
Computing and Informatics, Vol. 37, 2018, 533–552, doi: 10.4149/cai 2018 3 533

ACCELERATING STENCIL COMPUTATION
ON GPGPU BY NOVEL MAPPING METHOD
BETWEEN THE GLOBAL MEMORY
AND THE SHARED MEMORY

Tieqiang Mo, Renfa Li

College of Information Science and Engineering
Hunan University
Changsha, Hunan, 410082, China
e-mail: 852020926@qq.com, renfali@vip.sina.com

Abstract. Acceleration of stencil computation can be effectively improved by uti-
lizing the memory resource. In this paper, in order to reduce the branch divergence
of traditional mapping method between the global memory and the shared memory,
we devise a new mapping mechanism in which the conditional statements loading
the boundary stencil computation points in every XY-tile are removed by aligning
ghost zone to reduce the synchronization overhead. In addition, we make full use
of single XY-tile loaded into registers in every stencil computation point, common
sub-expression elimination and software prefetching to reduce overhead. At last
detailed performance evaluation demonstrates our optimized policies are close to
optimal in terms of memory bandwidth utilization and achieve higher performance
of stencil computation.

Keywords: Memory mapping, GPGPU, stencil computation, ghost zones

Mathematics Subject Classification 2010: 65Y05

1 INTRODUCTION

Stencil computations mean repeated updating of values associated with points on
a multi-dimensional grid, using only values in a set of neighboring points. GPUs can
effectively accelerate this type of application such as computational electrodynam-
ics [1], the solution of partial differential equations (PDEs) which applies the finite

534 T. Mo, R. Li

difference [2], and image processing for CT or MRI imaging [3]. But for a highly
tuned implementation how to manage memory resources remains a critical problem.
The challenge is to design and implement optimized algorithms that make full use
of memory bandwidth and/or arithmetic units and to reduce inefficiencies due to
excessive memory traffic and unnecessary computations.

GPUs just like CPUs are subject to memory bandwidth bottleneck. For exam-
ple, on NVIDIA C2050, a peak double precision performance of 515 GFLOP/s and
a peak memory bandwidth of 144 GB/s can be achieved, that is to say, byte-per-flop
ratio indicating the balance of the memory bandwidth versus float-point operations
per second (FLOP/s) is 0.28. Similar performance can nowadays be achieved by the
CPU-based shared memory system, e.g., a 4-way system with a total of 482.2 GHz
Opteron cores can have a peak performance of 450 GFLOP/s and a peaked band-
width of 170 GB/s (byte-per-flop is 0.38). For all these systems the CPU delivers
more bandwidth relative to floating point computation than the GPU. What is more
important is the fact that the byte-per-flop is relatively low in both systems. This
implies that optimizing memory access and decreasing redundant memory opera-
tions is a must even for compute bound application.

In this paper, stencil computation algorithms running on NVIDIA GPUs are
optimized. Firstly, we design a novel memory mapping mechanism between global
memory and shared memory of XY-tiles which extends the classical XY-tile and
ghost zone to include the aligned data points of 32 bytes (8 words) of neighboring
XY-tile shown in Figure 2. In this way, control flow divergence due to the conditional
statement in Listing 2 can be eliminated. Secondly, in every iteration only one XY-
tile’s data are loaded into shared memory and further are copied into registers in
the next iteration. All stencil computations about this tile are made available for
these registers. Data and the partial sub-sum are stored in the temporary registers.
By this way, the saved shared memory can be used to launch more other threads.
Moreover, FLOPs have been further reduced by developing common sub-expression
elimination [4] policy for symmetric 27 points stencil computations. Finally, in our
implementation the software pre-fetching is used to overlap arithmetic and memory
instructions to the benefit of hiding memory latency.

Comparing with inter-tile communication mechanism, policy of local computa-
tion reduces the communicating overhead of stencil computation in the neighboring
tiles. Nevertheless, overlapped memory access named ghost zone overhead in the
neighboring tiles may be produced in this policy. This is because of the fact that
the data in the boundary points of XY-tile must be reloaded twice for the adjacent
XY-tiles. We analyze the efficiency of our stencil algorithms by utilizing a model
of memory traffic which takes into account the size of ghost zone due to minimum
data reloading from global memory to shared memory. From this model we conclude
that overhead due to ghost zone may be largely alleviated by correct reuse of data
onto ghost zone in global memory or texture caches. Our implementation of the
7-point stencil is bound by memory bandwidth for both single and double precision
and close to optimal on Tesla C2050, i.e., it runs only 13 % slower than a memory
loading routine without considering the ghost zone overheads.

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 535

The rest of the paper is organized as follows. Section 2 deals with the CUDA
programming model and algorithms behind stencil computation. In Section 3 we
detail algorithm framework of stencil computation based on registers and shared
memory. Section 4 deals with new memory mapping mechanism in which ghost
zone overheads are adequately considered to reduce memory access traffic on the
GPU. In Section 5 software prefetching mechanism is analyzed. In Section 6 we
evaluate the performance of our new memory mapping mechanism. In the last
section all new ideas are concluded in this paper.

2 STENCIL COMPUTATIONS ON GPUS

A stencil computation is characterized by updating each point in a structured grid
by an expression depending on values on a fixed geometrical structure of neighboring
grid points. The simplest example is the 7-point stencil, approximation of the 3D
Laplacian operator, as shown in Figure 1 a). The update of a data point depends
on the current position and its neighbors on the left, right, front, back, above and
below. A more complex example is 27-point stencils shown in Figure 1 b), where
an update of point (i, j, k) depends on the weighted sum of point (i, j, k) and its
26 neighbors.

Figure 1. Stencil space structure

As an actual example, we may consider the 3D heat equation ∂u
∂t

= k∇2 where
∇2 is the Laplacian operator, and we assume a constant heat conduction coefficient
and no heat sources. The following explicit finite difference scheme can solve the
problem on a uniform mesh of points:

un+1
i,j,k = un

i,j,k+
k∆t

∆x2

(
un
i,j,k−1 + un

i,j−1,k + un
i−1,j,k + un

i+1,j,k + un
i,j+1,k + un

i,j,k+1 − 6un
i,j,k

)
(1)

The superscript n denotes the discrete time step number (an iteration), the triple-
subscript i, j, k denotes the spatial index. The quantity ∆t is the temporal dis-
cretization (the time step) and the mesh spacing is equal in all directions. Note that
in reality the formula in (1) is a 7-point computation stencil applicable only to inner
grid points on a tile, and for simplicity we have omitted treatment of the boundary
points.

536 T. Mo, R. Li

For parallel computations on GPUs there exist thousands of threads to execute
concurrently to hide memory and instruction latency: once active threads stall, warp
scheduler chooses the ready threads in round robin mode. On the fine-grained level
threads are arranged into completely synchronous groups of 32 threads named as
one warp. Different warps are scheduled for execution independently of each other
by the Streaming Multiprocessors (SM). Individual thread within the same warp is
allowed to take a different execution path if conditional statements happen. How-
ever, since threads in a warp execute common instructions at a time, one execution
path in one branch of that warp is disabled until different execution paths merge
again. Consequently, control flow divergence significantly increases the number of
the executing instructions to the sum of the instruction counts of all execution paths
taken. In this situation, it is more beneficial to take branch-free implementation into
consideration, especially when optimizing compute bound software.

Warps may be further grouped into 1D, 2D or 3D regular thread blocks. Warps
belonging to the same thread block are executed on the same SM. The order in
which different thread blocks are executed is random. Threads within a thread
block can quickly synchronize and exchange data through a common shared memory.
The position of a thread inside a block is described by a set of local threadIdx.x,
threadIdx.y and threadIdx.z indices. Each thread block has a similar set of indices
(blockIdx.x, blockIdx.y, blockIdx.z) locating the position of the block in the global
data grid. In one policy of 3D stencil computations the grid is processed using 3D
thread blocks [5]. Based on blockIdx and threadIdx coordinates threads compute
global indices (i, j, k) of the processed data points.

A great many stencil optimization techniques have been previously suggested.
Micikevicous [6] gave an implementation of 3D stencil (FDTD3d) in which the shared
memory is used to load XY-tiles and registers are made available to save shared mem-
ory space. Phillips and Fatica [7] utilized the removing logic to reduce the number
of conditional statements and made 4 texture caches available. So its memory access
latency overheads increased. Recently Zhang et al. [8] statically allocated ghost zone
data to threads during initialization of the thread blocks. In addition, the method
avoids conditional statements, but its ghost zone in the Y-dimension are loaded in
non-coalesced way. This might also lead to degraded performance.

In our memory mapping mechanism all updated stencil data in every computed
point must be written into global memory. But in some applications the intermediate
updated data require no writing into the global memory immediately in the defined
stencil (e.g. Wave propagation solver, Jacobi solver). In this case, the temporal
block optimization [5, 11, 13] could make time-dimension data available to speed up
stencil computations for less memory access.

Many researchers have proposed automatic stencil code generation and perfor-
mance tuning for modern multi-core heterogeneous architectures. The auto-tuning
method searches through the space of parameters which may degrade performance,
such as loop unrolling factor, types of memory and thread block size. This method
demonstrates a portable high performance across different architectures and stencil
types. Datta et al. [4] developed an auto-tuning framework for stencil computa-

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 537

tions, targeting multi-core systems, NVIDIA GPUs or Cell SPUs. Zhang et al. [8]
and Christen [10] also developed the tuning framework to optimize performance
on the GPU. Tang et al. [14] projected the Pochoir stencil compiler which uses a
domain specific language embedded in C++ to produce high performance code for
stencil computations using cache-oblivious policy for parallelism. Unat et al. [15]
suggested a compiler framework named Mint using annotated C as the front-end
and converting stencil computation into C code by utilizing pragmas with several
levels of optimization.

In this paper a more efficient and widely used 2.5D blocking policy [6] is applied.
Two-dimensional data points are used to tile the grid in the XY-plane and provide
threads with the (i, j) indices of the grid points. A loop is then used to traverse
the grid in the Z-dimension, providing additional k index. In this way there are no
Z-dimension ghost zone in the 2.5D policy since data are processed by the thread
block plane by plane. This guarantees data reuse in the neighboring XY-tile along
Z-dimension and reduces plenty of memory bandwidth requirements. So this policy
is superior to using 3D thread blocks because of data reuse and reduced shared
memory requirements in 2.5D blocking policy. What is more, in 2.5D policy the
initialization cost of the thread blocks (computing thread and grid indices, setting
boundary conditions, etc.) is decreased over a larger number of grid points processed
by every thread.

3 MORE EXPLOITATION OF REGISTERS
IN STENCIL COMPUTATION

A novel pseudo-code implementation of stencil computation is presented in Listing 1.
In registers r1, r2, . . . , r9, values of stencil points of the same XY-plane are stored.
Sub-routine load block ghost loads the whole XY-plane tile including ghost zone
into shared memory space: sh m from global memory; in sub-routine sh m regs,
9 values around stencil computation point (i, j, k) in the same XY-tile plane are
copied to the registers from shared memory; in the function stencil compute1, only
the partial sub-sum is computed by adding the weighted values stored in current
registers r1, r2, . . . , r9, namely, the partial stencil result of the single XY-tile is
produced by making all coefficients of the stencil kernel available to the data in one
k-loop iteration.

The algorithm shown in Listing 1 runs a series of steps to finish all stencil
computations. In line 9 and line 12 the input data of the first XY-tile and the
second XY-tile are loaded into registers from shared memory, respectively. The
updated value of every computed point is the sum of the weighted value of its
neighboring points which belong to the three different planes being adjacent to
each other, likewise, this value is equal to the sum of 3 partial sub-sums which can
be computed by their corresponding stencil expressions in three different adjacent
planes. So in line 11 and line 14 two partial sub-sums are computed for the first
XY-tile plane and the second XY-tile plane, respectively. In line 15 the sum of

538 T. Mo, R. Li

these partial sub-sums for the present two planes is stored in the temporary variable
inter1 (the corresponding PTX code is the register). In line 18 the input data of the
third XY-tile of the current iteration are loaded into registers from shared memory.
In line 19 the input data of the third XY-tile of the next iteration are loaded into
shared memory from global memory or texture cache. In line 21 the loaded data of
the third XY-tile in line 18 are used to compute the partial sub-sum of the third
XY-tile and the first stencil computation result is obtained by further adding the
value of inter1. Lines 22 and 23 initialize the subsequent iterations. In lines 25
and 26 the updated stencil value of the last XY-tile is computed. In the loop code
beginning from line 17 only the data of the third XY-tile are loaded into the registers
and can be used to compute the updated stencil value of the current iteration while
the partial sub-sum of the other two XY-tiles comes from the temporary value inter1
of the last iteration. So the registers are fully utilized by our stencil computation
and the saved shared memory can be allocated to more threads.

1 g l o b a l void s t enc i l c ompute (in , out , nx , ny , nz)
2{

// shared memory f o r data po int
3 extern sha r ed f l o a t sh m [] ;
4 const u int t i l e x=threadIdx . x ;
5 const u int t i l e y=threadIdx . y ;

// the temporary s to r ed data in r e g i s t e r s f o r XY−t i l e
6 f l o a t r1 ˜ r9 ;

// r e g i s t e r s f o r p a r t i a l s t e n c i l sub−sum
7 f l o a t in t e r1 , i n t e r 2 ;

// load data in to the shared memory f o r the f i r s t XY−plane
8 l o a d b l o c k g h o s t (in , f i r s t , t i l e x , t i l e y , sh m) ;
9 sh m regs (sh m , t i l e x , t i l e y) ;

// load data in to the shared
10 l o a d b l o c k g h o s t (in , second , t i l e x , t i l e y , sh m) ;

// memory f o r the second XY−plane
// p a r t i a l s t e n c i l sub−sum f o r the f i r s t XY−plane

11 i n t e r 1=stenc i l compute1 (r1 ˜ r9) ;
12 sh m regs (sh m , t i l e x , t i l e y) ;

// load data in to shared memory f o r the t h i rd XY−plane
13 l o a d b l o c k g h o s t (in , th i rd , t i l e x , t i l e y , sh m) ;

// p a r t i a l s t e n c i l sub−sum f o r second XY−plane
14 i n t e r 2=stenc i l compute1 (r1 ˜ r9) ;

// p a r t i a l s t e n c i l r e s u l t obta ined by the sum of
// the v a r i a b l e s i n t e r 1 and i n t e r 2

15 i n t e r 1+=i n t e r 2 ;
16 out+=ix+iy ∗nx ;
17 f o r (u int k=3;k<nz−1;k++){

// load data in to r e g i s t e r s from the shared
// memory f o r the t h i r d XY−plane

18 sh m regs (sh m , t i l e x , t i l e y) ;

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 539

// i n i t i a l i z e the next i t e r a t i o n
19 l o a d b l o c k g h o s t (in , k , t i l e x , t i l e y , sh m) ;
20 out+=nx∗ny ;

// update cur rent XY−t i l e
21 out [0]= i n t e r 1+stenc i l compute1 (r1 ˜ r9) ;

// i n i t i a l i z e the next i t e r a t i o n
22 i n t e r 1=i n t e r 2+stenc i l compute1 (r1 ˜ r9) ;
23 i n t e r 2=stenc i l compute1 (r1 ˜ r9)
24 }
25 sh m regs (sh m , t i l e x , t i l e y) ;

// update the l a s t XY−t i l e
26 out [0]= i n t e r 1+stenc i l compute1 (r1 ˜ r9) ;
27 }

Listing 1. Algorithm framework of stencil computations

The popular implementation of stencil solution is made by a holistic stencil
computation, that is to say, for every stencil computation tile k, all adjacent stencil
data in k − 1, k and k + 1 tiles are loaded into shared memory or registers of the
thread block and are computed by stencil expression. Reusing the k and k − 1
input tiles in the production of the next k + 1 tile relies on circular queue [7]. In
contrast, our implementation of stencil solution is achieved by the accumulation of
multiple partial stencil results. In every partial stencil calculation in a sub-routine
stencil compute1 only one XY-tile data are loaded into registers. The acquired
partial stencil results are accumulated in registers inter1 and inter2. Once stencil
result accumulated from the adjacent three XY-tiles has finished this result is stored
in the output array.

4 MEMORY MAPPING MECHANISM AND OPTIMIZATION

4.1 The Classical Memory Mapping Mechanism

The classical memory mapping algorithm from global memory to shared memory is
illustrated with Listing 2, in which one XY-tile data are loaded into shared memory.
The homogeneous implementation can be found in [6, 7]. In Listing 2 the adjacent
indices of the computed stencil point are shown here only for comprehensibility.
Actually, all indices are pre-computed before the k-loop at the beginning of the
routine stencil compute. Since the single thread computes all stencils points along
the Z-axis, only the k-index changes and needs to be updated in the k-loop.

In line 6 data in a stencil point corresponding to one thread’s ID is loaded into
shared memory. The ghost zone is loaded into shared memory by boundary threads,
which are shown from line 7 till line 11. From this figure we can find that there
are many lines of conditional statements which can effectively aggregate control
flow divergence of threads in one warp and increase the total number of executed

540 T. Mo, R. Li

instructions. By utilizing texture cache as shown in [7] the conditional statements
have been removed and redundant loads of global memory have been prevented.
But the texture cache is not designed to reduce latency, thus texture loads have
similar cost of global loads regardless of whether or not there is a cache hit. In order
to shun the conditional statements Zhang and Mueller [8] statically allocated ghost
zone points to the individual threads at the start of the stencil routine. The threads
first load the interior data points of XY-tile into shared memory then load ghost
zone. Depending on the thread block size, some threads are loading the allocated
ghost points while many other threads may be idle until all branches in one warp
converge. On the other hand, the X-dimension ghost zone points are not loaded into
the shared memory in a coalesced way.

1 l o a d b l o c k g h o s t (in , k , t i l e x , t i l e y , sh m)
2 {
3 u int bx=blockDim . x+2;
4 u int mx = blockIdx . x∗blockDim . x + threadIdx . x ;
5 u int my = blockIdx . y∗blockDim . y + threadIdx . y ;
6 sh m [t i l e x+t i l e y ∗bx]= in [mx+my∗nx+k∗nx∗ny] ;

// top and bottom ghost zones
7 i f (t i l e y ==1) sh m [t i l e x +(t i l e y −1)∗bx]= in [mx+

(my−1)∗nx+k∗nx∗ny] ;
8 i f (t i l e y==blockDim . y) sh m [t i l e x +(t i l e y +1)∗bx]

=in [mx+(my+1)∗nx+k∗nx∗ny] ;
// l e f t and r i g h t ghost zones

9 i f (t i l e x ==1) sh m [(t i l e x −1)+ t i l e y ∗bx]=
in [mx−1+my∗nx+k∗nx∗ny] ;

10 i f (t i l e x==blockdim . x) sh m [t i l e x+1+t i l e y ∗bx]=
in [mx+1+my∗nx+k∗nx∗ny] ;

// corner ghost zones
11 i f (t i l e x==1&&t i l e y ==1)
{sh m [t i l e x −1+(t i l e y −1)∗bx] = in [mx−1 + (my−1)∗nx

+ k∗nx∗ny] ;
sh m [t i l e x −1+(t i l e y +1)∗bx] = in [mx−1 + (my+1)∗nx

+ k∗nx∗ny] ;
sh m [t i l e x +1+(t i l e y −1)∗bx] = in [mx+1 + (my−1)∗nx

+ k∗nx∗ny] ;
sh m [t i l e x +1+(t i l e y +1)∗bx] = in [mx+1 + (my+1)∗nx

+ k∗nx∗ny] ;
}

12 syncthreads () ;
}

Listing 2. Ordinary memory mapping algorithm

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 541

4.2 Modeling Memory Mapping Mechanism

The purpose of modeling the memory mapping mechanism is to evaluate the ef-
ficiency of our stencil implementation in terms of memory bandwidth usage and
memory overhead due to redundant data access to ghost zone. We will calculate the
theoretical minimum and the algorithm constrained minimum amount of memory
traffic in a single stencil computation, respectively.

Theoretically, for the global stencil memory access operations, the value of data
points is loaded into shared memory once and computed, and then the result is
written back to global memory once. If 4 bytes of data points are assumed for single
precision floating point (SPFP) the number of bytes of memory traffic per data point
is 8 bytes (4 bytes for loading and 4 bytes for writing).

For GPUs, different thread blocks executed on the stream multi-processors run
independently and cannot access each other. Therefore, in stencil computation every
thread block has to load the interior data of XY-tile and a layer of adjacent values
targeting to calculate stencil value of peripheral points of XY-tile. The values of
this peripheral layer of every XY-tile are often referred to as the ghost zone or halo
which simultaneously are interior values of adjacent thread blocks. Thus, all in all,
(blockDim.x + 2) ∗ (blockDim.y + 2) values of every XY-tile must be loaded into
shared memory. Consequently, memory access is increased since some of the data
are loaded more than once: first as interior data of XY-tile, again as the ghost zone
of adjacent XY-tile. Of course, this repetitive access overhead can be lessened by
enlarging the XY-tile perimeter, which produces a smaller ratio between the number
of data points of ghost zone and that of interior data points in one XY-tile. Since
the threads in different thread blocks cannot access each other, overhead of loading
ghost zone cannot be explicitly eliminated and should be added to memory traffic
of per data point.

Memory access must be aligned by 32, 64 or 128 bytes on GPUs. So loading data
from global memory and writing data into global memory should be performed in
a coalesced manner, in other words, threads in a warp should access the consecutive
addresses within the aligned data segments. If the size of the thread block and the
most frequently changing dimension of the tile is a multiple of the warp size full
memory coalescence can be reached [9]. Generally, loading and writing of interior
data of block can be fully coalesced so long as the tiles are properly partitioned.
Since the values of the top and below Y-dimension ghost zone can also be correctly
aligned in the memory accesses they are also loaded in a coalesced manner. But
loading left or right X-dimension ghost zone becomes more challenging from the
point of view of performance because of their non-consecutive memory access. If
one tile has a thread block size of bx*by and ghost zone width of 1 the minimum
number of the loading data values from the global memory is bx∗by+2bx+2(by+2)∗
32/sizeof(float point number), where sizeof(float point number) is size of the data
value in bytes: 4 and 8 bytes for single and double precision number, respectively.
The number of points respectively in the interior tile and the top and bottom ghost
zone is bx∗by and 2 bx in a tile. Since the number of the minimum transaction bytes is

542 T. Mo, R. Li

the aligned 32 bytes, the minimum number of the loading data values for loading left
and right ghost zone is 2(by + 2) ∗ 32/sizeof(float point number). Further for single
precision floating point numbers the loading number of one tile can be simplified as

bx ∗ by + 2bx + 2(by + 2) ∗ 8 = bx ∗ by + 2bx + 16by + 32. (2)

The expression (2) accounts for the minimum loading number of SPFP values in-
cluding the ghost zone overhead produced by loading all data of XY-tile. One way
to lessen the memory overhead is to enlarge the thread block. On the contrary, for
some GPUs we can make use of the global memory caches to lessen the memory
overhead, which can guarantee that a fewer number of data points in one XY-tile
are directly loaded from global memory than the expression (2). In our tests on the
Fermi-based Tesla C2050 with L1 and L2 global memory caches the global memory
overhead brought by ghost zone can be partly or entirely cleared up if the data
among different XY-tiles are reused appropriately. But for this maximized reuse
the scheduling order of warps must be controlled and cannot be implemented in the
current GPUs.

4.3 New Memory Mapping Mechanism

For expression (2) it must be divisible by 32 for more coalesced memory accesses in
32 threads of one warp, that is to say, the value of expression (bx ∗ by + 2 ∗ bx +
16 ∗ by + 32) mod 32 is zero. So bx and by must be equal to a multiple of 16 and 2,
respectively. Further, in our test on Tesla C2050 with CUDA toolkit Visual Profiler
if the size of XY-tile is 32× 6, all warps show higher occupancy (defined as Active
Warps/Maximum Active Warps). Then the picked XY-tile size is 32 × 6. On the
other hand, for the ghost zone in every XY-tile Y-dimension width is 2 lines (top
and bottom) and X-dimension aligned overhead is 16 words or 64 bytes (for SPFPs
8 words or 32 bytes on left and right side, respectively). So the size of loaded tile
is 48 × 8, as shown in Figure 2. In order to eliminate threads divergence brought
by conditional statements in Listing 2 all threads may be mapped onto two threads
blocks of size 48×4. The detailed pseudo-code implementation is shown in Listing 3.
In this way, the number of bytes of memory traffic per data point is 12 bytes (4 bytes
in writing and 8 bytes in loading which consists of 4 bytes data and 4 bytes ghost
zone overhead).

Figure 2. New-mapped XY-tile

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 543

1 load b lock ghos t new (in , k , sh m)
2 { // change in to one dimension index
3 u int index= (threadIdx . y ∗ blockDim . x) + threadIdx . x ;
4 u int t i l e y 1=index /48 ;
5 u int t i l e y 2=t i l e y 1 +4;
6 u int t i l e x=index %48;
7 i n t i x = blockIdx . x∗blockDim . x + t i l e x − 8 ;
8 i n t iy1 = blockIdx . y∗blockDim . y + t i l e y 1 − 1 ;
9 i n t iy2 = blockIdx . y∗blockDim . y + t i l e y 2 − 1 ;
10 // load ing the data in to the shared memory
11 sh m [t i l e x + t i l e y 1 ∗48] = in [i x + iy1 ∗nx + k∗nx∗ny] ;
12 sh m [t i l e x + t i l e y 2 ∗48] = in [i x + iy2 ∗nx + k∗nx∗ny] ;
13 syncthreads () ;
}

Listing 3. New memory mapping algorithm

In global memory writing full coalescence can be achieved for the proper block
size. If all interior data points of tile have an appropriate alignment in the mem-
ory, that is to say, for every thread block, every interior data value always starts
a 128-byte aligned global memory address, writes of every warp can be coalesced
into one 128-byte access on the GPU Compute Capability 2.0 architecture or into
two 64-byte accesses on the GPU Compute Capability 1.x architecture. On the con-
trary, loading data in one warp may demand two shared memory accesses for some
warps. The mapping to a thread block size of 48× 4 produces misalignment, since
48 is not divisible by 32, namely, some warps have to access non-contiguous memory
areas. Further the accessed data on the left ghost zone starts with a 32-byte offset
from the 128-byte aligned interior data. In this way, one loading operation may be
performed by the hardware as a combination of a separate 32-byte access and at
least one other access. But it does not reveal significant penalty by our performance
tests if the data is accessed by textures.

5 SOFTWARE PREFETCHING

Software prefetching is a well-known technique to overlap memory access latency
with computation. In our prefeching mechanism the prefetched data in a k-iteration
is used for stencil computation in (k + 1)-iteration. Concretely, this prefetching
mechanism is implemented in the following sequence of Listing 1.

1. load block ghost – initialize the stencil computation by loading the first two XY-
tiles from the global memory or texture cache to the shared memory (in line 10
and line 13).

2. sh m regs – copy the data loaded from the shared memory in the previous itera-
tion to register for the current partial stencil computation sub-sum (in line 18).

544 T. Mo, R. Li

3. load block ghost – load data for the next iteration from global memory or texture
cache to the shared memory (in line 19).

4. stencil compute1 – compute the weighted sub-sum value for one XY-tile in the
current iteration by utilizing data in registers (in line 21–23)

5. go to step 2 (iteration of the k-loop).

The data loaded from the global memory in step 3 is not promptly used in the
current iteration. But the computations in step 4 are dependent on the data of
being copied into registers in step 2, namely in the current iteration, which is loaded
into the shared memory in the previous k-loop iteration. Therefore, operations of
steps 3 and 4 can be overlapped by the hardware as they have no common operands.
In this way, the global memory access latency can be hidden by performing the
arithmetic instructions in step 4. While the warp scheduling mechanism can overlap
arithmetic operations and memory access operations our prefetching method has
more opportunity for the scheduled warps and leads to a higher occupancy.

6 PERFORMANCE EVALUATION

In our performance evaluation performance constraints of the available memory
bandwidth are evaluated by memory bandwidth benchmarks and the memory map-
ping mechanism above. The computation constraints are evaluated by counting the
number of instructions in the assembly PTX code produced by the compiler.

Architecture Clock Cycle Peak Memory SPFP DPFP
Bandwidth Performance Performance

GHz GB/s GFLOP/s GFLOP/s

Tesla c2050 1.115 144 1 030 515

Table 1. Performance characteristics of Tesla C2050

First, we run a memory transit routine with zero-overhead shown in Listing 4
for 3D cube grids of single precision data whose memory access traffic per data
point is 8 bytes (4 bytes for loading and writing respectively). Since there is no
communication among different XY-tile threads and no ghost zone overhead for this
transit routine, we can get the theoretical lower bound memory access throughput
and an absolutely idealized constraint on stencil performance. Secondly, we run the
routine transmitting all the data which has a thread block size of 32×6, Y-dimension
bottom and top ghost zone width of 1, respectively, and aligned X-dimension left and
right ghost zone size of 8 words, respectively. Then we can evaluate the efficiency
and memory overhead of our new memory mapping mechanism by comparing the
results of two benchmarks. Thirdly, we estimate how close the single precision float
stencil computation by our novel memory mapping mechanism is to the theoretical
lower value of 8 bytes per data point in memory access without the overhead of
ghost zone. Finally, we compare the performance among different implementations
of stencil computation.

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 545

We measure the performance on Tesla C2050 with error correction turned off
whose main hardware performance parameters are enumerated in Table 1. During
the tests we guarantee the grid size nx and ny is multiples of the thread block
size. All the codes were compiled by utilizing NVIDIA CUDA 5.0 for the 2.0 GPU
architecture.

1 g l o b a l void c u b e t r a n s i t (source , target , nx , ny , nz)
2 {
3 const i n t ix=blockIdx . x∗blockDim . x +threadIdx . x ;
4 const i n t iy=blockIdx . y∗blockDim . y+threadIdx . y ;
5 For (i n t k=0;k<nz ; k++)
6 t a r g e t [i x+iy ∗nx+k∗nx∗ny]= source [i x+iy ∗nx+k∗nx∗ny] ;
7 }

Listing 4. Zero-overhead memory transit routine

6.1 Measure Memory Bandwidth of Traffic Without Ghost Zone Over-
head

The global memory bandwidth is estimated by running the benchmark in Listing 4.
The k-loop structure in cube transit routine represents the loading and writing of
2.5D-blocking implementation. We measure the latency of transmitting a 3D data
cube of SPFP values inside the global memory. The effective memory bandwidth
can be calculated by the expression

nx · ny · nz · (bytes per point)

t · 230
(GB/s) (3)

where t is the latency in seconds of one cube transit call and can be obtained by n
executions of cube transit and the bytes per point is 8 bytes. In Table 2 we give the
calculated bandwidth bytes per point (BPP), iteration time t and the throughput
in data points per second gained by cube size of 256 × 256 × 256. Similarly, the
throughput in the selected two other cube sizes of 192 × 192 × 192 and 512 ×
512 × 512 can also be calculated easily. So in the last column of Table 2, the
average throughput is produced by the three different cube sizes. The average
memory bandwidth of cube transit is approximately 75 % of the theoretical memory
bandwidth on Tesla C2050 (comparing with Table 1).

Architecture cube transit
256× 256× 256 Avg. Throughput

BPP [GB/s] [GP/s] t [s] [GP/s]

Tesla C2050 112.7 14.1 1.20E−03 1.35E+01

Table 2. Memory bandwidth tests using benchmark cube transit

546 T. Mo, R. Li

6.2 Measure Memory Bandwidth of New Memory Mapping Mechanism

The efficiency of our new memory mapping mechanism can be analyzed by the
routine cube ghost transit shown in Listing 5. What is more, by simply configuring
data type and parameters of texture cache, this mapping policy shows increasing
performance improvements in texture cache. Table 3 accounts for this result for
cube 256 × 256 × 256, where the memory bandwidth BPP is calculated by the
expression (3) but the value of bytes per point is 12 bytes.

In comparison with the peak memory bandwidth (144 GB/s) given in Table 1
the throughput (12.8 × 12 = 153.6 GB/s) of our texture access implementation
given in Table 3 shows much advantage on Tesla C2050. It means there is much
reuse of data in the ghost zone in the texture caches. In fact, we have proved
it by using tools of Visual Profiler. On the other hand, It is significantly slower
(8.7 × 12 = 104.4 GB/s) to have access to the global memory for reduced data
reuse. All these results demonstrate the texture caches can effectively eliminate the
performance downside of the misalignment brought by ghost zone.

1 g l o b a l void c u b e g h o s t t r a n s i t (in , out ,nx , ny , nz)
2 {
3 const i n t ix=blockIdx . x∗blockDim . x+threadIdx . x ;
4 const i n t iy=blockIdx . y∗blockDim . y+threadIdx . y ;
5 const u int t i l e x=threadIdx . x ;
6 const u int t i l e y=threadIdx . y ;

// c a l c u l a t e the g l o b a l and shared memory i n d i c e s t1 ,
// t1 , t2 , i 1 and i 2 ac t s l i k e L i s t i n g ˜3

7 out+=ix+iy ∗nx ;
8 f o r (i n t k=0;k<nz ; k++) {
9 sh m [t1]= in [i 1] ;
10 sh m [t2]= in [i 2] ;
11 i 1+=nx∗ny ;
12 i 2+=nx∗ny ;
13 syncthreads () ;
14 out [0]= sh m [t i l e x +8+(t i l e y +1)∗48] ;
15 out += nx∗ny ;
16 syncthreads () ;
17 }
18 }

Listing 5. Bandwidth measure routine with ghost zones

The average transferred number of points of cube in our new global memory
mapping routine cube ghost transit is computed as 12.8 GP/s in Table 3 in contrast
to 13.5 GP/s in routine cube transit shown in Table 2. Explicitly there is no ghost
zone overhead in the running of the former. But ghost zone overhead (only reading
the ghost zone and no writing the ghost zone) exists in the running of the latter.

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 547

So the average throughput of the latter is less than the former, that is to say, the
latter needs more bytes of memory accesses traffic than the former in processing
a data point of XY-tile. Further since the memory access traffic of the former is 8
bytes/point (4 bytes in reading and writing respectively) the effective memory access
traffic of the latter can be computed as 13.5/12.8× 8 = 8.4 bytes per data point in
every XY-tile which is approximately 5 % more than the idealized memory access
traffic lower bound value of 8 bytes per data point (without the ghost zone overhead).
From Table 3 evidently the average performance is inferior to that achieved by
256× 256× 256 cube, which is due to a lower cache reuse as can be revealed by the
Visual Profiler of NVIDIA performance tools.

Architecture Memory Type cube ghost transit
256× 256× 256 Avg. Throughput

BPP [GB/s] [GP/s] t [s] [GP/s]

Tesla C2050 Global 126 10.5 1.61E−03 8.7
texture 161 13.4 1.26E−03 12.8

Table 3. Memory bandwidth tests using benchmark cube ghost transit

6.3 Performance of Single Precision Floating Point Stencil Computation

There are 53 FLOPs (27 multiply and 26 add operations in all) in the PTX as-
sembly code of the general 27-point stencil. By utilizing Common Sub-expression
Elimination the number of FLOPs can be reduced to 18. On Tesla C2050 suc-
cessive multiplication and addition operations are combined into a single hardware
instruction: Fused Multiply Add (FMA). We summed up the assembly of the stencil
routines compiled for Tesla C2050 GPU by using cuobjdump. There are 53 instruc-
tions in an iteration of the k-loop, including 27 floating point instructions (26 FMA
and 1 FMUL) and other auxiliary instructions for loop branch, memory access, data
copying and thread synchronization. If all instructions are executed with the peak
floating point instruction number of 515 billion instructions per second, the com-
puted maximized throughput for the general 27-point stencil is 515/53 = 9.7 GP/s.

Listing 2 reveals the throughput of general 27-point stencil computation on
Tesla C2050, along with memory bandwidth by the cube ghost transit routine and
the computed constraint (9.7 GP/s) above. For the general 27-point stencil the con-
straint of the maximized instruction throughput is lower than the streaming memory
bandwidth of cube ghost transit routine, therefore the 27-point stencil implementa-
tion is compute bound. In Figure 3, the 27-point stencil performance verges on
the computed constraint above. This demonstrates that the time to access memory
largely overlaps with the time to execute the instructions through GPU hardware.
There are two reasons for it. Firstly, the implementation has a high occupancy,
namely, there is a large number of resident warps per stream multi-processor. Con-
sequently, when stencil data is transited there is a high likelihood that the stream

548 T. Mo, R. Li

multi-processors schedule instruction to execute for some warps. Secondly, the soft-
ware prefetching leads to an explicit overlap between the memory transit and com-
putations.

�
�
�
�
�
��
��
��

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

��
�h
��
�h
��
�

WK
UR
XJ
KS
XW
>*
3�
V@

���SRLQW�VWHQFLO PD[LPL]HG�WKURXJKSXW FXEHBJKRVWBWUDQVLW

Figure 3. Bandwidth comparison among 27-point stencil, cube ghost transit routine and
the computed constraint

In Table 4 the average performance of our stencil computation is given. The per-
cent fraction of the peak Instruction per Cycle (IPC) is acquired by Visual Profiler.
On average, the stencil routine is executed at 93 % of peak IPC and acquires ap-
proximately 46 % of the peak FLOP/s performance. In the last column, the percent
fraction of the cube ghost transit routine throughput is listed as 71 % and achieves
relatively lower fraction of the streaming memory bandwidth. This indicates that
27-point stencil is compute bound for Tesla C2050.

Architecture 27-Point Stencil
IPC [GP/s] GFLOP/s cube ghost transit
[%] [%]

Tesla C2050 93 9.1 472 71

Table 4. Average performance of single precision 27-point stencil

We ran the tests ourselves in the best thread block size of FDTD3d 7-point
stencil [6] and listed the result in Table 5. From this table our new mapping im-
plementation is almost twice faster than FDTD3d on Tesla C2050. It demonstrates
that the loading policy of the shared memory has a great impact on performance.
From the generated PTX code in the FDTD3d implementation 100 instructions
are approximately generated in one iteration of the k-loop like Listing 1. In this
NVIDIA’s implementation, traditional loading policy is made available. However,
the control flow divergence in traditional policy leads to non-synchronization of

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 549

32 threads in one warp, namely, two different groups’ sequential execution. In this
way, NVIDIA’s implementation brings more instructions. The performance of the
tuning framework devised by Zhang et al. [8] and Christen [10] listed in Table 5 is
inferior to ours. It is because of the fact that the control flow divergence of warps
brought by conditional statement is removed and higher occupancy holds due to
our problem-specific hand-tuned optimization. But for another problem domain in
which the intermediately processed data requires no writing into the global memory
immediately in a stencil computation, a higher performance demonstrates with tem-
poral blocking pipeline on the GTX 285 in Table 5 by Nguyen et al. [11], which is
approximately 1.4 higher than ours. Recently in Naoya et al. [16] their stencil orig-
inal data in ghost zone are approximately replaced by the data of nearby boundary
points in the same computed XY-tile. So the communication overheads among dif-
ferent thread blocks require no consideration. Its optimized performance can reach
131.4 GFLOP/s shown in Table 5.

6.4 Performance of Double Precision Floating Point Stencil Computation

Table 5 also summarizes the performance of different kinds of stencil implementa-
tions. In the last two columns results of some double precision stencils are listed.
Since processed data of double precision computation are twice as large as those of
single precision memory bandwidth bound double precision implementation should
perform roughly at 50 % of the single precision throughput. This case can be re-
vealed by our implementation of 7-point stencil shown in Table 5. However, for
the compute-bound 27-point stencil performance of double precision is only 32 %
performance of single precision. Further by Nvidia’s cuobjdump tool the total num-
ber of instructions of double precision implementation is about 91 more than that
of single precision implementation. It is because of the fact that the coefficients
of the stencil kernel are stored in the constant memory of Tesla C2050. For the
single precision case the instructions get stencil coefficients directly from the con-
stant memory, but for the double precision case the compiler remarkably produces
additional instructions which load the coefficients from the constant memory to the
registers. In this way, the occupancy decreases due to a relatively larger register
usage. In reverse, the double precision implementation of 7-point stencil stores the
coefficients in registers and achieves a relative 50 % more float point than its single
precision version.

7 CONCLUSIONS

In this paper, we have devised a new memory mapping mechanism between shared
memory and global memory to remove the conditional statement of the surrounding
XY-tile stencil computation points by combining coalesced memory accesses of the
GPU with aligned ghost zone overhead. In addition, in our stencil computation
only one XY-tile is loaded into registers and the other two XY-tiles utilize the last

550 T. Mo, R. Li

Policy Type Single Precision Double Precision
GP/s GFLOP/s GP/s GFLOP/s

Our implementation 7 points 12.3 97 6.5 51
27 points 8.9 472 3.1 153

FDTD3d (Nvidia) 7 points 6.7 54
Holewinski et al. [13] 7 points 5.9 48 3.2 26
Kamil et al. [12] GTX280 7 points 1.6 13
Nguyen et al. [11] 7 points 9.2 74 4.6 37

7-p time steps 17 136
Christen et al. [10] 7 points 3 24
Zhang and Mueller [8] 7 points 10.9 87 5.7 46
Naoya et al. [16] 7 points 16.4 131

Table 5. Performance of many kinds of different stencil computation implementation

results in the temporary registers. In this way a great deal of shared memory is
saved for storing more values of XY-tiles and reduce shared memory clashes. We
make full use of a thread block size of 32×6 to guarantee only two coalesced memory
loading operations and no conditional statements. So it is significantly important
for many-threaded GPUs to alleviate control flow divergence of a warp. On Tesla
C2050 the acquired memory traffic for single precision data is 8.9 bytes per stencil
computation point, only 11 % worse than the idealized value of 8 bytes about which
only reading from and writing into global memory is considered and ghost zone
overhead may be omitted. In comparison with previous implementation execution
of our code has greater bandwidth than all other stencil executions in which the
intermediate results must be written into global memory. At last our Common
Sub-expression Elimination decreases the number of FLOPs in the 27-point stencil
from 53 to 18.

As illustrated in the above sections, the previous optimization of stencil compu-
tation places stress on use of registers, more locality of texture cache, less control
flow divergence and more effective coalesced accesses method. In our implementa-
tion, the new mapping mechanism guarantees more coalesced memory accesses and
completely eliminates control flow divergence of loading boundary data points which
constitutes ghost zone overhead in tiles. On the other hand, control flow divergence
is weakness and bottleneck in GPU. Once it happens, two different thread groups
of 32 threads in warps have to execute in sequence rather than in parallel mode.
In this way, despite some other overhead, such as calculation in mapping addresses,
the performance of stencil computation is improved.

Acknowledgements

The authors would like to thank to the anonymous reviewers for their valuable
comments and suggestions. This work was partially supported by the National
Natural Science Foundation of China (No. 61173036).

Accelerating Stencil Computation on GPGPU by Novel Mapping Method 551

REFERENCES

[1] Taflove, A.—Hagness, S. C.: Computational Electrodynamics: The Finite-
Difference Time-Domain Method. Artech House Publishers, Boston, 2005.

[2] Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference
Methods. Oxford University Press, Philadelphia, 2004.

[3] Cong, J.—Huang, M.—Zou, Y.: Accelerating Fluid Registration Algo-
rithm on Multi-FPGA Platforms. 2011 International Conference on Field Pro-
grammable Logic and Application, Chania, USA, September 2011, pp. 50–57, doi:
10.1109/FPL.2011.20.

[4] Datta, K.—Williams, S.—Volkov, V.—Carter, J.—Oliker, L.—
Shalf, J.—Yelick, K.: Auto-Tuning the 27-Point Stencil for Multicore. 4th

International Workshop on Automatic Performance Tuning (iWAPT 2009), 2009,
pp. 75–84.

[5] Meng, J.—Skadron, K.: A Performance Study for Iterative Stencil Loops on
GPUs with Ghost Zone Optimizations. International Journal of Parallel Program-
ming, Vol. 39, 2011, No. 1, pp. 115–142, doi: 10.1007/s10766-010-0142-5.

[6] Micikevicius, P.: 3D Finite Difference Computation on GPUs Using CUDA.
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Pro-
cessing Units (GPGPU-2), ACM, New York, NY, USA, 2009, pp. 79–84, doi:
10.1145/1513895.1513905.

[7] Everett, H. P.—Massimiliano, F.: Implementing the Himeno Benchmark with
CUDA on GPU Clusters. IEEE International Symposium on Parallel and Distributed
Processing (IPDPS 2010), April 19–23, 2010, IEEE Computer Society Atlanta, GA
USA, pp. 1–10.

[8] Zhang, Y.—Mueller, F.: Autogeneration and Autotuning of 3D Stencil Codes on
Homogeneous and Heterogeneous GPU Clusters. IEEE Transactions on Parallel and
Distributed Systems, Vol. 24, 2013, No. 3, pp. 417–427, doi: 10.1109/TPDS.2012.160.

[9] NVIDIA Corporation: CUDA C Programming Guide. Version 5.0. 2012.

[10] Christen, M.—Schenk, O.—Burkhart, H.: PATUS: A Code Generation and
Autotuning Framework for Parallel Iterative Stencil Computations on Modern Mi-
croarchitectures. 25th IEEE International Symposium on Parallel and Distributed
Processing (IPDPS 2011), May 16–20, 2011, Anchorage, AK, pp. 676–687, doi:
10.1109/IPDPS.2011.70.

[11] Nguyen, A.—Satish, N.—Chhugani, J.—Kim, C.—Dubey, P.: 3.5-D Blocking
Optimization for Stencil Computations on Modern CPUs and GPUs. Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’10), November 13–19, 2010, IEEE Computer
Society New Orleans, LA USA, 2010, pp. 1–13.

[12] Kamil, S.—Chan, C.—Oliker, L.—Shalf, J.—Williams, S.: An Auto-Tuning
Framework for Parallel Multicore Stencil Computations. 2010 IEEE International
Symposium on Parallel and Distributed Processing (IPDPS 2010), April 19–23, 2010,
IEEE Computer Society Atlanta, GA USA, pp. 1–12.

https://doi.org/10.1109/FPL.2011.20
https://doi.org/10.1007/s10766-010-0142-5
https://doi.org/10.1145/1513895.1513905
https://doi.org/10.1109/TPDS.2012.160
https://doi.org/10.1109/IPDPS.2011.70

552 T. Mo, R. Li

[13] Holewinski, J.—Pouchet, L.-N.—Sadayappan, P.: High-Performance Code
Generation for Stencil Computations on GPU Architectures. Proceedings of the 26th

ACM International Conference on Supercomputing (ICS ’12), ACM, New York, NY,
USA, 2012, pp. 311–320, doi: 10.1145/2304576.2304619.

[14] Tang, Y.—Chowdhury, R.A.—Kuszmaul, B.C.—Luk, C.-K.—Leiserson,
C. E.: The Pochoir Stencil Compiler. Proceedings of the 23rd Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA ’11), 2011, pp. 117–128,
doi: 10.1145/1989493.1989508.

[15] Unat, D.—Cai, X.—Baden, S. B.: Mint: Realizing CUDA Performance in 3D
Stencil Methods with Annotated C. Proceedings of the 25th International Conference
on Supercomputing, May 31–June 4, 2011, ACM, Tuscon, Arizona, USA, pp. 214–224,
doi: 10.1145/1995896.1995932.

[16] Maruyama, N.—Aoki, T.: Optimizing Stencil Computations for NVIDIA Ke-
pler GPUs. First International Workshop on High-Performance Stencil Computations
(HiStencils ’14), January 21, 2014, Vienna, Austria.

Tieqiang Mo is currently Assistant Professor in computer sci-
ence and electronic engineering at Hunan Univerisity. He re-
ceived his Ph.D. degree from Hunan University, China in 2016.
Currently, he is engaged in the research of parallel and dis-
tributed algorithms, especially skilled in heterogeneous algo-
rithms and automatic code generation.

Renfa Li received his Ph.D. degree in electronic engineering
from Huazhong University of Science and Technology, Wuhan,
China, in 2002. He is currently Professor of computer science
and electronic engineering with Hunan University, Changsha,
China. He is the Director with the Key Laboratory for Em-
bedded and Network Computing of Hunan Province, Changsha,
China. He is also an expert committee member of the National
Supercomputing Center in Changsha, China. His major interests
include computer architectures, distributed computing systems
and code optimization. He is a member of the Council of CCF
and a Senior Member of ACM.

https://doi.org/10.1145/2304576.2304619
https://doi.org/10.1145/1989493.1989508
https://doi.org/10.1145/1995896.1995932

Computing and Informatics, Vol. 37, 2018, 553–580, doi: 10.4149/cai 2018 3 553

EFFORT ESTIMATION FOR SERVICE-ORIENTED
COMPUTING ENVIRONMENTS

Siba Mishra, Chiranjeev Kumar

Department of Computer Science and Engineering
Indian Institute of Technology (Indian School of Mines)
Dhanbad, 826004
Jharkhand, India
e-mail: sibamishracse@gmail.com, k chiranjeev@yahoo.uk

Abstract. The concept of service in Service-Oriented Architecture (SOA) makes
possible to introduce other ideas like service composition, governance and virtual-
ization. Each of these ideas, when exercised to an enterprise level, provides benefits
in terms of cost and performance. These ideas bring many new opportunities for
the project managers in making the estimates of effort required to produce SOA
systems. This is because the SOA systems are different from traditional software
projects and there is a lack of efficient metrics and models for providing a high
level of confidence in effort estimation. Thus, in this paper, an efficient estimation
methodology has been presented based on analyzing the development phases of past
SOA based software systems. The objective of this paper is twofold: first, to study
and analyze the development phases of some past SOA based systems; second, to
propose estimation metrics based on these analyzed parameters. The proposed
methodology is facilitated from the use of four regression(s) based estimation mod-
els. The validation of the proposed methodology is cross checked by comparing the
predictive accuracy, using some commonly used performance measurement indica-
tors and box-plots evaluation. The evaluation results of the study (using industrial
data collected from 10 SOA based software systems) show that the effort estimates
obtained using the multiple linear regression model are more accurate and indicate
an improvement in performance than the other used regression models.

Keywords: Effort estimation, orchestration, SOA, regression, web services

Mathematics Subject Classification 2010: 68N30

554 S. Mishra, C. Kumar

1 INTRODUCTION

Prevalent business and industrial organizations around the globe adheres SOA style
for building business, commercial and financial software applications. This is be-
cause SOA provides a promising way for addressing many problems related to the
integration of heterogeneous applications in a distributed environment [1]. SOA
is an architectural approach for developing enterprise level business systems using
loosely coupled interoperable services. Services – the core component of SOA is de-
fined as a logical encapsulation of self-contained business functionality. Technically,
the term self-contained functionality suggests that any changes to the available ser-
vices could be incorporated without affecting other services of the system. Moreover,
the use of services in SOA increases the overall flexibility and adds improved flow
of functionality. Due to this implicit advantage, in the last decades, SOA emerged
up quite rapidly and has numerous applications in the field of biotechnology, health
care systems, communication networks, irrigation, mass-customizations and e-health
support services [38, 39, 40, 41, 42, 43, 44, 45, 46].

From these broad applications and advantages of SOA, it is clear that the de-
sign and development activities are different from that of traditional programming
paradigms [2, 3]. Further, the development of SOA systems introduces many new
concepts, technological factors and architectural issues for building complex business
applications. These new concepts include services, messages, property of orchestra-
tion, loose coupling and many more [3, 4]. Also, developing SOA systems for busi-
ness, financial and banking sectors are much more complex and expensive specifically
in terms of resources and schedules. In the context of SOA project management,
these new concepts and principles add many complex issues that are different from
traditional software development paradigms [6]. In this way, the development of
SOA systems is different from traditional software development. Moreover, from
having an efficient effort estimate, a valid conclusion about the SOA system imple-
mentation phase are drawn for some measurement dimensions.

Estimation of effort1 is an essential component of software project management.
It is also a prerequisite feature of any software process, whether it is the design,
testing, development, usability or the application as a whole. Generally, estimation
depicts the way things will happen in the future based on the present conditions.
In fact, it is an approximation for which some outcome is expected instead covering
the set of possible outcomes. Having an efficient effort estimation technique is
widely perceived by the business analysts and project managers. This is because an
efficient estimation methodology helps in utilizing the project resources conveniently
and thus helpful in avoiding project overestimation and late delivery [15]. As above
mentioned, the development activities of SOA systems are different from traditional
softwares. Thus, the existing software size and effort estimation techniques are not

1 In the field of Software Engineering, “effort” estimation is also known as “cost” es-
timation. In this section and throughout the paper, both the terms have been used
interchangeably.

Effort Estimation for SOC Environments 555

adequate to capture specific development features for influencing the development
effort parameters in building of the SOA based software applications.

For this objective and the aforementioned issues, we adopt a similar classification
framework proposed by Lowe et al. [7] and Mendes et al. [8] for predicting the design
and authoring effort of web hypermedia and software applications. However, our
contribution includes the following additional research, i.e., the usage of metrics is
designed and proposed considering various SOA related artifacts like orchestration,
services, principle of loose-coupling and messages on different scales for estimating
the development effort. In general, the service design phase covers the modeling
of total number of processes – that is tasks and other constituent elements (like
looping, parallel flow and synchronization) required for building SOA systems. This
suggests by analyzing the service design phase, different measures could have been
obtained for the SOA systems and that is considered as a suitable predictor of effort.

In our work, we measured some interesting theories relevant to service design
phase and proposed some associated cost drivers necessary for predicting the SOA
systems development effort. The proposed metrics highlights the design related
issues of SOA systems mainly supported from the environment configuration and
total size. Besides, following are the highlights of this work:

• The proposed approach geared up from an initial study with a motivation of
identifying some design measures related to SOA systems.

• Introduction of novel metrics for facilitating the estimation methodology for the
identified parameters of the initial study.

• For evaluating the accuracy (in terms of predictive power) for the obtained
results, rigorous experiments were carried out using some statistical significance
tests, performance measurement indicators and box-plots evaluation.

The rest of the paper is organized as follows: Section 2 discusses related works.
Section 3 presents the principles of methodology relevant to our work. The proposed
work has been introduced in Section 4. Section 5 reports and analyzes the empirical
results and discussions. Section 6 concludes the paper.

2 RELATED WORK

So far in the literature, adequate attempts have been made to solve the problem
of effort estimation for traditional softwares [15, 16, 17, 18, 19, 20, 21, 22]. These
techniques2 are classified mainly into probabilistic and statistical, expert judgement,
analogy, algorithmic and machine-learning based estimation techniques [16, 48].

Generally, probabilistic models use the Baye’s theory and probabilistic method
for predicting the development effort. The statistical models use the method of
regression for estimating the software development effort for some past data. The

2 In this section and throughout the paper, the term techniques and models have been
used interchangeably.

556 S. Mishra, C. Kumar

expert judgement models [18] involve consultation with one or more local experts,
having knowledge about the core design and development environment or application
domain in context to software project management. Analogy models estimate the
development effort of a target project as a function of known efforts from a set of
similar historical projects [19, 20]. In algorithmic models, the development costs
are analyzed using some mathematical formula linking the costs with metrics to
produce an estimated output. Next, the formula is applied to a formal model arising
from the analysis of historical data. The machine learning techniques use both
supervised and unsupervised learning techniques, for the training purpose and the
development effort are calculated using a set of historical datasets. Each and every
above mentioned estimation techniques are used based on some certain conditions
and requirements. Research has still been in progress for investigating the best
prediction technique.

In the last decades, SOA approaches are used for developing software applica-
tions sourced as virtual hardware resources, including on-demand and utility com-
puting [49]. SOA uses both services and messages to support the development
of low-cost distributed applications [50]. Moreover, recently the service-oriented
technologies gained the mainstream attention quite remarkably, as SOA addresses
a promising way for creating the basis of agility using which the software indus-
tries deliver more flexible business processes [49]. Despite the wide practice of using
SOA, plethora amount of research has already been devoted to service-orientation
research road-maps, challenges, fundamental perspectives, evolution, re-usability,
governance and composition [50, 51, 53, 54, 55]. However, we believe that the re-
search on effort estimation of SOA systems is definitely a novice option with many
interesting challenges and new opportunities in terms of future research. Also, the
research on effort estimation of SOA systems are very scarce in the literature. In
the literature of traditional software development effort estimation, most of the work
focused on algorithmic techniques, whereas in SOA system effort estimation, the al-
gorithmic along with probabilistic techniques covers more than half of the reported
work. To the best of our knowledge, no analogy, statistical and machine learning
based estimation techniques has been reported in literature. Nevertheless, some
approaches [10, 11, 12, 13, 14, 23, 47] are worth mentioning facilitating an effi-
cient estimation, without any consideration of predictive accuracy for the set of past
project data.

For example, Liu et al. [13] proposed a probabilistic approach using the Bayesian
net model. This technique focuses only on different service governance processes.
This method [13] highlights the Bayesian approach for predicting the development
effort and more improvement needs to be incorporated for providing a systematic and
accurate prediction, as suggested for their future work. However, we believe that this
objective may be fulfilled using some detailed indicators and mathematical models
in the analysis procedure. O’Brien [12] from NICTA, Australia also introduced
a probabilistic based framework [SMAT-AUS] for capturing various aspects of SOA
projects. Furthermore, the proposed framework used for determining the scope and
development effort by considering the technical, social-cultural, maturity models and

Effort Estimation for SOC Environments 557

other organizational aspects. The SMAT-AUS framework is in its development stage
and not yet fully developed. The complete framework may provide an efficient way
for determining the scope and effort of SOA systems. The limitations of the above
mentioned probabilistic approaches [12, 13], besides not being fully developed, are
that it does not consider adequate cost drivers for balancing the trade-off between
the estimation methodology and SOA systems.

The authors [11] introduced an algorithmic framework based on Divide and
Conquer (D & C) technique for estimating the cost of building SOA softwares. The
novelty of this approach is that the estimation mechanism is employed by focusing
only the different types of services. However, this approach besides being incorpo-
rated as an efficient framework is also limited for not providing proper validation for
the set of past project data. Additionally, Gomes [14] – A SOA architect of Unimix,
introduced an algorithmic approach for estimating and counting SOA projects us-
ing service candidate descriptions, Web Services Description Language (WSDL) and
XML Schema Definition (XSD). The proposed method is presumed as an algorithmic
approach because of the use of function points. The proposed technique is suitable
only for small sized projects and fails for large size and complex SOA systems. In
addition, authors in [10] proposed a qualitative expert judgement based approach to
judge the effort of different SOA styled project proposals before implementing the
Web Services Compositions (WSCs). The authors borrowed D & C approach [11]
to narrow down the problem of effort judgement of an entire SOA implementation
rather individual Web Services. Moreover, the authors introduced a novel approach
for determining the effort factors of WSCs, using classification matrix and hypoth-
esis. This approach neither considers any case study evaluation nor provides any
proper validation for the past project data.

Therefore, owing to the above reasons, some new metrics relevant to the de-
sign phase of SOA system are introduced in this paper. The estimation methodol-
ogy comprises proposed metrics and statistic based regression techniques has been
found as a suitable candidate for solving the problem of SOA system effort estima-
tion. Furthermore, proper validation (predictive accuracy) has been incorporated
into the calculated predicted values using some commonly used performance mea-
surement indicators and box-plots evaluation for the data collected from multiple
sources Indian software organization.

3 PRINCIPLES OF METHODOLOGY

In this section, we provide an overview about the principles of methodology and
some essential background relevant to our work. We have used four statistic based
regression techniques for calculating the predicted values. From the generated mod-
els, the development effort is computed based on some contextualized design related
issues of SOA systems.

We have used regression techniques for predicting the development effort of
SOA systems. “Regression” is one of the most popular statistical technique used

558 S. Mishra, C. Kumar

Figure 1. Flow diagram of our proposed work

commonly in the field of estimation. Typically, regression models represent the rela-
tionship between independent and dependent variables of a used dataset. Moreover,
the most important identified parameters from the design phase of SOA systems are
initial heads, configuration environment, definition and length. From these identi-
fied parameters, a set of metrics for the SOA system is proposed with the notion
that these metrics conceived to have some significant impact on the total size of the
application3.

Figure 1 shows the basic flow diagram of our proposed approach. The different
stages of the flow diagram are described below.

• The objective of the first stage is to study and analyze the design and devel-
opment related issues of SOA systems. The output of this phase classifies the
identified contextualized design related issues relevant to SOA systems.

• The second stage focuses on grasping some basic theories and principles relevant
to design phase of SOA systems. Here, the main objective is to design some
key metrics, cost drivers and other theories relevant to service design phase.
One more aim of this phase is to collect data for these identified issues. The
output of this stage provides data that are to be used for generating regression
models. This stage also facilitates some key design related issues based upon
which metrics are designed and proposed.

• The third stage emphasizes the generation of different regression models for some
past project data. The stage wraps up soon after the generation of prediction
models. This stage gets final completion of two defined objectives :

3 An application is a process or a task implemented as a web service or a scripting
language like Java Script or an orchestrated task or a fully integrated application.

Effort Estimation for SOC Environments 559

– Validation of data values for the used dataset : The objective of this sub-stage
is to identify the missing and influential data-points for the used dataset and
normalize the collected data values.

– Selection of appropriate variables and regression model : This sub-stage as-
sists in selecting some appropriate dependent and independent variables from
the used dataset and choosing an appropriate regression model.

• The final stage illustrates performance assessment (predictive accuracy) of the
generated estimation models. This is achieved with the help of some commonly
used performance measurement indicators and statistical significance tests. The
objective of this stage is to ensure the accuracy level of the calculated values.

The data of the used dataset constitute 10 different SOA styled applications. The
dataset aimed at the following objectives.

1. Design and development of processes.

2. Implementing tasks as loosely coupled web services for the processes.

3. Development of service-oriented orchestrations using X-Path queries.

4. Development of parallel loops (〈while〉, 〈repeatUntil〉 and 〈forEach〉), concur-
rency elements (〈scope〉) and synchronization mechanism associated with the
processes.

All the analytical and empirical results presented in this paper have been car-
ried out using the data collected from the design related issues of past SOA styled
software applications. The data corresponding to the used dataset are provided
by an Indian software organization. The projects of the used dataset were devel-
oped between the years 2009 to 2013. Moreover, the projects corresponding to the
used dataset include integrated SOA applications for universal banking, public retail
and health care solution systems. The used dataset constitutes 10 different SOA
applications with 30 data points.

Variable Name Variable Description N Missing Mean Median Std. Dev. Min Max
Actual Effort
(in PH)

Total development effort (PH) 10 0 7 014.91 3 363.47 7 931.52 377.8 22 479.3

No. of Processes Total number of processes for
an application

10 0 2.9 2.5 1.96 1 7

No. of Tasks Total number of tasks for pro-
cesses

10 0 6.9 5.5 4.58 2 15

TCC Total size based on the defini-
tion of processes and tasks of
an application

10 0 975.7 539 1 027.62 74 2 890

No of partnerLinks Total number of partnerLink
Elements

10 0 11.9 10.5 7.56 3 23

Task Variables Total number of used input and
output variables

10 0 72.6 71.5 38.25 22 130

Event Variables Total number of receive and re-
ply start events

10 0 6.2 5.5 4.10 2 13

Elements Total number of variables and
message definitions

10 0 14.9 13.5 7.15 7 28

XScript Total number of X-path queries 10 0 7.4 4.5 6.65 1 20

Table 1. Descriptive statistics of some numerical variables of the used dataset

The analysis of our proposed methodology is aimed at measuring the metrics
used as arguments for the generation of regression models. More concise form of

560 S. Mishra, C. Kumar

the proposed metrics is described in Section 4. We have presented the descriptive
statistics of the used dataset in Table 1. The statistical summary is presented only
considering some numerical variables of the dataset. In Table 1, the variable “TCC”
denotes the total code size and “N” signifies total number of projects in the used
dataset. The variable Actual Effort (in PH) denotes the actual effort needed for
developing the final application. The descriptive statistics are essential for carrying
out the empirical study because it presents the data in more meaningful way and
facilitates simpler interpretation of data.

4 PROPOSED WORK

This section illustrates the proposed methodology. After rigorous in-depth study and
analysis, the metrics are proposed and presented in the first subsection. The process
of generation of regression based estimation models using the proposed metrics is
highlighted in the next subsection.

Items Type Description

Output

Integrated Application Developed SOA styled integrated ap-
plication

Process and Element Definition Process, abstract process and flow ele-
ments

Tasks Processes tasks implemented as web
services

SOA-Orchestration X-path Queries
Scripting Languages Java Script or VB Script
Message Start Events Receive or reply events

Software GUI tools IBM Web Sphere or BPMN Modeler

People
Designers Involved in design of processes
Developers Persons engaged in development of the

application

Technique

Application Design Exercise carried out in the design of ap-
plication

Integration Exercise carried out for integrating the
web application

Task Exercise carried out for developing the
tasks of processes

Table 2. Initial items for the case study

4.1 Proposed Metrics

The proposed metrics are aimed to measure the different types of items listed in
Table 2. For each category of items, there exists set of measuring metrics, that
we classified into 4 different categories. They are: environment configuration and

Effort Estimation for SOC Environments 561

re-usability, length and size, effort, and perplexing factors. Each category of items
defined in Table 2 plays a vital role in the estimation process. The last categorical
variables consisting the perplexing factors also play an influential role in the overall
estimation process.

Before moving to the metrics some essential concepts, parameters and cost
drivers are recalled in this section. Let us consider the item type “Process and
Element Definition” defined in Table 2. In the context of service design phase, for
the associated processes, all the composite links to the services using which the
process interact are known as the partnerLink elements. These elements serve as
a reference to the actual implementation, using which the processes interacts with
external services. Moreover, the tasks of processes are implemented as a loosely
coupled web service which defines the participant of web services, and the prop-
erties of the participant are linked to the partnerLink elements. Furthermore, the
partnerLink elements are defined “how two individual service partner interact with
each other and what each of the partner has to offer”. As the partnerLink element
is defined and included in each and every service involved in the process design
phase, it is considered as an important parameter (cost driver) in context of SOA
system development. Similarly, the XML Path Expression (XPath Expression) is
used to check the data constraint of the service offered by the client. Generally,
XPath queries are available to access the Domain Value Maps (DVMs) which are
responsible for SOA orchestration. The SOA orchestration allows the work-flow def-
inition between two different services. This is the reason to use X-Path queries as a
critical parameter, as it facilitates the SOA system orchestration using the mapping
process. Therefore, the partnerLink elements and XPath queries are included in the
SOA system effort estimation as an essential cost driver.

Items Metrics Description

Re-used Process Count Total number of re-used
processes

Process and Elements Re-used Task Count Total number of re-used
tasks

Definition Re-used Participant Count Total number of re-used
participants of web ser-
vices corresponding to
the tasks

Re-used Space allotment
Count

Total space (in Kilo
Bytes) of the re-used
application

Re-used partnerLink Ele-
ment

Total number of re-used
invoked and client part-
nerLink elements

Integrated Application Re-used Code Count Total lines of code for
all the re-used processes

Table 3. Environment configuration and re-usability metrics

562 S. Mishra, C. Kumar

Items Metrics Description

Process and Elements
Definition

Total Process Number of processes
Total Abstract Process Number of abstract processes
Total partnerLink Elements Number of invoked and client partnerLink elements
Total Process Mapping Number of variables and message definitions
Total Parallel Flow Number of links for a process
Total Code Length Total lines of code of a process
Total Participants Number of participants subjected to type of configuration
Total Interfaces Number of interfaces
Total Scripts Number of lines of the scripting languages and number of fault

handlers

Tasks
Total Tasks Number of tasks implemented as web services
Total Operations Number of designed operations
Total Variables Number of used input and output variables

SOA-Orchestration Orchestration Count Total number of X-path queries

Message Start Events
Total Receive Events Count Number of receive start events
Total Reply Events Count Number of reply start events
Total Confirmed and Submit Count Total number of submit and confirmed events

Integrated Applica-
tion

Total Code Count Total lines of code for an application

Comment Count* Number of comment lines
Space Count Size of application (in Kilo Bytes)

* In our empirical study, the Comment Count metric is not used. This is because the dataset used
does not match these requirements.

Table 4. Length and size metrics

Items Metrics Description
Process and Elements Definition Process Effort Estimated time for designing all the processes, interfaces and ab-

stract processes of an application
Tasks Task Effort Estimated time for developing all the implemented tasks (partner-

Link elements and parallel activities) of processes
SOA-Orchestration Orchestration Count Estimated time for building SOA Orchestration
Message Start Events Event Effort Estimated time for designing all types of events of an application
Integrated Application Total Effort (Process + Task + Orchestration + Event) Effort

Table 5. Effort metrics

Items Metrics Description

People Skill Design experience of subject on a scale of 0 to 5

Tool Type* Types of tool (GUIs) used in the design process of the application
* In our empirical study, the Type metric is not used. This is because the dataset used does not match
these requirements.

Table 6. Perplexing factors

Similarly, the perplexing factors presented in Table 6 are the parameters con-
ceived to have an effect on the estimated (dependent) variable, but were considered
in the experimental (independent) variables unlike the confounding factors used in
statistics [5]. Additionally, Tables 3 to 6 exemplifies metrics for different categories
of items based on the environment configuration, size and effort related constraints.
Furthermore, Table 3 presents some re-usable aspect of the packaged solution of
SOA systems. The primary focus is on the interaction and dependency among the
service groups like composite services which enables the middle-ware and platform
technologies [6]. The re-usable metrics focuses only on the parameters that are be-
ing re-used4. Table 4 imitates the analyzed size and length related metrics. Table 5

4 The dataset used in this empirical study does not constitute any re-used artifacts.
Thus, we have not used the Environment Configuration and Re-usability Metrics, while
generating the regression models.

Effort Estimation for SOC Environments 563

presents different types of effort related metrics. The total effort of an application
is calculated by adding all the calculated effort for the classified items.

4.2 Estimation Methodology

The main aim of any regression model is to analyze the relationship between dif-
ferent variables. This analysis is carried out with the implication of some general
purpose regression models through the estimation of the relationship. These re-
gression models are constructed with the help of some appropriate variables. The
selection of variables from the proposed metrics is a preliminary activity for carrying
out the further process. The general form of the statistic based regression model is
defined in Equation (1).

y = f(x1, x2, . . . , xk) (1)

where y is the dependent variable and x1, x2, . . . , xk are the independent variables.
The empirical and simulation results calculated using the regression models serve

the following two purposes:

1. How is the predictor or dependent variables (y) affected with some changes in
each of the response variables of x (x1, x2, . . . , xk), and

2. to predict the value of y using the values of x.

The data collected from multiple sources of an Indian software organization are
used to generate statistic based regression models on the set of proposed metrics.
The various techniques included in our proposed work are: simple linear, multiple
linear, stepwise and ordinary least square regression models. We generate the esti-
mation models for each category of items defined in Table 2. The estimated variables
namely (Total Effort) is computed and summed with respect to each classified item.

Figure 2. 3D scatter plot for the numerical variables of used dataset

Figure 2 shows the 3D scatter plot plotted for some numerical variables, that
are used for generating the regression based estimation models. These numerical

564 S. Mishra, C. Kumar

variables are: the actual development effort (Actual Effort (in PH)), the total size
(Total Code Size) and the total number of processes (Number of Processes) imple-
mented as services for an individual application. A Scatter plot is a mathematical
diagram used to represent the displayed data as a collection of points using the
value and position of used variables. A scatter plot also depicts a different kind of
correlation that exists between certain variables with a confidence interval of the
dataset. For a scatter plot, if the pattern of dots slopes from lower left corner to the
upper right corner, it suggests that a positive correlation exists between the set of
pair variables. A 3D scatter plot allows better visualization of multivariate data for
multiple scalar variables and displays them on the different axes in space. Figure 2
is also useful for discovering the relationship between three variables simultaneously.
The plot of Figure 2 suggests that the three variables are positively correlated and
associated, since the variable (Actual Effort (in PH)) increases linearly.

For generating regression models, we need some dependent and independent
variables. The response (dependent) and predictor (independent) variables used for
the generation of regression models are listed in Table 7. The variable (Total Effort)
corresponding to the item “Integrated Application” is responsible for generating the
prediction models. Further, it helps in computing the predicted results through
summing all the calculated effort values for different classified items. (See Section 4
for more details).

5 RESULTS AND DISCUSSIONS

The predicted values have been calculated from the generated (simple linear, mul-
tiple linear, stepwise and ordinary least square regression) models using R 3.0.2 for
Windows. Furthermore, this section discusses the following.

• Calculation of the predicted values using the proposed metrics and from gener-
ating 4 regression based estimation models.

• The obtained predicted values are further examined for investigating some sta-
tistical properties. These properties included (the linearity, normality and sym-
metry) and were tested on some commonly used statistical significance tests
such as Shapiro-Wilk test, Kolmogorov-Smirnov test, Box-Cox transformation,
correlation coefficient (r) and skewness distribution values.

• A comparative analysis of the generated regression models in terms of predictive
accuracy is discussed and presented using some commonly used performance
measurement indicators and box-plots evaluation.

• Some research threats to validity relevant to our work are also identified and
discussed in this section.

For each generated regression model, a set of different plots are presented for
assessing the statistical properties of the data variables of the used dataset. These
different plots are constructed using some essential statistical artifacts like residuals,
fitted values, standardized residuals, theoretical quantiles, leverages, scale-location,

Effort Estimation for SOC Environments 565

Type Items Variables

Response Process and Elements Definition Process Effort
(Dependent) Tasks Task Effort
Variables SOA-Orchestration Orchestration Count

Message Start Events Event Effort
Integrated Application Total Effort

Process and Elements Definition

Total Process
Total Abstract Process
Total partnerLink Elements
Total Process Mapping
Total Parallel Flow
Total Code length
Total Participants
Total Interfaces
Total Scripts

Predictor Re-used Process Count*

(Independent) Re-used Task Count*

Variables Re-used Participant Count*

Re-used Space allotment Count*

Re-used partnerLink Element*

Tasks
Total Tasks
Total Operations
Total Variables

SOA-Orchestration Orchestration Count

Message Start Events
Total Receive Events Count
Total Reply Events Count
Total confirmed and submit Count

Integrated Application
Re-used Code Count*

Total Code Count
Space Count

* Note: These predictor variables are useful only for the re-used artifacts.

Table 7. Selection of the variables

standard deviance residuals and correlation. Figure 3 flourishes box-plot consider-
ing some important numerical variables of the used dataset. The variables used
in the box-plot are: the total number of processes, tasks, code size and the ac-
tual development effort versus the total number of projects (transformed into log-
arithmic scale) for the used dataset. The variables Code Size and Actual Effort
correspond to the total length and effort for all the items and are listed in Ta-
ble 2. Typically, box-plot is a graphical tool used to check the existence of outliers.
Figure 3 depicts that there exist no outliers for the used data points of the used
dataset.

Thus, there is no need of creating any new variables for the set of data variables,
as it satisfies the property of normality and linearity. Additionally, some statistical

566 S. Mishra, C. Kumar

0.0

2.5

5.0

7.5

10.0

No.of.Processes No.of.Tasks Code_Size Actual_Effort
Numerical variables of the used dataset

lo
g(

va
lu

e)

Figure 3. Box-plots for the numerical variables of the used dataset

a) b)

c) d)

Figure 4. Residual Plot of different generated Regression Models. a) Simple Linear Re-
gression. b) Multiple Linear Regression. c) Step-wise Regression. d) Ordinary Least
Square Regression.

Effort Estimation for SOC Environments 567

tests are performed for scrutinizing the linearity, normality and symmetry property
of the used dataset. Figure 4 shows the graphical comparison between residuals
(actual effort − estimated effort) in the Y-axis and fitted values (estimated effort)
treated same as the predicted values in X-axis for the generated regression models.
The different plots of Figures 4 a), b), c) and d) are known as Residual plot5.
Figure 4 also indicates that the residuals and predicted values calculated from the
generated regression models are not correlated and equally spread. Also, there exist
no non-linear and non-constant variances for the used data points.

Additionally, Figure 5 reinforces the normal Quantile-Quantile (Q-Q plot)6 com-
paring the randomly generated independent standard normal quantiles data (sam-
ple standardized residuals) on the vertical axis and the standard normal population
(theoretical quantiles) on the horizontal axis for the generated regression models.
Almost, all the points of Q-Q plot lie approximately on a straight line, but not
necessarily on the line y = x. This is also marked as the condition of linear-
ity, in-spite of some points do not lie on the line y = x. Moreover, the differ-
ent plots of Figures 5 a), b), c) and d) are commonly used for scrutinizing the
property of skewness and normality. The simple and multiple linear regression
models generated using the proposed metrics for the used dataset yields an ad-
justed R2 value as 0.997 and 0.999 respectively. Thus, it indicates 99 % of variation
to the used dependent variables (proposed effort metrics). Moreover, none of the
projects corresponding to the dataset denotes distance greater than the cook’s dis-
tance [3 ∗ (4/10)].

After the implication of simple linear and multiple linear regression models, the
stepwise regression model has been generated. We have generated the stepwise re-
gression model using both forward and backward procedures as the mode of variable
selection. The evaluation criterion for this model is characterized by Akaike Informa-
tion Criterion (AIC)7. Allegedly, AIC provides an efficient mean of model selection
because AIC deals with the association between goodness of fit and the complexity
of model [33]. The output values induced by this criterion offer a relative estimate
of data loss, when a regression model is used to represent the dependent variables
of the used dataset.

Let us consider, a set of regression based candidate models having AIC values
as: AIC1, AIC2, AIC3, . . ., AICn, respectively. The AIC value for the generated
regression model is always chosen from the candidate models having the minimum
AIC value. In this way, the AIC value provides the relative estimate of the data loss.
Let AICmin denote minimum AIC values and AICi depict other values for the set
of candidate models. The expression is interpreted as the relative probability and

5 The Residual plot is a graphical plot commonly used in statistics for showing the
relationship between the fitted (estimated) values and residuals.

6 Q-Q plot is basically a probability plot used for comparing two different probability
distributions by plotting the quantiles with each other.

7 The AIC measures the relative quality of the generated regression model for a given
set of data values corresponding to the dataset.

568 S. Mishra, C. Kumar

a) b)

c) d)

Figure 5. Normal Q-Q plot of different generated Regression Models. a) Simple Linear
Regression. b) Multiple Linear Regression. c) Step-wise Regression. d) Ordinary Least
Square Regression.

the ith model minimizes the estimated data loss. Equation (2) specifies the relative
likelihood of the ith model.

e(AICmin−AICi)/2. (2)

While generating the stepwise regression model, a set of four candidate models
are generated having AIC values as 180.52, 121.39, 118.75 and 118.27, respectively.
The chosen AIC value for the stepwise regression model is 118.27. The candidate
model having AIC value 118.27 omits all other generated candidate models for min-
imizing the overall data loss. The generated stepwise regression model using the
proposed metrics for the used dataset induces adjusted R2 value as 0.998. It indi-
cates 99 % of variation to the used dependent variables. Again, none of the projects
corresponding to the dataset denotes distances greater than the cook’s distance for
both forward and backward variable selection procedure modes.

Lastly, the Ordinary Least Square (OLS) regression technique have been gener-
ated using the proposed metrics. It is a linear approach to the multiple regression
technique which results in eliminating the error terms. The OLS regression model
is a linear approach but many times it works efficiently for the non-linear data. In

Effort Estimation for SOC Environments 569

our work, this regression model have been generated considering the family type as
“Gaussian”. The density function of the Gaussian family is defined in Equation (3).

p(y) =
1

σ
√

2π
exp

[
(y − µ)2

2σ2

]
(3)

where µ is the mean, σ2 is the variance and y is the response variable. The deduced
AIC value for the OLS regression model is computed as 151.

Table 8 shows the values of Multiple R2, Adjusted R2 and AIC values, which are
calculated using four regression models for all the items defined in Table 2. Typically,
R2 is a statistical value used for determining the goodness of fit of a regression model.
R2 is mostly used for determining the coefficient of the regression model. The AIC
value helps to choose the minimum value from a set of candidate models generated
for the stepwise and OLS regression techniques. Table 8 illustrates the coefficient
values based upon the best criteria8 for the used regression models. In the OLS
regression model, the dispersion parameter of Gaussian family, using the density
function is computed as 135 740.4.

Regression Models Multiple R2 Adjusted R2 AIC Value

Simple Linear Regression 0.9978 0.9975 –

Multiple Linear Regression 0.9995 0.9999 –

Stepwise Regression 0.9989 0.9984 118.27

Ordinary Least Square (OLS) Regression – – 151

Table 8. Coefficient of determination for different generated regression models

5.1 Examining the Statistical Properties

In our work, an effort was made for examining the property of normality, linearity
and symmetry. Although the property of normality and linearity could have been
reviewed from the stability, normal Q-Q and residual plot. But for the sake of
completeness, a few tests are required to investigate the statistical properties of
the computed prediction results. Moreover, we have generated the regression based
estimation models following the existing practices and rules [31].

The Shapiro-Wilk test has been introduced to the obtained absolute residual
values using the simple and multiple linear regression models, for investigating the
property of normality and linearity. Similarly, box-cox transformation have been
employed in the stepwise regression model. In general, the most popular and widely
used test for scrutinizing the property of normality is Shapiro-Wilk test. Some re-
searchers also used Kolmogorov-Smirnov test as an alternative test for investigating
the property of normality [35]. The Kolmogorov-Smirnov test is used to compare

8 The criterion (AIC) is applicable only for those regression models, which can enable
to generate multiple candidate models.

570 S. Mishra, C. Kumar

an observed cumulative distribution function (cdf) to an estimated cumulative dis-
tribution function. Moreover, the Kolmogorov-Smirnov test is an effective method
for comparing the shape of two different cumulative distribution function samples
for a small size dataset. For large real-time dataset, the calculated values comprised
biases because the sample mean and standard deviation are used to estimate the
population mean and standard deviation. Thus, Shapiro-Wilk test is presumed to be
a better approach for testing the property of normality over Kolmogorov-Smirnov
test. For the generated regression models, the probability-value (p-value) of the
absolute residuals are calculated as follows: 0.16, 0.50, 0.33 and 0.92, respectively.
Generally, lower the p-value, the lesser is the chance of normality. Furthermore,
many statisticians used p-value 0.05 as the cut-off, the p-value lower than 0.05 de-
picts that the sample deviates from normality. For the generated regression models,
the absolute residual values are normally distributed and satisfy the property of
normality, as p-value is greater than the defined cutoff (> 0.05) value. The absolute
residuals represent the difference between the actual effort and predicted effort val-
ues, and the variable actual effort is used as the dependent variable for generating
the regression models. So, based upon this criterion (choosing absolute residual
values), it is double checked that the used data and the predicted values obtained
using the regression models are normally distributed [34].

We have also investigated the property of symmetry for the absolute residual
values calculated for the generated regression models. The property of symmetry is
validated from calculating the skewness distribution values. Thus, for the absolute
residual values (x) corresponding to the generated regression models, the skewness
distribution values are calculated as: 0.62, −0.22, 0.35 and 0.13, respectively. The
computed skewness distribution values are skewed both towards right and left. This
is because as a rule the negative skewness indicates that the mean of absolute resid-
uals for different regression models is less than the median and data distribution is
therefore left-skewed. Similarly, positive skewness indicates that the mean of abso-
lute residuals is larger than the median and data distribution is right-skewed. So, for
the multiple linear regression model, the data distribution values for the absolute
residuals are left-skewed.

Some important guidelines for generating the regression models are “the residual
values have not been correlated” and the “used independent variables should not be
linearly dependent [31]”. For validating the property of linearity, we have calculated
the correlation coefficient (r) between the dependent variables (Actual Effort (in
PH)) and the independent variables (predicted effort values) for each of the gener-
ated regression models. If the value of “r” for the two variables is close to 1, then the
variables are linearly positively related [34]. The calculated correlation coefficient (r)
for the different generated regression models are computed as 0.998, 0.999, 0.999,
0.999, respectively. Since the calculated “r” value for all the generated regression
models are close to 1. It is concluded that both actual and predicted effort values
are linearly positively related.

Similarly, for the stepwise regression model the Box-Cox transformation is used
for examining the statistical properties. The Box-Cox transformation is best suited

Effort Estimation for SOC Environments 571

-2 -1 0 1 2

-3
0

-1
0

0
10

l

lo
g-

Li
ke

lih
oo

d

 95%

Figure 6. 2D Box-Cox transformation plot for the step-wise regression model

for examining the statistical properties of step-wise regression models and it com-
putes and optimally plots a 2-Dimensional (2D) curve comprising log-likelihood
value versus lambda (λ). Typically, lambda is the vector values for the chosen pa-
rameters. By default, the range of lambda varies within −2 to 2. Figure 6 shows
2D Box-Cox transformation plot for the generated step-wise regression model. In
Figure 6, X-axis denotes the vector series (lambda) and the Y-axis represents the
log-likelihood values of a particular variable or the parameter for the step-wise re-
gression model. The Box-Cox linearity plot provides an efficient way for finding the
suitable transformation mechanism without engaging in a lot of hits and trial fitted
models [9]. After generating the step-wise regression model, the Box-Cox transfor-
mation have been employed for scrutinizing the statistical properties of the model.
The value of lambda (λ) for the generated step-wise regression model is calculated
as 0.86. This is an essential data transformation technique used to stabilize the
variance and make the data normally distributed, for improving the validity of the
associated measures. Table 9 presents the summary of the statistical significant
results for the four generated regression based estimation models.

Property Techniques Simple
Linear
Regression

Multiple
Linear
Regression

Step-Wise
Regression

Ordinary
Least
Square
Regression

Normality Shapiro-Wilk test (p-Value) 0.16 0.50 0.33 0.92

Linearity Correlation Coefficient (r) 0.998 0.999 0.999 0.999

Symmetry Skewness Value (s) 0.62 −0.22 0.35 0.13

Table 9. Results of statistical significance tests

572 S. Mishra, C. Kumar

5.2 Measuring the Results in Terms of Predictive Accuracy

Each and every used regression model has been iterated for 10 iteration and the
average results are computed and presented for calculating the generalization error.
Firstly, the used dataset is partitioned into two sets, i.e. the training and testing set.
We have used this validation method because the training set of the used dataset
have been partitioned randomly (a variant of k-fold cross validation). The training
set is defined by k − 1 samples, and the testing set is defined by kth subset. The
process is performed k times and for each iteration and it uses a different project of
the used dataset as the testing set9.

Moreover, we have evaluated the predictive power of the generated regression
models using some commonly used performance measurement indicators like Mean
Magnitude of Relative Error (MMRE) and Root Mean Square Error (RMSE) [24,
25, 26]. In our work, we have calculated the performance measurement indicator
values in terms of percentage. This is because for any regression based empirical
measurement, there is always a need for combining both the response and predic-
tor variables, for measuring the accuracy. In general, the values of measurement
indicators are not exact, thus calculating the percentage value allows comparing the
predicted (estimated) values to an exact (actual) values. The percentage value for
any measurement indicator like (MMRE, RMSE) gives the difference between the
estimated and exact values in terms of the percentage of exact values. It is help-
ful in concluding how close the estimated values are with the actual values. The
lower values of measurement indicators assure better prediction model. The used
performance measurement indicators are described below.

1. MMRE: In the era of software effort estimation, MMRE is the most commonly
used performance measurement indicators and is used in all types of estimation
techniques [25, 26]. The basic metric of MMRE is the Magnitude of Relative
Error (MRE) and is defined inside the braces of Equation (4). After calculating
MRE, MMRE is obtained from the mean value of MRE.

MMRE =

∑n
i=1

(
|Eacti−Eesti|

Eacti

)
n

× 100 (4)

where:

• Eesti: is the total estimated effort for i number of projects of a dataset.

• Eacti: is the actual effort for i number of projects of a dataset.

• n: is the total number of applications or projects of a dataset.

2. RMSE: RMSE measures the difference between the estimated value (Eesti) and
the actual value (Eacti), for i number of projects of the dataset. In RMSE, the

9 For conducting the experiment, the value of k is 10, same as the size of the used
dataset.

Effort Estimation for SOC Environments 573

basic metric for computing the error is Mean Square Error (MSE). Taking the
square root of MSE yields root mean square error having the same units as the
quantity estimated for an unbiased estimator [32]. The RMSE metric is defined
in Equation (5).

RMSE =

√√√√ 1

n

n∑
i=1

(Eacti − Eesti)2 × 100. (5)

Generated Models MMRE (in %) RMSE (in %)

Simple Linear Regression 15.07 3.54
Multiple Linear Regression 10.80 1.75
Stepwise Regression 14.10 2.47
Ordinary Least Square (OLS) Regression 19.30 3.08

Table 10. Comparison of the generated regression models in terms of predictive accuracy

Table 10 illustrates the comparative results of the four generated regression
models in terms of predictive accuracy. The major observation from Table 10 is
that the technique of multiple linear regression is treated as the best estimation
model, as it induces lower MMRE and RMSE percentage values, compared to other
generated models.

5.3 Comparison of Results Using Boxplots

For any statistical techniques, it is important to investigate the values of absolute
residuals. An accurate measure is relatively dependent on how much the values of
residuals are. Lower values of absolute residuals denote the predicted and actual
effort to be similar. Figure 7 shows the box-plot evaluation of the four generated
regression models for the values of absolute residual. The box-plot evaluation verifies
the results obtained from the performance measurement indicators.

The computed absolute residuals for the generated regression models are shown
in the vertical side of each box-plot in Figure 7. Moreover, Figure 7 suggests that the
generated multiple linear regression model is having the minimum values, of absolute
residuals when compared against other generated regression models. Intuitively, the
box-plots signifies the spread distribution much wider when the absolute residuals
are compared with each other for the different generated regression models.

Thus, from the box-plot evaluation and from the implication of performance
measurement indicators, it is double-checked that the predicted values obtained
using the multiple linear regression model furnishes best results in terms of inducing
lower residual values for the used dataset. Furthermore, the results (effort values)
computed using the multiple linear regression model outperforms all other employed
regression models in terms of predictive accuracy.

574 S. Mishra, C. Kumar

Figure 7. Box-plots of the absolute residuals for different generated regression models

5.4 Threats to the Validity

When conducting an experiment or empirical study, there are always threats to the
validity of results. This subsection discusses the validity threats associated with our
empirical results on the basis of list of threats by Cook and Campbell [56]. This is
conceived as an effective step for concluding the results procured using the statistical
methods.

The major factor that may act as an internal threat to our simulated results is the
ability to draw conclusions about the connections between the chosen independent
and dependent variables in the model generation process [56]. This part might also
subject to errors and bias. To reduce this threat, manual cross verification of the
obtained results was undertaken between two researchers.

Threats to external validity associated with the calculated results may be the
size and structure of the used dataset. However, we conceive that this does not
affect the validity of the results, since statistical significant results have been cal-
culated and obtained. Moreover, in the literature of traditional software and web
development effort estimation, the prediction results have been calculated using
smaller size dataset of 12 and 15 projects respectively [27, 36, 37]. Furthermore,
in regard to the external validity, the used dataset overcomes this threat, as the
dataset used in our experimental study has been collected from multiple sources
Indian software organization. On the other hand, we believe that for enhancing
more accurate validation, it is essential to collect data from the multiple industrial
organization.

Threats to conclusion validity refers to the degree of which the conclusions
reached and their relationships using our data are reasonable [56]. To address this
threat, the obtained results are examined using some commonly used statistical sig-

Effort Estimation for SOC Environments 575

nificance tests. Moreover, the violated assumptions of statistical tests were reduced
from the advent of some important test measures for the data variables.

6 CONCLUDING REMARKS

The main aim of this paper was to accord an efficient technique for estimating
the SOA systems development effort along with a proper validation. For this, we
presented a methodology based on analyzing some initial items associated with
the service development life cycle. The measuring metrics are proposed for these
identified items. To the best of our knowledge, this was the first time that someone
tried to create mapping rules between the service design phase and regression models
for generating effort estimation models for SOA systems with their support. More
explicitly, none of the previous works used statistics based approach to solve the
aforesaid problem along with proper validation for some past project data.

We believe that this approach would definitely add an ease for the readers, ana-
lysts and project managers practicing SOA system effort estimation. Our approach
of estimating the development effort, builds from the generation of four regression
models using the proposed metrics listed in Tables 3, 4, 5, 6. These metrics are pro-
posed based on the different classified parameters like environment configuration,
length, size, reused services, effort and perplexing factors for a set of initial items
defined in Table 3. Considering the interest of practitioners, our proposed tech-
nique serves as helpful in dealing with many new complex challenges that project
managers encounter with the large size business process SOA systems. In this re-
gard, our proposed metrics goes well beyond the typical capabilities offered by the
traditional software estimation techniques.

The use of SOA in developing business process solutions provides better cus-
tomer services through increased transparency and better consolidation of data and
functionality. Some important statistical properties have been scrutinized for en-
hancing the accuracy of the calculated predicted results. The predictive accuracy
of the generated regression models has also been demonstrated for some past indus-
trial data using some commonly used performance measurement indicators and box-
plots evaluation. The predicted values computed using the multiple linear regression
model outperforms every other generated (simple linear, stepwise and ordinary least
squares) regression models.

In addition, there is a persuasive need of an efficient effort estimation technique
for SOA systems, as the implication of some new features increases the overall
complexity of the system. Thus, having an efficient effort estimation technique
could contribute in reduction of cost and time implied for developing future SOA
systems. As a future work, there is some interesting challenge to perform a replicated
study by judging the use of micro services in SOA systems. It will also intrigue to
analyze the use of analogy and machine learning approaches in SOA system effort
estimation.

576 S. Mishra, C. Kumar

REFERENCES

[1] Mukhi, N. K.—Konuru, R.—Curbera, F.: Cooperative Middleware Specializa-
tion for Service-Oriented Architectures. 13th International World Wide Web Con-
ference on Alternate Track Papers and Posters, ACM, New York, USA, 2004,
pp. 206–215, doi: 10.1145/1013367.1013401.

[2] Erl, T.: SOA: Principles of Service Design. Prentice Hall, Upper Saddle River, NJ,
USA, 2008.

[3] Josuttis, N. M.: SOA in Practice. O’Reilly Media, Inc., Sebastopol, CA, USA,
2007.

[4] Vasiliev, Y.: SOA and WS-BPEL. Packt Publishing Ltd., Birmingham, 2007.

[5] Montgomery, D. C.: Design and Analysis of Experiments. Wiley, New York, 1984.

[6] Bell, M.: Service-Oriented Modeling : Service Analysis, Design, and Architecture,
John Wiley and Sons, Inc., Hoboken, New Jersey, 2008.

[7] Lowe, D.—Hall, W.: Hypertext and the Web – An Engineering Approach. John
Wiley and Sons, New York, 1998.

[8] Mendes, E.—Mosley, N.—Counsell, S.: Web Metrics – Estimating Design
and Authoring Effort. IEEE MultiMedia, Vol. 8, 2001, No. 1, pp. 50–57, doi:
10.1109/93.923953.

[9] Kutner, M. H.—Nachtsheim, C.—Neter, J.—Li, W.: Applied Linear Statisti-
cal Models. McGraw-Hill/Irwin, Blacklick, Ohio, USA, 2005.

[10] Li, Z.—O’Brien, L.: A Qualitative Approach to Effort Judgment for Web Ser-
vice Composition Based SOA Implementations. 25th International Conference on
Advanced Information Networking and Applications (AINA), IEEE, Biopolis, Sin-
gapore, 2011, pp. 586–593.

[11] Li, Z.—Keung, J.: Software Cost Estimation Framework for Service-Oriented Ar-
chitecture Systems Using Divide-and-Conquer Approach. Fifth IEEE International
Symposium on Service Oriented System Engineering (SOSE), IEEE Press, Nanjing,
China, 2010, pp. 47–54, doi: 10.1109/SOSE.2010.29.

[12] O’Brien, L.: A Framework for Scope, Cost and Effort Estimation for Service-
Oriented Architecture (SOA) Projects. Australian Software Engineering Conference
(ASWEC ’09), IEEE, Gold Coast, Queensland, Australia, 2009, pp. 101–110, doi:
10.1109/ASWEC.2009.35.

[13] Liu, J.—Qiao, J.—Lin, S.—Li, Q.: A Bayesian Net Based Effort Estimation
Model for Service Governance Processes. Second International Conference on Infor-
mation and Computing Science, Manchester, England, UK, IEEE, 2009, pp. 83–86,
doi: 10.1109/ICIC.2009.129.

[14] Gomes, Y. M. P.: Functional Size, Effort and Cost of SOA Projects with Function
Points. Service Technology Magazine, Issue LXVIII, 2012.

[15] Jorgensen, M.—Shepperd, M.: A Systematic Review of Software Development
Cost Estimation Studies. IEEE Transactions on Software Engineering, Vol. 33, 2007,
No. 1, pp. 33–53, doi: 10.1109/TSE.2007.256943.

[16] Boehm, B. W.: Software Engineering Economics. IEEE Transactions on Software
Engineering, Vol. SE-10, 1984, No. 1, pp. 4–21.

https://doi.org/10.1145/1013367.1013401
https://doi.org/10.1109/93.923953
https://doi.org/10.1109/SOSE.2010.29
https://doi.org/10.1109/ASWEC.2009.35
https://doi.org/10.1109/ICIC.2009.129
https://doi.org/10.1109/TSE.2007.256943

Effort Estimation for SOC Environments 577

[17] Heemstra, F. J.: Software Cost Estimation. Information and Software Technology,
Vol. 34, 1992, No. 10, pp. 627–639, doi: 10.1016/0950-5849(92)90068-Z.

[18] Hughes, R. T.: Expert Judgement as an Estimating Method. Information and Soft-
ware Technology, Vol. 38, 1996, No. 2, pp. 67–75, doi: 10.1016/0950-5849(95)01045-9.

[19] Shepperd, M.—Schofield, C.—Kitchenham, B.: Effort Estimation Using Ana-
logy. 18th International Conference on Software Engineering, IEEE, Berlin, Germany,
1996, pp. 170–178, doi: 10.1109/ICSE.1996.493413.

[20] Shepperd, M.—Schofield, C.: Estimating Software Project Effort Using Analo-
gies. IEEE Transactions on Software Engineering, Vol. 23, 1997, No. 11, pp. 736–743,
doi: 10.1109/32.637387.

[21] Li, J.—Ruhe, G.—Al-Emran, A.—Richter, M. M.: A Flexible Method for
Software Effort Estimation by Analogy. Empirical Software Engineering, Vol. 12,
2007, No. 1, pp. 65–106.

[22] Nagpal, G.—Uddin, M.—Kaur, A.: Analyzing Software Effort Estimation Us-
ing K Means Clustered Regression Approach. ACM SIGSOFT Software Engineering
Notes, Vol. 38, 2013, No. 1, pp. 1–9.

[23] Tansey, B.—Stroulia, E.: Valuating Software Service Development: Integrat-
ing COCOMO II and Real Options Theory. First International Workshop on the
Economics of Software and Computation (ESC ’07), IEEE, Minneapolis, MN, 2007,
pp. 8–8.

[24] Conte, S. D.—Dunsmore, H. E.—Shen, V. Y.: Software Engineering Metrics
and Models. Benjamin-Cummings Publishing Co. Inc., Redwood City, CA, USA,
1986.

[25] Kitchenham, B. A.—Pickard, L. M.—MacDonell, S. G.—Shepperd, M. J.:
What Accuracy Statistics Really Measure: Software Estimation. IEE Proceedings –
Software, Vol. 148, 2001, No. 3, pp. 81–85.

[26] Lo, B.—Gao, X.: Assessing Software Cost Estimation Models: Criteria for Ac-
curacy, Consistency and Regression. Australasian Journal of Information Systems,
Vol. 5, 1997, No. 1, pp. 30–44.

[27] Di Martino, S.—Ferrucci, F.—Gravino, C.—Mendes, E.: Comparing Size
Measures for Predicting Web Application Development Effort: A Case Study.
First International Symposium on Empirical Software Engineering and Measurement
(ESEM ’07), IEEE, Madrid, Spain, 2007, pp. 324–333, doi: 10.1109/ESEM.2007.20.

[28] Ferrucci, F.—Gravino, C.—Di Martino, S.: A Case Study Using Web Objects
and COSMIC for Effort Estimation of Web Applications. 34th Euromicro Conference
Software Engineering and Advanced Applications (SEAA ’08), IEEE, Parma, 2008,
pp. 441–448, doi: 10.1109/SEAA.2008.60.

[29] Mendes, E.: Cost Estimation Techniques for Web Projects. IGI Global, Hershey,
PA, USA, 2007.

[30] Mendes, E.—Mosley, N.—Counsell, S.: Investigating Web Size Metrics for
Early Web Cost Estimation. Journal of Systems and Software, Vol. 77, 2005, No. 2,
pp. 157–172, doi: 10.1016/j.jss.2004.08.034.

[31] Maxwell, K. D.: Applied Statistics for Software Managers. Prentice-Hall, Software
Quality Institute Series, Harlow, United Kingdom, 2005.

https://doi.org/10.1016/0950-5849(92)90068-Z
https://doi.org/10.1016/0950-5849(95)01045-9
https://doi.org/10.1109/ICSE.1996.493413
https://doi.org/10.1109/32.637387
https://doi.org/10.1109/ESEM.2007.20
https://doi.org/10.1109/SEAA.2008.60
https://doi.org/10.1016/j.jss.2004.08.034

578 S. Mishra, C. Kumar

[32] Wackerly, D. D.—Mendenhall III, W.—Scheaffer, R. L.: Mathematical
Statistics with Applications. Brooks/Cole CENGAGE Learning, Seventh Edition,
2007.

[33] Burnham, K. P.—Anderson, D. R.: Multimodel Inference Understanding AIC
and BIC in Model Selection. Sociological Methods and Research, Vol. 33, 2004, No. 2,
pp. 261–304, doi: 10.1177/0049124104268644.

[34] Gentle, J. E.: Computational Statistics. Springer, New York, 2009, doi:
10.1007/978-0-387-98144-4.

[35] Abrahão, S.—Gómez, J.—Insfran, E.: Validating a Size Measure for Effort
Estimation in Model-Driven Web Development. Information Sciences, Vol. 180, 2010,
No. 20, pp. 3932–3954.

[36] Di Martino, S.—Ferrucci, F.—Gravino, C.—Sarro, F.: Using Web Objects
for Development Effort Estimation of Web Applications: A Replicated Study. In:
Caivano, D., Oivo, M., Baldassarre, M. T., Visaggio, G. (Eds.): Product-Focused
Software Process Improvement (PROFES 2011). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 6759, 2011, pp. 186–201.

[37] Ruhe, M.—Jeffery, R.—Wieczorek, I.: Using Web Objects for Estimating Soft-
ware Development Effort for Web Applications. Proceedings of Ninth International
Software Metrics Symposium, IEEE, Sydney, NSW, Australia 2003, pp. 30–37, doi:
10.1109/METRIC.2003.1232453.

[38] Lund, K.—Eggen, A.—Hadzic, D.—Hafsoe, T.—Johnsen, F. T.: Using Web
Services to Realize Service Oriented Architecture in Military Communication Net-
works. IEEE Communications Magazine, Vol. 45, 2007, No. 10, pp. 47–53.

[39] Omar, W. M.—Taleb-Bendiab, A.: E-Health Support Services based on Service-
Oriented Architecture. IT Professional, Vol. 8, 2006, No. 2, pp. 35–41.

[40] Barker, A.—Weissman, J. B.—Van Hemert, J. I.: Reducing Data Transfer
in Service-Oriented Architectures: The Circulate Approach. IEEE Transactions on
Services Computing, Vol. 5, 2012, No. 3, pp. 437–449, doi: 10.1109/TSC.2011.23.

[41] Girbea, A.—Suciu, C.—Nechifor, S.—Sisak, F.: Design and Implementation
of a Service-Oriented Architecture for the Optimization of Industrial Applications.
IEEE Transactions on Industrial Informatics, Vol. 10, 2014, No. 1, pp. 185–196, doi:
10.1109/TII.2013.2253112.

[42] Kim, T.-W.—Kim, H.-C.: Service-Oriented Architecture Structure for Health-
care Systems Utilising Vital Signs. IET Communications, Vol. 6, 2012, No. 18,
pp. 3238–3247.

[43] Dietrich, A. J.—Kirn, S.—Sugumaran, V.: A Service-Oriented Architecture for
Mass Customization – A Shoe Industry Case Study. IEEE Transactions on Engineer-
ing Management, Vol. 54, 2007, No. 1, pp. 190–204, doi: 10.1109/TEM.2006.889076.

[44] Melament, A.—Peres, Y.—Vitkin, E.—Kostirev, I.—Shmueli, N.—
Sangiorgi, L.—Mordenti, M.—D’Ascia, S.: BioMIMS – SOA Platform for
Research of Rare Hereditary Diseases. Annual SRII Global Conference, IEEE, San
Jose, CA, 2011, pp. 83–90, doi: 10.1109/SRII.2011.19.

https://doi.org/10.1177/0049124104268644
https://doi.org/10.1007/978-0-387-98144-4
https://doi.org/10.1109/METRIC.2003.1232453
https://doi.org/10.1109/TSC.2011.23
https://doi.org/10.1109/TII.2013.2253112
https://doi.org/10.1109/TEM.2006.889076
https://doi.org/10.1109/SRII.2011.19

Effort Estimation for SOC Environments 579

[45] Xu, L.—Chen, L.—Chen, T.—Gao, Y.: SOA-Based Precision Irrigation Decision
Support System. Mathematical and Computer Modelling, Vol. 54, 2011, No. 3-4,
pp. 944–949.

[46] Cucinotta, T.—Mancina, A.—Anastasi, G. F.—Lipari, G.—Mangeru-
ca, L.—Checcozzo, R.—Rusina, F.: A Real-Time Service-Oriented Architecture
for Industrial Automation. IEEE Transactions on Industrial Informatics, Vol. 5, 2009,
No. 3, pp. 267–277, doi: 10.1109/TII.2009.2027013.

[47] Verlaine, B.—Jureta, I. J.—Faulkner, S.: A Requirements-Based Model for
Effort Estimation in Service-Oriented Systems. In: Lomuscio, A. R., Nepal, S.,
Patrizi, F., Benatallah, B., Brandić, I. (Eds.): Service-Oriented Computing – IC-
SOC 2013 Workshops. Springer International Publishing, Lecture Notes in Computer
Science, Vol. 8377, 2014, pp. 82–94.

[48] Boehm, B. W.—Abts, C.—Chulani, S.: Software Development Cost Estimation
Approaches – A Survey. Annals of Software Engineering, Vol. 10, 2000, No. 1-4,
pp. 177–205.

[49] Demirkan, H.—Kauffman, R. J.—Vayghan, J. A.—Fill, H.-G.—Karagian-
nis, D.—Maglio, P. P.: Service-Oriented Technology and Management: Per-
spectives on Research and Practice for the Coming Decade. Electronic Com-
merce Research and Applications, Vol. 7, 2008, No. 4, pp. 356–376, doi:
10.1016/j.elerap.2008.07.002.

[50] Papazoglou, M. P.—Traverso, P.—Dustdar, S.—Leymann, F.: Service-
Oriented Computing: State of the Art and Research Challenges. Computer, Vol. 40,
2007, No. 11, pp. 38–45, doi: 10.1109/MC.2007.400.

[51] Brzoza-Woch, R.—Czekierda, L.—D lugopolski, J.—Nawrocki, P.—
Psiuk, M.—Szyd lo, T.—Zaborowski, W.—Zieliński, K.—Żmuda, D.: Im-
plementation, Deployment and Governance of SOA Adaptive Systems. In: Am-
broszkiewicz, S., Brzeziński, J., Cellary, W., Grzech, A., Zieliński, K. (Eds.): Ad-
vanced SOA Tools and Applications. Springer, Berlin, Heidelberg, Studies in Com-
putational Intelligence, Vol. 499, 2014, pp. 261–323.

[52] Papazoglou, M. P.—Traverso, P.—Dustdar, S.—Leymann, F.: Service-
Oriented Computing: A Research Roadmap. International Journal of Co-
operative Information Systems, Vol. 17, 2008, No. 2, pp. 223–255, doi:
10.1142/S0218843008001816.

[53] Joachim, N.—Beimborn, D.—Weitzel, T.: The Influence of SOA Governance
Mechanisms on IT Flexibility and Service Reuse. The Journal of Strategic Information
Systems, Vol. 22, 2013, No. 1, pp. 86–101, doi: 10.1016/j.jsis.2012.10.003.

[54] Fiadeiro, J.—Lopes, A.—Abreu, J.: A Formal Model for Service-Oriented In-
teractions. Science of Computer Programming, Vol. 77, 2012, No. 5, pp. 577–608, doi:
10.1016/j.scico.2011.12.003.

[55] Vassiliadis, B.—Stefani, A.—Tsaknakis, J.—Tsakalidis, A.: From Applica-
tion Service Provision to Service-Oriented Computing: A Study of the IT Outsourc-
ing Evolution. Telematics and Informatics, Vol. 23, 2006, No. 4, pp. 271–293, doi:
10.1016/j.tele.2005.09.001.

https://doi.org/10.1109/TII.2009.2027013
https://doi.org/10.1016/j.elerap.2008.07.002
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1142/S0218843008001816
https://doi.org/10.1016/j.jsis.2012.10.003
https://doi.org/10.1016/j.scico.2011.12.003
https://doi.org/10.1016/j.tele.2005.09.001

580 S. Mishra, C. Kumar

[56] Cook, T. D.—Campbell, D. T.: Quasi-Experimentation: Design and Analysis
Issues for Field Settings. Houghton Mifflin, Boston, Massachusetts, United States,
1979.

Siba Mishra received his Bachelor of Technology (B. Tech.)
degree in computer science and engineering from Biju Patnaik
University of Technology, Rourkela, India in 2009 and the Master
of Technology (M. Tech.) degree in computer science and engi-
neering from Kiit University, Bhubaneswar, India in 2012. He is
currently working towards his Ph.D. degree in computer science
and engineering at the Indian Institute of Technology (Indian
School of Mines), Dhanbad, Jharkhand, India. His main research
interests include software effort estimation, service-oriented ar-
chitecture, aspect-oriented programming and program slicing.

He is a student member of the IEEE and ACM.

Chiranjeev Kumar is working as Full Professor at the Depart-
ment of Computer Science and Engineering, Indian Institute of
Technology (Indian School of Mines), Dhanbad, Jharkhand, In-
dia. He received his Ph.D. degree in computer science and en-
gineering from Allahabad University, India in 2006. He was the
gold medalist of his M. Eng. batch at the Department of Com-
puter Science and Engineering, Motilal Nehru National Insti-
tute of Technology (MNNIT), Allahabad, Uttar Pradesh, India
in 2001. In 1998, he was felicitated upon certified novell admin-
istrator (CNA) and certified novell engineer (CNE). In his about

18 years of teaching and research carrier, he has contributed for several research papers
in leading refereed journals and conference proceedings of the national and international
repute. His main research interests include mobility management in wireless networks, ad
hoc networks and software engineering. He is an IEEE member since 2006, and a fellow
of the Inventive Research Organization (IRO) since 2016.

Computing and Informatics, Vol. 37, 2018, 581–613, doi: 10.4149/cai 2018 3 581

PERSONALIZING A CONCEPT SIMILARITY
MEASURE IN THE DESCRIPTION LOGIC ELH
WITH PREFERENCE PROFILE

Teeradaj Racharak

School of Information, Computer, and Communication Technology
Sirindhorn International Institute of Technology, Thammasat University, Thailand
&
School of Information Science
Japan Advanced Institute of Science and Technology, Japan
e-mail: r.teeradaj@gmail.com

Boontawee Suntisrivaraporn

School of Information, Computer, and Communication Technology
Sirindhorn International Institute of Technology, Thammasat University, Thailand
&
Business Intelligence and Data Science, Transformation Group
Siam Commercial Bank Co., Ltd., Thailand
e-mail: boontawee.suntisrivaraporn@scb.co.th

Satoshi Tojo

School of Information Science
Japan Advanced Institute of Science and Technology, Japan
e-mail: tojo@jaist.ac.jp

Abstract. Concept similarity measure aims at identifying a degree of commonal-
ity of two given concepts and is often regarded as a generalization of the classical
reasoning problem of equivalence. That is, any two concepts are equivalent if and
only if their similarity degree is one. However, existing measures are often devised
based on objective factors, e.g. structural-based measures and interpretation-based

582 T. Racharak, B. Suntisrivaraporn, S. Tojo

measures. When these measures are employed to characterize similar concepts in
an ontology, they may lead to unintuitive results. In this work, we introduce a new
notion called concept similarity measure under preference profile with a set of for-
mally defined properties in Description Logics. This new notion may be interpreted
as measuring the similarity of two concepts under subjective factors (e.g. the agent’s
preferences and domain-dependent knowledge). We also develop a measure of the
proposed notion and show that our measure satisfies all desirable properties. Two
algorithmic procedures are introduced for top-down and bottom-up implementation,
respectively, and their computational complexities are intensively studied. Finally,
the paper discusses the usefulness of the approach to potential use cases.

Keywords: Concept similarity measure, semantic web ontology, preference profile,
description logics

Mathematics Subject Classification 2010: 68-T30

1 INTRODUCTION

Most Description Logics (DLs) [1] are decidable fragments of First Order Logic
(FOL) with clearly defined computational properties. DLs are the logical underpin-
ning of the DL flavor of the ontology languages OWL and OWL 2. The advantage
of this close connection is that the extensive DLs literature and implementation ex-
periences can be directly exploited by OWL tools. More specifically, DLs provide
unambiguous semantics to the modeling constructs available in OWL DL and OWL 2
DL. These semantics make it possible to formalize and design algorithms for a num-
ber of reasoning services, which enable the development of ontology applications
to become prominent. For instance, ontology classification (or ontology alignment)
organizes concepts in an ontology into a subsumption hierarchy and assists in de-
tecting potential errors of a modeling ontology. Though this subsumption hierarchy
inevitably benefits ontology modeling, it merely gives two-valued responses, i.e., in-
ferring a concept is subsumed by another concept or not. However, certain pairs
of concepts may share commonality even though they are not subsumed. Thus,
a considerable amount of research effort has been devoted on measuring similarity
of two given concepts, i.e. concept similarity measure.

Basically, a concept similarity measure (abbreviated as CSM) is a function map-
ping from a concept pair to a unit interval (i.e. 0 ≤ x ≤ 1 for any real number x).
The higher the value is mapped to, the more likely similarity of them may hold.
Intuitively, the value 0 can be interpreted as total dissimilarity whereas the value 1
can be interpreted as total similarity or equivalence. Hence, one may regard CSM as
a generalization of the classical reasoning problem of equivalence. It plays a major
role in the discovery of similar concepts in an ontology. For example, it is employed in
bio-medical ontology-based applications to discover functional similarities of gene [2],

Personalizing a CSM in the DL ELH with π 583

it is often used by ontology alignment algorithms [3]. There is currently a significant
number of measures in DLs. Prominent examples are [4, 5, 6, 7, 8, 9]. However,
these measures are devised based on objective factors. For example, they use the
structure (or the interpretation) of concept descriptions to measure. When these
measures are employed to characterize similar concepts in an ontology, they may lead
to unintuitive results. The following example illustrates that using objective-based
measures may not suffice to answer the agent’s request.

Example 1. An agent A wants to visit a place for doing some active activities. At
that moment, he would like to enjoy walking. Suppose that a place ontology has
been modeled as follows:

ActivePlace v Place u ∃canWalk.Trekking u ∃canSail.Kayaking

Mangrove v Place u ∃canWalk.Trekking

Beach v Place u ∃canSail.Kayaking

canWalk v canMoveWithLegs

canSail v canTravelWithSails

Suppose that a measure used by that Agent A considers merely the objective
aspects, it is reasonable to conclude that both Mangrove and Beach are equally
similar to the concept ActivePlace. However, by taking into account also the agent’s
preferences, Mangrove appears more suitable to his perception of ActivePlace at that
moment. In other words, he will not be happy if an intelligent system happens to
recommend him to go for a Beach.

The example shows that preferences of the agent play a decisive role in the choice
of alternatives. In essence, when the choices of an answer are not totally similar to
a concept in question, a measure may need to be tuned by subjective factors, e.g.
the agent’s preferences. Another example is shown in [10] on the experiment of
the measure sim against Snomed ct1, which is one of the largest and the most
widely used medical ontologies currently available. It reports that roleGroup and
the Snomed ct top concept SCT-Top can unintentionally increase the degree of
similarity. By augmenting that knowledge, the experiment could produce more
accurate outputs. The main purpose of this paper is to investigate the use of concept
similarity measure under the agent’s preferences. As a result, the advantages of our
approach are fourfold (cf. Section 4 and Section 5). Firstly, it formalizes the notion of
concept similarity measure under the agent’s preferences and identifies its desirable
properties. Secondly, inspired by the skeptical and credulous measures in [5], when
used under different agent’s preferences, our theory corresponds to different types
of a rational agent, i.e., it has ordering when used by different agents. Thirdly, it
presents the similarity measure simπ with mathematical proofs on the satisfaction

1 http://bioportal.bioontology.org/ontologies/SNOMEDCT

http://bioportal.bioontology.org/ontologies/SNOMEDCT

584 T. Racharak, B. Suntisrivaraporn, S. Tojo

of those properties. Lastly, it presents two algorithmic procedures for implementing
the measure, viz. a top-down and a bottom-up versions of the proposed measure.

Our developed measure simπ is driven by the structural subsumption charac-
terization by means of tree homomorphism. It is worth to mention that Baader
proposes this idea in [11, 12] for ELH w.r.t. an unfoldable TBox, i.e., the subsump-
tion is characterized by means of an existence of a homomorphism in the reverse
direction. The notion of homomorphism degree is originally introduced in [13] and
employed at the heart of similarity measure for EL. This idea is extended at the
heart of concept similarity measure under the agent’s preferences for ELH. Prelim-
inary studies of this applicability are reported in our proceeding papers [14, 15]. It
should be noted that our measure we introduced, i.e. simπ, may look similar to the
measure proposed in [16] in a sense that both are recursive definitions for the same
DL ELH; however, they are radically different. These are caused by the distinction
of their inspirations and we discuss those points in Section 7. Preliminary, empirical
evaluation, and the conclusion are discussed in Section 2, Section 6, and Section 8,
respectively.

2 PRELIMINARIES

In this section, we review the basics of the Description Logic ELH and the problem
of concept similarity measure including the measure sim, which is extended to the
development of simπ (originally introduced in [15]).

2.1 Description Logic ELH

We assume countably infinite sets CN of concept names and RN of role names that
are fixed and disjoint. The set of concept descriptions, or simply concepts, for
a specific DL L is denoted by Con(L). The set Con(ELH) of all ELH concepts can
be inductively defined by the following grammar:

Con(ELH) ::= A | > | C uD | ∃r.C

where > denotes the top concept, A ∈ CN, r ∈ RN, and C,D ∈ Con(ELH). Conven-
tionally, concept names are denoted by A and B, concept descriptions are denoted
by C and D, and role names are denoted by r and s, all possibly with subscripts.

A terminology or TBox T is a finite set of (possibly primitive) concept definitions
and role hierarchy axioms, whose syntax is an expression of the form (A v D) A ≡ D
and r v s, respectively. The set CNdef of defined concept names are concept names
which appear on the left-hand side of a concept definition. Other concepts are
called primitive concept names, denoted by CNpri. A TBox T is called unfoldable if
all concept definitions are unique and acyclic definitions. A concept definition A is
unique if T contains at most one concept definition for A ∈ CNdef and is acyclic if A
is not referred directly or indirectly (via other concept definitions) to itself. For every
primitive concept definition A v D in T , each can be transformed into an equivalent

Personalizing a CSM in the DL ELH with π 585

one by introducing a fresh concept name A′ via the rule A v D −→ A ≡ A′ u D.
When a TBox T is unfoldable, concept names can be expanded by exhaustively
replacing all defined concept names by their definitions until only primitive concept
names remain. Such concept names are called fully expanded concept names.2

Like primitive definitions, a role hierarchy axiom r v s can be transformed into
a semantically equivalent role definition, by introducing a fresh role name r′ via the
similar rule r v s −→ r ≡ r′ u s. Role names occurring on the left-hand side of
a role definition are called defined role names, collectively denoted by RNdef . All
others are called primitive role names, collectively denoted by RNpri. A set of all r’s
super roles, denoted by Rr, is defined as Rr = {s ∈ RN|r v∗ s} and, r v∗ s if r = s
or ri v ri+1 ∈ T where 1 ≤ i ≤ n, r1 = r, rn = s, and ∗ is a transitive closure.

An interpretation I is a pair I = 〈∆I , ·I〉 where ∆I is a non-empty set repre-
senting the domain of the interpretation and ·I is an interpretation function which
assigns to every concept name A a set AI ⊆ ∆I and to every role name r a binary
relation rI ⊆ ∆I × ∆I . The interpretation function ·I is inductively extended to
ELH concepts in the usual manner:

>I = ∆I ; (C uD)I = CI ∩DI ;

(∃r.C)I =
{
a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ rI ∧ b ∈ CI

}
.

An interpretation I is said to be a model of a TBox T (in symbols, I |= T) if it
satisfies all axioms in T . I satisfies axioms A v C, A ≡ C, and r v s, respectively,
if AI ⊆ CI , AI = CI , and rI ⊆ sI . The main inference problem for ELH is
the subsumption problem. That is, given C,D ∈ Con(ELH) and a TBox T , C is
subsumed by D w.r.t. T (in symbols, C vT D) if CI ⊆ DI for every model I of T .
Furthermore, C and D are equivalent w.r.t. T (in symbols, C ≡T D) if C vT D
and D vT C. When a TBox T is empty or is clear from the context, we omit to
denote T , i.e. C v D or C ≡ D.

Let C ∈ Con(ELH) be a fully expanded concept to the form: P1 u · · · u
Pm u ∃r1.C1 u · · · u ∃rn.Cn, where Pi ∈ CNpri, rj ∈ RN, Cj ∈ Con(ELH) in the
same format, 1 ≤ i ≤ m, and 1 ≤ j ≤ n. The set P1, . . . , Pm and the set
∃r1.C1, . . . ,∃rn.Cn are denoted by PC and EC , respectively, i.e. PC = {P1, . . . , Pm}
and EC = {∃r1.C1, . . . ,∃rn.Cn}. An ELH concept description can be structurally
transformed into the corresponding ELH description tree. The root v0 of the ELH
description tree TC has {P1, . . . , Pm} as its label and has n outgoing edges, each
labeled with Rrj to a vertex vj for 1 ≤ j ≤ n. Then, a subtree with the root vj
is defined recursively relative to the concept Cj. In [11, 12], a characterization of
subsumption for the DL ELH w.r.t. an unfoldable TBox is proposed. Instead of
considering concept descriptions, the so-called ELH description trees corresponding
to those concept descriptions are considered. The subsumption is then characterized
by an existence of a homomorphism in the reverse direction (cf. Theorem 1).

2 In this work, we assume that concept names are fully expanded and the TBox can be
omitted.

586 T. Racharak, B. Suntisrivaraporn, S. Tojo

Definition 1 (Homomorphism [11, 12]). An ELH description tree T is a quintuple
(V,E, rt, l, p) where V is a set of vertices, E ⊆ V ×V is a set of edges, rt is the root,

l : V → 2CNpri
is a vertex labeling function, and ρ : E → 2RN is an edge labeling

function. Let T1 and T2 be two ELH description trees, v1 ∈ V1 and v2 ∈ V2, there
exists a homomorphism h from T1 to T2 (written as h : T1 → T2) iff the following
conditions are satisfied:

• h(rt1) = rt2 and l1(v1) ⊆ l2(h(v1)); and

• for each successor w1 of v1 in T1, h(w1) is a successor of h(v1) with ρ1(v1, w1) ⊆
ρ2(h(v1), h(w1)).

Example 2. (Continuation of Example 1) Each primitive definition can be trans-
formed to a corresponding equivalent full definition as follows.

ActivePlace ≡ X u Place u ∃canWalk.Trekking u ∃canSail.Kayaking

Mangrove ≡ Y u Place u ∃canWalk.Trekking

Beach ≡ Z u Place u ∃canSail.Kayaking

where X, Y , and Z are fresh primitive concept names. Similarly, canWalk ≡ t u
canMoveWithLegs and canSail ≡ uucanTravelWithSails, where t and u are fresh prim-
itive role names. In other words, RcanWalk = {t, canMoveWithLegs} and RcanSail =
{u, canTravelWithSails}. Figure 1 depicts TActivePlace, as an illustration.

v0: {X, Place}

v1: {Trekking}

{t, canMoveWithLegs}

v2: {Kayaking}

{u, canTravelWithSails}

Figure 1. The description tree of concept ActivePlace

Theorem 1 ([11, 12]). Let C,D ∈ Con(ELH) and TC and TD be the corresponding
description trees. Then, C v D iff there exists a homomorphism h : TD → TC that
maps the root of TD to the root of TC .

From Example 2, it is also not difficult to find a failed attempt of identifying
a homomorphism mapping the root of TActivePlace to the root of TMangrove, i.e. h :
TActivePlace 6→ TMangrove. Hence, this infers Mangrove 6v ActivePlace by Theorem 1.

2.2 Concept Similarity Measure in DLs

Concept similarity measure (abbreviated as CSM) is a function mapping from a con-
cept pair to a unit interval (0 ≤ x ≤ 1 where x is a real number). The higher the

Personalizing a CSM in the DL ELH with π 587

value is mapped to, the more likely similarity of that concept pair may hold. In the
following, we have formally defined the notion of CSM in DLs.

Definition 2. Given two concept descriptions C,D ∈ Con(L), a concept similarity
measure w.r.t. a TBox T is a function ∼T : Con(L) × Con(L) → [0, 1] such that
C ∼T D = 1 iff C ≡T D (total similarity) and C ∼T D = 0 indicates total
dissimilarity between C and D.

When a TBox T is clear from the context, we simply write ∼. Furthermore, to
avoid confusion on the symbols, ∼T is used when referring to arbitrary measures.

The measure sim [13, 10] extends Theorem 1 to the case where no such homomor-
phism exists but there is some commonality. Since an extension to sim is presented
in Subsection 4.1 for taking into account the agent’s preferences, the original defi-
nitions of homomorphism degree hd and sim are included here for self-containment.

Definition 3 (Homomorphism Degree [10]). Let TELH be a set of all ELH descrip-
tion trees and TC , TD ∈ TELH correspond to two ELH concept names C and D,
respectively. The homomorphism degree function hd: TELH × TELH → [0, 1] is
inductively defined as follows:

hd(TD, TC) = µ · p-hd(PD,PC) + (1− µ) · e-set-hd(ED, EC) (1)

where µ = |PD|
|PD∪ED|

and | · | represents the set cardinality;

p-hd(PD,PC) =

1, if PD = ∅,
|PD∩PC |
|PD|

, otherwise,
(2)

e-set-hd(ED, EC) =

1, if ED = ∅,

0, if ED 6= ∅ and EC = ∅,∑
εi∈ED

maxεj∈EC {e-hd(εi,εj)}
|ED|

, otherwise

(3)

with εi, εj existential restrictions; and

e-hd(∃r.X,∃s.Y) = γ(ν + (1− ν) · hd(TX , TY)) (4)

where γ = |Rr∩Rs|
|Rr| and 0 ≤ ν < 1.

The value of ν in Equation (4) determines how important the roles are to be con-
sidered for similarity between two existential restriction information. For instance,
∃canWalk.Trekking and ∃canWalk.Parading for dissimilar nested concepts Trekking
and Parading should not be regarded as entirely dissimilar themselves. If ν is as-
signed the values 0.3, 0.4, 0.5, then e-hd(∃canWalk.Trekking,∃canWalk.Parading) is
0.3, 0.4, 0.5, respectively. This value might vary among applications. In this work,
ν is set to 0.4 for exemplifying the calculation of hd.

588 T. Racharak, B. Suntisrivaraporn, S. Tojo

Theorem 2 ([10]). Let C,D ∈ Con(ELH) and TC , TD be their corresponding de-
scription tree, respectively. Then, the following are equivalent:

1. C v D; and

2. hd(TD, TC) = 1.

Using a proof by induction, together with Theorem 1, it is not difficult to ob-
serve the correspondence between the homomorphism degree hd and subsumption.
Intuitively, Theorem 2 describes a property of concept subsumption, i.e. C is a sub-
concept of D if the homomorphism degree of the corresponding description tree TD
to TC is equal to 1, and vice versa.

Definition 4 (ELH Similarity Degree [10]). Let C and D be ELH concept names
and TC , TD be the corresponding description trees. Then, the ELH similarity degree
between C and D (in symbols, sim(C,D)) is defined as follows:

sim(C,D) =
hd(TC , TD) + hd(TD, TC)

2
. (5)

Example 3. (Continuation of Example 2)
For brevity, let ActivePlace, Mangrove, Beach, Place, Trekking, Kayaking, canWalk,
and canSail be abbreviated as AP, M, B, P, T, K, cW, and cS, respectively. Using
Definition 3, the homomorphism degree from TAP to TM, or

hd(TAP, TM) =

(
2

4

)(
1

2

)
+

(
2

4

)(
max{e-hd(∃cW.T,∃cW.T)}

2
+

max{e-hd(∃cS.K,∃cW.T)}
2

)
=

(
2

4

)(
1

2

)
+

(
2

4

)(
1 + 0

2

)
= 0.5.

Similarly, hd(TM, TAP) = 0.67, hd(TAP, TB) = 0.5, and hd(TB, TAP) = 0.67. Thus,
sim(M,AP) = 0.59 and sim(B,AP) = 0.59

3 PREFERENCE PROFILE

We first introduced preference profile (denoted by π) in [14] as a collection of pref-
erential elements in which the development of CSM should be considered. Its first
intuition is to model different forms of preferences (of an agent) based on concept
names and role names. Measures adopted this notion are flexible to be tuned by
an agent and can determine the similarity conformable to that agent’s perception.

The syntax and semantics of each form are given in term of partial functions
because agents may not have preferences over all concept names and role names. We
recommend to devise similarity measures with considerations on preference profile

Personalizing a CSM in the DL ELH with π 589

if we aim at developing concept similarity measure for general purposes – a measure
based on both subjective and objective factors. Mathematical definitions for each
form of preferences are formally defined as follows.

Definition 5 (Primitive Concept Importance). Let CNpri(T) be a set of primitive
concept names occurring in T . Then, a primitive concept importance is a partial
function ic : CN→ [0, 2]3, where CN ⊆ CNpri(T).

For any A ∈ CNpri(T), ic(A) = 1 captures an expression of normal importance
for A, ic(A) > 1 (and ic(A) < 1) indicates that A has higher (and lower, respectively)
importance, and ic(A) = 0 indicates that A is of no importance to the agent.

Example 4. (Continuation of Example 2) Suppose that an agent A is using a sim-
ilarity measure for querying some names similar to ActivePlace. He concerns that
those names will be similar to ActivePlace if they are places. Thus, the agent can
express this preference as ic(Place) = 2, i.e., values should be higher than 1.

On the other hand, suppose he does not care if those are places or not, he may
express this preference as ic(Place) = 0, i.e., values must be equal to 0.

Definition 6 (Role Importance). Let RN(T) be a set of role names occurring in T .
Then, a role importance is a partial function ir : RN→ [0, 2], where RN ⊆ RN(T).

For any r ∈ RN(T), ir(r) = 1 captures an expression of normal importance
for r, ir(r) > 1 (and ir(r) < 1) indicates that r has higher (and lower, respectively)
importance, and ir(r) = 0 indicates that r is of no importance to the agent.

Example 5 (Continuation of Example 2). Suppose that the agent A wants to enjoy
walking. He may express this preference as ir(canWalk) = 2, i.e., values should be
higher than 1.

Definition 7 (Primitive Concepts Similarity). Let CNpri(T) be a set of primitive
concept names occurring in T . For A,B ∈ CNpri(T), a primitive concepts similarity
is a partial function sc : CN×CN→ [0, 1], where CN ⊆ CNpri(T), such that sc(A,B) =
sc(B,A) and sc(A,A) = 1.

For A,B ∈ CNpri(T), sc(A,B) = 1 captures an expression of total similarity
between A and B and sc(A,B) = 0 captures an expression of their total dissimilarity.

Example 6 (Continuation of Example 2). Suppose that the agent A believes that
trekking and kayaking invoke similar feeling. Thus, he can express sc(Trekking,
Kayaking) = 0.1, i.e., values should be higher than 0.

3 In the original definition of preference profile, elements in the domains of both ic and
ir are mapped to R≥0, which is a minor error.

590 T. Racharak, B. Suntisrivaraporn, S. Tojo

Another example is the similarity of concepts Pet1 and Pet2, in which both are
defined as follows: Pet1 v Dogu∃hasOwned.Human; Pet2 v Catu∃hasOwned.Human.
Here, Dog and Cat are both primitive concept names. Intuitively, Dog and Cat are
similar, then we may attach this knowledge in form of sc in order to yield more
accuracy on the measure.

Definition 8 (Primitive Roles Similarity). Let RNpri(T) be a set of primitive role
names occurring in T . For r, s ∈ RNpri(T), a primitive roles similarity is a partial
function sr : RN × RN → [0, 1], where RN ⊆ RNpri(T), such that sr(r, s) = sr(s, r)
and sr(r, r) = 1.

For r, s ∈ RN(T), sr(r, s) = 1 captures an expression of total similarity between
r and s and sr(r, s) = 0 captures an expression of their total dissimilarity.

Example 7 (Continuation of Example 2). Suppose that the agent A believes that
moving with legs and traveling with sails invoke similar feeling. He may express
sr(canMoveWithLegs, canTravelWithSails) = 0.1, i.e., values should be higher than 0.

Basically, our motivations of both functions sc and sr are the same, i.e., we aim
at attaching subjective feeling of proximity (about primitive concept names and
primitive role names) into a measure. In DLs, different primitive concept names
(and also primitive role names) are considered to be total dissimilarity even though
they may be recognized as being similar in real-world domains.

Definition 9 (Role Discount Factor). Let RN(T) be a set of role names occurring
in T . Then, a role discount factor is a partial function d : RN → [0, 1], where
RN ⊆ RN(T).

For any r ∈ RN(T), d(r) = 1 captures an expression of total importance on the
role (beyond a corresponding nested concept) and d(r) = 0 captures an expression
of total importance on a nested concept (beyond the correspondent role r).

Example 8 (Continuation of Example 2). Suppose that the agent A does not con-
cern much if places permit to either walk or to sail. He would rather consider on
actual activities which he can perform. Thus, he may express d(canWalk) = 0.3 and
d(canSail) = 0.3, i.e., values should be close to 0.

Definition 10 (Preference Profile). A preference profile, in symbol π, is a quintuple
〈ic, ir, sc, sr, d〉 where ic, ir, sc, sr, and d are as defined above and the default preference
profile, in symbol π0, is the quintuple 〈ic0, ir0, sc0, sr0, d0〉 where

Personalizing a CSM in the DL ELH with π 591

ic0(A) = 1 for all A ∈ CNpri(T),

ir0(r) = 1 for all r ∈ RN(T),

sc0(A,B) = 0 for all (A,B) ∈ CNpri(T)× CNpri(T),

sr0(r, s) = 0 for all (r, s) ∈ RNpri(T)× RNpri(T), and

d0(r) = 0.4 for all r ∈ RN(T).

Intuitively, the default preference profile π0 represents the agent’s preference in
the default manner, i.e., when preferences are not given. That is, every A ∈ CNpri

has normal importance and so does every r ∈ RN. Also, every (A,B) ∈ CNpri ×
CNpri is totally different and so does every (r, s) ∈ RNpri × RNpri. Lastly, every
r ∈ RN is considered 0.4 importance for the similarity of two existential restriction
information. It is interesting to note that changes in the definition of the default
preference profile yield different interpretations of the default preference and thereby
may produce a different degree of similarity under the default manner. As for its
exemplification, the value 0.4 is used by d0 to conform with the value of ν used in
this work.

In this work, a preference profile of an agent is denoted by subscribing that agent
below π, e.g., πA represents a preference profile of the agent A.

4 SIMILARITY MEASURE UNDER PREFERENCE PROFILE

A numerical value determined by CSM indicates a degree of similarity of two concept
descriptions w.r.t. the sole objective aspects. That is, either their structures or their
interpretations are similar (cf. Section 7). For example, sim(ActivePlace,Mangrove)
= 0.59 and sim(ActivePlace,Beach) = 0.59 indicates that the similarity of ActivePlace
and Mangrove, and that of ActivePlace and Beach are equivalently 59 %. However,
this information may not be useful for the agent to make decisions.

In this section, we present a conceptual notion for concept similarity measure
under the agent’s preferences (originally introduced in [15]) and its desirable prop-
erties. We also present the measure simπ by adopting preference profile onto the
measure sim. Our first intuition is to exemplify the applicability of preference pro-
file onto an arbitrary existing measure. This shows that our proposed notion of
preference profile can be considered as a collection of noteworthy aspects for the
development of concept similarity measure under the agent’s preferences.

Definition 11. Given a preference profile π, two concepts C,D ∈ Con(L), and
a TBox T , a concept similarity measure under preference profile w.r.t. a TBox T is
a function

π∼T : Con(L)× Con(L)→ [0, 1].

When a TBox T is clear from the context, we simply write
π∼. Furthermore, to

avoid confusion on the symbols,
π∼T is used when referring to arbitrary measures.

592 T. Racharak, B. Suntisrivaraporn, S. Tojo

The notion
π∼ may be informally read as the computation of ∼ is influenced by π.

That informal interpretation shapes our intuition to consider this kind as a gener-
alization of CSM in DLs. With adopting of this viewpoint of the interpretation, we
can agree that simπ (Subsection 4.1) is informally interpreted as we compute sim
(Definition 4) under an existence of a given π.

Basically, the notion
π∼ is a function mapping a pair of two concept descriptions

w.r.t. a particular π to a unit interval. We identify a property called preference in-
variance w.r.t. equivalence in our preliminary study [15]. Now, we aim at identifying

more important properties of
π∼. We start by investigating important properties of

CSM existing in the literature (e.g. [16, 9]). Our primary motivation is to identify

CSM’s properties which are also reasonable for
π∼. The following collects funda-

mental properties for the introduced concept similarity measure under preference
profile. They can be used to answer the question What could be good preference-
based similarity measures? In other words, any preference-based measures satisfying
the fundamental properties are considered to be good ones.

Formally, let C,D,E ∈ Con(L) and Π be a countably infinite set of preference

profile. Then, we call a concept similarity measure under preference profile
π∼ is:

1. symmetric iff ∀π′ ∈ Π : (C
π′
∼ D = D

π′
∼ C);

2. equivalence invariant iff C ≡ D =⇒ ∀π′ ∈ Π : (C
π′
∼ E = D

π′
∼ E);

3. structurally dependent iff for any finite sets of concepts C1 and C2 with the
following conditions:

• C1 ⊆ C2,

• concepts A,B 6∈ C2,

• ic(Φ) > 0 if Φ is primitive and Φ ∈ C2, and

• ir(ϕ) > 0 if Φ is existential, i.e. Φ := ∃ϕ.Ψ, and Φ ∈ C2,

the concepts C :=
d

(C1 ∪ {A}), D :=
d

(C1 ∪ {B}), E :=
d

(C2 ∪ {A}) and

F :=
d

(C2 ∪ {B}) fulfill the condition ∀π′ ∈ Π : (C
π′
∼ D ≤ E

π′
∼ F); and

4. preference invariant w.r.t. equivalence iff C ≡ D ⇐⇒ ∀π′ ∈ Π : C
π′
∼ D = 1.

Next, we discuss the underlying intuitions of each property subsequently. We
note that the properties 1 to 3 are adopted from [16, 9]. However, to the best of
our knowledge, the property 4 is first time introduced for concept similarity measure
under preference profile in this work (originally introduced in [15]).

Let Π be a countably infinite set of preference profile. In the following, we
discuss the intuitive interpretation of each property. Firstly, symmetry states that
an order of concepts in question does not influence the notion

π∼ for any π ∈ Π. For
instance, Mangrove

π∼ Beach = Beach
π∼ Mangrove. This property is controversial

as cognitive sciences believes that similarity is asymmetric. However, substantial
work in DLs [16, 10, 17, 6, 8, 9, 7, 15, 5] prefers symmetry (merely [4, 18] prefer
asymmetry). Here, we also agree on the symmetry because axiomatic information

Personalizing a CSM in the DL ELH with π 593

in TBox is not dynamically changed. Furthermore, the notion of preference profile
studied in this work is also static, i.e., it can be changed merely by tuning.

Secondly, equivalence invariance (alternatively called equivalence soundness [9]
in the context of dissimilarity measure) states that if two concepts C and D are
logically equivalent, then measuring the similarity of each toward the third concept E
w.r.t. any π ∈ Π must be the same. For instance, let C ≡ ∃canWalk.Trekking and
D ≡ ∃canWalk.Trekking. It is clear that C and D are logically equivalent. Therefore,
let E ∈ Con(L), C

π∼ E = D
π∼ E for any π ∈ Π.

Thirdly, the notion of structural dependence is originally introduced by Tversky
in [19]. Later, the authors of [16] collect it as another important properties for
CSM in their work. Basically, in Tversky’s model, an object is considered as a set of
features. Then, the similarity of two objects is measured by the relationship between
a number of common features and a number of different features. Extending this
idea to

π∼ gives the meaning that the similarity of two concepts C,D increases if
a more number of equivalent concepts is shared and each is considered important.

Lastly, preference invariance w.r.t. equivalence states that if two concepts are
logically equivalent, then the similarity degree of two concepts under preference
profile π is always one for every π ∈ Π, and vice versa. Taking the negation both
sides, this means C 6≡ D ⇐⇒ ∃π ∈ Π : C

π∼ D 6= 1. For instance, let C ≡
∃canWalk.Trekking and D ≡ ∃canWalk.Parading. It is clear that C and D are not
logically equivalent, then taking π = π0 obtains C

π0∼ D 6= 1; though, taking π = π1
where sc(Trekking,Parading) = 1 is defined in π1 yields C

π1∼ D = 1.
There are several properties which are not considered as fundamental properties

of concept similarity measure under preference profile because the behaviors may not
obey their properties when used under non-default preference profiles, e.g. reverse
subsumption preserving. In [16], a measure ∼ satisfies the reverse subsumption
preserving iff, for any concepts C,D, and E, C v D v E =⇒ C ∼ E ≤ D ∼ E.
The property states that the similarity of D and E is higher than the one of C
and E because E is closer to D than C. To refute it, we need only one preference
profile π such that the implication does not hold (cf. Example 9), i.e., to show that

(C v D v E) and ∃π ∈ Π : (C
π∼ E > D

π∼ E).

Example 9. Suppose concepts A1,A2,A3, and A4 are primitive. Query describes
features of an item that an agent is searching for. Item1 and Item2 are items, which
compose of features A1,A2,A3 and A1,A2,A3,A4, respectively.

Query v A1 u A2

Item1 v A1 u A2 u A3

Item2 v A1 u A2 u A3 u A4

The ontology shows the hierarchy: Item2 v Item1 v Query. By taking sc(A2,A4)

= 1, it is reasonable to conclude that Item2
π∼ Query > Item1

π∼ Query due to an
increased number of totally similar concepts.

594 T. Racharak, B. Suntisrivaraporn, S. Tojo

Our proceeding paper [5] studies CSM for the DL FL0. In this paper, we
suggest two measures, viz. the skeptical measure ∼s and the credulous measure ∼c,
which are derived from the known structural characterization subsumption through
inclusion of regular languages. This fact exhibits that there is not a unique CSM
for similarity-based applications. Which CSMs should be used depends on concrete
applications, especially the type of a rational agent. For example, when employing
the notion ∼ to a query answering system, a credulous agent may want to see
answers as much as possible; hence, the measure ∼c is employed. On the other
hand, a skeptical agent would like to see sufficient relevant answers; hence, the
measure ∼s is employed. This idea is generalized and is extended toward the notion
π∼ to be used under different agent’s profiles. In essence, if an arbitrary concept
similarity measure under preference profile

π∼ is fixed, measuring the similarity of
two concepts under different preference profiles may yield different values.

Definition 12. Let Π be a countably infinite set of preference profile and π1, π2 ∈ Π.
For any fixed measure

π∼, the concept similarity measure under π1 is more skeptical
than π2 (denoted by

π1∼ � π2∼) if C
π1∼ D ≤ C

π2∼ D for all C,D ∈ Con(L).

4.1 The Measure simπ

To develop an instance of
π∼, we generalize sim for all aspects of preference profile.

As a result, the new measure simπ is also driven by the structural subsumption
characterization by means of tree homomorphism for the DL ELH.

We start by presenting each aspect of preference profile in term of total functions
in order to avoid computing on null values. A total importance function is firstly
introduced as î : CNpri ∪RN→ [0, 2] based on the primitive concept importance and
the role importance.

î(x) =

ic(x), if x ∈ CNpriand ic is defined on x,

ir(x), if x ∈ RN and ir is defined on x,

1, otherwise.

(6)

A total similarity function is also presented as ŝ : (CNpri × CNpri) ∪ (RNpri ×
RNpri) → [0, 1] using the primitive concepts similarity and the primitive roles simi-
larity.

ŝ(x, y) =

1, if x = y,

sc(x, y), if (x, y) ∈ CNpri × CNpri and sc is defined on (x, y),

sr(x, y), if (x, y) ∈ RNpri × RNpri and sr is defined on (x, y),

0, otherwise.

(7)

Personalizing a CSM in the DL ELH with π 595

Similarly, a total role discount factor function4 is presented in the following in
term of a function d̂ : RN→ [0, 1] based on the role discount factor.

d̂(x) =

d(x), if d is defined on x,

0.4, otherwise.
(8)

The next step is to generalize the notion of homomorphism degree hd (Defini-
tion 3). Let C,D ∈ Con(ELH) and r, s ∈ RN. Also, let TC , TD,PC , PD, EC , ED, Rr,
andRs be as defined in Subsection 2.2. The homomorphism degree under preference
profile π from TD to TC can be formally defined in Definition 13.

Definition 13. Let TELH be a set of all ELH description trees, and π = 〈ic, ir, sc, sr,
d〉 be a preference profile. The homomorphism degree under preference profile π is
a function hdπ : TELH ×TELH → [0, 1] defined inductively as follows:

hdπ(TD, TC) = µπ(PD, ED) ·p-hdπ(PD,PC)+(1−µπ(PD, ED)) ·e-set-hdπ(ED, EC) (9)

where

µπ(PD, ED) =

1, if

∑
A∈PD î(A) +

∑
∃r.X∈ED î(r) = 0,∑

A∈PD
î(A)∑

A∈PD
î(A)+

∑
∃r.X∈ED

î(r)
, otherwise;

(10)

p-hdπ(PD,PC) =

1, if
∑

A∈PD î(A) = 0,

0, if
∑

A∈PD î(A) 6= 0,

and
∑

B∈PC î(B) = 0,∑
A∈PD

î(A)·maxB∈PC {ŝ(A,B)}∑
A∈PD

î(A)
, otherwise;

(11)

e-set-hdπ(ED, EC) =

1, if
∑
∃r.X∈ED î(r) = 0,

0, if
∑
∃r.X∈ED î(r) 6= 0

and
∑
∃s.Y ∈EC î(s) = 0,

∑
∃r.X∈ED

î(r)·maxεj∈EC {e-hd
π(∃r.X,εj)}∑

∃r.X∈ED
î(r)

, otherwise;

(12)

where εj is an existential restriction; and

e-hdπ(∃r.X,∃s.Y) = γπ(r, s) · (d̂(r) + (1− d̂(r)) · hdπ(TX , TY)) (13)

4 We set the default value to 0.4 to comply with the default value of π0.

596 T. Racharak, B. Suntisrivaraporn, S. Tojo

where

γπ(r, s) =

1, if
∑

r′∈Rr î(r
′) = 0,∑

r′∈Rr î(r
′)·maxs′∈Rs{ŝ(r

′,s′)}∑
r′∈Rr î(r

′)
, otherwise.

(14)

Intuitively, the function hdπ (Equation (9)) is defined as the weighted sum of
the degree under preferences of the vertex set commonalities (p-hdπ) and the degree
under preferences of edge condition matching (e-set-hdπ). Equation (11) calculates
the average of the best matching under preferences of primitive concepts in PD.
Equation (13) calculates the degree under preferences of a potential homomorphism
of a matching edge. If edge labels share some commonalities under preferences
(Equation (14)), i.e. 0 < γπ ≤ 1, then part of the edge matching is satisfied; but the
successors’ labels and structures have yet to be checked. This is defined recursively
as hdπ(TX , TY) in Equation (13). Equation (12) calculates the best possible edge
matching under preferences of each edge in ED and returns the average thereof.

The weight µπ in Equation (9) determines how important the primitive concept
names are to be considered for preference-based similarity. For the special case where
D = >, i.e. PD = ED = ∅, µπ is irrelevant as T> is the smallest ELH description
tree and hdπ(T>, TC) = 1 for all concepts C.

It is to be mentioned that the function hdπ may look similar to simid as both are
recursive definitions for the same DL ELH. However, they are obviously different
caused by the distinction of their inspirations and their viewpoints of the develop-
ment. While hdπ is inspired by the homomorphism-based structural subsumption
characterization, simid is inspired by the Jaccard Index [20]. Technically speaking,
simid employs t-conorm instead of fixing an operator. However, unlike simid, the
use of µπ for determining how primitive concepts are weighted and the use of γπ for
determining the proportion of shared super roles are employed. Furthermore, simid
is originated from the viewpoint of CSM, thus some aspects of preference profile are
missed; though some may exist. We continue the discussion in Section 7.

The function hdπ yields a numerical value that represents structural similarity
w.r.t. a particular profile π of a concept against another concept. As both directions
constitute the degree of two concepts being equivalent, the measure simπ is also
defined by means of these two directional computations.

Definition 14. Let C,D ∈ Con(ELH), TC and TD be the corresponding description
trees, and π = 〈ic, ir, sc, sr, d〉 be a preference profile. Then, the ELH similarity
measure under preference profile π between C and D (denoted by simπ(C,D)) is
defined as follows:

simπ(C,D) =
hdπ(TC , TD) + hdπ(TD, TC)

2
. (15)

Intuitively, the degree of similarity under a certain π is the average of the de-
gree of having homomorphism under the same π in both directions. Note that
ones may also argue to calculate the value by using alternative binary operators

Personalizing a CSM in the DL ELH with π 597

accepting unit intervals, e.g. based on the multiplication (in symbols, mul-simπ) on
both directions of hdπ or the root mean square (in symbols, rms-simπ) on values of
both directions [13]. Unfortunately, those give unsatisfactory values for the extreme

cases. For example, mul-simπ(A,>) = 0 × 1 = 0 and rms-simπ(A,>) =
√

02+12

2
=

0.707, whereas simπ(A,>) = 0+1
2

= 0.5. Since mul-simπ(C,D) ≤ simπ(C,D) ≤
rms-simπ(C,D) for any concepts C and D, we believe that the average-based def-
inition given above is the most appropriate method. Based on this form, simπ is
basically considered as a generalization of sim which determines similarity under
preference profile, i.e., behavioral expectation of the measure will conform to the
agent’s perception.

We present an example about the calculation of simπ in the following.

Example 10. (Continuation of Example 1) Let enrich the example. Assume the
agent A’s preference profile is defined as follows: (i) ic(Place) = 2; (ii) ir(canWalk) =
2; (iii) sc(Trekking,Kayaking) = 0.1; (iv) sr(canMoveWithLegs, canTravelWithSails) =
0.1; (v) d(canWalk) = 0.3 and d(canSail) = 0.3. Let ActivePlace, Mangrove, Beach,
Place, Trekking, Kayaking, canWalk, and canSail be rewritten shortly as AP, M, B, P,
T, K, cW, and cS, respectively. Using Definition 13,

hdπ(TAP, TM) =

(
3

6

)
· p-hdπ(PAP,PM) +

(
3

6

)
· e-set-hdπ(EAP, EM)

=

(
3

6

)
·
(
i(X) ·max{s(X, Y), s(X,P)}+ i(P) ·max{s(P, Y), s(P,P)}

i(X) + i(P)

)
+

(
3

6

)
· e-set-hdπ(EAP, EM)

=

(
3

6

)(
1 ·max{0, 0}+ 2 ·max{0, 1}

1 + 2

)
+

(
3

6

)
· e-set-hdπ(EAP, EM)

=

(
3

6

)(
2

3

)
+

(
3

6

)[
i(cW) ·max{e-hdπ(∃cW.T, ∃cW.T)}+ 1 ·max{0.019}

i(cW) + i(cS)

]
=

(
3

6

)(
2

3

)
+

(
3

6

)[
2 ·max{(1)(0.3 + 0.7(1))}+ 1 ·max{0.019}

i(cW) + i(cS)

]
=

(
3

6

)(
2

3

)
+

(
3

6

)[
(2)(1) + (1)(0.019)

2 + 1

]
≈ 0.67

Similarly, we obtain hdπ(TM, TAP) = 0.80. Hence, simπ(M,AP) ≈ 0.74 by Defini-
tion 14. Furthermore, using Definition 13, hdπ(TAP, TB) ≈ 0.51 and hdπ(TB, TAP) =
0.75. Hence, simπ(B,AP) ≈ 0.63 by Definition 14.

598 T. Racharak, B. Suntisrivaraporn, S. Tojo

The fact that simπ(M,AP) > simπ(B,AP) corresponds with the agent A’s needs
and preferences.

4.2 Properties of simπ

Previously, we theorize a set of desirable properties that a concept similarity measure
under preference profile should satisfy and formally introduce the measure simπ. In
this subsection, we provide mathematical proofs for the properties of simπ. This gives
many benefits to the users of simπ since they can predict its expected behaviors.

Lemma 1. For TD, TC ∈ TELH, hdπ0(TD, TC) = hd(TD, TC).

Proof. (Sketch) Recall by Definition 10 that the default preference profile π0 is
the quintuple 〈ic0, ir0, sc0, sr0, d0〉. Also, suppose a concept name D is of the form:
P1 u · · · u Pm u ∃r1.D1 u · · · u ∃rn.Dn, where Pi ∈ CNpri, rj ∈ CN, Dj ∈ Con(ELH),
1 ≤ i ≤ m, 1 ≤ j ≤ n, P1 u · · · u Pm is denoted by PD, and ∃r1.D1 u · · · u ∃rn.Dn

is denoted by ED. Let d be the depth of TD. We prove that, for any d ∈ N,
hdπ0(TD, TC) = hd(TD, TC) by induction on d.

When d = 0, we know that D = P1 u · · · u Pm. To show that hdπ0(TD, TC) =
hd(TD, TC), we need to show that µπ0 = µ and p-hdπ0(PD,PC) = p-hd(PD,PC). Let
us derive as follows:

µπ0 =

∑
A∈PD î(A)∑

A∈PD î(A) +
∑
∃r.X∈ED î(r)

=

∑m
i=1 1∑m

i=1 1 + 0
=

m

m+ 0
= µ.

Furthermore, we only need to show
∑

A∈PD max{ŝ(A,B) : B ∈ PC} = |PD ∩ PC |
in order to show p-hdπ0(PD,PC) = p-hd(PD,PC). We know that sc0 maps name
identity to 1 and otherwise to 0. Thus,

∑
A∈PD max{ŝ(A,B) : B ∈ PC} = |{x : x ∈

PD and x ∈ PC}| = |PD ∩ PC |.
We must now prove that if hdπ0(TD, TC) = hd(TD, TC) holds for d = h − 1

where h > 1 and D = P1 u · · · u Pm u ∃r1.D1 u · · · u ∃rn.Dn then hdπ0(TD, TC) =
hd(TD, TC) also holds for d = h. To do that, we have to show e-set-hdπ0(ED, EC) =
e-set-hd(ED, EC). This can be done by showing in the similar manner that γπ0 = γ
and hdπ0(TX , TY) = hd(TX , TY) from e-hdπ0(∃r.X,∃s.Y) = e-hd(∃r.X,∃s.Y), where
∃r.X ∈ ED and ∃s.Y ∈ EC . Consequently, it follows by induction that, for TD, TC ∈
TELH, hdπ0(TD, TC) = hd(TD, TC). �

Theorem 3. Let C,D ∈ Con(ELH), simπ0(C,D) = sim(C,D).

Proof. It immediately follows from Lemma 1, Definition 4, and Definition 14. �

Theorem 3 tells us that simπ is backward compatible in the sense that using
simπ with π = π0, i.e. simπ0 , coincides with sim. Technically speaking, simπ0 can be
used to handle the case of similar concepts regardless of the agent’s preferences.

Theorem 4. simπ is symmetric.

Personalizing a CSM in the DL ELH with π 599

Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and
C,D ∈ Con(ELH), we have simπ(C,D) = simπ(D,C) by Definition 14. �

Theorem 5. simπ is equivalence invariant.

Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and
C,D,E ∈ Con(ELH), we show C ≡ D =⇒ simπ(C,E) = simπ(D,E).

Suppose C ≡ D, i.e. C v D and D v C, then we know there exists a homomor-
phism h1 : TD → TC which maps the root of TD to the root of TC and h2 : TC → TD
which maps the root of TC to the root of TD, respectively, by Theorem 1. This
means TC = TD. Thus, simπ(C,E) = simπ(D,E). �

Theorem 6. simπ is structurally dependent.

Proof. (Sketch) Let Π be a countably infinite set of preference profile. Fix any
π ∈ Π and any finite sets of concepts C1 and C2 with the following conditions:

1. C1 ⊆ C2;

2. concepts A,B 6∈ C2;

3. ic(Φ) > 0 if primitive Φ ∈ C2;

4. ir(ϕ) > 0 if existential ∃ϕ.Ψ ∈ C2.

Suppose C :=
d

(C1 ∪{A}), D :=
d

(C1 ∪{B}), E :=
d

(C2 ∪{A}) and F :=
d

(C2 ∪
{B}) where C1 = {P1, . . . , Pm, ∃r1.P ′1, . . . ,∃rn.P ′n} and C2 = {P1, . . . , Pi,∃r1.P ′1, . . . ,
∃rj.P ′j}, w.l.o.g. we show simπ(C,D) ≤ simπ(E,F) by following two cases.

Suppose m ≤ i, n = j, and A, B be primitives, we have p-hdπ(PC ,PD) =∑
P∈PC

ic(P)∑
P∈PC

ic(P)+ic(A)
, p-hdπ(PD,PC) =

∑
P∈PD

ic(P)∑
P∈PD

ic(P)+ic(B)
, p-hdπ(PE,PF) =

∑
P∈PE

ic(P)∑
P∈PE

ic(P)+ic(A)
,

and p-hdπ(PF ,PE) =
∑
P∈PF

ic(P)∑
P∈PF

ic(P)+ic(B)
.

Since m ≤ i, we know p-hdπ(PC , PD) ≤ p-hdπ(PE,PF) and p-hdπ(PD,PC) ≤
p-hdπ(PF ,PE). This infers simπ(C,D) ≤ simπ(E,F).

Suppose m = i, n ≤ j, and A,B be existentials, then with the similar man-
ner, we can show e-set-hdπ(EC , ED) ≤ e-set-hdπ(EE, EF) and e-set-hdπ(ED, EC) ≤
e-set-hdπ(EF , EE). This also infers simπ(C,D) ≤ simπ(E,F).

Therefore, we have shown simπ(C,D) ≤ simπ(E,F). �

Lemma 2. Let TD, TC ∈ TELH and Π be a countably infinite set of preference
profile. Then, hd(TD, TC) = 1⇐⇒ ∀π ∈ Π : hdπ(TD, TC) = 1.

Proof. Let Π be a countably infinite set of preference profile and π0 be the default
preference profile. Fix any π ∈ Π, we show hd(TD, TC) = 1⇐⇒ hdπ(TD, TC) = 1.

(⇒) hd(TD, TC) = 1 implies that there exists a homomorphism h : TD → TC which
maps the root of TD to the root of TC . Consequently, any setting on π does not
influence the calculation on hdπ(TD, TC).

600 T. Racharak, B. Suntisrivaraporn, S. Tojo

(⇐) In particular, it suffices to show hdπ0(TD, TC) = 1 =⇒ hd(TD, TC) = 1. By
Lemma 1, it is the case that hd(TD, TC) = 1.

�

Theorem 7. simπ is preference invariant w.r.t. equivalence.

Proof. (Sketch) Let C,D ∈ Con(ELH) and Π be a countably infinite set of prefer-
ence profile. Fix any π ∈ Π, we show C ≡ D ⇐⇒ simπ(C,D) = 1.

(⇒) Assume C ≡ D, we need to show simπ(C,D) = 1. By Theorem 2, we know
C ≡ D ⇐⇒ sim(C,D) = 1. With the usage of Lemma 2, Definition 4, and
Definition 14, we can derive simπ(C,D) = 1.

(⇐) This can be shown similarly as in the forward direction.

�

Theorem 4 to 7 spells out that simπ satisfies all fundamental properties of concept
similarity measure under preference profile.

Another important property of simπ is that there exists an algorithmic procedure
whose execution time is upper bounded by a polynomial expression in the size of
the description trees (Theorem 8).

Theorem 8. Assume that a value from any preference functions is retrieved in
O(1). Given C,D ∈ Con(ELH), simπ(C,D) ∈ O(|VC | · |VD|) where VC and VD are
set of vertices of the description trees TC and TD, respectively.

Proof. (Sketch) Let C,D ∈ Con(ELH), π be any preference profile, and TC , TD be
corresponding description trees. By Definition 14, we show hdπ(TC , TD) ∈ O(|VC | ·
|VD|) and hdπ(TD, TC) ∈ O(|VD| · |VC |). W.l.o.g. it suffices to show merely hdπ

(TC , TD) ∈ O(|VC | · |VD|), i.e., we show the computation of each composing part is
upper bounded by |VC | · |VD|. �

Definition 12 suggests that different preference profile settings represent different
types of a rational agent. An easy characterization is observed from the aspect of
role discount factor (d). Intuitively, when the settings ic, ir, sc, and sr defined by
two rational agents A, B are the same, the agent which defines the lower d on
every r ∈ RN is always more skeptical. For instance, if dA(canWalk) = 0.3 and
dB(canWalk) = 0.4, then simπA(∃canWalk.Trekking,∃canWalk.Parading) = 0.3 and
simπB(∃canWalk.Trekking,∃canWalk.Parading) = 0.4. This is clear that the agent A
is more skeptical than the agent B.

Proposition 1. Let Π be a countably infinite set of preference profile and π1, π2 ∈ Π
such that π1 = 〈ic1, ir1, sc1, sr1, d1〉, π2 = 〈ic2, ir2, sc2, sr2, d2〉, and RN be a set of role names.
The following holds:

∀r ∈ RN : (d1(r) ≤ d2(r)) =⇒≡ � simπ1 � simπ2

for fixed functions ic1 = ic2, i
r
1 = ir2, s

c
1 = sc2, and sr1 = sr2.

Personalizing a CSM in the DL ELH with π 601

5 IMPLEMENTATION METHODS OF SIMπ

Theorem 8 tells us that simπ can be computed in the polynomial time. This section
exhibits two algorithmic procedures of simπ belonging to that class.

5.1 Top-Down Implementation of simπ

Algorithm 1 Pseudo code for hdπ using top-down fashion

1: function hdπ(TD, TC , π)
2: return (µπ(TD, π) × p-hdπ(PD,PC , π)) + ((1 − µπ(TD, π)) ×

e-set-hdπ(ED, EC , π))
3: end function
4:

5: function e-set-hdπ(ED, EC , π)
6: if

∑
ir(ED, π) = 0 then

7: return 1
8: else if

∑
ir(EC , π) = 0 then

9: return 0
10: else
11: w ← 0
12: for ∃r.X ∈ ED do
13: m← 0
14: for ∃s.Y ∈ EC do
15: e← e-hdπ(∃r.X,∃s.Y, π)
16: if e > m then
17: m← e
18: end if
19: end for
20: w ← w + (m× î(r))
21: end for
22: return w/

∑
ir(PD, π)

23: end if
24: end function
25:

26: function e-hdπ(∃r.X,∃s.Y, π)
27: return γπ(r, s, π)× (d̂(r) + ((1− d̂(r))× hdπ(TX , TY , π)))
28: end function

Algorithm 1 presents the top-down approach for simπ implementation. Due to
the limited space, we omit to show Algorithm 1 in details. The reader may easily
observe that the time efficiency of Algorithm 1 is quintic because the computation
of p-hdπ is quadratic and e-set-hdπ contains double nested loops which indirectly

602 T. Racharak, B. Suntisrivaraporn, S. Tojo

make recursive calls to hdπ. It is also not difficult to observe that the number of
recursive calls is upper bounded by the height of the description trees.

It is worth to mention that using hdπ requires concept descriptions to be trans-
formed into ELH description trees. Taking this as an advantage, the next subsection
introduces an alternative way to compute hdπ from bottom to up, which is approxi-
mately three times faster than the counterpart top-down approach in the worst case
(cf. Subsection 6.1 for useful discussion).

5.2 Bottom-Up Implementation of simπ

Rather than computing (possibly duplicated) value of hdπ again and again, Algo-
rithm 2 employs the classical bottom-up version of dynamic programming technique
to compute hdπ of the smaller subtrees and records the results in a table (see the
variable result[·][·] in Algorithm 2) from which a solution to the original compu-
tation of hdπ can be then obtained (cf. at line No. 20, the function returns value
result[0][0]).

To compute hdπ from bottom to up, we need to know the height of the trees
in advance. For Algorithm 2, we employ breath-first search algorithm (denoted by
BFS) to determine the height of each description tree (cf. line No. 4 and 5 of the
algorithm). Algorithm 2 reuses the methods µπ, p-hdπ, e-set-hdπ, γπ,

∑
ic, and

∑
ir

from Algorithm 1 and provides pseudo code for e-hdπ since it is merely overridden.
What is the time complexity of Algorithm 2? It should be quintic because the

algorithm considers the similarity of all the different pairs of two concept names
for h times (cf. line No. 6). More formally, we know result[Tγ][Tλ] ∈ O(v2) where
v denotes the set cardinality of Px (and Ex) for any description tree x. Let m(i) and
n(i) be the number of nodes on level i of description trees D and C, respectively.
Then, the number of times operation result[·][·] is executed (say C) is equal to:

C =
h−1∑
i=0

m(i)∑
j=0

n(i)∑
k=0

v2

= v2
h−1∑
i=0

m(i)∑
j=0

n(i)∑
k=0

1

= v2
h−1∑
i=0

m(i)∑
j=0

(n(i) + 1)

= v2
h−1∑
i=0

(n(i) + 1)(m(i) + 1)

= v2
[
[(n(0) + 1)(m(0) + 1)] + [(n(1) + 1)(m(1) + 1)]

+ . . .+ [(n(h− 1) + 1)(m(h− 1) + 1)]
]
.

Personalizing a CSM in the DL ELH with π 603

Algorithm 2 Pseudo code for hdπ using bottom-up fashion

1: Initialize a global result[·][·] to store the degree of similarity between 2 concepts.
2:

3: function hdπ(TD, TC , π)
4: Map < Z,List < T >> mapD ← BFS(TD) . mapD stores nodes on each

level of TD
5: Map < Z,List < T >> mapC ← BFS(TC) . mapC stores nodes on each

level of TC
6: h← mapD.size()
7: for i = h− 1 to 0 do
8: List < T > listTΓ ← mapD.get(i)
9: List < T > listTΛ ← mapC .get(i)

10: for Tγ ∈ listTΓ do
11: for listTΛ 6= null and Tλ ∈ listTΛ do
12: if i = h− 1 then
13: result[Tγ][Tλ]← p-hdπ(Pγ,Pλ, π)
14: else
15: result[Tγ][Tλ]← (µπ(Tγ, π)× p-hdπ(Pγ,Pλ, π))

+ ((1− µπ(Tγ, π))× e-set-hdπ(Eγ, Eλ, π))
16: end if
17: end for
18: end for
19: end for
20: return result[0][0]
21: end function
22:

23: function e-hdπ(∃r.X,∃s.Y, π)
24: hd′ ← result[TX][TY]
25: if hd′ = null then
26: hd′ ← 0
27: end if
28: return γπ(r, s, π)× (d̂(r) + ((1− d̂(r))× hd′))
29: end function

Thus, the algorithm makes the similar number of operations as Algorithm 1, plus
an additional amount of extra space. On the positive side, the algorithm has never
recursively invoked itself to determine the similarity of different pairs of nested
concepts, i.e., it directly uses values stored in the table. The algorithm also shows
that computing the similarity of nodes from level i, where i is greater than the
minimum height of description trees (cf. the condition listTΛ ! = null at line No. 11),
is irrelevant to the computation.

Algorithm 2 does work productively in an environment where recursion is fairly
expensive. For example, imperative languages, such as Java, C, and Python, are

604 T. Racharak, B. Suntisrivaraporn, S. Tojo

typically faster if using a loop and slower if doing a recursion. On the other hand,
for some implementations of functional programming languages, iterations may be
very expensive and recursion may be very cheap. In many implementations of them,
recursion is transformed into a simple jump but changing the loop variables (which
are mutable) requires heavy operations. Subsection 6.1 reports that the practical
performance agrees to this theoretical analysis that the bottom-up approach is more
efficient when implemented by imperative languages, such as Java.

6 EMPIRICAL EVALUATION

This section evaluates the practical performance of both algorithms against sim5,
reassures pragmatically the backward compatibility of simπ under π0 (Theorem 3
already proves this), and discusses the applicability of simπ in potential use cases.

6.1 Performance Analysis and Backward Compatibility of simπ

Both versions of simπ (cf. Subsection 5.1 and Subsection 5.2) are implemented in
Java version 1.8 with the usage of Spring Boot version 1.3.3.RELEASE. All the
dependencies are managed by Apache Maven version 3.2.5. We also implement unit
test cases along with the development of both versions to verify the correctness
of their behaviors. In the current state (when we are writing this paper), there
are 111 unit test cases. All of them are written to cover important parts of both
implementations.

To perform benchmarking, we have selected Snomed ct as a test ontology.
As mentioned in the introduction, it is one of the largest and the most widely
used medical ontologies currently available, and also, is expressible in ELH. In
our experiments, we employ a Snomed ct ontology version from January 2005
(hitherto referred as OSnomed) which contains 379 691 concept names and 62 role
names. Moreover, each defined concept is categorized into the 18 mutually exclusive
top-level concepts. In the sense of subsumption relation, concepts belonging to the
same category should be more similar than those belonging to different categories.

For our experiments, we used a 2.4 GHz Intel Core i5 with 8 GB RAM under
OS X El Capitan. Unfortunately, the overall number of concept pairs in OSnomed is
approximately 1011. Suppose an execution of simπ takes around a millisecond, we
still need around 1 158 days in order to complete the entire ontology. According to
this reason, we consider 2 out of 18 categories, viz. Clinical Finding and Procedure,
although there are more category pairs. Then, we randomly select 0.5 % of Clinical
Finding, i.e. 206 concepts, denoted by C′1. After that, we randomly select the same
number of concepts from Procedure, i.e. 206 concepts, denoted by C′2. This sampled
set is denoted by O′Snomed, i.e. O′Snomed = C′1 ∪ C′2. Then, we create three test
datasets from this sampled set, viz. C′1 ×C′1, C′1 ×C′2, and C′2 ×C′2.

5 We have re-implemented sim (proposed in [10]) based on the same technologies and
techniques as simπ.

Personalizing a CSM in the DL ELH with π 605

Firstly, we estimate the practical performance of the top-down fashion. For each
concept pair in each set, we

1. employ the default preference profile π0 on (top-down) simπ;

2. measure the similarity of concepts in O′Snomed by peeking on OSnomed to help
unfolding;

3. repeat the previous step with (top-down) sim;

4. repeat steps 2.–3. three times and calculate the statistical results (in millisec-
onds).

Results are gathered in Table 1. We note that avg, max, and min represent the
execution time for measuring similarity of a concept pair in the average case, in the
worst case, and in the best case, respectively.

Pairs Number of Pairs
sim

(avg/max/min)
simπ0

(avg/max/min)

C′1 ×C′1 25 2.280/7.000/0.000 1.800/10.000/0.000
C′1 ×C′2 215 2.291/97.000/0.000 2.278/84.000/0.000
C′2 ×C′2 1 849 3.395/45.000/0.000 3.931/128.000/0.000

Table 1. Execution time of top-down sim and top-down simπ0 on O′Snomed

Secondly, we estimate the practical performance of the bottom-up fashion by
following the same steps as we did previously. Indeed, we exclude the time used to
determine the height of each description tree, i.e., our benchmark begins from line
No. 7 to 21 of Algorithm 2. Table 2 gathers up the results.

Pairs Number of Pairs
sim

(avg/max/min)
simπ0

(avg/max/min)

C′1 ×C′1 25 2.200/6.000/0.000 1.693/5.000/0.000
C′1 ×C′2 215 2.040/32.000/0.000 1.946/10.000/0.000
C′2 ×C′2 1 849 3.368/55.000/0.000 3.435/45.000/0.000

Table 2. Execution time of bottom-up sim and bottom-up simπ0 on O′Snomed

The experiment shows that the practical performance of simπ is likely equal to
the performance obtained by sim – as ones may not expect. The results show that
the bottom-up simπ performs approximately three times faster than the counterpart
top-down simπ (in the worst case) when implemented by imperative languages (e.g.
Java as in our case). This conforms to our analysis discussed in Subsection 5.2.

Lastly, we evaluate the backward compatibility of simπ with sim. Our goal is to
ascertain that simπ can be used interchangeably as the original sim by setting pref-
erence profile to the default one (Theorem 3 already proves this). To this point, we
have performed an experiment on concept pairs defined in O′Snomed. The experiment
evaluates results from sim and simπ0 and found that both coincide, as desired.

606 T. Racharak, B. Suntisrivaraporn, S. Tojo

6.2 Applicability of simπ

6.2.1 Tuning via ic and d

We show the applicability of ic and d through similarity measuring on Snomed ct.
Figure 2 depicts an example unfoldable terminology extracted from OSnomed.

NeonatalAspirationOfAmnioticFluid ≡ NeonatalAspirationSyndromes

u ∃roleGroup.(∃causativeAgent.AmnioticFluid)

NeonatalAspirationOfMucus ≡ NeonatalAspirationSyndromes

u ∃roleGroup.(∃causativeAgent.Mucus)

Hypoxemia ≡ DisorderOfRespiratorySystem u DisorderOfBloodGas

u ∃roleGroup.(∃interprets.OxygenDelivery)

u ∃roleGroup.(∃findingSite.ArterialSystemStructure)

BodySecretion v BodySubstance

BodySubstance v Substance

BodyFluid v BodySubstance u LiquidSubstance

AmnioticFluid v BodyFluid

Mucus v BodySecretion

causativeAgent v associatedWith

Figure 2. Example of ELH concept definitions defined in OSnomed

Considering merely objective factors regardless of the agent’s preferences, it
yields that simπ0(NAOAF,NAOM) ≈ 0.96 and simπ0(NAOAF,H) = 0.2. The results
yield the quite similar concepts NAOAF and NAOM, which reflect the fact that both
are resided in the same cluster of Snomed ct. However, the result yielding that
the concepts NAOAF and H share a little similarity controverts the fact that both
carry neither implicit nor explicit relationship. This is indeed caused by the usage
of the special-purpose role called roleGroup – informally read as relation group.

In Snomed ct, the use of relation group is widely accepted to nestedly represent
a group of existential information [21]. As a consequence, it increases unintentionally
the degree of similarity due to role commonality (i.e. γπ). Since roleGroup precedes
every existential restriction, it is useless to regard an occurrence of this as being
similar. The importance contribution of roleGroup inOSnomed should be none. Hence,
the agent S who measures similarity on Snomed ct should set dS(roleGroup) = 0.

Furthermore, the Snomed ct top concept SCT-TOP subsumes every defined
concept of each category. This means this special concept is shared by every ex-
panded concept description. Intuitively, this special top concept is of no importance

6 Obvious abbreviations are used here for the sake of succinctness.

Personalizing a CSM in the DL ELH with π 607

for measuring similarity on Snomed ct and we can treat the top-level concepts as
directly subsumed by >. As a result, the agent S should also set icS(SCT-TOP) = 0.

Tuning the measure with this expertise knowledge yields more realistic result.
That is, the similarity of concepts under the same category which uses roleGroup in
their definitions is slightly reduced. Also, the similarity of concepts under different
categories is totally dissimilar. Continuing the case, simπS(NAOAF,NAOM) ≈ 0.84
and simπS(NAOAF,H) = 0.0, as desired.

6.2.2 Tuning via sr

Let us use the ontology given below to query for places similar to ActivePlace.

ActivePlace v Place u ∃canSail.Kayaking

Mangrove v Place u ∃canWalk.Trekking

Supermarket v Place u ∃canBuy.FreshFood

Suppose the agent feels walking and sailing are similar and are still satisfied much on
both actions. Taking sr(canWalk, canSail) = 0.6 yields simπ(M,AP) > simπ(S,AP),
which conforms to the agent’s preferences and needs.

6.2.3 Tuning via sc

Let us use the ontology given below to query for a product which offers features the
agent is satisfied with most.

WantedFeatures v F0 u F1 u F2

Item1 v F0 u F3

Item2 v F0 u F4

According to the ontology, WantedFeatures represents a collection of desired features
and Fi (where i ∈ N) represents a feature. A purchase decision is sometimes affected
by satisfied alternations, which are varied by different people. Assume that the agent
feels satisfaction to have F3 if the agent cannot have F1. Taking sc(F1,F3) = 0.8 yields
simπ(WF, I1) > simπ(WF, I2), which conforms to the agent’s perceptions.

6.2.4 Tuning via ir

Let us use the ontology given in Example 1 to query for places which are most similar
to ActivePlace. Typically, a human decision is affected by a priority of concerns,
which are varied by different people. Suppose that the agent weights more on places
which permit to walk more than other activities. Taking ir(canWalk) = 2 yields
simπ(M,AP) > simπ(B,AP), which conforms to the agent’s preferences.

608 T. Racharak, B. Suntisrivaraporn, S. Tojo

7 RELATED WORK

As we develop the notion
π∼T as a generalization of ∼T , this section relates our devel-

opment to others in two areas, viz. CSMs without regard to the agent’s preferences
and CSMs with regard to the agent’s preferences.

7.1 CSMs Without Regard to The Agent’s Preferences

In the standard perception, CSM refers to the study of similar concepts inherited
by nature, i.e. the ones similar regardless of the agent’s preferences. CSM is widely
studied and the techniques are roughly classified into two main groups, viz. path-
distance-based approach and DLs-based approach.

In the path-distance-based approach, a degree of similarity is calculated based on
the depth of a subsumption hierarchy. The method [22, 23] considers the distance
between concepts w.r.t. their least common subsumer. A potential drawback of
this approach is its ignorance on concept definitions defined in TBox. Hence, any
pair of concepts out of the subsumption relation is always considered as totally
dissimilar.

In DLs-based approach, a simple approach is developed in [20] for the DL L0

(i.e. no use of roles) and is known as Jaccard Index. Its extension to the DL ELH
is proposed in [16]. This work also introduces important properties of CSM and
suggests a general framework called simi which satisfied most of the properties.
In simi, functions and operators, such as t-conorm and the fuzzy connector, are
to be parameterized and thus left to be specified. The framework also does not
contain implementation details. This may cause implementation difficulties since
merely promising properties are given and no guideline of how concrete operators
are chosen is provided. Similar approaches can be found in [4, 5, 6, 7] for other DLs.

There is another approach which considers their canonical interpretation of con-
cepts in question, such as [8, 9]. A potential drawback of these approaches is that
it cannot be applied to an ontology without ABox, e.g. Snomed ct.

The notion of homomorphism degree is originally introduced in [13] and is thereof
extended toward the development of simπ in this work. Theorem 3 suggests that
simπ can be used to measure similarity of concepts inherently by nature through
the setting π0, i.e. simπ0 . As inspired by the tree homomorphism, the measure
differs [16] from the use of µπ to determine how important the primitive concepts
are to be considered and the use of γπ to determine a degree of role commonality
between matching edges of the description trees.

7.2 CSMs with Regard to The Agent’s Preferences

Most CSMs are objective-based. However, there exists work [10, 16] which provides
methodologies for tuning. We discuss their differences to ours in the following.

In an extended work of sim [10], a range of number for discount factor (ν) and the
neglect of special concept names are used in the similarity application of Snomed

Personalizing a CSM in the DL ELH with π 609

ct. For instance, when roleGroup is found, the value of ν is set to 0. These ad
hoc approaches can be viewed as specific applications of d and ic, respectively, of
preference profile. Unfortunately, no other aspects of π appear in its use.

In simi [16], the function pm is used to define the similarity degree of primitive
concept pairs and role pairs. Using pm with primitive concept pairs invokes the
equivalent intuition as sc; however, this does not mean so in the aspect sr. Allowing
to define the similarity of defined role names, as in [16], may be not appropriate
since defined role names are contributed by primitive role names. For example, let
r1 v s1 and r2 v s2 are defined in T . It is clear that r1, r2 ∈ RNdef . By defining
pm(r1, r2), the defined similarity should be also propagated to the similarity of s1
and s2. However, this point is not discussed in [16]. In respect of this, RNpri is merely
used in sr and γπ is defined for the similarity of defined role names. The authors
of [16] also define the function g : NA → R>0 representing the weight for concept
names and existential restriction atoms (based on their definition). Ones may feel
the resemblance of g and ic, ir; however, they are also different in three perspectives.
Firstly, the mapping of g is reached to the infinity whereas ic and ir are bounded.
This characteristic of g is impractical to use as it may lead to the unbalance of
weight assignments. For instance, one may define g(A1) = 1 but g(A2) = 1012

where A1, A2 ∈ CNpri. To avoid this situation, the authors should provide a guideline
for weight assignments. Secondly, the mapping of g is lower bounded by one. This
clearly makes an impossibility to define the intuition of having no importance. Thus,
the situation given in Subsubsection 6.2.4 is not expressible. Lastly, the domain of
g is the set of atoms whereas ic (and ir) is the set of primitive concept names (and
the set of role names, respectively). Using the set of atoms as the domain is also
impractical since there can be infinitely many existential restriction atoms and the
interpretation of functions is slightly dubious. For instance, given g(∃r.C) = 2 and
g(∃r.D) = 3, do both r intentionally contribute the equal importance? Thus, this
definition is inappropriate to represent the agent’s perception. Moreover, the aspect
d disappears from [16]. Lacking of fully ic and d makes the framework inappropriate
to use for Snomed ct applications. These distinctions of simi and simπ are radically
caused by their different motivations. Table 3 summarizes this discussion, where
4 denotes totally identical to the specified function whereas 3 denotes partially
identical to the specified function.

CSM ic ir sc sr d

simπ 4 4 4 4 4

the extended work of sim [10] 4 4

simi [16] 3 4 3

Table 3. Concept similarity measures which embed preference elements

Not only distinct on the mathematical representation of simi and simπ, the
desired properties presented in each work are also different. While the proper-
ties introduced in [16] are motivated for CSM, our properties are developed under

610 T. Racharak, B. Suntisrivaraporn, S. Tojo

the consideration of the agent’s preferences (
π∼T). Hence, some properties intro-

duced for CSM are revised in subjective manners and the new property is intro-
duced.

8 CONCLUSIONS AND FUTURE WORK

This paper introduces the notion called concept similarity measure under preference
profile (in symbol,

π∼T) with the set of its desirable properties, as intended behaviors
of good preference-based measures. The measure simπ (cf. Section 4), which is re-
garded as a measure of the proposed notion, is capable of informing the degree under
preferences of similarity of two concepts although they are not in the subsumption
relation. At the heart of the measure is the calculation of the degrees under prefer-
ences of homomorphism between two description trees in both directions. Proofs of
inherited properties are shown in Theorems 4, 5, 6, and 7. The measure can also be
used regardless of the agent’s preferences. Theorem 3 suggests that this is handled
by the default preference profile setting, i.e. simπ0 .

Apart from the mathematical definition, we suggest two concrete algorithms,
viz. the top-down approach (cf. Subsection 5.1) and the bottom-up approach (cf.
Subsection 5.2), for implementations of simπ. The computational complexity of
both algorithms is clearly discussed and is practically evaluated against OSnomed

(cf. Subsection 6.1). The usability of possible use cases are discussed in Subsec-
tion 6.2.

The proposed measure has great potential use in knowledge engineering, such
as the development of recommendation systems based on the agent’s preferences,
the development of domain-specific knowledge bases, and the ontology engineer-
ing. Moreover, it may be used with heterogeneous ontologies by identifying dupli-
cated primitive concepts and primitive roles among ontologies via sc and sr, respec-
tively.

There are several possible directions for the future research. Firstly, it appears
to be a natural step to extend the notion of preference profile to support more
expressive DLs, e.g. universal restriction, concept negation, and also, to support
an ABox. Secondly, we also aim at devising a concept similarity measure under
preference profile which can handle more expressive DLs. Thirdly, we intend to
explore the possibility to extend the notion of preference profile beyond

π∼T , e.g.
non-standard instance checking under preference profile. Apart from theoretical
perspectives, we also intend to explore possibility on optimizing the proposed algo-
rithmic procedures.

Acknowledgment

This research is part of the JAIST-NECTEC-SIIT dual doctoral degree program;
it is supported by the Japan Society for the Promotion of Science (JSPS kaken
No. 17H02258) and is partly supported by CILS of Thammasat University and the
NRU project of Thailand Office of Higher Education Commission.

Personalizing a CSM in the DL ELH with π 611

REFERENCES

[1] Baader, F.—Calvanese, D.—McGuinness, D. L.—Nardi, D.—Patel-
Schneider, P. F.: The Description Logic Handbook: Theory, Implementation and
Applications. 2nd edition. Cambridge University Press, New York, NY, USA, 2010.

[2] Ashburner, M.—Ball, C.A.—Blake, J. A.—Botstein, D.—Butler, H.—
Cherry, J.M.—Davis, A. P.—Dolinski, K.—Dwight, S. S.—Eppig, J. T.—
Harris, M.A.—Hill, D. P.—Issel-Tarver, L.—Kasarskis, A.—Lewis, S.—
Matese, J. C.—Richardson, J. E.—Ringwald, M.—Rubin, G.M.—Sher-
lock, G.: Gene Ontology: Tool for the Unification of Biology. Nature Genetics,
Vol. 25, 2000, No. 1, pp. 25–29, doi: 10.1038/75556.

[3] Euzenat, J.—Valtchev, P.: Similarity-Based Ontology Alignment in OWL-Lite.
In: de Mántaras, R. L., Saitta, L. (Eds.): Proceedings of the 16th European Confer-
ence on Artificial Intelligence (ECAI-04), IOS Press, 2004, pp. 333–337.

[4] Janowicz, K.—Wilkes, M.: SIM-DLA: A Novel Semantic Similarity Measure for
Description Logics Reducing Inter-Concept to Inter-Instance Similarity. In: Aroyo, L.
et al. (Eds.): The Semantic Web: Research and Applications (ESWC 2009). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5554, 2009, pp. 353–367.

[5] Racharak, T.—Suntisrivaraporn, B.: Similarity Measures for FL0 Concept
Descriptions from an Automata-Theoretic Point of View. Proceeding of the 2015 6th

International Conference on Information and Communication Technology for Embed-
ded Systems (IC-ICTES), 2015, pp. 1–6.

[6] D’Amato, C.—Fanizzi, N.—Esposito, F.: A Dissimilarity Measure for ALC Con-
cept Descriptions. Proceedings of the 2006 ACM Symposium on Applied Computing
(SAC ’06), 2006, pp. 1695–1699, doi: 10.1145/1141277.1141677.

[7] Fanizzi, N.—D’Amato, C.: A Similarity Measure for the ALN Description
Logic. Proceedings of Italian Conference on Computational Logic (CILC 2006), 2006,
pp. 26–27.

[8] D’Amato, C.—Fanizzi, N.—Esposito, F.: A Semantic Similarity Measure for
Expressive Description Logics. CoRR, abs/0911.5043, 2009.

[9] D’Amato, C.—Staab, S.—Fanizzi, N.: On the Influence of Description Logics
Ontologies on Conceptual Similarity. In: Gangemi, A., Euzenat, J. (Eds.): Know-
ledge Engineering: Practice and Patterns (EKAW 2008). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 5268, 2008, pp. 48–63.

[10] Tongphu, S.—Suntisrivaraporn, B.: Algorithms for Measuring Similarity Be-
tween ELH Concept Descriptions: A Case Study on Snomed ct. Computing and
Informatics, Vol. 36, 2017, No. 4, pp. 733–764.

[11] Baader, F.: Terminological Cycles in a Description Logic with Existential Restric-
tions. Proceedings of the 18th International Joint Conference on Artificial Intelli-
gence (IJCAI ’03), San Francisco, CA, USA, Morgan Kaufmann Publishers Inc., 2003,
pp. 325–330.

[12] Baader, F.—Brandt, S.—Küsters, R.: Matching under Side Conditions in De-
scription Logics. Proceedings of the 17th International Joint Conference on Artificial

https://doi.org/10.1038/75556
https://doi.org/10.1145/1141277.1141677

612 T. Racharak, B. Suntisrivaraporn, S. Tojo

Intelligence – Vol. 1 (IJCAI ’01), San Francisco, CA, USA, Morgan Kaufmann Pub-
lishers Inc., 2001, pp. 213–218.

[13] Suntisrivaraporn, B.: A Similarity Measure for the Description Logic EL with
Unfoldable Terminologies. 2013 5th International Conference on Intelligent Network-
ing and Collaborative Systems (INCoS), 2013, pp. 408–413.

[14] Racharak, T.—Suntisrivaraporn, B.—Tojo, S.: Identifying an Agent’s Pref-
erences Toward Similarity Measures in Description Logics. In: Qi, G., Kozaki, K.,
Pan, J., Yu, S. (Eds.): Semantic Technology (JIST 2015). Springer International
Publishing, Cham, Lecture Notes in Computer Science, Vol. 9544, 2016, pp. 201–208.

[15] Racharak, T.—Suntisrivaraporn, B.—Tojo, S.: simπ: A Concept Similarity
Measure under an Agent’s Preferences in Description Logic ELH. Proceedings of the
8th International Conference on Agents and Artificial Intelligence (ICAART 2016) –
Vol. 2, 2016, pp. 480–487.

[16] Lehmann, K.—Turhan, A.-Y.: A Framework for Semantic-Based Similarity Mea-
sures for ELH-Concepts. In: del Cerro, L. F., Herzig, A., Mengin, J. (Eds.): Logics
in Artificial Intelligence (JELIA 2012). Springer, Berlin, Heidelberg, Lecture Notes
in Computer Science, Vol. 7519, 2012, pp. 307–319.

[17] Borgida, A.—Walsh, T. J.—Hirsh, H.: Towards Measuring Similarity in De-
scription Logics. Working Notes of the International Description Logics Workshop,
CEUR Workshop Proceedings, Vol. 147, 2005.

[18] Janowicz, K.: Sim-DL: Towards a Semantic Similarity Measurement Theory for the
Description Logic ALCNR in Geographic Information Retrieval. In: Meersman, R.,
Tari, Z., Herrero, P. et al. (Eds.): OTM Workshops 2006. Springer, Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 4278, 2006, pp. 1681–1692, doi:
10.1007/11915072 74.

[19] Tversky, A.: Features of Similarity. Psychological Review, Vol. 84, 1977, No. 4,
pp. 327–352, doi: 10.1037/0033-295X.84.4.327.

[20] Jaccard, P.: Étude Comparative de la Distribution Florale Dans Une Portion des
Alpeset des Jura. Bulletin de la Societe Vaudoise des Sciences Naturellese, Vol. 37,
1901, pp. 547–579 (in French).

[21] Schulz, S.—Suntisrivaraporn, B.—Baader, F.: Snomed ct’s Problem List:
Ontologists’ and Logicians’ Therapy Suggestions. Studies in Health Technology and
Informatics, Vol. 129, 2007, No. 1, pp. 802–806.

[22] Ge, J.—Qiu, Y.: Concept Similarity Matching Based on Semantic Distance. Fourth
International Conference on Semantics, Knowledge and Grid, 2008, pp. 380–383, doi:
10.1109/SKG.2008.24.

[23] Giunchiglia, F.—Yatskevich, M.—Shvaiko, P.: Semantic Matching: Algo-
rithms and Implementation. Journal on Data Semantics IX. Springer-Verlag, Berlin,
Heidelberg, 2007, pp. 1–38, doi: 10.1007/978-3-540-74987-5 1.

https://doi.org/10.1007/11915072_74
https://doi.org/10.1037/0033-295X.84.4.327
https://doi.org/10.1109/SKG.2008.24
https://doi.org/10.1007/978-3-540-74987-5_1

Personalizing a CSM in the DL ELH with π 613

Teeradaj Racharak received his Bachelor of Engineering with
first class honors in software and knowledge engineering from
Kasetsart University, Thailand, in 2010 and the Master of En-
gineering in computer science (with specialization in software
engineering) from Asian Institute of Technology, Thailand, in
2012. Currently, he is Ph.D. student in the School of Informa-
tion Science, Japan Advanced Institute of Science and Technol-
ogy (JAIST), Japan, and in the School of Information, Com-
puter, and Communication Technology (ICT), Sirindhorn Inter-
national Institute of Technology (SIIT), Thammasat University,

Thailand, under the JAIST-NECTEC-SIIT dual doctoral degree program. His research
interest involves artificial intelligence, particularly in knowledge representation and rea-
soning using diverse formalisms (e.g. description logics and argumentation framework)
ranging from theoretical aspects to empirical development.

Boontawee Suntisrivaraporn received his B.Eng. with first
class honors in computer engineering from King Mongkut’s Insti-
tute of Technology Ladkrabang, Thailand, and then graduated
with both degrees of M.Sc. and D.Eng. (summa cum laude) from
TU Dresden, Germany, in the field of artificial intelligence. He
taught full-time at Sirindhorn International Institute of Technol-
ogy and held a visiting Associate Professor position at School of
Information Science, Japan Advanced Institute of Technology.
His research interests mainly include description logic, know-
ledge representation and reasoning, biomedical ontologies, and

graph theory and applications. He served as a PC member of various conferences and also
received best paper awards in relevant conferences, e.g. Medinfo, ASWC, JIST. From 2016,
he moved to the private sectors with his current role as Lead Data Scientist at Business
Intelligence and Data Science of Siam Commercial Bank, Thailand.

Satoshi Tojo received his Bachelor of Engineering, Master of
Engineering, and Doctor of Engineering degrees from the Uni-
versity of Tokyo, Japan. He joined Mitsubishi Research Insti-
tute, Inc. (MRI) in 1983, and the Japan Advanced Institute of
Science and Technology (JAIST), Ishikawa, Japan, as Associate
Professor in 1995 and became Professor in 2000. His research
interest is centered on grammar theory and formal semantics of
natural language, as well as logic in artificial intelligence, in-
cluding knowledge and belief of rational agents. Also, he has
studied the iterated learning model of grammar acquisition, and

linguistic models of western tonal music.

Computing and Informatics, Vol. 37, 2018, 614–634, doi: 10.4149/cai 2018 3 614

PARAMETER SELECTION AND UNCERTAINTY
MEASUREMENT FOR VARIABLE PRECISION
PROBABILISTIC ROUGH SET

Weimin Ma

Tongji University
School of Economics and Management
Shanghai 200092, P.R. China
e-mail: mawm@tongji.edu.cn

Lei Yue

Tongji University
School of Economics and Management
Shanghai 200092, P.R. China
&
Shandong University of Finance and Economics
Institute of Business Administration
Jinan 250014, P.R. China
e-mail: yuechaolei@163.com

Bingzhen Sun∗

Xidian University
School of Economics and Management
Xi’an 710071, P.R. China
e-mail: bzsun@xidian.edu.cn

Haiyan Zhao

Shanghai University of Engineering Science
Shanghai 200092, P.R. China

∗ Corresponding author

Parameter Selection and Uncertainty Measurement for VPPRS 615

Abstract. In this paper, we consider the problem of parameter selection and uncer-
tainty measurement for a variable precision probabilistic rough set. Firstly, within
the framework of the variable precision probabilistic rough set model, the rela-
tive discernibility of a variable precision rough set in probabilistic approximation
space is discussed, and the conditions that make precision parameters α discernible
in a variable precision probabilistic rough set are put forward. Concurrently, we
consider the lack of predictability of precision parameters in a variable precision
probabilistic rough set, and we propose a systematic threshold selection method
based on relative discernibility of sets, using the concept of relative discernibility
in probabilistic approximation space. Furthermore, a numerical example is applied
to test the validity of the proposed method in this paper. Secondly, we discuss the
problem of uncertainty measurement for the variable precision probabilistic rough
set. The concept of classical fuzzy entropy is introduced into probabilistic approxi-
mation space, and the uncertain information that comes from approximation space
and the approximated objects is fully considered. Then, an axiomatic approach is
established for uncertainty measurement in a variable precision probabilistic rough
set, and several related interesting properties are also discussed. Thirdly, we study
the attribute reduction for the variable precision probabilistic rough set. The defini-
tion of reduction and its characteristic theorems are given for the variable precision
probabilistic rough set. The main contribution of this paper is twofold. One is to
propose a method of parameter selection for a variable precision probabilistic rough
set. Another is to present a new approach to measurement uncertainty and the
method of attribute reduction for a variable precision probabilistic rough set.

Keywords: Rough set, probabilistic approximation space, relative discernibility,
variable precision probabilistic rough set, approximation reduction

1 INTRODUCTION

Rough set [1, 2] theory is a mathematical theory that has been used since the 1980s
to handle uncertain, imprecise, and incomplete information. In recent years, rough
set theory has been applied successfully to many fields in computer science and
management science, e.g., intelligent data processing [3], data mining [4], big data
processing [5], pattern identification [6], image processing [3, 7], decision-making
support and process control [3, 8]. Against a varied background of management
science situations, several extensions of the Pawlak rough set model have been de-
veloped, such as a variable precision rough set model [9], rough set model based on
tolerance relations [10, 11], Bayesian rough set model [12], fuzzy rough set model [13],
rough fuzzy set model [14], probabilistic rough set model [15], etc. The basic model
of classical Pawlak rough set is based on equivalence relations (reflexive, symmetric,
and transitive are satisfied), and is represented by a precise inclusion relationship of
sets. In this model, equivalence relationship is the crucial concept, and the universe
of discourse is divided into a positive region, negative region and boundary region.

616 W. Ma, L. Yue, B. Sun, H. Zhao

But the strict equivalence relationship leads to a relatively broad boundary region,
i.e., an uncertainty region. Therefore, finding methods to minimize the boundary
region has become a highly discussed issue in both the theoretical and applied study
of rough set theory.

The core issue of rough set theory is classification analysis based on a binary
relationship for a given domain. The Pawlak rough set model is by nature a qual-
itative classification model. It classifies based on an equivalence relationship and
inclusion relationship between approximation sets, with no consideration of possible
overlap of information between set objects. In view of this, incomplete inclusion
relations and subordination relations among sets have to be considered. Regarding
this constraint of classical Pawlak rough set theory, an effective approach to reduce
the boundary region is to extend a strict inclusion relation between sets, and to
introduce a majority inclusion relation between sets. This leads to an important
extension of Pawlak rough set, i.e., variable precision rough set [9]. Subsequently,
many valuable extensions of Ziarko’s variable precision rough set were established.
Based on Ziarko’s idea, Beynon [16] and Katzberg [17] define the model of variable
precision rough sets with asymmetric bounds by introducing two parameters to the
lower and upper approximations. Sun and Gong [18] present a new generalized
model of Ziarko’s variable precision rough set based on binary relations over the
universe of discourse. In addition, probabilistic rough set theory that combines clas-
sical probability theory and Pawlak rough set theory is another effective model to
reduce the boundary domain of a Pawlak rough set. In 1987, Wong and Ziarko [19]
introduced probabilistic approximation space to the study of rough set and then pre-
sented the concept of probabilistic rough set. Subsequently, Yao et al. [20] proposed
a more general probabilistic rough set called decision-theoretic rough set. There
another perspective to deal with the degree of overlap of an equivalence class with
the set to be approximated was given, and an approach to select the needed param-
eters in lower and upper approximations was presented. As far as the probabilistic
approach to rough set theory, Pawlak and Skowron [21], Pawlak et al. [22] and Wong
and Ziarko [19] proposed a method to characterize a rough set by a single member-
ship function. By the definition of a rough membership function, elements in the
same equivalence class have the same degree of membership. The rough membership
may be interpreted as the probability of any element belonging to a set, given that
the element belongs to an equivalence class. This interpretation leads to probabilis-
tic rough set [23]. Compared with a classical Pawlak rough set model, variable rough
set models and probabilistic rough set models belong to the category of quantitative
models, and they can effectively overcome the weaknesses of the Pawlak rough set
model in terms of tolerance mechanism and generalization capacity when processing
imprecise, inconsistent, and incomplete information.

Finally, in [24], the authors defined another quantitative model by combining
a variable precision rough set model and a probabilistic rough set model into a vari-
able precision probabilistic rough set model. The three above-mentioned quantita-
tive extension models based on classical Pawlak rough set models share one common
point: a precision parameter needs to be set in advance in their definition of lower

Parameter Selection and Uncertainty Measurement for VPPRS 617

and upper approximations. While introduction of a precision parameter can improve
the defects of the classical Pawlak rough set theory model, studies of the three mod-
els so far have only discussed the existence, domain of the value, and a semantic
explanation (management background) of precision parameters. They lack discus-
sion of how to determine precision parameters, i.e., they did not propose a definition
of parameters and the selection method. This has constrained the application of the
models. Besides, the parameters used in certain conditions are not necessary in
some cases. In this case, the credibility of decision rules may be reduced. In fact,
the selection of parameters is of vital importance to the selection of decision rules in
real life during the application of a variable precision probability rough set model.
In this paper, based on [25], we discuss the relative discernibility between sets in
probabilistic approximation space. We put forward a method of threshold selection
of precision parameters based on the relative discernibility of sets under the precon-
dition of relative discernibility of the set in probabilistic approximation space and
consistency of the quality of approximation classification. This makes it practical
to select precise parameters in a variable precision probabilistic rough set model.
Uncertainty measurement of concepts (objects) in approximation space is another
important part of the study of Pawlak rough set theory. As in the Pawlak rough
set model, the roughness and precision of variable precision probabilistic rough set
only describe uncertainties that come from the approximation space. In fact, the
uncertainty of a rough set in approximation space comes from both the approxima-
tion space and the approximated set. In view of this, we fully discuss both factors.
The concept of fuzzy entropy is introduced into probabilistic approximation space,
and an axiomatic approach is employed to put forward a new method to address
measurement uncertainty in a variable precision probabilistic rough set. Finally,
we briefly introduce an approximation reduction of an information system based on
a variable precision probabilistic rough set model.

The rest of this paper is as follows: Section 2 provides the basic concept of binary
relations over the universe and briefly reviews the Pawlak rough set theory, variable
precision rough set and probabilistic rough set. In Section 3, the discernibility of
probabilistic approximation space of variable precision probabilistic rough set is dis-
cussed first, then a parameter selection method for a variable precision probabilistic
rough set is proposed on this basis. Section 4 investigates the uncertainty measure-
ment of a variable precision probabilistic rough set by introducing the concept of
classical fuzzy entropy into probabilistic approximation space. Section 5 discusses
the attribute reduction of probabilistic approximation space based on variable pre-
cision probabilistic rough set and presents several interesting conclusions. At last,
we conclude our research and set out further research directions in Section 6.

2 PRELIMINARIES

In this section, we briefly review the concept of binary relations over a universe
as well as the Pawlak rough set model over the universe. Also, we will present

618 W. Ma, L. Yue, B. Sun, H. Zhao

the definitions of the variable precision rough set model and probabilistic rough set
model.

2.1 Pawlak Rough Set

First of all, we present the definition of an equivalence relation in the universe of
discourse.

Definition 1 ([1, 2]). Let U be a non-empty and finite universe. Denote U × U =
{(xi, xj) | xi, xj ∈ U}. Then the subset R ⊆ U × U is called an equivalence relation
on universe U , if R satisfies the following conditions:

1. Reflexivity: (xi, xi) ∈ R, ∀xi ∈ U ;

2. Symmetry: (xi, xj) ∈ R,⇒ (xj, xi) ∈ R, ∀xi, xj ∈ U ;

3. Transitivity: (xi, xj) ∈ R, (xi, xk) ∈ R⇒ (xi, xk) ∈ R, ∀xi, xj, xk ∈ U .

Let U/R be a set consisting of all equivalent classes based on equivalence relation
R in the universe, and let [x]R represent R equivalent classes that include element
x ∈ U . Then K = (U,R) is called a knowledge base or a relationship system, where
R represents a cluster of equivalence relationships in domain U .

When there is no risk of confusion, we make no distinction as to equivalence
relationship cluster R and equivalence relationship R, i.e., K = (U,R). Meanwhile
(U,R) is called Pawlak approximation space [26, 27].

Let (U,R) be the approximation space. For any X ⊆ U , we define

R(X) = ∪{[x]R ∈ U/R | [x]R ⊆ X, x ∈ U},

R(X) = ∪{[x]R ∈ U/R | [x]R ∩X 6= ∅, x ∈ U},

the lower approximation and upper approximation of R, respectively.
The lower approximation and upper approximation can also be represented as

follows:

R(X) = {x ∈ U | [x]R ⊆ X},

R(X) = {x ∈ U | [x]R ∩X 6= ∅}.

BnR(X) = R(X)− R(X) is called the boundary region of X. PosR(X) = R(X) is
the positive region of X, and NegR(X) = U −R(X) is the negative region of X.

Apparently, R(X) = PosR(X) ∪BnR(X).
Based on the above definition, the following conclusion is obviously valid.

Theorem 1 ([27, 29]). Define (U,R) as an approximation space. For any X ⊆ U ,
there is:

Parameter Selection and Uncertainty Measurement for VPPRS 619

1. X is a definable set of R when R(X) = R(X).

2. X is a rough set of R when R(X) 6= R(X).

The lower approximation R(X) is the union of all elementary sets that are the
subsets of X, and the upper approximation R(X) is the union of all elementary sets
that have a non-empty intersection with X.

The lower (upper) approximation R(X)(R(X)) is interpreted as the collection
of those elements of U that definitely (possibly) belong to X.

2.2 Variable Precision Rough Set

The Pawlak rough set model is often too strict when including objects into the ap-
proximation regions and may require additional information. A lack of consideration
for the degree of overlap between an equivalence class and the set to be approximated
unnecessarily limits the applications of Pawlak rough set and has motivated a good
deal of new generalization of the Pawlak rough set model. In 1993, Ziarko [9, 28]
proposed the variable precision rough set model by introducing the majority inclu-
sion relation over the universe of discourse. In the following, we present Ziarko’s
variable precision rough set model.

Let U be the universe of discourse. For any two subsets X, Y ⊆ U , we define

mc(X, Y) =

1− |X ∩ Y |/|X|, |X| > 0;

0, |X| = 0.

We call mc(X, Y) the relative error classification rate of set X in relation to
set Y .

Let (U,R) be the Pawlak approximation space, for any X ⊆ U . We define the β
lower approximation and upper approximation of X with respect to approximation
space (U,R) respectively as follows:

Rβ(X) = {x ∈ U | mc([x]R, X) ≤ β},

Rβ(X) = {x ∈ U | mc([x]R, X) < 1− β}.

Furthermore, the β positive region, boundary region and negative region of X
with respect to approximation space (U,R) can be respectively defined as follows:

Posβ(X) = Rβ(X) = {x ∈ U | mc([x]R, X) ≤ β},

Bnβ(X) = {x ∈ U | β < mc([x]R, X) < 1− β},

Negβ(X) = {x ∈ U | mc([x]R, X) ≥ 1− β}.

620 W. Ma, L. Yue, B. Sun, H. Zhao

Remark 1. If β = 0, then the following relation holds:

Rβ(X) = {x ∈ U | mc([x]R, X) ≥ 1} = {x ∈ U | [x]R ⊆ X} = R(X),

Rβ(X) = {x ∈ U | mc([x]R, X) > 0} = {x ∈ U | [x]R ∩X 6= ∅} = R(X).

This is the Pawlak rough set model.

2.3 Variable Precision Probabilistic Rough Set

In this subsection, we introduce another generalized form of the Pawlak rough set
model: variable precision probabilistic rough set.

We first give the concept of probabilistic measurement on the universe of dis-
course [29, 30].

Definition 2 ([30]). Let U be a non-empty finite universe of discourse. The set
function P : 2U → [0, 1] is called the probabilistic measurement on universe U , and
satisfies the following conditions:

1. P (∅) = 0,

2. P (U) = 1,

3. P (
⋃
nAn) =

∑
n P (An), An ∈ 2U , n = 1, 2, . . . and An piecewise disjoint.

Let P be the probabilistic measurement on U , ∀A,B ∈ 2U and P (B) > 0. Then,

P (A|B) =
P (A ∩B)

P (B)
,

is the conditional probability of occurrence of event A given event B.

Definition 3 ([24]). Let U be a non-empty and finite universe of discourse. R is
an equivalence relation on U . U/R are equivalence classes formed by R. P is the
probabilistic measurement defined on the σ-algebra of measurable subsets of U .
Then we call this the probabilistic approximation space.

In the following, we present the definition of variable precision probabilistic
rough set with respect to probabilistic approximation space.

Let AP = (U,R, P) be a probabilistic approximation space. For any 0.5 < α ≤ 1,
X ⊆ U , the lower approximation Pα(X) and upper approximation Pα(X) of X with
precision parameter α about probabilistic approximation space AP are, respectively,
as follows:

Pα(X) = {x ∈ U | P (X|[X]R) ≥ α},

Pα(X) = {x ∈ U | P (X|[X]R) > 1− α}.

Parameter Selection and Uncertainty Measurement for VPPRS 621

Similarly, the positive region, boundary region and negative region of X about
probabilistic approximation space AP are, respectively, defined as follows:

Pos(X,α) = Pα(X) = {x ∈ U | P (X|[X]R) ≥ α},

Bnα(X) = {x ∈ U | 1− α < P (X|[X]R) < α},

Negα(X) = U\Pα(X) = {x ∈ U | P (X|[X]R) < α}.

3 THE THRESHOLD SELECTION OF VARIABLE PRECISION
PROBABILISTIC ROUGH SET

According to the definition of the variable precision probabilistic rough set model,
it is well known that roughness of any non-empty subset X (X ⊆ U) in approxima-
tion space is caused by the existence of boundary region Bnα(X). Therefore, the
boundary region Bnα(X) affects the discernibility of X, and the boundary region
of X varies with parameter α, which further influences the discernibility of the set
itself. Because the discernibility of the boundary region of X is relative, a higher dis-
cernibility of X in a given classification probability value can be reached if a greater
classification probability exists. Based on the above analysis, the following defini-
tions are given.

As is well known, the variable precision probabilistic rough set model [24] is
an extension of the existing results. The variable precision probabilistic rough set
model was defined by introducing the classical probability measure into the Pawlak
approximation space, and then we use the conditional probability of any objects
(i.e., the equivalence classes of an element on universe of discourse) with respect to
the considered event (i.e., the approximated object set X) instead of the majority
include relation used in the original Ziarko’s model [9]. Based on the conditional
probability, the lower and upper approximations of variable probabilistic rough set
model were constructed. That is, the variable precision probabilistic rough set model
can be regarded as a probabilistic description of the original Ziarko’s model [9]
under the framework of probabilistic approximation space, i.e., the variable precision
probabilistic rough set model will be degenerated into the original Ziarko’s model
when we define P (X|[X]R) = 1 − |X∪[X]R|

|[X]R|
= mc(X, [X]R) (where | • | denotes the

cardinality of any set). Therefore, the following conclusions and other results of the
variable precision probabilistic rough set model are similar to the results given in
Ziarko [9].

Definition 4 ([9]). Let (U,R, P) be a probabilistic approximation space. If the α
boundary region of X (X ⊆ U) about (U,R, P) satisfies Bnα(X) = ∅ or, equiva-
lently, Pα(X) = Pα(X). Then X is called α discernible. Otherwise, X is called α
indiscernible.

It is easy to know that the discernibility of X depends on the value of precision
parameter α from this definition.

622 W. Ma, L. Yue, B. Sun, H. Zhao

Based on the above definition, the following conclusion can be reached.

Theorem 2 ([9]). Let (U,R, P) be a probabilistic approximation space. For any
X (X ⊆ U), if X is discernable for parameter α (0.5 < α ≤ 1), then X is also
discernible for any α1 < α (0.5 < α1 ≤ 1).

Proof. For Bnα(X) = {x ∈ U |1 − α < P (X|[X]R) < α}, if X is discernible on
parameter α (0.5 < α ≤ 1), then there is Bnα(X) = ∅. For any α that satisfies α1 <
α (0.5 < α1 ≤ 1), there is {1−α1 < P (X|[X]R) < α1} ⊆ {1−α < P (X|[X]R) < α}.
This is Bnα1(X) ⊆ Bnα(X). So, Bnα(X) = ∅. Therefore, X is discernible for any
α1(α1 < α).

This completes the proof. 2

Corollary 1 ([9]). Let (U,R, P) be a probabilistic approximation space. For any
X (X ⊆ U), if X is indiscernible with respect to parameter α (0.5 < α ≤ 1), then
X is indiscernible for any α < α2(0.5 < α2 ≤ 1).

The proof is same as the proof of Theorem 2.
Theorem 2 and Corollary 1 show that the discernibility of any set X increases

with the decreasing of the value of precision parameter α. Otherwise, the discerni-
bility of any set X decreases with the increasing value of precision parameter α.
That is, for a probabilistic rough set X, there could be a more highly discernible X
if a smaller classification precision parameter α was given.

Definition 5. Let U be a non-empty finite universe, and (U,R, P) be a probabilistic
approximation space. For any X (X ⊆ U), if α = 0.5, we define the absolute
boundary region of X about probabilistic approximation space (U,R, P) as:

Bn0.5(X) = {x ∈ U |P (X|[X]R) = 0.5}.

Definition 6. Let (U,R, P) be a probabilistic approximation space. For any X
(X ⊆ U), if X is indiscernible for any α (0.5 < α ≤ 1), then we call X absolutely
indiscernible (or absolutely rough set). Otherwise, we call X relatively rough (or
weakly discernible).

Theorem 3 ([9]). Let (U,R, P) be a probabilistic approximation space. For any X
(X ⊆ U), if P 0.5(X) 6= P 0.5(X), then X is indiscernible for any precision parameter
α (0.5 < α ≤ 1).

Proof. Because P 0.5(X) 6= P 0.5(X), i.e. Bn0.5(X) 6= ∅, and for any α (0.5 < α ≤ 1),
there is Bn0.5(X) ⊆ Bnα(X). Therefore, Bn0.5(X) 6= ∅ according to Theorem 2.
From Definition 4, it is known that X is α indiscernible.

This completes the proof. 2

Corollary 2. Let (U,R, P) be a probabilistic approximation space. Then any X
(X ⊆ U) with a non-empty boundary region on (U,R, P) must be indiscernible.

Parameter Selection and Uncertainty Measurement for VPPRS 623

Corollary 3. Let (U,R, P) be probabilistic approximation space. For any X (X ⊆
U), X is an absolutely rough set if and only if Bn0.5(X) 6= ∅.

It is easy to see that the converse propositions of Theorem 2 and 3 are still valid
for the definition of various precision probabilistic rough sets.

Generally speaking, for any set X (X ⊆ U), the discernibility of X about proba-
bilistic approximation space (U,R, P) depends on the value of precision parameter α.
In fact, there is always an α for every relative rough set X that makes X discernible
at this threshold value. Then we have the following definition.

Definition 7 ([9]). Let U be the non-empty finite universe of discourse, and R ∈
U × U an equivalence relation on universe U . Let

Ind(R,X) = {α | Bnα(X) 6= ∅, α ∈ (0.5, 1]}

be the whole set of α values that satisfy X and is indiscernible with respect to
probabilistic approximation space (U,R, P).

Furthermore, the maximum value of parameter α that satisfies the condition
that X is discernible is called the discernible threshold value, denoted as γα(P,X).

Definition 8 ([9]). Let (U,R, P) be a probabilistic approximation space. For anyX
(X ⊆ U), the discernible threshold value γα(P,X) satisfies the following conditions:

1. γα(P,X) = inf Ind(P,X),

2. γα(P,X) = min(n1, n2)

where

n1 = 1−max{P (X|[x])|P (X|[X]R) < 0.5, x ∈ U},

n2 = min{P (X|[x])|P (X|[X]R) > 0.5, x ∈ U}.

For any X (X ⊆ U), if X is relatively discernible, then the empty boundary
region (i.e., the discernible threshold value boundary region) of X is as follows:

Bnγα(X) = {x ∈ U | 1− γα(P,X) < P (X|[x]α) < γα(P,X)}.

Theorem 4. Let (U,R, P) be a probabilistic approximation space. If there are
Bnα(X) 6= ∅ for any parameter α ∈ (0.5, 1] and X (X ⊆ U), then X is indiscernible
if and only if

Bnα(X) 6= Bnγα(X), α ∈ (0.5, 1].

In Theorem 4 we talk about α for which X is discernible, therefore, according
to Definition 4 we have Bnα(X) = ∅.

Based on the former definitions, the following conclusion is clear.

624 W. Ma, L. Yue, B. Sun, H. Zhao

Theorem 5. Let (U,R, P) be a probabilistic approximation space. For any α (0.5 <
α ≤ 1), X (X ⊆ U), the domain of the probabilistic valueX that makes α discernible
is as follows:

(0.5, γα(P,X)].

In the following, we present a numerical example to demonstrate the method for
precision parameter selection given in this paper.

Example 1. Let U = {x1, x2, · · · , x20} and let R be an equivalence relation on uni-
verse U . P is the probabilistic measurement defined on the σ-algebra of measurable
subsets of universe U . Meanwhile, the elementary classes of elements on U with
respect to R are as follows, respectively.

E1 = {x1, x2, x3, x4, x5}, E2 = {x6, x7, x8}, E3 = {x9, x10, x11, x12, x19},

E4 = {x17, x18, x20}, E5 = {x13, x14, x15, x16}.

Suppose that
X = {x3, x5, x8, x14, x15, x16, x18, x19}.

Take P (X|E) = P (X∩E)
P (E)

. Then we have

P (X|E1) = 0.4, P (X|E2) = 0.34, P (X|E3) = 0.2,

P (X|E4) = 0.33, P (X|E5) = 0.75.

Based on Definition 7, it is easy to calculate and obtain the following results:

n1 = 1−max{P (X|E1), P (X|E2), P (X|E3)}

= 1−max{0.4, 0.34, 0.33, 0.2}

= 1− 0.4 = 0.6,

n2 = min{P (X|E5)} = min{0.75} = 0.75.

So, there is γα(P,X) = min{n1, n2} = min{0.6, 0.75} = 0.6.
That is, the maximum threshold value that makes X discernible is γα(P,X) =

0.6. Therefore, the corresponding empty boundary region when X is discernible is
as follows:

Bnγα(X) = {x ∈ U | 0.4 < P (X|[x]R) < 0.6}.

By using the conclusion of Theorem 4, we know that the domain of the value of
precision parameter α that makes X discernible is calculated as follows:

(0.5, γα(P,X)] = (0.5, 0.6].

This completes the example.

Parameter Selection and Uncertainty Measurement for VPPRS 625

4 UNCERTAINTY MEASUREMENT OF VARIABLE PRECISION
PROBABILISTIC ROUGH SET

In the classical Pawlak rough set theory [1, 2], accuracy and roughness are used
to characterize the uncertainty of a set and approximation accuracy is employed to
depict the accuracy of a rough classification. Pawlak [1, 2] developed the uncer-
tainty measurement of an ordinary set in the universe of discourse. Subsequently,
Banerjee [34] studied the uncertainty measurement of a fuzzy set with respect to
approximation space. Although these measures are effective, several limitations
have been pointed out by many scholars when applying them to certain situations.
Therefore, several improved methods of uncertainty measurement for various gener-
alized rough set models (or generalized information systems) have been established
in recent years [37].

As is well known, the roughness of any object set with respect to the probabilis-
tic approximation space is induced by the non-empty boundary region, from the
definition of the variable precision probabilistic rough set model. There could be
a fuzzy membership relation between any object set and the elements in the universe
of discourse. Moreover, the fuzzy membership degree between any object set and
the elements is determined by the probability P (X|[x]).

For any α (0.5 < α ≤ 1), X ⊆ U , we denote the fuzzy set generated by the
conditional probability as X̃α

P . So, its membership function is defined as follows:

X̃α
P (x) = P (X|[X]R) = P (X ∩ [X]R)/P ([X]R), x ∈ U.

In particular, if P ([X]R) = 0 or [X]R = ∅, then we use the convention that
X̃α
P (x) = 1.

Based on the definition of rough membership function X̃α
P (x) on probabilis-

tic approximation space (U,R, P), the lower and upper approximations of variable
precision probability rough set by rough membership function are represented re-
spectively as follows:

Pα(X) =
{
x ∈ U | X̃α

P (x) ≥ α
}
,

Pα(X) =
{
x ∈ U | X̃α

P (x) > 1− α
}
.

That is, the lower and upper approximations of variable precision probabilistic
rough set are α cut set and strong 1− α cut set of fuzzy set X̃P , respectively.

The boundary region and negative region of X are similarly described as follows:

Bnα(X) =
{
x ∈ U | 1− α < X̃α

P (x) < α
}
,

Negα(X) = U\Pα(X) =
{
x ∈ U | X̃α

P (x) ≤ 1− α
}
.

626 W. Ma, L. Yue, B. Sun, H. Zhao

In this section, we will present an approach to uncertainty measurement for
variable precision probabilistic rough set by using the concept of fuzzy entropy. The
concept of entropy, originally developed by Shannon [33] for communication theory,
has been a useful mechanism for characterizing the information in various models
and applications in diverse fields. By using Shannon entropy, several conclusions
can be established about the uncertainty measurement and knowledge granularity
of the rough set in the Pawlak approximation space [35]. As discussed above, there
is a fuzzy set generated by the conditional probability of the universe of discourse
for any target set X (X ⊆ U). So, we use the concept of fuzzy entropy to discuss
the uncertainty measurement for a variable precision probabilistic rough set.

Here, we first give the definition of fuzzy entropy as follows.
Let U be a non-empty and finite universe of discourse. Denote as F (U) all the

fuzzy subsets of universe U .

Definition 9 ([31, 32, 33]). Let mapping E : F (U) → [0, 1]. If the following con-
ditions are satisfied:

1. E(A) = 0 if and only if A is a crisp set on U ;

2. E(A) = 1 if and only if µA(x) = 0.5, ∀x ∈ U,A ∈ F (U);

3. If D(A, 0.5) ≥ D(B, 0.5), then E(A) ≤ E(B),∀A,B ∈ F (U);

4. E(A) = E(Ac) (Ac is the complementary set of A)

where D(A,B) =
√

1
|U |
∑

x∈U(µA(x)− µB(x))2 indicates the distance between two

rough sets.

Then E is called an entropy on F (U).
With the axiomatic definition of fuzzy entropy, a roughness measurement of

a variable precision probabilistic rough set is put forward.

Definition 10. Let (U,R, P) be a probabilistic approximation space. For any X ∈
U , the roughness measurement of rough set X with respect to (U,R, P) is defined
as follows:

f(X̃α
P) =

4

|U |
∑
x∈U

X̃α
P (x)

(
1− X̃α

P (x)
)
.

Lemma 1. Let (U,R, P) be probabilistic approximation space. For any X (X ⊆
U), f

(
X̃α
P

)
is a fuzzy entropy over F (U).

Proof. For any X (X ⊆ U), it is easy to verify that the relation 0 ≤ X̃α
P (x)(

1− X̃α
P (x)

)
≤ 1

4
holds. Therefore, 0 ≤ f

(
X̃α
P

)
≤ 1.

In the following, we will verify the conditions given in Definition 9 one by one

for the roughness measurement f
(
X̃α
P

)
of a variable precision probabilistic rough

set.

Parameter Selection and Uncertainty Measurement for VPPRS 627

1. If X̃α
P is a crisp set, then for any X there is X̃α

P (x) = 0 or X̃α
P (x) = 1.

So, f
(
X̃α
P

)
= 0. On the other hand, if f

(
X̃α
P

)
= 0, then there is X̃α

P (x)(
1− X̃α

P (x)
)

= 0 for any x ∈ U . Thus, there is X̃α
P (x) = 0 or X̃α

P (x) = 1, i.e.,

X̃α
P (x) is a crisp set.

2. If x ∈ U , X̃α
P (x) = 0.5, then there is 1 − X̃α

P (x) = 0.5. Moreover, there is

X̃α
P (x)

(
1− X̃α

P (x)
)

= 0.25. So, f
(
X̃α
P

)
= 4
|U |
∑

x∈U
1
4

= 1.

On the contrary, suppose that f
(
X̃α
P

)
= 1. Then, there is X̃α

P (x)
(

1− X̃α
P (x)

)
= 1

4
, which holds by the above discussion. This proves that X̃α

P (x) = 0.5. In

other words, X̃α
P (x) arrives at the maximum fuzziness.

3. If D
(
X̃α
P , 0.5

)
≥ D

(
Ỹ α
P , 0.5

)
, for any X, Y ⊆ U , there is

f
(
X̃α
P

)
=

4

|U |
∑
x∈U

X̃α
P (x)

(
1− X̃α

P (x)
)

=
4

|U |
∑
x∈U

(
0.5 + X̃α

P (x)− 0.5
)(

0.5−
(
X̃α
P (x)− 0.5

))

=
4

|U |
∑
x∈U

(
0.25−

(
X̃α
P (x)− 0.5

)2)
= 1− 4

|U |
∑
x∈U

(
X̃α
P (x)− 0.5

)2
≤ 1− 4

|U |
∑
x∈U

(
Ỹ α
P (x)− 0.5

)2
= f

(
Ỹ α
P

)
.

4. For any x ∈ U , there is
(
X̃c
)α
P

(x) = 1 − X̃α
P (x),

(
X̃c
)α
P

(x) = 1 − X̃α
P (x) =(

1− X̃α
P (x)

)
X̃α
P (x). That is, there is f

(
X̃α
P

)
= f

((
X̃c
)α
P

)
.

Therefore, according to the results of 1., 2., 3. and 4., we know that f
(
X̃α
P

)
is

a fuzzy entropy on F (U).
This completes the proof. 2

By using Definition 9 and Lemma 1, the following results about the uncertainty
measurement of variable precision probabilistic rough set are clear.

Theorem 6. Let (U,R, P) be a probabilistic approximation space. For any 0.5 <
α ≤ 1 and X ⊆ U , there is:

1. f(U) = f(∅) = 0.

2. For any X ∈ U , if Pα(X) = Pα(X), there is f
(
X̃α
P

)
= 0.

3. For any X ∈ U , if [x] 6= ∅, there is f
(
X̃α
P

)
= f

((
X̃c
)α
P

)
.

628 W. Ma, L. Yue, B. Sun, H. Zhao

Proof. It can be verified directly by the definitions. 2

5 ATTRIBUTE REDUCTION OF VARIABLE PRECISION
PROBABILISTIC ROUGH SET

In general, objects are described by different attributes. However, it is not neces-
sary to know all attributes for the classification of information systems. That is,
some attributes are unnecessary and do not affect the result of classification when
removed from the attribute set. Meanwhile, some attributes are indispensable to
the result of classification and affect the result when removed from the attribute set.
Furthermore, some attributes are relatively necessary for the classification and may
determine the result by associating with other attributes. The attribute reduction
presents a minimum attribute subset completely describing the classification as the
original attribute set for information systems [26, 36, 37, 38, 39, 40, 41]. This sub-
section will investigate the problem of attribute reduction for an information system
based on variable precision probabilistic rough set.

Let U be a non-empty finite universe of discourse. < is a family of equivalence
relationships over the universe U . Let K ⊆ < (K 6= ∅) and the intersection of all
equivalence relations in K be called indiscernible relations on [3]. We denote the
intersection of all equivalence relations as ind(K).

Definition 11. Let S = (U, V,A, F) be an information system. C,D ⊆ A are
respectively a conditional attribute and decision attribute of probabilistic approx-
imation space (U,R, P). Then, the α (0.5 < α ≤ 1) approximation dependence
of conditional attribute C and decision attribute D of probabilistic approximation
space is defined as follows:

dα(C,D) =
|
⋃
P (X|[X]R)≥α{X | X ∈ U/ind(D)}|

|U |
.

By the definition of approximation dependence in Definition 11, we can easily
know that this concept is a natural generalization of the classical approximation
dependence in Pawlak rough set theory.

Specifically, dα(C,D) will degenerate into the classical approximation depen-
dence in Pawlak rough set theory when α = 1.

Here, the attribute reduction means that the minimum attribute subset of the
conditional attributes results in the same approximation dependence with respect
to the decision attribute. We then present the definition of the α approximation at-
tribute reduction for an information system based on variable precision probabilistic
rough set theory by using the concept of α (0.5 < α ≤ 1) approximation dependence
as follows.

Definition 12. Let S = (U, V,A, F) be an information system. C,D ⊆ A are
respectively conditional attribute and decision attribute of probabilistic approxima-

Parameter Selection and Uncertainty Measurement for VPPRS 629

tion space (U,R, P). Then the α approximation reduction Redα(C,D) is a minimum
attribute subset of conditional attribute set C and satisfies the following conditions:

1. dα(C,D) = dα(Redα(C,D), D);

2. The equation given in (1) will no longer be valid when any one attribute is
removed from Redα(C,D).

Theorem 7. Let S = (U, V,A, F) be an information system. Then the approxima-
tion reduction of approximation space S always exists for any precision parameter
α (0.5 < α ≤ 1).

Proof. If for any c ∈ C ⊆ A, and satisfies RC−{c} 6= RC , then C is a reduction of
information system S = (U, V,A, F). Otherwise, for any c ∈ C ⊆ A, and satisfies
RC−{c} = RC hold. Then, we consider the new attribute subset C1 = C − {c}.
Meanwhile, if for any c1 ∈ C1 ⊆ A, there is RC1−{c1} 6= RC hold, then, C1 is
a reduction of information system S = (U, V,A, F). Otherwise, for any c1 ∈ C1 ⊆ A,
there is RC1−{c1} = RC hold. Next, we further consider C2 = C1 − {c1} and repeat
the above process. So, we will find the minimum attribute subset C∗ ⊆ C that
satisfies the relationships RC∗ = RC and RC∗−{c} 6= RC for any c ∈ C∗. Therefore,
C∗ is the reduction of information system S = (U, V,A, F).

This completes the proof. 2

In general, there may not be only one reduction for information system S =
(U, V,A, F) because there may be different combinations among the elements of the
attribute set. In practice, we focus on finding only one of the reductions for the
information system S = (U, V,A, F).

6 CONCLUSIONS

By introducing precision parameter α (0.5 < α ≤ 1) into classical probabilistic
rough set, the variable precision probabilistic rough set converts two parameters in
the upper (lower) approximation of probabilistic rough set into one parameter. This
further improves the robustness and adaptability of the model, extends classical
Pawlak rough set theory, and allows rough set theory to process random, uncertain,
and inconsistent data information more effectively. Meanwhile, new models and
approaches are proposed in which rough set theory is applied to solve decision-
making problems with uncertainty in actual situations in management science.

In this paper, we discuss two issues for the variable precision probabilistic rough
set model: the relative discernibility of any object set in the universe and the un-
certainty measurement of the variable precision probabilistic rough set. For the
first aspect content, it is well known that the variable precision probabilistic rough
set model [24] is an extension of the existing results by combining the variable
precision rough set model [9] and the probabilistic rough set model [22, 23]. The
basic idea of the variable precision probabilistic rough set model was defined by
introducing the classical probability measure into the Pawlak approximation space,

630 W. Ma, L. Yue, B. Sun, H. Zhao

and the conditional probability of any objects (i.e., the equivalence classes of an
element on universe of discourse) with respect to the considered event (i.e., the
approximated object set X) instead of the majority include relation used in the
original Ziarko’s model [9]. However, the variable precision probabilistic rough
set model will be degenerated into the original Ziarko’s model when we define
P (X|[X]R) = 1− |X∪[X]R|

|[X]R|
= mc(X, [X]R). At the same time, the variable precision

probabilistic rough set model will be degenerated into the probabilistic rough set
model when we define 1−α = β in the upper approximation. So, all the results about
the relative discernibility of any object set of universe with the variable precision
probabilistic rough set are the generalization of the original Ziarko’s model [9]. Sim-
ilarly, the results will be degenerated into the corresponded conclusions of Ziarko’s
model when we define P (X|[X]R) = 1 − |X∪[X]R|

|[X]R|
= mc(X, [X]R). Therefore, the

results given in Ziarko’s model [9] are based on the classical Pawlak approximation
space and the results obtained in this paper are under the framework of probabilistic
approximation space. For the second aspect, we investigate the uncertainty mea-
surement of any object set with respect to the variable precision probabilistic rough
set model. By introducing the concept of the fuzzy entropy into the probabilistic
approximation space, we establish a new approach to measure the uncertainty of
the approximation quality of any object set with respect to the variable precision
probabilistic rough set model. Further, we explore the attribute reduction for the
information systems based on the variable precision probabilistic rough set model.
Factually, random information acquisition and decision-making problems under gen-
eral relations or one kind of certain relation are used more widely, and this offers
direction for our further study.

Acknowledgements

The authors are very grateful to the Deputy of the Editor-in-Chief Professor Jacek
Kitowski, and the three anonymous referees for their thoughtful comments and valu-
able suggestions. Some remarks directly benefit from the referees’ comments. The
work was partly supported by the National Natural Science Foundation of China
(No. 71571090, No. 71161016), the National Science Foundation of Shaanxi Province
of China (2017JM7022), the Key Strategic Project of Fundamental Research Funds
for the Central Universities (JBZ170601), the Interdisciplinary Foundation of Hu-
manities and Information (RW180167), the Social Science Planning Project Fund of
Xi’an (17J64).

REFERENCES

[1] Pawlak, Z.: Rough Sets. International Journal of Computer and Information Scien-
ces, Vol. 11, 1982, No. 5, pp. 341–356, doi: 10.1007/BF01001956.

[2] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishers, London, 1991, doi: 10.1007/978-94-011-3534-4.

https://doi.org/10.1007/BF01001956
https://doi.org/10.1007/978-94-011-3534-4

Parameter Selection and Uncertainty Measurement for VPPRS 631

[3] Pawlak, Z.—Skowron, A.: Rudiments of Rough Sets. Information Sciences,
Vol. 177, 2007, No. 1, pp. 3–27, doi: 10.1016/j.ins.2006.06.003.

[4] Lingras, P. J.—Yao, Y. Y.: Data Mining Using Extensions of the Rough Set
Model. Journal of the American Society for Information Science, Vol. 49, 1998, No. 5,
pp. 415–422.

[5] Yamaguchi, D.: Attribute Dependency Functions Considering Data Efficiency. In-
ternational Journal of Approximate Reasoning, Vol. 51, 2009, No. 1, pp. 89–98, doi:
10.1016/j.ijar.2009.08.002.

[6] Li, T. R.—Ruan, D.—Geert, W.—Song, J.—Xu, Y.: A Rough Sets Based
Characteristic Relation Approach for Dynamic Attribute Generalization in Data
Mining. Knowledge-Based Systems, Vol. 20, 2007, No. 5, pp. 485–494, doi:
10.1016/j.knosys.2007.01.002.

[7] Mac Parthaláin, N.—Shen, Q.: Exploring the Boundary Region of Toler-
ance Rough Sets for Feature Selection. Pattern Recognition, Vol. 42, 2009, No. 5,
pp. 655–667, doi: 10.1016/j.patcog.2008.08.029.

[8] Dash, M.—Liu, H.: Feature Selection for Classification. Intelligent Data Analysis,
Vol. 1, 1997, No. 1-4, pp. 131–156, doi: 10.1016/S1088-467X(97)00008-5.

[9] Ziarko, W.: Variable Precision Rough set Model. Journal of Computer and System
Sciences, Vol. 46, 1993, No. 1, pp. 39–59, doi: 10.1016/0022-0000(93)90048-2.

[10] Kryszkiewicz, M.: Rough Set Approach to Incomplete Information Systems.
Information Sciences, Vol. 112, 1998, No. 1-4, pp. 39–49, doi: 10.1016/S0020-
0255(98)10019-1.

[11] Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences,
Vol. 113, 1999, No. 3-4, pp. 271–292, doi: 10.1016/S0020-0255(98)10065-8.

[12] Slezak, D.—Ziarko, W.: The Investigation of the Bayesian Rough Set Model.
International Journal of Approximate Reasoning, Vol. 40, 2005, No. 1-2, pp. 81–91,
doi: 10.1016/j.ijar.2004.11.004.

[13] Dubois, D.—Prade, H.: Rough Fuzzy Sets and Fuzzy Rough Sets. Interna-
tional Journal of General Systems, Vol. 17, 1990, No. 2-3, pp. 191–209, doi:
10.1080/03081079008935107.

[14] Dubois, D.—Prade, H.: Putting Rough Sets and Fuzzy Sets Together. Intelligent
Decision Support, Handbook of Applications and Advances of the Rough Sets Theory.
Kluwer Academic Publishers, 1992, doi: 10.1007/978-94-015-7975-9 14.

[15] Yao, Y.: Probabilistic Rough set Approximations. International Journal of Approx-
imate Reasoning, Vol. 49, 2008, No. 2, pp. 255–271.

[16] Beynon, M. J.: The Introduction and Utilization of (l, u)-Graphs in the Extended
Variable Precision Rough Sets Model. International Journal of Intelligent Systems,
Vol. 18, 2003, No. 10, pp. 1035–1055, doi: 10.1002/int.10130.

[17] Katzberg, J. D.—Ziarko, W.: Variable Precision Rough Sets with Asymmetric
Bounds. IEEE International Workshop on Rough Sets and Knowledge Discovery,
Springer-Verlag, Heidelberg, 1993, pp. 167–177.

[18] Gong, Z. T.—Sun, B. Z.: Variable Precision Rough Set Model Based on Gen-
eral Relation. Journal of Lanzhou University (Nature Edition), Vol. 41, 2005, No. 2,
pp. 110–114.

https://doi.org/10.1016/j.ins.2006.06.003
https://doi.org/10.1016/j.ijar.2009.08.002
https://doi.org/10.1016/j.knosys.2007.01.002
https://doi.org/10.1016/j.patcog.2008.08.029
https://doi.org/10.1016/S1088-467X(97)00008-5
https://doi.org/10.1016/0022-0000(93)90048-2
https://doi.org/10.1016/S0020-0255(98)10019-1
https://doi.org/10.1016/S0020-0255(98)10019-1
https://doi.org/10.1016/S0020-0255(98)10065-8
https://doi.org/10.1016/j.ijar.2004.11.004
https://doi.org/10.1080/03081079008935107
https://doi.org/10.1007/978-94-015-7975-9_14
https://doi.org/10.1002/int.10130

632 W. Ma, L. Yue, B. Sun, H. Zhao

[19] Wong, S. K. M.—Ziarko, W.: Comparison of the Probabilistic Approximate Clas-
sification and the Fuzzy Set Model. Fuzzy Sets and Systems, Vol. 21, 1987, No. 3,
pp. 357–362.

[20] Yao, Y. Y.—Wong, S. K. M.—Lingras, P.: A Decision-Theoretic Rough Set
Model. The 5th International Symposium on Methodologies for Intelligent Systems,
1990, pp. 17–24.

[21] Pawlak, Z.—Skowron, A.: Rough Membership Functions. Advances in the
Dempster-Shafer Theory of Evidence. John Wiley and Sons, New York, 1994,
pp. 251–271.

[22] Pawlak, Z.—Wong, S. K. M.—Ziarko, W.: Rough Sets: Probabilistic Versus
Deterministic Approach. International Journal of Man-Machine Studies, Vol. 29,
1988, No. 1, pp. 81–95, doi: 10.1016/S0020-7373(88)80032-4.

[23] Yao, Y. Y.—Wong, S. K. M.: A Decision Theoretic Framework for Approximat-
ing Concepts. International of Journal Man-Machine Studies, Vol. 37, 1992, No. 6,
pp. 793–809.

[24] Sun, B. Z.—Gong, Z. T.: Variable Precision Probabilistic Rough Set Model. Jour-
nal of Northwest Normal University (Nature Edition), Vol. 41, 2005, No. 2, pp. 23–26.

[25] Beynon, M.: Reducts within the Variable Precision Rough Sets Model: A Fur-
ther Investigation. European Journal of Operational Research, Vol. 134, 2001, No. 1,
pp. 592–605, doi: 10.1016/S0377-2217(00)00280-0.

[26] Sun, B. Z.—Ma, W. M.: Rough Approximation of a Preference Relation by Multi-
Decision Dominance for a Multi-Agent Conflict Analysis Problem. Information Scien-
ces, Vol. 315, 2015, pp. 39–53, doi: 10.1016/j.ins.2015.03.061.

[27] Wei, J. M.—Wang, M. Y.—You, J. P.—Wang, S. Q.—Liu, D. Y.: VPRSM
Based Decision Tree Classifier. Computing and Informatics, Vol. 26, 2007, No. 6,
pp. 663–677.

[28] Gong, Z. T.—Shi, Z. H.—Yao, H. X.: Variable Precision Rough Set Model for
Incomplete Information Systems and Its Beta-Reducts. Computing and Informatics,
Vol. 31, 2012, No. 6+, pp. 1385–1399.

[29] Zhang, W. X.—Wu, W. Z.—Liang, J. Y.—Li, D. Y.: Theory and Methodology
of Rough Set. Science Press, Beijing, 2001.

[30] Yan, J. A.: Theory of Measure. Science Press, Beijing, 1998.

[31] Liu, X. C.: Entropy Distance Measure and Similarity Measure of Fuzzy Sets and
Their Relations. Fuzzy Sets and Systems, Vol. 52, 1992, No. 3, pp. 305–318.

[32] Liang, J. Y.—Li, D. Y.: Knowledge Acquirement and Uncertainty Measurement
for Information Systems. Science Press, Beijing, 2005, pp. 39–46.

[33] Shannon, C. E.: The Mathematical Theory of Communication. The Bell System
Technical Journal, Vol. 27, 1948, No. 3, pp. 379–423.

[34] Banerjee, M.—Sankar, K. P.: Roughness of a Fuzzy Set. Information Sciences,
Vol. 93, 1996, No. 3-4, pp. 235–246, doi: 10.1016/0020-0255(96)00081-3.

[35] Sun, B. Z.—Ma, W. M.: Uncertainty Measure for General Relation-Based Rough
Fuzzy Set. Kybernetes, Vol. 42, 2013, No. 6, pp. 979–992.

https://doi.org/10.1016/S0020-7373(88)80032-4
https://doi.org/10.1016/S0377-2217(00)00280-0
https://doi.org/10.1016/j.ins.2015.03.061
https://doi.org/10.1016/0020-0255(96)00081-3

Parameter Selection and Uncertainty Measurement for VPPRS 633

[36] Sun, B. Z.—Ma, W. M.—Gong, Z. T.: Dominance-Based Rough Set Theory
over Interval-Valued Information Systems. Expert Systems, Vol. 31, 2014, No. 2,
pp. 185–197.

[37] Sun, B. Z.—Ma, W. M.—Chen, D. G.: Rough Approximation of a Fuzzy Concept
on a Hybrid Attribute Information System and Its Uncertainty Measure. Information
Sciences, Vol. 284, 2014, pp. 60–80, doi: 10.1016/j.ins.2014.06.036.

[38] Sun, B. Z.—Ma, W. M.—Zhao, H. Y.: Decision-Theoretic Rough Fuzzy Set
Model and Application. Information Sciences, Vol. 283, 2014, pp. 180–196, doi:
10.1016/j.ins.2014.06.045.

[39] Wu, Q.: Knowledge Granulation, Rough Entropy and Uncertainty Measure in In-
complete Fuzzy Information System. Computing and Informatics, Vol. 33, 2014, No. 3,
pp. 633–651.

[40] Zhan, J. M.—Liu, Q.—Dawaz, B. J.: A New Rough Set Theory: Rough
Soft Hemirings. Journal of Intelligent and Fuzzy Systems, Vol. 28, 2015, No. 4,
pp. 1687–1697.

[41] Sun, B. Z.—Ma, W. M.—Zhao, H. Y.: Rough Set-Based Conflict Analysis Model
and Method over Two Universes. Information Sciences, Vol. 372, 2016, pp. 111–125,
doi: 10.1016/j.ins.2016.08.030.

Weimin Ma received his B.Sc. degree from the Department of
Mechanical Manufacturing Engineering at the Northwest Poly-
technic University in Xi’an, China, in 1993. He received his
M.Sc. degree and Ph.D. degree in management science and en-
gineering from the School of Economics and Management, Xi’an
Jiaotong University, Xi’an, China, in 1999 and 2003, respec-
tively. He has published more than 100 articles in international
journals and book chapters. He is currently Professor of the
School of Economics and Management, serving as an autho-
rized Ph.D. supervisor in Management Science and Engineering,

Tongji University in Shanghai, China. His research interests include on-line computa-
tion, fuzzy sets and systems, information systems and technology, decision-making with
uncertainty, algorithm design and operations research.

Lei Yue is a Ph.D. candidate in management science and en-
gineering, Tongji University in Shanghai, P.R. China. He re-
ceived his B.Sc. degree from the School of Business Administra-
tion at Shandong Finance Institute in Shandong, P.R. China, in
2002. He received his M.Sc. degree in engineering administra-
tion from the School of Management, Tianjin University, Tian-
jin, P.R. China, in 2007. His research interests include human
resource evaluation.

https://doi.org/10.1016/j.ins.2014.06.036
https://doi.org/10.1016/j.ins.2014.06.045
https://doi.org/10.1016/j.ins.2016.08.030

634 W. Ma, L. Yue, B. Sun, H. Zhao

Bingzhen Sun received his B.Sc. degree and M.Sc. degree in
mathematics from Northwest Normal University, Lanzhou, Chi-
na, in 2003 and 2006, respectively. He received his Ph.D. degree
in management sciences and engineering from Tongji University,
Shanghai, China, in 2013. He is currently Professor of the School
of Economics and Management, serving as an authorized Ph.D.
supervisor in management science and engineering, Xidian Uni-
versity in Xi’an, China. He has published over 30 articles in
international journals. His research interests include rough set
theory and applications, fuzzy sets and systems, decision-making
under uncertainty and operations research.

Haiyan Zhao received her B.Sc. degree in industrial and com-
mercial management from Jilin University, Jilin, China, in 2004
and her M.Sc. degree in management sciences and engineering
from Harbin Institute of Technology, Harbin, China, in 2006.
She received her Ph.D. degree in management sciences and en-
gineering from Tongji University, Shanghai, China, in 2017. She
is currently Associate Professor of Shanghai University of Engi-
neering Science. Her research interests include soft set theory
and applications in decision-making with uncertainty.

Computing and Informatics, Vol. 37, 2018, 635–655, doi: 10.4149/cai 2018 3 635

HIERARCHICAL SYSTEM DESIGN USING
REFINABLE RECURSIVE PETRI NET

Messaouda Bouneb

Department of Mathematic and Computer Science
El Arbi ben M’hidi University
Oum el boighi, Algeria
e-mail: bounebm.univ@gmail.com

Djamel Eddine Saidouni

Department of Computer Science
Abed Elhamid Mehri Constantine 2 University
Constantine, Algeria
e-mail: saidounid@hotmail.com

Jean Michel Ilie

Department of Computer Science
Pierre and Marie Curie University
Paris, France
e-mail: jean-michel.ilie@lip6.fr

Abstract. This paper is in the framework of the specification and verification of
concurrent dynamic systems. For this purpose we propose the model of Refinable
Recursive Petri Nets (RRPN) under a maximality semantics. In this model a notion
of undefined transitions is considered. The underlying semantics model is the Max-
imality Abstract Labeled Transition System (AMLTS). Then, the model supports
a definition of a hierarchical design methodology. The example of a cutting flame
machine is used for illustrating the approach.

Keywords: Recursive Petri nets, hierarchical design, action refinement, maximality
labeled transition system

636 M. Bouneb, D. E. Saidouni, J. M. Ilie

1 INTRODUCTION

Petri nets model is a graphical and mathematical modelling tool which is used to
specify, in clear manner, the behaviors of concurrent systems. The marking graph
associated with a given Petri net is used for checking the specified properties of the
system. Indeed, this marking graph is seen as a labeled transition system. However,
labeled transition systems are based on interleaving semantics. This later represents
parallel executions by their interleaved sequential executions. To clarify the ideas,
we consider the example of two Petri nets (Figures 1 a) and 1 b)). Figure 1 a) repre-
sents a system which can execute transitions t1 and t2 in parallel, whereas Figure 1 b)
represents a system that executes sequentially transitions t1 and t3 or transitions t2
and t4.

Figure 1. Petri nets

After generating the marking graphs of the two Petri nets, where transitions t1
and t4 are labeled by action a and transitions t2 and t3 are labeled by action b, the
two marking graphs become isomorphic. Therefore the parallel execution of action a
and action b is interpreted as their interleaved executions in time. This result is
acceptable under the assumption that the firing of each transition corresponds to
the execution of an indivisible action with null duration (structural and temporal
atomicity of actions). Nevertheless, in reality this assumption is not accepted. In
order to accept the verification results, the realization constraints should be taken
into account at both specification and semantic level. To clarify the idea, let us
consider that the transition t1 (resp. t4) consists of two sequential transitions t1−1
and t1−2 (resp. t4−1 and t4−2). Transitions t1−1 and t4−1 are labeled by action a1
whereas transitions t1−2 and t4−2 are labeled by action a2. The refined Petri nets
and their labeled transition systems are represented by Figure 2. It is clear that the
behaviors of both Petri nets are different.

Indeed, in the first system, the execution of action b can occur between the
execution of actions a1 and a2; which is not the case in the second system. Taking
into account the non atomicity of actions in a system has been deeply studied in
the literature through the definition of several semantics supporting the concept of
action refinement [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Considering such semantics
allows a hierarchical design of the systems by refining actions (actions are seen as
abstract processes). An other interest of these semantics is the characterization of
parallel executions of non instantaneous actions.

Hierarchical System Design Using Refinable Recursive Petri Net 637

Figure 2. Non structural atomicity of actions

In this context the maximality semantics, through the model of the maximal-
ity labeled transition systems, was used for the characterization of concurrent sys-
tems. This semantics was defined for process algebras and place transition Petri
nets [13, 14, 15, 16, 17]. However, the limits of Petri net model have been high-
lighted for the specification of systems with dynamic structures such as multi agent
systems. For this reason, recursive Petri nets have been defined. Dynamic behaviors
are considered through abstract transitions. Since abstract transitions represent ac-
tivities, the association of true concurrency semantics to the model becomes more
appropriate than the use of interleaving semantics. For this purpose, in [18] a max-
imality operational semantics has been proposed for recursive Petri net model. In
order to design concurrent systems, several methodologies have been proposed in
the literature, around process algebra and Petri net specification models. As an ex-
ample we can cite the lotosphere design methodology which is based on the formal
description technique Lotos. This design methodology consists in specifying firstly
the architecture of the system in terms of its observable behavior, then the spec-
ification is refined along the design trajectory until obtaining the more detailed
specification. This later takes into account all system functionalities and the en-
vironment constraints. As the model is based on the interleaving semantics, the
design methodology is not based on action refinement but on transforming a specifi-
cation, subject of refinement, to an other following some directives. An other design
methodology has been defined for hierarchical Petri nets [19]. In [20] a Petri net
approach to refining object behavioral specifications has been proposed. As for Lo-
tos, these models are based on the interleaving semantics, too. Consequently design
methodologies are not formal.

Since in [18] a true concurrency semantics has been defined for recursive Petri
net, it seems interesting to define a design methodology based on refining abstract
transitions. Thus, in this paper we extend the model of recursive Petri net by
considering refinable transitions. The model will be named Refinable Recursive Petri
net. The proposed model is based on the maximality semantics. As for recursive
Petri net, dynamic behaviors are considered through abstract transitions. These
abstract transitions can be used for a hierarchical system design. Indeed, at a level
of abstraction, the details of abstract behavior of a transition may be hidden. They

638 M. Bouneb, D. E. Saidouni, J. M. Ilie

will be exhibited in a further level of abstraction. In the first step, details of abstract
transitions behaviors are undefined. These behaviors are gradually introduced along
the design trajectory. In this manner, system components are integrated gradually;
the initial specification is then the most abstract. This remark leads us to label
abstract transitions, the behaviors of which are undefined, by the symbol ⊥. As
an example, let us consider the systems of Figure 1 where transitions t1 and t4
are abstract transitions, at this level the difference between the systems may not
be seen. The labeled transition systems associated with the two Petri nets are
given by Figures 3 a) and 3 b), respectively. To consider the details of refinement of
abstract transitions, it is necessary to define relations on behaviors that consider the
indefinite character of abstract transitions interstates. It is clear that two undefined
transitions may become different after their refinement.

Figure 3. Interleaving approach for recursive Petri nets

Figure 4. Refinement of abstract transitions

2 REFINABLE RECURSIVE PETRI NETS

A refinable recursive Petri net is a recursive Petri net on which all transitions are
labeled by actions and abstract transitions may be labeled by ⊥ (the abstract tran-
sitions the behaviors of which are undefined).

Hierarchical System Design Using Refinable Recursive Petri Net 639

Formal Definitions

Definition 1. A refinable recursive Petri net is 9-uple R = (P, T, I,W−,W+,Ω, γ,
K, λ) such that:

• P is a finite set of places.

• T is a finite set of transitions such that: T = Tel ∪ Tab and Tel ∩ Tab = ∅. Tel
denotes elementary transitions and Tab denotes the abstract transitions, knowing
that: Tab = Tabd ∪Tabi and Tabd ∩Tabi = ∅. The set of abstract transitions where
behavior is defined are noted Tabd and the set of abstract transitions where
behavior is indefinite are noted Tabi.

• I = Ic ∪ Ip is a finite set of indexes, indicates the cut steps and preemptions.
I ⊂ N.

• W− : P × T −→ N is the matrix of precondition.

• W+ : P × [Tel ∪ (Tab × I) −→ N] is the matrix of post-condition.

• Ω : Tab −→ NP is a function which associates to each abstract transition an or-
dinary marking (starting marking).

• γ is a family indexed by the set of termination Ic. Each set is specified as an
effective representation of semi linear set of final markings (markings of termi-
nation on which the standard operations like union, intersection, projection and
complementation, member test are applicable).

• K : Tel × Tab −→ Ip is a partial function of control preemption.

• λ : T −→ L∪ {⊥} such that ⊥ is the undefined label. λ is the labeling function
which associates to each transition an action name. L ranged over by a, b, . . .
In practice the transition label is the name of an action.

– ∀t ∈ Tabd, λ (t) ∈ L.

– ∀t ∈ Tabi, λ (t) = ⊥

Definition 2. Let R1 =
(
P1, T1, I1,W

−
1 ,W

+
1 ,Ω1, γ1, K1, λ1

)
and R2 = (P2, T2, I2,

W−
2 ,W

+
2 ,Ω2, γ2, K2, λ2) be two refinable recursive Petri nets such that:

• t ∈ Tabd1 is an abstract transition, knowing that Tabd1 ⊂ Tab1 ⊂ T1.

• Ict is the indexes set of the cuts of transition t.

• Ipt is the indexes set of preemption of transition t.

• v ∈ NP is the start marking of transition t.

• γt = {γi/i ∈ Ict} is the termination set of transition t.

Then ρ (t, R1, R2, Ict, Ipt, v, γt) =
(
P3, T3, I3,W

−
3 ,W

+
3 ,Ω3, γ3, K3, λ3

)
is the refin-

able recursive Petri net obtained after the refinement of t in R1 by R2, such that:

• P3 = P1 ∪ P2.

640 M. Bouneb, D. E. Saidouni, J. M. Ilie

• T3 = Tel3 ∪ Tab3 such that:

– Tel3 = Tel1 ∪ Tel2.
– Tab3 = Tabd3 ∪ Tabi3 with:

∗ Tabd3 = T ′abd1 ∪ Tabd2 with T ′abd1 = Tabd1 ∪ {t}.
∗ Tabi3 = T ′abi1 ∪ Tabi2 with T ′abi1 = Tabi1 − {t}.

• I3 = Ic3 ∪ Ip3 such that:

– Ic3 = I ′c1 ∪ Ic2 with I ′c1 = Ic1 ∪ Ict.
– Ip3 = I ′p1 ∪ Ipt.

• W−
3 : P3 × T3 −→ N such that t′ ∈ T3:

W−
3 (p′, t′) =

{
W−

1 (p′, t′) , if p′ ∈ P1, t
′ ∈ T1,

W−
2 (p′, t′) , if p′ ∈ P2, t

′ ∈ T2.

• W+
3 : P3 × [Tel3 ∪ (Tabd3 × I3) ∪ Tabi3] −→ N such that: ∀t′ ∈ T3:

W+
3 (p′, t′, i′) =

{
W+

1 (p′, t′, i′) , if p′ ∈ P1, t
′ ∈ T1,

W+
2 (p′, t′, i′) , if p′ ∈ P2, t

′ ∈ T2.

• Ω3 : Tabd3 −→ NP such that ∀t′ ∈ Tabd3:

Ω3 (t′) =

Ω1 (t′) , if t′ ∈ Tabd1,
Ω2 (t′) , if t′ ∈ Tabd2,
v, if t′ = t.

• γ3 = γ′1 ∪ γ2 such that: γ′1 = γ1 ∪ γt.
• K3 : Tel3 × Tabd3 −→ Ip3 such that: ∀t1 ∈ Tel3, t2 ∈ Tabd3:

K3 (t1, t2) =

K1 (t1, t2) , if t1 ∈ Tel1 and t2 ∈ Tabd1,
K2 (t1, t2) if t1 ∈ Tel2 and t2 ∈ Tabd2,
i, such that i ∈ (N− (I1 ∪ I2)) .

• λ3 : T3 −→ L ∪ {⊥}: such that ∀t′ ∈ T3:

λ3 (t′) =

λ1 (t′) , if t′ ∈ T ′abi1 ∪ T ′abd1,
λ2 (t′) , if t′ ∈ T2,
a, otherwise with a ∈ L.

Hierarchical System Design Using Refinable Recursive Petri Net 641

3 MAXIMALITY-BASED LABELED TRANSITION SYSTEMS

A maximality-based labeled transitions system is a graph labeled on both states
and transitions. Each state is labeled by a set of event names. Each event name
identifies the start of execution of an action which occured before this state. This
action is said to be potentially under execution in this state. A transition between
two states si and sj is labeled by a 3-uple (G, a, x) (noted Gax) where x is the event
name identifying the start of execution of the action a and G identifies the set of
event names representing the causes of the action a. Elements of G belong to state si.
Occurence of this transition terminates actions identified by G, thus, the set of event
names corresponding to state sj is that of si from which the set G is substructed
and the event name x is added. The formal definition of a maximality-based labeled
transition system is given in Definition 3.

Formal Definitions

Definition 3. Let H be a countable set of event names. 2H denotes the set of
part-set of H.

A maximality-based labeled transitions system of supportH is a fivefold (η, ϕ, µ,
ξ, θ) with: η = 〈S,TR, α, β, S0〉 is a system of transitions such that:

• S is the set of states in which the system may be found, this set can be finite or
infinite.

• TR is the set of transitions indicating the change of states which the system can
do; this set can be finite or infinite.

• α and β are two applications of TR in S such that for any transition tr ∈ TR
we have: α (tr) is the origin of the transition tr and β (tr) its goal.

• S0 is the initial state of the transition system η.

• (η, ϕ) is a system of transitions labeled by the function ϕ on an alphabet L,
called support of (η, ϕ). (ϕ : TR −→ L) such that L ranged over by a, b, . . . In
practice a transition label is a name of an action.

• θ : S −→ 2H is a function which associates to each state a finite set of maximal
event names. With the assumption that θ (S0) = ∅.
• µ : TR −→ 2H is a function which associates to each transition a finite set of

event names corresponding to the actions which began their execution and their
terminations cause the execution of this transition.

• ξ : TR −→ H is a function which associates to each transition the event name
identifying its occurrence.

With the condition that for each transition tr ∈ TR µ (tr) ⊆ θ (α (tr)), ξ (tr) /∈
θ (α (tr))− µ (tr) and θ (β (tr)) = (θ (α (tr))− µ (tr)) ∪ {ξ (tr)}.

642 M. Bouneb, D. E. Saidouni, J. M. Ilie

Notation 1. Let mlts = (η, ϕ, µ, ξ, θ) be a maximality-based labeled transitions
system such that η = 〈S, TR, α, β, S0〉. tr ∈ TR is a transition such that α (tr) = s,
β (tr) = s′, ϕ (tr) = a, µ (tr) = E and ξ (tr) = x. The transition tr will be noted

s Eax−→ s′.

Definition 4. Let mlts1 = (η1, ϕ1, µ1, ξ1, θ1) and mlts2 = (η2, ϕ2, µ2, ξ2, θ2) be two
maximality labeled transition systems with: η1 = (S1, TR1, α1, β1, s01) and η2 =
(S2, TR2, α2, β2, s02). mlts1 and mlts2 are isomorphic if there exists a bijection
h : S1 −→ S2 such that: ∀s, s′ ∈ S1/s = α1 (tr) and s′ = β1 (tr) then: tr ∈ TR1 ⇐⇒
tr′ ∈ TR2 with:

• α2 (tr′) = h (s) and β2 (t) = h (s′).

• θ1 (s) = θ2 (h (s)) and θ1 (s′) = θ2 (h (s′)).

• ϕ1 (tr) = ϕ2 (tr′).

• µ1 (tr) = µ2 (tr′).

• ξ1 (tr) = ξ2 (tr′).

Definition 5. An abstract maximality labeled transition system amlts = (η, ϕ, µ, ξ,
θ) is a MLTS labeled by function ϕ on the alphabet L∪{⊥}. ϕ : TR −→ L∪{⊥} /⊥
denotes an undefined labeling.

Definition 6. An abstract maximality labeled transition system amlts = η, ϕ, µ, ξ,
θ) is said ⊥-free if and only if ∀tr ∈ TR : ϕ (tr) 6= ⊥. A ⊥-free abstract maximality
labeled transition system is a maximality labeled transition system.

Definition 7. The isomorphism on maximality labeled transition systems is ex-
tended to abstract maximality labeled transition system by extending the function
ϕ to L ∪ {⊥}.

4 MAXIMALITY SEMANTICS FOR PETRI NET

In this section we recall the maximality approach of place transition Petri nets, pro-
posed in [14, 16]. We introduce through simple example useful notations and func-
tions for the definition of marking graph associated to a Petri net in a maximality-
based approach.

Consider the example of the marked Petri net of Figure 5. With the launch of
the transition t1, it is clear that the firings of transitions t2 and t3 are conditioned by
the end of the action related to t1. To capture this causal dependence between firings
of transitions, we consider that tokens produced by the firing of the transition t1
are bound to this transition, namely the token in place p2 and the token in place p3
(Figure 6 b)). We can see that, in the initial state, the token in p1 is not bound to
any transition; this token is called free in this state, then the marked Petri net of
Figure 6 a). In the case when t2 would be fired, it could be argued that the action
associated with the firing of t1 has finished its execution. As a result, the token in p3

Hierarchical System Design Using Refinable Recursive Petri Net 643

Figure 5. Marked Petri net

will become free. Resulting marking after the firing of the transition t2 is given in
Figure 6 c).

Figure 6. Free and bound tokens in a marking

To distinguish between free and bound tokens in a place, we can imagine that
a place is composed of two separated parts. The left part contains free tokens while
the right one will contain bound tokens. In a place, the number of free tokens will be
denoted by FT , while bound tokens set will be noted BT . So each place is marked
by (FT ,BT). Hence, we obtain the succession of markings of Figure 6. Each bound
token identifies an action that is eventually being executed (this token corresponds
to a maximal event). Also each transition of marking graph corresponds to the start
of execution of an action which is identified by an event name. Since a weight of
an edge linking a transition to a place may be grater than one, a firing transition
may produce more than one bound token, the bound token is identified by a tuple
(n, t, x) where n is a number of instance of a bound token, t is a firing transition
producing this bound token and x is an event name identifying the transition firing
in time. Note that the firing condition of a transition is only conditioned by the
number of free and bound tokens in places.

644 M. Bouneb, D. E. Saidouni, J. M. Ilie

Preliminary Definitions

A Petri net is a tuple (P, T,W) where:

• P : is a finite set of places.

• T : is a finite set of transition such that P ∩ T = ∅.
• W : (P × T) ∪ (T × P) −→ N is the weight function.

Let (P, T,W) be a Petri net with a marking M :

• The set of maximal event names in M is the set of all event names identify-
ing bound tokens in the marking M . Formally, the function δ will be used
to calculate this set, it can be defined as: δ : M −→ PR (H). δ (M) =
∪p∈P {x1, x2, .., xm} such that M (p) = (FT ,BT) with: BT = {(n1, t1, x1) , . . . ,
(nm, tm, xm)}.
• Let X ⊂ H be a finite set of event names. The operation of transforming bound

tokens defined by X to free tokens in the marking M is defined by the inductive
function makefree as follows:

– makefree ({x1, x2, . . . , xn} ,M) = makefree({x2, . . . , xn} ,makefree({x1} ,
M))

– makefree ({x} ,M) = M ′ such that for all p ∈ P , if M (p) = (FT ,BT) then:

∗ If there is (n, t, x) ∈ BT then M ′ (p) = (FT + n,BT − {(n, t, x)}) (con-
version of n bound tokens identified by the event name x to free tokens).
∗ Otherwise, M ′ (p) = M (p).

• |M (p) |= FT +
∑m

i=1 ni such that M (p) = (FT ,BT) with BT = {(n1, t1, x1) ,
. . . , (nm, tm, xm)}.
• Let t be a transition of T ; t is said to be enabled by the marking M iff |M (p) |≥
W (p, t) for all p ∈ P . The set of all transitions enabled by the marking M will
be noted enabled(M).

• The marking M is said minimal for the firing of the transition t iff | M (p) |=
W (p, t) for all p ∈ P .

• Let M1 and M2 be two markings of the Petri net (P, T,W). M1 ⊆ M2 iff
∀p ∈ P , if M1 (p) = (FT 1,BT 1) and M2 (p) = (FT 2,BT 2) then FT 1 ≥ FT 2

and BT 1 ⊆ BT 2 such that the relation ⊆ is extended to bound tokens sets as
follows: BT 1 ⊆ BT 2 iff ∀ (n1, t, x) ∈ BT 1,∃ (n2, t, x) ∈ BT 2 such that n1 ≤ n2.

• Let M1 and M2 be two markings of the Petri net (P, T,W) such that M1 ⊆M2.
The difference M2−M1 is a marking M3 (M2 −M1 = M3) such that for all p ∈ P ,
if M1 (p) = (FT 1,BT 1) and M2 (p) = (FT 2,BT 2) then M3 (p) = (FT 3,BT 3)
with FT 3 = FT 2 − FT 1 and ∀ (n1, t, x) ∈ BT 1, (n2, t, x) ∈ BT 2, if n1 6= n2

then (n2 − n1, t, x) ∈ BT 3.

• get : 2H −→ H/ for any elt ∈ 2H, get (elt) ∈ elt is the function which associates
to any transition an events name.

Hierarchical System Design Using Refinable Recursive Petri Net 645

• Given a marking M , a transition t and an event name x /∈ δ (M), occur (t, x,M)
= M ′ such that for all p ∈ P , if M (p) = (FT ,BT) then M ′ (p) = (FT ,BT ′)
with BT ′ = BT ∪ {W (t, p) , t, x} if W (t, p) 6= 0 and BT ′ = BT , otherwise.
Hence, M ′ is the resulting marking obtained by the addition of bound tokens
related to the firing of transition t to the marking M .

• λ : T −→ L is a function which associates to any transition an action name,
such that L ranged over by a, b, In practice a transition label is a name of
an action.

5 MAXIMALITY SEMANTICS FOR REFINABLE
RECURSIVE PETRI NETS

All definitions remain valid for refinable recursive Petri net. Other notations and
functions will be given for the definition of the operational maximality semantics.
The proposed approach and the interest of hierarchical design are illustrated through
simple examples. Since abstract transitions behaviors are introduced gradually,
conflict, sequencing and parallelism relations linking an abstract transition to other
transitions are extended to transitions of refinement Petri nets.

Figure 7. Start and end of undefined abstract transition

Consider the refinable recursive Petri net of Figure 7 a) in which t2 is an abstract
transition with an undefined behavior. The firing of this transition is caused by the
end of the execution of the action associated to the transition t1. Since the behavior
of this transition is undefined, it will be fired as an elementary transition labeled
by ⊥. For this fact the generation of the marking graph for this net consists in
the generation of the marking graph for classical Petri nets. Note that the event x
identifies the beginning of the execution of an undefined process ⊥.

Consider now the behavior of the process associated to the transition t2 is mod-
eled by the Petri net of Figure 8 a). The firing of this abstract transition starts the
execution of its associated thread. The ordinary marking defined by the semilinear
set will be prolonged to the marking of the instance of the Petri net son, this is
interpreted by the addition of a token in the place p5. The passing from the Petri

646 M. Bouneb, D. E. Saidouni, J. M. Ilie

Figure 8. Refinement of the abstract transition t2

net father to the Petri net son is made through the firing of a virtual transition
called admitted. The firing of the transition admitted is causally dependent on the
action a, the start of execution of the action admitted(b) is identified by the event
x. This firing is similar to the firing of an elementary transition, it is followed by
the deposition of a token related to this action in the right part of the place p5.

After the generation of a linked token in the place p5, any transition that can be
fired from this thread will be immediately executed. But it is necessary to take into
account the satisfaction of the predicate of terminationγ1 = {|M (p8) |≥ 1}. This
condition will be satisfied, when the transition t6 or exclusively the transition t7
deposits at least a token in the right part of the place p8. When this predicate
becomes true, a transition called finished will be fired, it makes the return to the
father thread, indeed this transition represents the cut step of the son thread τ .
Generally, a transition finished is regarded as an elementary transition. Its firing
causes the emersion of the tokens defined by the post condition of the abstract
transition in the right part of all places which belong to the post set of this one. Just
after the end of the execution of abstract transition, the firing of the transition t3 can
happen. Figure 8 b) represents the maximality labeled transitions system generated
from this Petri net. Note that the event x identifies the action admitted(b) as well
as the start of the execution of the thread itself, thus it can be re-used within this
thread. Once the thread is finished, this event name can be re-used in the father
thread.

5.1 Comparison of Abstract MLTS

Definition 8. Let sys1 and sys2 be two systems such that: [| sys1 |]{mlts} is not ⊥-

free and [| sys2 |]{mlts} is not ⊥-free. If [| sys1 |]{mlts} and [| sys2 |]{mlts} are abstractly

isomorphs ; [| ρ (sys1) |]{mlts} and [| ρ (sys2) |]{mlts} are abstractly isomorphs such

Hierarchical System Design Using Refinable Recursive Petri Net 647

as: ρ is the process of refinement of an abstract transition [||]{mlts} is the process
which interprets a Petri net to an abstract maximality labeled transition system.

A proposition of equality is said decidable if we can demonstrate this proposition
or prove its negation. By definition two systems are equal if they have the same
semantics representation. In the example of Figure 9, the two Petri nets seem that
describe the same system, their amlts are abstractly isomorph (Figure 9 c)). But
this does not mean that their refined systems stay equal.

Figure 9. Comparison of two recursive Petri nets

Figure 10. Case of equality after refinement

When we refine the two occurrences of the abstract transitions t1 in sys1, t1
in sys2 by the Petri net of Figure 10 a), we get two abstract isomorph maximality
labeled transition systems given by the Figure 10 b). In this case, both systems are
equal. However, if we refine the transition t1 in sys1 by the Petri net of Figure 11 a)
and we refine the transition t1 in sys2 by the Petri net of Figure 11 b), we get two
maximality labeled transition systems, which are not isomorphs at this level.

5.2 Maximality Operational Semantics for Refinable Recursive Petri Nets

Preliminary Definitions

• T HR: is the set of all threads.

• We call thread any configuration of the form:
(
THi, (Mi)

Ni

ref(Ti)

)
such that:

– Mi is the father marking.

– THi is the set of the son threads where each thread is identified by a event
name.

– ref (Ti) is the Petri net corresponding to this thread, it describes the behavior
of abstract transition Ti.

648 M. Bouneb, D. E. Saidouni, J. M. Ilie

Figure 11. Case of inequality after refinement

– Ni is the event’s name which identifies this thread.

– The initial configuration noted (∅, (M0)
x0
R) is built from an initial marking

M0 of the principal Petri net R.

• Let the labeled refinable recursive Petri net R = (P, T, I,W−,W+,Ω, γ,K, λ)
provided with a marking M :

– ψ : T HR → 2H. The function which determines the events names in a
thread is recursively defined by:

∗ ψ
(
∅, (M)NR

)
= δ (M).

∗ ψ
(
TH, (M)NR

)
= (∪ni=1ψ (thi)) ∪ δ (M) with TH = {th1, th2, .., thn}.

– ∀
(
TH, (M)NR

)
∈ T HR. X ⊂ H is a finished set of events names.

clean
(
X,
(
TH, (M)NR

))
is recursively defined by:

∗ clean
(
X,
(
∅, (M)NR

))
=
(
∅, (makefree (X,M))NR

)
.

∗ clean
(
X,
(
TH, (M)NR

))
=

(
∪ni=1clean (X, thi) , (makefree (X,M))NR

)
with TH = {th1, th2, . . . , thn}.

– ∀
(
TH, (M)NR

)
∈ T HR, t ∈ T is sensitized by this thread if and only if:

∗ ∀p ∈ P :|M (p) |≥ w (p, t) or

∗ ∃th i =
(

TH i, (Mi)
Ni

ref (Ti)

)
∈ TH such that: | Mi (p) |≥ w (p, t) for all

p ∈ ref (Ti) (p).

– The function cutstep : T HR× γ → boolean is defined as follows:

∀thi =
(

TH i, (Mi)
Ni

ref (Ti)

)
∈ T HR, ∀γi ∈ γ

Hierarchical System Design Using Refinable Recursive Petri Net 649

then{
true, if ∀p ∈ ref (Ti) (p) ,Mi (p) ≥ n with γi = {|M (p) |≥ n/n ∈ N} ,
false, otherwise.

• TH | t > TH ′ means that the execution of the transition t from TH leads to
TH ′.

• A sequence TH0t1TH1t2 . . . is an occurrence sequence iff THi−1 | ti > THi for
i ≥ 1. A sequence σ = t1t2 . . . is a transition sequence starting with TH0 iff
there is an occurrence sequence TH 0t1TH 1t2 If a finite sequence t1t2 . . . tn
leads from TH to TH ′, we write TH | t1t2 . . . tn > TH ′.

Semantics Rules

The operational semantics of labeled refinable recursive Petri net allowing the gen-
eration of a maximality labeled transitions system is defined by the following rules:

1.
For M1 a marking, t ∈ enabled (M1) with t ∈ Tel ∪ Tabi(

TH 1, (M1)
N
R

)
Eλ(t)x−→

(
TH1, (M2)

N
R

) such that:

∀M3 ∈ min (M1, t):

• E = δ (M3) ,M4 = makefree (E,M1 −M3)

• M2 = occur (t, x,M4) such that:

– ∀p ∈ P if M4 (p) = (FT 4,BT 4) then: M2 (p) = (FT 4,BT 2) with

BT 2 =

{
BT 4 ∪ {(w (t, p, i) , λ (t) , x)} , if w (t, p, i) 6= 0,

BT 4, otherwise.

• x = get
(
H−

(
ψ
(
clean

(
E,
(
TH1, (M1)

N
R

)))))
.

2.
For M1 a marking , Ti ∈ enabled (M1) ∧ Ti ∈ Tabd(

TH 1, (M1)
N
R

)
Eadmitted(λ(Ti))x−→

(
TH 2, (M2)

N
R

) such that:

∀M3 ∈ min (M1, Ti):

• E = δ (M3) ,M4 = makefree (E,M1 −M3).

• ∀p ∈ P : M2 (p) = M4 (p).

• TH 2 = TH1 ∪
{(
∅, (M0)

{x}
ref (Ti)

)}
such that:

(
(M0)

{x}
ref(Ti)

)
(p) =

{
(0, {(Ω (Ti) (p) , admitted (λ (Ti)) , x)}) , if Ω (Ti) (p) 6= 0

(0, ∅) , otherwise.

• x = get
(
H− ψ

(
clean

(
E,
(

TH 1, (M1)
N
R

))))
.

650 M. Bouneb, D. E. Saidouni, J. M. Ilie

3.
th i,∃γi ∈ γ/cutstep (thi, γi)(

TH 1, (M1)
N
R

)
{x}finished(λ(Ti))x−→

(
TH 2, (M2)

N
R

) such that:

∀th i ∈ TH 1/thi =
(

TH i, (Mi)
Ni

ref (Ti)

)
, Ni = {x}:

• M2 = occur (finished (Ti) , {x} ,M1).

• ∀p ∈ P : if M2 (p) = (FT 2,BT 2) then

BT 2 =

{
BT 1 ∪ {(w (t, p, i) , finished (λ (Ti)) , x)} , if w (t, p, i) 6= 0,

BT 1, otherwise.

• TH 2 = TH1 − {th i}.

4.
M1,M1 ∈ enabled (t) , t ∈ Tel ∧K (t, Ti) ∈ Ip(

TH1, (M1)
N
R

)
Eλ(t)x−→

(
TH 2, (M2)

N
R

) such that:

∀th i ∈ TH 1/th i =
(

TH i, (Mi)
Ni

ref (Ti)

)
, ∀M3 ∈ min (M1, t):

• E = δ (M3) ,M4 = makefree (E,M1 −M3).

• M2 = occur (occur (t, E,M3) , finished (λ (Ti)) , Ni).

• ∀p ∈ P : ifM2 (p) = (FT 2,BT 1) then, M2 (p) = (FT 4,BT 2) with:

BT 2 =

BT 4 ∪ {(w (t, p, i) , t, x)} , if w (t, p, i) 6= 0,

BT 4 ∪ {(w (Ti, p, i) , finished (λ (Ti)) , Ni)} , if w (t, p, i) 6= 0,

BT 4, otherwise.

• TH 2 = TH1 − {th i}.
• x = get

(
H−

(
ψ
(

clean
(
E,
(

TH 1, (M1)
N
R

)))
− ψ (th i)

))
.

6 CASE STUDY

As an example, we consider a flame cutting machine used to fabricate pieces for
vehicles: this machine consists of: the reading head, the blowtorches and the tem-
plate which is a diagram dimensioning pieces. It has a movable table on which the
template is located, and then transmits it as a dimensional information. The read
information is transmitted to blowtorches controller, as a result the blowtorches cut
the piece from metal sheet according to that as defined on the template. Because
some external events may cause errors (modification of table position) during the
cutting process, in such a case the following actions are immediately produced:

• Displaying output indicating the occurrence of a problem using a lamp.

• The blowtorches will be stopped.

• The table is reported in its initial position.

Hierarchical System Design Using Refinable Recursive Petri Net 651

The assessment of this system is done by verifying some properties, expressed in
CTL logic, using the formal verification environment FOCOVE (Formal Concurrent
Verification Environment).

Step 01: In this first step we abstractly model the system tasks. Consequently
tasks considering behaviors are not yet known. In the specification of Fig-
ure 12 a), transitions t2 and t3 are associated respectively to fabricate and main-
tain processes. These transitions are labeled by “bottom” since their behaviors
are unknown.

Figure 12. Modelling of flame cutting machine in step 01

The abstract maximality labeled transition system corresponding to this refin-
able recursive Petri net is shown by Figure 12 b).

Verification

Using the CTL logic in the context of the maximality semantics where actions
represent activities has been studied in [16]. Actions are considered as atomic
propositions. Then an action name a in a formula associated to a given state
means that action a may be in execution at this state. At this level of abstraction
we can, for example, verify that always after each execution of the undefined
process related to the transition fabricate we can launch this process again. This
property is expressed in CTL logic as follows: AG(⊥ => ⊥).

Following the semantics of CTL formula in the context of the maximality seman-
tics, the formula AG(⊥ => ⊥) means that a not well known activity at a given
state leads to the execution of this activity again. Following the refinement
process, this activity will be specified in the following refinement steps.

Step 02: In this step we label the abstract transition t2 by the action fabricate,
so now we will give details of this abstract transition. This is done by refin-
ing the transition t2 in Petri net R1 by the process described in Petri net R2.
ρ (t2, R1, R2, {0} , {1} , 〈p4〉 , {γ0 = {M/ |M (p6) |> 1}}) = R3

The abstract maximality labeled transition system of this refinable recursive
Petri net is shown by Figure 14.

652 M. Bouneb, D. E. Saidouni, J. M. Ilie

Figure 13. Modelling of flame cutting machine in step 02

Verification

• After each execution of process “fabricate” we can again lunch it.

AG (finished (fabricate) =⇒ admitted (fabricate)) .

• When a problem of cutting appears, the undefined process ⊥ corresponding
to the transition maintain will be automatically launched.

AF (signaler =⇒ EX⊥) .

• When a problem of cutting appears, the process fabricate will be preempted.

AG (signaler =⇒ finished (fabricate)) .

Figure 14. Abstract maximality labeled transition system in step 2

Step 03: Now we give details of the process corresponding to the abstract transi-
tion t3, it will be labeled by the action maintain.

ρ (t3, R3, R4, {2} , ∅, 〈p7〉 , {γ2 = {M/ |M (p9) |> 1}}) = R5.

The maximality labeled transition system obtained by applying the proposed
approach consists of 12 states and 19 transitions. Due to its size it cannot be
depicted in this paper.

Hierarchical System Design Using Refinable Recursive Petri Net 653

Figure 15. Modelling of flame cutting machine in step 03

Verification

All proprieties which are verified in step 2 are still to be verified in this step 3.
In addition we can verify other properties like:

• When an error will occur while the process fabricate is running the flame
cutting will be stopped.

AG ((signaler and finished (fabricate)) =⇒ EG stop-torche)

7 CONCLUSION

In this paper, we have proposed a new approach to modelling concurrent systems by
defining a new model named refinable recursive Petri nets, which permits a hierar-
chical design, so the functionalities and features of systems can be added gradually.
Also we have proposed an operational method for generating a maximality labeled
transition system associated to the refinable recursive Petri nets. This will make
it possible to benefit from the developed results of verification around the model
of maximality labeled transition systems. For this fact, the properties related to
the good performance of a system specified by a refinable recursive Petri net can
be checked on its corresponding maximality labeled transition system. It should be
noted that the structure of the maximality labeled transition system represents, in
a natural way, the parallel execution of actions, as well as the parallel execution of
threads.

REFERENCES

[1] Aceto, L.—Hennessy, M.: Adding Action Refinement to Finite Process Algebra.
In: Albert, J. L., Monien, B., Artalejo, M. R. (Eds.): Automata, Languages and
Programming (ICALP ’91). Springer, Lecture Notes in Computer Science, Vol. 510,
1991, pp. 506–519.

654 M. Bouneb, D. E. Saidouni, J. M. Ilie

[2] Andrews, D.—Groote, J.—Middelburg, C. (Eds.): Semantics of Specification
Languages (SoSL). Springer, London, Workshops in Computing, 1993.

[3] Best, E.—Devillers, R.—Kiehn, A.—Pomello, L.: Concurrent Bisimulations
in Petri Nets. Acta Informatica, Vol. 28, 1991, pp. 231–264, doi: 10.1007/BF01178506.

[4] Boudol, G.—Castellani, I.: Concurrency and Atomicity. Theoretical Computer
Science, Vol. 59, 1988, No. 1-2, pp. 25–84, doi: 10.1016/0304-3975(88)90096-5.

[5] Courtiat, J. P.—Saidouni, D. E.: Action Refinement in LOTOS. In: Dan-
thine, A., Leduc, G., Wolpe, P. (Eds.): Protocol Specification, Testing and Verifi-
cation (PSTV ’93). North-Holland, 1994, pp. 341–354.

[6] Darondeau, P.—Degano, P.: Causal Trees. In: Ausiello, G., Dezani-
Ciancaglini, M., Della Rocca, S. R. (Eds.): Automata, Languages and Program-
ming (ICALP ’89). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 372, 1989, pp. 234–248.

[7] Degano, P.—Gorrieri, R.: Atomic Refinement in Process Description Languages.
In: Tarlecki, A. (Ed.): Mathematical Foundations of Computer Science (MFCS 1991).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 520, 1991,
pp. 121–130.

[8] Devillers, R.: Maximality Preservation and the ST-Idea for Action Refinement. In:
Rozenberg, G. (Ed.): Advances in Petri Nets. Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 609, 1992, pp. 108–151, doi: 10.1007/3-540-55610-
9 170.

[9] Courtiat, J.-P.—Säıdouni, J.-E.: Relating Maximality-Based Semantics to Ac-
tion Refinement in Process Algebras. In: Hogrefe, D., Leue, S. (Eds.): IFIP
TC6/WG6.1, 7th International Conference on Formal Description Techniques
(FORTE ’94), Chapman, Hall, IFIP Conference Proceedings 6, 1994, pp. 293–308.

[10] Janssen, W.—Poel, M.—Zwiers, J.: Action Systems and Action Refinement in
the Development of Parallel Systems. In: Baeten, J. C. M., Groote, J. F. (Eds.): CON-
CUR ’91. Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 527,
1991, pp. 298–316.

[11] Saidouni, D. E.—Courtiat, J. P.: Syntactic Action Refinement in Presence
of Multiway Synchronization. Semantics of Specification Languages (SoSL), 1994,
pp. 289–330, doi: 10.1007/978-1-4471-3229-5 16.

[12] Van Glabbeek, R. J.: The Refinement Theorem for ST-Bisimulation Semantics.
IFIP Working Conference on Programming Concepts and Methods, North-Holland,
1990.

[13] Saidouni, D. E.: Maximality Semantic: Application to Actions Refinement in LO-
TOS. Ph.D. thesis, LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse Cedex
France, 1996 (in French).

[14] Saidouni, D. E.—Belala, N.—Bouneb, M.—Boudjadar, A.—Ouchène, B.:
Using Maximality-Based Labeled Transitions as Model for Petri Nets. The Interna-
tional Arab Conference on Information Technology (ACIT ’08), 2008.

[15] Saidouni, D. E.—Belala, N.—Bouneb, M.: Aggregation of Transitions in Mark-
ing Graph Generation Based on Maximality Semantics for Petri Nets. Proceedings

https://doi.org/10.1007/BF01178506
https://doi.org/10.1016/0304-3975(88)90096-5
https://doi.org/10.1007/3-540-55610-9_170
https://doi.org/10.1007/3-540-55610-9_170
https://doi.org/10.1007/978-1-4471-3229-5_16

Hierarchical System Design Using Refinable Recursive Petri Net 655

of the Second International Conference on Verification and Evaluation of Computer
and Communication Systems (VECoS ’08), 2008, pp. 6–16.

[16] Saidouni, D. E.—Belala, N.—Bouneb, M.: Using Maximality-Based Labelled
Transitions as Model for Petri Nets. The International Arab Journal of Information
Technology (IAJIT), Vol. 6, 2009, No. 5, pp. 440–446.

[17] Saidouni, D. E.—Belala, N.—Bouneb, M.: Maximality-Based Structural Oper-
ational Semantics for Petri Nets. 2nd Mediterranean Conference on Intelligent Systems
and Automation (CISA), 2009.

[18] Saidouni, D. E.—Bouneb, M.—Ilie, J. M.: Maximality Semantic for Recursive
Petri Net. Proceedings of 27th Europeen Conference on Modelling and Simulation
(ECMS ’13). 2013, pp. 544–550. ISBN 978-0-9564944-7-4, doi: 10.7148/2013-0544.

[19] Buchholz, P.: Hierarchical High Level Petri Nets for Complex System Analysis.
Computer Science IV, Dortmund university, D-44221, Dortmund Germany, 1994,
doi: 10.1007/3-540-58152-9 8.

[20] Cheung, K.-S.—Chow, P. K.-O.: A Petri-Net Approach to Refining Object Be-
havioural Specifications. Informatica, Vol. 33, 2009, No. 2, pp. 221–232.

Messaouda Bouneb received her B.Eng. degree from the University of Mentouri Con-
stantine, Algeria (2005). In February 2009, she received her M.Sc. degree in computer
science from the University of El Arbi Ben-M’hidi Oum El-Bouaghi, Algeria. Her research
domain is formal specification and verification of real-time systems using Petri nets.

Djamel Eddine Saidouni received his B.Eng. degree from the University of Mentouri
Constantine, Algeria (1990). He received his Ph.D. in theoretical computer science from
the University of Paul Sabatier, Toulouse, France (1996). His domain research is the
formal specification and verification of complex distributed and real time systems.

Jean Michel Ilie received several degrees in electronics and informatics along with his
Ph.D. thesis from the UPMC University of Paris (1990). Currently, he is a member of the
Paris Descartes University in its conference on a master higher grade (2009), he is also
Permanent Researcher of the LIP6 laboratory, UPMC. The fields of his research concern
the formal validation of complex embedded systems.

https://doi.org/10.7148/2013-0544
https://doi.org/10.1007/3-540-58152-9_8

Computing and Informatics, Vol. 37, 2018, 656–672, doi: 10.4149/cai 2018 3 656

BREAKOUT LOCAL SEARCH FOR THE TRAVELLING
SALESMAN PROBLEM

Mehdi El Krari

Faculty of Science, Mohammed V University in Rabat
Computer Science Laboratory
Rabat, Morocco
e-mail: mehdi@elkrari.com

Beläıd Ahiod

Faculty of Science, Mohammed V University in Rabat
LRIT, Associated Unit to CNRST (URAC 29)
Rabat, Morocco
e-mail: ahiod@fsr.ac.ma

Bouazza El Benani

Faculty of Science, Mohammed V University in Rabat
Computer Science Laboratory
Rabat, Morocco
e-mail: elbenani@hotmail.com

Abstract. The travelling salesman problem (TSP), a famous NP-hard combinato-
rial optimisation problem (COP), consists of finding a minimum length tour that
visits n cities exactly once and comes back to the starting city. This paper presents
a resolution of the TSP using the breakout local search metaheuristic algorithm
(BLS), which is based on the iterated local search (ILS) framework and improves it
by introducing some fundamental features of several well-established metaheuristics
such as tabu search (TS) and variable neighbourhood search (VNS). BLS moves
from a local optimum of a neighbourhood to another by applying perturbation
jumps whose type and number are determined adaptively. It has already been ap-
plied to many COP and gives good results. This innovative hybridisation resolved
well 41 instances from the commonly used benchmark library TSPLIB. The high
quality of experimental results shows the competitiveness of the proposed algorithm
compared to other algorithms based on local search.

Breakout Local Search for the TSP 657

Keywords: Travelling salesman problem, breakout local search, adaptive pertur-
bation strategy, iterated local search

1 INTRODUCTION

The travelling salesman problem (TSP) [1, 3] is one of the most universally studied
combinatorial optimisation problems (COP). It is for more than half a century the
focus of many researchers from all around the world. Work on the TSP had an enor-
mous impact on the emergence and evolution of many important areas of research
(stochastic local search [9], integer programming [22], complexity theory [11] . . .).
Besides its importance in practice, the TSP has also become a standard testbed for
new algorithmic ideas. The problem was introduced for the first time in 1859 by
William Rowan Hamilton. In its classic form, the statement is as follows: “A trav-
elling salesman must visit once and only once a finite number of cities and return to
its point of origin. Find the order of visiting cities that minimises the total distance
travelled by the salesman.”

Application domains of TSP are numerous: logistic problems of transportation
of goods, as well as people, and more generally all kinds of scheduling problems.
Some issues in the industry are modelled as a travelling salesman problem as the
optimisation of trajectories of machine tools: How to drill several points on an
electronic card as quickly as possible? The manufacturing of VLSI chips [23] and
X-ray crystallography [21] are just a few examples of several applications of the TSP.
Its simplicity and adaptability have made this problem for decades a starting point
for more work and research. This COP belongs to NP-complete problems [11].

We introduce the breakout local search metaheuristic algorithm (BLS) for solv-
ing the TSP. While iterated local search (ILS) [19] may suffer from lack of effec-
tiveness in escaping attractions, BLS follows the basic scheme of this framework
and improves it by combining the features of other robust and efficient methods,
including variable neighbourhood search (VNS) [15] adapted on perturbations [8].
The main idea of BLS is to use a descent-based local search to find local optima, and
use the most appropriate perturbations in order to move (without being blocked)
from one neighbourhood to another in the search space. Perturbation strategy of
BLS is based on both the history and state of search; it introduces a variable degree
of diversification by determining perturbation dynamically jumps and performing
adaptive selection from several types of dedicated movements.

BLS was developed by Benlic and Hao in 2012. Since then, it has been used
for solving some COP, such as the minimum sum coloring problem [4], maximum
clique problems [5], quadratic assignment problem [7] and max-cut problem [6] and
has given very good results. This paper deals with a resolution of the TSP, whose
performance will be evaluated by solving 41 benchmark instances of the TSPLIB [16].

The reminder of this paper is organised as follows: Section 2 introduces the TSP
and local search approaches. Section 3 describes in detail the BLS metaheuristic.

658 M. El Krari, B. Ahiod, B. El Benani

Section 4 first reports the computational results and comparisons, which are based
on the TSPLIB benchmark instances; then it provides justification of the choice for
some of BLS parameter settings. Section 5 is devoted to a discussion around BLS
highlights which makes it different from other ILS algorithms. Finally, Section 6
concludes the paper.

2 THE TRAVELLING SALESMAN PROBLEM

2.1 TSP Formulation and Landscape Analysis

Given n cities and a matrix D = (dij)n×n of distances between all pairs of these cities.
The TSP aims to find a shortest closed tour (i.e. Hamiltonian cycle) in which each
city is visited once and only once. Each tour can be represented by a permutation
π = (π(1), π(2), . . . , π(n)) of integers from 1 to n where j = π(i) denotes the city j to
visit at step i, i = 1, 2, . . . , n. Therefore, the goal of TSP is to search a permutation
π (tour) that minimises the tour length given by the following equation:

n−1∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (1)

where dij is the distance between city i and city j. In this paper, we consider the
symmetric TSP where the distances satisfy dij = dji for 1 ≤ i, j ≤ n.

The study of TSP landscape [2] (or for any COP) allows us to know which
operator exploits better the search space of the problem. Changing neighbourhood
must be made such that it gives a new search area without escaping too far from the
previous neighbourhood, in which case would provide an independent neighbourhood
from those before. Such a study requires knowledge of some notions such as the
fitness function and correlation.

As mentioned earlier, the most common fitness function is that using the length
of the tour. A good fitness is a fitness with a low value, so a shorter tour. The
landscape of the problem depends on the fitness function of the different solutions,
hence the concept of fitness landscape.

The second important concept to know is that of correlation [14, 18], introduced
to provide a measure of the difficulty of a problem taking in account some operators.
It shows how much a tour is linked to its neighbours.

Experiments done previously on the TSP [10, 2, 18] showed that the landscape
is more correlated for 2-opt move than others. That is why it has been chosen in
this paper, especially in the local search phase.

2.2 Local Search Approaches for the TSP

Local search methods start from an initial configuration and apply successive trans-
formations to the current solution while a stopping criterion is not verified. There-

Breakout Local Search for the TSP 659

fore, the implementation requires the choice of an initial solution(s) and local trans-
formation(s), also known as moves. These algorithms are frequently used for solving
the TSP problem. They improve iteratively the current solution seeking better in its
predefined neighbourhood. The algorithm stops when he reaches a maximal number
of iterations or when there is no better solution in a given neighbourhood: a local
minimum is attained. Historically, 2-opt [9] is one of the first algorithms to solve
instances of the TSP. It is a local search algorithm whose neighbourhood is defined
by removing two non-adjacent edges of the current solution. The two parts obtained
from this solution are reconnected by two other edges to obtain a new solution. The
iterated local search (ILS) proposed by T. Stützle [19] is a framework based on local
searches; it is a stochastic method that produces a sequence of solutions generated
by an introduced heuristic, leading to better results than if we use repeated random
testing of this heuristic. One of the main steps of ILS is perturbations [8], it is to
avoid to be trapped in a local optimum by switching to another more distant. Local
search in such a case will run more easily and will be more efficient.

However, perturbations applied by ILS for some TSP instances may not escape
attraction from some neighbourhoods. Based on the later point, we introduced a new
approach based on diversification of perturbations and moves, named “Breakout
Local Search”.

3 BREAKOUT LOCAL SEARCH FOR THE TSP

3.1 An Overview of BLS

The overall approach of BLS is a move from a local optimum of a neighbourhood to
another one by applying perturbation jumps type and number of which are deter-
mined adaptively. Algorithm 1 below is a pseudo-code of the BLS algorithm for solv-
ing the TSP. BLS starts from an initial solution π0 (having a cost C0) and performs
local search (the steepest descent) to reach a new local optimum π (lines 13–18).
Each iteration of the local search algorithm browses the whole neighbourhood and
chooses the best improving solution to replace the current neighbourhood solution.
If no improvement is made in the neighbourhood, the local optimality is reached.
BLS tries firstly to escape the neighbourhood attraction of the current local optimum
to move to a new neighbourhood attraction (line 38). BLS applies then a number
of moves (or jumps) starting from L0 and dedicated to the current local optimum π
which becomes disturbed and serves as a starting point for the next descent of the
local search procedure. When the local search procedure returns the same neigh-
bour π, BLS disturbs it more strongly by selecting a stronger perturbation, and
(when different perturbations are not able to move to a neighbourhood with a new
best local optimum) by increasing the number of jumps L by 1 to apply for this
perturbation (lines 30–32). After visiting some neighbourhoods without improving
the best solution found so far (lines 23–24) T times, BLS performs a much stronger
perturbation with Lmax jumps to permanently direct search into a new and more
distant region in the search space (lines 26–30).

660 M. El Krari, B. Ahiod, B. El Benani

Algorithm 1 Breakout Local Search for TSP

Require: Maximal descents to perform Descmax, initial number of jumps L0, maximal
consecutive visited local optima without any improvement T , number of jumps in
strong perturbation Lmax.

Ensure: A solution πbest
1: S ← 0
2: π ← initialSolution() /* generates a solution with greedy or random algorithm

*/
3: C ← Cost(π)
4: πbest ← π /* πbest saves best solution found */
5: cbest ← c /* cbest saves best objective value */
6: ω ← 0 /* ω gives the number of consecutive non-improving local optima */
7: L← L0 /* L saves number of jumps to perform, set to its minimal value L0 */
8: Lω ← 0 /* Lω is an indicator to guess which move to use in next perturbation

*/
9: cp ← c /* cp saves objective value of last descent */

10: Desc ← 0 /* Desc saves current number of descents */
11: Iter ← 0 /* global iteration counter */
12: while Desc < Descmax do
13: while ∃2optMove(x, y) such that (c+ delta2Opt(π, x, y) < c) do
14: π ← π ⊕ 2optMove(x, y) /* perform the best improving move */
15: c← c+ delta2Opt(π, x, y) /* cost variation of π with (x,y) move */
16: update H(Iter, x, y) /* update iteration number when edges move was last

performed */
17: Iter ← Iter + 1
18: end while
19: if c < cbest then
20: update πbest and cbest
21: ω ← 0
22: Desc ← Desc × 1

2 /* reduce current number of descents */
23: else
24: ω ← ω + 1
25: end if
26: if ω > T then /* performing strong perturbation */
27: π ← dbmPerturb(π, Lmax) /* Double Bridge Move perturbation with

Lmax moves */
28: ω ← 0
29: Desc ← Desc × 7

8 /* reduce current number of descents */
30: else if c = cp then /* search returned the previous local optimum */
31: Lω ← Lω + 1 /* increment indicator for the type of perturbation */
32: L← L0 + Lω

3 /* increment moves if the 3 moves do not improve */
33: else /* Search escaped from the previous local optimum, reinitialize indicator

*/
34: Lω ← 0
35: end if

Breakout Local Search for the TSP 661

36: cp ← c /* update the objective value of the previous local optimum */
37: if Strong perturbation was not performed then
38: π ← Adaptive Perturbation(π, L, Lω,H, Iter, ω) /* see algorithm 4 */
39: end if
40: end while
41: return πbest

3.2 Exploring Solution Space by Neighbourhood

BLS is a metaheuristic based on the ILS framework, the process of descent/pertur-
bation is redone as we have not yet reached a number (Descmax) of descents. BLS
uses the steepest descent with a 2-opt neighbourhood in local search and is called
different perturbations, each of them introduces a different neighbourhood as shown
in Algorithm 2. One of these perturbations (depending on Lω value) is applied
L times to a local optimum π with moves chosen from the set of candidates M .

Algorithm 2 Dynamic Perturbation(π, L, Lω,H, Iter, ω,M)
Require: Initial solution π which is a local optimum, number of jumps L, indicator

of perturbation type Lω, matrix of history moves H, global iteration counter Iter,
number of consecutive non-improving local optima ω, set of candidate moves M .

Ensure: A perturbed solution π
1: if (Lω mod 3) = 0 then /* Call Perturbation Operator with 2Opt move */
2: π ← Perturbation Operator(π, L,H, Iter, ω,M, 2Opt)
3: else if (Lω mod 3)= 1 then /* Call Perturbation Operator with insert move */
4: π ← Perturbation Operator(π, L,H, Iter, ω,M, insert)
5: else /* Call Perturbation Operator with swap move */
6: π ← Perturbation Operator(π, L,H, Iter, ω,M, swap)
7: end if
8: return π

Perturbations play a key role in BLS since the steepest descent cannot escape
the local optimum. BLS tries then to exit the current neighbourhood by introducing
different parameterised perturbations, starting with

1. the nodes/cities to move, and

2. how many times to perturb and

3. which move type to make.

All these steps will be detailed in the next sections.

3.3 Principle of Adaptive Perturbation

3.3.1 Main Idea

A variety of perturbations in BLS resides in the number of jumps and the (three)
types of perturbations implemented. The number of jumps increases once all the

662 M. El Krari, B. Ahiod, B. El Benani

perturbations attempted without any improvement.

• The first perturbation is performed with a 2-opt move, wich is characterised by
an exchange of two non-adjacent edges as it is shown in Algorithm 3.

• Secondly we perform an insert move. It comes to move a node from one position
to another. This move results in a change of three edges.

• Finally a swap move. It comes to move an edge from one position to another.
This move results in a change of four edges.

We present below in Algorithm 3 a perturbation launched by the 2-opt move. The
same algorithm is adapted to insert and swap moves, by applying the appropriate
move and saving the affected edges.

Algorithm 3 Perturbation Operator(π, L,H, Iter, ω,M,mvt)
Require: Initial solution π which is a local optimum, number of jumps L, matrix of

history moves H, global iteration counter Iter, number of consecutive non-improving
local optima ω, set of candidate moves M , move type mvt.

Ensure: A perturbed solution π
1: for i← 1, L do
2: take a pair (x, y) ∈M
3: if mvt = 2Opt then
4: π ← π ⊕ 2OptMove(x, y)
5: c← c+ delta2Opt(π, x, y)
6: else if mvt = insert then
7: π ← π ⊕ insertMove(x, y)
8: c← c+ deltaInsert(π, x, y)
9: else

10: π ← π ⊕ swapMove(x, y)
11: c← c+ deltaSwap(π, x, y)
12: end if
13: update H(Iter, x, y)
14: Iter ← Iter + 1
15: if c < cbest then
16: update πbest and cbest
17: ω ← 0
18: Desc ← Desc × 1

2
19: end if
20: end for
21: return π

Rather than performing random jumps all the time, BLS switches between three
types of perturbations: directed, recency-based and random. Each perturbation gen-
erates, as shown in Algorithm 4, a set M of pairs that will be used in perturbations.

Breakout Local Search for the TSP 663

3.3.2 The Three Types of Perturbation Moves

The directed perturbation aims to build a set of candidates with the lowest
degradation during perturbation move. These candidates should not have been
solicited in the last γ moves: they are saved in a tabu list [12, 13], with the corre-
sponding length γ. However an edge can be part of the tabu list but still selected if
it leads to a solution that improves the best solution found so far. Directed pertur-
bation is built based on the tabu list, and the quality of the moves to be applied.
Eligible candidates for this perturbation are defined by the following set A:

A = {2OptMove(u, v) | min{delta2Opt(π, u, v)},

(Hu,v + γ) < Iter ∨ (delta2Opt(π, u, v) + c) < cbest, u 6= v}. (2)

The recency-based perturbation builds a set of candidates by using only the
matrix H of historical moves. The moves are those which have been least recently
used. These moves are identified by the set B such as:

B = {2OptMove(u, v) | min{Huv}, u 6= v}. (3)

Finally, the random perturbation simply makes moves that are picked uni-
formly at random. Those moves are identified as:

C = {2OptMove(u, v), u 6= v}. (4)

The three above formula adapt to both insert and swap movements, by applying
the appropriate movement and delta operations.

Depending on the state of search, BLS selects one of these three perturbations
pseudo-randomly with a probability. This state is determined by the parameter ω
that gives the number of consecutive non-improving local minima. The aim is to give
priority to the directed perturbation at the beginning of the search (when ω is still
small), and reduce the chances of running when the neighbourhood has important
attraction, to use other perturbations and have stronger diversifications.

We force the probability P of applying the directed perturbation to get values
no smaller than a threshold P0:

P =

{
e−ω/T , if (e−ω/T > P0),

P0, otherwise.
(5)

Given the probability P of using the directed perturbation, the probability of
applying both the recency-based and the random perturbations is determined re-
spectively by (1− P)×Q and (1− P)× (1−Q) where Q is a constant from [0, 1].
Algorithm 4 links the three probabilities to their respective perturbation.

664 M. El Krari, B. Ahiod, B. El Benani

Algorithm 4 Adaptive Perturbation(π, L, Lω,H, Iter, ω)
Require: A tour π which is a local optimum, number of jumps L, determinant of pertur-

bation type Lω, matrix of history moves H, global iteration counter Iter, number of
consecutive non-improving local optima ω.

Ensure: A perturbed solution π
1: Determine probability P according to Formula (5) /* section above */
2: with a probability P , /* directed perturbation */
3: π ← Dynamic Perturbation(π, L, Lω,H, Iter, ω,A)
4: with a probability (1− P)×Q, /* recency-based perturbation */
5: π ← Dynamic Perturbation(π, L, Lω,H, Iter, ω,B)
6: with a probability (1− P)× (1−Q), /* random perturbation */
7: π ← Dynamic Perturbation(π, L, Lω,H, Iter, ω, C)
8: return π

3.3.3 Variation Jumps and Perturbation Moves

BLS varies (between two consecutive blocks) the number of jumps and performed
moves. These changes are executed in a particular order: the first change performed
is 2-opt move, characterised by the exchange of two edges, the second change tried
is insert move with three edges exchanged and finally the swap move defined by
an exchange of four edges. The main idea is to move to the nearest neighbourhood
and allow, at the same time, to escape the local optimum attractor and find a new
and better solution. In the case where the three changes fail to escape from the
optimum attractor, the number of jumps L is incremented.

The worst case is to redo the perturbation T times (consecutively) without
being able to leave this attractor. A strong perturbation defined by Lmax jumps
with a Double Bridge [20] move is then performed. The current number of descents
(Desc) is then reduced by 1

8
in order to give a chance to the new neighbourhood to

be enough scanned.

4 EXPERIMENTAL RESULTS

4.1 Experimental Protocol

BLS algorithm is programmed in Java 1.7, and compiled on a Pentium Dual-Core
CPU T4400 with 2.20 GHz and 2.8 GB. 41 instances from the commonly used
TSPLIB benchmark are considered in the experiments, their sizes range from 14
to 442 cities. Each instance is run 20 times, with the parameters listed in Table 1.
The choice of parameter values was carried out after many preliminary tests. This
is justified in Subsection 4.3.

We observed (in the worst cases) that BLS may never reach stopping conditions if
maximum number of non-improving attractors visited T before strong perturbation
is set to a small value: this deadlock is due to the repetitive reduction of current
number of runs (Desc) which prevents reaching Descmax. T must be greater than

Breakout Local Search for the TSP 665

Parameter Value Meaning

Descmax 50n, 25n Maximal number of descents. 50n if n < 200,
25n otherwise

L0 1 Initial jump magnitude
Lmax 0.5n Jump magnitude during strong perturbation
γ n Tabu tenure/length
P0 0.75 Smallest probability to perform directed per-

turbation
Q 0.7 Probability to perform random over recency-

based perturbation
T ((Descmax − 1)/8) + 1 Maximal number of consecutive non-improving

local minima

Table 1. Settings of important parameters

(Desc − 1)× (1− 7
8
), so we set T to Descmax−1

8
+ 1.

4.2 Computational Results and Comparisons

In the following, there will be listed the used performance measures of BLS algo-
rithm:

1. the average deviation of obtained solutions from the best known solution, de-
noted δ:

δ = 100× (c̄− bks)/bks [%] (6)

where c̄ is the average tour length over 20 runs of BLS, and bks is the best known
value which can be found in the TSPLIB [16];

2. the number of solutions of which the deviation does not exceed 1 % (over
20 runs), denoted C1%;

3. the number of solutions where the cost is equal to the best known solution – Copt.
Instances with a zero in the two (merged) columns means that all executions
found the best known solution;

4. the CPU time in seconds.

We compare the performance of BLS with the standard local search using 2-opt
neighbourhood [17] (LS 2-opt) from the literature, and basic ILS1 with a 2-opt de-
scent and a Double Bridge Move perturbation. The comparison reported in Table 2
is based on the Local Search framework used in BLS.

The results above shows the great contribution of BLS on both standard local
search and ILS. 38 of the 41 instances did not exceed a deviation of 1 % at least once
over the 20 executions, of which 30 have never exceeded. 27 instances have reached

1 Thomas Stützle. TSP-TEST, Version 0.9. Available from http://www.sls-book.

net, 2004.

http://www.sls-book.net
http://www.sls-book.net

666 M. El Krari, B. Ahiod, B. El Benani

Instance n bks LS-2OPT (δ)
ILS BLS

• • • • δ C1%/Copt δ C1%/Copt CPU Time (sec)
burma14 14 3 323 – 0 0 0.00
ulysses16 16 6 859 – 0 0 0.00
ulysses22 16 7 013 – 0 0 0.00
eil51 51 426 – 0.469 14/5 0.199 20/8 0.58
berlin52 52 7 542 – 0.106 19/19 0 0.00
st70 70 675 – 0.741 13/3 0 0.97
eil76 76 538 – 0.929 11/3 0.492 18/5 2.67
pr76 76 108 159 – 0.518 20/7 0 1.41
gr96 96 55 209 0.997 0.466 18/4 0.215 20/5 6.00
rat99 99 1 211 0.614 1.652 7/0 0.057 20/12 5.72
kroA100 100 21 282 0.073 0.282 20/8 0 4.02
kroB100 100 22 141 0.379 0.632 14/5 0.012 20/18 6.58
kroC100 100 20 749 0.546 0.882 13/2 0 4.38
kroD100 100 21 294 1.538 0.977 13/0 0.053 20/14 5.16
kroE100 100 22 068 0.983 0.770 15/1 0.164 20/5 5.89
rd100 100 7 910 0.961 0.619 14/3 0.010 20/16 10
eil101 101 629 1.657 1.749 3/0 1.017 11/0 6.07
lin105 105 14 379 0.642 0.285 19/7 0 2.10
pr107 107 44 303 0.093 0.950 9/0 0.042 20/11 5.89
pr124 124 59 030 0.953 0.281 19/7 0 7.91
bier127 127 118 282 0.649 0.686 15/1 0.139 20/4 31
ch130 130 6 110 0.999 1.244 7/0 0.324 20/2 14
pr136 136 96 772 – 1.775 7/0 0.675 20/0 15
gr137 137 69 853 0.824 1.266 10/0 0.347 20/0 20
pr144 144 58 537 – 0.091 20/7 0 4.39
ch150 150 6 528 – 1.241 8/0 0.412 20/2 18
kroA150 150 26 524 – 1.421 6/0 0.374 20/0 26
kroB150 150 26 130 – 1.309 8/0 0.237 20/1 22
pr152 152 73 682 – 0.415 19/1 0.030 20/8 15
u159 159 42 080 – 1.694 5/1 0 25
rat195 195 2 323 – 2.927 0/0 1.157 1/0 40
d198 198 15 780 – 0.754 16/0 0.581 20/0 46
gr202 202 40 160 – 1.805 0/0 1.314 5/0 35
ts225 225 126 643 – 0.706 16/15 0.110 20/10 50
gr229 229 134 602 0.911 1.306 6/0 1.403 2/0 49
gil262 262 2 378 1.099 2.397 0/0 1.345 6/0 70
a280 280 2 579 – 3.373 1/0 0.866 12/0 68
lin318 318 42 029 1.202 2.253 0/0 1.384 2/0 152
rd400 400 15 281 1.543 3.030 0/0 2.493 0/0 280
gr431 431 171 414 3.045 2.357 0/0 2.243 0/0 294
pcb442 442 50 778 5.185 3.096 0/0 2.315 0/0 205

Table 2. Comparative results between BLS and standard local search using 2-opt

at least once the optimum, of which 12 have always reached within a reasonable
time.

4.3 Justification for Parameter Settings

The good quality of the results obtained by BLS is due in part to the choice of
the parameters (see Table 1), each of these is justified by its role and influence
in BLS. The most influential of these will be confirmed by comparative tests on
three TSPLIB instances (eil51, eil76 and eil101). Results will be represented on
two superposed charts: the first is a stacked bar charts, each stack gives the best,
average and the worst solution. It will show only two results if the best found

Breakout Local Search for the TSP 667

solution is equal to the optimum. Second chart is a line chart showing evolution of
running time of BLS. The first two parameters below are defined according to the
instance size (N).

4.3.1 Maximum Number of Descents (Descmax)

The maximum number of descents decides how many times the local search will be
performed, the higher is the number of descents, the better are the results; each
one is a new chance to find better tour or escaping the attraction. In return, the
running time will be greater as shown in Figure 1. It was noted while testing that
over a certain number of descents, the results become quite satisfactory and adding
more only rises execution time without significant improvements.

Figure 1. Varying number of descents for eil instances

4.3.2 Initial Number of Moves/Jumps (L0)

This number gives the minimum of moves to be performed for each of the three types
of perturbation; it has its impact on the change of neighbourhood and therefore the
chances of unlocks. The larger it is, the more important is the changing neighbour-
hood, which may sometimes give the next descent a feeling of independence of the
previous descents.

The best results were obtained as shown in Figure 2 when starting with a single
jump, given the high effectiveness of diversification perturbations.

4.3.3 Maximum Number of Non-Improving Local Optima (T)

This variable indicates when we should perform the strong perturbation; it is reset
to zero once this perturbation performed. The smaller T is, the higher is the number
of perturbations, which increases the chances of unlocking. As mentioned earlier,
the number T must be greater than Descmax−1

8
+ 1 to avoid that the current number

668 M. El Krari, B. Ahiod, B. El Benani

Figure 2. Varying initial number of moves for eil instances

of descents never reaches Descmax. The tests above in Figure 3 are performed with
variation of T three times: choosing firstly time the minimal value for each instance,
and then doubling and tripling these values.

Figure 3. Varying maximum number of non-improving local optima for eil instances

4.3.4 Performing 3-Opt as Descent

BLS can be improved by changing neighbourhood in the steepest descent by switch-
ing to the 3-opt, which is larger due to the number of edges that are affected in each
movement. This change will leave an impact on the performance of BLS: the his-
tory of changes is wider than the history constructed with the 2-opt steepest descent
(three edges affected instead of two with 2-opt), then the perturbations become more
diversified.

Table 3 shows BLS execution results with 3-opt (BLS 3-OPT), by comparing
it with the standard local search using 3-opt neighbourhood (LS 3-OPT) [17] and
BLS using 2-opt in the descent (BLS 2-OPT).

Breakout Local Search for the TSP 669

Instance n bks LS-3OPT (δ)
BLS 2-OPT BLS 3-OPT

• • • • δ C1%/Copt CPU (sec) δ C1%/Copt CPU (sec)
burma14 14 3 323 – 0 0.00 0 0.00
ulysses16 16 6 859 – 0 0.00 0 0.00
ulysses22 16 7 013 – 0 0.00 0 0.00
eil51 51 426 – 0.199 20/8 0.58 0 2.69
berlin52 52 7 542 – 0 0.00 0 0.47
st70 70 675 – 0 0.97 0 11
eil76 76 538 – 0.492 18/5 2.67 0 8.55
pr76 76 108 159 – 0 1.41 0 21
gr96 96 55 209 0.997 0.215 20/5 6.00 0 23
rat99 99 1 211 0.614 0.057 20/12 5.72 0.033 20/12 16
kroA100 100 21 282 0.073 0 4.02 0 18
kroB100 100 22 141 0.379 0.012 20/18 6.58 0 62
kroC100 100 20 749 0.546 0 4.38 0 25
kroD100 100 21 294 1.538 0.053 20/14 5.16 0 35
kroE100 100 22 068 0.983 0.164 20/5 5.89 0138 20/10 52
rd100 100 7 910 0.961 0.010 20/16 10 0 54
eil101 101 629 1.657 1.017 11/0 6.07 0.063 20/12 39
lin105 105 14 379 0.642 0 2.10 0 29
pr107 107 44 303 0.093 0.042 20/11 5.89 0 36
pr124 124 59 030 0.953 0 7.91 0 21
bier127 127 118 282 0.649 0.139 20/4 31 0.102 20/9 247
ch130 130 6 110 0.999 0.324 20/2 14 0.216 20/7 196
pr136 136 96 772 – 0.675 20/0 15 0.374 20/0 244
pr144 144 58 537 – 0 4.39 0 12
ch150 150 6 528 – 0.412 20/2 18 0.117 20/14 284
kroA150 150 26 524 – 0.374 20/0 26 0.162 20/0 400
kroB150 150 26 130 – 0.237 20/1 22 0.185 18/0 626
pr152 152 73 682 – 0.030 20/8 15 0.041 20/6 374
u159 159 42 080 – 0 25 0 287
rat195 195 2 323 – 1.157 1/0 40 0.499 20/0 624

Table 3. Comparative results between BLS and standard local search using 3-opt

3-Opt neighbourhood brings many improvements to BLS. All running instances
did not exceed a deviation of 1 %, the worst average does not even exceed 0.5 %.
Only 4 out of 30 instances could not reach the optimum, while 21 have always
reached the optimum.

5 DISCUSSIONS

Observing the overall framework of ILS, BLS uses local search to get local optima,
and perturbation to vary the search. However, BLS differentiates itself from most
ILS algorithms by the combination of various perturbation strategies of different
strengths, triggered according to the search status. As explained in Section 3.3,
BLS uses a perturbation of weaker diversification with a higher probability P as the
search progresses toward improved new local optima.

By neglecting the maximum number of descents set in our algorithm, BLS always
succeeds in finding the optimal solution. Indeed, the BLS search space expands after
each series of perturbations until it finds the neighbourhood that his local optimum
is the optimal solution. Below in Table 4 are shown the best and average running

670 M. El Krari, B. Ahiod, B. El Benani

CPU time execution (in seconds) of some instances of a BLS execution where we
ignored this stopping condition criteria.

Instances n bks Best Average Instances n bks Best Average

eil51 51 426 0 2.2 kroC100 100 20 749 1.4 20
berlin52 52 7 542 0 0.3 kroD100 100 21 294 24 433
st70 70 675 0.6 13 kroE100 100 22 068 1.19 47
eil76 76 538 1.2 9.4 rd100 100 7 910 1.5 55
pr76 76 108 159 0.3 6.9 eil101 101 629 2 257
rat99 99 1 211 2.1 960 lin105 105 14 379 0.6 41
kroA100 100 21 282 0.5 35 pr107 107 44 303 0.6 78
kroB100 100 22 141 8.1 95 pr124 124 59 030 1.3 27

Table 4. Execution time required for BLS to find the optimum

6 CONCLUSION

We explained in this paper the breakout local search approach for solving the TSP.
This algorithm uses the ILS framework and brings improvements in the perturbation:
it performs a local search and a perturbation-based diversification phase (to jump
from a local optimum to another one). The local search procedure uses the steepest
descent with 2-opt move strategy. To visit a local optima of high quality, the jumps
toward new neighbourhood are adaptively controlled according to the state of search.
Perturbation is achieved by varying the type of moves and then the size of a jump
and selecting the most fitting perturbation for each diversification period.

The quality of BLS results reported in Section 4, proves its competitiveness
compared to other algorithms. The repeated constructions (on each jump) of the set
of candidate couples (formula (2), (3) and (4)) lead to a slowness of BLS compared
to its competitors. For a better compromise of results’ quality and execution time,
we kept the 2-opt algorithm in the local search step so that BLS will not be penalised
by the 3-opt slowness as shown in the comparison of Table 3.

In order to overcome this problem of slowness, BLS can be improved by intro-
ducing accelerated descent from the same neighbourhood and implementing efficient
data structures to reduce the searching time in the construction of all candidates.

REFERENCES

[1] Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applica-
tions. Springer-Verlag, Berlin, Heidelberg, 1994.

[2] Stadler, P. F.—Schnabl, W.: The Landscape of the Traveling Salesman Prob-
lem. Physics Letters A, Vol. 161, 1992, No. 4, pp. 337–344, doi: 10.1016/0375-
9601(92)90557-3.

https://doi.org/10.1016/0375-9601(92)90557-3
https://doi.org/10.1016/0375-9601(92)90557-3

Breakout Local Search for the TSP 671

[3] Cook, W. J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton University Press, 2014.

[4] Benlic, U.—Hao, J.-K.: A Study of Breakout Local Search for the Minimum
Sum Coloring Problem. In: Bui, L. T., Ong, Y. S., Hoai, N. X., Ishibuchi, H., Sugan-
than, P. N. (Eds.): Simulated Evolution and Learning (SEAL 2012). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 7673, 2012, pp. 128–137.

[5] Benlic, U.—Hao, J.-K.: Breakout Local Search for Maximum Clique Prob-
lems. Computers and Operations Research, Vol. 40, 2013, No. 1, pp. 192–206, doi:
10.1016/j.cor.2012.06.002.

[6] Benlic, U.—Hao, J.-K.: Breakout Local Search for the Max-Cut Problem. Engi-
neering Applications of Artificial Intelligence, Vol. 26, 2013, No. 3, pp. 1162–1173.

[7] Benlic, U.—Hao, J.-K.: Breakout Local Search for the Quadratic Assign-
ment Problem. Applied Mathematics and Computation, Vol. 219, 2013, No. 9,
pp. 4800–4815, doi: 10.1016/j.amc.2012.10.106.

[8] Codenotti, B.—Manzini, G.—Margara, L.—Resta, G.: Perturbation: An Ef-
ficient Technique for the Solution of Very Large Instances of the Euclidean
TSP. INFORMS Journal on Computing, Vol. 8, 1996, No. 2, pp. 125–133, doi:
10.1287/ijoc.8.2.125.

[9] Croes, G. A.: A Method for Solving Traveling-Salesman Problems. Operations Re-
search, Vol. 6, 1958, No. 6, pp. 791–812, doi: 10.1287/opre.6.6.791.

[10] Fonlupt, C.—Robilliard, D.—Preux, P.: Fitness Landscape and the Behavior
of Heuristics. Evolution Artificielle, Vol. 97, 1997.

[11] Garey, M. R.—Johnson, D. S.—Stockmeyer, L.: Some Simplified NP-Com-
plete Problems. Proceedings of the Sixth Annual ACM Symposium on Theory
of Computing (STOC ’74), ACM, New York, NY, USA, 1974, pp. 47–63, doi:
10.1145/800119.803884.

[12] Glover, F.: Tabu Search – Part I. ORSA Journal on Computing, Vol. 1, 1989,
No. 3, pp. 190–206, doi: 10.1287/ijoc.1.3.190.

[13] Glover, F.: Tabu Search – Part II. ORSA Journal on Computing, Vol. 2, 1990,
No. 1, pp. 4–32, doi: 10.1287/ijoc.2.1.4.

[14] Hordijk, W.: A Measure of Landscapes. Evolutionary Computation, Vol. 4, 1996,
No. 4, pp. 335–360, doi: 10.1162/evco.1996.4.4.335.

[15] Mladenović, N.—Hansen, P.: Variable Neighborhood Search. Computers and
Operations Research, Vol. 24, 1997, No. 11, pp. 1097–1100, doi: 10.1016/S0305-
0548(97)00031-2.

[16] Reinelt, G.: TSPLIB – A Traveling Salesman Problem Library. ORSA Journal on
Computing, Vol. 3, 1991, No. 4, pp. 376–384, doi: 10.1287/ijoc.3.4.376.

[17] Blažinskas, A.—Lenkevičius, A.—Misevičius, A.: Modified Local Search
Heuristics for the Symmetric Traveling Salesman Problem. Information Technology
and Control, Vol. 42, 2013, No. 3, pp. 217–230, doi: 10.5755/j01.itc.42.3.1301.

[18] Arbel Krakhofer, B.: Local Optima in Landscapes of Combinatorial Optimiza-
tion Problems. Master’s thesis, University of Vienna, Austria, 1995.

[19] Lourenço, H. R.—Martin, O. C.—Stutzle, T.: Iterated Local Search. In:
Glower, F. W., Kochenberger, G. A. (Eds.): Handbook of Metaheuristics. Springer,

https://doi.org/10.1016/j.cor.2012.06.002
https://doi.org/10.1016/j.amc.2012.10.106
https://doi.org/10.1287/ijoc.8.2.125
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1145/800119.803884
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1162/evco.1996.4.4.335
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.5755/j01.itc.42.3.1301

672 M. El Krari, B. Ahiod, B. El Benani

International Series in Operations Research and Management Science, Vol. 57, 2003,
pp. 320–353.

[20] Martin, O.—Otto, S. W.—Felten, E. W.: Large-Step Markov Chains for the
Traveling Salesman Problem. Complex Systems, Vol. 5, 1991, No. 3, pp. 299–326.

[21] Bland, R. G.—Shallcross, D. F.: Large Travelling Salesman Problems Arising
from Experiments in X-Ray Crystallography: A Preliminary Report on Computation.
Operations Research Letters, Vol. 8, 1989, No. 3, pp. 125–128, doi: 10.1016/0167-
6377(89)90037-0.

[22] Dantzig, G. B.: Discrete-Variable Extremum Problems. Operations Research,
Vol. 5, 1957, No. 2, pp. 266–288, doi: 10.1287/opre.5.2.266.

[23] Lawler, E. L.—Lenstra, J. K.—Rinnooy Kan, A. H. G.—Shmoys, D. B.: The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John
Wiley and Sons, New York, 1985.

Mehdi El Krari is Ph.D. candidate at Mohammed V Uni-
versity in Rabat, Morocco. He is working on metaheuristics
for combinatorial optimization problems related to logistics and
transportation. His main interests are combinatorial optimisa-
tion, discrete algorithms, stochastic local search, evolutionary
computation, etc.

Beläıd Ahiod is Professor in the Computer Science Depart-
ment at Faculty of Science of the Mohammed V University in
Rabat, Morocco. His research interests include NP-hard com-
binatorial optimization problems, multi-objective optimization,
metaheuristics, nature-inspired algorithms, etc.

Bouazza El Benani is Professor in Mohammed V University of
Rabat, Morocco, Department of Computing Science since 1994.
He holds his Ph.D. in computer science from Montreal Univer-
sity, Canada. His research interests include artificial intelligence,
software engineering, evolutionary algorithms, big data, meta-
heuristic algorithms, healthcare.

https://doi.org/10.1016/0167-6377(89)90037-0
https://doi.org/10.1016/0167-6377(89)90037-0
https://doi.org/10.1287/opre.5.2.266

Computing and Informatics, Vol. 37, 2018, 673–692, doi: 10.4149/cai 2018 3 673

SMART DOCUMENT-CENTRIC PROCESSING
OF HUMAN ORIENTED INFORMATION FLOWS

Magdalena Godlewska

Institute of Informatics
Faculty of Mathematics, Physics and Informatics
University of Gdansk
Wita Stwosza 57, 80-308 Gdansk, Poland
e-mail: maggod@inf.ug.edu.pl

Abstract. Usually people prefer to focus on creative rather than repetitive and
schematic work patterns. Still, they must spend a lot of time complying with
the procedures, selecting the information they receive and repeatedly restoring the
previous state of work. This paper proposes the Mobile INteractive Document ar-
chitecture (MIND) – a document-centric uniform interface to provide both effective
communication of content and coordination of activities performed on documents.
MIND documents are proactive, capable of initiating process activities, interact-
ing with individuals on their personal devices and migrating on their own between
collaborators. Each MIND document is a mobile agent that has built-in migra-
tion policy to control its own workflow and services enabling proper processing of
contained information. The architecture supports users in the implementation of
procedures, and selection of services needed to work on the document. A Personal
Document-Agent (PDA) is a further development of MIND aimed at preserving
continuity of state of individuals’ work to support their creativity and comfort of
their daily work.

Keywords: Human-computer interaction, electronic documents, multi-agent sys-
tems, collaborative work, workflow management, task coordination, knowledge-
based organization

Mathematics Subject Classification 2010: 68-M10, 68-M11, 68-M12, 68-M14,
68-U35

674 M. Godlewska

1 INTRODUCTION

Despite of the intensive development of artificial intelligence and machine learning,
people are still the key intellectual resource in almost all areas of life. Yet, sup-
porting people’s interaction with various knowledge resources would contribute to
their productivity and well-being, and help them to focus their activities on creative
work, and to put less effort to perform simple, structured tasks.

Working in a group, as well as individually, humans perform certain processes.
In an organization of many people, in particular in a knowledge-based organiza-
tion [1], a collaboration process is often implementation of the established procedure.
Moreover, collaboration with other workers, in accordance with the organizational
procedures, enables converting knowledge of individuals to a collective organization
knowledge. The purpose of the knowledge-based organization is to implement the
knowledge process, in which the human mind is an important element.

There are several problems that hinder effective collaboration, in particular:

1. The worker needs to know the organizational procedures, which are often very
confusing. Especially in procedures that are rarely performed, it could take
a long time before the worker finds out to whom a particular document should
be sent.

2. Collaborators perform procedures manually, and can make mistakes such as
sending (receiving) some information several times to (from) a wrong person.
This leads to information overload phenomenon, that often leaves the worker
confused and unable to make a decision [2].

3. Workflow process automation often requires large amounts of work to define the
entire process before performing. Moreover, this is often infeasible as the process
flow often depends on individual decisions made during its performance.

4. Documents usually play a passive role in the process, which means that they are
opened, filled, sent, etc. They generally do not give any support to users, or do
that only in a very limited form.

Also in individual work, there are some problems affecting the efficiency of the
performed tasks:

5. A user is the only one person who knows his devices and applications installed
on them. Nowadays, this is a problem because users use multiple devices to
continually perform the same task at work and home including PCs, tablets and
smartphones which must be synchronized. A question arises how to synchronize
entire systems, not just separate files.

6. A user needs to install the same or similar applications and configure peripherals
for each device or OS.

7. Even if a person uses cloud services, like as Google Drive or One Drive, he has to
find the right documents and recreate the state of his recent work after changing
a device or rebooting its operating system.

Smart Document-Centric Processing of Information 675

8. A user enacts his own accustomed processes while working or resting, which are
not supported in any way.

This paper presents the Mobile INteractive Document architecture (MIND) [3]
and a special workflow enactment application, a Local Workflow Engine (LWE) [4],
enabling a loosely-coupled agent system, capable of coping with the above points.

The MIND architecture is a model of a document-centric uniform interface to
provide both effective communication of content and coordination of activities per-
formed on documents. MIND documents are proactive, i.e. they are capable of
initiating process activities, interacting with individual workers on their personal
devices and migrating on their own between collaborators. Thus, each MIND doc-
ument is a mobile agent, called a document-agent. Document-agents have built-in
migration policy to control their own workflow and services to properly process
contained information. Section 3 provides a more detailed overview of the MIND
architecture.

The migration path of a document-agent contains all information and status
of the workflow process to perform it locally on users’ devices. A document is
transferred between users in a serialized form via an available protocol – the MIND
architecture does not impose any specific implementation of that. The choice of
a concrete protocol depends on the requirements of the organization, in particu-
lar on security levels, a number of employees, a comfort of use, etc. In virtual
knowledge-based organizations, email can be used as basic medium for exchanging
digital documents of any kind. Implementation of the document transfer protocol
is discussed in Section 7.

The LWE application mention before is installed on each worker’s device parti-
cipating in the process. It has a workflow enactment capability, i.e. a functionality
to activate document-agents and switch documents between the activity and transi-
tion phases of the workflow. All LWEs participating in the process, and performing
independently, form together both a technologically independent loosely-coupled
agent system and a distributed workflow enactment service. Section 4 outlines
generic functionality of LWE and the idea of a distributed workflow enactment ser-
vice.

In the LWE-based MIND system, workers perform activities on documents inde-
pendently, using their personal devices, and yet collaborate on achieving a common
goal. It is possible owing to a migration policy embedded in each document. This
policy defines for each document a workflow process composed of specific document-
flow patterns [5] that provide process-wide coordination. The document-flow pat-
terns are a result of analysis of the coordination patterns proposed by van der
Aaalst [6]. This shows that a relatively small and well defined set of collaboration
patterns contains building blocks of arbitrary complex workflow processes in real or-
ganizations. Thus, document-flow patterns proposed in this paper, which are based
on these collaborations patterns enable modelling and coordination of any workflow
process with MIND documents. Moreover, the proposed distributed workflow en-
actment service allows defining dynamically the workflow process during its actual

676 M. Godlewska

execution. Section 5 discusses briefly the document-flow patterns and shows how to
modify a workflow dynamically.

The proposed solution allows for significant reduction of the problems with group
and individual work mentioned above. Points 1–4 present the problems for which
the MIND architecture was developed. The system enabling group work through
performing of knowledge processes has been implemented and validated as a part
of the MENAID (Methods and Tools for Next Generation Document Engineering)
project [7] – Section 7 presents the results of this work. An attempt to solve the
problems introduced in points 5–8 is based on a concept to apply the model of the
MIND architecture to improve individual work on different devices, with a Personal
Document-Agent (PDA) outlined in Section 6.

Section 2 opens this paper by reviewing work related to the presented research,
while Section 8 concludes the paper and introduces the possibilities of further de-
velopment of the presented solutions.

2 RELATED WORK

The idea of an active document is not new. Already in 1996, the Multivalent Docu-
ment architecture MVD [8] was presented and it was the first significant step in the
document-based processing. MVD allowed for treating the document as an object
the content of which can be manipulated dynamically. It introduced active func-
tionality with dynamically loaded objects called behaviors. The MIND embedded
services are similar to the concept of behaviors, however MIND introduces also local
and external services, to manipulate a document content, but are not components
of documents. This gives documents more flexibility, adjusting them to exploit local
resources of visiting devices and to easily add a new functionality.

The Placeless Documents [9] extend document functionality with active proper-
ties that can not only allow to manipulate a document content, but also can manage
of a document structure and its workflow. These are also the main features of the
MIND architecture. However, the Placeless Documents are reactive, i.e., they re-
spond to external events, while MIND documents are proactive – they initiate their
own behavior as they have their own embedded functionality (services).

It is worth mentioning the document-agent MobiDoc platform [10] as the concept
of a proactive document, capable of travelling between computers under its own
control. This platform was closely related to the particular technology, thus lacked
forward compatibility, and, consequently was difficult to implement in a large-scale.
The idea of a document-agent is very interesting, as openness and technological
independence are very important features of modern systems. In the LWE-based
MIND system, a technological independence is one of its priorities. In a special case,
when each user has a different operating system, each LWE may be implemented
in a different technology. The document transfer protocol can be also adapted to
the requirements of implementation. It gives the opportunity to create an agent
platform with all benefits of multi-agent systems, but without a need to implement

Smart Document-Centric Processing of Information 677

a full-size agent platform that depends on the chosen technology, has to be updated
regularly and requires additional skills from administrators.

Among more recent solutions that allow agents to perform a workflow is WADE
(Workflow and Agents Development Environment) [11] agent platform based on
JADE (Java Agent DEvelopment framework) [12]. WADE agents embed a micro-
workflow engine, capable of executing workflows compiled before launching a work-
flow. Performing activities may be delegated by one agent to another and in principle
it is not related to agent mobility. This solution follows a classic central workflow
enactment philosophy, and differs from it only in decentralization of a global pro-
cess state into a process states controlled by micro-workflow engines running inside
agents. This solution makes the WADE platform different from the MIND archi-
tecture. In MIND, a workflow object specified formally with XPDL (XML Process
Definition Language) [13] is bundled with a document and contains its internal state
of which it is of full control. Then, a workflow is enacted outside of agents by lo-
cal workflow engines (LWEs). More details on the concept of distributed workflow
enactment can be found in Section 4. The advantage of such a solution is that
a respective XPDL file may be modified during process execution. Moreover, MIND
document-agent is the only communication interface, which makes it technologically
independent in a loosely coupled and heterogeneous distributed system.

There are some interesting solutions, such as AMODIT [14], that use elements of
artificial intelligence to improve workflow processes. The main concept is to analyse
the content of the documents and previous decisions, in order to suggest the next
steps of the workflow. The mentioned system is a commercial product based on
a client-server model, which does not exhibit openness, technological independence
and multi-agent approach, as the MIND architecture does. The idea of adopting
a Multi-Agent System and machine learning to support cooperation based on doc-
uments was introduced in [15]. The presented idea was based on the analysis of the
documents and users’ behaviors, omitting the problem of process definition. The
MIND architecture, allowing for the dynamic modification of the process, opens the
possibility of learning the flow of the processes and behavior of users.

One of the problems in individual work, mentioned in point 7, is saving a state
of a recent work. This problem occurs, for example, when the system needs to be
rebooted. The user often loses the information about all documents or applications
opened before. Sometimes, it can be really frustrating. Users of the Mac OS receive
the greatest support on this issue. They can simply decide if they want to re-
open applications in the same state they left them before logging out [16]. It is
also possible, although not so easy, in Linux systems (e.g. Ubuntu). There is the
dconf-editor, where the auto-save-session check box may be selected. The
dconf-editor is not preinstalled by default, so even in experienced users may have
a problem using it. Finally, in the Windows systems it is not possible to re-open
active programs on reboot without installing an external application. There is only
the possibility to automatically re-open any Explorer windows that were opened
before rebooting. There is a list of external applications that enable to restore
programs or folders after system reboot, e.g. Cache My Work [17] or SmartClose [18].

678 M. Godlewska

Restoring applications after a system reboots solves the problem on just one
operating system. Currently, users would like to work on many devices, e.g. to start
work in the office, continue it on the way home, and end at home. On each device,
users would have to recreate a state of their current work. Google Drive [19] or
One Drive [20] cloud based solutions could be very useful for sharing files through
different devices, but they cannot ensure continuing work at the point where it
previously has been interrupted.

The MIND architecture allows for implementation of a Personal Document-
Agent (PDA), which can store a global state of the work, interact with a user, op-
erating systems and services. This solution differs from the idea of Virtual Personal
Assistant (VPA), like Apple Siri [21], Google Assistant [22] or Amazon Alexa [23],
which are based on interaction with a user. The latter act as local applications or
web services and they support a user in everyday duties, e.g. by turning on an alarm,
checking the weather, reminding a meeting or making purchases. PDA proposed in
this paper is a smart middleware between operating systems and applications rather
than a yet another application like VPA (it can, however, use VPA as a local or ex-
ternal service).

3 THE MIND ARCHITECTURE

Traditionally, electronic documents have been static objects downloaded from a ser-
ver or sent by an email. MIND allows static documents to be converted into a set
of dynamic components that can migrate between collaborative workers according
to their migration policy.

The concept of the MIND document lifecycle is illustrated in Figure 1.

document
templates

repository

migration policy

services

hub
document

final
document

other policies

document-agent

document-agent

document-agent

Figure 1. The MIND document lifecycle [4]

A hub document is formed on the basis of document templates that includes
migration policy, which specifies steps of the knowledge process and services that
will be performed on different parts of a document during the process. The hub
document that contains static elements (e.g. XML files), is unmarshalled to mobile
objects called document-agents, which perform their mission in a distributed agent

Smart Document-Centric Processing of Information 679

system. Each document-agent migrates across an organization and interacts with
its workers.

hub-document

users path

services

parts

ID

ID ID

Figure 2. Components of a MIND document-agent

The hub document contains five components, outlined in Figure 2:

hub-document, a headline of the MIND document. It contains its ID and other
related information necessary to identify a document-agent with a given process.

users, containing data about users who participate in a process.

parts, containing information about constituent documents, which are actual doc-
uments on which work will be performed, e.g. PDF files, MSOffice documents,
HTML forms, etc. Such constituent documents are parts of the MIND docu-
ment, which does not mean that they always migrate with document-agents.
Sometimes, a part can describe an external location of a constituent document.

services, containing information on a document functionality available during
a process. Three types of services are possible: embedded, transferred together
with a document-agent, local which may be acquired by a document-agent from
a local user’s device, and external, to be called on remote hosts by a user’s system
at the request of an arriving document-agent. Services provide document-agent
functionality and make it proactive as it was mentioned in Section 2.

path, defining migration policy (workflow) of each part of a document. It specifies
steps of a process and activities that should be performed at each step of a pro-
cess. The other components refer to the path and are distributed according to
the path during a process.

The presented document-agent model complies with the Belief-Desire-Intention
(BDI) definition of an agent [24]. BDI is an agent architecture that reflects model of
human practical reasoning, developed by Bratman [25]. The main goal of the MIND
architecture is to support users in making reasonable decisions, so BDI model fits

680 M. Godlewska

well to document-agents, because it represents the natural knowledge processes of
a human mind.

A model considers beliefs as a knowledge about the world, desires as goals
of an agent and future-directed intentions, which are composed of plans, as an
important and irreducible concept. Particularly, for the MIND document-agents:

• the world is a knowledge-based organization, in which users have devices and
applications that can be an environment for agents and these devices are from
time to time connected to a network enabling migration or communication of
agents.

• beliefs are components of document-agents: hub-document, users, parts and
services. An agent does not need to know all users or services of an organization.
It is enough for the agent to know a subset of the world that is needed to
perform a designated process. Especially, during a process, a document-agent
can “discover” the world, i.e., add users, parts or services.

• desires are represented by the path component that reflects steps of a knowledge
process striving to achieve an organization’s goal.

• intentions are related to the agent’s autonomy. In the Bratman’s model, plans
are initially only partially conceived, with details being filled in as they progress.
The MIND document-agent autonomously follows its path, which can be modi-
fied dynamically during the process. It is also able to designate the services
needed to perform the appropriate action on a constituent document.

Although MIND meets requirements of the BDI model, it is not its direct im-
plementation, as in the latter, agents do not have any specific mechanisms to learn
from past behavior and adapt to new situations. The MIND document collects all
information about its performance, which can be an appropriate training set to teach
agents to perform a process better in future, for example negotiation [26].

4 DISTRIBUTED WORKFLOW ENACTMENT

A key feature of the MIND architecture is physical distribution of business process
activities, performed dynamically on a system of independent personal devices. The
MIND documents have built-in process definition and functionality (the respec-
tive path and embedding service components mentioned in the previous section).
This makes them document-agents, which are autonomous and mobile. Especially,
they are independent of any particular platform supporting workflow enactment and
they are capable of launching individual activities onto various users’ devices, which
maintain process coordination across an organization.

A standard WfMC Workflow enactment service [27] interprets the process de-
scription and controls sequencing of activities through one or more cooperating
workflow engines. Even if workflow engines are distributed, workflow enactment
is centralized in most of the implementations, because control data must be avail-
able to all engines. Contrary to that, in the MIND architecture, all data needed

Smart Document-Centric Processing of Information 681

for workflow enactment are embedded in documents, and allow for implementation
of a really distributed workflow enactment service, consisting of Local Workflow
Engines (LWEs).

The idea of the distributed workflow enactment service built on top of LWEs is
illustrated in Figure 3.

protocol
MIND

protocol
MIND

LWE

LWE LWE

Figure 3. Distributed workflow enactment service based on LWEs

Each LWE is independent of other LWEs, so it can be implemented in any
technology and adapted to requirements of particular devices, especially mobile
devices such as tablets and smartphones.

A MIND document-agent is sent in a static, serialized form via any network
protocol available, enabling transmitting a document-size data. For example, it can
be a FIPA MTP standard protocol [28], ordinary HTTP protocol, or just email pro-
tocols such as SMTP or IMAP. Section 7 outlines several possible implementations
of transport layer for the MIND documents.

The initial state of workflow enactment is when LWE downloads a serialized doc-
ument on a local device and activates it, which means unmarshalling and launching
its embedded functionality. The activated document-agent begins its mission by
obtaining the path component and determining the current activity that should be
performed in this particular step of the process. The document-agent contains all
data needed to determine the state of the workflow process locally. Thereafter, the
document-agent may interact with users, their local systems and some external ser-
vices. If the next activity is intended for another user, the document is serialized
again, packed and sent to the next user via a network protocol.

All workflow process data are brought to LWE by a document. So document-
agents are the only means of communication between LWEs in a distributed system.
Since LWEs can be implemented in different technologies, they can be adapted to
various hardware.

5 DOCUMENT-FLOW PATTERNS

To run the appropriate activity in a workflow process locally, a MIND document-
agent must contain not only a process definition, but also its current execution
state. This state contains an ID of a current activity assigned to a given user,

682 M. Godlewska

stored in an external XPDL attribute. But it is not enough in many situations
in a process. In order to define all attributes that form a process state, a set of
document-flow patterns has been defined. These attributes, namely current activity,
counter, sentinel, finish and semaphore are implemented as internal variables of the
MIND document and operated by a handling LWE as described below.

Based on the work of van der Aaalst [6] and characteristics of a distributed sys-
tem three categories of the document-flow patters have been identified: distributed
state patterns, coupled state patterns, and embedded state patterns [4].

5.1 Distributed State Patterns

These patterns describe situations in which a next activity or activities can be
determined solely on the state of the current activity. Four patterns of this type
have been distinguished:

Document sequencer involves a user transferring a document to another user.
The document may be transferred in its entirety in one package or if it is too
large for a transport layer protocols, it may be partitioned into several packages.
If the document is partitioned into smaller pieces, the numbering of packages
is entered and the last package is marked with the sentinel attribute. Thanks
to that, a recipient knows if all packages of the document have been already
received, even if they come in a different order.

Document splitter creates identical copies of a document or partitions it into
separate fragments. Whether the document would be copied or decomposed
depends on the functionality of the document provided by services. The resulting
documents get new document IDs and they are transferred to respective users
specified in a migration policy. They are modified parallelly while executing
different activities. For each document, ID of an activity that would be executed
on it in the next step is set as a current activity attribute value.

Depending on conditions defined in the workflow process, the splitter produces
a different number of copied/fragmented documents. This number is stored
in the counter attribute. If the splitter has n outgoing branches, the counter
assumes a value from 1 to n: 1, if only one branch was chosen and n, if all
branches were chosen.

Document merger complements the document splitter pattern and merges all
received documents in one. Of course, it may involve various document func-
tionality, depending on whether the preceding splitter has been cloning or de-
composing. But before merging, all expected documents must be delivered. The
LWE client on the basis of path component of the first received document (the
value of the counter attribute) determines a number of expected documents that
have to be merged.

Document iterator enables repeated execution of some sequence of activities con-
trolled by a condition specified in a respective document migration policy. Many

Smart Document-Centric Processing of Information 683

workflow languages allow for creating unstructured loop with more than one en-
try or exit point, that do not need any specific looping operators [6]. In this
case, the value of the one boolean finish attribute brought by document to logic
gateway can decide, whether a workflow should continue a loop or exit from it.

5.2 Coupled State Patterns

Sometimes completion of an activity performed by one user may require a notifi-
cation on a state of some activity performed by another user somewhere in an or-
ganization. That involves a notion of asynchronous signals, sent between different
parts of a workflow process. Three document-flow patterns of this kind have been
distinguished: deferred choice, milestone and cancel activity.

Milestone and deferred choice are used to deal with situations when the cur-
rent activity of one user has to be blocked until a signal notifying on some
external event has been received from another worker. Both patterns require
the semaphore attribute and embedded functionality to handle it. Initial value
of the semaphore is closed, so if a signal from another worker has not been re-
ceived, the current activity is blocked. Upon receiving a signal, a waiting activity
is resumed. Milestone just blocks some activity of one user by another. Thus,
a signal does not have to have any specific value. Deferred choice is used when
sending a given document has to be postponed until the user gets information
to whom it should be sent. Thus, a signal should have a value identifying a next
user, e.g. the user’s ID.

Cancelling pattern. Implementation of this pattern depends on which process ac-
tivities should be cancelled. If a particular activity should be cancelled, a can-
cellation signal is sent only to LWE responsible for its execution. The decision
on cancelling the activity is immediate for a receiving device or does not make
sense any more if a document has been sent to another user. More problematic
situation is to cancel a document (one part of the MIND document), because
it requires a designation of its location. It is possible to search for a document
in all places indicated by the workflow, but this solution is expensive and can
be unreliable. Another solution is to chase a document that can leave a trail
in each visited LWE. It is worth mentioning that a document flow takes hours,
even days, rather than seconds, so it would be a reasonable solution. For exam-
ple, the Intel’s Email Service Level Agreement defines the acceptable time frame
for replying to emails in 24 hours [29]. Using an external “ground control” ser-
vice [5], which introduces the ability to track document-agents globally, allows
for simplification of a document cancellation.

The cancelling pattern does not need any additional attributes to enable can-
cellation. In principle, every activity or every document can be cancelled. The
cancel attribute is added after the cancellation to indicate this fact, which may
be needed for further analysis of a process.

684 M. Godlewska

5.3 Embedded State Patterns

Performing an activity by some user may require a subprocess delegated to some-
one else with activities not specified originally in a migration policy of an arriving
document. States of such a subprocess are embedded in a state of a current activity
referring to that subprocess. Two types of subprocess can be distinguished: internal
and external.

Internal subprocess. If a current user is authorized to extend an original mi-
gration policy of a document with new activities, they constitute an internal
subprocess. Neither a structure of the internal subflow nor identity of added
users have to be known earlier to a workflow originator (designer).

This is a key pattern in the MIND architecture. Internal subprocesses can
be added during the workflow execution. It allows for defining a relatively
small initial workflow and its dynamic expansion during execution. The activity
assigned to the user is converted into a subprocess activity. The main advantage
of editing a process during its execution is that it can be built ad hoc of small
pieces. Each worker can define a fragment (subprocess) of a workflow, i.e. each
user can be a document originator.

External subprocess. A performed activity may call some external subprocess
whose structure is unknown for both, a workflow designer and a performer of
a current activity. The external subprocess is often performed outside of an or-
ganization.

6 A PERSONAL DOCUMENT-AGENT

A special case of an iterator is recursion, which means the ability of some activity
to invoke itself during its execution [6]. For documents, it is a situation in which
a user performs the same activity several times on different devices. From the
perspective of an entire process, this is still one activity, but from the perspective of
a document-agent, executing conditions on different devices can vary significantly.
This situation requires creating a subprocess with one input and one output, in
which a document will be transferred between user’s devices and edited until the
end of work.

A
finish
?

NO YES

Ai

Figure 4. A recursive document-flow pattern

Smart Document-Centric Processing of Information 685

Figure 4 presents a recursive pattern as a subprocess added to the activity A,
being a certain task that a user has to perform on a document part. In many
cases, a user does not perform this task at once. Thus, the document has some
intermediary states between receiving and sending. It can be opened, edited, saved
and closed many times during one activity. LWE can put to sleep and next wake up
a document-agent as many times as needed, including the restoration of necessary
services. This is a typical behavior of the MIND document and does not require
any subprocess. A subprocess would be needed if one activity would have to be
performed on different devices of the same user. It is a common situation, as many
people have several devices at their disposal. Each activity Ai is an ith copy of the
activity A started before adding the subprocess and each one expresses the same
task A. After performing a certain stage of the task represented by Ai, the user
decides, if a work is completed. If not, it may happen that it would be continued
on another device as Ai+1.

A document-agent, when interacting with LWE, can recognize on which device
it currently resides. Thus, it can dynamically adjust to various execution contexts
provided by devices. It may have a certain performance strategy for a given device,
which it can consult with users by negotiating with their device [30].

The recursive pattern proposed in Figure 4 can been exploited by the concept
of a Personal Document-Agent presented in Figure 5.

LWE

OS
x

LWE

OS
y

LWE

OS
z

local
state

local
state

local
state

global
state

PDA

user processed
documents

services

Figure 5. PDA as a middleware between user and his OSs

Assume that everything users do on their devices is the implementation of their
personal process, and LWE has been installed on each of them. The special MIND
document does not implement a path assigned in advance, but follows users to

686 M. Godlewska

support their work. This is a process that is being built ad hoc. In a personal
process, a state of work is often more important than the sequence of activities
performed. A user interrupts it at a certain point and after some time wants to
resume it in the same point where it was interrupted. This is not a problem of
just one device. Most operating systems allow for putting them into a sleeping or
hibernating mode. Incidentally, the system is not able to wake up and then the
state of work would be lost. It would be much more useful to provide a prospect for
continuing work from the sleeping/hibernating point, but on another device.

PDA collects the data about tasks performed by the user, as snapshots of a state
of work. Next, PDA distributes the obtained data into two sets: data important
for the work on local operating system (a local state) and data that express the
state of performing a certain task (a global state). This distribution is supported
by the MIND service component (see Section 3). The local state contains informa-
tion about local services that users used in their latest work, while the global state
registers the use of external and embedded services. But not only, the global state
also includes mappings between corresponding applications on different devices, for
example, Adobe Acrobat Reader on PC with the Windows OS would correspond to
Google PDF Viewer on a tablet with the Android OS. It also can indicate discrep-
ancies, for example an AutoCAD application would be only available on a computer
at work.

PDA also uses the part component to enable users interaction with the doc-
uments they have recently worked on. It keeps information not only about open
documents, but also about specific places in these documents, if it is possible for
a given format. Thanks to this, users changing the device, are redirected to the
exact place in document.

Interaction between PDA and a user could evolve in time. PDA can use many
services to cooperate with a user, including voice communication. However, turning
on too many services at the beginning, would overload the system and a user might
not be able to use so many of them. Instead, PDA should be kept as small as possible
and should be able to collect data about the user’s habits to better support the
latter. For this purpose, various solutions are currently being adopted by the Author,
such as machine learning to automatically built document migration, strategies or
emotion recognition of its local user [31]. For example, let imagine the situation,
that PDA “knows” a user named Bob. PDA knows, that Bob never works on Friday
evenings. If he turns on the computer, he usually watches movies or plays video
games. He gets angry when anything reminds him of work. Therefore, PDA would
ask Bob what to turn on for him: his recently acquired video game or a Netflix
service, and only one exception would be allowed – when the tight deadline to
complete task is about to expire. Then Bob would accept the suggestion to continue
his work instead. In such a case, PDA would readily recreate the state of his recent
work.

PDA can collect some other data, not only a status of work. It is practical to
collect data about peripheral devices, so as not to have to configure them for each
device separately and to communicate with them faster and easier.

Smart Document-Centric Processing of Information 687

7 CASE STUDY AND VALIDATION

The MIND architecture was created to facilitate knowledge management in com-
plex knowledge processes, in which a flow of electronic documents and extracting
knowledge from them are crucial. Coordination of document workflows may be often
enforced by law, especially when related procedures are implemented manually by
workers – as it takes place in court trials, crash investigations or complex medical
cases.

The first case study was a judicial proceeding system. A real judicial case in the
form of complete files could reach an enormous size. The purpose of this exercise was
to consult with court workers (judges, attorneys, counsellors, judicial officers, etc.)
to verify the usefulness of the proposed document-flow patterns and their required
functionality. In court trials, there are many constituent documents that have spec-
ified structure and workflows are precisely defined by legal procedures. So, using
MIND-like documents would be essential to redirect attention of all stakeholders in-
volved to the content of a court trial, rather then concentrating on complying with
the legal rules governing it. A feasibility study of the MIND architecture was carried
out in cooperation with lawyers and a company providing software for courts. This
allowed for developing the MIND document model and defining the document-flow
patterns.

The second case study involved the issue of evaluation of students in a typical
university grading process. It allowed to test the validation of implementing the
MIND architecture in a real environment, using the document-patterns.

A worker of Registrar’s Office forms a grade roster hub document, and transfers
it to a Course Leader. A Course Leader runs his own subprocess of collecting
credits from instructors during the entire semester; structure and implementation
of that subprocess is irrelevant to the Registrar’s Office. While the Registrar’s
Office may use an online grade system for one-time roster submission and approval,
a Course Leader is responsible for all subprocesses of collecting credits and has
modification, control and cancellation permissions. Instructors receive only a class
roster of their student’s groups, which can be filled out at any time, before a specified
deadline.

Several prototype applications were implemented to validate the MIND archi-
tecture and demonstrate its implementability in the context of the above mentioned
case study. The main task of the implementation was to create an environment for
document-agents: for their actions on users’ devices and for transferring between
devices. It was common for all prototypes to use XML [32] for MIND document im-
plementation. The path component that describes the document workflow has been
specified in XPDL. XML files can be easily transformed to other formats, tailored
to the specific technology.

The first implemented prototype [3] used the JADE. Document-agents extended
the JADE MobileAgent class and LWE was a component of a JADE container. The
transport layer was built on top of the JADE IMTP protocol. However, users were
hesitant to use this prototype as difficult to configure and maintain, subscribing too

688 M. Godlewska

much to the specific technology, and requiring troublesome inclusion of additional
ports, often blocked by intermediary firewalls.

Further prototypes used email, and standard email’s protocols, as a transport
layer, with LWE implemented simply as a lightweight email client. Email is the most
popular computer mediated communication in the workplace, as a simple textual
form combined with a possibility to disseminate attachments in any format. This
solution did not require additional skills from users and could support asynchronous
work. LWE was implemented in several leading technologies: as a Java desktop
application for PCs and laptops, and for mobile platforms: iOS, Windows Phone
and Android [33]. These implementations used, however, different available libraries
for email messaging, serialization and compression of documents, and XML data
binding. LWE prototypes were tested simultaneously, while performing one process,
so they formed a really heterogeneous system.

Installation of LWE on each device is recommended to take full advantage of
a distributed system. The implementability of LWE was proven by prototypes im-
plemented for various platforms. They were lightweight standalone applications and
there was no need to configure any servers or databases. With email protocols used
as the underlying transport layer, the configuration proceeded in the same way as
the configuration of a typical email client. Alternatively, LWE could be provided as
a Web service – especially in cases, when a user has a device for which LWE has not
been implemented yet. Also, a user may play a marginal role in the process or just
want to refuse installation of LWE.

This system based on email worked satisfactorily and has been considered by
users as friendly. The Course Leader was free to implement his evaluation process
in any way and course instructors could perform their activities using their personal
mobile devices in any time, even if they were out of their campus network. The
grading process involved both scheduled and unpredictable events, such as project
assessment or homework collection for the former, and grade correction or disci-
plinary actions in a case of academic misconduct. These events were effectively
handled with document-flow patters outlined in Section 5. The users’ satisfaction
was also influenced by: a simplicity of use, configuration, and easiness of the LWE
application, as well as the ability to work without a permanent internet connection.

8 CONCLUSIONS AND FUTURE WORK

One of the main objectives for the presented MIND architecture has been its open-
ness to new policies, services and diverse applications. Some of them have already
been implemented, while others are still in the development phase.

Executability and mobility constitute the enabling services for MIND document-
agents (see Section 7). The former involves unpacking, assembling and activating
arriving document components to enable execution of the current activity, and after
that packing them back before their departure, while the latter involves transporting
them between personal devices of users to proceed with subsequent activities.

Smart Document-Centric Processing of Information 689

Next, reliability of the MIND agent system has been provided by a “ground con-
trol” external service [5] to make the distributed workflow enactment system more
useful and trustworthy. It allowed for estimation of the global state of a distributed
loosely coupled system, taking into account transport layer errors, unforeseen ac-
tions of users and process modifications. The “ground control” service together with
LWE enabled communication between a persons responsible for executing a process
and performers of a related activity. Additional permissions and rules allowed to de-
termine which participant could control the process execution and make decisions in
unforeseen or conflict situations. That also allowed for introducing the choreography
policy [5] into the process enactment.

There is also a security issue, which answers the question: what to do if a doc-
ument gets to an unauthorized person? LWE may require authentication of a user
before unpacking and activating document components – to verify if the performer
assigned to the current activity is the same person as the recipient of the document.
An interesting solution for that has been proposed in [34]; it introduced a biometric
face recognition mechanism built in MIND document-agents.

Finally, a negotiation capability was added to MIND documents to resolve pos-
sible conflicts between document-agents and user’s devices they visit to execute
a particular activity at their workflow [30].

Personal Document-Agent (PDA) presented in Section 6 is the next concept
building on the MIND architecture. It explores executability and mobility of the
MIND document-agents to improve the work of a specific user with his devices and
peripherals. Thanks to this, a user may have an impression of continuing work from
the point where it was interrupted, despite of changing the device and its location.

The MIND architecture enables dynamic modification of the workflow process.
After the workflow process is completed, the document is archived (see Figure 1),
and the data collected during it are a great base for analysis. Retracing already
completed processes allows for their optimization in accordance with the real be-
havior of users. Machine learning approaches can be used to choose the best path
or services in the process. During the process, users can assess the accuracy of the
activity, that they performed. For example, if a document got to someone’s device
unnecessarily, it could learn not to follow such a path in the future.

Acknowledgment

This work was supported in part by the National Science Centre, Poland, under
Grant No. DEC1-2011/01/B/ST6/06500.

REFERENCES

[1] Bhatt, G. D.: Organizing Knowledge in the Knowledge Development Cy-
cle. Journal of Knowledge Management, Vol. 4, 2000, No. 1, pp. 15–26, doi:
10.1108/13673270010315371.

https://doi.org/10.1108/13673270010315371

690 M. Godlewska

[2] Spira, J. B.: Overload!: How Too Much Information Is Hazardous to Your Organi-
zation. John Wiley and Sons, 2011.

[3] Godlewska, M.: Agent System for Managing Distributed Mobile Interactive Docu-
ments in Knowledge-Based Organizations. In: Nguyen, N. T. (Ed.): Transactions on
Computational Collective Intelligence VI. Springer-Verlag, Berlin, Lecture Notes in
Computer Science, Vol. 7190, 2012, pp. 121–145.

[4] Godlewska, M.—Wiszniewski, B.: Smart Email: Almost an Agent Platform. In:
Sobh, T., Elleithy, K. (Eds.): Innovations and Advances in Computing, Informat-
ics, Systems Sciences, Networking and Engineering. Springer-Verlag, Berlin, Lecture
Notes in Electrical Engineering, Vol. 313, 2015, pp. 581–589.

[5] Godlewska, M.: Reliable Document-Centric Processing and Choreography Policy
in a Loosely Coupled Email-Based System. International Journal on Advances in
Intelligent Systems, Vol. 9, 2016, No. 1-2, pp. 1–13.

[6] Russell, N.—ter Hofstede, A. H. M.—van der Aalst, W. M. P.—
Mulyar, N.: Workflow Control-Flow Patterns: A Revised View. BPM Center Re-
port BPM-06-22, 2006.

[7] MeNaID. National Science Center, Poland, Grant DEC1-2011/01/B/ST6/06500,
2012-2014. Available on: http://menaid.org.pl, 2017.

[8] Phelps, T. A.—Wilensky, R.: Toward Active, Extensible, Networked Docu-
ments: Multivalent Architecture and Applications. Digital Libraries (DL ’96), 1996,
pp. 100–108, doi: 10.1145/226931.226951.

[9] Dourish, P.—Edwards, W. K.—LaMarca, A.—Lamping, J.—Peter-
sen, K.—Salisbury, M.—Terry, D. B.—Thornton, J.: Extending Docu-
ment Management Systems with User-Specific Active Properties. ACM Transac-
tions on Information Systems (TOIS), Vol. 18, 2000, No. 2, pp. 140–170, doi:
10.1145/348751.348758.

[10] Satoh, I.: Mobile Agent-Based Compound Documents. Proceedings of the 2001
ACM Symposium on Document Engineering (DocEng ’01), ACM, 2001, pp. 76–84.

[11] Telecom Italia. Workflows and Agents Development Environment. Available on:
http://jade.tilab.com/wade, 2017.

[12] Telecom Italia. Java Agent Development Framework. Available on: http://jade.

tilab.com, 2017.

[13] WfMC. Workflow Management Coalition: Process Definition Interface – XML Pro-
cess Definition Language (Version 2.2). Technical Report WFMC-TC-1025, 2012.

[14] AMODIT Web Site. Available on: http://amodit.com/, 2017.

[15] Enembreck, F.—Barthès, J. P.: Agents for Collaborative Filtering. Coopera-
tive Information Agents VII, 7th International Workshop Proceedings (CIA 2003),
Helsinki, Finland, August 2003, pp. 184–191, doi: 10.1007/978-3-540-45217-1 14.

[16] Apple Web Site. Automatically Re-Open Windows, Apps, and Documents on Your
Mac. Available on: https://support.apple.com/en-us/HT204005, 2018.

[17] Cache My Work Web Site. Available on: http://cachemywork.codeplex.com/,
2017.

[18] SmartClose Web Site. Available on: http://bmproductions.fixnum.org/

smartclose/index.htm, 2017.

http://menaid.org.pl
https://doi.org/10.1145/226931.226951
https://doi.org/10.1145/348751.348758
http://jade.tilab.com/wade
http://jade.tilab.com
http://jade.tilab.com
http://amodit.com/
https://doi.org/10.1007/978-3-540-45217-1_14
https://support.apple.com/en-us/HT204005
http://cachemywork.codeplex.com/
http://bmproductions.fixnum.org/smartclose/index.htm
http://bmproductions.fixnum.org/smartclose/index.htm

Smart Document-Centric Processing of Information 691

[19] Google Drive Web Site. Available on: https://www.google.com/drive/, 2017.

[20] One Drive Web Site. Available on: https://onedrive.live.com/about/pl-pl/,
2017.

[21] Apple Siri Web Site. Available on: https://www.apple.com/ios/siri/, 2017.

[22] Google Assistant Web Site. Available on: https://assistant.google.com/, 2017.

[23] Amazon Alexa Web Site. Available on: https://developer.amazon.com/alexa/,
2017.

[24] Rao, A. S.—Georgeff, M. P.: BDI Agents: From Theory to Practice. Proceed-
ings of the First International Conference on Multiagent Systems (ICMAS ’95), 1995,
pp. 312–319.

[25] Bratman, M. E.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA, 1987.

[26] Kaczorek, J.—Wiszniewski, B.: Document Agents with the Intelligent Negotia-
tion Capability. Knowledge and Cognitive Science and Technologies (KCST 2015),
Proceedings of the 19th World Multiconference on Systemics, Cybernetics and Infor-
matics (WMSCI 2015), Orlando, FL, USA, July 12–15, 2015, pp. 353–358.

[27] WfMC Workflow Management Coalition: Terminology and Glossary, WfMC, Winch-
ester, UK, Technical Report WFMC-TC-1011, Issue 3.0, 1999.

[28] Foundation for Intelligent Physical Agents: FIPA Agent Message Transport Service
Specification, Geneva, Switzerland, 2000.

[29] Spira, J. B.—Burke, C.: Intel’s War on Information Overload: A Case Study.
Basex, Inc., 2009.

[30] Kaczorek, J.—Wiszniewski, B.: Augmenting Digital Documents with Negotia-
tion Capability. 13th ACM Symposium on Document Engineering (DocEng 2013),
Florence, Italy, 2013, pp. 95–98, doi: 10.1145/2494266.2494305.

[31] Landowska, A.—Szwoch, M.—Szwoch, W.: Methodology of Affective Inter-
vention Design for Intelligent Systems. Interacting with Computers, Vol. 28, 2016,
No. 6, pp. 737–759, doi: 10.1093/iwc/iwv047.

[32] Bray, T.—Paoli, J.—Sperberg-McQueen, C. M.—Maler, E.—Yer-
geau, F.: Extensible Markup Language (XML) 1.0 (Fifth Edition). World Wide
Web Consortium, Recommendation REC-Xml-20081126, 2008.

[33] Wiszniewski B.: Interactive Documents for Network Organisations. Adjacent Dig-
ital Politics, Ltd., 2013.

[34] Siciarek, J.—Smiatacz, M.—Wiszniewski, B.: For Your Eyes Only – Biometric
Protection of PDF Documents. 2013 International Conference on e-Learning, e-Busi-
ness, Enterprise Information Systems, and e-Government (EEE ’13), Las Vegas, USA,
2013, pp. 212–217.

https://www.google.com/drive/
https://onedrive.live.com/about/pl-pl/
https://www.apple.com/ios/siri/
https://assistant.google.com/
https://developer.amazon.com/alexa/
https://doi.org/10.1145/2494266.2494305
https://doi.org/10.1093/iwc/iwv047

692 M. Godlewska

Magdalena Godlewska received her M.Sc. in computer scien-
ce from University of Gdansk. She received her Ph.D. degree
from Gdansk University of Technology also in computer science.
Area of her interest, in general, is document engineering. She
got two scholarships for Ph.D. students: the first one awarded by
the Poland Pomeranian Special Economic Zone and the second
one co-financed by the European Union. She participated in
Grant “Methods and Tools of Future Document Engineering –
MENAID” – financed by the Poland National Science Centre.
She is currently working at the Institute of Informatics at the
University of Gdansk.

Computing and Informatics, Vol. 37, 2018, 693–716, doi: 10.4149/cai 2018 3 693

STREAMED DATA ANALYSIS USING
ADAPTABLE BLOOM FILTER

Amritpal Singh, Shalini Batra

Department of Computer Science and Engineering
Thapar university
Patiala, Punjab, India
e-mail: amritpal.singh203@gmail.com, sbatra@thapar.edu

Abstract. With the coming up of plethora of web applications and technologies like
sensors, IoT, cloud computing, etc., the data generation resources have increased
exponentially. Stream processing requires real time analytics of data in motion and
that too in a single pass. This paper proposes a framework for hourly analysis of
streamed data using Bloom filter, a probabilistic data structure where hashing is
done by using a combination of double hashing and partition hashing; leading to
less inter-hash function collision and decreased computational overhead. When size
of incoming data is not known, use of Static Bloom filter leads to high collision rate
if data flow is too much, and wastage of storage space if data is less. In such cases it
is difficult to determine the optimal Bloom filter parameters (m, k) in advance, thus
a target threshold for false positives (fp) cannot be guaranteed. To accommodate
the growing data size, one of the major requirements in Bloom filter is that filter size
m should grow dynamically. For predicting the array size of Bloom filter Kalman
filter has been used. It has been experimentally proved that proposed Adaptable
Bloom Filter (ATBF) efficiently performs peak hour analysis, server utilization and
reduces the time and space required for querying dynamic datasets.

Keywords: Bloom filter, partition hashing, double hashing, Kalmann filter

1 INTRODUCTION

In today’s world, data is considered as one of the most valuable assets. It has
been acknowledged by data scientists that timely and accurate analysis of available
data helps in creating more opportunities by taking right decision at right time

694 A. Singh, S. Batra

in ever changing business environments [1]. With the coming up of plethora of
web applications and technologies like IoT [2], cloud computing [3], etc., the data
generation resources are increasing exponentially. This change is leading to a shift
in paradigm from existing relational data base based systems to systems which can
efficiently accommodate Big data. Initially Big data [4] refereed to the collection
of huge amount of unstructured data (volume and variety) only. But, with the rise
in continuous data generation resources like traffic data, climate data, stock market
data, etc., term velocity was introduced in Big data. Streamed data arriving from
various resources requires fast processing and storage framework for handling huge
amount of data. Storing entire data requires lot of memory and usage of fixed size
data structures will require a lot of time for analysis [5]. Further, in case of streams,
continuous analysis of data is required before storing it [6, 7].

Streaming data analytics [8] focuses on reducing time and space complexity of
incoming data before storing it on disk. The important issue in stream processing
is that data diminishes with time so data must be processed in a particular time
window in single pass.

In many applications, fast and real time processing is required to make timely
decisions accurately [9] for example in finance sector, the analysis of stock market
streaming data is an essential tool for predicting stock price of the companies and real
time fraud detection in a short time span. In dynamic recommender applications,
processing of streamed data is necessary for referral of products according to interest
of user and promotion of new products in the market [10]. In network applications,
managing data streams for system monitoring can be time-varying, volatile and
unpredictable since tasks to be managed include accessing the server’s utilizations
in particular time frame, tracking the number of unique visitors on a network in
a particular time, identifying common users between two time slots, or calculating
maximum number of hits on network in particular span of time. Results of network
analysis can help to predict the resource usage over network, identify rush hours in
network, management of network resources on the time slot basis and detect attacks
like DoS and DDoS.

Fast matching of arbitrary identifiers to the values of incoming data and real
time response are the basic requirements for majority of streaming data applications.
Given millions or even billions of data elements, developing efficient solutions for
storing, updating, and querying them becomes increasingly important especially
when data is available for a short span.

Using traditional data base approaches which include performing filtering and
analysis after storing the data is not efficient for the real time processing of streamed
data. Since the size of incoming data is unpredictable, data structures used for
the storage of data should be dynamically adjustable, but changing size in each
iteration may lead to the extra computational overhead. Thus, some adaptive
storage mechanism is required which performs predictive analysis to determine
size of data structures being used. Provisions should also be available for adjust-
ments on the basis of previous incoming data or on the basis of real time data
flow.

Streamed Data Analysis Using Adaptable Bloom Filter 695

Above mentioned issues clearly indicate that efficient storage and searching tech-
niques are required for processing streaming data. Various solutions proposed by
researchers in this domain utilize probabilistic techniques to reduce information pro-
cessing and analytics cost. This paper proposes the use of Bloom filter [11], a prob-
abilistic data structure [12] which can store the elements of a set in a space-efficient
manner by using hashing principles with a small error in querying process. Presently
Bloom filter is widely used in many networking and security algorithms like authen-
tication, tracebacking, IP tracebacking, string matching, reply protection, etc. It is
also used in fields as diverse as accounting, monitoring, load balancing, policy en-
forcement, routing, clustering, security and even in many database applications [13].
There are number of variants of Bloom filter which have been successfully used in
different application domain [14].

The prime focus of the proposed framework is to efficiently query the incoming
data within the limited time domain. To deal with instream data and store the
information for a short time the proposed framework uses a Scalable Bloom filter [15]
with Ageing Bloom filter properties, i.e. evicting data after fixed time interval. In
the proposed framework Kalman filter [16] is used to make scalable Bloom filters
adaptive in terms of size and reduce the computational overhead of adding extra
filters at run time. Further, query complexity of dynamic data has also been reduced.
The proposed Bloom filter is named as Adaptable Bloom Filter (ATBF) and it
has been experimentally proved that the proposed filter outperforms the existing
Scalable Bloom filter when dealing with in-stream data.

The plan of this paper is as follows: Section 2 provides the literature survey of
the Bloom filter and its variants. In Section 3, proposed approach is discussed in
detail. Section 4 provides experimental results and compares existing approach with
the proposed approach. Finally, Section 5 concludes the paper.

2 RELATED WORK

2.1 Standard Bloom Filter

The Bloom Filter (BF) [11], a space efficient probabilistic data structure, is used
to represent a set S of n elements. It consists of an array of m bits, denoted by
BF [1, 2, . . . ,m], initially all set to 0. To describe the elements in the set, the filter
uses k independent hash functions h1, h2, . . . , hk with their value ranging between
1 to m assuming that these hash functions independently map each element in the
universe to a random number uniformly over the range. For each element x ∈ S; the
bits BF [hi(x)] are set to 1 for 1 < i < k. Given an item y, its membership is checked
by examining the BF whether the bits at positions h1(y); h2(y); . . .; hk(y) are set
to 1. If all hi(y) (1 < i < k) are set to 1, then y is considered to be part of S. If
not, then y is definitely not a member of S. The accuracy of a Bloom filter depends
on the filter size m, the number of hash functions k, and the number of elements n.

696 A. Singh, S. Batra

User can predefine false positives (fp) according to application’s requirement.

fp =
(
1− e−kn/m

)k
. (1)

2.2 Scalable Bloom Filter

In some applications like in-stream data coming from sensors, network traffic, etc.,
the data is generated dynamically and size of the data set being generated cannot be
determined a priori. When size of incoming data is not known, use of static Bloom
filter will either lead to high collision rate or result in wastage of storage space. In
such cases it is difficult to determine the optimal Bloom filter parameters (m, k)
in advance, so a target false positives threshold cannot be guaranteed. In order to
accommodate the growing data size, one of the major requirements in Bloom filter
is that filter size m should grow dynamically.

Dynamic and scalable Bloom filters deal with the scalability problem by adding
bit arrays of varying sizes as the incoming data increases. In Dynamic Bloom Filter
(DBF), an array of size same as that of initial array, i.e. an array of m bits, is
added repeatedly to accommodate the ever rising data, once the threshold or the
fill capacity of the existing DBF exceeds. But this addition in DBF causes the
significant increase in error rate. In scalable Bloom filter, a variable size array
is added whenever the defined threshold is crossed, with an extra parameter ρ to
maintain the error rate in defined bound.

Scalable Bloom Filter (SBF) [15, 17] is a BF variant that can adapt dynamically
to the number of incoming elements, with an assured maximum false positives f 0

p .
In addition to the initial array of size m0, SBF includes two additional parameters:
expected growth rate (s) and the error probability tightening ratio (ρ) (0 < ρ < 1);
insert operation in SBF for an element x using k hash functions and parameters s and
ρ is given by Insert(SBF [.], x,ki=1 hi(x), f 0

p , s, ρ). When m0 = log2(f
0
p)−1 exceeds the

defined threshold, a new array m1 = m0 + log2 ρ
−1 is added and error probability

for new filter f 1
p = f 0

pρ. Size of additional ith array mi is:

mi = log2(f
i
p)

−1 = m0 + i× log2 ρ
−1. (2)

For flexible growth in SBF size, exponential growth factor s is added, generating
i individual filters of size m0,m0s,m0s

2, . . . ,m0s
i−1. When the fill ratio th for one

filter exceeds the defined threshold, another filter is added to it with a well defined
growth parameter s. Elements stored in ith filter are approximately:

Ni ≈ m0s
i(ln(th)). (3)

At a given time, error probabilities of all i individual filters (0 < i < (i− 1)) is
f 0
p , f

0
pρ, f

0
pρ

2, . . . , f 0
pρ

i−1. The compounded error probability for the SBF is:

fSBF
p = 1−

i∏
x=1

(
1− f 0

pρ
x−1
)
. (4)

Streamed Data Analysis Using Adaptable Bloom Filter 697

Query process in SBF is accomplished by testing the presence of query element
in each filter, starting from active filter to oldest filter. At the time of query, if N be
the total incoming elements and N0 be the elements in m0, total number of arrays
added in Bloom filter. Search complexity for the worst case analysis is:

O(k(blog(N/N0 + 1)c) + 1). (5)

It has been experimentally verified that computational overhead of SBF surges
as the size of SBF grows with the increase in incoming data set.

2.3 Ageing Bloom Filter

Some network applications require high-speed processing of packets. For this pur-
pose, Bloom filters array should reside in a fast and small memory. In such cases,
due to the limited memory size, the stale data in the Bloom filter should be deleted
to make space for the new data.

To accommodate such type of issues, number of solutions are proposed by do-
main experts, one of these is using only one buffer [18], i.e. allocating a buffer for
insertion of elements coming from a particular network stream. For each new ele-
ment, the buffer can be checked, and the element may be identified as distinct if
it is not found in the buffer, and duplicate otherwise. When the buffer reaches its
fill ratio, whole data is evicted from the buffer, i.e. buffer is reset to original value.
Search time complexity and false positive rate in this case is determined for a partic-
ular interval, same as that of the Bloom filter. Another solution proposed for aging
scheme using similar concept is double buffering [19]. In this approach, concept of
buffering is used but with two filters. Initially data is filled in the first filter and once
the threshold exceeded, data is filled in the next filter but as soon as the threshold
of the second Bloom filter is crossed, data is evicted from the first filter and this
process continues. Advantage of this approach is that we can store data for more
time by using double memory than by simple buffering approach. Example of aging
Bloom filter includes techniques like A2 buffering where one buffer is divided into
two parts and then double buffering is performed. One of the short comings of this
approach is that size of the filter used is static, and rough prediction of size of the
filter required may affect the accuracy of membership query.

2.4 Partition Hashing

Partitioning hashing is a technique where small portion of large table is uniquely
allocated to each hash function such that hash key li generated by hash function `i,
is randomly distributed over a small part of the array, i.e., each hash function is
allocated to a sub part of an array [20]. In Bloom filter, an array of m bits is
partitioned into k disjoint arrays of size ϑ = m

k
bits and k hash functions are used

corresponding to each part. For an element ui ∈ U , hash functions are calculated

698 A. Singh, S. Batra

as:
κi(ui) = `1(ui) + i× `2(ui) mod ϑ. (6)

Each hash function κi(.) changes bit in ith array where i|1 < i < k. Two
independent hash functions `1(x) and `2(x) are used to generate k hash functions
such that ∀i|i < k. To get best results of this schema, ϑ should be prime; so size of
array and number of buckets should be choosen in such a way that m

k
returns a prime

number. This technique leads to less inter-hash function collision, further usage of
only two hash functions to generate all k hash functions decreases the computational
overhead [20].

2.5 Approximate Counting in Streaming Data

Besides the batch processing infrastructure of map/reduce, Big data analytics re-
quire techniques where streamed data is processed in near real time in single pass
for some specific applications.

Approximate counting problem and solution for large data sets was defined in
1981 by J. S. Moore in the Journal of Algorithms [21], and later many solutions
were proposed using approximate counting in massive data sets. Two solutions
are considered: Counter-based algorithms which include Frequent majority [22],
LossyCounting [23], SpaceSaving [24] and Sketch based algorithms like Count-Min
Sketch [25], Count Sketch [26], etc.

Manku et al. [23] proposed lossy counting algorithm, which divides large data
into Bi buckets and calculates the frequency of different type of elements. Count
is maintained in bucket counters CBi for only those elements which cross a defined
threshold. For adding a new bucket Bn, counter of previous bucket, i.e. CBn−1 , is
used as base. Random decrement of all counters on the extreme sides is done after
the calculations are performed on each bucket.

To answer frequency queries and reduce computational complexity, a sketch
data structure named CountMin Sketch (CMS) was proposed by Muthukrishnan
and Cormode in 2003 and later improved in 2005 [25]. This data structure is based
on probabilistic techniques which are used to answer various types of queries on
streaming data. It is a histogram which stores elements and their associated counts.
Major difference between Bloom filter and CMS is that Bloom filter effectively rep-
resents sets, whereas the CMS considers multisets instead of storing a single bit to
answer a query, the count min sketch maintains a count of all object. It is called
a ‘sketch’ because it is a smaller summarization of a larger data set. The probabilistic
component of CMS provides more accurate results compared to proposed sketching
algorithm solutions as it has less space complexity and decreased computational
cost.

2.6 Kalman Filter

Kalman filter (KF) is a linear system model derived from stochastic process, mak-
ing it ideal for systems which are continuously changing. In KF recursive approach

Streamed Data Analysis Using Adaptable Bloom Filter 699

is used where a common model is formulated and all future calculations are per-
formed on the same equations without any modification. It is easy to implement
and requires less memory since it does not keep record of old data except the pre-
vious state. Further, less computational cost makes it suitable for real time prob-
lems.

Notaions Description

x̂k Posteriori state estimate
x̂−k Priori state estimate

P̂−
k Priori estimated error

P̂k Posteriori state estimate
K Kalman gain
vk Measurement noise
R Co-variance for measurement noise
wk Process noise
uk Control signal
Q Co-variance for process noise
zk Measured value
A,B,H Constants according to process

Table 1. Nomenclature for Kalman filter

Kalman filter is a powerfull mathematical tool mainly used for stochastic esti-
mation from noisy sensor data or data streams occurring at regular intervals. The
basic assumption of Kalman filter is that system should be continuous and can be
modeled as a normally distributed random process X, with mean µ and variance σ
(the error covariance), i.e. X ∼ N(µ, σ) [16]. Kalman filter addresses the problem of
estimation of state xk of a discrete-time controlled process on the basic of previous
state xk−1 using following equation:

xk = A.xk−1 +B.uk + wk−1 (7)

with a measured value zk for kth state given by:

zk = H.xk + vk (8)

where Pr(w) ∼ N(0, Q) and Pr(v) ∼ N(0, R).

2.6.1 Discrete Kalman Filter

Kalman filter is a set of mathematical equations that build a predictor-corrector type
estimator model to optimally minimize the estimated error covariance. It provides
an estimate of a process for kth state by using a feedback control model. In this, filter
first estimates the value for kth state based on the current information of the process
and then obtains feedback from some measured value, i.e. noisy input. Based on
the error in estimated value, Kalman gain is calculated which helps in minimizing

700 A. Singh, S. Batra

error in further iterations. The algorithm converges to the near optimal result after
few iterations.

Kalman filter is divided in two groups: time update equations and measurement
update equations. The time update equations help in projecting the priori current
state value (x̂−k) and priori error covariance estimates (P̂−

k) for the next step. The
time update equations act as predictor equations for estimation model [27].

x̂−k = A.x̂k +B.uk, (9)

P̂−
k = A.P̂k.A

T +Q. (10)

The measurement update equations provide feedback to the time update equa-
tions for incorporating new measurement in priori estimate to obtain an improved
posteriori estimate. The measurement update equations are also known as corrector
equations.

x̂k = x̂−k +Kk.(zk −H.x̂−k), (11)

Kk =
P̂−
k .H

T

H.P̂−
k .H

T +R
, (12)

P̂k = (1−Kk.H)P̂−
k . (13)

Wiener filter deals with static data only; Kalman filter, a generalization of
Wiener Filter [28] allows dynamic data with noisy parameters as input. Predic-
tor model based on polynomial regression [29] uses combination of number of linear
regression models which increases the computational complexity of calculations for
each prediction manifolds. Extended Kalman Filter (EKF) [30] is an extension of
Kalman filter, where at each step non-linear system is transferred to linear system
by calculating first and second order derivative. Generally, EKF are considered for
multi-class problems.

Simplicity of Kalman filter in implementation, less memory requirement and
support for dynamic environment makes it a wonderful candidate for predicting the
size of Bloom filter in streaming data.

3 ADAPTABLE BLOOM FILTER (ATBF)

To perform timely analysis on streaming data, an adaptive data structure is required
which performs analysis in one pass with minimum computational complexity and
less storage overhead. For a stream of network data S : (x1, x2, . . . , xn) over a time
based window of h time slots i.e. T : (t1, t2, . . . , th), this paper addresses the following
points:

• Analysis of network traffic for a particular time slot.

• Predicting amount of in-coming data in the next slot.

Streamed Data Analysis Using Adaptable Bloom Filter 701

• Allocation of memory for the next time slot based on prediction in the present
time slot.

Proposed model is hybrid of two types of Bloom filters: scalable Bloom filter (for
dynamic data input) and ageing Bloom filter (store data for particular time interval
only). In the proposed framework, an efficient learning model is propounded for
a time slot based analysis of network traffic using a novel technique called Adaptable
Bloom Filter (ATBF), a variant of scalable Bloom filter. Figure 1 provides the basic
framework and coming section elaborate the proposed framework along with its
phases.

Figure 1. Proposed framework

3.1 Input and Hashing Phase

A stream of data S = (x1, x2, . . . , xn) coming from any resource like sensor, social
networking websites, network data and mobile data, etc., is assumed to be the input
for the proposed framework. It is assumed that data is available only for limited
time and hence it has to be processed in the single pass in the defined time frame.
Data may be in varied formats like IP address for network data, website names,
email address, etc.

In the proposed scheme, the format of the incoming data is not an issue as all
the inputs irrespective of the format (numeric, alphanumeric, text) are hashed using
a combination of double hashing and partition hashing. Two independent hash
functions h1(x) and h2(x) are used to generate k hash functions such that each hash
function has a disjoint range of p = m/k (p must be prime for efficient hashing)
consecutive bit locations (bucket) instead of having one shared array of m bits, i.e.,
partitioning hashing is used, where m is size of array, k is number of hash functions
and p is prime number denoting the buckets in an array. ∀i|i < k

gi(x) = {h1(x) + i× h2(x)} mod p. (14)

702 A. Singh, S. Batra

To achieve uniformity in maintaining bucket for each hash function at runtime,
a parameter σi has been introduced, with initial value σ0 = p. For each element
x ∈ S (∀i|i < k)

Hj
i (x) = (h1(x) + (i− 1)h2(x)) mod σj. (15)

Corresponding to jth slice added in ith slot of ATBF, new σj is defined to synchronize
bucket size for each hash function. Φ(x) function returns an optimal number p s.t.
p← Φ(p ≥ x and p is prime).

3.2 Storage

After hashing is done for each incoming element, i.e. ∀xi ∈ S, next task is to store
the data in the array for a defined time slot say one hour or two hours. For each
time slot, i.e. ti ∈ T , a Bloom filter (ATBFi[]) is maintained to store the elements
for that particular time slot.

Selection of initial size of the Bloom filter for each slot in every iteration is
critical task because it affects time and query complexity. For the very first it-
eration, an array of size m0 is allocated and for further time slots size of Bloom
filter is decided based on data received in the previous slot. Initial array size for
each time slot th is decided on the basis of number of elements accommodated
in previous slot th−1, using an array called Learning Array (LA) which keep the
track of size of Bloom filter in each slot. The intent of providing an additional
counting array is to reduce the slice addition overhead at the run time. The
size of the array required for the next time slot is predicted through Kalman fil-
ter and each slot is provided the required slices at the beginning in the form
of a single array instead of multiple chunks called slices. This process helps in
adjusting the size of ATBFi[] to accommodate the dynamic input and reduces
search time since query is done on single array instead of slices where we tra-
verse from latest to oldest slice one by one. To maintain the uniformity in the
partition hashing, size of slice is decided on the basis of φ() function. Inser-
tion is performed by setting all hash indexed values one in the active slice of fil-
ter.

After t time slots when maximum number of time slot for which data records are
maintained is reached, insertion is performed in first slot, i.e. ATBF1[], by evicting
its old data. The proposed model works in round robin manner, i.e., slots after h
hours perform insertion on same array during next iteration, i.e., (ti + o × h) ↔ ti
where o ∈ Z. After completion of insertion in each time slot InsertLA() function
is invoked to update the values for performing size estimation for next time slot
(Algorithm 1).

One of the major issues in SBF is how to measure the defined threshold for ad-
dition of the new slice. Number of solutions have been proposed for this issue which
include 50 % percent rule, i.e., threshold is reached, when the maximum number of
one’s which a Bloom filter can accommodate reaches 50 % of its original capacity;
but how to find that a filter is 50 % occupied is again a tedious task.

Streamed Data Analysis Using Adaptable Bloom Filter 703

One of the options is to maintain a counter which increment every time an el-
ement is added or the number of one’s in filter have to be counted after regular
intervals. Another method is to keep the track of false positives after every insertion
to check whether the results are within the desired false positive rate or not, but
these solutions lead to extra computational overhead as one needs to continuously
check when a filter gets saturated and such operations will definitely dilute the very
purpose of using Bloom filter.

Proposed scheme addresses the issue of finding threshold for addition of new
filter by the usage of buckets generated through partition hashing. Instead of cal-
culating the threshold of the entire array, a function named CheckFp(), which uses
standard threshold calculation technique, is used to find the threshold value of the
randomly chosen bucket. Such technique limits the threshold calculation to a single
bucket instead of entire array, reducing the overall computation time. To avoid call-
ing CheckFp() after every iteration, a function Random() has been defined which
returns a random value through which CheckFp() function is called, leading to fur-
ther optimization of the entire process.

For experimental analysis, data is considered for varying time slots, e.g., one
time slot is equal to four or six hours, i.e., all the hashed data of first time slot
is added to the array ATBF t1, data of second time slot moves to array ATBF t2

and size of ATBF t2 is determined by LA, based on the traffic in t1 time slot. The
proposed approach is flexible enough to accommodate n time slots, with each time
slot represented by one array. Based on data stored in these Bloom filters, i.e.
ATBF 1...tn , further analysis like peak hour analysis, detecting approximate number
of users in each time slot and server utilization are performed.

3.3 Query Process in ATBF

To query the occurrence of a particular element in a time window, Query() function
is used.

Query(LA[], p, Q, T,i=k
i=1Hi) in ATBF checks each Bloom filter, i.e. ATBF ti |∀ti ∈

T from latest array to oldest array, and in each Bloom filter all slices (if added),
i.e. from r to 1, are checked corresponding to the queried element. Query process is
made fast by calculating hash functions at the run time, i.e. for a particular query,
all hash functions are not computed in advance, each hash function is calculated
and comparison is performed in defined bucket of hash function. If bit at hash
index is one then next hash function is computed and comparison is performed
otherwise query process terminates. Query process terminates as soon as first zero
is encountered in a bucket and thus time is saved as remaining hash functions for
other buckets are not calculated. The query process is terminated successfully if
element is found, i.e. all ones are returned (Algorithm 2).

704 A. Singh, S. Batra

Algorithm 1 Insertion procedure in ATBF

1: procedure Insert(ATBF [], p, S, T,i=k
i=1Hi) . Insert xi ∈ S for ti ∈ T in ATBF i

array
2: for ∀i|i ≤ T do
3: LA[i][][]← InsertLA().
4: ri ← 1
5: σri ← φ((LA[i]× p)/k) . Return optimal prime number according to

variable size of filter
6: ATBF i[r]← SizeOf (σri × k) . Assign initial size to ith filter
7: CSlice ← 1
8: end for
9: for ∀xj ∈ S do

10: while tc == ti do .
11: if thATBF i[r] > thresVal then
12: σri ← φ((sr−1 × p)/k)
13: r ← r + 1
14: S izeOf(ATBF i[r]← σri × k)
15: CSlice + +
16: else
17: for ∀z|z ≤ k do
18: hz(xj)← Hz(xj)
19: ATBF i[r](hz(xj))← HIGH
20: end for
21: end if
22: if Random() == TRUE then
23: CheckFp(ATBF [r])
24: end if
25: end while
26: InsertLA(FRLA[i], Cslice)
27: end for
28: end procedure

Lemma 1. The worst case query time complexity in proposed model for filter with
h time slots, assuming r slices in each slot with k hash functions is always less then
O(rhk).

Proof. Searching starts with hashing of the query element y, i.e. ∀i|y ∈ Q, hki=1(y)←
Hk

i=1(y) and corresponding hash indexes are checked for value zero. Query process
begins from the latest time slot to the oldest one, i.e. thto1 and same is followed in
search from slices srto1 in Bloom filter. During search operation when hash indexed
value 0 is encountered, searching for that particular array is terminated and previous
slice is not searched. In such case, number of evaluated for unsuccessful query, i.e.
not finding the element queried, is always less than k hash functions. For a Bloom

Streamed Data Analysis Using Adaptable Bloom Filter 705

Algorithm 2 Querying in proposed framework

1: procedure Query(LA[], p, Q, T,i=k
i=1Hi)

2: for ∀ Query elments(y)|y ∈ Q do
3: for ∀ Time slots(t)|t ∈ T do
4: for l = (ATBF t[.] . . . 1) do
5: if (ATBF t[l](

i≤k
i=1hi(y)) == 1) then

6: ELEMENT FOUND

7: end if
8: end for
9: end for

10: ELEMENT NOT FOUND

11: end for
12: end procedure

filter with r slices, it will be always less than O(rk). Thus, for h time slots from t1...h
having r slices each, the worst case query complexity is always less than O(rhk). 2

3.4 Learning Array (LA)

Since the amount of incoming data will keep on varying in every time slot, the size of
array will change. Calculating the threshold after every addition and providing new
slice accordingly in every time slot at run time requires lot of computation which
can be saved if record of size of array, i.e. a counter Cslice, is maintained which keeps
the count of number of slices added in a particular ATBF ti in a particular time slot.
Initially a constant size Bloom filter m0 is allocated for the first time slot and if
the incoming data increases, more slices are added and counter cslice is incremented.
To make proposed framework adaptive, a Learning Array LA[value][c] is initially
added. The main role of LA is to record the array size of ATBF ti after filling of
data in each time slot. This helps in predicting the array size required in the next
time slot.

With the help of LA an optimal size of ATBF i[] required for successive time
slots is decided. If for a time slots no slices are added, indicating unused Bloom
filter bits, then value of LA is decremented for next time slot (Algorithm 3).

To make the functioning of LA more efficient, Kalman filter is used for predicting
array size. The approximate number of elements are estimated through Algorithm 3
and the number of slices ‘x’ added to the initial filter in a particular time slot serves
as input parameter to Kalman filter. After observing incoming data patterns for
particular ti, proposed model decides the optimal size required for next time slot,
i.e. ti+1, reducing the overhead of slice addition at run time for each time slot, thus
improving the search time complexity of ATBF i[].

Number of slices (sn) added to a particular time slot is recorded in LA, from this
we can compute the total size of filter required for the particular time slot, i.e. Ŝs.

706 A. Singh, S. Batra

The number of elements na accommodated by ATBF is given by:

na ≈ m0s
i(ln(th)). (16)

From the approximate number of elements accommodated, the size of filter,
i.e. Ŝe, is calculated as:

Ŝe = na × k. (17)

These two estimates for the size of Bloom filter act as input for Kalman filter and
help the framework to predict the approximate size for coming time slots in further
iterations.

Since the incoming data is one dimensional, Kalman filter parameters A,B,H,Q
and R in Equations (7), (8), (9), (10), (11), (12), (13) have constant values in the
proposed model. ul is assumed to be zero because no control signal is used in the
model. Ŝl denotes posterior estimated size and Ŝ−

l denotes priori estimated size for
ith time slot and for lth iteration. Thus

Time update:

Ŝ−
l = Ŝl−1,

P̂−
l = P̂l−1.

Measurement update:

Kl =
P̂−
l−1

P̂−
l−1 +R

,

Ŝl = Ŝ−
l−1 +Kl(zl + Ŝ−

l−1),

P̂l = (1−Kl)P̂
−
l−1

where
zl = .5(Ŝs + Ŝe).

Lemma 2. Use of Kalman Filter based LA in proposed model reduces the query
complexity of ATBF in handling in-stream data compared to SBF by approximate
O(1

r
) i.e. ≈< O(k), where r is number of slices added and k is number of hash

functions considered.

Proof. In case of SBF, when an array crosses defined threshold a new slice is added
and insertion is performed. Assuming Ns is elements in stream, let us assume
SBF needs r slices to accommodate the incoming data. Query process in SBF
is accomplished by testing the presence of query element in each filter, starting
from active filter to oldest filter. Search complexity for the worst case analysis is
O(k × r)).

In ATBF first time slot is functionally similar to SBF, but size for next time
slot can be predicted using LA and Kalman filter. Predicting size for next time

Streamed Data Analysis Using Adaptable Bloom Filter 707

Algorithm 3 Learning array algorithm

1: procedure InsertLA(LA[i], j) .
2: if (j > 1) then
3: if LA[i] < j then
4: LA[i][c] + +
5: end if
6: end if
7: if (j == 1) then
8: if FRLA[i] < thresfill then
9: LA[i][]− = 1

10: EXIT

11: end if
12: end if
13: ŝn ← LA[i][c]
14: Ŝs ← m0

∑sn
i=1{i×

m0

k
}

15: Ŝe ← Count(ATBF i[], r)
16: SetŜ−

1 = 0
17: SetP̂−

1 = 1
18: for (l : 1 to `) do
19: zl = .5(Ŝs + Ŝe)
20: Time update

21: Ŝ−
l = Ŝl−1

22: P̂−
l = P̂l−1

23: Measurement update

24: Kl =
P̂−
l−1

P̂−
l−1+R

25: Ŝl = Ŝ−
l−1 +Kl(zl + Ŝ−

l−1)

26: P̂l = (1−Kl)P̂
−
l−1

27: end for
28: LA[i][]← Ŝ`

29: end procedure

slot leads to decreased computational overhead as addition of new slices at run
time is not required. Further, since the size of new array is combination of initial
array and additional slices, inter-function collisions are reduced especially when
partition hashing is used. From the second time slot onwards the query com-
plexity is always less than O(rk), because from the the second array onwards the
number of new arrays added will always be less than r. In best case when no
extra slice is added in future time slots, i.e., the input data arrival rate is con-
stant, search complexity is equal to standard Bloom filter ≈ O(k). Thus, for
the h time slots, search time complexity for (h − 1) slots is reduced drastically.

2

708 A. Singh, S. Batra

3.5 Network Traffic Analysis for a Particular Time Slot

The standard algorithms for counting number of element in streams like CMS, prob-
ability based counter and DGIM are quite accurate but need lot of extra space and
have computational overhead. Proposed model provides a rough estimate of number
of elements using Kalman filter.

To calculate the approximate number of elements in a particular time slot ti,
Count i(.) is used with initial parameters like slices added in the array (r), threshold
fill ratio (fr), number of hash function (k), initial size of filter (m0) and prime num-
ber used in first filter (p). Two methods have been used to calculate the number of
elements in a particular time slot and results are verified by both methods (Algo-
rithm 4). In the first method, growth parameter (s) are considered as s = 2 for slow
growing data and s = 4 for fast growing data with optimal threshold th value as
50 % same as that considered in SBF [15]. Total number of elements accommodated
by Bloom filter (Ni) is given by:

Ni ≈ m02
i ∗ (.693). (18)

The second method is to calculate the total size of the Bloom filter used and
then predict the number of elements accommodated by it. Since σg is optimal prime
for gth slice, i.e., size of bucket and number of buckets are equal to number of hash
functions (k), total size of an array with r slice of σ bits, is given by:

Number of Slices(r)× Size of Slice(σ).

Thus total size (ts) of ATBFi with r slices is given by:

ts ←
r∑

g=1

(σg × k). (19)

Bits available for insertion in ATBF are determined by threshold fill ratio (fr). Total
available bits ta are:

ta ← ts × fr. (20)

Thus, maximum number of elements (Ea) accommodated by ATBFi are:

Ea ←
ta
k
. (21)

4 OBSERVATIONS AND ANALYSIS

All the experiments have been performed on i7-3612QM CPU @ 2.10 GHz with 8 GB
of RAM. To maintain the uniformity in the results CityHash 64 bit library is used
to compute two hash functions in double hashing. In all experiments five hash
functions have been used with initial size of the filter m0 as 1 285 bits, slice size σ0

for all the iterations is considered as 275 (s = 1 285
5

) for first array in all iterations.

Streamed Data Analysis Using Adaptable Bloom Filter 709

Algorithm 4 Approximate number of elements in ATBF i[]

1: procedure Count i(ATBF i[], r) .
2: Method 1

3: Ni ← ln(fr)×m0.s
r

4: Method 2

5: for g:1 to r do
6: σg ← φ((g × p)/k)
7: end for
8: ts ←

∑r
g=1(σ

g × k)

9: Ea ← ts.fr
k

10: end procedure

4.1 Performance Evaluation of SBF and ATBF

The performance of SBF and ATBF is compared on the basis of computational
time taken for hashing, querying and extra slice addition as the incoming data
increases. Figure 2 provides a comparative analysis on the basis of hashing com-
plexity of SBF and ATBF . In SBF , for every input, hash value is computed for
all hash functions (k) while in ATBF only two hash functions have been used
to generate k hash functions, leading to a major decrease in computational over-
head.

Figure 2. Computational time complexity vs. number of hash functions

Query complexity and slice addition overhead for both the filters is checked on
dynamically growing environment. Both filters, i.e. SBF and ATBF, start with the

710 A. Singh, S. Batra

size m0 = 1 285 and 5 000 elements have been considered for the first iteration and
each iteration adds 1 000 element to previous value.

Figure 3 depicts the analysis performed on the basis of number of slices needed
to accommodate the dynamically growing data. In SBF, filter starts with size m0

and as the number of incoming elements increases more slices are added in each
iteration. In case of ATBF, as the incoming data increases the size of tthn+1 iteration
is predicted in advance, based on the elements accommodated per iteration in tthn
using Kalman filter.

Based upon the data considered for experiments, i.e. 1 000 elements increase from
previous value per iteration, in tthn+1 iteration only one slot is added to accommodate
additional elements in ATBF. The graph of ATBF becomes constant after the first
iteration since one slice is added in every successive iteration and no overflow of
data is registered (Figure 3). Hence overhead of adding new slices at the run time
is reduced to a large extent in the proposed scheme.

Figure 3. Number of slices required vs. number of iterations for dynamically growing
dataset

Figure 4 depicts the comparative analysis of the worst case query complexity
for an element (when the element is not present in the set), i.e., scenario where
all slices need to be scanned. As the size of data grows in each iteration in SBF,
more slices are added to accommodate the data elements. In SBF, all slices need
to be scanned in query process which increases the query complexity many folds.
ATBF has the advantage of size adaptation from second iteration onwards. For
the first iteration the process is similar to SBF, but from the ith iteration (where
i 6= 1), the size of Bloom filter is predicted on the basis of previous (i − 1)th iter-
ation. The predicted size of Bloom filter is added as a single Bloom filter. So, in

Streamed Data Analysis Using Adaptable Bloom Filter 711

querying process only one Bloom filter needs to be scanned, thus the total cost is
O(k). As the data grows, the number of slices added are always less than SBF for
same number of elements thus search time complexity of ATBF shows a significant
improvement.

Figure 4. The worst case query complexity vs. number of iterations

4.2 Experimental Evaluations

Two data sets from different application domains have been considered for evaluating
the performance of proposed model, one is data of pickup calls of Uber cabs [31]
and other is incoming data generated for network server. Results are represented for
first few iterations only, which can be extended to n number of iterations according
to application’s requirements.

Tables 2 and 3 provide the count of actual number of users and number of
users identified using Kalman filter. Ŝ− represents the size of Bloom filter in the
current iteration by considering the previous one, initially size of Bloom filter is set
to m0. Number of slices added in ATBFi is maintained by cslice counter. Ŝ is the
array size predicted by Kalman filter for the next iteration. Peak hours analysis is
performed by “peak hour ranking” with 1 indicating maximum and 5 as minimum
value. Peak hour rank helps in identifying changing patterns of data in current
iteration in relation to the previous iteration. Initially for all iteration, the peak
hour rank is set to a default value of −1. This ranking system helps in allocating
resources in accordance with the frequency of incoming data.

712 A. Singh, S. Batra

4.2.1 Experiment 1: Uber Pickups Data Sets

Data of 14 270 479 trips of Uber pickups in New York City from January 2015 to
June 2015 for around 265 different locations is considered for 12 hours a day as
input. The data set is time series based having attributes like date, time, loca-
tion id and base number. A snapshot of an instance of data is shown in Fig-
ure 5. In proposed model “location id” is used as insertion element in Bloom fil-
ter and attributes “Pickup date” and “Time” are used to select the size of a time
slot.

Figure 5. An instance from data set of Uber pickups

Iteration
No. of
actual
users

Initial
array
size
(Ŝ−)

No. of
slots
added
(Cslice)

No. of
users pre-
dicted by
ATBF

Error (In
%)

Size of
Bloom
filter
pre-
dicted
for
next
time
slot (in
bits)
(Ŝ)

Previous
Peak
hour
ranking

Current
Peak
hour
ranking

Time Slot = 4 hours

1/1/2015

Time Slot 1 (1 to 4) hrs. 5 864 1 285 11 5 746 2.01 28 160 −1 1
Time Slot 2 (5 to 8) hrs. 2 389 28 160 0 2 358 1.3 24 320 −1 3
Time Slot 3 (9 to 12) hrs. 2 922 24 320 0 2 935 −0.4 20 736 −1 2

2/1/2015

Time Slot 1 (1 to 4) hrs. 1 765 1 285 4 1 732 1.9 8 960 −1 3
Time Slot 2 (5 to 8) hrs. 2 437 8 960 2 2 387 2.1 14 336 −1 2
Time Slot 3 (9 to 12) hrs. 2 534 14 336 0 2 456 −0.9 20 736 −1 1

Time Slot = 6 hours

1/1/2015

Time Slot 1 (1 to 6) hrs. 7 314 1 285 12 7 287 0.4 36 660 −1 1
Time Slot 2 (7 to 12) hrs. 2 326 36 660 0 2 342 −0.6 32 256 −1 2

2/1/2015

Time Slot 1 (1 to 6) hrs. 2 915 1 285 7 2 867 1.7 17 408 −1 1
Time Slot 2 (7 to 12) hrs. 3 312 17 408 0 3 264 1.5 17 408 −1 2

Table 2. Bloom filter size prediction and Peak hour analysis for Uber pickup call for
1st January 2015 and 2nd January 2015

Streamed Data Analysis Using Adaptable Bloom Filter 713

Table 2 shows the result of two days for peak time slot in Uber pickups, for date
1st January 2015 and 2nd January 2015 using two time slot ranges: four hours as
a single time slot and six hours as a single time slot, respectively.

4.2.2 Experiment 2: Incoming Data on a Network Server

Table 3 provides the results for server utilization and peak hour analysis. Experiment
is done for six time slots of one hour each. The results are simulated on network
traffic with maximum per hour capacity of server as 15 000 users. Server utilization
is given by (n

N
× 100), where n is approximate number of users detected and N is

server capacity. The network data has IP address, date and time as its attributes.
IP address is used as primary element for insertion in proposed model.

Iteration1

No. of

actual

users

Initial

array

size

(Ŝ−)

No.

of

slots

add-

ed

No. of

users

pre-

dicted

by

ATBF

Error

(In

%)

Size of

Bloom

filter

pre-

dicted

for next

time

slot (in

bits) (Ŝ)

Server

uti-

liza-

tion

(%)

Previous

Peak hour

ranking

Current

Peak

hour

ranking

Time slot 1 10 000 1 285 15 9 975 0.25 51 200 68.53 −1 2

Time slot 2 12 000 51 200 2 12 145 −1 62 210 82.97 −1 1

Time slot 3 9 000 62 210 0 9 216 −2 46 080 61.44 −1 3

Time slot 4 6 000 46 080 0 6 052 −0.8 32 256 43.01 −1 5

Time slot 5 8 000 32 256 2 7 952 0.6 41 216 54.97 −1 4

Time slot 6 4 000 41 216 0 3 924 1.9 20 736 27.65 −1 6

Iteration 2

Time slot 1 9 000 1 285 14 8 982 0.2 46 080 60.84 2 3

Time slot 2 14 000 46 080 5 14 248 −1.7 74 240 98.99 1 1

Time slot 3 13 000 74 240 0 13 184 −1 70 400 92.17 3 2

Time slot 4 7 000 70 400 0 7 013 −1 36 352 48.09 5 4

Time slot 5 3 000 36 352 0 2 989 0.4 21 365 23.21 4 6

Time slot 6 4 000 21 365 0 3 968 0.8 20 736 27.65 6 5

Table 3. Hourly analysis of server utilization, the peak hour and Bloom filter size predic-
tion for next time slot for incoming data on a network

5 CONCLUSION

In-stream data analytics works by processing data in a defined time windows. To
accommodate dynamic data and query the hourly information, the proposed frame-
work uses Bloom filter with Ageing Bloom filter properties, i.e., evicting data after
fixed time interval. Partition hashing has been used which leads to less inter-hash
function collision. Further usage of double hashing where only two hash functions
are used to generate all k hash functions decreases the computational overhead.

714 A. Singh, S. Batra

A learning array has been introduced which stores the size of Bloom filter required
in the next iteration and Kalman filter has been used to predict the size of Bloom
filter required for the next iteration. Results achieved clearly indicate that the pro-
posed framework performs efficiently for the peak hour analysis and server utilization
analysis.

Acknowledgment

The first author would like to acknowledge the financial support given to him by
the Department of Computer Science and Technology under the Department of
Electronics and Information Technology (DeitY) to complete doctoral studies.

REFERENCES

[1] Mayer-Schönberger, V.—Cukier, K.: Big Data: A Revolution That Will Trans-
form How We Live, Work, and Think. John Murray Publishers, UK, 2013.

[2] Gubbi, J.—Buyya, R.—Marusic, S.—Palaniswami, M.: Internet of Things
(IoT): A Vision, Architectural Elements, and Future Directions. Future Generation
Computer Systems, Vol. 29, 2013, No. 7, pp. 1645–1660.

[3] Amazon. What is Cloud Computing? http://aws.amazon.com/

what-is-cloud-computing/, 2013.

[4] Krishnan, K.: Data Warehousing in the Age of Big Data. 1st edition. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2013.

[5] Labrinidis, A.—Jagadish, H. V.: Challenges and Opportunities with Big Data.
Proceedings of VLDB Endowment, Vol. 5, 2012, No. 12, pp. 2032–2033.

[6] Babcock, B.—Babu, S.—Datar, M.—Motwani, R.—Widom, J.: Models and
Issues in Data Stream Systems. Proceedings of the Twenty-First ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS ’02), ACM,
New York, NY, USA, 2002, pp. 1–16, doi: 10.1145/543613.543615.

[7] UN Global Pulse: Big Data for Development: Challenges and Opportunities. http:
//www.unglobalpulse.org/projects/BigDataforDevelopment/, 2012.

[8] Liberty, E.—Nelson, J.: Streaming Data Mining. Presented at Princeton Univer-
sity by Yahoo Research Group.

[9] Ylijoki, O.—Porras, J.: Conceptualizing Big Data: Analysis of Case Studies.
Intelligent Systems in Accounting, Finance and Management, Vol. 23, 2016, No. 4,
pp. 294–310, doi: 10.1002/isaf.1393.

[10] Bobadilla, J.—Ortega, F.—Hernando, A.—Gutiérrez, A.: Recommender
Systems Survey. Knowledge-Based Systems, Vol. 46, 2013, pp. 109–132, doi:
10.1016/j.knosys.2013.03.012.

[11] Bloom, B. H.: Space/Time Trade-Offs in Hash Coding with Allowable Er-
rors. Communications of the ACM, Vol. 13, 1970, No. 7, pp. 422–426, doi:
10.1145/362686.362692.

http://aws.amazon.com/what-is-cloud-computing/
http://aws.amazon.com/what-is-cloud-computing/
https://doi.org/10.1145/543613.543615
http://www.unglobalpulse.org/projects/BigDataforDevelopment/
http://www.unglobalpulse.org/projects/BigDataforDevelopment/
https://doi.org/10.1002/isaf.1393
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1145/362686.362692

Streamed Data Analysis Using Adaptable Bloom Filter 715

[12] Katsov, I.: Probabilistic Data Structures for Web Analytics and
Data Mining. http://highlyscalable.wordpress.com/2012/05/01/

probabilistic-structures-web-analytics-data-mining/, 2012.

[13] Geravand, S.—Ahmadi, M.: Survey Bloom Filter Applications in Network Se-
curity: A State-of-the-Art Survey. Computer Networks, Vol. 57, 2013, No. 18,
pp. 4047–4064, doi: 10.1016/j.comnet.2013.09.003.

[14] Tarkoma, S.—Rothenberg, C. E.—Lagerspetz, E.: Theory and Practice of
Bloom Filters for Distributed Systems. IEEE Communications Surveys and Tutorials,
Vol. 14, 2012, No. 1, pp. 131–155, doi: 10.1109/SURV.2011.031611.00024.

[15] Almeida, P. S.—Baquero, C.—Preguiça, N.—Hutchison, D.: Scalable
Bloom Filters. Information Processing Letters, Vol. 101, 2007, No. 6, pp. 255–261,
doi: 10.1016/j.ipl.2006.10.007.

[16] Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME, Journal of Basic Engineering, Vol. 82, 1960, Series D,
pp. 35–45, doi: 10.1115/1.3662552.

[17] Xie, K.—Min, Y.—Zhang, D.—Wen, J.—Xie, G.: A Scalable Bloom Filter
for Membership Queries. IEEE Global Telecommunications Conference (GLOBE-
COM ’07), 2007, pp. 543–547, doi: 10.1109/GLOCOM.2007.107.

[18] Chang, F.—Feng, W.-C.—Li, K.: Approximate Caches for Packet Classification.
Twenty-Third Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM 2004), 2004, Vol. 4, pp. 2196–2207, doi: 10.1109/INF-
COM.2004.1354643.

[19] Yoon, M.: Aging Bloom Filter with Two Active Buffers for Dynamic Sets. IEEE
Transactions on Knowledge and Data Engineering, Vol. 22, 2010, No. 1, pp. 134–138.

[20] Kirsch, A.—Mitzenmacher, M.: Less Hashing, Same Performance: Building
a Better Bloom Filter. Random Structures and Algorithms, Vol. 33, 2008, No. 2,
pp. 187–218, doi: 10.1002/rsa.20208.

[21] Moore, J. S.: A Fast Majority Vote Algorithm. Technical Report ICSCA-CMP-32,
Institute for Computer Science, University of Texas, 1981.

[22] Boyer, R. S.—Moore, J. S.: MJRTY – A Fast Majority Vote Algorithm. Auto-
mated Reasoning, Springer, 1991, pp. 105–117, doi: 10.1007/978-94-011-3488-0 5.

[23] Manku, G. S.—Motwani, R.: Approximate Frequency Counts over Data Streams.
Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB ’02), 2002, pp. 346–357, doi: 10.1016/B978-155860869-6/50038-X.

[24] Metwally, A.—Agrawal, D.—El Abbadi, A.: Efficient Computation of Fre-
quent and Top-k Elements in Data Streams. In: Eiter, T., Libkin, L. (Eds.): Database
Theory (ICDT 2005). Springer, Berlin, Heidelberg, Lecture Notes in Computer Scien-
ce, Vol. 3363, 2004, pp. 398–412.

[25] Cormode, G.—Muthukrishnan, S.: An Improved Data Stream Summary: The
Count-Min Sketch and Its Applications. Journal of Algorithms, Vol. 55, 2005, No. 1,
pp. 58–75, doi: 10.1016/j.jalgor.2003.12.001.

[26] Charikar, M.—Chen, K.—Farach-Colton, M.: Finding Frequent Items in
Data Streams. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R.,
Hennessy, M. (Eds.): Automata, Languages, and Programming (ICALP 2002).

http://highlyscalable.wordpress.com/2012/05/01/ probabilistic-structures-web-analytics-data-mining/
http://highlyscalable.wordpress.com/2012/05/01/ probabilistic-structures-web-analytics-data-mining/
https://doi.org/10.1016/j.comnet.2013.09.003
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1016/j.ipl.2006.10.007
https://doi.org/10.1115/1.3662552
https://doi.org/10.1109/GLOCOM.2007.107
https://doi.org/10.1109/INFCOM.2004.1354643
https://doi.org/10.1109/INFCOM.2004.1354643
https://doi.org/10.1002/rsa.20208
https://doi.org/10.1007/978-94-011-3488-0_5
https://doi.org/10.1016/B978-155860869-6/50038-X
https://doi.org/10.1016/j.jalgor.2003.12.001

716 A. Singh, S. Batra

Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 2380, 2002,
pp. 693–703.

[27] Jain, A.—Chang, E. Y.—Wang, Y.-F.: Adaptive Stream Resource Management
Using Kalman Filters. Proceedings of the 2004 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’04), ACM, New York, NY, USA, 2004,
pp. 11–22, doi: 10.1145/1007568.1007573.

[28] Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series.
MIT Press Cambridge, MA, 1949.

[29] Shaw, P.—Greenstein, D.—Lerch, J.—Clasen, L.—Lenroot, R.—Gog-
tay, N.—Evans, A.—Rapoport, J.—Giedd, J.: Intellectual Ability and Cor-
tical Development in Children and Adolescents. Nature, Vol. 440, 2006, No. 7084,
pp. 676–679.

[30] Julier, S. J.—Uhlmann, J. K.: A New Extension of the Kalman Filter to
Nonlinear Systems. Signal Processing, Sensor Fusion, and Target Recognition VI
(AeroSense ’97). Proceedings of the SPIE, Vol. 3068, 1997, pp. 182–193, doi:
10.1117/12.280797.

[31] FiveThirtyEight. Uber Pickups in New York City. https://www.kaggle.com/

fivethirtyeight/uber-pickups-in-new-york-city, 2016.

Amritpal Singh received his M.Eng. degree from Thapar Uni-
versity, Punjab, India, with a minor in big data and advanced
data structures, in 2013. He is working as Research Scholar
with Computer Science Department at Thapar University, Pun-
jab, India since January 2015. He served both industry and
academia. His research interests include probabilistic data struc-
tures, machine learning and big data.

Shalini Batra received her Ph.D. degree in computer science
and engineering from Thapar University, Patiala, India, in 2012.
She is currently working as Associate Professor with the Depart-
ment of Computer Science and Engineering, Thapar University,
Patiala, India. She has guided many research scholars leading to
Ph.D. and M.Eng./M.Tech. She has authored more than 60 re-
search papers published in various conferences and journals. Her
research interests include machine learning, web semantics, big
data analytics and vehicular ad-hoc networks.

https://doi.org/10.1145/1007568.1007573
https://doi.org/10.1117/12.280797
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

Computing and Informatics, Vol. 37, 2018, 717–736, doi: 10.4149/cai 2018 3 717

DEFORMABLE OBJECT TRACKING USING
CLUSTERING AND PARTICLE FILTER

Muhammad Aasim Rafique, Moongu Jeon∗

School of Information and Communications
Gwangju Institute of Science and Technology (GIST)
Gwangju, Republic of Korea
e-mail: {arafique, mgjeon}@gist.ac.kr

Malik Tahir Hassan

University of Management and Technology
Lahore, Pakistan
e-mail: tahir.hassan@umt.edu.pk

Abstract. Visual tracking of a deformable object is a challenging problem, as the
target object frequently changes its attributes like shape, posture, color and so
on. In this work, we propose a model-free tracker using clustering to track a target
object which poses deformations and rotations. Clustering is applied to segment the
tracked object into several independent components and the discriminative parts
are tracked to locate the object. The proposed technique segments the target object
into independent components using data clustering techniques and then tracks by
finding corresponding clusters. Particle filters method is incorporated to improve
the accuracy of the proposed technique. Experiments are carried out with several
standard data sets, and results demonstrate comparable performance to the state-
of-the-art visual tracking methods.

Keywords: Visual object tracking, data clustering, object segmentation, cluster
correspondence

∗ Corresponding author

718 M. A. Rafique, M. Jeon, M. T. Hassan

1 INTRODUCTION

Visual object tracking (VOT) has numerous applications in surveillance, intelligent
transportation systems, sports broadcasting, robotics and so on. Single object track-
ing is a base case and, usually, extended to track multiple objects in a scene. Video
analysis is affected by the video quality, scene environment attributes (illumination,
noise, shadow and jitter), spatio-temporal attributes and behavioral change of in-
trinsic properties of a target object (such as shape, color and size). The uncertain
behavior of the intrinsic properties over the length of a video sequence is deformation
of the object.

Single object tracking has defined a work-flow for general VOT cases. The gen-
eral strategy considers detection of the target region (target object), representation
of the target object and activity of the target object. An effective VOT technique is
efficient and wise combination of the aforementioned. A brief description of each of
the stated component work-flow is worth mentioning. The target region is selected
as a preliminary geometric shape such as a quadrilateral or ellipse; these shapes
provide with a benefit of handling few parameters and a disadvantage of redundant
information besides the target object. Specific contours are used to avoid the inef-
fective data for demarcation of the target object precisely, but it burdens with many
parameters to track along. Adaptive selection of the target region can be an effective
way to track deformed objects, but it might come with an associated computational
cost.

Second challenge is representation of the target object. The simplest represen-
tation is the pixels of target regions as color values. The basic RGB color values
are vulnerable to the underlying challenges of video analysis, thus they are not
invariant representation of the target object. Histogram of colors is an effective
representation for alternating color change in the target region. Expensive features
which are invariant to color, rotations and motion are some other choices for the
target object representation. Well known features are edges, HAAR-like features,
SIFT and SURF features, HoG features, etc. Motion representation of the target
object relates its motion within vicinity of the current locality. However, a super
fast object can disturb the tracking results drastically. Alternatively, one can model
the motion from the initial frames of the video which can, later, be used to predict
the location of the target object. Probabilistic Gaussian motion model, Kalman
filters and particle filters, optical flow trackers, etc., are commonly used motion
models.

In the end, prediction of the target object is required to conclude one step
of tracking. Prediction may be as simple as template matching and can extend
to complex sophisticated discriminative classifiers. Tracking of deformable objects
is a situation, where the object alternatively changes color, shape and scale with
motion. These variations make it hard to track deformable objects optimally, as
a general case. In this work, we propose a spatio-temporal representation of target
object and an optimal method to model the activity of the target object. The spatial
representation of the target object is segmented using data clustering techniques,

Deformable Object Tracking Using Clustering and Particle Filter 719

and the temporal representation is given by solving the clustering correspondence
problem. Moreover, particle filtering technique is used to model the activity of the
target object.

This paper is organized as follows. Section 2 presents the relevant literature
survey. In Section 3, we explain our proposed method. Section 4 articulates the
evaluation setup used to cross examine and describe our experiments to test the
performance of our proposed method, and presents the obtained results with discus-
sion. Conclusion and possible future directions are briefed in Section 5.

2 RELATED WORK

The single object tracking problem is an active research area, and persuasive lit-
erature is available for study. Comprehensive evaluations and contemplative dis-
cussions, with summaries of most of the interesting techniques, are aggregated in
literature for interested users [26, 28, 25]. Another recent review evaluating the
single object tracking techniques on different video sequences will be helpful for sur-
vey [17]. In addition to the aforementioned references, it will be beneficial to discuss
recent progress in the single object tracking domain. Structure-preserving object
tracker (SPOT) [30, 29] uses online structured SVM to learn the spatial constraints
of different parts of the objects, and it predicts from the candidate windows for ob-
ject tracking. Lucas-Kanade algorithm [19] is extended as an optimization problem
in [23] where the object’s pixels and the background segmentation are optimized
by applying likelihood of a Bayesian framework. Incremental subspace learning and
Fisher discriminant analysis techniques are combined, and a graph based combina-
tion is proposed to effectively capture the dynamic appearance of the target object
and differentiate it from the background [32]. Another graph inspired technique
used graph cut method for object segmentation, and it improved the object track-
ing results, reported in [31].

Since there are plenty of techniques employing variety of strategies to approach
the single object tracking problem a rational thought is to discuss the pertinent lit-
erature which follows henceforth. Mean shift is used to find best candidate windows
for the target object from the next frame by matching histograms discrimination
information from the Bhattacharya coefficients [4]. The target region is divided into
static segments of 20 × 20 pixel values, and each segment is associated with a sep-
arate Kalman filter in [22]. Later, the object tracking is performed using template
matching. A likely idea is to divide the target object in fragments of fixed size
and use the color histogram of these fragments to compare the probable matches
from candidate segments with Earth Movers Distance (EMD) [2] to track. A re-
cent work in similar regards is the representation of the segmented target object by
a superpixel per segment. A superpixel is defined by the center of mass and aver-
age HSV-values [24], and EMD is used for comparisons. The target object state is
sampled using particle filter for the segments. Key-points are used with hierarchical
clustering techniques for deformable object tracking in [21].

720 M. A. Rafique, M. Jeon, M. T. Hassan

Deformable object tracking has been aimed by many researches from general
to specific cases. As discussed in Section 1, the challenges put forth by change of
shape, occlusion, motion activities, and so on, recognized the deformable object
tracking as a standalone task. A nonlinear model with implicit representation of the
target object by contours and defining generative dynamical model for the motion
is presented in early literature [13]. The boundary element method is applied with
a deformable template to model the displacements, and the template is registered to
the image by energy minimization of the force field [8]. Later, the idea is extended
with the use of canny edge detector for occlusion [9]. An optical flow equation
applied on the whole image with constraints on the elastic deformation is discussed
in [12]. Deformable objects are tracked using a sliding window particle filter, where
the change in an object’s shape is captured using a modified technique of principle
component analysis [16].

Dynamic graphs are employed in tracking to represent the geometrical structure
of the target and the candidate object as nodes, and their interaction is denoted
by edges; Markov random field and spectral clustering is used to solve the target
and the candidate graph matching [3]. A recent work used the weightless neural
networks for tracking the deformable objects to a success [27]. [18] discussed a path
based tracking which overcame the limitation of core reliance on the initialization
by intelligently selecting the correct patches. [5] proposed use of hyper-graph for
guessing correspondence in deformable object in successive multiple frames, which
helped in long-term occlusions and intense deformations. Fusion of the data from
multiple sensors used with a multiple Kalman filters tracking technique to improve
visual tracking is presented in [15].

In comparison to existing techniques, we propose the use of clustering, an un-
supervised technique, to segment the target object into parts, and use these parts
wisely to track the object. We keep with us the discriminative parts of the reference
(target) object, and estimate the location of matching parts in the vicinity of the
object in the previous frame. Moreover, particle filtering is incorporated into the
method to make it more robust to the tracking challenges. We shall discuss the
formal details of our methodology in coming sections.

3 OUR METHODOLOGY

Formally defining the single object tracking problem: given a sequence of N images
I1, I2, . . . , IN , and an initializing bounding box ground truth region bg = b1 in I1
containing the object to be tracked, we aim at predicting the bounding boxes b2, . . . ,
bN that contain the target object in remaining frames of the sequence I2, . . . , IN ,
respectively. The detail of our clustering and particle filter based tracking method
TUC (tracking using clustering) is provided in the remainder of this section. We
call the target object to be tracked as tracked object or reference object, and the
estimated object as the predicted object alternatively.

Deformable Object Tracking Using Clustering and Particle Filter 721

3.1 Clustering for Object Segmentation

Data clustering discovers groups of similar patterns in data and its application for
image segmentation is quite intuitive. In our first step, we obtain k segments of bg,
the initially provided ground truth region in I1, using k-means clustering method.
K-means is chosen for its efficiency and simplicity. Note that although clustering
is expensive for large data yet applying it to a usually small region like bg is not
computationally expensive. These k segments of bg become the reference segments
that will be compared with the segments of test regions in next frames to estimate
the tracked object’s location.

3.1.1 Number of Clusters

Number of clusters k is an input parameter for k-means. We tested different values
for k and empirically fixed it to 15 being a good tradeoff between accuracy and
efficiency. Figure 1 shows the segments of an object discovered using different values
of k.

Original k =5 k =10

k =15 k =20 k =25

k =30 k =35 k =40

Figure 1. Segments of the object using different number of clusters, k ∈ {5, 10, . . . , 40}

3.1.2 Feature Selection

Feature selection can be regarded as the most important part in any computer vision,
machine learning and pattern recognition algorithm in general, and in a tracking
method in particular. We segment the object using pixel location, gray intensity,
and x- and y-directional gradient values. The separation of salient segments in
Figure 1 justifies the suitability of using these features.

722 M. A. Rafique, M. Jeon, M. T. Hassan

3.2 Selecting Discriminative Segments

In practice, the target object’s neighborhood may contain textures that are similar
to the target object itself and can hinder the tracker’s accuracy. Considering the fact
that the far regions has less to add to this obstruction, we select the segments of the
reference object that are most discriminative from the immediate background. We
take four neighboring regions up, down, left and right of the object having same size
as the object, and segment each of these regions with same k value (Figure 2). The
segments of the reference object bg that have high similarity with the segments from
neighboring regions are removed and not used as reference segments. Thus, we ob-
tain the set of most discriminative segments of the reference object, Sg. We removed
the top 25 % most similar segments to the background in our experimentation.

Frame #1

Figure 2. The four background boxes around the tracked object are shown that are used
to calculate discriminative segments of the object

3.3 Object Tracking Using Segments

Once we have the discriminative segments of the reference object from the frame I1,
the next step is to locate and track the object in subsequent frames I2, . . . , IN . For
this, we pick the region bn in frame In where n ∈ {2, 3, . . . , N} in sequence, using the
immediate previous frame’s region information, i.e., the location, width and height
of the bounding box in frame In−1. A realistic assumption which will be relieved
later is that the object is not moving too fast from In−1 to In, and we get some
part of the object in bn to estimate the object’s location in In. However, such fast
motion situations are handled by incorporating particle filter in our method. Detail
of using particle filter is presented in Section 3.5.

Deformable Object Tracking Using Clustering and Particle Filter 723

Thus clustering is applied on region bn to obtain the set of k segments Sn, and
these segments in Sn are then compared with the reference segments in Sg. This
comparison, however, demands to solve the segments correspondence problem, which
is discussed in detail in Section 3.4. The segments correspondence problem enables
us to compute the amount of translation between two corresponding segments by
using centroids of the segments. As different pairs of corresponding segments suggest
different translation values, we take the median of these translation values and
predict the translated location of the bounding box in In. Hence, the change in
locations of the corresponding segments in Sn and Sg helps us estimate the distance
the object has traveled.

3.4 Finding Corresponding Segments

Finding correct corresponding segments in the set of current segments Sn and the
set of reference segments Sg is of key importance in our method, and we are able to
solve this correspondence problem pretty accurately. Different regional properties of
the segments are compared to calculate their similarity. These regional properties
include area, eccentricity, Euler number, mean intensity and normalized intensity
range of a segment. Area is the number of pixels in a region. Area is computed as
actual number of pixels in a segment. Eccentricity specifies the eccentricity of the
ellipse that has the same second-moments as the region, analogically it represents
how circular the region is. Eccentricity is computed as a ratio of the distance between
the foci of the ellipse and its major axis length. A line segment has 1 eccentricity
and a circle has 0 eccentricity. Euler number specifies the number of objects in the
region minus the number of holes in those objects. Mean intensity is the average
intensity value of a region, and normalized intensity range of a region is defined as:

(MaxIntensity−MinIntensity)

255
.

Euclidean distances between each pair of segments is calculated based on these
regional properties.

dist(si, sj) =
√∑

(ui − vj)2, ∀si ∈ Sn, sj ∈ Sg, (1)

where ui and vj represent the vectors of the regional properties of segments si and sj,
respectively.

In addition to this distance calculation of regions, overlap of each pair of seg-
ments is also computed using Jaccard index as follows:

o(si, sj) =
|si ∩ sj|
|si ∪ sj|

, ∀si ∈ Sn, sj ∈ Sg. (2)

724 M. A. Rafique, M. Jeon, M. T. Hassan

Finally, the similarity of two segments si ∈ Sn and sj ∈ Sg is computed as:

sim(si, sj) = α · o(si, sj) + β · 1

dist(si, sj)
. (3)

We fixed α and β values to be 0.25 and 0.75, respectively, based on empirical
results. Section 4.5 shows the impact of various combinations of α and β value on
the quantified results.

The correspondence solving method returns matching segments in Sn and Sg

along with the confidence weights based on similarities of the corresponding seg-
ments. Since there exist low similarity pairs of segments, we pick the top 75 % of
the segment matches based on these confidence weights, and use them for tracking.

3.5 Incorporating Particle Filter

Particle filtering is used to approximate the intractable distributions for sample gen-
eration techniques. It starts by generating a random set of particles and it estimates
states and observations for the next time step. It overcomes the limitation of un-
normalized and non-gaussian distributions and generate samples using the weighted
previous observations. It is interesting to initialize the particles and weights updat-
ing strategy, what is a domain specific gimmick.

We incorporate particle filtering into our clustering based tracking method to
improve its robustness and to behave well with less accurate clustering. P particles
are sampled from a 2-d Gaussian distribution centered at the center of the target
object in previous frame, with covariance matrix V . Initial weight to every particle
is assigned based on two measures. First, the sum of distances of a particle p to all
the centers of the reference object’s segments cgi ; call it wd

p. Second, the correlation
of the reference window bg and the same sized window centered at the particle bp;
call it wr

p.

wd
p =

k∑
i=1

dist(p, cgi), (4)

wr
p = corr(bp, bg), (5)

wd
p and wr

p are normalized by their total sum values and then combined to find initial
weight of the particle p as:

wp =
1

wd
p

· exp(wr
p), (6)

wp is normalized to sum to 1. The estimate for object’s motion in current frame is
computed using clustering as described in the previous steps of this section. Next
step is to move every particle using this estimated amount of motion. Instead of
using the single motion value, we sample P motion values from a 2-d Gaussian

Deformable Object Tracking Using Clustering and Particle Filter 725

distribution centered at the estimated amount of motion, and having covariance Vd.
Updated weights are calculated again using particles’ distance from reference centers
and correlation with the reference window. Finally, particle with the maximum
weight is picked as center of the target object’s new location. Figure 3 gives a small
demo of our tracking method by showing the object, the estimated bounding box
and the particles.

Figure 3. Tracked object (the person moving straight) and particles are shown in 16 con-
secutive frames from top-left to bottom-right (person crossing data set). Successful occlu-
sion handling is also visible.

3.6 Scale Estimation

The estimation of change in scale of the tracked object is assisted by the nature of
our clustering based procedure. Corresponding segments or clusters of the true ob-
ject bg and the predicted object bn are identified, as described in Section 3.4, and the
sizes of these corresponding segments in Sg and Sn are compared. The ratio of their
sizes gives an estimate of the scale-change factor δscale. As different corresponding
segments give different estimate values, δscale is set to be the median of these values.

δscale = median

(
|sci |
|scj|

)
, ∀sci ∈ Sn, s

c
j ∈ Sg. (7)

The superscript c indicates that these are the corresponding segments of the current
and ground truth segments, Sn and Sg, respectively. |.| is the size of the segment
calculated as count of pixels in the segment, also known as area. δscale is used
to get the updated width wn and height hn of the predicted bounding box bn.

726 M. A. Rafique, M. Jeon, M. T. Hassan

[wn, hn] =
√
δscale · [wg, hg], (8)

where wg and hg are the width and height of the ground truth bounding box bg,
respectively.

The steps of our methodology are summarized in Algorithm 1.

Algorithm 1 TUC – Tracking Using C lustering

Require: I1, . . . , IN {image sequence}, b1 {bounding box in I1}
1: k ← 15 {initialize number of clusters}
2: P ← 200 {initialize number of particles}
3: F1 ← computeFeatures(b1) {features of ground truth bg}
4: Sg ← kmeans(F1, k) {segments of the object bg}
5: Sd

g ← findDiscriminativeSegments(Sg, I1) {discriminative reference segments,
Section 3.2}

6: for n = 2 to N do
7: Pxy ← generateParticles(c0n, V, P) {Section 3.5 and Equation (11)}
8: wp ← assignWeights(Pxy)
9: Pxy ← resample(Pxy, wp)

10: Fn ← computeFeatures(b0n) {b0n is the box in current frame using previous
frame’s box information}

11: Sn ← kmeans(Fn, k)
12: MATCHES ← findCorrespondingSegments(Sn, S

d
g) {Section 3.4}

13: txy ← estimateTranslation(MATCHES) {Section 3.3}
14: t′ ← generateRandomSpeeds(txy, Vd, P){Section 3.5 and Equation (12)}
15: Pxy ← Pxy + txy + t′ {move the particles with estimated and random speeds}
16: wp ← assignWeights(Pxy)
17: cn ← max(wp, Pxy) {estimated center of the object}
18: b0n ← boundingBox(cn)
19: δscale ← estimateScale(b0n, bg) {Section 3.6}
20: bn ← scale(b0n, δscale)
21: return bn {predicted bounding box in In}
22: end for

4 EXPERIMENTAL EVALUATION

We compare our method with state-of-the-art tracking methods on standard data
sets using a popular evaluation measure. Our experimental setup and obtained
results are discussed in this section.

Deformable Object Tracking Using Clustering and Particle Filter 727

4.1 Data Sets

Experimental evaluation of our tracking method is carried out on nine standard
publicly available data sets.1 The video sequences in these data sets contain different
visual tracking challenges like deformation, in-plane rotation, out-of-plane rotation,
scale change, occlusions, etc. Figure 4 shows the first frames of these video sequences
and the target object to be tracked.

Figure 4. First frame and the ground truth bounding box are shown for each of the nine
video sequences used in experimental evaluation. The video sequences from top-left to
bottom-right are ball, car2, car chase, cup on table, gym, mountain bike, person, person
crossing and person occlusion.

4.2 Evaluation Measure

Many measures exist in literature for quantitative evaluation of tracking methods.
The center-error measure expresses the distance between the centroid of the pre-
dicted box and the centroid of the ground truth. This measure is not bounded and
ignores the scale and the aspect ratio of the bounding boxes. We have selected the
commonly used overlap measure:

o(bn, bg) =
|bn ∩ bg|
|bn ∪ bg|

, (9)

where bn refers to the predicted bounding box and bg refers to the ground truth
bounding box. This measure is bounded between 0 and 1, penalizes translation

1 http://www.gnebehay.com/cmt/

http://www.gnebehay.com/cmt/

728 M. A. Rafique, M. Jeon, M. T. Hassan

and scale alterations, and is popularly known to be a better indicator for per-frame
success [20].

In order to find an overall score for a sequence, a threshold τ is applied on Equa-
tion (9) to find true positives (TP). True positive rate (or recall) is then reported
for all sequences.

recall =
TP

TP + FN
. (10)

The value of recall gives the percentage of frames that are tracked correctly, i.e.
when o ≥ τ .

Results are computed for three different values of τ , i.e., 0.25, 0.50 and 0.75.
These threshold values are suggested by [20] with an interpretation as low, medium
and high requirements on accuracy.

4.3 Comparison Methods

A comparison of our approach is performed with the state-of-the-art tracking ap-
proaches. The comparison methods include CMT (Consensus-based Matching and
Tracking [20, 21]), STRUCK (Structured output Tracking [10]), TLD (Tracking-
Learning-Detection [14]), LM (LearnMatch [11]), FT (Fragments-based Track-
ing [2]), HT (HoughTrack [6]) and SB (Semi-supervised online Boosting [7]).

4.4 Parameters Setting

Required parameters of our method were set once and then used for all of the data
sets consistently. The setting was guided by initial experimental results.

The number of clusters parameter k which becomes the number of tracked seg-
ments is set to be 15. Number of particles P is set to be 200. Covariance matrix V
for initial random Gaussian particles is set to be

V =

[
7 1
1 7

]
, (11)

and covariance matrix for random motions of the particles Vd is set to be

Vd =

[
2 1.5

1.5 2

]
. (12)

Covariance matrix V is used to generate initial random Gaussian particles. The
shape of the target object (width and height of the bounding box) and the dominant
direction of motion can help in determining this spread to be more in one direction
or other (we fixed to 1 and 7 in our experiments). V controls the spread of particles
and can be learned through some initial frames or adapted incrementally (not done
in the current work). In the case of Vd, the covariance matrix of random motions,
the values are small and almost identical for both horizontal and vertical directions
(1.5 and 2).

Deformable Object Tracking Using Clustering and Particle Filter 729

Sequence τ CMT STR TLD FT LM HT SB TUC

0.25 0.98 0.30 0.40 0.31 0.14 0.15 0.30 0.90
ball 0.50 0.57 0.15 0.28 0.19 0.12 0.11 0.28 0.58

0.75 0.19 0.10 0.19 0.13 0.09 0.10 0.12 0.15

0.25 0.90 0.81 1.00 0.04 0.46 0.59 0.72 0.98
car2 0.50 0.88 0.47 1.00 0.04 0.36 0.47 0.72 0.94

0.75 0.64 0.11 0.95 0.03 0.17 0.00 0.70 0.72

0.25 0.30 0.08 0.16 0.04 0.00 0.04 0.08 0.32
carchase 0.50 0.20 0.03 0.15 0.03 0.00 0.04 0.08 0.13

0.75 0.07 0.02 0.06 0.02 0.00 0.00 0.05 0.04

0.25 0.83 1.00 0.89 1.00 0.68 1.00 0.47 1.00
cup on table 0.50 0.81 0.92 0.64 0.88 0.54 1.00 0.47 0.98

0.75 0.61 0.35 0.06 0.40 0.31 0.48 0.34 0.53

0.25 0.93 1.00 0.76 0.24 0.10 0.30 0.61 1.00
gym 0.50 0.86 0.93 0.32 0.22 0.05 0.00 0.58 0.89

0.75 0.22 0.3 0.08 0.12 0.02 0.00 0.22 0.36

0.25 0.99 0.99 0.37 0.65 0.11 0.99 0.20 1.00
mount-bike 0.50 0.98 0.93 0.36 0.63 0.08 0.40 0.17 0.88

0.75 0.48 0.23 0.16 0.18 0.04 0.03 0.08 0.27

0.25 0.95 1.00 0.92 1.00 0.75 0.49 0.52 1.00
person 0.50 0.82 0.95 0.71 0.95 0.67 0.00 0.52 0.99

0.75 0.49 0.50 0.25 0.54 0.31 0.00 0.40 0.57

0.25 0.76 0.51 0.86 0.88 0.80 0.18 0.96 0.87
person-cro 0.50 0.70 0.42 0.70 0.66 0.75 0.10 0.91 0.78

0.75 0.58 0.12 0.10 0.15 0.42 0.04 0.16 0.13

0.25 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
person-occ 0.50 0.94 0.91 0.87 0.91 0.95 0.93 0.91 0.92

0.75 0.82 0.80 0.58 0.80 0.82 0.44 0.80 0.80

0.25 0.85 0.74 0.71 0.57 0.45 0.53 0.54 0.90
Average 0.50 0.75 0.63 0.56 0.50 0.39 0.34 0.52 0.79

0.75 0.46 0.28 0.27 0.26 0.24 0.12 0.32 0.40

Table 1. Comparison of our method (last column) with existing methods on 9 video se-
quences. Recall results are reported for 0.25, 0.50 and 0.75 threshold (τ) values of overlap
with the ground truth. The top recall values are highlighted in bold and average values
are presented in italic typeface.

4.5 Results and Discussion

Figure 5 shows results of our tracking method obtained using clustering alone, and
after incorporating particle filtering and discriminative segments. Improvement in
results is visible when particle filtering is added to the simple clustering based track-
ing. Removing ambiguous segments and keeping discriminative segments only, fur-
ther improves the tracking accuracy.

730 M. A. Rafique, M. Jeon, M. T. Hassan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ball

car2

carchase

cup on table

gym

mountain bike

person

person crossing

person occluded

D
a

ta
 s

e
t

Recall

C

CP

CPD

Figure 5. Comparison of our tracking method using clustering (C), and after incorporat-
ing particle filtering (CP) and discriminative segments (CPD). Overlap threshold τ = 0.50.
Combined method, i.e., clustering with particle filtering and discriminative segments
(CPD) achieves the best performance.

Table 1 presents the comparison of our proposed method (TUC) with existing
methods. Recall values for seven comparison methods are taken from [20]. Our
method attains the highest average value for low and medium accuracy require-
ments, i.e., when overlap with the ground truth bounding box is greater than or
equal to 0.25 and 0.50 threshold (τ) values, respectively. For high accuracy re-
quirement, i.e., when τ is 0.75, our method achieves the second highest average
value as CMT gets on the top. This slightly lower performance of our method
in this case is attributable to the randomness involved in the method causing
atremble movements of the bounding box sometimes. Note that this random-
ness, on the other hand, helps in keeping track of the object in other scenarios
(low and medium accuracy requirements) where other methods show lower per-
formance. After TUC and CMT, the next best results are achieved by STR and
TLD.

Eminent performance of our method is clearly observable on sequences staging
deformable objects (e.g., gym and person). Taking discriminative and using top
75 % parts of the object that match the reference model helps in achieving these
high quality results, particularly for videos having deforming objects. We fixed the
parameters for our method, e.g. variance (as described in Section 4.4), for all pre-
sented experiments. Adapting these parameters intelligently based on the object and

Deformable Object Tracking Using Clustering and Particle Filter 731

its environment information in a sequence can further improve the overall results,
and can make the method more generic in the future.

Figure 6 demonstrates the qualitative results of our method compared with the
selected techniques. The figure gives the frame number and each frame shows the
tracked object in the boundary from all 228 frames of the mountain-bike sequence.

Figure 6. Qualitative results of our proposed tracking method compared with TLD, HT
and CMT techniques (mountain-bike data set). Left column gives the frame number.

As discussed earlier, some of the values of control parameters are selected empir-
ically, based on the best combination of correctness and efficient. Table 2 shows the
recall values computed while trying different combinations of numbers of clusters
and numbers of particles value. It is evident that after a certain number of clusters
the segments become too sparse to track. Table 3 shows the recall values computed
while trying different combinations of α and β value.

Currently, k-means clustering has been applied for object’s segmentation. In
the future, other clustering methods (e.g. density based) can be tested. In addition,
more features and key-points detection and description methods can be explored
to further improve the performance and to handle full occlusions more effectively.
The method can also be extended to update the reference model at run-time and
to generalize this technique to perform better in all cases. Super-pixel algorithm [1]
(i.e. SLIC) can also be used for a fine and quick construction of the segmentation
of the target object, as it is faster and more memory efficient. Moreover, some
control parameters in this work are selected empirically, what we have considered

732 M. A. Rafique, M. Jeon, M. T. Hassan

Number of Clusters

Number of Particles 5 10 15 20 25

100 0.52 0.7 0.92 0.85 0.85

150 0.65 0.79 0.81 0.59 0.97

200 0.6 0.85 0.98 0.82 0.87

250 0.58 0.83 0.94 0.84 0.86

300 0.56 0.68 0.89 0.72 0.83

Table 2. Recall values for combinations of number of clusters and number of particles
experimented with the car2 video

Alpha

Beta 0.25 0.5 0.75 1

0.25 0.70 0.68 0.85 0.84

0.5 0.73 0.88 0.67 0.80

0.75 0.97 0.83 0.79 0.75

1 0.74 0.80 0.75 0.81

Table 3. Recall values for combinations of alpha and beta value experimented with the
car2 video

as sufficient for the scope of this work. An adaptive parameter learning technique
can be introduced for the further experimentation and extension of this work.

5 CONCLUSION

In this paper, we have proposed a single object tracking method, Tracking Using
Clustering (TUC) by employing data clustering and particle filter. TUC outper-
forms state-of-the-art tracking methods in deformable object tracking while achiev-
ing competitive performance in general. Data clustering is applied to segment the
target object into several unstructured parts. To reduce ambiguity, discriminative
parts of the object are selected by removing its segments similar to the neighbor-
ing background segments. Particle filtering is employed to improve the accuracy
and robustness of our method and overcome the lacking caused by the randomness
inherited by data clustering methods. Experimental results on nine standard data
sets demonstrate the effectiveness of our approach.

Acknowledgments

This work was in part supported by the Institute for Information and Communica-
tions Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(No. B0101-15-0525, Development of global multi-target tracking and event pre-
diction techniques based on real-time large-scale video analysis), and by the Na-
tional Strategic Project-Fine particle of the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Science and ICT (MSIT), and the Ministry

Deformable Object Tracking Using Clustering and Particle Filter 733

of Environment (ME), and the Ministry of Health and Welfare (MOHW) (NRF-
2017M3D8A1092022).

REFERENCES

[1] Achanta, R.—Shaji, A.—Smith, K.—Lucchi, A.—Fua, P.—Süsstrunk, S.:
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 34, 2012, No. 11,
pp. 2274–2282, doi: 10.1109/TPAMI.2012.120.

[2] Adam, A.—Rivlin, E.—Shimshoni, I.: Robust Fragments-Based Tracking Us-
ing the Integral Histogram. 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR ’06), June 2006, Vol. 1, pp. 798–805, doi:
10.1109/CVPR.2006.256.

[3] Cai, Z.—Wen, L.—Lei, Z.—Vasconcelos, N.—Li, S. Z.: Robust Deformable
and Occluded Object Tracking with Dynamic Graph. IEEE Transactions on Image
Processing, Vol. 23, 2014, No. 12, pp. 5497–5509, doi: 10.1109/TIP.2014.2364919.

[4] Comaniciu, D.—Ramesh, V.—Meer, P.: Real-Time Tracking of Non-Rigid
Objects Using Mean Shift. Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR 2000), 2000, Vol. 2, pp. 142–149, doi:
10.1109/CVPR.2000.854761.

[5] Du, D.—Qi, H.—Li, W.—Wen, L.—Huang, Q.—Lyu, S.: Online Deformable
Object Tracking Based on Structure-Aware Hyper-Graph. IEEE Transactions on Im-
age Processing, Vol. 25, 2016, No. 8, pp. 3572–3584, doi: 10.1109/TIP.2016.2570556.

[6] Godec, M.—Roth, P. M.—Bischof, H.: Hough-Based Tracking of Non-Rigid
Objects. Computer Vision and Image Understanding, Vol. 117, 2013, No. 10,
pp. 1245–1256, doi: 10.1016/j.cviu.2012.11.005.

[7] Grabner, H.—Leistner, C.—Bischof, H.: Semi-Supervised On-Line Boosting
for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (Eds.): Computer Vi-
sion (ECCV 2008). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 5302, 2008, pp. 234–247.

[8] Greminger, M. A.—Nelson, B. J.: Deformable Object Tracking Using the Bound-
ary Element Method. Proceedings of 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2003, Vol. 1, pp. I-289–I-294, doi:
10.1109/CVPR.2003.1211366.

[9] Greminger, M. A.—Nelson, B. J.: A Deformable Object Tracking Algorithm
Based on the Boundary Element Method That Is Robust to Occlusions and Spurious
Edges. International Journal of Computer Vision, Vol. 78, 2008, No. 1, pp. 29–45,
doi: 10.1007/s11263-007-0076-6.

[10] Hare, S.—Saffari, A.—Torr, P. H. S.: Struck: Structured Output Tracking
with Kernels. 2011 IEEE International Conference on Computer Vision (ICCV), 2011,
pp. 263–270, doi: 10.1109/ICCV.2011.6126251.

[11] Hare, S.—Saffari, A.—Torr, P. H. S.: Efficient Online Structured Out-
put Learning for Keypoint-Based Object Tracking. 2012 IEEE Conference on

https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/CVPR.2006.256
https://doi.org/10.1109/TIP.2014.2364919
https://doi.org/10.1109/CVPR.2000.854761
https://doi.org/10.1109/TIP.2016.2570556
https://doi.org/10.1016/j.cviu.2012.11.005
https://doi.org/10.1109/CVPR.2003.1211366
https://doi.org/10.1007/s11263-007-0076-6
https://doi.org/10.1109/ICCV.2011.6126251

734 M. A. Rafique, M. Jeon, M. T. Hassan

Computer Vision and Pattern Recognition (CVPR), 2012, pp. 1894–1901, doi:
10.1109/CVPR.2012.6247889.

[12] Hilsmann, A.—Eisert, P.: Deformable Object Tracking Using Optical Flow Con-
straints. 4th European Conference on Visual Media Production (IETCVMP), 2007,
pp. 1–8.

[13] Jackson, J. D.—Yezzi, A. J.—Soatto, S.: Tracking Deformable Moving Objects
Under Severe Occlusions. 43rd IEEE Conference on Decision and Control (CDC),
2004, Vol. 3, pp. 2990–2995, doi: 10.1109/CDC.2004.1428922.

[14] Kalal, Z.—Mikolajczyk, K.—Matas, J.: Tracking-Learning-Detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, 2012, No. 7,
pp. 1409–1422.

[15] Kim, D. Y.—Jeon, M.: Data Fusion of Radar and Image Measurements for
Multi-Object Tracking via Kalman Filtering. Information Sciences, Vol. 278, 2014,
pp. 641–652, doi: 10.1016/j.ins.2014.03.080.

[16] Kim, D. Y.—Yang, E.—Jeon, M.—Shin, V.: Robust Auxiliary Particle Filter
with an Adaptive Appearance Model for Visual Tracking. In: Kimmel, R., Klette, R.,
Sugimoto, A. (Eds.): Computer Vision (ACCV 2010). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 6494, 2010, pp. 718–731.

[17] Kristan, M.—Pflugfelder, R.—Leonardis, A.—Matas, J.—Čehovin, L.—
Nebehay, G.—Voj́ıř, T.—Fernández, G.—Lukežič, A.—Dimitriev, A.—
Petrosino, A.—Saffari, A.—Li, B.—Han, B.—Heng, C.—Garcia, C.—
Pangeršič, D.—Häger, G.—Khan, F. S.—Oven, F.—Possegger, H.—
Bischof, H.—Nam, H.—Zhu, J.—Li, J.—Choi, J. Y.—Choi, J.-W.—Hen-
riques, J. F.—van de Weijer, J.—Batista, J.—Lebeda, K.—Öfjäll, K.—
Yi, K. M.—Qin, L.—Wen, L.—Maresca, M. E.—Danelljan, M.—Fels-
berg, M.—Cheng, M.-M.—Torr, P.—Huang, Q.—Bowden, R.—Hare, S.—
Lim, S. Y.—Hong, S.—Liao, S.—Hadfield, S.—Li, S. Z.—Duffner, S.—
Golodetz, S.—Mauthner, T.—Vineet, V.—Lin, W.—Li, Y.—Qi, Y.—
Lei, Z.—Niu, Z. H.: The Visual Object Tracking VOT2014 Challenge Results.
In: Agapito, L., Bronstein, M. M., Rother, C. (Eds.): Computer Vision Workshops
(ECCV 2014). Springer International Publishing, Lecture Notes in Computer Science,
Vol. 8926, 2015, pp. 191–217.

[18] Li, Y.—Zhu, J.—Hoi, S. C. H.: Reliable Patch Trackers: Robust Vi-
sual Tracking by Exploiting Reliable Patches. 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2015, pp. 353–361, doi:
10.1109/CVPR.2015.7298632.

[19] Lucas, B. D.—Kanade, T.: An Iterative Image Registration Technique with
an Application to Stereo Vision. Proceedings of the 7th International Joint Con-
ference on Artificial Intelligence (IJCAI ’81), Vol. 2, San Francisco, CA, USA, 1981,
Morgan Kaufmann Publishers Inc., pp. 674–679.

[20] Nebehay, G.—Pflugfelder, R.: Consensus-Based Matching and Tracking of
Keypoints for Object Tracking. 2014 IEEE Winter Conference on Applications of
Computer Vision (WACV), 2014, pp. 862–869, doi: 10.1109/WACV.2014.6836013.

[21] Nebehay, G.—Pflugfelder, R.: Clustering of Static-Adaptive Correspondences
for Deformable Object Tracking. Proceedings of the 2015 IEEE Conference on

https://doi.org/10.1109/CVPR.2012.6247889
https://doi.org/10.1109/CDC.2004.1428922
https://doi.org/10.1016/j.ins.2014.03.080
https://doi.org/10.1109/CVPR.2015.7298632
https://doi.org/10.1109/WACV.2014.6836013

Deformable Object Tracking Using Clustering and Particle Filter 735

Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2784–2791, doi:
10.1109/CVPR.2015.7298895.

[22] Nguyen, H. T.—Smeulders, A. W. M.: Fast Occluded Object Tracking by a Ro-
bust Appearance Filter. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, Vol. 26, 2004, No. 8, pp. 1099–1104.

[23] Oron, S.—Bar-Hillel, A.—Avidan, S.: Extended Lucas-Kanade Tracking.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.): Computer Vision
(ECCV 2014). Springer International Publishing, Lecture Notes in Computer Science,
Vol. 8693, 2014, pp. 142–156.

[24] Oron, S.—Bar-Hillel, A.—Levi, D.—Avidan, S.: Locally Orderless Tracking.
International Journal of Computer Vision, Vol. 111, 2015, No. 2, pp. 213–228.

[25] Ristic, B.—Hernandez, M. L.: Tracking Systems. Radar Conference
(RADAR ’08), IEEE, 2008, pp. 1–2.

[26] Smeulders, A. W. M.—Chu, D. M.—Cucchiara, R.—Calderara, S.—
Dehghan, A.—Shah, M.: Visual Tracking: An Experimental Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, 2014, No. 7,
pp. 1442–1468.

[27] Staffa, M.—Rossi, S.—Giordano, M.—De Gregorio, M.—Siciliano, B.:
Segmentation Performance in Tracking Deformable Objects via WNNS. 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015, pp. 2462–2467,
doi: 10.1109/ICRA.2015.7139528.

[28] Yilmaz, A.—Javed, O.—Shah, M.: Object Tracking: A Survey. ACM Computing
Surveys (CSUR), Vol. 38, 2006, No. 4, Article No. 13, doi: 10.1145/1177352.1177355.

[29] Zhang, L.—van der Maaten, L.: Structure Preserving Object Tracking. 2013
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013,
pp. 1838–1845, doi: 10.1109/CVPR.2013.240.

[30] Zhang, L.—van der Maaten, L.: Preserving Structure in Model-Free Tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, 2014, No. 4,
pp. 756–769.

[31] Zhang, M.—Kang, B.: An Improved Method of Tracking and Counting Moving
Objects Using Graph Cuts. In: Wong, W. E. (Ed.): Proceedings of the 4th Inter-
national Conference on Computer Engineering and Networks. Springer International
Publishing, Lecture Notes in Electrical Engineering, Vol. 355, 2015, pp. 583–590.

[32] Zhang, X.—Hu, W.—Chen, S.—Maybank, S.: Graph-Embedding-Based Learn-
ing for Robust Object Tracking. IEEE Transactions on Industrial Electronics, Vol. 61,
2014, No. 2, pp. 1072–1084.

https://doi.org/10.1109/CVPR.2015.7298895
https://doi.org/10.1109/ICRA.2015.7139528
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1109/CVPR.2013.240

736 M. A. Rafique, M. Jeon, M. T. Hassan

Muhammad Aasim Rafique received his M.Sc. degree in
computer science from Quaid-e-Azam University, Islamabad, Pa-
kistan. He then received his M.Sc. degree in computer science
from Lahore University of Management and Sciences, Lahore,
Pakistan in 2008. He received his Ph.D. degree from School of
Electrical Engineering and Computer Sciences, GIST, Gwangju,
Republic of Korea, in 2018 (when submitted this article he was
Ph.D. student at GIST). He is now working as Assistant Profes-
sor at Quaid-e-Azam University, Islamabad, Pakistan. His re-
search interests are artificial neural networks, their application

in machine learning and computer vision.

Moongu Jeon received his B.Sc. degree in architectural engi-
neering from the Korea University, Seoul, Korea, in 1988 and
his M.Sc. and Ph.D. degrees in computer science and scien-
tific computation from the University of Minnesota, Minneapo-
lis, MN, USA, in 1999 and 2001, respectively. As Postgraduate
Researcher, he worked on optimal control problems at the Uni-
versity of California at Santa Barbara, Santa Barbara, CA, USA,
in 2001–2003, and then moved to the National Research Council
of Canada, where he worked on the sparse representation of high-
dimensional data and the level set methods for image processing

until July 2005. In 2005, he joined the Gwangju Institute of Science and Technology,
Gwangju, Korea, where he is currently Full Professor at the School of Electrical Engi-
neering and Computer Science. His current research interests are in machine learning,
computer vision, and intelligent transportation systems.

Malik Tahir Hassan received his M.Sc. and Ph.D. degrees
in computer science from Lahore University of Management
Sciences (LUMS), Lahore, Pakistan. He worked at Gwangju
Institute of Science and Tehcnology (GIST), Gwangju, South
Korea, as a Post-Doc fellow. Currently, he is working as As-
sistant Professor at School of Systems and Technology (SST)
at University of Management and Technology (UMT), Lahore,
Pakistan. His research interests include pattern recognition, text
mining, recommender systems and autonomic computing.

Computing and Informatics, Vol. 37, 2018, 737–758, doi: 10.4149/cai 2018 3 737

SENTIMENT AND AUTHORITY ANALYSIS
IN CONVERSATIONAL CONTENT

Krist́ına Machová, Martin Mikula
Martina Szabóová, Marián Mach

Department of Cybernetics and Artificial Intelligence
FEI, Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
e-mail: {kristina.machova, martin.mikula, martina.tarhanicova,

marian.mach}@tuke.sk

Abstract. This paper deals with mining conversational content from the social me-
dia. It focused on two issues: opinion and emotion classification and identification
of authoritative reviewers. The paper also describes applications representing the
results obtained in the given areas. Authority identification can be used by orga-
nizations to search for experts in their specific areas to employ them. The opinion
and emotion analysis can be useful for providing decision-making support.

Keywords: Opinion analysis, emotion analysis, conversational content, conversa-
tion structure, authority identification

Mathematics Subject Classification 2010: 68U15

1 INTRODUCTION

The social web is a phenomenon of the present day where users create a huge amount
of information called conversational content. It increases the number of interactions
among web users affecting our decisions in real life situations. Therefore, application
of both sentiment analysis and authority mining can be useful in the process of
decision making. The input of this application can be a hypertext reference to the
related web discussion or a key phrase from the area of interest being discussed. The

738 K. Machová, M. Mikula, M. Szabóová, M. Mach

output is a summarized opinion [2] (clearly positive, neutral or negative) represented
in this discussion as well as information about authoritative discussants.

Authoritative users can influence us more than the others, therefore, having
knowledge about them can improve the precision of sentiment analysis. In this
paper, an authoritative user or authoritative reviewer will be referred to as “au-
thority”. The problem of “authority identification” can be solved through finding
a function for estimation of the value of authority, which represents the measure
of authoritativeness of a given discussant, and defining a threshold on the value
of the variable authority. All discussants with the value of authority equal to or
higher than the defined threshold will be “identified as authorities” of a given web
discussion.

In this paper, we focus on two main issues. The first is sentiment analysis. The
concept of the sentiment is represented by the opinion or some kind of emotion.
Based on the expression of the sentiment we divided our work into opinion classifi-
cation and emotion classification. We used two different dictionaries: one to classify
opinions into positive and negative classes and the other to classify emotions into
six basic emotions.

The second issue is based on authority identification. We define authority as
a person, who understands the topic, writes comprehensive answers, has many good
reactions to his/her comments and has a good reputation in the community. We
analyse these features as well as the state threshold of the authority value and label
all authors having a higher value than the authorities in the discussion.

Thus, the main contributions presented in this paper are new approaches to
classifying opinions and emotions, and a completely original approach to estimation
and identification of the authority in web discussions.

2 STATE OF THE ART

The tasks of both sentiment analysis and opinions and emotions analysis can be
performed using two main approaches [22]:

• Lexicon based approach, which calculates the polarity of a comment from po-
larities of words or phrases in the text of the comment. According to [16] the
lexicon-based approach uses the lexicons which can be created manually, semi-
automatically or automatically by using another dictionary or corpus.

• Classification based approach, which builds classifiers from labelled examples of
comments. This approach can use statistical or machine learning methods.

The lexicon-based approach takes into consideration only the words which can ex-
press the sentiment the best way and are stored in a classification dictionary. Based
on the polarity of each word in the dictionary, the polarity of the whole comment
and subsequently of the whole web discussion can be determined. The polarity of
a word may also depend on the context. Consideration of the context requires using
more complicated techniques. The simplest dictionaries enable to perform binary

Sentiment and Authority Analysis in Conversational Content 739

classification into positive or negative sentiment. More complex dictionaries can also
determine the strength of this polarity. Such dictionaries can be created for a partic-
ular domain or application. Some well-known lexicons are, for example, WordNet1,
WordNet-Affect [26], SenticNet [6], SentiWordNet [1, 9], etc. An approach most
similar to our solution of the sentiment analysis problem is presented in [27]. It uses
a dictionary of words annotated with their polarity. This work splits this dictio-
nary into four sub-dictionaries according to word classes (adjectives, nouns, verbs
and adverbs), these dictionaries are checked for consistency and reliability. In this
approach, more words in the dictionary can result in an increase of noise levels and
subsequently decrease in the precision.

In the classification based approach, many of the well-known machine learn-
ing methods can be used. The machine learning methods estimate user’s opinions
or emotions on the basis of a set of training examples. These training examples
are represented by annotations of comments to a web forum. The most common
machine learning methods are, for example, Näıve Bayes classifier or Support Vec-
tor Machines (SVM), as well as statistical methods such as Maximal Entropy. All
these algorithms were used in the work [10]. The author focused on the sentiment
classification from the micro-blog service Twitter. When machine learning is used
for sentiment analysis it is important to select the best features. Different kinds
of features, such as pointwise mutual information, information gain, chi-quadrat
and term frequency were tested in works [28, 32]. Another approach presented
in [29] is focused on the SentiStrength detection algorithm, which solves some prob-
lems connected with sentiment analysis, for example: generation of the sentiment
strength list, optimization of the sentiment word strengths, allocation of missing
words, spelling correction, creation of the booster word list, negating word list and
emoticon list, processing of the repeated letters and ignoring negative emotion in
questions. Their approach is based on using machine learning techniques (Logistic
Regression, Support Vector Machine, J48 Classification Tree, AdaBoost, Decision
Table, Multilayer Perceptron and Näıve Bayes).

An important drawback of the machine learning approach is its dependency on
a huge amount of annotated training examples. An annotation tool with some level
of automation had to be utilized. The source [25] describes some annotation tools,
for example, GATE (General Architecture for Text Engineering), SemTag (Seman-
tic Annotation Tool), the annotation platform KIM (Knowledge and Information
Management) and Luvak, or a more general semi-automatic annotation tool built
on the Eclipse platform.

The second problem, which we tried to solve in relation to sentiment analysis,
was the authority identification in some web discussions. The most known ap-
proaches determine the authority degree only from the conversation structure [4, 7,
31]. Our approach is not based on NLP (Natural Language Processing) or on in-
formation retrieval algorithm but on generating the estimation function for labeling
the degree of authority prediction (see Section 4).

1 http://wordnet.princeton.edu

http://wordnet.princeton.edu

740 K. Machová, M. Mikula, M. Szabóová, M. Mach

3 SENTIMENT ANALYSIS

3.1 Opinion Classification

Our opinion analysis approach has focused on the classification of web users’ opin-
ion. It summarizes positive, neutral or negative polarity across the discussion. This
classification is provided in several steps. At first, the polarity of particular words is
identified. Next, the polarity of particular lexical units is distinguished and conse-
quently the polarity of the whole comment is stated. The final step is classification of
the whole discussion to positive, neutral or negative polarity. Other web discussions
concerning the discussed topic can be also processed. It means that the resulting
opinion can be compiled from more web sources.

The basic problems can be simply solved using classification dictionaries. These
dictionaries focus on words, which express sentiment very well – mainly adjectives
(e.g. “extraordinary”) [3] and adverbs (e.g. “awfully”) [17]. On the other hand, some
other words must be also taken into account in order to achieve the satisfactory
precision, for example nouns (e.g. “crash”) or verbs (e.g. “damage”) [27]. All of
these words are identified in the text; they usually enter the dictionaries with their
degree of polarity.

For the purpose of deeper processing of a text, shifters can be used, which are
words that can change the polarity of a word. The positive influence of the shifters
processing was studied in work [14]. Shifters can be divided into two groups:

• negation,

• intensification.

There are two basic approaches to negation processing : a switch negation and
a shift negation. The switch negation is simply reversion of the polarity of a lexical
unit. In this case, the reversion is changing the sign of a number, which represents
the polarity degree (from minus to plus and vice versa). There are many words
related to negation such as not, any, never, nothing. They are usually located next to
the related word. Other negations as without, don’t, lack etc., which can be situated
at a significant distance from the lexical item should also be considered. These
negations can be hardly processed by the switch negation. In some cases, the switch
negation may not be sufficiently precise because the negation of a strong positive
word is rarely a strong negative word and vice versa. More often the negation of
a strong positive word is a slightly negative word. The shift negation, instead of
changing the sign, shifts the polarity degree towards the opposite polarity by a fixed
value (e.g. value 4 in the implementation [27]). For example: “She’s not terrific
(5− 4 = 1) but not terrible (−5 + 4 = −1) either.”

The intensification processing assumes the existence of a dictionary of intensi-
fiers. An intensifier is a word, which can increase (or decrease) the intensity of po-
larity. According to [27], intensifiers can be of two categories: amplifiers (e.g. very)
increase the semantic intensity of a neighbouring lexical unit, whereas downtowners

Sentiment and Authority Analysis in Conversational Content 741

(e.g. slightly) decrease it. All intensifiers are stored in the dictionary together with
a sign and a value. The value represents the percentage of the change in the polar-
ity intensity and the sign represents the type of this change (“plus” represents the
increase in the polarity value by an amplifier and “minus” represents the decrease
in the polarity value by a downtowner).

3.1.1 N-Grams Approach to the Opinion Classification

An n-gram can be defined as a series of items from a sequence. From the semantic
point of view, it can be a sequence of characters or words. In practice, n-gram as
a sequence of words is the most common. Our approach uses n-grams for splitting
web discussion comments into lexical units and that is a dictionary-based approach.
This application works with Slovak texts. The dictionary consists of two parts. The
first part contains adjectives, nouns and verbs. The second part contains adverbs
and negations. The first part of the dictionary is used to solve the basic problems of
the opinion classification. The second part of the dictionary is used in negations and
intensification processing, because only adverbs can increase (“surprisingly nice”)
or decrease (“extremely low-class”) the intensity of a related word polarity. The
first (basic) dictionary also contains some emoticons, which naturally can express
emotions and opinions very well. In the case, when the analysed text is less clear, the
emoticons can increase the precision of the classification. All words and emoticons
from the first dictionary are quantified to the polarity degree from the interval 〈−3, 3〉
(Table 1). Intensifiers (adverbs) in the second part of the dictionary are assigned
values from the interval 〈−0.5, 1〉 and negations are represented by the value −2
(Table 2).

Polarity Degree Words and Emoticons

3 :D, godlike, extraordinary
2 :), super, excellent
1 nice, functional, OK
−1 unpleasant, weak
−2 :(, shocking, miserable
−3 :((, fatal, catastrophic

Table 1. Polarity degrees of example words and emoticons (the first part of the dictionary)

Polarity Degree Words

1 very, totally, extraordinarily
0.5 suitably, really, actually
−0.5 little, overly, unnecessarily
−2 Negations: no, not, don’t

Table 2. Polarity degrees of negations and intensifications (second part of the dictionary)

742 K. Machová, M. Mikula, M. Szabóová, M. Mach

All the words from the analysed comments are compared with all words stored
in the first and in the second part of the dictionary. In case that words match
with the first dictionary, the values of all matching words are summed up. The
resulting sum represents the solution of the basic problems of opinion classification
(the first sum in the formula (1)). The second sum takes into account negations
and intensifications of the related words incorporated in the first sum. This is the
reason why multiplication (not an aggregation) was proposed to be used between
the first and the second sum in the formula (1). The second sum aggregates the
values obtained from the second dictionary for intensifiers and negations. But if
comments do not contain any negation or any intensification, the second sum will
be zero, and consequently the resulting polarity of the comment will be zero. Thus,
value “1” was added to the second sum as a neutral value. This idea is represented
by the formula (1):

P =
∑

v(w1
i)
[
1 +

∑
v(w2

J)
]

(1)

where:

• P is the polarity degree of analysed text,

• v(w1
i) is the value of word wi from the text found in the first dictionary,

• v(w2
i) is the value of word wJ from the text found in the second dictionary,

•
∑

v(w1
i) is the first sum from the first dictionary (solution of the basic prob-

lem),

•
∑

v(w2
J) is the second sum from the second dictionary (solution of the negation

and intensification).

To illustrate the topic, we give a few examples:

• A sentence containing only positive and negative words without negations and
intensifications can be processed using only the first dictionary

– “The mouse is nice but the processing is miserable and globally it is unsuc-
cessful.” is processed in the following way. Only three words from the first
dictionary were found in the sentence with their degree of polarity in the
parentheses:

nice (+1) + miserable (−3) + unsuccessful (−1).

There are polarity degrees were the sum and the final polarity of the sentence
equals P = −3.

A sentence containing negation

– “It is not a good solution.” is processed in the following way. Only the
word good (+1) was found in the first dictionary, so the result of the first
sum is “1”. The sentence contains also negation not (−2) from the second

Sentiment and Authority Analysis in Conversational Content 743

dictionary, so the result of the second sum is “−2”. According to formula (1)
the final polarity is: P = 1 ∗ [1 + (−2)] = −1.

A sentence containing intensification

– “Globally, the processing is very polite.” is processed in the following way.
Only the word polite (+1) was found in the first dictionary, so the result
of the first sum is “1”. The sentence contains also intensification very (+1)
from the second dictionary, so the result of the second sum is “1”. According
to formula (1) the final polarity is: P = 1 ∗ [1 + 1)] = +2.

More information on this approach can be found in [20]. In our approach, the
dictionary can be created directly from web discussions. It increases the precision
of the opinion classification in the given domain. Our approach also uses a different
method for the processing of negations and intensifications based on the formula (1).
Our approach does not need an intensifier (negation) to be located in the neighbour-
hood of the related word. They can take any position around the lexical unit. This
length is limited by the value “4” in 4-gram approach. There are two possibilities
for the location of the intensifier and negation. They can be located before and/or
after the related word.

The value n = 4 in the n-gram was determined experimentally. Experiments
with the value n from 2 to 4 were performed to find the best value of n. The ideal
value had to be sufficiently big to avoid isolation of the processed word but not too
big to cover the whole sentence. The experiments showed that n = 4 was sufficient.
Thus, the greater value, for example n = 5, would only make the processing more
complex. When we compared 4-grams with other n-grams, 2-grams and 3-grams
did not bring any benefit, because 4-grams could also cover phrases of two or three
words. The work [15] also uses 4-grams in the sentiment analysis engine called
Umigon for the sentiment analysis of tweets. The texts of tweets are decomposed
into a list of 4-grams, and they are compared with terms in lexicons. Each term
searched in the lexicon is processed using heuristics and decision rules for 4-gram
polarity determination.

The n-grams approach applied to the opinion classification was tested on a set
of discussion comments from the portal http://www.mojandroid.sk (discussion
thread related to reviews of the mobile telephones HTC One X and HCT One S) and
http://www.pocitace.sme.sk (discussion thread related to reviews of two products
Asus Transformer Prime TF201 and Asus Transformer Pad TF300T). 200 comments
including 100 positive and 100 negative were used in the experiments. Thus, objects
were equally divided into the two classes. The evaluation of n-gram implementa-
tion was based on the pair of the well known metrics – precision and recall. These
measures depended on the numbers of true positive, false positive and false negative
classifications of our implementation in comparison with the opinion of a human ex-
pert on real positivity or negativity of the evaluated cases. The resulting precision
and recall of our n-gram implementation is given in Table 4. The achieved preci-
sion and recall, mainly recall of negative comments, was low. These results were

http://www.mojandroid.sk
http://www.pocitace.sme.sk

744 K. Machová, M. Mikula, M. Szabóová, M. Mach

influenced by comments containing irony or the polarity hidden in the context. On
the other hand, this implementation had quite a good precision in the processing of
positive comments.

3.1.2 Opinion Classification Based on a Special Lexicon

Because of the unsatisfactory results of the implementation based on n-grams, we
improved our dictionary-based approach. Our aim was to increase the efficiency of
this approach and to extend it by a special lexicon2 for the Slovak language. The
lexicon with Slovak words was created by the translation of its available version in
English used in work [13]. We added synonyms and negations of words from the
Slovak thesaurus into this lexicon. The new lexicon contains 1 430 words (598 posi-
tive words, 772 negative words, 41 intensifiers and 19 negations). As in the previous
case, our lexicon contains the following word classes: adjectives, adverbs, nouns and
verbs. Each word has two attributes. The first attribute is a degree of polarity
within the range from −3 to 3, where −3 is the most negative polarity and 3 is the
most positive polarity. The second attribute denotes the type of a given word from
four possibilities:

• p – positive word,

• n – negative word,

• i – intensifier,

• o – opposite/negation.

Negation words are assigned the value −1. Intensifiers have values of polarity
degree in the range 〈1.0, 2.0〉. Examples of words and their values of the polarity
degree and the type of word are illustrated in Table 3.

Polarity Degree Type of Word Word

3 p extra, genius, super, brilliant
2 p better, advanced, success
1 p good, ok, strong, smart
−1 n bad, weak, boring
−2 n dangerous, hostile, stupid
−3 n terrible, waste, worst
−1 o no, not, never, haven’t
1.25 i really, rather
1.5 i middle, pretty
1.75 i too, complete

2 i very, total, absolute

Table 3. Examples of words in the dictionary with the polarity degree and the type of
word

2 http://klanaz.studenthosting.sk/sa.html

http://klanaz.studenthosting.sk/sa.html

Sentiment and Authority Analysis in Conversational Content 745

The analysed comment text was split into individual sentences and diacritic
marks were removed from the text. All words of the text were converted into nomi-
native of the plural using the modified version of the Lancaster stemming algorithm3.
The converted words were compared with the words in the dictionary. The sentence
was processed word by word. Each positive or negative word was multiplied by
intensifications and negations. Then, all polarities of positive and negative words
were summed up according to the formula (2). In the case, when a comment did not
contain any intensification or negation, the values of intensification and negation
were set to 1.

P =
∑[

ww

∏
wi

∏
wn

]
(2)

where:

• P – polarity degree of the analysed sentence,

• ww – value of positive or negative word,

• wi – value of intensifier,

• wn – value of negation,

•
∏

wi – multiplication of all intensifiers,

•
∏

wn – multiplication of all negations.

The resulting polarity of the sentence was adjusted using logarithmic function
in the formula (3) to avoid processing huge numbers – values of P . When the value
of the sentence polarity before adjusting was 0, the adaptation was not used. When
the value of the sentence polarity was lower than 0, the absolute value was adjusted
and multiplied by −1 to maintain the negative polarity of the comment.

A dataset did not contain comments with just facts. Such comments were not
collected and added to the dataset during its creation. Sentences which contained
no sentiment words were evaluated as mistakes. For example, the sentence which
was labelled as positive but contained no sentiment word was evaluated in the same
way as a negative one. The resulting sentiment value was 0 in these cases.

Pl = 1 + log10 |P | (3)

where

• Pl – the new value of sentence polarity,

• P – the polarity value of sentence obtained by the formula (2).

The following examples illustrate the above computation of the polarity degree
value. A sentence containing only positive and negative words without intensifica-
tions and negations

3 https://goo.gl/STmHi0

https://goo.gl/STmHi0

746 K. Machová, M. Mikula, M. Szabóová, M. Mach

• “The mouse is nice but the processing is miserable and globally it is unsuccess-
ful.” is processed in following way. Three words from the dictionary were found
in the sentence with their degree of polarity in parentheses:

nice (+1) + miserable (−2) + unsuccessful (−1).

These degrees of polarity were the sum and the final polarity of the sentence is
P = −2. After adjustment according to the formula (3) Pl = −1.3.

A sentence with intensification (very) and negation

• “It is not a very good solution.” is processed in following way. Three words from
the dictionary were found in the sentence with their degree of polarity. The first
word was good (+1), so ww = 1. The sentence also contains intensification
very (2), so wi = 2 and negation not (−1), so wn = −1. According to the
formula (2) the final polarity is P = −1∗2∗1 = −2. After adjustment according
to the formula (3) Pl = −1.3.

This approach is a little different in comparison with the previous n-gram based
application. It uses only one dictionary for all types of words and this dictionary con-
tains mainly adjectives and nouns in nominative plural (the dictionary also contains
verbs in the form as they appear in the original text without any modification). In
comparison with the n-grams implementation, this approach uses a different method
to process intensification and negation. Moreover, this approach can process multi-
ple intensifications (e.g. very very good).

Our approach was tested on two datasets. The first dataset was the same as the
dataset for n-grams. It allowed to compare our method with the previous one based
on n-grams. A new dataset was created to test our approach. This second dataset
contained collected comments from different areas (e.g. films, electronics, politics,
etc.) Each comment was labelled by a human annotator. The neutral ones and
facts were removed from this dataset. The second experiment was performed on the
set of 5 242 comments and 182 645 words, where 2 573 comments were positive and
2 669 negative so that the objects were equally divided into available classes. The
dataset is available on the website4.

The results of testing given in Table 4 show that quite a good recall was achieved
for positive comments. We compared our approach with the n-grams approach in
the first test. The precision obtained for positive comments was lower, but the
results for other indicators were better. The reason could be the dictionary, which
contains more words and more comprehensive computation of the polarity degree.
This approach is more similar to human understanding of the text. In the second
experiment, a good recall was achieved for positive comments, but it was low for
negative comments. The results could be influenced by irony, sarcasm or description
of opinions without polarity words. The number of missclassified comments was
also increased by comments, which did not contain polarity words. These comments

4 http://klanaz.studenthosting.sk/dataset.txt

http://klanaz.studenthosting.sk/dataset.txt

Sentiment and Authority Analysis in Conversational Content 747

were evaluated as mistakes and added to the same class as incorrectly evaluated
comments.

Experiment
Precision
(pos)

Precision
(neg)

Overall
Precision

Recall
(pos)

Recall
(neg)

Overall
Recall

NGR 1 0.830 0.570 0.700 0.652 0.214 0.433
SD 1 0.654 0.727 0.691 0.850 0.471 0.661
SD 2 0.561 0.675 0.618 0.802 0.396 0.599

Table 4. The precision and recall of tests achieved by the n-grams approach (NGR) and
the approach based on the special dictionary (SD)

The results of our experiments with opinion classification showed that using our
first approach (Section 3.1.1) the best value of precision obtained was 0.830 and the
best value of recall 0.652. Our experiments with modified approach (Section 3.1.2)
achieved better results in recall (0.850) than in precision (0.727). In comparison
with another method of opinion classification using an approach that is very close
to the processing negation and intensifiers [27], our results were slightly worse. The
results of F1 (combining precision and recall using equal weights) presented in the
study by Taboada, were in the range from 0.58 to 0.89 according to types of reviews.

3.2 Emotion Classification

Emotion analysis is a similar problem as the opinion classification. Both of them
(opinion and emotion classification) represent the sentiment analysis. Accordingly,
in emotion classification words from dictionaries representing emotions (joy, anger,
disappointment, . . .) are searched for in the input text. The type of emotion
expressed by these words denotes the kind of emotion presented in the given text.

According to [11], three major directions in emotion computing can be recog-
nized: categorical/discrete, dimensional and appraisal based approaches. Despite
the existence of other models, the categorical and dimensional approaches are the
most commonly used models for automatic analysis and prediction of the emotion
in the continuous input.

The Categorical Approach claims there is a small number of basic emotions that
are hard-wired in our brain, and recognized across the world. Emotional states are
classified by a single category. However, a couple of researchers proved that people
show non-basic, subtle and rather complex emotional states that could be impossible
to handle, such as embarrassment or depression [12].

The Dimensional Approach is based on Wundt’s [30] proposal that feelings
(which he distinguishes from emotions) can be described as pleasantness – un-
pleasantness, excitement – inhibition and tension – relaxation, as well as Osgood’s
work [21] on the dimensions of affective meaning (arousal, valence, and potency).
Most recent models concentrate on only two dimensions, valence and arousal. Va-
lence (pleasure/displeasure) depicts how positive or negative emotions can be. Arou-
sal (activation/deactivation) depicts how exciting or apathetic emotions can be.

748 K. Machová, M. Mikula, M. Szabóová, M. Mach

For our research purposes we decided to choose the categorical approach, i.e.
Ekman’s [8] six basic emotions: happiness (positive), sadness (negative), surprise
(positive/negative), fear (negative), disgust (negative), and anger (negative).

There are four major approaches to emotion classification in the text: dictionary-
based methods, machine learning methods, knowledge-based methods and hybrid
methods. Our main interest is the dictionary-based methods. As our target lan-
guage is Slovak, and we are not aware of any Slovak lexicon for emotional words,
we created one. Every word (see Table 5) in the lexicon is labelled by an appropri-
ate emotion (happiness, sadness, surprise, fear, disgust, and anger), part of speech
(noun, adjective, adverb, verb) and intensity (in the range 〈−3; 3〉, −3 being the
most negative and 3 the most positive). Emotions can be typically positive or nega-
tive. For example, sadness is a negative emotion, but a surprise can be both positive
and negative. In such a case, the resulting polarity depends on the context in the
form of the surrounding words. The dictionary used in our study was created using
a web based application and contains about 19 000 words with information about
polarity and emotions (see Table 5). We consider the wisdom of the crowd being
the most straightforward way of obtaining data from users.

Word Part of Speech Emotion Polarity

horlivo (eagerly) adverb joy 3
nenávid́ım (hate) verb angry −3
horšia (worse) adjective sadness −3
bezstarostnosť (carelessness) noun joy 0

Table 5. Examples of Slovak words in the dictionary with the part of speech tag, type of
emotion and polarity degree

The experiment was performed on the same dataset, which was used in the
second experiment SD2 within “Opinion Classification Based on a Special Lexicon”.
This dataset contained 5 242 comments and 182 645 words, where 2 573 comments
were positive and 2 669 negative. Thus, in this experiment, objects were also equally
divided into classes. The results of tests are given in Table 6. The highest recall was
achieved for the emotion “happiness” and the lowest for the emotion “surprise”. It
could be caused by the fact that the emotion “surprise” is hard to label (for every
other emotion it is easy to determine either positivity or negativity but surprise
can represent both classes). The labelling of emotions was based on computing the
probability of each emotion for the given text. For the rest of the emotions, we
needed to improve our dictionary by adding new words to it because the values of
precision and recall were low.

The results of our experiments also showed that we might need to reconsider
using Plutchik’s wheel of emotions illustrated in Figure 1 which adds two basic
emotions (anticipation and trust) to Ekman’s six emotions. It could cover a wider
range of words and also increase a recall for each emotion.

In the tests presented in Table 6, the evaluation through precision and recall was
based on comparison of our implementation of “opinion” on the resulting emotion

Sentiment and Authority Analysis in Conversational Content 749

Emotion Precision Recall

Happiness 0.651 0.701
Sadness 0.589 0.590
Surprise 0.423 0.382
Fear 0.566 0.506
Disgust 0.473 0.424
Anger 0.622 0.651

Table 6. Achieved precision and recall of tests of the designed approach

with an “opinion” of human experts on the emotion presented in the text. These
comparisons were made by a contingency table, from which all values of precision
and recall were calculated. In this contingency table, all emotions were represented
by six classes. Of course, there can be more than one emotion in one review. If that
is the case, the resulting emotion is the emotion, which is the most probable, because

Figure 1. Plutchik’s wheel of emotion [23]

750 K. Machová, M. Mikula, M. Szabóová, M. Mach

the given review contains most words labelled with the considered emotion. When
more than one emotion achieves the same number of votes, then all these emotions
are taken into consideration. The result is that the given input text contains more
emotions and this fact has to be a part of using the emotion classification for practical
purposes. For example, a robot should adapt its behaviour to all these emotions.
A problem can arise only when these emotions are in a contradiction. In this case,
the result is not usable (e.g. in human–robot interactions).

4 AUTHORITY IDENTIFICATION

This section is focused on the identification of the authority of persons, who comment
a topic on a web discussion forum. Authority identification represents a different
problem than authorship identification. It does not answer the question “Who is
the author?”. Authority identification answers the question “Does the author have
a deep knowledge of the topic?”.

Authority can be formal (stated by a measure of power) and informal (stated
by a measure of favour). The formal authority is given by a position or function
in the organization. The informal authority is given by his/her credibility, wisdom,
orientation, ability of good decision making, etc. This authority is enforced by other
people’s respect. Our approach has focused on the informal authority identification
in web discussion forums. During the process of an online discussion, the structure
of a conversation is created. This structure can be represented by an acyclic graph –
the conversation tree.

People have various reasons for contributing to a discussion forum. Many of
contributors are people, who want to find answers to their questions. These contrib-
utors create a core of the discussion, but they are not very authoritative. A smaller
group of contributors is the group of troublemaking actors. They are provocateurs
seeking an opportunity to present their opinions and invoking conflicts. They are
not authoritative as well. They should be eliminated from the discussions. The
last group of contributors are actors, who express their knowledge and share their
ideas or opinions. These actors enter into the discussion seriously, add only truth-
ful information, and join only if they are familiar with the topic. They are really
authoritative contributors. We are interested in distinguishing them from the other
actors.

The search for authoritative actors involves mining from web discussions. The
input data contain the following aspects of comments:

• contributor name,

• reacting comment,

• length of the comment,

• position of the comment in the discussion represented graphically by the con-
versation tree.

Sentiment and Authority Analysis in Conversational Content 751

The problem of authority identification is based on the estimation of authorita-
tiveness (A). The value of A is related to the contributors. Thus, data about each of
117 contributors in our dataset were collected including the following information:

• NC is the number of comments of a given contributor. We proposed that some-
one who understands the topic (authority) would contribute to the discussion
more often than other actors.

• ANR is the average number of reactions to the comment(s) of a given author.
This argument represents the number of reactions that support or negate a state-
ment of the author, whose authority is examined. We started from the as-
sumption that a more authoritative contributor could evoke a higher number of
reactions.

• AL is the average number of all layers, at which the comments of a discussant
are situated in the conversation tree. The conversation tree is a graphical rep-
resentation of a web discussion. The AL represents the information, when the
discussant joins the discussion, at the beginning or at the end. For example,
a contributor, whose comments are located at the bottom level of the conver-
sation tree, usually adds comprehensive comments answering all the questions.
This can be the authoritative type of contributors.

• NCH is the number of characters, which represents the average length of com-
ments of an author. This number is a common ratio of the number of all char-
acters of the given contributor to the number of all his/her comments in the
discussion. It penalizes authors with too short and thus less informative com-
ments. We assume that an authoritative contributor does not post extremely
short comments.

• K is karma of a contributor in the form of a number from 0 to 200, which
represents the discussant’s activity in the last 3 months from “www.sme.sk”.

• AE is the average evaluation of a comment in the form of the ratio of the sum of
all reactions (agree (+) and disagree (−)) to this comment of a given discussant
to the number of all his/her comments. This average evaluation is available on
the web discussion page. The AE range is a number from 0 to 80.

For the informal authority identification (detection), the main task is to estimate
the function of authoritativeness A. In general, it is the function (4):

A = f(NC,ANR,AL,NCH,K,AE). (4)

Firstly, we used a linear function with weights determined experimentally fol-
lowed by regression analysis to compute weights of linear, polynomial and nonlinear
functions. To compute these weights, it was necessary to know the values of the
independent variables NC, ANR, AL, NCH, K, AE, as well as the values of the
dependent variable A. The values of the variable A were derived from:

• evaluation of each discussant by “human expert”,

www.sme.sk

752 K. Machová, M. Mikula, M. Szabóová, M. Mach

• evaluation of each discussant by other discussants – it represents “wisdom of the
crowd”.

The following regression functions for authority estimation were generated in
the process of learning:

• linear function learned from the “human expert”,

• linear function learned from the “wisdom of the crowd”,

• polynomial function learned from the “human expert”,

• polynomial function learned from the “wisdom of the crowd”,

• non-linear function learned from the “human expert”,

• non-linear function learned from the “wisdom of the crowd”.

All these 6 functions were tested and the validation was performed using the
following measures:

• an average deviation – used for the validation of estimation functions,

• a precision – used for the validation of classification,

• a recall – used for the validation of classification.

We classified authors into two classes: Authority and Non-authority. A contrib-
utor with the estimated value of authoritativeness A greater than 70 was labelled
as Authority otherwise he/she was labelled as Non-authority. The value of authori-
tativeness A could be in the interval (0, 100). The test dataset contained the data
on 117 contributors. According to the results presented in Table 7, the best results
were obtained by learning of linear function from the “wisdom of the crowd” in
formula (5) and by learning of non-linear function from the “wisdom of the crowd”
in formula (6). Surprisingly, learning of polynomial function from the “wisdom of
the crowd” also provided good results but only in “recall”.

A = 0.4385AE + 0.325K + 0.002NCH − 0.2928AL− 0.0853ANR

+ 1.0728NC, (5)

A = 0.0185AE1.8135 + 141.5704K−78.39 + 0.0018NCH1.0457 − 0.0011AL3.7717

− 0.5562ANR0.0001 + 37.6642NC0.0038. (6)

Authority identification can be used in a variety of real situations. For example,
an inexperienced web user searches for an authority that is able to provide him/her
with advice and decision-making support. Another example – a technically oriented
organization requires skilled employees, specialists who are authorities in the given
field, and to whom such organization can offer interesting job positions. Thus, the
person responsible for recruiting can search for authoritative users on web forums
focused on the technologies used in this organization to fill in specific job positions.

Sentiment and Authority Analysis in Conversational Content 753

Deviation Precision Recall
Version Expert Crowd Expert Crowd Expert Crowd

Linear 17.34 3.29 0.70 0.98 0.67 0.80
Polynomial 24.01 8.79 0.67 0.78 0.61 0.94
Non-linear 18.11 6.56 0.67 0.97 0.67 0.80

Table 7. Achieved average deviation, precision and recall of tests of the designed approach
to the authoritativeness identification

5 CONCLUSIONS

The paper introduces a variety of approaches to social conversation data mining.
The main attention is focused on two problems: sentiment analysis (opinion and
emotion classification) and authority identification. It describes two approaches to
opinion classification and one approach to authority identification.

Using the opinion classification approach, the comments were classified into two
classes: positive and negative. The first opinion classification method used 4-grams
to assign polarity to comments. It was able to process intensification and nega-
tion within the range of 4 words. This approach achieved good results for positive
comments. The classification of negative comments was worse. That was the rea-
son to develop the second opinion classification approach and create a new lexicon
for this new approach. We also used a different method to process intensification
and negation. This second method achieved better results than the one used previ-
ously.

The paper also describes the approach to emotion classification. Such approach
mostly used to identify emotions in a text is similar to the approach used for iden-
tifying the polarity of the text. We focused on the lexicon-based approach in both
cases – therefore, we created a lexicon that gave us information about emotions.
By applying this lexicon we obtained interesting results. However, the results also
showed that we might need to reconsider using Plutchik’s wheel of emotions which
adds two basic emotions (anticipation and trust) to Ekman’s six emotions for the
approach to be more precise in emotion classification. Changing the models also
required reworking of the lexicon. In addition we had to take into consideration
that emotions have no strict boundaries which means they often overlap each other,
so it was a challenge to differentiate them properly.

Implementation of a new approach to authority identification in web discussions
is presented and the resulting rating of authoritative contributors is provided. It
should be noted that the linear model is better than other models. It is because of
the character of input data (parameters of the web discussion) and also due to the
character of the issue which is discussed on the web. Nevertheless, the linear model
is sufficient for authority estimation. It is clear that learning from the “wisdom of
the crowd” is better than learning from a “human expert”. The reason might be that
an expert’s opinion can be biased whereas a combined opinion of many discussants
is probably more objective.

754 K. Machová, M. Mikula, M. Szabóová, M. Mach

In our future work, we want to combine knowledge gained from opinion classi-
fication and authority identification. We suppose that a more authoritative author
has a greater influence on the resulting summarized sentiment. In the known ap-
proaches to sentiment analysis, each web forum comment has the same weight. We
will use evolutionary algorithms [18, 5] to find an appropriate form of estimation
function to calculate the authority value and then apply it to opinion classification.
The comments written by authoritative users have higher weight and they will be
classified with higher priority. We would like to apply the weighted opinion analysis
in the domain where we could be able to recognize a person’s aberration based on
his/her written text [24] and also how to decrease the cognitive load for the web
users [19].

Acknowledgements

The work presented in this paper was supported by the Slovak Grant Agency of the
Ministry of Education and Academy of Science of the Slovak Republic under VEGA
grant No. 1/0493/16 and by the Slovak Research and Development Agency under
the contract No. APVV-017-0267.

REFERENCES

[1] Baccianella, S.—Esuli, A.—Sebastiani, F.: SentiWordNet 3.0: An En-
hanced Lexical Resource for Sentiment Analysis and Opinion Mining. Proceedings
of the Seventh International Conference on Language Resources and Evaluation
(LREC ’10), Valletta, 2010. European Language Resources Association (ELRA),
2010, pp. 2200–2204. ISBN 2-9517408-6-7.

[2] Balahur, A.—Kabadjov, M.—Steinberger, J.—Steinberger, R.—Mon-
toyo, A.: Challenges and Solutions in the Opinion Summarization of User-
Generated Content. Journal of Intelligent Information Systems, Vol. 39, 2012, No. 2,
pp. 375–398, doi: 10.1007/s10844-011-0194-z.

[3] Benamara, F.—Cesarano, C.—Picariello, A.—Recupero, D. R.—Subra-
manian, V. S.: Sentiment Analysis: Adjectives and Adverbs are Better Than Adjec-
tives Alone. Proceedings of the First International Conference on Weblogs and Social
Media (ICWSM 2007), Boulder, 2007.

[4] Bouguessa, M.—Dumoulin, B.—Wang, S.: Identifying Authoritative Actors in
Question-Answering Forums – The Case of Yahoo! Answers. Proceedings of the 14th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’08), 2008, pp. 866–874, doi: 10.1145/1401890.1401994.

[5] Cadrik, T.—Mach, M.: Evolution Classifier Systems. Electrical Engineering and
Informatics IV. Proceedings of the FEI Technical University of Košice, Košice, 2013,
pp. 168–172 (in Slovak). ISBN 978-80-553-1440-2.

https://doi.org/10.1007/s10844-011-0194-z
https://doi.org/10.1145/1401890.1401994

Sentiment and Authority Analysis in Conversational Content 755

[6] Cambria, E.—Hussain, A.: Sentic Computing: A Common-Sense-Based Frame-
work for Concept-Level Sentiment Analysis. Cham, Springer, 2015, 176 pp. ISBN
978-3-319-23654-4.

[7] Dom, B.—Eiron, I.—Cozzi, A.—Zhang, Y.: Graph-Based Ranking Algorithms
for E-Mail Expertise Analysis. Proceedings of 8th ACM SIGMOD Workshop on Re-
search Issues on Data Mining and Knowledge Discovery (DMKD ’03), 2003, pp. 42–48,
doi: 10.1145/882082.882093.

[8] Ekman, P.: An Argument for Basic Emotions. Cognition and Emotion, Vol. 6, 1992,
No. 3-4, pp. 169–200, doi: 10.1080/02699939208411068.

[9] Esuli, A.—Sebastiani, F.: SentiWordNet: A Publicly Available Lexical Resource
for Opinion Mining. Proceedings of the 5th Conference on Language Resources and
Evaluation (LREC ’06), 2006, pp. 417–422.

[10] Go, A.—Bhayani, R.—Huang, L.: Twitter Sentiment Classification Using Distant
Supervision. Stanford University, available on: http://cs.stanford.edu/people/

alecmgo/papers/TwitterDistantSupervision09.pdf, 2013.

[11] Grandjean, D.—Sander, D.—Scherer, K. R.: Conscious Emotional Expe-
rience Emerges as a Function of Multilevel, Appraisal-Driven Response Synchro-
nization. Consciousness and Cognition, Vol. 17, 2008, No. 2, pp. 484–495, doi:
10.1016/j.concog.2008.03.019.

[12] Gunes, H.—Schuller, B.: Categorical and Dimensional Affect Analysis in Con-
tinuous Input: Current Trends and Future Directions. Image and Vision Computing,
Vol. 31, 2013, No. 2, pp. 120–136.

[13] Hu, M.—Liu, B.: Mining and Summarizing Customer Reviews. Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’04), ACM, New York, 2004, pp. 167–177. ISBN 1-58113-888-1, doi:
10.1145/1014052.1014073.

[14] Kennedy, A.—Inkpen, D.: Sentiment Classification of Movie and Product Reviews
Using Contextual Valence Shifters. Workshop on the Analysis of Informal and Formal
Information Exchange During Negotiations (FINEXIN ’05), Ottawa, 2005, pp. 11–22.

[15] Levallois, C.: Umigon: Sentiment Analysis for Tweets Based on Lexicons
and Heuristics. Second Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 2: Seventh International Workshop on Semantic Evaluation (Sem-
Eval 2013), Atlanta, Georgia, 2013, pp. 414–417.

[16] Liu, B.: Sentiment Analysis and Opinion Mining (Introduction and Survey). Morgan
and Claypool Publisher, 2012, pp. 1–168.

[17] Lu, Y.—Kong, X.—Quan, X.—Liu, W.—Xu, Y.: Exploring the Sentiment
Strength of User Reviews. Proceedings of the 11th International Conference on Web-
Age Information Management (WAIM ’10). Springer-Verlag, Berlin, Lecture Notes
in Computer Science, Vol. 6184, 2010, pp. 471–482. ISBN 978-3-642-14245-1, doi:
10.1007/978-3-642-14246-8 46.

[18] Mach, M.: Evolution Algorithms – Problems Solving. FEI Technical University,
Košice, 2013, 135 pp. (in Slovak). ISBN 978-80-553-1445-7.

https://doi.org/10.1145/882082.882093
https://doi.org/10.1080/02699939208411068
http://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
http://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
https://doi.org/10.1016/j.concog.2008.03.019
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1007/978-3-642-14246-8_46

756 K. Machová, M. Mikula, M. Szabóová, M. Mach

[19] Machová, K.—Klimko, I.: Classification and Clustering Methods in the Decreas-
ing of the Internet Cognitive Load. Acta Elektrotechnica et Informatica, Vol. 6, 2006,
No. 2, pp. 52–56. ISSN 1335-8243.

[20] Machova, K.—Marhefka, L.: Opinion Classification in Conversational Content
Using N -Grams. In: Badica, A., Trawinski, B., Nguyen, N. (Eds.): Recent Develop-
ments in Computational Collective Intelligence. Springer, Cham, Studies in Compu-
tational Intelligence, Vol. 513, 2013, pp. 177–186.

[21] Osgood, C. E.—May, W. H.—Miron, M. S.: Cross-Cultural Universals of Affec-
tive Meaning. University of Illinois Press, Urbana, 1975.

[22] Pang, B.—Lee, L.: A Sentimental Education: Sentiment Analysis Using Subjectiv-
ity Summarization Based on Minimum Cuts. Proceedings of the 42nd Annual Meeting
on Association for Computational Linguistics (ACL ’04). Association for Computa-
tional Linguistics, Stroudsburg, 2004, doi: 10.3115/1218955.1218990.

[23] Plutchik, R.: The Nature of Human Emotions. Scienceweek, 3 August 2001,
pp. 1–2.

[24] Saloun, P.—Ondrejka, A.—Malč́ık, M.—Zelinka, I.: Personality Disor-
ders Identification in Written Texts. In: Duy, V., Dao, T., Zelinka, I., Choi, H. S.,
Chadli, M. (Eds.): Recent Advances in Electrical Engineering and Related Sciences
(AETA 2015). Springer Verlag, Lecture Notes in Electrical Engineering, Vol. 371,
2016, No. 1, pp. 143–154. ISBN 978-331927245-0. ISSN 1876-1100, doi: 10.1007/978-
3-319-27247-4 13.

[25] Smatana, M.—Koncz, P.—Paralič, J.: Semi-Automatic Annotation Tool for
Aspect-Based Sentiment Analysis. FEI Technical University of Košice, 2013, pp. 1–3.

[26] Strapparava, C.—Valitutti, A.: WordNet-Affect: An Affective Extension
of WordNet. Proceedings of the 4th International Conference on Language Re-
Sources and Evaluation. European Language Resources Association (ELRA), 2004,
pp. 1083–1086.

[27] Taboada, M.—Brooke, J.—Tofiloski, M.—Voll, K.—Stede, M.: Lexicon-
Based Methods for Sentiment Analysis. Computational Linguistics, Vol. 37, 2011,
No. 2, pp. 267–307, doi: 10.1162/COLI a 00049.

[28] Tan, S.—Zhang, J.: An Empirical Study of Sentiment Analysis for Chinese Docu-
ments. Expert Systems with Applications, Vol. 34, 2008, No. 4, pp. 2622–2629. ISSN
0957-4174.

[29] Thelwall, M.—Buckley, K.—Paltoglou, G.—Cai, D.—Kappas, A.: Sen-
timent Strength Detection in Short Informal Text. Journal of the American Society
for Information Science and Technology, Vol. 61, 2010, No. 12, pp. 2544–2558, doi:
10.1002/asi.21416.

[30] Wundt, W.: Grundriss der Psychologie [Fundamentals of Psychology]. 7th revised
edition. Engelmann, Leipzig, 1905 (in German).

[31] Zhang, J.—Ackerman, M. S.—Adamic, L.: Expertise Networks in On-Line
Communities: Structure and Algorithms. Proceedings of the 16th ACM In-
ternational World Wide Web Conference (WWW ’07), 2007, pp. 221–230, doi:
10.1145/1242572.1242603.

https://doi.org/10.3115/1218955.1218990
https://doi.org/10.1007/978-3-319-27247-4_13
https://doi.org/10.1007/978-3-319-27247-4_13
https://doi.org/10.1162/COLI_a_00049
https://doi.org/10.1002/asi.21416
https://doi.org/10.1145/1242572.1242603

Sentiment and Authority Analysis in Conversational Content 757

[32] Zhang, Z. et al.: Sentiment Classification of Internet Restaurant Reviews Written in
Cantonese. Expert Systems with Applications, Vol. 38, 2011, No. 6, pp. 7674–7682.
ISSN 0957-4174.

Krist́ına Machov�a graduated (M.Sc.) in 1985 at the Depart-
ment of Technical Cybernetics at the Technical University in
Košice. She defended her Ph.D. thesis in the field of machine
learning in 1996. She is Associate Professor at the Department
of Cybernetics and Artificial Intelligence of the Faculty of Elec-
trical Engineering and Informatics at the Technical University of
Košice. Her scientific research has focused on data mining within
conversational web content, dictionary approach and machine
learning approach to sentiment analysis, opinion and emotion
classification to be applied in robotics, authority identification,

text document processing using classification and clustering machine learning methods.

Martin Mikula received his M.Sc. degree in 2014 at the De-
partment of Cybernetics and Artificial Intelligence at the Tech-
nical University in Košice. Currently, he is a postgraduate stu-
dent. He studies business informatics at the Faculty of Electri-
cal Engineering and Informatics at the Technical University in
Košice. His research interests are big data, including knowledge
discovery, data mining, text mining and sentiment analysis in
conversational content.

Martina Szab�oov�a graduated (M.Sc.) in 2012 at the Depart-
ment of Cybernetics and Artificial Intelligence at the Technical
University in Košice. She is in her last year of Ph.D. study. Her
main research activities intersect two fields. The first one lays in
natural language processing within the scope of emotion analysis
from texts. The second field covers interactive learning systems
in the social human-robot interaction.

758 K. Machová, M. Mikula, M. Szabóová, M. Mach

Marián Mach graduated (M.Sc.) in 1985 at the Department
of Technical Cybernetics at the Technical University in Košice.
His Ph.D. thesis on uncertainty processing in expert systems was
defended in 1992. He is Associate Professor at the Department
of Cybernetics and Artificial Intelligence of the Faculty of Elec-
trical Engineering and Informatics at the Technical University of
Košice. His scientific interests are knowledge management, data
and web mining, opinion classification, information retrieval, se-
mantic technologies, and knowledge modeling.

Computing and Informatics, Vol. 37, 2018, 759–780, doi: 10.4149/cai 2018 3 759

MALWARE DETECTION USING A HETEROGENEOUS
DISTANCE FUNCTION

Martin Jureček, Róbert Lórencz

Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, 160 00 Prague, Czech Republic
e-mail: {martin.jurecek, lorencz}@fit.cvut.cz

Abstract. Classification of automatically generated malware is an active research
area. The amount of new malware is growing exponentially and since manual in-
vestigation is not possible, automated malware classification is necessary. In this
paper, we present a static malware detection system for the detection of unknown
malicious programs which is based on combination of the weighted k-nearest neigh-
bors classifier and the statistical scoring technique from [12]. We have extracted the
most relevant features from portable executable (PE) file format using gain ratio
and have designed a heterogeneous distance function that can handle both linear
and nominal features. Our proposed detection method was evaluated on a dataset
with tens of thousands of malicious and benign samples and the experimental re-
sults show that the accuracy of our classifier is 98.80 %. In addition, preliminary
results indicate that the proposed similarity metric on our feature space could be
used for clustering malware into families.

Keywords: Malware detection system, feature selection, similarity measure,
k-nearest neighbors classifier, partitioning around medoids

1 INTRODUCTION

The problem of automated malware detection presents challenges for antivirus ven-
dors (AV). Most AV rely primarily on a signature detection technique which is
relatively simple and efficient rule-based method for detecting known malware [10].
Signature (unique hex code strings) of the malware is extracted and added to the
database. The antivirus engine compares the contents of a file with all malware

760 M. Jureček, R. Lórencz

signatures in its database and if a match is found, the file is reported as malware.
A good signature must capture malware with a minimal false positive probability.

The major weakness of signature detection is its inability to detect obfuscated
and zero-day malware. A number of non-signature based malware detection tech-
niques have been proposed [19, 11, 20]. These techniques are used in an effort to
detect new or unknown malware and can be grouped into two main approaches:
static and dynamic heuristic methods. Static methods can be based on an analysis
of the file format without actually running the program. Dynamic analysis aims
to examine a program which is executed in a real or virtual environment. Non-
signature based malware detection techniques suffer from two main problems: high
false positive rate and large processing overhead.

In this paper, we present a static malware detection system based on com-
bination of the statistical classifier and the k-nearest neighbors (KNN) classifier.
Experimental results indicate that the combination of the classifiers may provide
a potential benefit for detecting samples not detected by KNN.

In our work we propose the following four main contributions:

• We present a feature space extracted from PE file format by using feature se-
lection method based on information gain.

• We design a new distance function that can handle both nominal and linear
attributes.

• We present a malware detection system for detecting previously unknown ma-
licious PE files. In order to achieve a higher detection rate, the system uses
a combination of two different kinds of classifiers.

• We evaluate the effectiveness of our detection system and distance function on
a real-world malware collection.

The rest of the paper is organized in the following way. Section 2 provides an
overview of previous work on malware classification. In Section 3 we present the
feature space and the distance function used in KNN classifier. Section 4 discusses
our proposed detection technique, while Section 5 covers our experimental results.
Finally, conclusions are given in Section 6.

2 RELATED WORK

In this section, we survey some relevant previous work in the area of classification
schemes for malware detection. To maintain the focus, we mainly discuss the work
using static detection based on machine learning techniques. Then we briefly dis-
cuss various existing statistical-based scores and also several methods that rely on
dynamic analysis.

Schultz et al. [19] introduced the concept of data mining for detecting pre-
viously unknown malware. In their research they presented three different static
feature sources for malware classification: information from the portable executable

Malware Detection Using a Heterogeneous Distance Function 761

(PE) header and strings and byte sequences extracted from binaries. These features
were used in three different kinds of algorithms: an inductive rule-based learner,
a probabilistic method, and a multi-classifier system. A rule induction algorithm
called Ripper [4] was applied to find patterns in the dynamic-link library (DLL)
data (such as the list of DLLs used by the binary, the list of DLL function calls,
and the number of different system calls used within each DLL). The well-known
probabilistic method, learning algorithm Naive Bayes, was used to find patterns in
the string data and n-grams of byte sequences. Multinomial Naive Bayes algorithm
that combined the output of several classifiers reached the highest detection rate
of 97.76 %. The authors tested the data mining methods against standard signa-
tures and their results indicate that the data mining detection rate of a previously
unknown malware was twice as high in comparison to the signature-based meth-
ods.

Kolter and Maloof [11] improved the Schulz’s third technique by using overlap-
ping byte sequences instead of non-overlapping sequences. They used different kinds
of classifiers: naive Bayes, instance-based learner, similarity-based classifier called
TFIDF, Support Vector Machine (SVM), Decision Trees (DT) and boosted variants
of SVM, DT and TFIDF. Authors evaluated their classifiers performance by com-
puting the area under a receiver operating characteristic curve. Boosted Decision
tree model (J48) achieved the best accuracy, an area under the ROC curve of 0.996
and outperformed the rest of the classifiers.

In other studies, operational code (opcode) has been used as static informa-
tion for malware detection. Common techniques are based on the frequency of
appearance of opcode-sequences [18], examination of opcode frequency distribution
difference between malicious and benign code [2], or identification of critical instruc-
tion sequences [22]. Other techniques use similarity of executables based on opcode
graphs [17]. However, some executable files cannot be disassembled properly, there-
fore the opcode approach is not always feasible [2].

The more recent work [23] contains three statistical-based scoring techniques,
namely Hidden Markov models, Simple substitution distance, and Opcode graph-
based detection. Authors showed that a combination of these scoring techniques
with a Support Vector Machine yields significantly more robust results than those
obtained using any of the individual scores.

We also briefly mention a few existing detection methods that rely on dynamic
analysis. Examples of the information we can obtain from dynamic analysis include
application programming interface (API) and system calls, instruction traces, me-
mory writes, registry changes, and so on. In [24], an artificial neural network was
employed to detect previously unknown worms based on the computer’s behavioral
measures. Eskandari et al. [25] extracted a set of program API calls and combined
them with control flow graph. Qiao et al. [26] proposed a new malware analysis
method based on frequency analysis of API call sequences. Note that dynamic
analysis is time-consuming as each malware sample must be executed for a certain
time period.

762 M. Jureček, R. Lórencz

3 FEATURE SPACE AND METRIC

We design our proposed detection system for the portable executable (PE) file for-
mat [5], which is the most widely used file format for malware samples. In order
to classify an executable file in the PE format, we extract static format information
and translate it into a feature vector suitable for classification.

3.1 Feature Space

Before presenting attributes used in our feature vector, let us firstly look at the
general outline of the PE file format. A simplified overview of the PE file format is
illustrated in Figure 1.

DOS header
COFF header
Optional header
Section headers

Headers

Code
Imports
Data

 Sections

PE file

Figure 1. PE file structure

A PE file consists of headers and sections that encapsulate the information nece-
ssary to manage the executable code. The PE file header provides all the descriptive
information concerning the locations and sizes of structures in the PE file to the
loader process. The header of a PE file consists of the DOS header, the PE signature,
the COFF file header, the optional header, and the section headers. The optional
file header is followed immediately by the section headers which provide information
about sections, including locations, sizes, and characteristics. Sections divide the
file content into code, resources, and various types of data.

Based on our empirical studies and analysis of the PE format, we selected a set
of static features that are helpful in distinguishing malware and benign files and
used gain ratio for selection the most relevant features.

3.1.1 Features Selection

In order to determine which attribute in a given training set is the most useful
for discriminating between the classes, we use entropy-based measure, information
gain (IG) [13]. The information gain is the expected reduction in entropy caused
by knowing the value of attribute a. IG(T , a) of an attribute a relative to training

Malware Detection Using a Heterogeneous Distance Function 763

dataset T and is defined as

IG(T , a) = Entropy(T)−
∑

v∈V (a)

|Tv|
|T |

Entropy(Tv) (1)

where V (a) denotes the set of all possible values for attribute a, and Tv denotes the
subset of T for which attribute a has value v. Note that the entropy of the training
dataset T is given by:

Entropy(T) = −
∑

c∈C

pc log2 pc (2)

where pc is the proportion of T belonging to class c.
The information gain measure is biased towards attributes with many values.

One way of avoiding this difficulty is to use a modification of the measure called
the gain ratio (GR) [15]. The gain ratio measure penalizes attributes with large
numbers of possible values by incorporating a term called split information (SI):

SI(T , a) = −
d∑

i=1

|Ti|
|T |

log2

|Ti|
|T |

(3)

where Ti are the d subsets of training dataset T resulting from partitioning T by
the d-valued attribute a. Split information SI(T , a) is the entropy of T with respect
to the values of attribute a. The gain ratio is then defined as

GR(T , a) =
IG(T , a)

SI(T , a)
(4)

and we select only features with the highest values of gain ratio.

3.1.2 Our Proposed Feature Space

The following feature set was extracted using gain ratio and used in our work:

• Many fields from the PE headers, such as the number of sections, date/time
stamp, major or minor versions of linker, operating system, image, subsystem;
sizes and addresses of data directories; DLL characteristics, etc. Table 1 lists all
features that are derived from the PE headers. For detailed description of these
features, see Chapter 3 in [5].

• Features from sections and their headers: VirtualSize, VirtualAddress, Size-
OfRawData, PointerToRawData, Section Flags (see Chapter 4 in [5]), and fea-
tures not contained within the PE structure, including entropies and checksums
of sections.

• Resources of the PE file are used to provide supporting content, such as icons,
fonts, strings and other elements. In case of malicious files, resources are often

764 M. Jureček, R. Lórencz

used to store code and configuration data. For example, the number of resources
and the number of types of resources were used in our work.

• Overlay is a data that is appended at the end of the executable file. We consid-
ered the size of the overlay.

• Other features: the size of all imports, the number of DLLs referred, the number
of APIs referred.

Feature Feature

NumberOfSections MajorOperatingSystemVersion
TimeDateStamp MajorImageVersion
SizeOfOptionalHeader MajorSubsystemVersion
Characteristics MinorSubsystemVersion
MajorLinkerVersion SizeOfImage
MinorLinkerVersion CheckSum
AddressOfEntryPoint Subsystem
ImageBase DllCharacteristics
SectionAlignment NumberOfRvaAndSizes
FileAlignment Addresses and sizes of data directories

Table 1. List of features from the PE headers

Note that our feature set is similar to that in the existing works [12, 21, 1].

3.2 Distance Function

Many classifiers require some measure of dissimilarity or distance between feature
vectors, and its performance depends upon a good choice of distance function.
Especially the KNN classifier depends significantly on the metric used to compute
distances between two feature vectors.

In this section, we propose a similarity metric on our feature space. We used this
metric to compute distances to find k nearest neighbors used in KNN classifier. Note
that the features used in our work are of various types and sizes. These features can
be divided into three types: numbers, bit fields, and strings. For example, number
of sections or various addresses can be represented by numbers, section flags or
characteristics by bit fields, and checksums by strings. Furthermore, some features
have different ranges. For example, the number of sections is considerably smaller
than the total number of called API functions. The proposed distance function can
handle these types of features and also takes into account their different ranges.

The most commonly used metric is the Euclidean distance which works well for
numerical attributes. However, it does not appropriately handle nominal attributes.
The Value Difference Metric (VDM) [27] was proposed to define a suitable distance
function for nominal attributes. A version of the VDM without a weighting scheme

Malware Detection Using a Heterogeneous Distance Function 765

is defined for values x and y of an attribute a as:

VDMa(x, y) =
C∑

c=1

∣∣∣∣
na,x,c

na,x

− na,y,c

na,y

∣∣∣∣
q

(5)

where

• C is the number of classes,

• na,x,c is the number of instances in the training set T which have value x for
attribute a and the instance belongs to class c,

• na,x is the number of instances in T that have value x for attribute a.

Since the Euclidean distance is not suitable for nominal attributes, and VDM
is inappropriate for numeric attributes, heterogeneous metric can be used to handle
our feature space. Wilson and Martinez introduced Heterogeneous Value Difference
Metric (HVDM) [29] which is defined for feature vectors x and y as:

HVDM(x,y) =

√√√√
m∑

a=1

d2a(xa, ya) (6)

where m is the number of attributes of the feature vector and the definition of
distance function da(x, y) depends on the type of attribute a as follows:

da(x, y) =

1, if x or y is unknown,

NORM VDMa(x, y), if a is nominal,

NORM DIFFa(x, y), if a is linear.

(7)

Functions NORM VDMa(x, y) and NORM DIFFa(x, y) are defined as:

NORM VDMa(x, y) =
C∑

c=1

∣∣∣∣
na,x,c

na,x

− na,y,c

na,y

∣∣∣∣, (8)

NORM DIFFa(x, y) =
|x− y|

4σa
(9)

where σa is the standard deviation of the values of numeric attribute a.

3.2.1 Our Proposed Distance Function

Since the feature vector described in Section 3.1.2 contains more types of nominal
attributes we propose the following distance function:

D(x,y) =

√√√√
m∑

a=1

d2a(xa, ya) (10)

766 M. Jureček, R. Lórencz

where

da(x, y) =

H(x, y), if a is an array of bits,

δ(x, y), if a is a checksum,

NORM DIFFa(x, y), if a is numeric,

NORM VDMa(x, y), otherwise (a is a string).

(11)

H(x, y) denotes Hamming distance defined for binary x = (x1, . . . , xn), y = (y1, . . . ,
yn) as

H(x, y) = |{i | xi 6= yi, i = 1, . . . , n}| (12)

and δ(x, y) is the characteristic function defined as

δ(x, y) =

{
0, if x = y,

1, otherwise.
(13)

Since the distance functions da are metrics, D is also a metric. Properties of
a metric, especially the triangle inequality, can be used in effective finding of nearest
neighbors in a metric space.

Note that we distinguish between a checksum and a string attribute that is not
a checksum. For the demonstration of distance function D on our feature space, we
present the examples of attributes of each type:

• array of bits: Section flags, Characteristics, DllCharacteristics,

• numeric attribute: number of sections, number of DLLs, size of all imports,

• checksum: checksums of various pieces of the file content,

• string: major/minor version of linker, operating system, subsystem.

4 PROPOSED SYSTEM FOR DETECTING MALWARE

In this section, we present a system for detecting malware which is composed of
a KNN classifier and a statistical scoring technique.

4.1 The k-Nearest Neighbors Classifier

The k-nearest neighbors (KNN) classifier is one of the most popular supervised
learning methods introduced by Fix and Hodges [8]. It is one of the simplest and
best-known nonparametric algorithms in pattern classification.

Let T = {(x1, c1), . . . , (xm, cm)} be the training set, where xi is training vector
and ci is the corresponding class label. Given a query point xq, its unknown class cq
is determined as follows. First, select the set T ′ = {(x1, c1), . . . , (xk, ck)} of k nearest

Malware Detection Using a Heterogeneous Distance Function 767

neighbors to the query point xq. Then assign the class label to the query point xq
by majority vote of its nearest neighbors:

cq = arg max
c

∑

(xi,ci)∈T ′

δ(c, ci) (14)

where c is a class label, ci is the class label for ith neighbor among k nearest neighbors
of the query point, and δ(c, ci) takes a value of one if c = ci and zero otherwise.
Cover and Hart [6] found that if the number of samples approaches infinity, the
nearest-neighbor error rate is bounded from above by twice the Bayes error rate.

Distance-weighted k-nearest neighbor procedure (WKNN) was first introduced
in [7] as an improvement to KNN. This extension is based on the idea that closer
neighbors are weighted more heavily than such neighbors that are far away from
the query point. KNN implicitly assumes that all k nearest neighbors are equally
important in making a classification decision, regardless of their distances to the
query point. In WKNN, nearest neighbors are weighted according to their distances
to the query point as follows. Let x1, . . . , xk be k nearest neighbors of the query
object and d1, . . . , dk the corresponding distances arranged in increasing order. The
weight wi for i-th nearest neighbor is defined as:

wi =

{
dk−di
dk−d1

, if dk 6= d1,

1, otherwise.
(15)

The resulting class of the query point is then defined by the majority weighted
vote as follows:

cq = arg max
c

∑

(xi,ci)∈T ′

wi · δ(c, ci). (16)

Note that finding the nearest neighbors is a very expensive operation due to the
enormous size of our dataset. The nearest neighbors can be found more efficiently
by representing the training dataset as a tree.

4.2 The Statistical-Based Classifiers

In this section, we present the scoring techniques that we used in our research. In
the case of the statistical-based classifier, we ignore the positions of points in our
metric space and we focus on statistical properties of attribute values, in contrast
to the KNN classifier.

4.2.1 Naive Bayes

This section introduces the Naive Bayes classifier [28] for binary (two-class) clas-
sification problems. A Naive Bayes classifier is a probabilistic algorithm based on
Bayes’ Theorem that predicts the class with the highest a posteriori probability.
Assume a set of two classes {C,M}, where C denotes the class of benign samples

768 M. Jureček, R. Lórencz

and M denotes the class of malware. Training datasets are provided and a new
(unknown) sample, which is represented by a feature vector x = (x1, . . . , xn), is
presented. Let P (M|x) denote the probability that a sample is malicious given the
feature vector x that describes the sample. Similarly, P (C|x) denotes the probability
that a sample is benign given the feature vector x that represents the sample. The
Naive Bayes classification rule is stated as

If P (M|x) < P (C|x), x is classified as benign sample,

If P (M|x) > P (C|x), x is classified as malware. (17)

The a posteriori probabilities P (C|x) may be expressed in terms of the a priori
probabilities and the P (x|C) probabilities using Bayes’ theorem as

P (C|x) =
P (x|C) P (C)

P (x)
. (18)

Assuming that the values of the attributes (features) are conditionally independent
on one another, Equation (18) may be expressed as

P (C|x) =

∏n
i=1 P (xi|C) P (C)

P (x)
. (19)

Probabilities P (xi|C) can be estimated from the training set by counting the
attribute values for each class. More precisely, the probability P (xi = h|C) is
represented as the number of samples of class C in the training set having the
value h for attribute xi, divided by the number of samples of class C in the training
set. The output of the classifier is the highest probability class C ′:

C ′ = arg max
C

(
P (C)

n∏

i=1

P (xi|C)

)
. (20)

4.2.2 Statistical Classifier – STATS

The following statistical classifier was introduced in [12]. Let x = (x1, . . . , xn) be
a vector from our feature space and M a class of malware. Then probability

P (x ∈M|xi = h) =
nxi,h,M

nxi,h

(21)

is the conditional probability that the output class of x is malware given that at-
tribute xi has the value h. Denote this probability by pi, i = 1, . . . , n. Note that
the notations nxi,h,M and nxi,h were used in the definition of VDM discussed in
Section 3.2. Define a function f with two parameters pi and Sc as

f(pi, Sc) = max{0, pi − Sc} (22)

Malware Detection Using a Heterogeneous Distance Function 769

where Sc is an empirical constant. For each file x we define a score as

score =
n∑

i=1

f(pi, Sc). (23)

From this score, we can determine a threshold Ss, above which we will classify
a file as malware. The decision rule is then defined as follows:

x is classified as

{
malware, if score > Ss,

benign file, otherwise.
(24)

The pseudocode of the statistical-based classifier is described in Algorithm 1.

Algorithm 1 Statistical classifier – STATS

Input: original training set, query point x, distance metric D
Output: label of x
1: score = 0
2: Compute probability vector (p1, . . . , pn)
3: for i = 1 to n do
4: if pi > Sc then
5: score += pi − Sc

6: end if
7: end for
8: if score > Ss then
9: return malware

10: else
11: return benign file
12: end if

In the rest of this paper, the statistical-based classifier is denoted as STATS.

4.3 Our Approach

We propose a malware detection approach based on a combination of the well-known
KNN classifier and the chosen statistical motivated classifier. In order to achieve
higher detection rates, there should be some kind of diversity between the classifiers.
KNN is a geometric-based classifier which uses labels of the nearest neighbors in
some metric space to classify an unlabeled point. On the other hand, statistical-
based approaches like Naive Bayes or the STATS classifier mentioned above use
conditional probabilities of attributes of sample point and do not use information
about its position in feature space.

The proposed detection method works as follows. First, set the threshold to
some sufficiently high value. Then compute score using the chosen statistical scoring
technique. If the score of the unknown file exceeds the threshold, then the resulting

770 M. Jureček, R. Lórencz

class will be malware, otherwise apply distance-weighted KNN. The pseudocode for
the classification scheme is shown in Algorithm 2.

Algorithm 2 Our detection system

Input: original training set, query point x, distance metric D
Output: label of x
1: compute score from the statistical scoring technique
2: if score > threshold then
3: return malware
4: else
5: apply WKNN
6: end if

The reason why we chose KNN is that it is a relatively accurate classifier for large
datasets and the results of our experiments demonstrate that the statistical classifier
is able to correctly classify samples lying in the area of feature space where the
accuracy of KNN is low. The statistical classifier uses information from the training
dataset in a different way than the KNN classifier. It checks whether a feature
vector contains values typical for malware, in contrast to KNN that considers only
differences between feature vectors.

For example, consider a feature vector x = (x1, . . . , xn) containing only a few
values (typically checksums), for which there is a high probability that x belongs
to malware. Many other attributes could have previously unseen values or ones
with a low prevalence. Therefore, malicious nearest neighbors could not be closer
than benign nearest neighbors and in this case, KNN classifier would not be an
appropriate method.

4.3.1 The System Architecture

The system consists of three major components: a PE parser, a database of condi-
tional probabilities and a classification module, as illustrated in Figure 2.

The functionality of the PE parser is to extract all PE format file’s header
information, DLLs, and API functions from programs in the dataset and store all
the extracted information in a database. Recall that our system is applied only
to Windows PE files and the PE parser extracts only the most useful features for
discriminating between benign and malicious files. These features were determined
by the feature selection algorithm mentioned in Section 3.

During the training phase, once the structural information of the PE files is
extracted, the conditional probabilities P (x is malware|xi = h) are computed for
each PE attribute xi and for each possible value h of attribute xi. Note that only
the PE features extracted from labeled samples of the training dataset are used in
the computation of the conditional probabilities.

After extracting PE features and computing the conditional probabilities, fea-
ture vectors are created for every known PE file. The set of these feature vectors

Malware Detection Using a Heterogeneous Distance Function 771

Dataset of

known PE

features

PE

features

Conditional

probabilities

Feature
vectors

Feature
vectors

Classification

Training phase:

Testing phase:
module

PE files

Unknown

PE files

Figure 2. Architecture of the classification model

called training set will be used in the classification module where the classification
algorithm is applied to feature vectors of unknown PE files.

5 EVALUATION RESULTS AND ANALYSIS

In this section, we introduce the performance metrics and present the results of
our experiments. We compare our approach with several other machine learning
methods for malware detection.

5.1 Performance Metrics

We present the evaluation metric we used to measure the accuracy of our proposed
approach for the detection of unknown malicious codes. For evaluation purposes,
the following classical quantities are employed:

• True Positive (TP) represents the number of malicious samples classified as
malware,

• True Negative (TN) represents the number of benign samples classified as be-
nign,

• False Positive (FP) represents the number of benign samples classified as mal-
ware,

• False Negative (FN) represents the number of malicious samples classified as
benign.

The performance of our classifier on the test set is measured using three standard
parameters. The most intuitive and commonly used evaluation measure in Machine

772 M. Jureček, R. Lórencz

Learning is the Accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN
. (25)

It is defined on a given test set as the percentage of correctly classified instances.
However, since our dataset is not well-balanced, the accuracy measure could be
an inappropriate measure of performance. If we use a classifier which labels every
sample as benign, then TN will be very high and TP will be very low. As a result,
the accuracy obtained on our dataset will be very high.

The second parameter, True Positive Rate (TPR) (or detection rate), is defined
as:

TPR =
TP

TP + FN
. (26)

TPR is the percentage of truly malicious samples that were classified as malware.
The third parameter is False Positive Rate (FPR) and is defined as follow:

FPR =
FP

TN + FP
. (27)

FPR is the percentage of benign samples that were wrongly classified as malware.
We also evaluate our classifier using Receiver Operating Characteristic (ROC)

analysis [3]. ROC curve is represented as a two-dimensional plot, in which true
positive rate is plotted against false positive rate at various threshold settings. The
area under the ROC curve (AUC) serves as the performance measure of our detection
techniques. An AUC of 1.0 represents the ideal case where both false positive and
false negative equal zero. On the other hand, AUC of 0.5 means that the classifier’s
performance is no better than flipping a coin.

5.2 Dataset

The dataset used in this research consists of a total of 101,604 Windows programs
in the PE file format, out of which 21,087 are malicious and 80,517 are legitimate or
benign programs. There were no duplicate programs in our dataset. The malicious
and benign programs were obtained from the laboratory of the industrial partner.

In order to expose any biases in the data, we used the 5-fold cross-validation
procedure. Generally in k-fold cross-validation [14], the dataset is randomly divided
into k subsets of equal size, where k-1 subsets are used for training and 1 subset
is used for testing. In each of the k folds a different subset is reserved for testing
and the accuracies obtained for each fold are averaged to produce a single cross
validation estimate.

In the cluster analysis we used five prevalent malware families that have appeared
during the year 2016. Specifically, we have used the following malware families:

• Allaple – a polymorphic network worm that spreads to other computers and
performs denial-of-service (DoS) attacks.

Malware Detection Using a Heterogeneous Distance Function 773

• Dinwod – a trojan horse that silently downloads and installs other malware on
the compromised computer.

• Virlock – a ransomware that locks victims’ computer and demands a payment
in order to unlock it.

• Virut – a virus with backdoor functionality that operates over an IRC-based
communications protocol.

• Vundo – a trojan horse that displays pop-up advertisements and also injects
JavaScript into HTML pages.

5.3 Classification Results

We implemented the classifiers as described in Section 4. The feature space and
the distance function proposed in Section 3 were used in the KNN and the WKNN
classifiers. The combination of the WKNN and the statistical scoring technique
from [12] is denoted as WKNN STATS and the combination of the WKNN and the
Naive Bayes classifier is denoted as WKNN NB. For each experiment, we performed
5-fold cross-validation that gives approximately unbiased estimate of a classifier’s
accuracy.

In our first experiment, we attempt to distinguish between benign and malicious
PE files. We used accuracy, discussed in Section 5.1, as a comparison criterion for
comparing classifiers. The accuracies obtained after applying the WKNN and the
KNN classifiers for various numbers of nearest neighbors are depicted in Figure 3.

■ ■
■
■ ■ ■

■ ■
■

■

■ ■

▲ ▲

▲
▲ ▲

▲ ▲

▲
▲

▲

▲

▲

■ WKNN

▲ KNN

0 10 20 30 40 50

0.975

0.980

0.985

Number of nearest neighbors

A
c
c
u
ra
c
y

Figure 3. Classification accuracies of the WKNN and the KNN classifiers, for various
numbers of nearest neighbors

The WKNN classifier achieved the highest accuracy using nine nearest neighbors,
while the KNN classifier achieved the highest accuracy using only three nearest
neighbors.

The classification results of the classifiers implemented in this research are listed
in Table 2.

774 M. Jureček, R. Lórencz

Classifier TPR FPR Accuracy

KNN 96.23 % 1.07 % 98.37 %
WKNN 96.82 % 0.99 % 98.56 %
NB 82.78 % 1.17 % 95.50 %
STATS 90.08 % 0.76 % 97.34 %
WKNN NB 97.37 % 1.05 % 98.62 %
WKNN STATS 98.08 % 1.01 % 98.80 %

Table 2. Classification results of six approaches implemented in this work

Among these classifiers, the WKNN STATS outperformed others with the high-
est accuracy of 98.8 %. Note that the WKNN STATS classifier was tested for various
threshold values, and the best result was achieved with the following parameters:

• the number of nearest neighbors k = 9 used in the WKNN classifier,

• the thresholds Sc = 0.8 and Ss = 0.53 used in the STATS classifier.

In addition to that, we constructed the ROC curves which are shown in Figure 4
for three chosen classifiers.

àààààààààà
à
à

à

à

à

à

à
à
à
à

à
à

ààà

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
òò
òòò
òò
òòò
òòòò
òòòòò

òòò ò
òò òòò ò

ò ò ò

xxx
xxx
xxx
xx

xxx
xx
xx
xx
xx

xxx
xxxxx x x x

x x x x x

à WKNN_Stats

ò WKNN

x Stats

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.80

0.85

0.90

0.95

1.00

False positive rate

T
ru

e
p
o
si

ti
v
e

ra
te

ROC curves

Figure 4. ROC curves for the WKNN, STATS and WKNN STATS classifiers

We can conclude from Figure 4 that a combination of the classifiers outperforms
both individual classifiers.

Table 3 reports the AUC for three classifiers discussed in Section 4 and two
related static methods: KM [11] and PE Miner [21]. As the table illustrates,
WKNN STATS classifier provides the best AUC value with 0.998. The ROC curve
and AUC values confirm that our experiment provides excellent results regarding
malware detection.

Malware Detection Using a Heterogeneous Distance Function 775

Classifier AUC

WKNN 0.993
STATS 0.983
WKNN STATS 0.998
KM 0.996
PE Miner 0.992

Table 3. Comparison of the AUC value for five static methods

5.4 Clustering Results

In the second experiment we apply cluster analysis to five prevalent malware fami-
lies described in Section 5.2. First, we present the clustering algorithm used in this
experiment and then describe the evaluation measures and show the results.

5.4.1 Partitioning Around Medoids

Partitioning around medoids (PAM) proposed by Kaufman and Rousseeuw [9] is
a well-known technique for performing non-hierarchical clustering. The reason why
we have decided to use the PAM algorithm is that it allows clustering with respect
to any distance metric. The pseudocode of the PAM algorithm is described in
Algorithm 3.

Algorithm 3 PAM algorithm

Input: Number of clusters k, set of data points T
Output: k clusters
1: Initialize: randomly select k data points from T to become the medoids
2: Assign each data point to its closest medoid
3: for all cluster do
4: identify the observation that would yield the lowest average distance if it were

to be re-assigned as the medoid
5: if the observation is not current medoid then
6: make this observation the new medoid
7: end if
8: end for
9: if at least one medoid has changed then

10: go to step 2
11: else
12: end the algorithm.
13: end if

776 M. Jureček, R. Lórencz

5.4.2 Evaluation Measures

We evaluated the quality of clusters through the measures of purity and silhouette
coefficient (SC). Let nij be the number of samples of class i in cluster Cj and let
pij =

nij

|Cj | . The probability pij is the probability that a randomly selected sample

from cluster Cj belongs to class i. The purity of cluster Cj is defined as Purity(Cj) =
maxi pij.

The overall purity value is defined as the weighted sum of individual purities for
each cluster, taking into account the size of each cluster:

Purity =
1

n

k∑

j=1

|Cj|Purity(Cj). (28)

To measure the quality of clusters, we compute the average silhouette coeffi-
cient [16] for each cluster. Suppose there are n samples x1, . . . , xn that have been
divided into k clusters C1, . . . , Ck. Consider a sample xi ∈ Cj, and define the average
distance between xi to all other samples in cluster Cj:

a(xi) =
1

|Cj| − 1

∑

y∈Cj

y 6=xi

d(xi, y). (29)

Let bk(xi) be the average distance from sample xi ∈ Cj to all samples in cluster
Ck not containing xi:

bk(xi) =
1

|Ck|
∑

y∈Ck

d(xi, y). (30)

After computing bk(xi) for all clusters Ck, where k 6= j, we select the minimum
of those numbers:

b(xi) = min
k 6=j

bk(xi). (31)

The silhouette coefficient of xi is obtained by combining a(xi) and b(xi) as
follows:

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
. (32)

The value of s(xi) in Equation (32) can vary between -1 and 1. It is desirable
to have the value s(xi) as close to 1 as possible, since then the clusters are well-
separated. The average silhouette coefficient for a given cluster is defined as the
average value of s(xi) over all samples in the cluster.

5.4.3 Experimental Results

We computed the silhouette coefficient, as discussed above. For computing the
silhouette coefficient, we used our proposed distance function on the feature space

Malware Detection Using a Heterogeneous Distance Function 777

Majority Class Size Purity SC

Allaple 424 0.9343 0.3298
Dinwod 285 0.7429 0.7172
Virlock 452 0.9771 0.5635
Virut 337 0.68 0.2389
Vundo 252 0.6886 0.1921

Overall 1 750 0.8298 0.3883

Table 4. The purity and the silhouette coefficient for clusters

discussed in Section 3. Table 4 summarizes the results of silhouette coefficient based
experiments using the PAM algorithm.

According to the experiences of authors of SC [16], silhouette coefficient values
between 0.7 and 1.0 indicate excellent clustering results. SC values between 0.5 and
0.7 indicate a reasonable structure of cluster. SC values below 0.25 indicate that no
substantial structure has been found.

Regarding the clustering malware into families, our results show that the quality
of clusters varies widely, depending on the particular family. From the results in
Table 4, we see that the PAM algorithm can correctly classify the malware family
with an accuracy of about 68 % to over 97 %, depending on the particular fam-
ily.

Note that such accuracies are lower than those obtained with classifiers presented
in Section 4. The reason is that distinguishing between malware families is a more
challenging problem than a binary classification of malware and benign files.

6 CONCLUSION

In this paper, we proposed a new detection system using a combination of the
k-nearest neighbors classifier and the statistical-based classifier. The system can
automatically detect unknown malware samples. The feature set used in our work
was a collection of properties extracted from the PE file format. We designed a new
distance function that is capable of handling various types of features.

Experimental results indicate that the combination of the classifiers may pro-
vide a potential benefit to detect samples not detected by KNN. We compared the
different classification methods and concluded that the combination of the weighted
k-nearest neighbors classifier and the statistical-based classifier achieves the highest
accuracy, 98.8 %. The results also indicate that the proposed heterogeneous distance
function and the feature space are appropriate for malware detection and could be
also used for clustering malware into families.

The proposed static malware detection system is relatively easy to implement,
and can be utilized to support commercial antivirus systems. For future work, it
would be interesting to experiment with additional statistical scoring techniques in
the context of malware classification.

778 M. Jureček, R. Lórencz

Acknowledgements

The authors acknowledge the support of the OP VVV funded project CZ.02.1.01/
0.0/0.0/16 019/0000765 “Research Center for Informatics”.

REFERENCES

[1] Asquith, M.: Extremely Scalable Storage and Clustering of Malware Metadata.
Journal of Computer Virology and Hacking Techniques, Vol. 12, 2016, No. 2,
pp. 49–58, doi: 10.1007/s11416-015-0241-3.

[2] Bilar, D.: Opcodes as Predictor for Malware. International Journal of Elec-
tronic Security and Digital Forensics, Vol. 1, 2007, No. 2, pp. 156–168, doi:
10.1504/IJESDF.2007.016865.

[3] Bradley, A. P.: The Use of the Area Under the ROC Curve in the Evaluation of Ma-
chine Learning Algorithms. Pattern Recognition, Vol. 30, 1997, No. 7, pp. 1145–1159,
doi: 10.1016/S0031-3203(96)00142-2.

[4] Cohen, W. W.: Learning Trees and Rules with Set-Valued Features. Proceedings of
the Thirteenth National Conference on Artificial Intelligence (AAAI/IAAI), Vol. 1,
1996, pp. 709–716.

[5] Microsoft Corporation: Visual Studio, Microsoft Portable Executable and Common
Object File Format Specification, Revision 9.3, 2015.

[6] Cover, T.—Hart, P.: Nearest Neighbor Pattern Classification. IEEE Trans-
actions on Information Theory, Vol. 13, 1967, No. 1, pp. 21–27, doi:
10.1109/TIT.1967.1053964.

[7] Dudani, S. A.: The Distance-Weighted k-Nearest-Neighbor Rule. IEEE Transactions
on Systems, Man, and Cybernetics, Vol. SMC-6, 1976, No. 4, pp. 325–327, doi:
10.1109/TSMC.1976.5408784.

[8] Fix, E.—Hodges Jr., J. L.: Discriminatory Analysis – Nonparametric Discrimina-
tion: Consistency Properties. Technical Report, DTIC Document, 1951.

[9] Kaufman, L.—Rousseeuw, P. J.: Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley and Sons, Wiley Series in Probability and Statistics,
Vol. 334, 2009.

[10] Kephart, J. O.—Arnold, W. C.: Automatic Extraction of Computer Virus Sig-
natures. 4th Virus Bulletin International Conference, 1994, pp. 178–194.

[11] Kolter, J. Z.—Maloof, M. A.: Learning to Detect and Classify Malicious Ex-
ecutables in the Wild. The Journal of Machine Learning Research, Vol. 7, 2006,
pp. 2721–2744.

[12] Merkel, R.—Hoppe, T.—Kraetzer, C.—Dittmann, J.: Statistical Detec-
tion of Malicious PE-Executables for Fast Offline Analysis. In: De Decker, B.,
Schaumüller-Bichl, I. (Eds.): Communications and Multimedia Security (CMS 2010).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6109, 2010,
pp. 93–105.

[13] Mitchell, T. M.: Machine Learning. New York, 1997.

https://doi.org/10.1007/s11416-015-0241-3
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TSMC.1976.5408784

Malware Detection Using a Heterogeneous Distance Function 779

[14] Picard, R. R.—Cook, R. D.: Cross-Validation of Regression Models. Journal of
the American Statistical Association, Vol. 79, 1984, No. 387, pp. 575–583, doi:
10.1080/01621459.1984.10478083.

[15] Quinlan, J. R.: Induction of Decision Trees. Machine Learning, Vol. 1, 1986, No. 1,
pp. 81–106, doi: 10.1007/BF00116251.

[16] Rousseeuw, P. J.: Silhouettes: A Graphical Aid to the Interpretation and Valida-
tion of Cluster Analysis. Journal of Computational and Applied Mathematics, Vol. 20,
1987, pp. 53–65, doi: 10.1016/0377-0427(87)90125-7.

[17] Runwal, N.—Low, R. M.—Stamp, M.: Opcode Graph Similarity and Metamor-
phic Detection. Journal in Computer Virology, Vol. 8, 2012, No. 1–2, pp. 37–52, doi:
10.1007/s11416-012-0160-5.

[18] Santos, I.—Brezo, F.—Nieves, J.—Penya, Y. K.—Sanz, B.—Laor-
den, C.—Bringas, P. G.: Idea: Opcode-Sequence-Based Malware Detection. In:
Massacci, F., Wallach, D., Zannone, N. (Eds.): Engineering Secure Software and Sys-
tems (ESSoS 2010). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 5965, 2010, pp. 35–43.

[19] Schultz, M. G.—Eskin, E.—Zadok, F.—Stolfo, S. J.: Data Mining Methods
for Detection of New Malicious Executables. Proceedings of the 2001 IEEE Sympo-
sium on Security and Privacy (S & P 2001), IEEE Computer Society, 2001, pp. 38–49,
doi: 10.1109/SECPRI.2001.924286.

[20] Shabtai, A.—Moskovitch, R.—Elovici, Y.—Glezer, C.: Detection of Mali-
cious Code by Applying Machine Learning Classifiers on Static Features: A State-
of-the-Art Survey. Information Security Technical Report, Vol. 14, 2009, No. 1,
pp. 16–29, doi: 10.1016/j.istr.2009.03.003.

[21] Shafiq, M. Z.—Tabish, S. M.—Mirza, F.—Farooq, M.: PE-Miner: Mining
Structural Information to Detect Malicious Executables in Realtime. In: Kirda, E.,
Jha, S., Balzarotti, D. (Eds.): Recent Advances in Intrusion Detection (RAID 2009).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5758, 2009,
pp. 121–141.

[22] Siddiqui, M.—Wang, M. C.—Lee, J.: Data Mining Methods for Malware De-
tection Using Instruction Sequences. Proceedings of the 26th IASTED International
Conference on Artificial Intelligence and Applications (AIA ’08), 2008, pp. 358–363.

[23] Singh, T.—Di Troia, F.—Corrado, V. A.—Austin, T. H.—Stamp, M.: Sup-
port Vector Machines and Malware Detection. Journal of Computer Virology and
Hacking Techniques, Vol. 12, 2016, No. 4, pp. 203–212.

[24] Stopel, D.—Boger, Z.—Moskovitch, R.—Shahar, Y.—Elovici, Y.: Ap-
plication of Artificial Neural Networks Techniques to Computer Worm Detection.
Proceedings of the 2006 IEEE International Joint Conference on Neural Networks
(IJCNN ’06), 2006, pp. 2362–2369.

[25] Eskandari, M.—Hashemi, S.: A Graph Mining Approach for Detecting Un-
known Malwares. Journal of Visual Languages and Computing, Vol. 23, 2012, No. 3,
pp. 154–162, doi: 10.1016/j.jvlc.2012.02.002.

[26] Qiao, Y.—Yang, Y.—Ji, L.—He, J.: Analyzing Malware by Abstracting the
Frequent Itemsets in API Call Sequences. 2013 12th IEEE International Conference

https://doi.org/10.1080/01621459.1984.10478083
https://doi.org/10.1007/BF00116251
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/s11416-012-0160-5
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1016/j.istr.2009.03.003
https://doi.org/10.1016/j.jvlc.2012.02.002

780 M. Jureček, R. Lórencz

on Trust, Security and Privacy in Computing and Communications (TrustCom), 2013,
pp. 265–270.

[27] Stanfill, C.—Waltz, D.: Toward Memory-Based Reasoning. Communications of
the ACM, Vol. 29, 1986, No. 12, pp. 1213–1228, doi: 10.1145/7902.7906.

[28] Webb, A. R.—Copsey, K. D.: Statistical Pattern Recognition. Third Edition. Wi-
ley, 2011.

[29] Wilson, D. R.—Martinez, T. R.: Improved Heterogeneous Distance Functions.
Journal of Artificial Intelligence Research, Vol. 6, 1997, No. 1, pp. 1–34.

Martin Jure�cek graduated from the Charles University in
Prague, Faculty of Mathematics and Physics, with the speciali-
zation in mathematical methods of information security. He is
now a Ph.D. student at the Faculty of Information Technology
of the Czech Technical University in Prague. His main research
interests focus on the application of machine learning and artifi-
cial intelligence approaches to malware detection. Another area
of his interest is cryptography and information security.

Róbert L�orencz graduated from the Faculty of Electrical En-
gineering of the Czech Technical University in Prague in 1981.
He received his Ph.D. degree in 1990 from the Institute of Mea-
surement and Measuring Methods, Slovak Academy of Sciences
in Bratislava. Currently he is Full Professor at the Faculty of
Information Technology of the Czech Technical University in
Prague. His research interests are cryptography and arithmetic
units for cryptography primitives, various cryptoanalysis meth-
ods of block and stream ciphers. Another topic of his interest is
alternative arithmetic for numerical computation.

https://doi.org/10.1145/7902.7906

	1_2623-10752-1-PB
	2_3549-10753-1-PB
	3_3608-10754-1-PB
	4_2621-10755-1-PB
	5_2908-10756-1-PB
	6_3627-10757-1-PB
	7_4194-10758-1-PB
	8_3783-10759-1-PB
	9_3548-10760-1-PB
	10_3104-10761-1-PB
	11_3775-10762-1-PB

