECTING ALGORITHMS

This section presents the results of suggested architecture and algorithms.

5.1 Data Race

We run Listing 1 with 128 work-items and 8 work-groups. Figure 7 presents the
results. In Figure 7, our Algorithm 2 detects the data race at the g[gid] = g[gid +
1] + g[gid+ 2] statement in Listing 1, and marks them with yellow color (Red box).
Therefore, any researcher or developer can easily notice it. We also run Listing 2
with 128 work-items and 8 work-groups. Our Algorithms 2 and 3 did not detect
the race because the barrier function cleared all of the previous memory accesses.
However, Oclgrind reports some data races.

Figure 7. The result of detecting data race at Listing 1. Algorithm 2 detects the data
race at the g[gid] = g[gid + 1] + g[gid + 2] statement in Listing 1, and marks them with
yellow color (red box).

Figure 8 illustrates the results of no race and barrier.

Figure 8. The result of detecting data race at Listing 2. Algorithms 2 and 3 did not detect
the race at the statement that Oclgrind reports some data races but they cannot happen
in the real scenario (red box in the right side).

In Figure 8, our CL-Vis platform does not report any data races with yellow
color (the right red box) because the barrier function cleared all of the previous
memory accesses and correctly marks the barrier function with magenta color (the
left red box).
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We also run Listing 3 with one work-group and four work-groups. Our Algo-
rithms 2 and 3 can correctly detect the race from the lock-step execution only in
the four work-group, as shown in Figures 7 and 8.

Figure 9. The result of detecting data race with one work-group at Listing 3. Given that
the accessing statements are at different locations, Algorithm 2 does not report it as a data
race (red box).

Figure 10. The result of detecting data race with four work-groups at Listing 3. The
work-item can run the separate instruction in the different work-group case; therefore, our
algorithm reports the data race (red box).

In the one work-group case, such as Figure 9, all work-items in the same work-
group run the same instruction, and our Algorithm 2 checks that the accessing
statement is the same. Given that the accessing statements are at different locations,
our Algorithm 2 does not report it as a data race. However, in the different work-
group case, such as Figure 10, the work-item can run the separate instruction;
therefore, our algorithm reports the data race (red box).

5.2 Barrier Divergence

We run Listing 4 with four work-items and four work-groups, detect the barrier
divergence through Algorithms 4 and 5, and mark it with magenta as shown in
Figure 11 (red box). In Figure 11, the bar with magenta color shows that work-
items 0 and 2 run the first barrier in Listing 4, but work-items 1 and 3 execute
the second barrier in Listing 4. If all of the work-items meet the same barrier
function, then only one bar with a magenta color exists. Therefore, any researcher
or developer can see that the barrier divergence happened.
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Figure 11. The result of detecting barrier divergence at Listing 4. Algorithms 4 and 5
mark the barrier divergence with magenta in the case of four work-items and four work-
groups.

5.3 Infinite Loop

We run Listing 5 with 128 work-items and 8 work-groups as shown in Figure 12. In
Figure 12, our Algorithm 6 detects the infinite loop and marks it with red color (red
box). It records the global or the affected variables within a loop, then checks that
the exit condition uses the variables. Through this algorithm, our platform detects
the infinite loop, and shows it at the statement while(o > 0) in Listing 5.

Figure 12. The result of detecting infinite loop at Listing 5. Algorithm 6 records the
global or the affected variables within a loop, and checks that the exit condition uses the
variables. It also marks the infinite loop with red color.

5.4 Others

Besides these primary results through the kernels in this paper, we also verify
that our architecture and algorithms can successfully visualize 15 kernels within
Oclgrind. Table 1 summarizes the tested kernels and their sizes of global/local
works. Among the kernels in Table 1, Oclgrind wrongly reports the data races in
the global only fence, intragroup hidden race, local read write race cases because it
does not check the lock-step execution at the GPU. Furthermore, Oclgrind reports
the data races in the local only fence because it does not clear the memory access
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before the barrier function. However, our algorithm correctly finds no data race in
all of those cases.

Group File Global Size Local Size

Barrier
Divergence

barrier different instructions 4, 1, 1 4, 1, 1
barrier divergence 4, 1, 1 4, 1, 1

Data Race

broadcast 4, 1, 1 1, 1, 1
global fence 16, 1, 1 4, 1, 1
global only fence 4, 1, 1 4, 1, 1
global read write race 4, 1, 1 4, 1, 1
global write write race 4, 1, 1 1, 1, 1
increment 4, 1, 1 1, 1, 1
intergroup hidden race 2, 1, 1 1, 1, 1
intergroup race 8, 1, 1 4, 1, 1
intragroup hidden race 2, 1, 1 2, 1, 1
local only fence 16, 1, 1 4, 1, 1
local read write race 4, 1, 1 4, 1, 1
local write write race 4, 1, 1 4, 1, 1
uniform write race 4, 1, 1 4, 1, 1

Table 1. Tested kernels

6 CONCLUSIONS

GPU programming is known to be difficult due to several reasons: difficulty in un-
derstanding the GPU characteristics, which are different from the CPU, and few
of debugging tools compared to the CPU. To reduce these problems and help in
checking the GPGPU programs, we developed the CL-Vis based on Oclgrind. We
also suggest the algorithms for automatic detection of data race with lock-step exe-
cution and barrier function, barrier divergence, and infinite loop. These algorithms
are included in the CL-Vis and verified through various kernels. To the best of our
knowledge, our paper is the first research that visualizes the executed functions of
GPU and suggests an algorithm for detecting infinite loops automatically. Further-
more, our paper suggests the algorithm for detecting data races at the GPU-specific
executions.

However, our CL-Vis and algorithms can be improved more in the following
aspects: our plugin is based on Oclgrind, which is an OpenCL simulator run on the
CPU. However, the real working environment with the GPU can be different. For
example, the actual execution time can be different. If the GPU vendor develops its
simulator that is more similar to its internal operations, then we can visualize the
running codes based on it and see the instructions more correctly. Furthermore, our
race detection algorithm is not aware of the barrier function with a local memory
option. If a work-item meets a barrier function, only the local memory accesses
within the same group should be cleared. The current implementation makes all
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of the global/local memory accesses inactive. Also, our visualization platform has
a limitation in the number of threads due to the restricted memory. Finally, if we
can see the result of each action by a work-item, it can also be helpful to check the
OpenCL program. We have plans to improve these aspects and find other ways to
relieve the burden of GPU users.
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Appendices

Name Description

hostMemoryLoad Called when a host memory is loaded
hostMemoryStore Called when a host memory is stored
instructionExecuted Called when an instruction is executed
kernelBegin Called when a kernel starts
kernelEnd Called when a kernel ends
log Called when a log message is outputted
memoryAllocated Called when a memory is allocated
memoryAtomicLoad Called when an atomic memory is loaded
memoryAtomicStore Called when an atomic memory is stored
memoryDeallocated Called when a memory is deallocated
memoryLoad Called when a memory is loaded
memoryMap Called when a memory is mapped
memoryStore Called when a memory is stored
memoryUnmap Called when a memory is unmapped
workGroupBarrier Called when a barrier is cleared
workGroupBegin Called when a work-group begins
workGroupComplete Called when a work-group completes
workItemBegin Called when a work-item begins
workItemComplete Called when a work-item completes

Table 2. Callback functions

Name Description

instructionBeforeExecuted Called before an instruction is executed
workGroupBarrierBeforeClear Called before a barrier is cleared
workItemBarrier Called when a work-item clears a barrier

Table 3. Added Callback functions
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Abstract. In this study, we evaluate two task frameworks with dependencies for
important application kernels coming from the numerical linear algebra. In this ap-
proach, the algorithms of the matrix factorization are considered, namely the tiled
LU and the WZ factorizations both without pivoting. In tiled algorithms, the oper-
ations are represented as a sequence of small tasks which operate on square blocks
(tiles) of the data. The dependencies among tasks are expressed as a direct acyclic
graph and the runtime system runs the graph on a multicore architecture. The
performance of applications based on the task dependencies is related to efficient
compilers and the runtime systems. We report the performance and the scalability
of two task frameworks with dependencies on the multicore architecture for the
matrix factorizations. Namely, we compare OpenMP and Intel Thread Building
Blocks. Our results show that the number of tiles in both factorizations always
have an impact on the performance and the speedup. Both the frameworks show
their suitability for efficient parallelization of such applications, although both have
their own merits and flaws.

Keywords: Task parallelism, task dependencies, parallel programming model, run-
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1 INTRODUCTION

In recent years task-based parallel programming paradigms became an alternative
to classical thread-based paradigms on the shared memory multicore architectures.
Such task-based implementations of parallel applications are suitable for multicore
architectures. The use of tasks causes higher concurrency and scalability of the
implementations.

However, the task parallelism requires appropriate compilers and execution sys-
tems to perform efficiently. Such systems must decide about load-balancing, over-
heads, and task scheduling. It is difficult to evaluate the efficiency of such run-time
systems because, for various applications, various criteria will be important. Con-
temporary architectures which employ shared-memory parallelism produce appear-
ance of a lot of frameworks exploiting them efficiently – such as OpenMP [6], Intel
Threading Building Blocks (TBB for short) [14], Cilk Plus [24], OpenCL [25] and
others. Thus, choosing a proper framework for a specific problem is not easy.

Different techniques are provided by task-based programming frameworks to
the programmer for writing programs. In some approaches, the algorithms are
represented as graphs of tasks and the runtime system runs the graph on the target
architecture. In the graphs, the nodes are computational tasks performed in kernel
subroutines and edges represent the dependencies among them. In particular, in the
application connected to the numerical linear algebra, direct acyclic graphs (DAGs
or dags) are utilized. A dag is a finite directed graph without cycles. A dag contains
a finite number of vertices and edges. Each edge is directed from one vertex to
another.

Matrix factorization algorithms are dense linear algebra algorithms used often
in many scientific applications. This paper addresses two matrix factorizations. In
addition to the well-known LU factorization, we test another form of factorization,
namely the WZ factorization. The WZ factorization was introduced in [8, 19]. It
was a novel method for solving linear systems in parallel. They both have O(n3)
time complexity using O(n2) data space. The tiled LU and WZ factorization algo-
rithms use the standard set of Basic Linear Algebra Subprograms (BLAS) [7] and
a block array layout for better cache performance. Moreover, the computations on
array tiles (square blocks) fit the task-based parallel model well. The tiled LU and
WZ algorithms can be represented as a dag where nodes are the executed BLAS
routines.

The first contribution of this paper is providing details of implementations of
the tiled LU and WZ factorizations in OpenMP and TBB; the second contribution
is an analysis of the experimental results of these factorization implementations for
two frameworks that support task parallelism with dependencies. In this article, we
investigate two task frameworks, namely OpenMP and Intel TBB. We chose these
frameworks because they are different in the way of implementation development.
OpenMP is an extension to the C/C++ languages and TBB is a C++ library.
These frameworks have also been chosen because they are quite popular, work for
different architectures and CPUs, they can perform differently on different hardware



Assessment of Two Task Frameworks with Dependencies. . . 199

architectures and they differ in their approaches to tasks. To compare OpenMP and
TBB we study the tiled LU factorization without pivoting and the WZ factorization
(also without pivoting).

The rest of this paper is organized as follows: Section 2 shows some related
works. Section 3 presents the tiled LU factorization without pivoting and tiled
WZ factorization without pivoting and shows dags (direct acyclic graphs) for each
algorithm. Section 4 describes the details of parallel implementations of the tiled
LU and tiled WZ algorithms on multicore, shared-memory machines. One of them
relies on the use of the OpenMP task directive with the depend clause. The second
one uses TBB. Section 5 is devoted to the results of numerical experiments carried
out on shared memory multicore architectures and to the comparisons of the two
task-based frameworks, namely OpenMP standard and TBB. Section 6 shows the
conclusions of our research and presents future plans.

2 RELATED WORKS

In this paper, we evaluate two task frameworks with dependencies on the multicore
architecture. Similarly, the issue of the comparison of the task parallel frameworks
in the multicore environments is considered in the works [16, 20, 21, 22].

In the work [16], the tasks without dependencies are considered. The authors
compare OpenMP 3.0 runtimes on unbalanced task graphs against Cilk and Intel
TBB. The conclusion of these studies is the fact that the OpenMP task management
mechanisms are less optimized than those of the other threading approaches, namely
Cilk and Intel TBB.

The evaluation of OpenMP 4.0 tasks with dependencies with the benchmark
called KASTORS consisting of small kernels ported to the OpenMP dependent task
model is described in the paper [22]. KASTORS uses the OpenMP 4.0 task de-
pendency constructs to extend different applications. One with these kernels is the
LU decomposition from the PLASMA library (Parallel Linear Algebra for Scalable
Multicore Architectures) framework [1, 13]. The performance of OpenMP applica-
tions expressing task dependencies is closely related to how efficiently compilers and
runtime systems implement this new feature. The FLAME (Formal Linear Algebra
Method) project [11, 15, 18] is another set of high performance libraries. Moreover,
it is not only software but rather a formal approach to creating correct, fast and
efficient linear algebra algorithms and their implementations.

The author of the work [21] evaluates Intel’s C++ Concurrent Collections (CnC)
and Threading Building Blocks (TBB) libraries for application coming from numer-
ical linear algebra, namely tiled Gauss–Jordan algorithm. The conclusion of these
studies is the fact that CnC is almost as fast as TBB.

The paper [20] aims to evaluate OpenMP, TBB and other ways of parallelization
and optimization of computational problems that need task parallelism as well as
data parallelism. The examples used there are adaptive Simpson’s integration and
Belman-Ford algorithm.
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3 MATRIX DECOMPOSITION

The matrix decomposition is a factorization of a matrix into a product of matri-
ces. We assume that the decomposed matrix is nonsingular, square, and diagonally
dominant (thus, we can use factorization without pivoting). In this section, we
describe two tiled matrix decompositions, namely the well-known tiled LU decom-
position without pivoting and the tiled WZ decomposition (also without pivoting).
Each of the algorithms is expressed in terms of the elementary operations and the
graphs.

3.1 Block LU Factorization

Let the dense square (n × n) diagonally dominant matrix A be partitioned into
q × q tiles of size t × t (n = qt and 1 ≤ t ≤ n) and Aij is a square tile on row i
and column j. The tiled LU factorization algorithm performs the majority of its
floating-point operations (flop) using the level 3 BLAS operations.

The tiled algorithm for the LU factorization may base on the following set of
elementary operations.

• DTRSM(u/nonu, up/lo, l/r, A, X, B). This BLAS subroutine is used to com-
pute X = A−1 ·B (denoted by l), or X = B ·A−1 (denoted by r), where X and
B are s × s matrices, A is a unit (u) or non-unit (nonu), upper (up) or lower
(lo) triangular matrix.

• DGEMM(A, B, C). This BLAS subroutine is used to compute A = −B ·C + A,
where A, B, and C are s× s matrices.

Algorithm 1 presents the tiled LU factorization algorithm expressed in terms of
elementary operations. The circled numbers shown in Algorithm 1 emphasize the
correspondence between the operations and the tasks in Figure 1.

The scheduler executes tasks in any order that respects the dependencies shown
in the dag. This approach is presented in [3] for tiled linear algebra algorithms.
Figure 1 presents a directed acyclic graph for parallel tile LU factorization of a 4× 4
tile matrix. Arrows show dependencies between tasks. The tasks are denoted by
circles. The red circles (with the number 1) represent line 2 in Algorithm 1; the
magenta circles (with the number 2) – line 4; the green circles (with the number 3) –
line 7 and the blue ones (with the number 4) correspond to line 11.

3.2 Block WZ Factorization

The WZ factorization is described in [8, 19, 23]. Let us assume that A is a square,
nonsingular and diagonally dominant matrix of the size n × n (we consider only
even n, for simplicity’s sake).

We are to find matrices W and Z that fulfill WZ = A. The main diagonal of
the matrix W consists only of ones. The second diagonal consists of zeros. These
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Algorithm 1 Tiled LU factorization

Require: A, q
Ensure: L, U
1: for k ← 1, q do
2: LU(Akk,Lkk,Ukk) 1©
3: for i← k + 1, q do
4: DTRSM(nonu, up, q, Ukk, Lik, Aik) 2©
5: end for
6: for j ← k + 1, q do
7: DTRSM(u, lo, l, Lkk, Ukj, Akj) 3©
8: end for
9: for i← k + 1, q do

10: for j ← k + 1, q do
11: DGEMM(Aij, Lik, Ukj) 4©
12: end for
13: end for
14: end for

diagonals divide the matrix into four triangles. The left and right triangles contain
non-zeros, and the top and bottom ones contain only zeros. The matrix Z has non-
zeros where the matrix W has zeros or ones – and vice versa. The first part of the
WZ factorization algorithm consists of setting successive parts of columns of the
matrix A to zeros. In the first step, we do that with the elements in the 1st and
nth columns – from the 2nd row to the (n− 1)th row. Next, we update the inner
submatrix of A of the size (n− 2)× (n− 2) and for k = 2, . . . , n

2
we zero elements

in the kth and (n− k + 1)st columns – from the (k + 1)st row to the (n− k)th row
and we update the inner submatrix.

The tiled WZ factorization algorithm [5] performs the majority of its floating-
point operations (flop) using the level 3 BLAS operations. We assume that A is
a square nonsingular matrix of an even size n and it is partitioned on r× r (r is also
even) parts (r of each side – rows and columns). The tiled WZ algorithm consists of
four repeating stages r/2 times. Stage 1 (line 3 in Algorithm 2) comprises the WZ
factorization of a matrix built from four corner blocks of the input matrix. Stage 2
(lines 4–11 in Algorithm 2) computes 2s (where s = n

r
) columns of the matrix W –

s right columns and s left columns. Stage 3 (lines 12–19 in Algorithm 2) computes
2s rows of the matrix Z – s bottom rows and s top rows. Stage 4 (lines 20–25
in Algorithm 2) updates the inner submatrix of A – that is, A without outer 2s
columns and 2s rows. In the next step, the algorithm is repeated for this inner
matrix. The tiled algorithm for the WZ factorization will be based on the following
set of elementary operations.

• DTRSM(u/nonu, up/lo, l/r, A, X, B). This BLAS subroutine is used to com-
pute X = A−1 · B (denoted by l), or X = B · A−1 (denoted by r), where X
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Figure 1. A directed acyclic graph for the tile LU factorization of a 4× 4 tiled matrix

and B are s×s matrices, A is a unit (u) or non-unit (nonu), upper (up) or lower
(lo) triangular matrix.

• DGEMM(A, B, C). This BLAS subroutine is used to compute A = −B ·C + A,
where A, B, and C are s× s matrices.

• DGEMM copy(A, B, C, D). This BLAS subroutine is used to compute A = −B ·
C + D, where A, B, C, and D are s× s matrices.
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Algorithm 2 presents the tiled WZ factorization algorithm expressed with the
above-mentioned operations (DTRSM, DGEMM, DGEMM copy) for a nonsingular matrix A
partitioned into r × r blocks. The matrices W and Z are the results of this algo-
rithm. Again, the circled numbers in Algorithm 2 show which operations belong to
respective tasks in Figure 2.

Algorithm 2 Tiled WZ factorization

Require: A, r
Ensure: W, Z
1: for k ← 1, r/2 do
2: k2 ← r − k + 1

3: WZ(

[
Akk Akk2

Ak2k Ak2k2

]
,

[
Wkk Wkk2

Wk2k Wk2k2

]
,

[
Zkk Zkk2

Zk2k Zk2k2

]
) 1©

4: DTRSM(nonu, up, l, Zkk, D1, Zkk2) 1©
5: DGEMM copy(E1, Zk2k, D1, Zk2k2) 1©
6: DTRSM(u, lo, r, Wkk, D2, Wk2k) 1©
7: DGEMM copy(E2, D2,Wkk2,Wk2k2) 1©
8: for i← k + 1, k2 − 1 do
9: DGEMM(Aik2, Aik, D1) 2©

10: DTRSM(nonu, lo, r, E1, Wik2, Aik2) 2©
11: DGEMM(Aik, Wik2, Zk2k) 2©
12: DTRSM(nonu, up, r, Zkk, Wik, Aik) 2©
13: end for
14: for i← k + 1, k2 − 1 do
15: DGEMM(Ak2i, D2, Aki) 3©
16: DTRSM(u, up, l, E2, Zk2i, Ak2i) 3©
17: DGEMM(Aki, Wkk2, Zk2i) 3©
18: DTRSM(u, lo, l, Wkk, Zki, Aki) 3©
19: end for
20: for j ← k + 1, k2 − 1 do
21: for i← k + 1, k2 − 1 do
22: DGEMM(Aij, Wik, Zkj) 4©
23: DGEMM(Aij, Wik2, Zk2j) 4©
24: end for
25: end for
26: end for

Algorithm 2 can be represented as a dag. Figure 2 shows such a dag for the tiled
WZ factorization when Algorithm 2 is executed for a 4× 4 tiled matrix. This figure
also corresponds to the lines in Algorithm 2. The tasks are denoted by circles and
the red circles (with the number 1) represent lines 3–7; the magenta circles (with
the number 2) – lines 9–12; the green circle (with the number 3) – lines 15–18 and
the blue ones (with the number 4) correspond to lines 22–23.
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Figure 2. A dag for the tiled WZ factorization of a 4× 4 tiled matrix

3.3 Theoretical Speedup – Amdahl’s Law

We compute a maximal theoretical speedup of our algorithms from Amdahl’s law,
using the cost of the sequential traditional versions, that is:

CLU(n) =
2

3
n3 − 1

2
n2 − 1

6
n,

CWZ(n) =
2

3
n3 − 7

3
n− 3.

Let us compute the cost of Algorithm 2, namely CWZ(n, s) (as it depends not
only on n but also on the size s of the tile). To achieve this, we are to compute
costs of the particular stages 1–4 which we denote CWZ1, CWZ2, CWZ3 and CWZ4,
respectively (n = r · s):

CWZ1(s) = CWZ(2s) =
16

3
s3 − 7

3
s− 3,

CWZ2(k, r, s) = CWZ3(k, r, s) = 3s3 + s2 +
r−k∑

i=k+1

(6s3 + 2s2)

= 3s3 + s2 + (6s3 + 2s2)(r − 2k),

CWZ4(k, r, s) =
r−k∑

i=k+1

r−k∑
j=k+1

(4s3 + 2s2) = (4s3 + 2s2)(r − 2k)2.
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Thus, the number of floating-point arithmetic operations for the tiled WZ fac-
torization algorithm (Algorithm 2) is:

CWZ(n, s) =

r
2∑

k=1

(CWZ1(s) + 2CWZ2(k, r, s) + CWZ4(k, r, s))

=
n3(4s + 2) + 6n2s2 + n(6s3 − 2s2 − 7s− 9)

6s
.

Analogously, we can obtain the cost of the tiled LU factorization (here, n =
q · t and the size of the block is t; we present only formulas necessary for further
considerations), namely:

CLU1(t) =
2

3
t3 − 1

2
t2 − 1

6
t,

CLU(n, t) =

q∑
k=1

(CLU 1(t) + 2CLU 2(k, q, t) + CLU 4(k, q, t))

=
n3(4t + 2)− 3n2t− n(2t2 + t)

6t
.

The maximal theoretical speedup for p threads can be estimated from Amdahl’s
law. To use this law we must determine which part must be executed sequentially,
and which part can be executed in parallel. In our algorithms, the only parts which
have to be executed sequentially are the first stages (denoted with 1©).

Thus, let PWZseq be the relative cost of this sequential part of Algorithm 2. The
cost of one execution of stage 1 is CWZ1, but it is executed r

2
times. So:

PWZseq(n, s) =
r
2
· CWZ1(s)

CWZ(n, s)
=

16s3 − 7s− 9

n2(4s + 2) + 6ns2 + 6s3 − 2s2 − 7s− 9
.

According to Amdahl’s law [10], the best theoretical speedup for the parallel
tiled WZ factorization algorithm (for p threads, n× n matrix and s× s tile) is:

SWZ(p;n, s) =
1

PWZseq(n, s) +
1−PWZseq(n,s)

p

.

Analogously, we can obtain similar formulas for the tiled LU factorization (here,
n = q · t and the size of the block is t; we present only formulas necessary for further
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considerations), namely:

CLU1(t) =
2

3
t3 − 1

2
t2 − 1

6
t,

CLU(n, t) =

q∑
k=1

(CLU 1(t) + 2CLU 2(k, q, t) + CLU 4(k, q, t)

=
n3(4t + 2)− 3n2t− n(2t2 + t)

6t
,

PLUseq(n, s) =
q · CLU1(t)

CLU(n, t)
=

4t3 − 3t2 − t

n2(4t + 2)− 3nt− 2t2 − t
,

SLU(p;n, t) =
1

PLUseq(n, t) +
1−PLUseq(n,t)

p

.
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Figure 3. The theoretical maximum speedup for the tiled LU and WZ implementations

Figure 3 shows the theroetical maximum speedup as a function of the size of
the block, for fixed n = 1 000 and for selected numbers p of threads (p ∈ {12, 24}).
We can see from Figure 3 that the speedup should be the best for as small blocks
as possible. However, smaller blocks require more communication and synchroniza-
tion – which is not counted in Amdahl’s law. So the size of the block has to be
chosen experimentally.

4 IMPLEMENTATIONS

In our work, the matrices are stored as one-dimensional arrays of the tiles and we
refer to it as a tiled layout, similarly to [3]. In the tile layout, the matrices are
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represented as small square tiles of data contiguous in memory so that each core can
operate on an individual tile independently.

4.1 OpenMP

In our first implementations, we employ the OpenMP task directive and the BLAS
routines for matrices’ operations. We call these implementations TLU(q)-OpenMP
and TWZ(r)-OpenMP. The well-known OpenMP standard was extended with the
task construct introduced in version 3.0 [16] with support for task dependencies by
means of the depend clause. The clause allows defining lists of data items that are
only inputs, only outputs, or both inputs and outputs. The annotated task will be
scheduled for execution only when the dependencies expressed by those data items
are satisfied with respect to preceding tasks in the same task region. This task is
bound to a thread from the current team of threads. The execution of the new task
can be instant or delayed according to the task schedule and availability of threads.
The OpenMP runtime provides a dynamic scheduler of the tasks while avoiding data
hazards by keeping track of dependencies. The dynamic scheduler means that the
tasks are queueing and executed as quickly as possible. Algorithms 3 and 4 present
the tiled factorization with the #pragma omp task with dependencies (and the color
circles representing the content of the particular tasks).

Algorithm 3 Tiled LU factorization – task-based with dependencies

Require: A, q
Ensure: L, U
1: for k ← 1, q − 1 do
2: #pragma omp task depend(in:Akk) depend(out: Lkk) depend(out: Ukk)

3: LU(Akk,Lkk,Ukk) 1©
4: for i← k + 1, q do
5: #pragma omp task depend(in:Aik) depend(in: Ukk) depend(out: Lik)

6: DTRSM(nonu, up, q, Ukk, Lik, Aik) 2©
7: end for
8: for j ← k + 1, q do
9: #pragma omp task depend(in:Akj) depend(in: Lkk) depend(out: Ukj)

10: DTRSM(u, lo, l, Lkk, Ukj, Akj) 3©
11: end for
12: for i← k + 1, q do
13: for j ← k + 1, q do
14: #pragma omp task depend(in:Lik) depend(in: Ukj) depend(inout: Aij)

15: DGEMM(Aij, Lik, Ukj) 4©
16: end for
17: end for
18: end for
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Algorithm 4 Tiled WZ factorization – task-based with dependencies

Require: A, r
Ensure: W, Z
1: for k ← 1, r/2 do
2: k2 ← r − k + 1
3: #pragma omp task depend(in: Akk, Akk2, Ak2k2, Ak2k)

depend(out: Wkk, Wkk2, Wk2k2, Wk2k, Zkk, Zkk2, Zk2k2, Zk2k, D1, E1, D2, E2 )

4: WZ(

[
Akk Akk2

Ak2k Ak2k2

]
,

[
Wkk Wkk2

Wk2k Wk2k2

]
,

[
Zkk Zkk2

Zk2k Zk2k2

]
) 1©

5: DTRSM(nonu, up, l, Zkk, D1, Zkk2) 1©
6: DGEMM copy(E1, Zk2k, D1, Zk2k2) 1©
7: DTRSM(u, lo, r, Wkk, D2, Wk2k) 1©
8: DGEMM copy(E2, D2,Wkk2,Wk2k2) 1©
9: for i← k + 1, k2 − 1 do

10: #pragma omp task depend(in: Aik, Aik2, Zkk, Zk2k, D1, E1)

depend(out: Wik, Wik2)

11: DGEMM(Aik2, Aik, D1) 2©
12: DTRSM(nonu, lo, r, E1, Wik2, Aik2) 2©
13: DGEMM(Aik, Wik2, Zk2k) 2©
14: DTRSM(nonu, up, r, Zkk, Wik, Aik) 2©
15: end for
16: for i← k + 1, k2 − 1 do
17: #pragma omp task depend(in: Ak2i, Aki, Wkk2, Wkk, D2, E2)

depend(out: Zki, Zk2i)

18: DGEMM(Ak2i, D2, Aki) 3©
19: DTRSM(u, up, l, E2, Zk2i, Ak2i) 3©
20: DGEMM(Aki, Wkk2, Zk2i) 3©
21: DTRSM(u, lo, l, Wkk, Zki, Aki) 3©
22: end for
23: for j ← k + 1, k2 − 1 do
24: for i← k + 1, k2 − 1 do
25: #pragma omp task depend(in: Wik, Wik2, Zkj, Zk2j) depend(out: Aij)

26: DGEMM(Aij, Wik, Zkj) 4©
27: DGEMM(Aij, Wik2, Zk2j) 4©
28: end for
29: end for
30: end for



Assessment of Two Task Frameworks with Dependencies. . . 209

It would seem that keeping some matrices in cache between tasks would be
profitable. However, forcing it is not possible. Moreover, even if it would be possible,
it is not desirable – we use tasks in our implementations and the data are in the
cache during one task execution (if the block size is not too big), but locking them
between tasks would restrict the task scheduler. The task scheduler itself has to
decide, which tasks are to be run on which processors, considering the cache content
and the dependencies.

4.2 TBB

Our second set of implementations uses Intel Thread Building Blocks (TBB) and
similarly, as in our previous implementations, they call the BLAS routines for matrix
operations. We denote these implementations TLU(q)-TBB and TWZ(r)-TBB. The
Intel Threading Building Blocks (Intel TBB) [12, 17] is a C++ template library
for parallel programming on multicore architectures. This library provides parallel
constructs like algorithms, containers, and tasks which the programmer can use to
implement an algorithm and run it in parallel.

The TBB task interface requires the declaration of a new class extending the
task class and the creation of task object instances. A member function executes the
work of the task. However, there are also other tools to run a task-based algorithm –
and one of them is the flow graph.

The greatest advantage of this approach is the separation of concerns. We can
do the following implementation jobs independently:

• describe the algorithm;

• design and implement small independent computational kernels;

• connect them with the graph to schedule them efficiently.

The use of the flow graph (which can be an arbitrary directed graph, not only
a dag) in TBB is different from the OpenMP. Here, the programmer has to build
a dependency graph on his own – quoting the dependencies is not enough. For build-
ing the graph, there are (among others) following elements (all from the tbb::flow

namespace):

• the class graph – this is the main class which provides the graph implementation;

• the class template continue node – this is an auxiliary class which represents
a single node of the graph – and a task at the same time. The main job of the
node is storing a functor which describes actions to be performed on this node.

• the class continue msg – it is a helper class used as a signal between consecutive
nodes;

• the function template make edge connects the nodes and thus, it determines
the sequence of the nodes (and the actions, at the same time) and – which can
be more important – also the dependencies between nodes. A continue node



210 J. Bylina

can perform any actions if and only if all its previous nodes (connected with it
directly by edges) finished their actions.

We should also mention try put (a node method which sends the first continue msg

in order to start the computations) and wait for all (a graph method which waits
for all the computations to finish).

Some fragments of the code of TLU(q)-TBB are shown in Listing 1 (it is
LU Graph – the main class responsible for building the graph and conducting the
computations).

The maps (nodes lu, nodes U, nodes L, nodes X) store (smart) pointers to the
nodes and are crucial in building the graph (thanks to them, all the created nodes
are easy to reference).

The constructor creates nodes and edges with the use of the functions: red node,
green node, magenta node and blue node (names according to colors from Fig-
ure 1). Only one (green node) of these functions is shown – the others are similar.

Then, we have some helper functions (red action, green action,
magenta action and blue action) which describe the desired computational ac-
tions for respective nodes and return computational kernels in the form of lambdas.
In them, we use some macros but there are just BLAS routines inside. Again, only
one function (magenta action this time) is fully shown here.

Finally, we can see the method run which starts the computations and waits for
them to finish.

The idea of the TWZ(r)-TBB implementation is the same – although the depen-
dencies are somewhat different (see Figure 2) and the kernels are more complicated
(what can be inferred from Algorithm 4).

5 NUMERICAL EXPERIMENTS

We tested the performance of two matrix decompositions, namely the tiled LU
factorization and the tiled WZ factorization. We compared four implementations of
these matrix decompositions, that is:

• TLU(q)-OpenMP – a parallel implementation of the tiled LU factorization with
the use of single-threaded level 3 BLAS routines (DTRSM and DGEMM) from the
MKL library and the OpenMP standard with tasks and the dynamic scheduling;

• TWZ(r)-OpenMP – a parallel implementation of the tiled WZ factorization with
the use of single-threaded level 3 BLAS routines (DTRSM and DGEMM) from the
MKL library and the OpenMP standard with tasks and the dynamic scheduling;

• TLU(q)-TBB – a parallel implementation of the tiled LU factorization with the
use of single-threaded level 3 BLAS routines (DTRSM and DGEMM) from the MKL
library and a TBB flow graph;

• TWZ(r)-TBB – a parallel implementation of the tiled WZ factorization with the
use of single-threaded level 3 BLAS routines (DTRSM and DGEMM) from the MKL
library and a TBB flow graph.
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using namespace tbb::flow;

class LU_Graph {

private:

graph g;

/* other class members */

std::map <std::vector <int >,

std:: shared_ptr <continue_node <continue_msg >>>

nodes_lu , nodes_U , nodes_L , nodes_X;

public:

LU_Graph(int q, /* other parameters */) { /*...*/ }

void red_node(int k) { /*...*/ }

void green_node(int k, int i) {

nodes_U[ {k, i} ] =

std:: make_shared <continue_node <continue_msg >>

(g,

green_action(k, i));

make_edge (* nodes_lu.at({k}),

*nodes_U.at({k, i}));

}

void magenta_node(int k, int j) { /*...*/ }

void blue_node(int k, int i, int j) { /*...*/ }

auto red_action(int k) { /*...*/ }

auto green_action(int k, int i) { /*...*/ }

auto magenta_action(int k, int j) {

return [=]( const continue_msg &) {

TLU_DTRSM_no_copy(TLU_u , TLU_lo , TLU_l ,

TILE_ADDR_X(L, k, k),

TILE_ADDR_X(A, k, j));

};

}

auto blue_action(int k, int i, int j) { /*...*/ }

void run() {

nodes_lu.at({0})-> try_put(continue_msg ());

g.wait_for_all ();

}

};

Listing 1. Fragments of the main class responsible for building the graph and conducting
the computations in the TLU(q)-TBB implementation
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Table 1 shows details of the specification of the hardware and software used
in the numerical experiment. The flags used in compilation and linking were:
-mkl=sequential -fopenmp -O3 -ip -no-prec-div -fp-model fast=2

-std=c++14 -ltbb. The theoretical peak performance (in Gflops) can be computed
from the specification, with the use of the formula:

# of cores× clock frequency in GHz× flops per cycle = 24× 2.3× 16

= 883.2 [Gflops]

CPU 2× Intel Xeon E5-2670 v.3
(Haswell)

# of cores 24 (12 per socket)
# of threads 48 (2 per core)
clock 2.30 GHz
level 1 data cache 32 kB per core
level 2 cache 256 kB per core
compiler Intel ICC 16.0.0
BLAS/LAPACK libraries MKL 2016.0.109

Table 1. Hardware and software used in the experiments

The input matrices were generated by the authors. They were random, square,
dense matrices, with a dominant diagonal of even sizes (1 024, 2 018, . . . 14 336).
Various numbers of tiles were tested, namely, each matrix was divided into 16, 32,
64, and 128 tiles for each side (both for the rows and the columns). The matrices
are stored (from the beginning) in a tiled format [9] – as shown in Figure 4.

Figure 4. Memory layout of the test matrices. Arrows show data sequence in memory
(black: within a tile; red: between tiles).

The performance times were measured with the use of a standard function,
namely (omp get wtime()). The measured performance time does not include the
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time needed for the matrix generation and for storing it in the aforementioned tiled
format. However, it was quite short (O(n2)), relative to the time of the factorizations
(O(n3)).

We set the number of OpenMP threads using the omp set num threads function
and the number of TBB threads with the use of tbb::task scheduler init. All
the experiments reported below were performed with the use of the double-precision
arithmetic.

5.1 Performance

In our experiments, as a metric, we use the number of floating-point operations per
second (flops). The number of floating point operations for both the LU factorization
and the WZ factorization of the matrix of the size n × n is 2

3
n3 + O(n2), so it

approximately equals 2
3
n3.

Thus, to obtain the metric in Gflops (= 109 flops) we use the following formula

2n3

3 · T · 109
,

where T is the execution time of a measured implementation. This metric allows
comparing all implementations with the same measure.

Figure 5 presents the performance (in Gflops) of the TWZ(r)-OpenMP, TWZ(r)-
TBB, TLU(q)-OpenMP and TLU(q)-TBB for the number of threads 24 for four
different number of tiles (16, 32, 64, 128) as a function of the matrix size. We tested
matrices of the sizes being multiples of 1 024, thus we were limited to the numbers
dividing 1 024, that is, powers of 2. Thus, we chose above-mentioned numbers.
However, some other tests (conducted on the matrix of the size 15 120 which has
many more divisors) showed that the best results are obtained for q between 32 and
64 (LU) and r between 64 and 128 (WZ).

We can observe that the number of tiles has a great impact on the performance.
For a wrongly chosen number of tiles (especially in the WZ factorization), the per-
formance can drop drastically (e.g., even to about 100 Gflops for WZ with r = 16
in both frameworks). For the LU factorization and q = 128, the performance is also
poor. Having analyzed all the experiments for TLU-OpenMP, we can see that the
values q = 16 and q = 128 can be dismissed. On the other hand, for smaller matrices
(up to the size 8 192), q = 32 is the best and for bigger ones (12 288 and more), we
should choose q = 64. Between 8 192 and 12 288, the choice is ambiguous – q = 32
or q = 64 is better, but they are similar. For TLU-TBB, we can ignore q = 128 and
q = 64 (never being the best choices). For small matrices (up to 6 144), the better
is smaller of the remaining ones (that is, q = 16) and for bigger matrices (7 168 and
more), the better is q = 32. For the tiled LU factorization, both frameworks are very
close – usually, OpenMP prevails, but the differences are very minute. However, we
can see that in TLU, OpenMP needs q to be twice as big as for TBB.

After the analysis for TWZ-OpenMP, we can see that this implementation be-
haves the best for r = 64 (up to the size 10 240) and for r = 128 (for the matrix



214 J. Bylina

size 11 264 and more). The parameter r = 16 is never the best and for very small
matrices, r = 32 gives good results. The TWZ-TBB implementation gives the best
results for r = 32 (but only for the size 4 096 and less) and for r = 64 (from 5 120).
The other values (r = 16 and r = 128) do not perform well. Again, the best results
for both tiled WZ implementations are very close and we cannot assess which is the
best. Moreover, in TWZ, we can also see that OpenMP needs r to be twice as big
as for TBB.

Both the algorithms perform better in TBB if the parameter (q and r) is two
times smaller than in OpenMP. In other words, the TBB versions work better for
bigger portions of the data. Precisely: four times bigger – because the optimal linear
size of the tile is twice bigger in TBB than in OpenMP; so the amount of data is
four times bigger in TBB. That leaves an open question: why is this so?

To sum up, the performance depends strongly on the size of the matrix (what
is quite obvious) and on the number of tiles (that is q or r) – thus, indirectly on
the sizes of a single tile. The framework itself (OpenMP or TBB) has only a slight
impact.

Implementation Time Performance % of
[s] [Gflops] Peak Performance

MKL LU 3.15 623.67 70.61 %
TLU(64)-OpenMP 2.98 658.28 74.53 %
TLU(32)-TBB 3.24 606.66 68.69 %
TWZ(128)-OpenMP 3.85 509.62 57.70 %
TWZ(64)-TBB 3.68 533.40 60.39 %

Table 2. The comparison of the best times and performances for four presented imple-
mentations for 24 threads and the matrix size of 14 336

In Table 2, we can see the best times and performances (with its values of r or q)
and peak performance percentages, chosen experimentally for a matrix of size 14 336
and 24 threads – for each considered implementation and for a vendor MKL LU
factorization. For the largest matrix size (14 336), the TLU algorithm achieves the
best performance in the OpenMP implementation, although for the TWZ algorithm,
the TBB implementation is better. Our implementations gave comparable results
to the results of a vendor implementation (namely, the LU factorization without
pivoting from the MKL library, that is dgetrfnpi). The same tests were also
conducted for similar sizes (like 14 208, 14 464 and others; to exclude problems
with cache associativity) and the general performance is very similar. However,
not always the TLU(64)-OpenMP implementation was the best.

5.2 Speedup

In our proposed implementations only Stage 1 is not parallelized. In this section,
we investigate the influence of this sequential part on the speedup possibilities.
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Figure 5. The performance in Gflops of the parallel tiled LU and WZ factorization algo-
rithms for the number of threads 24 for four different number of tiles (16, 32, 64, 128) as
a function of the matrix size
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Let Tp be the time to perform the computation using p threads. Speedup for p
threads is defined as:

Sp =
T1

Tp

.

Figure 6 shows the experimental speedup (relative to the same algorithm run
with the use of one thread – the times are shown in Table 3) as a function of the
number of threads (1–27 threads) for different values of r and q for a matrix of the
size 14 336.

Considering the best choices of q and r, the OpenMP implementations give
a significantly better speedup (for 24 threads, it is more than 20). The best what
the TBB implementations gain is speedup of 20. However, Table 3 shows that the
TBB implementations have better performance for one thread, and thus they achieve
poorer results in terms of relative speedup (Section 5.1 shows similar performance
for OpenMP and TBB implementations of the same algorithm).

Implementation Time [s]
1 Thread 12 Threads 24 Threads

TLU(64)-OpenMP 68.93 5.84 2.98
TLU(32)-TBB 62.99 5.48 3.23
TWZ(128)-OpenMP 75.05 6.98 3.85
TWZ(64)-TBB 70.02 6.25 3.65

Table 3. The performance time for selected numbers of threads and the matrix size of
14 336

We can see that the OpenMP implementations scale better – up to 24 threads.
For more threads, the hyperthreading turns on and it does not improve the per-
formance – aggravating the results sometimes. In the case of TBB, the scalability
collapses somewhat earlier. For both frameworks, we should choose the maximum
number of physical cores as the number of threads, that is, 24 in our environment.

The speedup is sensitive to the values r and q. However, both implementations
are scalable (up to the number of physical cores, that is 24) for well-chosen q and r.

5.3 Scalability

Figure 7 shows the weak scalability of the algorithms. The tests here are run for
various numbers of processors, however, the amount of the work is chosen to be
proportional to the number of employed cores. To achieve a nice weak scalability [10],
we expect the plots (of the execution time versus the number of processors employed)
to be horizontal. We can see that both frameworks (that is OpenMP and TBB) and
both methods (LU and WZ) achieve similar, very good, weak scalability.

Figure 8 shows the strong scalability of the algorithms. This time, the tests
were run for various numbers of processors, but the amount of the work was always
the same (the size of the matrix was 14 336). The plot (of the execution time versus
the number of processors employed) was done in log-log scales [10]. In such a plot,
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Figure 6. The speedup of the parallel tiled LU and WZ factorization algorithms as a func-
tion of the number of threads for different values of r and q for matrix size equals 14 336
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a good strong scalability should give a straight line with the slope −1. We can see
that the scalability is not bad for all cases. However, close to the maximal number of
processors, something spoils (what can be also seen in Figure 6). It can be explained
by an automatic constraint on the energy used by the processor.
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Figure 8. Strong scalability of the tested algorithms for the selected parameters

6 CONCLUSION

In this work, we reported numerical experiments aimed to compare two parallel task
frameworks, namely OpenMP and TBB for two matrix factorizations. We focused
on two matrix factorizations which use BLAS functions from MKL library and are
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computationally intensive. We implemented these matrix factorizations using tasks
with dependencies in OpenMP and TBB. We chose these frameworks because they
differ significantly in their approach to defining dags and dependencies. Moreover,
OpenMP is a language extension, but TBB is an ordinary library.

The TBB library seems to be more flexible – as it is just a library seamlessly
fitting into the C++ language and its other libraries. Arbitrary C++ types can be
used with TBB, whereas OpenMP have troubles with some more complicated types
(like classes, templates, lambdas) and they cannot be used directly. High-level
abstraction (provided by these types) does not port well into OpenMP. Conversely,
in TBB they are treated quite transparently, because TBB is not an overlay onto
the language – as OpenMP is. As a library, TBB synergizes with C++ standard
library as well as with external libraries. We can also easily use templates and
lambdas which facilitate the creation of flexible and reusable code. On the other
hand, in OpenMP, pragmas do not accept many C++ constructs (sometimes not
even macros) and we must employ some tricks to achieve our goals.

The TBB library also offers more tools to better control the execution. With
the use of OpenMP, we are not building the graph – this is done by the compiler and
run-time system. We can only give the dependencies and trust that the graph will
be correct. However, sometimes (especially when the graph is explicit – as in our
case) it is easier to build the graph than to write complex (and sometimes artificial)
dependencies. Moreover, the dependency graph built by a programmer in TBB can
be an arbitrary graph (contrary to OpenMP, where graphs are not arbitrary and
they must be given implicitly, by dependencies – as we mentioned above). Each
graph node represents a task and its edges describe arbitrary dependencies between
them. The task scheduling is a very important part of TBB. It automatically al-
locates tasks to workers (threads) to maintain the best load balancing. But the
main advantage of the TBB is that it is completely compatible with the C++ lan-
guage and can be freely used with other libraries – which is priceless in advanced
applications.

On the other hand, OpenMP is very popular and quite simple to use. It is also
a portable and (de facto) standard approach. However, OpenMP has some limita-
tions. It causes problems when dependencies are more complicated, does not allow
using some C/C++ constructs (even some simple expressions or data members) in
pragmas and clauses, forcing a programmer to use unnatural notations (as illegible
casts). Specifically to dependencies, if array sections appear in them, they must
be either the same or disjoint. It is also a C-based standard so it does not treat
well some C++ elements (like references). Thus, OpenMP is a common and quite
efficient tool, although TBB is more programmer-friendly and sometimes TBB’s
features and flexibility make TBB the only option.

There was not a clear performance relation among the considered frameworks,
and the differences between them were small in most cases. In fact, the average
performance difference between the slowest and the fastest implementation in our
tests was about 19 %. However, the OpenMP implementations relative speedup is
clearly better than that for TBB.
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There is also a programmer’s experience issue. For simpler projects, OpenMP
seems easier – especially when we have a working sequential implementation. On
the other hand, for more complicated problems, notably ones needing some code
reuse (as, for example, refinement techniques [2, 4] where the same algorithm is
used with different precision types), TBB is better for an experienced developer,
although, TBB is also more demanding. However, the merits of TBB (its flexibility,
generality, code readability) prevails over the OpenMP (its limitations and error
proneness).

Our corollaries can be generalized to a wide class of algorithms. Namely, all the
linear algebra algorithms – as, for example, various factorizations (Cholesky, QR,
etc.), matrix-matrix multiplication (GEMM) and iterative methods (Jacobi, Gauss-
Seidel, GMRES) – which can be designed as a tiled version (that is, with the use
of square blocks and the special storing format mentioned in Section 5) can be also
implemented with tasks (using both OpenMP and TBB) similarly.

Further work is needed to determine other ways in which OpenMP and TBB
frameworks could potentially be improved and whether additional information could
be provided to enable better performance. Also, there is a plenty other computing
areas where we can use the task approach – as, for example, in sparse computations,
machine learning, etc.

REFERENCES

[1] Agullo, E.—Demmel, J.—Dongarra, J.—Hadri, B.—Kurzak, J.—
Langou, J.—Ltaief, H.—Luszczek, P.—Tomov, S.: Numerical Linear Alge-
bra on Emerging Architectures: The PLASMA and MAGMA Projects. Journal of
Physics: Conference Series, Vol. 180, 2009, No. 1, Art. No. 012037, doi: 10.1088/1742-
6596/180/1/012037.

[2] Baboulin, M.—Buttari, A.—Dongarra, J.—Kurzak, J.—Langou, J.—
Langou, J.—Luszczek, P.—Tomov, S.: Accelerating Scientific Computations
with Mixed Precision Algorithms. Computer Physics Communications, Vol. 180, 2009,
No. 12, pp. 2526–2533, doi: 10.1016/j.cpc.2008.11.005.

[3] Buttari, A.—Langou, J.—Kurzak, J.—Dongarra, J.: A Class of Parallel
Tiled Linear Algebra Algorithms for Multicore Architectures. Parallel Computing,
Vol. 35, 2009, No. 1, pp. 38–53, doi: 10.1016/j.parco.2008.10.002.

[4] Bylina, B.—Bylina, J.: Mixed Precision Iterative Refinement Techniques for the
WZ Factorization. Proceedings of the 2013 Federated Conference on Computer Scien-
ce and Information Systems, 2013, pp. 425–431.

[5] Bylina, B.—Bylina, J.: OpenMP Thread Affinity for Matrix Factorization on
Multicore Systems. Proceedings of the 2017 Federated Conference on Computer Scien-
ce and Information Systems (FedCSIS), Annals of Computer Science and Information
Systems, Vol. 11, 2017, pp. 489–492, doi: 10.15439/2017F231.

https://doi.org/10.1088/1742-6596/180/1/012037
https://doi.org/10.1088/1742-6596/180/1/012037
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.15439/2017F231


Assessment of Two Task Frameworks with Dependencies. . . 221

[6] Chandra, R.—Dagum, L.—Kohr, D.—Maydan, D.—McDonald, J.—
Menon, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San
Francisco, 2001, doi: 10.1016/b978-155860671-5/50003-7.

[7] Dongarra, J. J.—Du Croz, J.—Hammarling, S.—Duff, I. S.: A Set of Level-3
Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software,
Vol. 16, 1990, pp. 1–17, doi: 10.1145/77626.79170.

[8] Evans, D. J.—Hatzopoulos, M.: A Parallel Linear System Solver. Interna-
tional Journal of Computer Mathematics, Vol. 7, 1979, No. 3, pp. 227–238, doi:
10.1080/00207167908803174.

[9] Gustavson, F. G.: High-Performance Linear Algebra Algorithms Using New Gen-
eralized Data Structures for Matrices. IBM Journal of Research and Development,
Vol. 47, 2003, No. 1, pp. 31–55, doi: 10.1147/rd.471.0031.

[10] Heath, M. T.: A Tale of Two Laws. The International Journal of High Per-
formance Computing Applications, Vol. 29, 2015, No. 3, pp. 320–330, doi:
10.1177/1094342015572031.

[11] Igual, F. D.—Chan, E.—Quintana-Ort́ı, E. S.—Quintana-Ort́ı, G.—
van de Geijn, R. A.—Van Zee, F. G.: The FLAME Approach: From Dense Linear
Algebra Algorithms to High-Performance Multi-Accelerator Implementations. Jour-
nal of Parallel and Distributed Computing, Vol. 72, 2012, No. 9, pp. 1134–1143, doi:
10.1016/j.jpdc.2011.10.014.

[12] Kukanov, A.—Voss, M. J.: The Foundations for Scalable Multi-Core Software
in Intel Threading Building Blocks. Intel Technology Journal, Vol. 11, 2007, No. 4,
pp. 309–322, doi: 10.1535/itj.1104.05.

[13] Kurzak, J.—Luszczek, P.—YarKhan, A.—Faverge, M.—Langou, J.—
Bouwmeester, H.—Dongarra, J.: Multithreading in the PLASMA Library.
In: Rajasekaran, S., Fiondella, L., Ahmed, M., Ammar, R. A. (Eds.): Multicore
Computing: Algorithms, Architectures, and Applications. Chapter 5. Chapman and
Hall/CRC, 2013, p. 119–142, doi: 10.1201/b16293-11.

[14] Marowka, A.: TBBench: A Micro-Benchmark Suite for Intel Threading Building
Blocks. Journal of Information Processing Systems, Vol. 8, 2012, No. 2, pp. 331–346,
doi: 10.3745/jips.2012.8.2.331.

[15] Marqués, M.—Quintana-Ort́ı, G.—Quintana-Ort́ı, E. S.—
van de Geijn, R. A.: Using Desktop Computers to Solve Large-Scale Dense
Linear Algebra Problems. The Journal of Supercomputing, Vol. 58, 2011, No. 2,
pp. 145–150, doi: 10.1007/s11227-010-0394-2.

[16] Olivier, S. L.—Prins, J. F.: Comparison of OpenMP 3.0 and Other Task Parallel
Frameworks on Unbalanced Task Graphs. International Journal of Parallel Program-
ming, Vol. 38, 2010, No. 5-6, pp. 341–36, doi: 10.1007/s10766-010-0140-7.

[17] Pheatt, C.: Intel Threading Building Blocks. Journal of Computing Sciences in
Colleges, Vol. 23, 2008, No. 4, pp. 298–298.

[18] Quintana-Ort́ı, G.—Quintana-Ort́ı, E. S.—van de Geijn, R. A.—
Van Zee, F. G.—Chan, E.: Programming Matrix Algorithms-by-Blocks for
Thread-Level Parallelism. ACM Transactions on Mathematical Software, Vol. 36,
2009, No. 3, pp. 14:1–14:26, doi: 10.1145/1527286.1527288.

https://doi.org/10.1016/b978-155860671-5/50003-7
https://doi.org/10.1145/77626.79170
https://doi.org/10.1080/00207167908803174
https://doi.org/10.1147/rd.471.0031
https://doi.org/10.1177/1094342015572031
https://doi.org/10.1016/j.jpdc.2011.10.014
https://doi.org/10.1535/itj.1104.05
https://doi.org/10.1201/b16293-11
https://doi.org/10.3745/jips.2012.8.2.331
https://doi.org/10.1007/s11227-010-0394-2
https://doi.org/10.1007/s10766-010-0140-7
https://doi.org/10.1145/1527286.1527288


222 J. Bylina

[19] Rao, S. C. S.: Existence and Uniqueness of WZ Factorization. Parallel Computing,
Vol. 23, 1997, No. 8, pp. 1129–1139, doi: 10.1016/s0167-8191(97)00042-2.
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Abstract. Feature selection techniques are designed to find the relevant feature
subset of the original features that can facilitate clustering, classification and re-
trieval. It is an important research topic in pattern recognition and machine learn-
ing. Feature selection is mainly partitioned into two classes, i.e. supervised and
unsupervised methods. Currently research mostly concentrates on supervised ones.
Few efficient unsupervised feature selection methods have been developed because
no label information is available. On the other hand, it is difficult to evaluate the
selected features. An unsupervised feature selection method based on extended en-
tropy is proposed here. The information loss based on extended entropy is used to
measure the correlation between features. The method assures that the selected fea-
tures have both big individual information and little redundancy information with
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the selected features. At last, the efficiency of the proposed method is illustrated
with some practical datasets.

Keywords: Unsupervised feature selection, extended entropy, information loss,
correlation value

1 INTRODUCTION

In recent years, data has become increasingly larger in number of features in many
applications such as genome projects, text categorization, image retrieval and cus-
tomer relationship management, etc. [1, 2]. It may cause serious problems to many
machine learning algorithms with respect to scalability and learning performance.
How to select the most informative variable combination is a crucial problem. Fea-
ture selection techniques are designed to find the relevant feature subset of the orig-
inal features that can facilitate clustering, classification and retrieval [3, 4]. Feature
selection is an important research issue in machine learning and pattern recogni-
tion. Lots of research work has been done on the topic. Based on whether the label
information is available, feature selection is mainly partitioned into two types, i.e.
supervised and unsupervised methods [5]. The former method is based on labeled
samples for classification problems. The latter method is mainly used to analyze
unlabeled data for clustering problems. Many supervised feature selection meth-
ods have been proposed and applied to many application areas. Typical supervised
feature selection methods include correlation coefficient method, information gain,
logistical regression, regularized method, etc. [6, 7, 8, 9]. In general, supervised fea-
ture selection is better in performance than unsupervised methods. But in practice,
data samples are usually unlabeled. How to improve the performance of unsuper-
vised feature selection is still a difficult problem to be resolved.

Supervised feature selection methods usually evaluate the importance of a fea-
ture by the correlation value between features and class variable. However, in
practice, it is expensive or impossible to label large-scale samples in many appli-
cations. Hence, it is great significance to develop unsupervised feature selection
algorithms that take full use of the unlabeled samples to select the most informative
features. Some unsupervised feature selection methods have been proposed, such
as maximum variance method, Laplacian score method, clustering based method,
etc. [10, 11, 12]. For dealing with multi cluster feature selection problem, spectral
regression and sparse space learning based method was proposed [13]. Feature se-
lection is the process of selecting the most informative feature combination. The
raw dataset contains many features that are either redundant or irrelevant. They
can be removed without incurring much loss of information. Correlation metric is
used to measure the relationship between features. Feature selection results based
on different correlation metrics are different. Many kinds of correlation metrics
have been proposed, such as Pearson correlation coefficient, mutual information and
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so on. Mutual information can measure arbitrary statistical dependences between
variables [14]. But the computational cost of mutual information between continu-
ous variables and mutual information between discrete and continuous variables is
expensive. Information bottleneck theory based information loss is an efficient corre-
lation metric [15, 16]. It has been applied to many complicated clustering problems.
But the information loss based on probability cannot process continuous variables.
In this paper, information bottleneck theory based information loss is adopted to
measure the correlation between features. For improving the general adapt capabil-
ity, extended entropy is proposed and information loss is calculated based on it. The
proposed feature selection method takes both the feature’s individual entropy and
the redundancy information with the selected features into consideration. It assures
that the selected feature combination has the maximum information. For deter-
mining the number of selected features, an objective rule is proposed. The method
combines the change ratio and the gradient ratio of information increase. At last,
the efficiency of the proposed method is illustrated with some practical dataset.

The rest of this paper is organized as follows. Section 2 presents the definition
of extended entropy. Section 3 introduces information bottleneck theory and infor-
mation loss. Section 4 proposes the calculation method of information loss based
on extended entropy. Feature selection procedure based on extended entropy is pre-
sented in Section 5. Some practical datasets are analyzed with the proposed method
in Section 6. Concluding remarks are described in Section 7.

2 EXTENDED ENTROPY

Entropy is a way to measure the amount of information in a signal based on probabil-
ities. Classic entropy is based on probability. Data has no statistical characteristics
in many applications. A novel entropy definition, i.e. extended entropy, is proposed
here. Extended entropy is not based on probability but on ratio. The definition is
as follows.

2.1 Shannon Entropy

Let feature variables be denoted by vectorX = (X1, X2, . . . , Xm)T , whereXi = (xij),
i = 1, 2, . . . ,m, j = 1, 2, . . . , q, denotes the ith feature variable with q difference
values, and class variable be denoted by Y , Y = (yi), i = 1, 2, . . . , k. It means
that all features are projected to k different classes. p(Xi) denotes the probability
distribution of feature variableXi, pY denotes the probability distribution of class
variable Y , and p(Xi, Y ) denotes the joint probability distribution of Xi and Y . All
probability distributions are calculated according to sample statistics. The Shannon
entropy H of feature variable Xi can be described as

H(Xi) = −
q∑

j=1

p(xij) logp(xij). (1)



226 Z. Sun, F. Li, H. Huang

Shannon entropy of class variable Y can be described as

H(Y ) = −
k∑

i=1

p(yi) logp(yi). (2)

Joint entropy between feature variables and class variable is

H(Xi, Y ) = −
q∑

j=1

k∑
l=1

p(xij, yl) logp(xij, yl) (3)

where Xi can be substituted by subset of feature vector S, i.e., the joint entropy
can be generalized to p variables.

2.2 Extended Entropy

Let N data vectors be denoted by yi, i = 1, 2, . . . , N , each vector has n positive
number yi1, yi2, . . . , yin, i = 1, 2, . . . , N and the ratio between each positive number
and the sum of all the positive number is

r(yij) = yij/(yi1 + yi2 + . . .+ yin). (4)

r(yij) is similar to the probability that satisfies
∑n

j=1 r(yij) = 1, and r(yij) ≥ 0,
i = 1, 2, . . . , n. Extended entropy based on ratio is defined as

S(yi) = −
n∑

j=1

r(yij) ln r(yij). (5)

3 INFORMATION BOTTLENECK THEORY

Information bottleneck (IB) theory is proposed to operate clustering problem. The
theory is based on mutual information. The joint distribution of the object space X
and the feature space Y is denoted by p(x, y). According to the IB principle a clus-
tering X that minimizes the information loss I(X; X̂) = I(X;Y )− I(X̂;Y ) is opti-
mized. I(X; X̂) is the mutual information between X and X̂

I(X; X̂) =
∑
x;x̂

p(x)p(x̂ | x) log(p(x̂ | x)/(p(x̂). (6)

The IB principle is motivated from Shannon’s rate-distortion theory which provides
lower bounds on the number of classes. Given a random variable X and a distortion
d(x1, x2) measure, the symbols of X are represented with no more than R bits. The
rate-distortion function is given

D(R) = min
p(x̂|x)I(X;X̂)≤R

Ed(x, x̂) (7)
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where Ed(x, x̂) =
∑

x,x̂ p(x)p(x̂ | x)d(x, x̂). The loss of the mutual information

between X and Y caused by the clustering X̂ can be viewed as the average of this
distortion measure

d(x, x̂) = I(X;Y )− I(X̂;Y )

=
∑
x,x̂,y

p(x, x̂, y) log(p(y | x))p(y)−
∑
x,x̂,y

p(x, x̂, y) log(p(y | x̂))/p(y)

= ED(p(x, x̂)||p(y, x̂)) (8)

where D(f‖g) = Ef log(f/g) is the Kullback-Lerbler divergence. The rate distortion
function is

D(R) = min
p(x̂|x)I(X;X̂)≤R

(I(X;Y )− I(X̂;Y )) (9)

which is exactly the minimization criterion proposed by the IB principle, i.e., finding
a clustering that minimizes the loss of mutual information between the objects and
the features. Let c1 and c2 be two clusters of symbols, the information loss due to
the merging is

d(c1, c2) = I(c1;Y ) + I(c2;Y )− I(c1, c2;Y ), (10)

information theory operation reveals

d(c1, c2) =
∑

y,i=1,2

p(ci)p(y | ci) log(p(y | ci))/(p(y | c1 ∪ c2)) (11)

where p(ci) = |ci| / |X|, |ci| denotes the cardinality of ci, |X| denotes the cardinality
of object space X, p(c1∪c2) = |c1 ∪ c2| / |X|. It assumes that the two clusters are in-
dependent when the probability distribution is combined. The combined probability
of the two clusters is

p(y | c1 ∪ c2) =
∑
i=1,2

|ci| /(c1 ∪ c2)p(y | ci). (12)

4 INFORMATION LOSS BASED ON EXTENDED ENTROPY

According to Equation (12), information loss based on probability can only process
discrete variables. Therefore, the classic information loss definition is not suitable
in many situations. Extended entropy can deal with any kind of positive dataset.
We introduce extended entropy into information bottleneck theory. In the method,
each element of the dataset y is taken as a different value probability of which is
the ratio between each element’s value and the sum of all the element’s values. Let
n samples and each sample include m features. Calculate the correlations between
features according to the values in each sample. Each feature can be taken as
an n dimension vector, i.e. yi = yi1, yi2, . . . , yin, i = 1, 2, . . . ,m. Each sample is
taken as a value of the feature variable. n samples means each feature has n values.
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The extended probability of feature yi is calculated according to the ratio between
the feature value and the sum, i.e.

r(yij) = yij/(yi1 + yi2 + · · ·+ yin). (13)

It can satisfy the conditions requirements, i.e.
∑n

j=1 r(yij) = 1 and r(yij) ≥ 0,
j = 1, 2, . . . , n. The extended entropy based on extended probability is defined as

S(yi) = −
n∑

j=1

r(yij) ln r(yij). (14)

The information loss due to the merging of two clusters is coherent to that of IB

d(c1, c2) =
∑
i=1,2

n∑
j=1

r(yj | ci) log(r(yj | ci))/(r(yj | c1 ∪ c2)). (15)

According to the calculation equation of information loss, after p, q ∈ {1, 2, . . . , n}
being combined into a variable c, the extended probability of combine variable c can
be denoted

r(ycj) =
|yp|
|yp ∪ yq|

r(ypj) +
|yp|
|yp ∪ yq|

r(yqj). (16)

5 FEATURE SELECTION BASED ON EXTENDED
ENTROPY (FSBEE)

Unsupervised feature selection method FSBEE is as follows. A novel correlation
definition is introduced. The correlation between feature variable X and feature
variable Y is defined as

ρ(X, Y ) = 1/d(X, Y ). (17)

The information loss value is inverse proportion to the correlation value. The fea-
tures of Y are combined into one variable according to Equation (16) firstly when
it is a feature set. Then the information loss d(X, Y ) is calculated according to
Equation (15).

5.1 First Feature Selection

The first feature is selected according to the correlation value of each feature. The
initial feature variable set is denoted by X = {X1, X2, . . . , Xm}. U is used to denote
unselected feature set and S is used to denote the selected feature set. At first, U is
set the initial feature set and S is set null, i.e. U = X and S = Φ. The feature that
has the biggest correlation value with the other feature subset is selected as the first
one, i.e.

xl = arg max
1≤i≤m

ρ(Xi, (X\Xi)). (18)
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The maximum correlation value means that the feature can represent the other
features in maximum degree. The selected feature is added to selected feature set
S and removed from unselected feature set, i.e. S = {Xl} and U = X\Xl.

5.2 Feature Selection Procedure

After the first feature has been selected, the other features are selected according to
the following procedure. The kth feature Xl is selected according to the increase of
correlation value. The calculation of increase value is as follows.

Xl = arg max
Xi∈U
{ρ(Xi, (U\Xi)) ∗ d(Xi, S)}, (19)

fk = max
Xi∈U
{ρ(Xi, (U\Xi)) ∗ d(Xi, S)}. (20)

It means that the selected feature can represent the other unselected features in
maximum degree. At the same time, the selected feature should provide the least
redundancy information to the selected feature set S. The candidate feature should
have the largest distance to the selected features. Then the selected feature Xl is
added to the selected feature set S and removed from the unselected feature set U ,
i.e. S = {S,Xl} and U = U\{Xl}. Through iterating the above procedure, features
are selected.

5.3 Determination of the Number of Selected Features

No objective rule is available to determine the number of selected features currently.
It is often prescribed previously. In this paper, the number of selected features is
determined according to the following rules. In the selection procedure, each step
corresponds to an increase value of correlation. In general, the value will be in
decreasing trend. The gradient ratio between the current step and the first step is
calculated according to the following equation.

u = (fk−1 − fk)/(f1 − f2). (21)

The ratio between the increase value corresponding to the current step and that to
the first step is denoted by

v = fk/f1. (22)

Threshold values α for u and β for v are prescribed. When the values are less than
prescribed threshold values, i.e. u < α and v < β, the feature selection procedure
is stopped. The threshold values are prescribed according to a practical problem.
Less threshold value corresponds to larger selected feature number. In general, the
two threshold values are in the interval [0,1]. They are set to a less value when
the analysis problem is complicated and to a bigger value to a simple problem.
Pseudo-code of the feature selection procedure is summarized as Figure 1.
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Figure 1. Pseudo code of the feature selection procedure

From the above calculation procedure, the computation complexity of the feature
selection procedure is about O(knm2), where k is the number of selected features,
m is the number of total features, and n is the number of instances.

6 EXAMPLES

6.1 Data Source

The datasets are downloaded from the UCI machine learning website [17]. For
proving the efficiency of the proposed unsupervised feature selection method, some
classification datasets are analyzed. They are breast cancer clinic data, smart phone
record, credit card record, mesothelioma data and image segmentation set. The basic
information, i.e. number of features, number of instances, number of classes, of each
dataset is listed in Table 1.

6.2 Feature Selection with the FSBEE

The label information is ignored during feature selection procedure. The label infor-
mation is used to analyze the performance of feature selection method through com-
paring the classification results. For calculating the extended entropy, all features
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Data Source
Number

of Features
Number

of Samples
Number

of Classes

Breast cancer diagnostic data 30 569 2

Smart phone record 561 10 299 6

Credit card record 24 30 000 2

Mesothelioma data 34 324 2

Image segmentation data 19 2 210 7

Table 1. Dataset information

are transformed into positive values. In this example, all features are normalized
into the interval [0, 1]. Then the features are selected according to the proposed
method in Section 5. The selection results are as follows.

(1) Breast cancer diagnostic data. The data is provided by University of Wis-
consin, Clinical Sciences Center. It is used for breast tumor diagnosis. The
dataset includes 569 samples and each sample has 30 real-value features. They
are categorized into two classes, i.e. benign or malignant. Firstly, each feature
is normalized to the interval [0, 1]. Then, the extended probability of each sam-
ple can be calculated according to (13). The features are selected according to
Section 5. For determining the number of selected features, the threshold value
is set α = 0.1 and β = 0.1. The increase of correlation value corresponding to
each step is shown in Figure 2. At last, 14 features are selected.

(2) Smartphones dataset. The smartphones data is collected to recognize human
activity [18]. 10 299 human activity records are collected and each record has
561 features. The human activity is categorized into 6 classes. Firstly, the
features are normalized to the interval [0, 1]. Then features are selected according
to the FSBEE method. The threshold values are set α = 0.01 and β = 0.01. The
correlation increase value of each step is shown in Figure 3. At last, 178 features
are selected.

(3) Credit card record. The dataset is collected to identify the customer whether
credible or not credible according to his/her personal payment record. There
are 30 000 records in the dataset and each record has 24 attributes. Among the
attributes, some are binary variables and some are continuous variables. For
computing convenience, all features are normalized into interval [0, 1] and taken
as continuous variables. Then features are selected according to the FSBEE
method. The threshold value is set α = 0.1 and β = 0.1. The increase of
correlation value of each step is shown in Figure 4. At last, 10 features are
selected.

(4) Mesothelioma data. The dataset is collected by Dicle University from real
patient reports. It is used to identify whether the patient’s mesothelioma is
benign or malignant. There are 324 samples in the dataset and each sample has
34 attributes. Firstly, all attributes are normalized to the interval [0, 1]. Then
features are selected to according to the FSBEE method. The threshold value is
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Figure 2. The increase in correlation value of breast cancer data

set α = 0.1 and β = 0.1. The increase of correlation value of each step is shown
in Figure 5. At last, 15 features are selected.

(5) Image segmentation. The instances were drawn randomly from a database
of 7 outdoor images, i.e. brickface, sky, foliage, cement, window, path, grass.
Each instance includes 19 features. The images were hand segmented to cre-
ate a classification for every pixel. 210 images are taken as training set and
2 000 images are taken as test set. Firstly, all attributes are normalized to the
interval [0, 1]. Then features are selected according to the FSBEE method. The
threshold value is set α = 0.1 and β = 0.1. The correlation increase value of
each step is shown in Figure 6. At last, 12 features are selected.

6.3 Result Comparison

For comparison, information gain (IG), correlation coefficient, logistic regression etc.
supervised feature selection methods are used to select the features. libSVM [19] is
used to classify the dataset according to the selected features obtained with different
feature selection methods. The number of selected features is the same as that of
FSBEE model. The classification results are listed in Table 2. The computation
time of the feature selection corresponding to each dataset are listed in Table 3.
K-mean based feature selection, variance based feature selection and mutual infor-
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Figure 3. The increase in correlation value of breast cancer data

mation based feature selection (FSBMI) etc. unsupervised methods are used to
select the features. The number of selected features is the same as that of FSBEE.
The classification results based on different unsupervised feature selection method
are listed as in Table 4. The computation time of the unsupervised feature selection
corresponding to each dataset are listed in Table 5. From above analysis results
we can find that the proposed FSBEE is an efficient unsupervised feature selection
method. Through comparing with supervised feature selection methods, the classi-
fication accuracy of the proposed FSBEE method is close to that of the supervised
method and even better than some supervised methods. Through comparing with
other unsupervised methods, the classification accuracy of the proposed method is
better. The proposed method is easy to be operated. The computation complexity
will increase with the number of feature numbers and the number of selected feature
numbers. But it is more efficient than the unsupervised feature selection method
FSBMI.

7 CONCLUSIONS

Feature selection for unlabeled samples is a very important task for many pattern
recognition problems. For improving the efficiency and performance of unsupervised
feature selection, the paper develops a novel unsupervised feature selection method.
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Figure 4. The increase in correlation value of breast cancer data

Data Source
Number

of Selected
Features

Accuracy

FSBEE IG Coefficient
Logistic

Regression

Breast cancer
diagnostic data

14 97.69 98.67 94.05 98.67

Smart phone record 178 89.47 91.32 91.06 90.75

Credit card record 10 77.46 78.68 78.11 77.43

Mesothelioma data 15 86.36 92.68 95.6 69.99

Image segmentation data 12 86.76 87.33 85.21 83.75

Table 2. Classification result comparison with supervised feature selection methods

Data Source
Number

of Selected
Features

Computation Time

FSBEE IG Coefficient
Logistic

Regression

Breast cancer
diagnostic data

14 0.156 0.016 0.015 1.228

Smart phone record 178 7455.375 4.563 4.422 6723.44

Credit card record 10 10.75 8.141 8.125 87.21

Mesothelioma data 15 0.406 0.313 0.297 4.563

Image segmentation data 12 0.047 0.012 0.01 0.53

Table 3. Computation time comparison with supervised feature selection methods
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Figure 6. The increase of correlation value of image segmentation data
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Data Source
Number

of Selected
Features

Accuracy

FSBEE
k-Mean Clustering

Based Feature
Selection

Variance
Based Feature

Selection
FSBMI

Breast cancer
diagnostic data

14 97.69 96.84 94.39 100

Smart phone
record

178 89.47 88.47 85.48 88.83

Credit card
record

10 77.46 76.02 73.44 78.13

Mesothelioma
data

15 86.36 89.61 84.65 76.95

Image segmentation
data

12 87.76 80.21 78.43 81.98

Table 4. Classification result comparison with commonly unsupervised feature selection
methods

Data Source
Number

of Selected
Features

ComputationTime

FSBEE
k-Mean Clustering

Based Feature
Selection

Variance
Based Feature

Selection
FSBMI

Breast cancer
diagnostic data

14 0.156 0.24 0.031 0.781

Smart phone
record

178 7455.375 154.33 4.359 9863.34

Credit card
record

10 10.75 11.23 8.156 44.172

Mesothelioma
data

15 0.406 0.43 0.297 0.797

Image segmentation
data

12 0.047 0.049 0.125 0.14

Table 5. Computation time comparison with supervised feature selection methods

The method uses extended entropy to calculate the information loss between two
features. It can measure the distance between features. During the feature selection
procedure, the redundant information is considered. It assures that the selected
features contain the maximum information. The advantages of the method can be
summarized as three aspects. Firstly, extended entropy can simplify the calculation
of information loss and improve computation speed markedly. Secondly, it can
assure that the selected features contain the most information. Thirdly, it provides
an objective rule to determine number of selected features. The experience results
show that the proposed unsupervised method is efficient. It can be applied to many
types of application areas.
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Abstract. A comprehensive repository of semantic relations between verbs is of
great importance in supporting a large area of natural language applications. The
aim of this paper is to automatically generate a repository of semantic relations
between verb pairs using Distributional Memory (DM), a state-of-the-art framework
for distributional semantics. The main idea of our method is to exploit relationships
that are expressed through prepositions between a verbal and a nominal event in
text to extract semantically related events. Then using these prepositions, we derive
relation types including causal, temporal, comparison, and expansion. The result
of our study leads to the construction of a resource for semantic relations, which
consists of pairs of verbs associated with their probable arguments and significance
scores based on our measures. Experimental evaluations show promising results on
the task of extracting and categorising semantic relations between verbs.

Keywords: Semantically related verbs, temporal relations, cause-effect relations,
related events knowledge base
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1 INTRODUCTION

Understanding the semantics relations between events is an important step to cap-
ture the meanings of text. This information is crucial in supporting textual infer-
ences, where systems need to automatically infer unknown fact from the currently
available facts. For example, consider the following snippet. In Coreference Resolu-
tion, it may be useful to know shot could result in killing.

An Indiana teenager killed a 73-year-old man.
Autopsy results show Kim was shot three times.

Knowing that kill and shot are semantically related, we can easily co-refer Kim
to a 73-year-old man rather An Indiana teenager which is not its correct antecedent.

A repository that includes relationship between plausible semantically related
events could be helpful in many NLP tasks, including Question Answering [1, 2],
Machine Translation, Information Extraction, Coreference Resolution [3], Predic-
tion [4], Summarization [5], Recognizing Textual Entailment [6], etc.

Many semantic resources have been developed to express knowledge of verbs,
including FrameNet [7], VerbNet [8], ProBank [9], and WordNet [10]. Despite use-
fulness in many aspects, unfortunately these resources do not provide (large-scale)
semantic knowledge between verb pairs. WordNet [10] provides some types of this
knowledge as cause and entailment relations. However this information is just pro-
vided for relations that are always true. For instance, it does not include the relation
“shot” happens-before “kill” since it is just a plausible sequence of events and is not
guaranteed to occur all the time. Such relations hold between a wide number of
event pairs but are not accessible easily.

Since a real application demands a wide-coverage resource for related verbs, we
develop an automatic method to acquire a broad-coverage repository of semantic
relations between verbs based on Distributional Memory (DM) [11]. The main
contributions of our research are as follows:

• Providing a broad coverage Knowledge Base (KB) of semantically related verbs.

• Proposing a set of novel metrics to measure the strength of the semantically
related verbs.

• Using preposition between verb-noun pairs to infer semantic relations and di-
rection between them.

• Providing plausible common arguments of related verbs that beside other ben-
efits, is helpful in identifying correct sense of verbs that causes their relations.

• Role mapping for the common argument of each related verb pair.

This paper is organized as follows. Section 2 describes previous attempts to
discover related verbs. In Section 3 we present Distributional Memory, which is the
base of our method. The model for the extraction of semantically related verbs and
classification relations types is presented in Section 4, followed by the evaluation
and discussion in Section 5 and conclusion in Section 6.
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2 RELATED WORK

Due to importance of verb knowledge in natural language processing, many semantic
resources have been developed to express knowledge of verbs, including FrameNet [7],
VerbNet [8], ProBank [9], and WordNet [10]. Despite usefulness in many aspects,
unfortunately these resources do not provide broad-coverage semantic knowledge
between verb pairs, but provide information about the semantic classes, thematic
roles and selectional restrictions of verbs. Among these, WordNet and FrameNet
are the only resources which provide information about semantic relation between
verbs. However, as these resources are created manually they have a very limited
coverage. Researchers have recently shown more interest in the task of automatic
recognition of causal-temporal relations between events [12, 13, 14, 15, 16, 17, 18,
19, 20, 21].

In [12] the authors use Naive Bayes classifier to learn the probabilities of semantic
relation between event pair from a raw corpus in an unsupervised manner. To
evaluate their model, they used two test sets from different domains. Test sets were
manually classified with two human annotators. They stated that their best model
improved by 7.05 % from the baseline model.

In [22, 23] the authors tried to extract chains of events sharing a common partic-
ipant. They consider only verbs as events and given an existing chain of events, they
predict the next likely event involving the protagonist. They used narrative cloze to
evaluate event relatedness, and an order coherence task to evaluate narrative order
and reported improvement in both tasks.

In [13], a pattern-based approach is introduced which firstly extracts highly as-
sociated verb pairs and their frequency from the web. Then, using co-occurrence
data on pairs of verbs, they assessed the strength of the associations by evaluating
their mutual information. Finally, using a manually defined threshold they deter-
mine whether each association between a verb pair is valid or not. The result is
a knowledge base of causal associations of verbs, which contains similarity, strength,
antonym, enablement and temporal relations. They did not provide precise evalua-
tion methodology for the obtained results.

Extracting verb-verb, verb-noun and noun-noun event relationship from text [14]
concentrated on acquiring causality between events. They used both minimal super-
vision and unsupervised metrics to learn causal dependencies between two events.
They evaluated their model on 20 news articles from CNN. On verbal events, they
reported 38.3 % F-score with CEA and 1–2 % improvement using minimally super-
vised method.

In [21], the authors used Decision Trees for the detection of causations in sen-
tences that contained causal relations. They reported the result of evaluation with
precision of 98 % and recall of 84 %, but, their method was not able to detect the
causes and the effects.

Using a set of knowledge-rich metrics [17] proposed to learn the likelihood of
causal relations between intra- and inter-sentential instances of verb-verb pairs.
They relied on the unambiguous discourse markers because and but to automati-
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cally collect training instances of cause and non-cause event pairs, respectively. The
result was a knowledge base of causal associations of verbs, which contained three
classes of verb pairs: strongly causal, ambiguous and strongly non-causal.

In [18] the authors propose a model for the recognition of causality in intra-
sentential verb-noun pairs using Supervised Classifier. They employed linguistic
features along with semantic classes of nouns and verbs with high tendency to encode
cause or non-cause relations. They generated a test set with instances of form verb-
noun phrase and report 46.61 % F-score, and 80.74 accuracy.

In the most recent work, [20] tried to find pairs of verbs linked by a relation
explicitly marked by a discourse connector in the corpus, as an indication of a regular
semantic relation between the two verbs. The output of this work is the main existing
resource that we have compared our results with.

3 DISTRIBUTIONAL MEMORY

Distributional Memory (DM) [11] is a generalized framework for distributional se-
mantics, generalizing different existing typologies of semantic spaces. The aim
of Distributional Memory is representing corpus-extracted distributional facts as
weighted tuple structures, which are a set of weighted word-link-word tuples 〈〈w1,
L, w2〉, λ〉. W1 and w2 are a set of strings representing content words, and L
is a set of strings representing syntagmatic co-occurrence links between words in
a text. Each tuple T has a weight, a real-valued score, assigned by a scoring function
λ : W1 × L ×W2 → R. For example, the tuple 〈〈harvest, before, rain〉, 66.0141〉
says harvest and rain are related through the link before with the co-occurrence
weight of 66.0141 in the corpus.

DM is built upon the DSM idea. Distributional semantic models (DSMs) are
corpus-based models of semantic representation, rely on some version of the dis-
tributional hypothesis [24], stating that the degree of semantic similarity between
two words (or other linguistic units) can be modelled as a function of the degree of
overlap among their linguistic contexts.

Therefore, given a weighted tuple structure, by matricizing the corresponding
labelled third-order tensor, four distinct semantic vector spaces can be obtained:
W1×LW2, W1W2×L, W1L×W2, and L×W1W2. Depending on the tasks, one
can choose suitable vector spaces to address it. For instance, one can use W1×LW2
to tackle attributional similarity tasks such as synonym detection or concept catego-
rization. The W1W2×L vectors represent word pairs in a space whose dimensions
are links, and can be used to measure relational similarity among different pairs (e.g.
〈sergeant, gun〉 is similar to 〈teacher, pen〉). The W1L×W2 space can be used to
capture different verb classes based on the argument alternations they display (e.g.
the object slot of kill is more similar to the subject slot of die). The L ×W1W2
space displays similarities among links.

Different DM models can be generated based on the selection of the sets W
and L and of the scoring function λ. In this paper we used TypeDM, which is
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the best performing DM model across the various semantic tasks addressed in [11].
The links of TypeDM include lexico-syntactic shallow patterns and, lexicalized de-
pendency paths. Its tensor contains about 130 M non-zero tuples extracted from
a corpus of about 2.83 billion tokens. This corpus has been obtained by concate-
nation of the Web-derived ukWaC corpus, about 1.915 billion tokens, a mid-2009
dump of the English Wikipedia, about 820 million tokens, the British National Cor-
pus, about 95 million tokens. The resulting concatenated corpus was tokenized,
POS-tagged and lemmatized with the TreeTagger and dependency-parsed with the
MaltParser [30].

The model contains 30 693 lemmas (20 410 nouns, 5 026 verbs and 5 257 ad-
jectives). These terms were selected based on their frequency in the corpus (they
are approximately the top 20 000 most frequent nouns and top 5 000 most frequent
verbs and adjectives), augmenting the list with lemmas that could be found in var-
ious standard test sets, such as the TOEFL and SAT lists.

4 PROPOSED APPROACH

In this section, we introduce our approach to extract semantically related verbs
from TypeDM. Figure 1 depicts the structure of our proposed system. Firstly,
candidate tuples are extracted from TypeDM. We assume that a verb-noun pair can
be a candidate tuple if they are connected through a preposition. Next, tuples that
do not contain event pairs are deleted, including

1. tuples containing phrasal verbs,

2. tuples whose w2 are non-action nominals, and

3. tuples whose w2 distinguished as non-action after disambiguation it based on
w1 and link as context.

Then, after converting action nominals to their corresponding verbs, and aggregating
verb pairs, some metrics of relations strength are introduced. Then using subject
and object links in TypeDM, common arguments of semantically related verbs are
extracted, which beside common argument weight (CAW), a measure of relation
strength, can help to find mapping of verb pairs thematic roles. Finally, we derive
the relation direction and relation types including causal, temporal, comparison, and
expansion from links connecting two verbs. The following sections describe each of
these steps in more details.

4.1 Extraction of Potential Relations

As explained in previous section, the TypeDM tensor contains about 130 M tuples
automatically extracted from corpora of about 2.83 billion tokens. In order to get ini-
tial tuples that could denote pairs of related events, we have firstly selected 24 links
from 25 336 direct and inverse link types formed by syntactic dependencies and pat-
terns. These links are composed of 22 prepositions plus coordination and its inverse
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Figure 1. Our proposed system

direction. We extracted all tuples of these 24 links from TypeDM as initial tu-
ples (InitTuples). InitTuples include about 23 M tuples in form of 〈〈w1,L,w2〉, λ〉.
In these tuples w1 is mostly a verb (except coordination link) and w2 is always
a noun. Table 1 shows these links along with example tuples. For instance, in
〈accuse, of,murder〉, the preposition of is a sign of semantic relation between accuse
and murder.

4.1.1 Relation Direction

Semantic relation is an asymmetric relation, so we have to know temporal direction
of the relation. That is, in the tuple 〈w1, link,w2〉 we have to know if the relation
direction is from w1 to w2 (w1 → w2) or from w2 to w1 (w2 → w1). In the link
set we are working on, the direction of most of links is w2 → w1, i.e. w2 happens
before w1. The direction of some links, however, is w1→ w2. Precisely, the direction
of before and coord are always w1 → w2. The direction of all other links except
three ambiguous-direction links viz. for, with, and without is always w2→ w1.

We plan to give a solution for finding the relation direction of these three am-
biguous links in future. However, at the moment, we simplified the problem and
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Table 1. List of links used to extract potentially related event pairs

adapted the majority of directions as the relation direction for these ambiguous
links. According to our experiments, more than 95 % of tuples of with (without)
links have the direction of w2→ w1, so we supposed all tuples in these links (with-
without) have direction from w2 to w1. For the link for, about 83 % of tuples have
the direction of w1→ w2, so we considered its direction as w1→ w2. It should be
noted that since each verb pair is usually connected through multiple links (see Sec-
tion 4.3), their relation direction is introduced by multiple links. Hence the existing
error in the direction of for and with has negligible effect on the direction of final
relation.

4.2 Removing Non-Action Nominals

Having extracted InitTuples from TypeDM, the next step is to remove the tuples
from it which do not contain event pairs. In natural language, an event is mostly
encoded using a verb or a noun. In all tuples 〈〈w1, link,w2〉, λ〉 extracted in previ-
ous subsection, w2 is a noun. Obviously, not all these nouns are events or action
nominals. Following [25], action nominals are defined as “nouns derived from verbs
(verbal nouns) with the general meaning of an action or a process”. Also, accord-
ing to [26], “an event is a situation that occur or happen, and can be expressed
by verbs, nominal or some other linguistic units”. So, we have to identify action
nominals (event nouns) from non-action ones in InitTuples. We have intended to
remove three types of tuples that do not contain event pairs, including:

• Tuples where w1 together with a preposition create phrasal verbs like account
for.

• Tuples where based on WordNet event denoting synsets (WEDS) w2 is not event
at all, like day.

• Tuples where w2 becomes non-event after disambiguating them based on w1 and
preposition. For example race is not an event noun in 〈discriminate, because,
race〉.
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After removing these non-event pairs, the number of tuples in InitTuples reduced
from over 23 M to about 3.2 M tuples.

Figure 2. The flowchart of removing tuples containing non-action nominal

4.2.1 Removing Phrasal Verbs

In this article we are interested in prepositions connecting a verb to a noun. On the
other hand, in English, prepositions could be combined with verbs producing phrasal
verbs like abide by, accord with, account for, look after, and so on. This usage of
prepositions differs from the one we based our method on. If we let tuples containing
phrasal verbs remain in our data, they will produce noise in subsequent steps causing
wrong results in relations types’ classification and determining relations strength.
So, we used a predefined list of phrasal verbs to remove such tuples from InitTuples.

4.2.2 Non-Event Nominals

The term event itself has many readings. Some authors use it to refer only to dy-
namic actions, while others use it to refer also to static situations [42]. In the recent
work [38] some definitions of event are provided. The best-known classification of
events is one proposed by [41], who distinguishes between states (non-dynamic sit-
uations persisting over a period of time and without an endpoint, e.g., believe),
activities (open-ended dynamic processes, e.g., walk), accomplishments (processes
with a natural endpoint and an intrinsic duration, e.g., build a house) and achieve-
ments (almost instantaneous events with an endpoint, e.g., find). Moreover, in the
linguistic literature, all types of actions, states and processes often fall under the
cover term eventualities, coined by [32] in his work on the algebra of events. Follow-
ing Bach’s broad notion of event [32], TimeML identifies a wide range of linguistic
expressions realizing events, i.e. tensed and untensed verbs (e.g., was captured, to
thank), adjectives (e.g., sick), nominals (e.g., strike) and prepositional phrases (e.g.,
on board).

Investigating various classifications of the event in past literature, we summarize
them in Table 2. Respecting these classifications, we can see that three classes
exist in almost all classifications viz. state (non-dynamic situations persisting over
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Table 2. Event classification in past literature

a period of time and without an endpoint), process (or activity, open-ended dynamic
processes), and event (or transition, natural endpoint that are quantized, telic or
terminative). Considering the TimeML [35], another class could be added to them
i.e. reporting.

On the other hand, like [14, 37] we used WordNet to identify some sub-trees
from WordNet synsets so that their hyponym (children) are mostly action nominals.
Surprisingly, the top four WordNet synsets which we have gained with highest ratio
of event nominals are analogous to the four classes that we acquired from the pre-
vious literature. These synsets along with some of their hyponym (children) nouns
are shown in Table 3. Indeed, not all nouns under these synsets are action nominals.
However, as our first goal is identifying and discarding tuples containing non-event
nouns, this method works well at present.

Table 3. WordNet event denoting synsets and their equivalent classes in the past literature

Given WEDS, we can determine if a noun have the chance of being event noun
or not. For instance, the leaf-to-root paths for the first sense of offense(n) and
album(n) are as follow, respectively:

• offense ⇒ behavior ⇒ activity ⇒ act ⇒ event ⇒ psychological feature ⇒
abstraction⇒ entity,

• album ⇒ medium ⇒ instrumentality ⇒ artifact ⇒ whole ⇒ object ⇒ physical
entity⇒ entity.

The event synset in leaf-to-root hypernym path of the first sense of offense
indicates that this noun could be an action nominal. For the word album, on the
other hand, there is not such synset, neither in its first sense nor any other senses.
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This implies that album could not denote an event. Using this method, we determine
the sense number of the nouns that can denote event together with the synsets name.
We call this information semantic-category. In order to determine semantic-category
for a noun, the leaf-to-root hypernym path for its all senses is searched. That is, we
have gone through all its WordNet senses; have examined their hypernyms (parent)
in WordNet hypernym relations one-by-one upward. During the search, for each
sense S of the noun, if one of the WEDS synset is found, we assigned the synset
name along with the sense number of S, otherwise its value will be non-action.

For example event/4 for semantic-category of a noun means that hypernym path
of its fourth sense contains event, and process/1 means that hypernym path of its
first sense contains process, and so forth. For example semantic-category for birth
and authority are:

• semantic-Cat (birth) = 〈event/2− process/3〉,
• semantic-Cat (authority) = 〈state/4〉.

Algorithm 1 shows the details for extracting semantic-cat for a word. Firstly, the
semantic cat is set to an empty string. Then, by iterating through all noun senses of
the word and checking their hypernym against event denoting synsets, semantic-cat
is acquired.

Algorithm 1 Semantic-cat extracting algorithm

4.2.3 Metonym Nouns

Beside action nominals that can be identified through Algorithm 1, there are other
nouns that are of our interest. Although semantically can denote event, these
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nouns are categorized as non-event nouns by Algorithm 1. Considering the tu-
ple 〈escape, from, jail〉 for example, we can understand that event jail can result in
event escape. In fact, the noun jail in this tuple can denote event jail (putting in
jail). However, jail is a noun in this tuple and semantic-Cat (jail) is non-event. The
point is that the word jail has a verb form as well, which is an event. Actually, here
the noun jail can be metonym of its verb in our method. Another such example is
〈receive, after, pay〉, where noun pay denotes event of paying, while it is categorized
as non-event nouns by Algorithm 1 as well. There are many such nouns in TypeDM
which are categorized as non-event while could denote an event. In order to de-
tect these metonym nouns, we have heuristically chosen nouns having two following
criteria:

• the noun has a verb form with the same spelling,

• the noun categorizes as non-event based on Algorithm 1.

We found about 800 such nouns in TypeDM through above-mentioned criteria.
Table 4 shows some examples of such nouns extracted from TypeDM.

Table 4. Some examples of tuples where w2 is a noun that can be metonym of its verb

4.2.4 Disambiguate Polysemous Words

Many polysemous words in English can have both event and non-event meanings.
For instance the word spring can be both non-event noun (springtime, fountain,
a metal elastic device, and elasticity) and event noun (leap). We have to iden-
tify and separate non-event nouns like spring in 〈occur, during, spring〉 or race in
〈discriminate, because, race〉 to prevent probable harmful side-effects in subsequent
steps. We tried to convert such triples to a sentence and use state of the art WSD
like BabelNet [27] to find correct sense of the ambiguous noun. Regarding this ap-
proach there are two points. Firstly, it is not easy to convert every tuple to a well
formed English sentence to fit input of WSD like BabelNet. Secondly, the preci-
sion of this approach is very low in our data. For example, BabelNet disambiguate
race in tuple 〈discriminate, because, race〉 as any competition when we tried it in the
sentence “People should not be discriminated because race”. So we decided to build
a model for disambiguating w2 in our tuples.
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To do so, we have to construct a model which, given a tuple 〈w1, preposition,w2〉,
will correctly predict the sense to which the w2 belongs using w1 and preposition
as context. This is a classification problem, which for a w2 with N noun senses,
has N different classes. For each of these N senses, we extracted salient words from
the WordNet glosses, synonyms, and hypernyms as feature set. Also, in order to
convert the context (i.e. the w1 and the preposition) to a set of feature words, we used
TypeDM. Specifically, for a tuple 〈w1, preposition,w2〉 in which w2 is an ambiguous
noun, we extracted all tuples 〈〈w1,L,w2〉, λ〉 having the pattern 〈w1, preposition, *〉
from TypeDM. Then, we have chosen top 5 w2 of the extracted tuples having highest
λ value. For example, in tuple 〈occur, during, spring〉 it is unknown for the system
if the spring means a season, outflow, a metal, or leap. After extracting top nouns
for the pattern 〈occur, during, *〉 we came up with following nouns: season, phase,
summer, winter, stage. Using these nouns as context, and comparing similarity
between it and the features of each senses of the noun spring, we got spring #1 as
most similar sense, which means the season of growth. Applying this idea on tuple
〈pump, from, spring〉 gives following nouns as context: mine, pit, stream, station,
and source. After calculating similarities between all spring-n senses and the context
words, we got the spring #2 as the result which means a natural flow of ground water.
We evaluated this WSD method on 200 tuples of InitTuples containing ambiguous
nouns as their w2 as test data. The correct senses of ambiguous nouns in these
tuples were identified by two human annotators. We have achieved a 0.78 kappa
score for the human inter-annotator agreement. Evaluating the WSD on this test
data yields the accuracy of 74 %.

4.2.5 Mapping Semantic-Cat To a Real Number

In the Subsection 4.2.2, we used semantic-cat to remove tuples containing non-action
nominals. However, it can also be used to rank action nominals, based on how likely
they can refer to an event. In other words, nouns under some WEDS synsets refer
to event more often than some others. For example synsets like event, process are
more event-denoting than state. Additionally, sense numbers of the nouns that
belong to these synsets are important as well, e.g., event/1 is more probable to
denote an event than event/2, and it is relative to event/3, and so on. In order to
capture action denoting strength of any action nominals, we converted semantic-
cat to a real numbers called catVal. To obtain the value of catVal we used two
metrics:

1. the ratio of the nouns belong to the synset that denote event,

2. the sense number of the noun that denotes event.

The less the sense number is, the higher is the catVal value. Algorithm 1 (italic
lines) shows details of this calculation. CatVal will be used in ranking step in
Section 4.5.
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4.3 Aggregating Tuples Based on Verb Pairs and Direction

As explained in Section 3, there is a co-occurrence frequency of the tuple (λ) to
characterize its statistical salience; however, it is not accurate enough to determine
the real strength of the semantic relations solely. On the other hand, a pair of events
may be related by different links in different tuples. So, we decided to aggregate
the tuples based on their event pairs and the relation direction. The event pairs in
InitTuples are now in the form of verb-noun pairs. Although some of these nouns
may denote the same event, however, they may have different derivational forms
like graduation, graduating, graduate, etc. So, we decided to convert w2 nouns to
their corresponding verbs to get verb-verb pairs. In addition to solving the problem
of tuple aggregation, this conversion is also necessary to find common arguments in
the next section. We used derivationally related form API of WordNet to convert
nouns to their corresponding verb(s), see Figure 3 b).

Having verb-verb pairs in the tuples, we now can aggregate the tuples based
on their verb pairs and the relation direction, summing the co-occurrence frequency
and concatenating the links for them. This way, verb pairs that are related through
different links (in different tuples) will be connected through concatenation of that
links (converted to just one tuple). This grouping process reduces the number of
tuples (distinct verb pairs) in our KB to about 1.5 M tuples. Doing so, the weight of
each verb pair is now the sum of the weights of all tuples that have been grouped to
create that pair. This new sum is more accurate to capture the strength of semantic
relationship between two verbs. We call this new metric wSequence or wSeq for
short. Figure 3 shows this process for the verb pair admit-graduate.

Figure 3. a) Initial tuples of pair admit-graduate, b) convert nouns to their corresponding
verbs, c) aggregate the tuples based on verb pairs and the direction
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4.4 Roles of Common Arguments

Considering the fact that semantically related verbs should have common arguments,
we believe that the more two verbs are semantically related, the more words they
will have as their common arguments (subject or object). For instance, plant and
harvest which are semantically related have many words that can be their common
arguments, but plant and crash, which are not semantically related, have almost no
word as their common arguments:

• Argument (plant) ∩ Argument (harvest) = {crop, plant, grape, seed, potato,
grain, fruit, corn,wheat},
• Argument (plant) ∩ Argument (crash) = Ø.

We call these words that can be arguments of both verbs common arguments.
Common arguments can be found in subject and object links in TypeDM. There
are more than 10 M such links in TypeDM. We define Common Argument Weight
(CAW) as the relative measure of the strength between two verbs. To acquire this
value for two given verbs verb1 and verb2, we have firstly chosen subject and object
links (tuples) of TypeDM for them, namely V1Links and V2Links, respectively.
There are about a few thousands such links for each verb in TypeDM. Then we
joined the tuples of V1Links and V2Links based on their common arguments to get
joint tuples jointTuples. That is, for each tuple of V1Links×V2Links if V1Links.arg
equals V2Links.arg, we keep (join) them, otherwise discard them. Then, we calculate
f(λ1, λ2) as a function of λ1 and λ2 of the joint tuple, where λ1 is the weight of
verb1 tuple and λ2 is the weight of verb2 tuple. Lastly, by sorting the joint tuples
based on f(λ1, λ2) and picking the highest one, CAW can be calculated as a function
of λ1, λ1 of this tuple. See Algorithm 2 for more details.

Algorithm 2 has three outputs, CAW, common arguments and role mapping.
Common arguments can be acquired by selecting common arguments of top n tuples
from sortedTuples, sorted tuples of jointTuples based on f(λ1, λ2). Role mapping
maps the thematic roles of related verbs (e.g., the Agent of kill is mapped to the
Patient of arrest). This is very useful information about semantically related verbs
that can be used in many NLP applications, like Coreference Resolution. In order
to get this mapping, we have heuristically chosen the rel1 and rel2 of the top 1 tuple
from sortedTuples. Although this is only a heuristic, but in most cases it works
properly. The rationale behind it is that the common argument that comes with
both verbs most of the times has a certain role with each verb. Hence, choosing the
top 1 tuple of the sortedTuples which has the highest value of λc is a simple and
acceptable solution for this problem. The verb pair (escape, arrest), for instance, has
nouns like prisoner, criminal, man as their common arguments which are usually
subject of escape and object of arrest. So, for this verb pair, we obtain the mapping
escape (sbj) = arrest (obj).

Although gathered from big parsed corpora and not necessarily co-occurring
in the same document, the acquired common arguments are so accurate. Beside
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Algorithm 2 Algorithm for extraction of CAW, Role Mapping, and Common Ar-
guments

a metric for relations strength measurement, common arguments can act as a mean
to disambiguate polysemous verb with respect to another verb. For instance in
(install, execute) common arguments are words denoting a program or script, which
indicates execute means run a program, but in (arrest, execute) common arguments
denote a prisoner or criminal, which indicates execute means put to death. Table 5
shows some examples of CAW, common arguments and role mapping.

Table 5. Some examples of CAW, common arguments and role mapping
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4.4.1 Calculating f(λ1, λ2)

In above subsection we expressed f(λ1, λ2) as a function that combines λ1 and λ1
as a single metric which we called λc. We decided to choose the minimum of λ1
and λ2 as f(λ1, λ2), i.e. f(λ1, λ2) = minimum(λ1, λ2). One may wonder why we
have chosen minimum not maximum or multiplication of λ1 and λ2, for example.
We opted for the minimum for two reasons. First, it is obvious that both of λ1
and λ2 are important in weighting the joint tuple of v1Link and v2Link, so we have
to use a function of both values. Second, if we choose multiplication or maximum
or average of λ1 and λ2, it may cause undesirable results, because the common
argument may come with verb1 (verb2) more often than the other, resulting in
a big value for λ1(λ2). So if we multiply, sum, or choose the maximum value of λ1
and λ2, we will get a high value of CAW for a verb pair that may not agree with
their common arguments.

4.5 Calculating Combined Metric

Since the beginning of Section 4, we introduced three metrics that can be used
in ranking semantically related verbs based on the relations strength, i.e., catVal,
wSeq, and CAW. In this section, after introducing a new metric, we plan to combine
them to obtain combined metric.

In addition to the metrics introduced in previous subsections, we can use PMI
(Pointwise Mutual Information). PMI (Equation (1)) is information-theory ap-
proach to measure the statistical association between two words. In our dataset,
PMI estimates whether the co-occurrence of two verbs is higher than the a priori
probability of them occurring independently. PMI defined as:

PMI(v1, v2) = log

(
P (v1, v2)

P (v1)P (v2)

)
. (1)

The value of P (v1, v2) can be obtained from the of co-occurrence weight of two
words acquired from the corpus (Section 3). For calculating the value of P (v1), the
sum of λ in all tuples T where v1 ∈ T is computed. P (v2) is calculated in a similar
way.

Now there are four metrics which can be used to rank tuples of verb pairs based
on their relation strength. In order to create the combined ranking formula based
on these metrics, we ranked 150 verb pairs manually and used them as train data
of a linear regression model.

4.6 Deduce Relation Types

To classify semantic relations, following Penn Discourse Treebank (PDTB) [28],
we grouped discourse relations into four classes: causal relations (Contingency),
temporal relations (Precedence, Succession), comparison relations (Contrast), and
expansion relations (Conjunction).
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Contingency is used when the connective indicates that one of the events causally
influences the other.

Temporal is used when the connective indicates that the situations described in
the arguments are related temporally.

Comparison applies when the connective indicates that the relation highlight
prominent differences between the two situations.

Expansion covers those relations which expand the discourse by providing addi-
tional information or illustrating alternative situations.

To acquire relation types between verb pairs, we used their connecting links. As
explained in previous subsections, there are 24 links connecting verb pairs in our KB
(see Table 1). After aggregating tuples based on verb pairs and the relation di-
rection, every verb pair is connected through a subset of these links (Figure 3).
Now the problem is to infer relation type(s) from the connecting links. For each
relation, there are some linguistic cues to infer it from Table 6 shows these cue
links.

Our introduced cue words for each relation are in accordance with the above-
mentioned definitions of those relations. In temporal relation, for example, the defi-
nition says “the connective indicates that the situations described in the arguments
are related temporally”. Each of our introduced cue words for temporal relation is
such indicative without no exception or ambiguity. The after and before preposi-
tions denote succession and precedence relations, respectively, which are subtypes
of the Asynchronous temporal relation introduced in PDTB. Until and upon de-
note succession relation as well. The prepositions at, on, while, during, whilst, and
over denote Synchronous relations which is subtype temporal relation introduced
in PDTB. Some of these prepositions could denote other meanings than those of
temporal relation. For example, at and on could denote position or location, but as
we removed non-event arguments for these prepositions in Section 4.2, they will just
denote temporal relation in existing tuples. For the comparison (contrast) and ex-
pansion (Conjunction) relations, the selected cue words in Table 6 are in accordance
with PDTB definitions for these relations.

Table 6. Cue word links for each relation type

For three relations, i.e. temporal, comparison, and expansion we can use a rule,
based on their cue words to infer the existence of that relation between each verb
pair. That is, these three relations can be identified by this simple rule: for each
relation R ∈ {temporal, comparison, expansion} if the words in connecting link be-
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tween verbs v1 and v2 contain a cue word of the relation R, then the relation R
holds between v1 and v2.

For the cause, on the other hand, we could not find any rule that works based on
its introduced cue words. For instance, in the tuple 〈charge, with, offend〉 the prepo-
sition with is a sign of causal relation between offend and charge, but in 〈answer,
with, laugh〉 there is no causal relation between laugh and answer. The problem
is that these connectors are ambiguous in that they are associated with several
relations. In addition, the amount of links contribution in relations (i.e. the co-
occurrence weight of the tuple in corpus) is not 1, 0 modes (i.e. exist or not exist)
but they can take a value ranging from small amount to several hundreds. We be-
lieve that the links values are also important in determining the relations. Hence,
sometimes three cue words with relatively low co-occurrence value (through (10),
by (5), via (2)) could denote the cause relation and sometimes just two cue words
with high co-occurrence value (with (200), by (170)) is enough. Sometimes one cue
word like because can solely be translated to the cause relation. These all indicate
that generalizing the links to get a rule to translate links set to the cause relation
is not easy. So we decided to use a learning method for this task.

In order to acquire training data, we manually collected instances of cause and
non-cause event pairs from the KB. We labeled 500 cause and 500 non-cause verb
pairs. We used the value of connecting links as input features to train a supervised
model for classifying relation between verb pairs as cause or non-cause. We chose
the Random Forest classifier implemented in Weka [29] to train the model which
yielded the highest performance.

5 EVALUATION AND DISCUSSION

In this section, we present the evaluation of our semantically related verbs KB.
Specifically we performed experiments to evaluate

(1) the direction between verbs pairs,

(2) the ranking of verb pairs based on their strength of association,

(3) the quality of the four categories relations between verb pairs in KB (i.e., causal,
temporal, comparison, and expansion),

(4) the mapping between thematic roles of verb pairs.

For each experiment we created a test data from our KB and asked human anno-
tators to annotate them. Also, for cause relation of case (3) which is most important
semantic relation in our task, we compared the performance of our approach with
knowledge bases that are extracted in similar way. This experiment is done against
available data sets of causal relations that are explained in following subsection. We
consulted the freely available resources VerbOcean [13] and V2R [20]. VerbOcean
data contains 98 362 tuples including 58 330 distinct verb pairs. V2R contains over
8 000 000 tuples including 3 803 294 distinct verb pairs. It should be noted that the
tuples in V2R contain some prefixes or affixes that could affect normal comparison.
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For example many tuples contain a [not] or [state verb] prefix. We removed these
affixes before comparison. We also removed its tuples which contained non-word
tokens (e.g. numbers, quotation, exclamation mark).

5.1 Data Sets

5.1.1 Available Data

This section presents details of freely available data for cause-effect relations. The
details of this data set are explained below.

SemEval-2: SemEval-2 Task 8 focuses on multi-way classification of semantic re-
lations between pairs of nominals. One of these relations is Cause-Effect (CE).
In the original dataset in each sentence one causal pair has been annotated.
We have extracted these pairs. Because the events in VerbOcean, V2R and
our KB are expressed through verb pairs, we converted event pairs extracted
from SemEval to their corresponding verbs (if possible). This way we obtained
451 Cause-Effect verb pairs.

WordNet cause relations: WordNet contains causal relations between verb pairs.
Extracting these relations from WordNet we obtained 743 cause verb pairs.

ECED: in [14] the authors have annotated some causal relations from news doc-
uments and used the data in developing and evaluation of their method. We
extracted causal event pairs from these annotated data and converted event
nouns to their corresponding verbs. This way we get 400 cause-effect verb pairs.
We called these data ECED.

As the first experiment, we compared our method with V2R and VerbOcean against
above data. This experiment tests the coverage of causal relation along with the
direction of relation in our KB. Figure 4 and Table 7 show the results.

The better coverage of our result in comparison with V2R becomes more valuable
when taking this point into account that the total number of distinct verb pairs in
our KB is far lesser that of in V2R (0.9 M vs. 3.8 M). This means that besides the
coverage, the precision of our method is much higher.

Table 7. Coverage of cause relation in our KB, V2R, and VerbOcean with respect to
ECED, WordNet cause relation and SemEval-2010
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Figure 4. Recall comparison of our method against V2R and VerbOcean

5.1.2 Annotated Data from Our KB

We collected test data from our KB for experiments (1) to (4). These test sets were
selected randomly with equal proportion of weak and strong relation strength. We
asked two annotators to annotate these data. Then we tested our KB against these
test data. The process is explained in more details below.

We selected 100 verb pairs from our KB randomly to create two test sets for
experiments (1) and (4), respectively. Then we asked two annotators to identify
the direction of relations between each pair (experiment 1) and find the mapping
between thematic roles of the verb pairs (experiment 4). The kappa score for the
human inter-annotator agreement achieved on Test-set1 (Test-set4) is 0.94 (0.51),
respectively. Then we compared the direction of these tuples with that of our KB.
The precision for relation direction and thematic role mapping was 91 % and 46 %,
respectively.

For experiment (3), i.e. evaluating the quality of the four categories relations
between verb pairs in KB, we created a test data from our KB. For this purpose,
we selected 100 verb pairs for each of four categories randomly. These data were
annotated by two human annotators to determine if the semantic relation holds be-
tween the verb pairs of each test set or not. They were provided with annotation
guidelines where it was needed. For instance, the cause relation is hard to identify,
so we adopted the annotation guidelines from [31, 18] which are as follows: “Assign
cause label to a pair (a, b), if the following two conditions are satisfied: (1) a tempo-
rally precedes/ overlap in time, (2) while keeping as many state of affairs constant
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as possible, modifying a must entail predictably modifying b. Otherwise assign non-
cause label”. The kappa scores for the human inter-annotator agreement achieved
on causal, temporal, comparison, and expansion Test-sets are 0.51, 0.91, 0.74, and
0.62, respectively. We compared our KB against these data. Table 8 shows the
results.

Table 8. Precision of our relations

For experiment (4), i.e. the task of ranking verb pairs based on the strength of
relations, we randomly selected 10 verbs. Two annotators were asked to sort related
verbs of each 10 verbs based on the strength of their association. We employed
Spearman’s rank correlation co-efficient (Equation (2)) to compare the ranked list
of verb pairs based on the scores of our metrics and the rank given by the human
annotators.

P =
n(
∑
xiyi)− (

∑
xi)(

∑
yi)√

n(
∑
x2i )− (

∑
xi)2

√
n(
∑
y2i )− (

∑
yi)2

. (2)

Here, n is the total number of verb pairs in the test set, xi is the human an-
notation rank and yi is the metric’s rank of verb pairs of the test set. Spearman’s
rank correlation coefficient has a range of [−1, 1]. A coefficient of −1 corresponds
to the two lists being perfectly negatively correlated (one is the reverse sort of the
other), a coefficient of 1 corresponds to perfect correlation, and a coefficient of 0 for
rankings being completely independent.

Table 9 shows the results of evaluating introduced metrics for relation strength.
The A, B, C, D, and E schemas are λ, wSeq, wSeq + CAW, wSeq + CAW + catVal,
and combined metrics, respectively.

Table 9. The Spearman’s rank correlation coefficient for the metrics

6 CONCLUSION

Providing a repository of semantic relation between verbs is of great importance
in various NLP applications including Question Answering [1, 2], Machine Trans-
lation, Information Extraction, Coreference Resolution [3], Prediction [4], Summa-
rization [5], Recognizing Textual Entailment [6], etc.



From Parsed Corpora to Semantically Related Verbs 261

In this paper, we discussed how parsed data of a big corpus could have a signifi-
cant impact on creating semantic relations repository between verbs. We used both
verb and action nominals as event triggers. Incorporating connecting links between
event pairs, we tried to classify relations types to categories such as causal relations,
temporal relations, comparison relations, and expansion relations. In order to deter-
mine the strength of association between verb pairs, we introduced some numerical
measures including wSeq, CAW, catVal, and PMI. We evaluated our work against
two freely available resources of semantic verbs. As reported in the evaluation sec-
tion, the result was promising.

On the other hand, one limitation in our work is that there is no phrasal verb
in our repository. The reason is that the parser used in parsing source corpora did
not distinguish between particle and preposition. In other word, it treats put on
shoulder and put on clothes the same, while in the former on is a preposition and
in the latter it is a particle. This way, for a sentence like put on clothes we wrongly
have put as the verb. This has a negative effect on the quality of our results.
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