
Computing and Informatics, Vol. 37, 2018, 1–22, doi: 10.4149/cai 2018 1 1

TWO-LAYER LOAD BALANCING
FOR ONEDATA SYSTEM

 Lukasz Opio la, Lukasz Dutka, Micha l Wrzeszcz

AGH University of Science and Technology
ACC Cyfronet AGH
ul. Nawojki 11
30-950 Kraków, Poland
e-mail: {lopiola, dutka, wrzeszcz}@agh.edu.pl

Renata S lota, Jacek Kitowski

AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
Department of Computer Science
al. A. Mickiewicza 30
30-059 Kraków, Poland
&
ACC Cyfronet AGH
ul. Nawojki 11
30-950 Kraków, Poland
e-mail: {rena, kito}@agh.edu.pl

Abstract. The recent years have significantly changed the perception of web ser-
vices and data storages, as clouds became a big part of IT market. New challenges
appear in the field of scalable web systems, which become bigger and more complex.
One of them is designing load balancing algorithms that could allow for optimal
utilization of servers’ resources in large, distributed systems. This paper presents
an algorithm called Two-Level Load Balancing, which has been implemented and
evaluated in Onedata – a global data access system. A study of Onedata architec-
ture, request types and use cases has been performed to determine the requirements
of load balancing set by similar, highly scalable distributed systems. The algorithm
was designed to match these requirements, and it was achieved by using a synergy of

2 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

DNS and internal dispatcher load balancing. Test results show that the algorithm
does not introduce considerable overheads and maintains the performance of the
system on high level, even in cases when its servers are not equally loaded.

Keywords: Load balancing, geographically distributed systems, DNS, web clusters

Mathematics Subject Classification 2010: 68M11, 68M14, 68W99

1 INTRODUCTION

The number of Internet users grows every day, and the software and hardware ven-
dors have to face demands for fast, convenient and massively scalable services. At
the same time as web services are thriving, data centres around the globe are racing
each other to create more and more powerful supercomputers. Many institutions
form Grids and Clouds to provide platforms of immense computing power and stor-
age space. Thanks to this, scientists of various disciplines can conduct research and
cooperate to solve problems which have been beyond their reach for years. Such ap-
proach is called e-Science [9] and has created new trends in distributed computing.
Again, there is a demand for scalable web services that will allow to harness the
potential of distributed environments and ensure the convenience of using resources
offered by data centres.

The answer to current challenges in the sector of web services are web clusters
and distributed web systems, composed of tens or hundreds of servers. Recently,
more and more systems try to use the advantages of highly distributed architectures.
Popular web portals have to constantly extend their pools of servers to handle the
growing amount of clients and data produced by them. Among them, there are
cloud storage services such as Dropbox, Google Drive or OneDrive [1], which focus
on any time and any place access to user data. Cloud solutions are also built for High
Performance Computing (HPC) purposes, e.g. Amazon Web Services [2] and IBM
HPC Cloud [3], which allow performing data-intensive computations on distributed
architectures. Other massively scalable systems that handle millions of requests ev-
ery minute and store enormous amounts of data in databases, include Facebook [4],
Twitter [5] or Gmail [6]. As the complexity and distribution of those systems grow, it
is harder to manage their numerous servers. Relevantly, the full, collective potential
of multi-node architectures can be unlocked only by use of dedicated solutions that
allow for cooperation of the servers. Among them, load balancing is arguably one of
the most important. It determines the way that incoming requests are distributed
to servers and strives to efficiently use their cumulative resources. The approaches
used in modern systems range from simple static to complicated dynamic algorithms
supported by server monitoring, dedicated hardware, advanced mathematical mod-
els and others. The choice of load balancing algorithm is dependent on many factors

Two-Layer Load Balancing for Onedata System 3

including the system size, its purpose, type of clients and anticipated throughput of
requests.

This paper describes an originally created load balancing algorithm called Two-
Level Load Balancing. It is dedicated for highly scalable, distributed web systems
that are meant to handle numerous requests that vary in size and processing time.
It has been implemented and evaluated in Onedata [7, 8] to prove its viability in
such systems.

Onedata, a global data access system, was created as an answer to the require-
ments of modern science. It virtualizes the storages of globally distributed storage
providers and unifies them into one data space. From the user’s point of view, it
hides the growing complexity of storage systems. Moreover, it facilitates adminis-
tration with advanced monitoring tools and automated data management. Beside
being a new, powerful tool for research teams, it is also a promising choice for
everyday users.

The rest of the paper is organized as follows. The second section includes gath-
ered knowledge about existing load balancing strategies. In the third section, the
Onedata system is described in detail to underline the requirements of load bal-
ancing algorithms that can be used in similar systems. In the next sections, the
proposed solution is presented and evaluated.

2 STATE OF THE ART

For better understanding and to avoid ambiguities, several terms should be in-
troduced that are used throughout this paper. Starting with architectural terms,
a node is a single machine (computer). Nodes can be organized in groups and inter-
connected to form a cluster of nodes. Finally, a cluster of nodes can communicate
with other clusters to form a distributed network of clusters. Another frequently
used phrase is web system, which is a collection of hardware and software that con-
stitutes a portal available on the Internet. A web system can be deployed on one
of mentioned architectures, by installing server software on the nodes. A node that
runs a server application is called a server (or a web server). An application that
connects to a web system and sends requests is called a client, and it is most often
a web browser. In cases where a web system runs on more than one node, a load
balancing algorithm is required. It describes the decision process used to distribute
incoming client requests among servers of a web system.

Load balancing is naturally an important aspect of every web system that can
be deployed on a cluster of nodes. Hence, in recent years, numerous load balanc-
ing algorithms have been invented, tested and documented. The approaches differ
depending on many factors, such as the distribution of the system, used hardware,
the homogeneity and size of the cluster and more. The main focus of this section is
to gather and systematize the knowledge about load balancing, in order to provide
a clear background for issues addressed in this article.

4 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

2.1 Classifications of Load Balancing Algorithms

Load balancing algorithms can be categorized [10] based on four important features:

• physical location of cluster nodes,

• visibility in IP network,

• OSI model layer on which they operate,

• static or dynamic character.

Physical location of cluster nodes can be classified as local scale-out and global
scale-out. Local scale-out is an installation where all the nodes reside in a separate
area, close to each other and interconnected. If a web system is composed of geo-
graphically distributed servers, it is called a global scale-out setup. The distribution
of servers is a key factor when designing a load balancing algorithm.

As far as visibility in IP network is concerned, two classes can be determined –
web clusters and distributed web systems. If the whole system is visible under one
virtual IP address, it is often called a web cluster or a cluster-based web system. This
setup can be accomplished in several ways, usually by directing the incoming traffic
to nodes via a front-end network device (switch or router), which often acts as a load
balancer. In contrast, distributed web systems are structures where multiple nodes
are visible to the clients under their distinct IP addresses. In these cases, mostly
DNS servers with dedicated algorithms are employed to provide load balancing [15].
Intuitively, most web clusters are local scale-out setups, and many distributed web
systems are built on global scale-out architectures, but this is not always the case.

The next categorization is based on the OSI model layer, on which the load
balancing is executed. In case of web clusters, the network device which distributes
load among cluster nodes commonly operates on layer 2, 3 or 4 [10]. It is not a rule,
though, some algorithms include web switches that are aware of the application
content (OSI layer 7) of incoming requests and consider it in decision process [11].
Layer 7 policies can likewise be based on a software dispatcher incorporated in a web
server, which reroutes requests internally using the knowledge of request content and
application logic.

Finally, load balancing algorithms can be categorized as static and dynamic.
Static algorithms base on initial configuration that does not change in time, for
example number of servers or their computing power. Round-Robin (RR) and
Weighted Round-Robin (WRR) are good examples – they are widely used in web
systems with satisfying results, thanks to being uncomplicated and not introducing
considerable overheads. For these reasons they are also a good benchmark while
testing more complex algorithms. Dynamic load balancing actively uses feedback
from servers, for example current load or number of queued requests, to make request
distribution decisions. Popular algorithms include shortest queue, least-connection
and load-based approaches [11]. Although static algorithms are often sufficient for
smaller, less complicated systems, they do not provide elasticity and are poorly fit-
ted for systems with dynamic and database-driven workloads. It has been shown

Two-Layer Load Balancing for Onedata System 5

in many publications that a well-designed dynamic algorithm can manifest better
performance than RR or WRR in more complex systems. This is why dynamic al-
gorithms are subject to research and there have been many attempts to create new,
effective solutions.

2.2 Related Works

This section describes several examples of dynamic load balancing algorithms which
can be found in literature. The first one is a load balancing algorithm presented
in [12], intended for web clusters. It is based on an approximation model which
helps estimate the utilization and capacity of web servers. In addition, feedback
from servers is used to correct the estimation errors of the model. The knowledge
gathered in this way is used to make load balancing decisions and the results are
very appealing. However, the whole logic is enveloped in a complicated web switch
and application servers have to be compatible with it.

Another algorithm for web clusters was presented in [13] and has also been
proven to give better results than static algorithms. It utilizes a theoretical model
based on Markov chain and a probability generating function. The analysis covers
queue lengths and mean cyclic time for queries, and the authors show that the
proposed model is realistic and applicable in load balancing. Nonetheless, it is
not universal, as it assumes the environment to be a web cluster with a special
hierarchical architecture.

Remarkable algorithms have also been developed in the field of distributed web
systems. In such systems, load balancing is executed by DNS servers. Basic ap-
proach uses Round-Robin policy to distribute load among multiple servers, but often
other algorithms are employed with better results than simple DNS RR. The authors
of [14] proposed a solution where the DNS server (working in RR mode) does not
require modifications, but it is dynamically updated with the list of available web
servers. Based on the knowledge of current load of servers and a configurable thresh-
old, the algorithm decides which servers are overloaded and should be temporarily
removed from DNS server’s list. Its advantage is compatibility with third party DNS
server software, as the updates are part of DNS specification (see RFC 2136 [16]).
However, the mechanism requires a load balancing module that gathers monitoring
data from the servers and performs the updates. It might introduce substantial
overheads and delays in reacting to current load fluctuations. What is more, this
approach might be insufficient in systems with high incoming network traffic, be-
cause of DNS response caching in intermediate DNS servers and in client machines.
Overloaded nodes would still receive requests until the expiry of a DNS reply.

Other algorithms include customizations of the DNS servers, for example in [15],
where they are modified to direct clients to geographically closest web servers. The
purpose is to reduce network impact on communication and it is achieved using
a proximity algorithm. Moreover, if a web server becomes overloaded, it delegates
some requests with a simple HTTP redirect. This should enhance the Quality of
Service of the whole system, but it is not trivial to decide when and where such

6 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

redirects should be performed. If this issue is handled wrongly, the response times
of the web system might increase. Moreover, if redirected requests reach a server
that is overloaded too, it might cause another redirection, which leads to undesirable
instability in periods of high network traffic.

To summarize, there are numerous load balancing algorithms documented, some
are dedicated for certain systems and not each of them can be adapted to be used
elsewhere. To the best of our knowledge, none of discussed policies could be em-
ployed with satisfying results in highly scalable, distributed systems with wide re-
quest type spectrum, such as Onedata. The reasons are usually connected with
architectural assumptions of these solutions or the lack of features that are crucial
in such systems.

3 LOAD BALANCING IN ONEDATA – REQUIREMENTS ANALYSIS

This section is intended to provide overview on the Onedata system, its use cases
and main features. It outlines the challenges connected with designing an effective
load balancing algorithm that would be compatible with its architecture and have
desired qualities.

3.1 Onedata Overview

The main goal of Onedata is to provide unified and efficient access to data stored
in globally distributed environments [8]. The need for such system was initially
observed among users of big computing infrastructures [19], such as PL-Grid (The
Polish Grid Infrastructure) [17] or EGI (The European Grid Infrastructure) [18].
Many scientists of various disciplines conduct data-intensive research, and some-
times they would like to simultaneously use infrastructures located in different data
centres, or cooperate with research associates in other institutions. Currently, it is
inconvenient as the users often have to manually manage and migrate their data
between different data centres. What is more, various storage systems that they
use have different interfaces and often require technical knowledge to use. Onedata

removes these barriers by virtualizing globally distributed storage systems of dif-
ferent providers. In other words, it introduces a virtual file system that uses the
collective resources of all storage systems to which a user has access and gives the
user a unified view on his data. With data management and migration handled
transparently to the users, it is an excellent tool for any time, any place data ac-
cess. What distinguishes Onedata from other similar tools is its support for High
Performance Computing (HPC), which is crucial from the perspective of computing
infrastructures users. While Onedata was originally dedicated for big data centres
and scientists, it might have potential in the commercial market too. It is possible
because the today’s everyday users are encouraged to store their data in clouds and
would like to have a coherent and uniform view on their data.

Two-Layer Load Balancing for Onedata System 7

3.1.1 System Architecture

From the global point of view, Onedata is composed of many cooperating deploy-
ments, one per every provider that decides to enter the Onedata system with its
storage resources (see Figure 1). Such deployment is called Oneprovider cluster

and is essentially a web system hosted on a cluster of nodes. The instances of
Oneprovider clusters cooperate globally to unify user’s view on his data. The
significant feature of this cooperation is that the providers can retain their auton-
omy and do not have to trust each other. This is achieved with a mediator called
GlobalRegistry and other innovative architectural solutions [8]. This paper describes
a load balancing algorithm that is limited to the context of a single Oneprovider

cluster instance.

Provider 1

oneclientProcess
of User

Computing
Element

home, scratch,
archive, etc.

oneprovider
cluster

Provider 2

home, scratch,
archive, etc.

Storage
Systems Storage

Systems

User

PC with oneclient
or web browser

WEB GUI
REST

CDMI
POSIX CLIENT

GlobalRegistry

Figure 1. Exemplary environment with Onedata

Oneprovider cluster is a distributed application deployed on multiple nodes,
each having its own, external IP address and each connected to underlying storage
systems. The main responsibilities of Oneprovider cluster include file metadata
management, data access coordination and, most importantly in the context of load
balancing, processing of user requests. The application is written in Erlang, which
is renowned for its powerful distribution mechanisms, as well as parallel processing
capabilities. This choice of technology has proven advantageous in the light of
scalability and high availability requirements of Onedata.

In reference to classifications presented before, the architecture of Oneprovider
cluster falls in the category of distributed web systems, and is based on a local
scale-out infrastructure. This is an unusual setup, and in connection with mech-

8 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

anisms implicitly offered by Erlang, it constitutes a unique case for load balanc-
ing.

3.1.2 Client and Request Types

There are several interfaces through which the Onedata system can be accessed.
Firstly, a client application called Oneclient, which exposes a standard POSIX
file system interface. Secondly, an intuitive web GUI that provides easy access
from any place connected to the Internet. Finally, REST and CDMI (Cloud Data
Management Interface) endpoints that are suited for third party service developers.

The Oneclient application is based on FUSE (Filesystem in Userspace). It al-
lows for mounting a virtual file system in UNIX-based systems, so that a Onedata

user can access his data exactly like on a local storage. Oneclient communicates
with a Oneprovider cluster and handles low level file management transparently.
This is a perfect solution for a typical user, but can also greatly facilitate computa-
tions and experiments performed by scientists in data centres. Onedata puts a great
importance on support for HPC and the client application is fitted to handle data-
intensive operations. If the host of Oneclient has direct access to storage systems
used by Oneprovider cluster, their communication is limited to metadata only
and Oneclient reads and writes the data directly from the storage systems. In other
cases, e.g. when it is installed on a personal notebook, it works in a slower mode, as
the Oneprovider cluster has to mediate in all file operations. Hence, the client
applications can generate various types of requests. In both cases (direct and remote
file access) it performs numerous, lightweight metadata requests, such as retrieving
physical location of a file. However, a remote Oneclient (e.g. installed on a PC)
has to send and receive a lot of data through the network connection during I/O
operations, which consist of multiple read and write requests. It is also possible for
a directly connected Oneclient to require data transfers on the wire, for instance
when some files are located on the storage of another provider.

The web GUI was designed to provide access to data without installation of
any software and ensure a user-friendly experience. It features an intuitive and re-
sponsive file manager with data sharing and publishing capabilities, among others.
The communication with Oneprovider cluster is based on secure HTTPS and
websocket protocols, thus some connections can be kept alive for a long time. No-
ticeably, all the operations must be performed via Oneprovider cluster, including
those that cause high network interface usage by performing file uploads and down-
loads. On the other hand, some requests might be lightweight (e.g. renaming a file),
or use a lot of computing resources (e.g. removing large directories).

Third party service developers can use the REST and CDMI APIs to integrate
with Onedata. They both rely on stateless, secure HTTPS connections. The REST
endpoints offer most file operations in a robust, concise and well documented API
based on interoperable JSON. CDMI complaint interface, that allows both low and
high level operations on user data, constitutes a more complicated yet usable and
powerful alternative. The great advantage of CDMI is introduction of file opera-

Two-Layer Load Balancing for Onedata System 9

tions that are not available in Oneclient, for example issuing copying of large files
and directories, often used in pre-staging of content before data-intensive computa-
tions. As far as REST and CDMI are concerned, the processing time and volume
of requests may vary dramatically depending on the type of operations performed.
In addition, some requests do not carry much information on the wire, but might
consume considerable amounts of server’s processing power or memory (e.g. copy-
ing large files). Those interfaces might contribute considerably to Oneprovider

cluster load, especially when it is deployed on a Grid infrastructure and integrated
with middleware or job schedulers.

Noticeably, some of Oneprovider cluster load results from communication
with GlobalRegistry and other Oneprovider clusters. It is based on REST in-
terfaces and essentially the performed requests have the same characteristics as
described above. Hence, this communication is not perceived as a separate class of
requests.

Oneclient Oneclient web GUI REST & CDMI
direct i/o remote

light ++ + + +

small transfer + ++ + +

large transfer – – ++ ++

computationally requiring – – + ++

Table 1. Request types in Onedata

Considering the impact of requests on resource usage, we classified them into
four categories: light, small transfer, large transfer and computationally requiring.
Light requests have high priority and should be processed with no delays, i.e. meta-
data requests. They do not carry much information on the wire nor use much
computational resources. Small transfer requests carry minor amounts of data back
and/or forth, for instance read/write operations generated by Oneclient working in
remote mode. Requests classified as large transfer carry big data payloads that can
cause high usage of network interfaces. Finally, computationally requiring requests
consume significant amounts of computing power to be processed. Table 1 contains
a summary of request categories in Onedata. The number of ‘+’ signs indicates how
often such requests appear for different interfaces.

The variety of requests is significant in the context of load balancing, as different
requests have different impact on load of cluster nodes, both network and computa-
tional (CPU, memory). It is also important that in the Oneclient application we
have full control over server preference when connecting to Oneprovider cluster.
However, in case of other interfaces (all HTTP based), the only way to control the
choice of servers by the clients is to use a DNS server. Even then, we still cannot
influence the way the DNS resolvers and web browsers work. For those reasons,
Onedata is a great example of a distributed web system that cannot fully use all of
its design advantages without a well suited load balancing algorithm.

10 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

3.1.3 Onedata Use Cases

To better explain the influence of different users and requests on a Oneprovider

cluster in the context of load balancing, some concrete use cases of different inter-
faces are presented below.

As far as web GUI is concerned, one of the key functionalities is upload and
download of files. This relates both to private content and shared files that can be
downloaded by anyone possessing a valid URL. Such operations cause a substantial
load on network interfaces and generate I/O operations on the server.

Considering Oneclient, when a data center user is performing data-intensive
computations on a directly connected storage, hundreds of light metadata requests
are generated and they should be handled quickly so as not to limit the Oneclient

performance.
Further on, a researcher might want to use a copy of a huge file with gigabytes

of data as an input to his simulation. He would then use the CDMI interface, most
probably indirectly by middleware that can pre-stage his data. Such request requires
lots of CPU time, RAM and I/O operations to be processed.

3.2 Load Balancing Scenarios

Bearing in mind the above-mentioned characteristics of Onedata, we identified three
representative scenarios that depict requirements of load balancing for Oneprovider
cluster:

• sharp load fluctuations,

• unbalanced use of resources,

• node failure.

The first scenario includes a set of clients (of any type) connected to a node
of Oneprovider cluster (node A). Assume that all other nodes maintain similar
number of connections at the time, and the cluster load is balanced. However, it is
possible that suddenly some of the clients of node A greatly increase the intensity
of their requests, as, for instance, a large grid job has started. Node A becomes
overloaded and there is no possibility of redirecting the clients to other nodes without
breaking the connections. A mechanism is required that would allow for internal
rerouting of requests to nodes which have more free resources.

Another example shows why the payloads and processing time of requests should
be taken into account. Consider two nodes (A and B), which hold a comparable
number of connections. However, node A has received a lot of file upload/download
requests from web clients and its interfaces are practically exhausted. Nevertheless,
it still has reserves of computing power. On the other hand, node B is busy with
processing multiple, computationally requiring CDMI requests which causes full
CPU utilization, while its network interfaces stand practically unused. The cluster
should direct new connections to node B, but at the same time internally delegate

Two-Layer Load Balancing for Onedata System 11

some requests from node B to node A to achieve optimal utilization of resources on
both nodes.

The next case regards a cluster of nodes and a situation where one of the nodes
(node A) becomes temporarily nonoperational. The reason might be either a network
malfunction, software failure or overload. While it is not possible to amend existing
connections of node A, the system should be able to stop new clients from connecting
to it and direct them to healthy nodes.

All the aforementioned scenarios are possible, and while such cases might not
occur often, the system must be able to react rationally in any circumstances. Beside
the specific scenarios where a load balancing algorithm is indispensable, there are
also general requirements that it must fulfil, as described below.

3.3 Load Balancing Challenges

Firstly, the main reason of introducing any load balancing algorithm is achieving
scalability. Basically, it means ability to increase system’s performance by extending
the cluster with new nodes. Naturally, the bigger the cluster, the less improvement
will be introduced with new extensions, as the overheads of managing such an infras-
tructure and maintaining communication between the nodes become too substantial.
The desired load balancing algorithm should allow for building clusters big enough
to handle expected number of clients.

Other crucial features for distributed systems are High Availability (HA) and
Quality of Service (QoS). The former means that a service should remain fully
operational despite failures of some nodes or components. The latter, from the
user’s point of view, is how efficient, responsive and failure-free the service is.
Load balancing algorithm can have a great influence on both of these aspects if
it can instantly react to undesired situations and minimize traffic on overloaded
nodes.

An optimal load balancing solution should incorporate mechanisms that would
allow for maintaining comparable resource utilization on all nodes of a cluster, which
includes computational resources as well as network interfaces. It is especially im-
portant that none of the nodes becomes significantly more loaded than the others.
Another feature that is somehow connected is avoiding bottlenecks. When this is
neglected, it might ruin the system’s scalability and the potential of parallel pro-
cessing.

Manageability is also a relevant aspect. The system administrators should be
able to easily modify the size of a cluster or migrate some applications between
servers, while the load balancing algorithm adapts dynamically to the new circum-
stances.

Last, but not least, the distributed architecture of target systems must be con-
sidered when designing a load balancing algorithm. It must be well integrated, but
should also exploit the benefits of distribution.

12 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

4 TWO-LEVEL LOAD BALANCING

Considering all the aforementioned requirements, an original load balancing algo-
rithm, called Two-Level Load Balancing (TLLB), has been designed and evaluated.
The two levels refer to DNS servers and internal, application layer (OSI 7) dis-
patchers. A sequence diagram for reference is presented in Figure 2. It presents the
complete flow of requests, starting from domain resolving and ending with a HTTPS
reply from a server, with symbols indicating where each level of load balancing is
applied. The whole algorithm is discussed in detail later on.

Web client Public DNS oneprovider cluster

DNS request

DNS response (NS)

DNS request

DNS response (A)

HTTPS request

HTTPS response

Load balancing
decision on
DNS level

Load balancing
decision on

dispatcher level

Figure 2. Two-level load balancing – sequence diagram

A significant aspect of the presented approach is that both levels are handled by
software that is fully integrated in the cluster. Every node has its own external IP
address and contains a DNS server and a dispatcher module. Both modules operate
as part of the Oneprovider cluster application. It means that they can communi-
cate with other components of the system, one of which is Central Cluster Manager
(CCM). One of its responsibilities is collecting monitoring data from Oneprovider

cluster nodes, which contains current load (CPU, memory) and network interfaces
usage. This data can be used for load balancing decisions on both levels. Obviously,
gathering monitoring data and processing it introduce overheads, and this fact is
usually considered an important factor when comparing a dynamic algorithm to
static algorithms like RR. It often happens that complicated supervision methods

Two-Layer Load Balancing for Onedata System 13

and decision algorithms slow down the whole system so much that there is no point
in using them. However, the monitoring in Oneprovider cluster was designed for
advanced diagnostic and administrative tools. It is essential anyway, thus it can
be used in load balancing with practically no additional cost. The algorithms are
uncomplicated, and the data is processed by the CCM and served to DNS servers
and dispatchers in a form of ready-to-use load balancing instructions. They are
updated periodically in short intervals so that the cluster can quickly react to load
fluctuations.

4.1 First Level – DNS Server

By default, all nodes IP addresses appear in the DNS response. High Availability
(HA) is achieved by including multiple addresses in responses and the ability to
temporarily exclude nodes that are nonoperational or unreachable. The nodes with
lower load have proportionally greater probability to be placed at the top of the
list (see Figure 3). While this cannot ensure that they will be preferred, most web
browsers and operating system level resolvers will be more eager to choose addresses
that come first. Hence, this algorithm produces the desired effects. Currently, there
is no method to impose the record choice priorities on clients of Onedata, which are
all based on HTTP protocol. The SRV DNS records could be an answer to this,
but the HTTP protocol does not assume its use and popular web browsers do not
support it. The load of a node, L, is calculated using a weighted average, as in
Equation (1).

L =
α ∗ net load + β ∗ cpu load + γ ∗mem load

α + β + γ
(1)

where net load is network interfaces load, cpu load is the CPU usage and mem load
is the memory usage. They are expressed in per cents and so is the resulting load.
The network usage ratio depends on maximum interface throughput. The values
of α, β and γ are determined experimentally. If α coefficient is dominating, the
DNS server will be eager to lighten the network traffic to nodes with heavily utilized
interfaces, which is a desired feature. Nonetheless, computational load must be also
taken into consideration so that more clients can be directed to nodes with free
resources. In Figure 3, an example DNS instructions has been shown, where one of
the nodes has been temporarily removed because of a failure or connection problem.
The sequence in exemplary response has been randomized as described before.

4.2 Second Level – Dispatcher

The dispatcher module has been introduced in order to increase control, refine the
load balancing algorithm and handle edge cases. The instructions for dispatchers
are created based on computational load of a node, according to Equation (2).

14 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

L =
β ∗ cpu load + γ ∗mem load

β + γ
(2)

where cpu load is the CPU usage and mem load is the memory usage. The β and
γ coefficient values are selected experimentally. The network traffic is omitted, as
the dispatcher does not influence the external interfaces usage, regardless of its de-
cisions. In natural circumstances, when the nodes of Oneprovider cluster are
similarly loaded, the dispatcher has a very low impact on request processing time
as it simply follows the incoming requests to handler modules residing on the same
node. However, it is crucial in cases when the load is fluctuating sharply. If the
node which received the request is significantly more loaded than the others, the
dispatcher will delegate such request to another one. This is determined using
a threshold coefficient (Equation (3)).

L

Lmin

> ρ => overloaded. (3)

The ρ coefficient value is selected experimentally. The load of each node – L – is
compared to the lowest load in the cluster – Lmin, and if the ratio exceeds the ρ
threshold, the node is considered overloaded and the generated instructions for dis-
patchers will strive to correct that situation. They include information how often
and to which nodes should requests be delegated (see Figure 3). The target node
for delegation is chosen in weighted random manner, where the least loaded nodes
are most probable to be chosen. The randomization approach introduces very low
overheads while giving satisfying results, and allows for parallelization of request
redirecting as the load balancing instructions are processed in read-only mode. Nat-
urally, the request rerouting itself increases its processing time. However, given
that the Oneprovider cluster nodes are interconnected with high performance in-
terfaces and communication mechanisms in Erlang are greatly optimized, it is still
beneficial to delegate the request as it will be processed faster than on a heavily
loaded node. This is especially true for requests that consume a lot of resources to
be processed.

4.3 Request Flow in TLLB

Figure 4 presents a Oneprovider cluster composed of two nodes, outlines all mod-
ules and entities that take part in load balancing process and shows the requests
flow during web GUI usage.

As mentioned before, the CCM module prepares instructions for DNS and
dispatcher modules based on monitoring data and propagates them periodically
(step (0) in Figure 4). When a user wants to use the web GUI, firstly his browser
has to resolve the Oneprovider cluster domain into an IP address. The domain
must be public and recognizable by global DNS servers. The client performs a DNS
request to a public DNS server, and receives a response indicating where it should

Two-Layer Load Balancing for Onedata System 15

200.0.0.3
200.0.0.1
200.0.0.2

probabilityIP
0.26200.0.0.1Node A
0.31200.0.0.2Node B
0.43200.0.0.3Node C

Exemplary DNS response:

a) DNS instructions

------Node D

b) dispatcher instructions

probability
1.0Node A

probability
0.20Node A
0.32Node B
0.48Node C

Node overloadedNode OK

All requests
processed locally

80 % of requests dele-
gated to other nodes

Figure 3. a) DNS and b) dispatcher instructions

Public DNS

ONEDATA CLUSTER

Node 1
200.0.0.1

HTTPS
:443

Node 2
200.0.0.2

CENTRAL
CLUSTER

MANAGER

Node1:
Node2:
...

HANDLER
MODULE

(1) DNS query to public DNS
(2) DNS query to internal DNS
(3) HTTPS request and response

(4b) Request rerouting in case
of node 2 overload

(0) Updates of LB advices

DISPATCHER

DNS

DISPATCHER

DNS

HANDLER
MODULE

user’s web
browser

THE INTERNET

(1)
(2)

(3)

(1)

(2)

(3)
(4a)

(0)

(0)

(0) (0)

(4b)

DNS
:53

DNS
:53

HTTPS
:443

(4a) Local request processing

Figure 4. Request flow in Two-Level Load Balancing

ask again (step (1)). The response list contains hostnames of all the Oneprovider

cluster nodes. The client continues to resolve the domain by asking one of the
internal DNS servers (step (2)). The queried server returns a list of IP addresses
of cluster nodes (sorted in a manner mentioned before), and one of the addresses is
finally chosen. The client performs a HTTPS request, which reaches the dispatcher
(step (3)). If the target node is not highly loaded, the request is processed locally
(step (4a)) and the response is returned to the client. However, in case of an over-
load, delegation is performed and another, less loaded node evaluates the request
(step (4b)). Eventually, the client receives the response, which has been processed

16 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

unnoticeably longer. It is important that all nodes in the cluster are able to handle
any request, so the delegation algorithm is uncomplicated.

4.4 Synergy of the Two Levels

Ultimately, it should be justified why both load balancing levels shall be used instead
of just one. To start with, DNS servers are indispensable in distributed web systems,
i.e., when the system is reachable under multiple IP addresses. This issue could be
settled by using a static, third party DNS server that uses Round-Robin shuffling.
However, the proposed solution gives great elasticity and ability to quickly react to
changes in the cluster structure and possible node failures. Moreover, by having
access to the system status, the load balancing can be finer and better distribute
incoming connections. In addition, the integration of DNS servers increases main-
tainability of the whole system. Secondly, the presence of dispatchers is necessary,
as DNS load balancing has too high inertia. It means that it cannot responsively
control the flow of requests, and it is mostly because of its responses Time To Live
(TTL). For Oneprovider cluster it is set to a very low value of 60 seconds, but
during this time the cluster status might change dramatically while the clients will
still be using cached DNS responses. Hence, dispatchers are indispensable for finer
and more responsive load balancing. Arguably, the two levels of load balancing
create a synergy, which utilizes their best features.

5 TEST RESULTS

To evaluate the TLLB algorithm, a test environment has been set up. It was com-
posed of multiple, homogeneous virtual nodes with enabled network emulation.
Oneprovider cluster instances of different sizes were deployed on some nodes,
while other served as clients that generated requests. The conducted tests included
scalability tests based on throughput measurements. In addition, a test scenario
which emphasises the two-level synergy has been evaluated. The obtained results
have been normalized for more convenient analysis.

The clients’ behaviour was simulated, using requests of various types and sizes –
and the configurations were constant in the scope of each test. Each test was re-
peated multiple times and the outcomes were averaged. The repeatability of test
results was high.

The aim of these tests was to assess the behaviour of the TLLB algorithm in
a virtual environment, identical with target physical environment that the system
could be deployed on. The tests were designed to ensure assumed features of the
TLLB algorithm, such as the ability to maintain efficient system scaling or delegate
requests on dispatcher level. This way, the algorithm can be safely introduced in
production environment, where further testing and tuning will be performed.

The purpose of the first test was to examine the scalability of Oneprovider

cluster depending on the use of different load balancing levels. This way, four
combinations were obtained:

Two-Layer Load Balancing for Onedata System 17

1. none,

2. dns,

3. disp,

4. dns disp (see Figure 5).

Combination 1. included a DNS server working in RR mode and disabled dispatcher,
i.e. all requests were processed on the target node. It served as a reference mea-
surement as the simplest, static solution with none of proposed load balancing al-
gorithms enabled. The next combinations were: 2. enabled DNS level and disabled
dispatcher, 3. disabled DNS (RR mode) and enabled dispatcher and 4. Two-Level
Load Balancing. The results are presented in Figure 5.

Figure 5. Scalability – throughput (normalized)

The results show that none of the proposed load balancing levels introduce
significant overheads as their performance is comparable to static algorithms. In
this case, an improvement over static algorithms was not anticipated because all the
nodes were similarly loaded during the tests. Nevertheless, the test results justify
the use of dedicated DNS servers in Oneprovider cluster. They achieve similar
performance as standard RR algorithms, but also ensure elasticity and HA of the
system by the ability to temporary exclude nonoperational nodes.

For the next test, a specific scenario was designed to evaluate the dispatcher
efficiency. Only half of the nodes were receiving requests to verify if the dispatchers
can cope with such situation. For reference, the tests were repeated with dispatcher

18 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

load balancing turned off, which is indicated by ‘none’ data series. The ‘dispatcher’
data series includes results when dispatchers were enabled. The results are depicted
in Figure 6.

Figure 6. Dispatcher performance with uneven node loads – throughput (normalized)

Obtained results show that dispatchers were able to use free resources on the
nodes that did not receive requests. The overall system throughput was nearly two
times greater compared to the case when dispatchers were disabled – as requests were
rerouted internally to the free nodes, they could be processed more quickly. It was
not possible to double the throughput as the requests rerouting introduces overheads
on the processing time, but the results prove the value of dispatchers. Their use
ensures resistance to load fluctuations and efficient use of collective resources of the
whole Oneprovider cluster.

6 CONCLUSIONS AND FUTURE WORK

The complexity and size of distributed web systems increases and so does the demand
for effective load balancing algorithms. Their requirements have been identified
using the case of Onedata, considering the various use cases of the system and
diversity of requests that it processes. Finally, an innovative solution has been
designed, called Two-Level Load Balancing. The first level refers to DNS servers, and
the second to dispatchers that operate on application level and are able to reroute
requests inside a cluster of nodes. Both levels are encapsulated in the Oneprovider

cluster application, which allows for low-cost use of monitoring data. The DNS
servers distribute load among network interfaces of the cluster in a balanced manner,
while dispatchers correct load fluctuations.

Two-Layer Load Balancing for Onedata System 19

The proposed Two-Level Load Balancing has been implemented and evaluated.
It has proven to be a suitable choice for the Onedata system. The obtained results
show that a Oneprovider cluster instance can benefit from the use of TLLB in
cases of unbalanced or fluctuating loads, while during smoother periods it does not
impair the performance of the system. One of the reasons the overheads are neg-
ligible is the simplicity of the algorithms used on both levels. While the two level
approach is not novel, the proposed algorithm features a highly distributed architec-
ture based on Erlang language, where load balancing modules are fully integrated
with the system. This way, it becomes a unique approach. What is more, it has the
potential to be used in other scalable web systems, not only in the field of global
data access.

The proposed algorithm still has the potential for improvements. It has been
tested in environment with simulated clients and yielded satisfying results. However,
further testing and tuning should be performed in production environment. What
is more, there are techniques that could potentially improve its performance. They
include probabilistic load prediction based on history of requests, admission control
or content awareness. Importantly, their introduction must be careful and well
thought out, as it might cause overheads that could impair the system’s performance.

REFERENCES

[1] Martin, A.: OneDrive vs. Google Drive vs. Dropbox: The
Best Cloud Storage Service of 2017. Online. Accessed 13.09.2017.
http://www.alphr.com/dropbox/7034/onedrive-vs-google-drive-vs-dropbox-

the-best-cloud-storage-service-of-2017.

[2] Amazon Web Services (AWS) for HPC: Online. Accessed 13.09.2017. http://aws.
amazon.com/hpc/.

[3] IBM HPC Cloud: Online. Accessed 13.09.2017. https://ibm.com/systems/

spectrum-computing/solutions/hpccloud.html.

[4] facebook: Online. Accessed 13.09.2017. https://facebook.com.

[5] twitter: Online. Accessed 13.09.2017. https://twitter.com.

[6] gmail: Online. Accessed 13.09.2017. https://gmail.com.

[7] onedata: Online. Accessed 13.09.2017. https://onedata.org.

[8] Dutka, L.—Wrzeszcz, M.—Lichoń, T.—S lota, R.—Zemek, K.—
Trzepla, K.—Opio la, L.—S lota, R.—Kitowski, J.: Onedata – A Step For-
ward Towards Globalization of Data Access for Computing Infrastructures. Procedia
Computer Science, Vol. 51, 2015, pp. 2843–2847, doi: 10.1016/j.procs.2015.05.445.

[9] Bubak, M.—Kitowski, J.—Wiatr, K. (Eds.): eScience on Distributed Comput-
ing Infrastructure. Springer, Lecture Notes in Computer Science, Vol. 8500, 2014.
ISBN 978-3-319-10893-3, doi: 10.1007/978-3-319-10894-0.

[10] Gilly, K.—Juiz, C.—Puigjaner, R.: An Up-to-Date Survey in Web Load Bal-
ancing. World Wide Web, Vol. 14, 2011, No. 2, pp. 105–131.

http://www.alphr.com/dropbox/7034/onedrive-vs-google-drive-vs-dropbox-the-best-cloud-storage-service-of-2017
http://www.alphr.com/dropbox/7034/onedrive-vs-google-drive-vs-dropbox-the-best-cloud-storage-service-of-2017
http://aws.amazon.com/hpc/
http://aws.amazon.com/hpc/
https://ibm.com/systems/spectrum-computing/solutions/hpccloud.html
https://ibm.com/systems/spectrum-computing/solutions/hpccloud.html
https://facebook.com
https://twitter.com
https://gmail.com
https://onedata.org
https://doi.org/10.1016/j.procs.2015.05.445
https://doi.org/10.1007/978-3-319-10894-0

20 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

[11] Tiwari, A.—Kanungo, P.: Dynamic Load Balancing Algorithm for Scalable Het-
erogeneous Web Server Cluster with Content Awareness. Trendz in Information Scien-
ces Computing (TISC), 2010, pp. 143–148, doi: 10.1109/TISC.2010.5714626.

[12] Sharifian, S.—Motamedi, S. A.—Akbari, M. K.: An Approximation-Based
Load-Balancing Algorithm with Admission Control for Cluster Web Servers with Dy-
namic Workloads. The Journal of Supercomputing, Vol. 53, 2010, No. 3, pp. 440–463,
doi: 10.1007/s11227-009-0303-8.

[13] Bao, L.—Zhao, D.—Zhao, Y.: A Dynamic Dispatcher-Based Scheduling Algo-
rithm on Load Balancing for Web Server Cluster. Web Information Systems and
Mining (WISM 2010). Springer, Lecture Notes in Computer Science, Vol. 6318, 2010,
pp. 95–102, doi: 10.1007/978-3-642-16515-3 13.

[14] Moon, J.-B.—Kim, M.-H.: Dynamic Load Balancing Method Based on DNS
for Distributed Web Systems. E-Commerce and Web Technologies (EC-Web 2005).
Springer, Lecture Notes in Computer Science, Vol. 3590, 2005, pp. 238–247, doi:
10.1007/11545163 24.

[15] Cardellini, V.—Colajanni, M.—Yu, P. S.: Geographic Load Balancing for
Scalable Distributed Web Systems. Proceedings of the 8th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
2000, pp. 20–27, doi: 10.1109/MASCOT.2000.876425.

[16] RFC 2136: Online. Accessed 13.09.2017. https://ietf.org/rfc/rfc2136.txt.

[17] PL-Grid Infrastructure: Online. Accessed 13.09.2017. http://plgrid.pl/en.

[18] European Grid Infrastructure: Online. Accessed 13.09.2017. https://egi.eu/.

[19] S lota, R.—Dutka, L.—Wrzeszcz, M.—Kryza, B.—Nikolow, D.—
Król, D.—Kitowski, J.: Storage Management Systems for Organizationally Dis-
tributed Environments – PLGrid PLUS Case Study. Parallel Processing and Applied
Mathematics (PPAM 2013). Springer, Lecture Notes in Computer Science, Vol. 8384,
2014, pp. 724–733, doi: 10.1007/978-3-642-55224-3 68.

 Lukasz Opio la received his Master’s degree in computer scien-
ce from the University of Science and Technology (AGH), Cra-
cow, Poland in 2015. He is currently a Ph.D. student at the
Faculty of Computer Science, Electronics and Telecommunica-
tion at AGH and an employee of the Academic Computer Centre
CYFRONET-AGH. His research areas include data synchroniza-
tion in distributed systems, as well as authentication and autho-
rization infrastructures.

https://doi.org/10.1109/TISC.2010.5714626
https://doi.org/10.1007/s11227-009-0303-8
https://doi.org/10.1007/978-3-642-16515-3_13
https://doi.org/10.1007/11545163_24
https://doi.org/10.1109/MASCOT.2000.876425
https://ietf.org/rfc/rfc2136.txt
http://plgrid.pl/en
https://egi.eu/
https://doi.org/10.1007/978-3-642-55224-3_68

Two-Layer Load Balancing for Onedata System 21

 Lukasz Dutka has significant expertise in cloud systems, large-
scale systems, development of application for business purposes,
team and project management in commercial projects as well as
EU IST projects. He received his Ph.D. in computer science from
the AGH University of Science and Technology, Cracow, Poland.
He has a longstanding experience with managing large develop-
ment teams. His scientific interests include large-scale computer
system, system architectures, component approaches. He is the
author of a modern software development architecture called the
Component-Expert Architecture combining expert systems with

component architectures, with successful applications in commercial and scientific environ-
ments. He has actively participated in a number of EU funded projects including Indigo
DataCloud, EGI Engage, Helix Nebula Science Cloud and many others. Currently he is
the Technical Director of PL-GRID Plus project and leader of Onedata team.

Micha l Wrzeszcz is a Ph.D. student of computer science at the
AGH University of Science and Technology in Cracow, Poland
and an employee of the Academic Computer Centre CYFRO-
NET-AGH. He is the author or co-author of over 20 scientific
papers and conference contributions. His research interests are
transparent data access and distributed computing as well as
artificial intelligence and social networks.

Renata Slota Ph.D., D.Sc., works at the Department of Com-
puter Science of the AGH University of Science and Technology
(AGH) in Cracow, Poland. She is the author or co-author of
about 130 scientific papers. Topics of interest include parallel
and distributed computing, distributed systems, grid and cloud
environments, data management and storage systems, know-
ledge engineering. She has been involved in many national (re-
cently: PL-Grid Core, PL-Grid NG) and international projects
most notably in EU IST, recently: PaaSage, and VirtRoll.
Among others, she worked on the development of Onedata and

Scalarm systems. Member of the Program Committee of the International Conference
on Computational Science (ICCS), and the International Conference on Parallel Process-
ing and Applied Mathematics (PPAM). Reviewer of: Future Generation Computer Sys-
tems (FGCS), Computing and Informatics (CAI), and Computer Science (CSCI) journals.
Currently, she is the Deputy Dean of the Faculty of Computer Science, Electronics and
Telecommunication of AGH.

22 L. Opio la, L. Dutka, M. Wrzeszcz, R. S lota, J. Kitowski

Jacek Kitowski is Full Professor of computer science and Head
of Computer Systems Group at the Department of Computer
Science of the AGH University of Science and Technology in
Cracow, Poland and Head International Affairs at the Academic
Computer Centre CYFRONET-AGH, responsible for interna-
tional collaboration and for developing high-performance sys-
tems and grid/cloud environments. He is author or co-author
of about 240 scientific papers. His topics of interest include
large-scale computations, Grid services and Cloud computing,
distributed storage systems, high availability systems, network

computing, knowledge engineering. He is a member of program committees of many con-
ferences, participant of many international and national projects, funded by the European
Commission, European Defense Agency, Polish National Centre for Research and Devel-
opment and Polish National Science Centre. Director of PLGrid Consortium running
PLGrid e-infrastructure in Poland for scientific computing. Member of Ministry Expert
Body for Scientific Investments.

Computing and Informatics, Vol. 37, 2018, 23–48, doi: 10.4149/cai 2018 1 23

DIFFUSION OF FALSE INFORMATION DURING
PUBLIC CRISES: ANALYSIS BASED
ON THE CELLULAR AUTOMATON METHOD

Xiaoxia Zhu, Jiajia Hao, Yuhe Shen
Tuo Liu, Mengmeng Liu

Economics Management School
Yanshan University
Western of Hebei Street No. 438
066004Qinhuangdao, Hebei Province, China
e-mail: zhuxiaoxia@ysu.edu.cn

Abstract. The progress of false information diffusion in the public crisis is harmful
to the society. When the public crisis occurs, the public respond in different ways
and the public also want to tell others what they think right. But what they think
is right is not recognized by the government. Thus the false information forms and
it begins to diffuse. As the false information spreads, the harm to society magni-
fies gradually. Particularly in network society, false information diffusion can easily
cause secondary hazards and accelerate public crises to a devastating degree. Thus
intervening and controlling the false information diffusion is an important aspect of
the public crisis management. From the perspective of the social network theory,
this study analyzes the progress of false information diffusion in terms of differ-
ent public crisis management strategies and presents the result of false information
diffusion through simulation on cellular automaton of different public crisis manage-
ment strategies. In simulations on cellular automaton, interventions are also carried
to control false information diffusion and alternatives are proposed to help reduce
public crises. This study also extends the theory of false information management,
which is significant for the government to improve the ability to evaluate the false
information and carry out interventions effectively to control the false information
when it begins to diffuse.

Keywords: Cellular automaton, public crisis, false information, intervention mech-
anism, network interactions

Mathematics Subject Classification 2010: 37Fxx, 93Cxx

24 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

1 INTRODUCTION

1.1 Background

When public crises occur, they typically develop rapidly and in unexpected direc-
tions, leading to high uncertainty about future trends, and increasing public con-
cern and interest. Indeed, in recent years, the rapid development of the Internet and
growing number of Internet users through both traditional and mobile platforms has
meant that more and more people are willing to participate in virtual discussions
to express their views, exacerbating the upsurge of public opinion in addition to
traditional channels.

When vast amounts of information are collected, discordant voices are inevitable,
and this creates false information. The outbreak and evolution of recent public crises
has notably been accompanied by the diffusion and dissemination of false informa-
tion, which greatly increases the difficulty of managing such events. Examples of
the diffusion of false information during public crises include the frenzy of buying
radix during the SARS outbreak in 2003, the Wen’an incident in 2008, the panic to
buy salt following the nuclear leak in Japan in 2011, and the DiaoYu Island incident
in 2012. The diffusion of false information during the evolution of a public crisis
not only increases public uncertainty, it also creates obstacles for the crisis recov-
ery and may even endanger social and political stability. Therefore, the effective
management of false information (FIM hereafter) during public crises has become
an important element of research on public crisis management.

1.2 Related Research

Because the diffusion of false information such as spreading rumors in interpersonal
networks is similar to the proliferation of a virus, most rumor spreading models
are drawn from epidemic models. Rapoport and Rebhun [1] were the first to use
an epidemic model to discuss information diffusion problems, while Goffman and
Newill [2] also compared the spread of disease and rumors and used the stability
of the infectious disease spread model to explain the final state of rumors. In the
1960s, Daley and Kendall [3] proposed a mathematical model for rumor spreading
in which individuals are categorized based on their health status, infection status,
and removed or immune status. Their model analyzes the rumor problem by using
random processes and assumes that the probability of role conversion between the
statuses above satisfies a certain mathematical distribution. Although this model
does not fully comply with the actual diffusion of false information, it is a reasonable
approximation under certain conditions.

In recent years, along with the in-depth study of dynamics, rumor spreading
based on dynamics has drawn more scholarly attention. For instance, Dickinson
et al. [4] was another author to compare the spread of infectious diseases with that
of rumors in order to analyze and summarize the correlations in their communication
processes. Similarly, Thompson [5], by using the Daley-Kendall model, took account

Diffusion of False Information During Public Crises 25

of the impact of the differences between susceptible persons and disseminators during
the spread of rumors. Based on statistical data derived from MSN chatrooms, the
author found that population activity is the most sensitive parameter that affects
rumor spreading and that the number of communicators in the 18-34 age group is far
more than those over 55 years old. In addition, this finding shows that increasing
activity can control the size of rumors, but encouraging people to spread rumors
faces many ethical issues. Indeed, according to simulation experiments based on
the collected data, a second wave of rumors tends to spread, which will gradually
become weaker and disappear.

Kawachi [6], by considering the different parties involved, established finite and
infinite dimensional dynamical models and determined the threshold at which ru-
mors spread. In the same vein, Lebensztayn et al. [7] discussed the final state
of rumor spreading, but assumed differences in individual behavior (i.e., randomly
deciding to spread rumors or not).

With a specific focus on the diffusion of false information in public crises, Zhang
and Zhang [8] established an interactive model of rumor spreading and crisis manage-
ment, finding that spreading rumors may have a negative effect on public crises and
providing appropriate recommendations for FIM in such incidents. Huo et al. [9],
who studied the spread of rumors after the occurrence of unexpected events and the
effectiveness of the government response, used simulation data to draw a phase dia-
gram of the system. Finally, Zhong et al. [10] divided information into real and false
to discuss FIM from an ecological perspective, discovering that the diffusion of false
information during public crises has different diffusion rates. Thereafter, Maki and
Thomson [11], and Murray [12] have been carrying out studies using a mathematical
model of rumors that focus on the theoretical analysis. Kawachi et al. [13] consider
the impact of different contacts on the ultimate spread in another paper and used
the mathematical modeling methods to explore the results of the final spread.

Zanette [14] studied the spread of rumors, based on the small-world networks he
established a rumor spread model and drew some conclusions, including the critical
value of the rumor spread. Moreno et al. [15] also established a rumor propagation
model based on scale-free networks and compared conclusions obtained by random
analysis method and by computer simulation. Chinese scholar Wang Xiaofan paid
more attention to clustering coefficient of the network, and she found that increas-
ing clustering coefficient of the network can effectively inhibit the spread of rumors.
Since then, on the basis of two basic network models – small-world networks and
scale-free networks, some other scholars have proposed many modified models of net-
works, such as Newman and Park proposed NP model, Boguna et al. proposed social
distance model, Jin, Girvan and Newman et al. proposed JGN model, Jackson and
Rogers proposed JR model, as well as Vazquez proposed CNN model. Seeger [16]
used chaos theory to explain the deep complex problems of information dissemi-
nation in crisis and put forward some universal problems about the complexity of
information dissemination in crisis, which is extremely important for us to under-
stand the process of information spread in crisis essentially. Monge and Noshir [17]
from the perspective of complex adaptive systems theory proposed a “multi-theory

26 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

and multi-level framework” model. They used mathematical modeling and com-
puter simulation to study coevolution among variable parameters of crisis diffusion
network and they also discussed the structural mechanisms of chaos emergence.

Meanwhile, on the basis of Zanette’s [14] and Moreno’s [15] work, many scholars
extended study about the false information diffusion in public crisis. Pan et al. [18]
from Shanghai Jiaotong University applied Moreno’s [15] rumors spread model on
the variable clustering coefficient scale-free networks, and studied rumors spread
though scale-free networks. Their scale-free networks obey a power law degree dis-
tribution and have variable clustering coefficient. By changing the parameters of
a special network clustering coefficient to observe changes of rumors spread, they
came to the conclusion that spread rumors and clustering coefficient of network
have a negative correlation. Chu and Tong [19] from the theoretical perspective of
crisis diffusion, reviewing the latest theory of crisis diffusion, explored the chaotic
prediction, co-evolution, complex adaptive systems and other complex features of
crisis diffusion.

However, although rumor spreading models are based on mathematical princi-
ples that have a high degree of abstraction, rigorous logic and application breadth,
describing the process of diffusion of false information is somewhat non-intuitive. In
other words, although rumor spreading can be represented by a mathematical model,
dynamics differential equations of infectious diseases is a mathematical model based
on macroeconomic statistics where no microscopic mechanisms are used. So, such
models cannot explain the process completely.

The cellular automaton is a discrete mathematical model, its physical image is
clear, it is fully parallel without truncation errors, etc., such that in recent years
it has become a powerful tool for exploring nonlinear complex systems. Xuan and
Zhang [20] detailed the rumors diffusion model based on the cellular automata.
Their model can reproduce the process of rumors spread through local interaction
among individuals. The individuals to spread false information in public crisis are
discrete and independent, false information diffusion in public crisis is scenario-
dependent, so this article is based on the forecast method and uses cellular automata
to build management simulation model of false information diffusion in public crisis.
According to the thought on policy test, the designed test solution is converted to the
corresponding code. The code is generated into the management simulation model.
Different codes represent different management schemes. Thus the simulation model
reflects phenomenologically the process of false information diffusion in public crisis.

2 RESEARCH HYPOTHESE

FIM during public crises is a process of repeatedly comparing goals and correcting
deviations effectively. Further, the process of FIM during public crises consists of
a series of interconnected, continuous management activities as well as discrete man-
agement activities that are time independent. Meanwhile, the interventions about
false information in public crisis also are simple, complete, coordinate, open, adap-

Diffusion of False Information During Public Crises 27

tive, direct and indirect. Specifically, simplicity means that the relevant government
department manages the false information unilaterally, whereas completeness means
that various management policies, systems, and commands are used in the process
of false information management without their own errors or major defects. In other
words, the fewer the number of such defects or errors generated during implemen-
tation, the higher the degree of completeness of management’s countermeasures;
coordination means that the various strategies used to manage false information
during public crises support and cooperate with each other without contradiction
and conflict in management activities. In addition, open and adaptive management
means that the initiatives of potential recipients can be mobilized. In other words,
the ability to identify potential recipients can be controlled and improved.

To examine the diffusion of false information in different intervention scenarios
during public crises, this study puts forward the following hypothese:

Hypothesis 1. In the process of FIM, coordinated management is more effective
than a simple management strategy.

Hypothesis 2. Open, adaptive management during public crises can effectively
prevent or even eliminate the diffusion of false information, but cannot control the
diffusion direction of false information.

During public crises the frequency of correcting deviations represents manage-
ment skills. In other words, in the process of FIM during public crises, the more
(less) the corrective deviation, the stronger (weaker) are the skills to manage in-
formation. According to ascending order of performing frequency, the execution is
divided into defensive, discrete and continuous. Hence:

Hypothesis 3. The greater the enforcement the better the false information in
public crisis can be controlled.

Any management behavior can effectively correct the deviation to a certain
extent and achieve management objectives. FIM assumes that an individual that
has accepted false information provides false information, whereas an individual that
has not accepted false information maintains the original state.

Hypothesis 4. The lower the acceptance probability of false information in public
crisis the more easily the false information diffusion can be controlled.

3 MODEL DESIGN

3.1 Research Method

Cellular Automaton (CA) is used to simulate and predict the behavior of complex
systems. CA was dating back to the study of Ulam and Von Neumann (the father
of modern computers) in the 1940s. They found a simple iterative calculation al-
gorithm could replace complex models to explain many phenomena in the nature.

28 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

CA uses some very simple local rules to effectively simulate the spatial pattern for-
mation process of complex systems. In 1980s, Wolfram made a lot of contribution
to the development of CA [21]. Now CA is used to simulate natural and artificial
complex systems in physics, chemistry, biology, geography, and other fields [22, 23].
CA’s “bottom-up” research philosophy fully reflects that in complex systems local
individual behavior affects the overall order and direction so it is very suitable for
CA to simulate and predict the formation of public opinion. At the same time, more
and more scholars use CA to simulate and predict the geographic phenomenon. In
1980s, Couceleis used CA to simulate geographic phenomenon and got some im-
portant conclusions [24, 25, 26]. Some scholars also used CA to simulate urban
sprawl [27], land use dynamic evolution [28], volcano spread [29], etc.

Wolfrarm [30] divided CA into four categories according to the dynamic behavior
of cellular automaton:

1. Smooth type: from any initial state, after running a certain period of time,
cellular space keeps a stabilized configuration, that is each cellular refers to
a fixed state and it does not change with time.

2. Cycle type: after running a certain time, a series of simple cellular space tends
to be a fixed structure or periodic structure.

3. Chaos type: from any initial state, after running a certain period of time, every
cellular shows the chaotic non-periodic behavior.

4. Complex: local structure becomes complex, or partial chaos attends, some cel-
lular will continue to spread.

Chaos theory is fundamentally linked to the management of false information in
public crises [31]. As a complicated social phenomenon, the generation and diffusion
of false information during public crises is essentially a kind of complex nonlinear
evolutionary process, which has chaotic characteristics typical of complex systems,
such as the evolution of diffusion randomness, the information variation of the but-
terfly effect, and the propagation path of fractal characteristics [32]. Chaos theory
is an emerging science about nonlinear systems, and it is different from traditional
scientific thoughts that explain social phenomena. It reveals both the unity and the
opposition between inevitability and contingency and between disorder and order,
while also providing two of the most basic complex research paradigms for FIM in
public crises. These two paradigms, namely the simple-complex paradigm (simple
system explaining complex behavior) and the complex-simple paradigm (complex
system driven by simple rules), provide a new methodology to support the theory
of FIM in public crises.

The chaos forecasting method based on chaos theory is a type of method for pre-
dicting nonlinear system evolution [33]. Chaos prediction mainly adopts bottom-up
modeling ideas that assume that the evolution of complex systems is the result of
many primitive interactive roles that aim to simulate macroscopic disorderly phe-
nomena by using micro-level orderly rules. The basic idea is that under the assumed
conditions, a micro-level dynamic mechanism (e.g., rule or policy) aggregates the

Diffusion of False Information During Public Crises 29

results of individual behavior, thus predicting complex scenarios (patterns) at the
macro level. As a general modeling method, predicting chaotic situations focuses
more on the application of chaos theory. Because it mainly explains and analyzes
the formation and evolution of complex phenomena, it is widely used to simulate,
evaluate, and imitate complex socioeconomic phenomena and formulate public man-
agement policy [34]. Further, compared with traditional mathematical models and
simulation methods, the chaos forecasting method can easily describe interactions
among elements. Although some complex phenomena may be difficult to analyze
and express, it can thus accurately simulate them and their evolution. Therefore,
it can vividly and truly reflect the detailed structure and pattern of a large number
of individual interactions in order to predict the future prospects of the evolution
of false information in public crises. In summary, the chaos forecasting method is
an effective research tool for simulating FIM during public crises.

False information management in public crisis depends on situations. There
exists a complex, dynamic relationship among Public crisis management strategies,
executive skill and FIM performance. So it is very suitable to use Chaos forecasting
method to simulate and imitate. In this paper, a management simulation model
of false information diffusion in public crisis will be constructed, which is based on
chaos forecasting method. According to the thought of policy test, the designed test
schemes are converted into the corresponding code, this code is generated into the
management simulation model, and we use this method to simulate evolution of the
false information diffusion in public crisis phenomenologically.

3.2 Model Building

A management simulation model of the diffusion of false information during public
crises is as follows:

1. Primitive and space (Ld): Space refers to the entire space in which false infor-
mation during public crises spreads. In this space, each primitive is a potential
recipient in the real world that is likely to accept false information during public
crises. Each primitive has its own state and behavior, and it exchanges infor-
mation with the external environment and other cellulars to update the status
of the entire system.

2. Neighbors (N): This study uses the Moore type of neighbors. Specifically, the
primitive makes eight adjacent primitives (three above, three below, one on each
side) as its neighbors, as is shown in Figure 1. The neighboring state of each
primitive depends on its own and on the surrounding neighbors’ current states.
As the first step in this paper we regard all neighbors’ acceptance probability
in the same way and that will be considered such as neighbors’ acceptance
probability depending on places, space, their characteristics and so on.

3. State (S): There are two kinds of primitive states, 0 and 1. The primitive state
of 0 means that potential recipients refuse the false information, whereas 1 means
that they accept the false information.

30 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

Figure 1. MOORE-type neighbors

4. Decision rules (f): A decision rule generalizes and abstracts potential recipients’
behaviors and decisions when diffusing false information during public crises.
The local decision rules are defined as follows:

(a) has the false information been accepted by a neighbor;

(b) if yes, then the individual decides whether to accept the false information
according to a certain probability.

This study adopts a two-dimensional interface as a system space for the diffusion
of false information during public crises. Hence, we assume that the false information
diffuses from the center to the surrounding area. If a primitive accepts the false
information being spread, the primitive’s state is marked on the screen. The program
flow is shown in Figure 2.

3.3 Research Plan

In this study, the influence of FIM strategies and management skills during public
crises on the diffusion of false information is discussed. A public crisis management
system is based on institutional systems, policy, and security. For example, the
institutional system includes the relevant organizational settings, interdepartmental
operations, functions, and coordination, while policy represents the policymaking
decisions by various government departments. In addition, management strategies
can be divided into

1. simple, complete management,

2. coordinated, direct management, and

3. open, adaptive management.

In the space of the diffusion of false information during public crises, these strategies
correspond to

1. a whole line, when execute simple, complete management strategy, the number of
affected individuals is that all individuals on a line in false information diffusion
system space;

2. one ring (including a central point), when execute coordinated, direct manage-
ment strategy, the number of affected individuals is that all individuals on one
ring (including a central point) in false information diffusion system space, and

Diffusion of False Information During Public Crises 31

Figure 2. The process of fake information

3. several randomly distributed points, when execute open, adaptive management
strategy, the number of affected individuals is several randomly distributed
points in false information diffusion system space respectively.

In the simulation, we write the corresponding code of these three management strate-
gies to make the potential recipient not accept the false information.

Player 1. Simple 2. Coordinate 3. Open
and Complete and Direct and Adaptive

Defensive management AI BI CI
Discrete management AII BII CII
Sustainable management AIII BIII CIII

Table 1. Simulation scheme of fake information management in public crisis

From the aspect of the simulation of management skills, 1© 2© 3© three inser-
tion points are set to represent defensive management, discrete management, and
sustainability management, respectively. From the perspective of the control func-

32 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

tion of management, and according to the different positions into which the code
is inserted, these three cases may be constructed as feed forward control, feedback
control, and field control, respectively. As for the difference between emergency
management and crisis management, insertion point 1© means simple precautions
beforehand, insertion point 2© represents a certain lag in the emergency manage-
ment mode, and insertion point 3© represents the new public crisis management
mode affected by non-linear thought (i.e., “try to do”).

First, we assume that the probability for potential recipients to accept false
information in public crisis is P and the total simulation time is N. When the to-
tal simulation time is beyond N, the simulation process is over. We use 1© 2© 3©
three different interventions to impact the potential recipients of false information
and 1© 2© 3© three interventions are set to represent defensive management, discrete
management, and sustainability management, respectively. After impacted by inter-
ventions, the potential recipients of false information make decision whether accept
the false information or not. And we calculate the number of the recipients of false
information and mark them in the simulation process. If simulation time is less
the total simulation time assumed at the beginning of the experiment, we continue
to execute the interventions and calculate the number of the recipients. When the
total simulation time is beyond N, the experiment is over.

The simulation process shows the different execution frequency of the code in
each of these three locations. The code inserted into 1© (simple precautions before-
hand) only works at the beginning of the simulation, that inserted into 2© (a certain
lag in the emergency management mode) is executed N times throughout the pro-
cess (import N in the program initialization), and that inserted into 3© (try to do)
is executed T × N times throughout the process. In the simulation, the code of the
corresponding management strategy is inserted into 1© 2© 3©, respectively, which is
used to simulate phenomenologically the evolution and management performance of
the nine management strategies shown in Table 1.

There are 9 kinds of management simulation schemes, which are AI, AII, AIII,
BI, BII, BIII, CI, CII and CIII in Table 1. Actually, the false information diffuses
freely when the schemes AI, BI and CI are executed. So this article will not study
these 3 schemes AI, BI and CI and only consider the other 6 schemes AII, AIII, BII,
BIII, CII and CIII.

4 RESULTS AND ANALYSIS

In order to make general observations, the acceptance probability P of false informa-
tion was set to 0.3. The simulation clock was set to 25 K and the simulation interface
to 100 × 100 (i.e., the number of potential recipients is 10 000), while potential re-
cipients of false information were defined as (0, 0)–(100, 100) (the positive integer
points out the coordinates in the two-dimensional space). Moreover, to simplify the
simulation process, we ensured that:

Diffusion of False Information During Public Crises 33

1. The horizontal axis was X and vertical axis was Y, the X axis represents the
simulation time and the Y axis represents the number of the false information
receivers;

2. The source of false information during public crises was located at the point
(50, 50), namely the diffusion distance T was 50;

3. The evolution scheme in a circular area was centered on (50, 50) with a radius
as inspected. If the primitive in a circular area accepted the false information
during public crises, the corresponding coordinates were marked and the number
of recipients recorded.

The nine kinds of management simulations shown in Table 1 were conducted
several times, changing the spread direction, speed, quantity, and spatial distribu-
tion of the receiver of the false information under these various scenarios. Then,
the simulation results and management performance were observed and measured.
Through these simulation tests, the most typical evolution distribution and quantity
variation were recorded. The results of the simulations are summarized next.

In scheme A, the FIM function area was represented by the 25th line. The sim-
ulation results show that scheme AII can delay the diffusion of false information, as
illustrated in Figure 3. Although the spread speed from the center to the function
area lags significantly behind that in the other directions, it is difficult to block the
spread of false information effectively in terms of quantity, as shown in Figure 4. In
this scenario, when K = 10, the diffusion of false information during public crises is
affected by FIM. Because the number of receivers decreases, false information “by-
passes” the region and continues to spread outward. Then, the number of receivers
soars to more than 800, close to the number of false information receivers in the free
diffusion scheme.

Having observed the diffusion of false information and quantity variation in
scheme AIII, we know that scheme AIII effectively prevents false information from
spreading outside the function area. As shown in Figure 5, all the parts on the
left-hand side of the 25th line are blank, while diffusion in the other direction is
unaffected, meaning that the diffusion of false information during public crises is
shared by function area. Moreover, in scheme AIII the number change curve of the
false information receiver at K = 10 and K = 15 has clear fluctuations, but the
overall curve retains a rapid growth trend. Indeed, the ultimate recipient number is
below 700, fewer than the number of false information receivers in scheme AII.

Comparing the evolution of the distribution of false information during public
crises and quantity change in both schemes allows us to conclude that scheme AIII
is more effective at preventing false information from spreading outside the function
area compared with scheme AII. Further, this scheme is more effective at reducing
the number of false information recipients during public crises than scheme AIII,
which suggests that administrative skills are important for the diffusion of false
information during such events.

In scheme B, the layer 4 neighbors outside the center are used for the action
area, namely the circle (marked with red in Figures 7 and 9) is made up of line 46,

34 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

Figure 3. The evolution of distribution in AII scheme

Figure 4. Changes of the number of recipients in AII scheme

Figure 5. The evolution of distribution in AIII scheme

Diffusion of False Information During Public Crises 35

Figure 6. Changes of the number of recipients in AIII scheme

row 54, and columns 46 and 54. The simulation results show that scheme BII has
a clear influence on the diffusion of false information during public crises, which
mainly manifests in the following two aspects. First, compared with the free dif-
fusion scheme, the diffusion speed of false information in each direction from the
center to the surrounding no longer converges (high in some directions and low in
others; Figure 7). Second, in terms of quantity changes, the change curve of the
receiver number is coarser, with jagged peaks appearing many times, as shown in
Figure 8. Further, at the beginning of the spread, the growth rate of false infor-
mation recipients is far lower than that in the other scenarios (except for scheme
BIII), while the final number of false information recipients is only 450, far below
that in the free diffusion scenario, showing that scheme BII has more impact on the
diffusion of false information during public crises.

In scheme BIII, false information is strictly controlled within the function areas
(i.e., it cannot penetrate the area; Figure 9) and the number of false information
recipients changes irregularly and randomly, as shown in Figure 10. This finding
suggests that this scheme can effectively control and limit the spread direction of
false information during public crises. Comparing the effects of schemes BIII and
BII thus allows us to conclude that both influence false information at the beginning
of the diffusion process. In other words, in the early stages, the gap in the number
change is unclear, but the ultimate evolution results are different because of the
differences in management skills. Hence, the former continue to spread out to reach
450, while the latter are strictly limited in function area and the largest number of
recipients is only 15. This finding shows that FIM during public crises must receive
constant attention and that FIM skills must not be lax in order to effectively prevent
and eliminate the diffusion of false information.

In scheme C, the random distribution rate (pp) is set to 0.01, 0.05, and 0.1 in
order to examine the sensitivity of the diffusion of false information during public
crises to the random distribution. The simulation results show that in scheme CII,
as shown in Figures 11, 13, 15, with an increasing random distribution rate, the false

36 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

Figure 7. The evolution of distribution in BII scheme

Figure 8. Changes of the number of recipients in BII scheme

Figure 9. The evolution of distribution in BIII scheme

Diffusion of False Information During Public Crises 37

Figure 10. Changes of the number of recipients in BIII scheme

information spread becomes more irregular and the diffusion speed gradually slows
down. Thus, the growth rate and number of false information recipients during
public crises gradually diminishes, too. As presented in Figures 12, 14, 16, the
quantity change curve shows that when K = 15 in all three schemes, the number
of recipients is more than 300, fewer than 300, and close to 200, respectively. By
contrast, when K = 24 in these three schemes, the number of recipients decreases
greatly to more than 600, just fewer than 600, and just over 500, respectively.

Figure 11. Evolution distribution of spread when pp = 0.01 in CII

The test results of scheme CIII suggest that an increase in the random distribu-
tion rate makes it more and more difficult to spread false information during public
crises. Compared with scheme CII when pp = 0.01, the diffusion of false informa-
tion during public crises in scheme CIII when pp = 0.01 is very slow. In addition,
its number change curve fluctuates and the receiver number is only about 250 at
the end, far less than in scheme CII (pp = 0.01). When pp = 0.05, the spread
of false information is impacted strongly: only the individual points become false

38 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

Figure 12. Changes of the number of recipients in CII scheme when pp = 0.01

Figure 13. Evolution distribution of spread when pp = 0.05 in CII

Figure 14. Changes of the number of recipients in CII scheme when pp = 0.05

Diffusion of False Information During Public Crises 39

Figure 15. Evolution distribution of spread when pp = 0.1 in CII

Figure 16. Changes of the number of recipients in CII scheme when pp = 0.1

information recipients (as shown in Figure 18), the changes in number tend to be
smooth, and the largest number of receivers is only 12 (as shown in Figure 21).
When pp = 0.1, false information is rarely able to spread (the center is just selected
as the initial random distribution point). This finding indicates that this scheme
can prevent the generation of false information to a certain extent. Even if false in-
formation somehow manages to spread (as shown in Figure 19), the number of false
information receivers in this scheme is extremely low, where the largest number of
false information receivers is only three (as shown in Figure 22).

These simulation results show that the adaptive and sustainable management of
false information during public crises can control its spread in a timely and effective
manner. In addition, the higher the openness and adaptability, the lower is the
diffusion speed of false information during public crises. When openness and adapt-
ability occur to a certain extent, such as mobilizing 0.01 of the public to participate
in the prevention and control of false information during public crises (pp = 0.01),

40 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

Figure 17. Evolution distribution of spread when pp = 0.01 in CIII

Figure 18. Evolution distribution of spread when pp = 0.05 in CIII

Figure 19. Evolution distribution of spread when pp = 0.1 in CIII

Diffusion of False Information During Public Crises 41

Figure 20. Changes in the number of recipients in scheme CIII when pp = 0.01

Figure 21. Changes in the number of recipients in scheme CIII when pp = 0.05

the proliferation and spread of false information can be inhibited significantly. This
result has important managerial value for FIM during public crises, suggesting that
nongovernmental organizations and their members should actively join FIM during
such events. When openness and adaptability improve even further (pp = 0.05),
a repressive influence on the diffusion of false information appears.

42 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

Figure 22. Changes in the number of recipients in scheme CIII when pp = 0.1

5 CONCLUSIONS

From the perspective of cellular automata method, this study analyzed the diffusion
of false information in terms of public crisis management, drawing the following four
main conclusions.

First, coordinated management strategy is more effective than simple manage-
ment strategy, which confirms the hypothesis 1 as shown in Figures 4 and 6. Because
in the coordinated management mode, the direction and quantity of the diffusion
of false information can be effectively controlled, whereas simple management can
only prevent the diffusion of false information in a certain direction. The diffusion
speed of false information during public crises is very high, which is harmful for po-
litical and even social stability. False information diffusion sources are diverse and
uncertain, the distribution of potential is irregular. A department only knows a lit-
tle information about the false information so it is beyond its power to control the
false information diffusion process from all aspects. The coordinated management
among many departments can control the false information diffusion process better
from many aspects because every department knows a lot different information and
possess a variety of human and material resources. Therefore, FIM during public
crises should pay more attention to coordinating the various countermeasures in ad-
dition to their performance and capabilities. Coordination is not only among staff
but also among resources of various departments. The crisis education and training
should be often carried out to enhance the awareness of cooperation among various
departments. To make sure resources are shared among different departments, re-
lated departments should establish a unified command center to allocate resources
reasonably.

Diffusion of False Information During Public Crises 43

Second, the open, adaptive management during public crises can effectively pre-
vent or even eliminate the diffusion of false information, but cannot control the
diffusion direction of false information, which confirms the hypothesis 2 as shown in
Figures 12, 14, 16. Because with the increasing of random distribution probability,
the false information diffusion rate becomes quicker and quicker and the number of
infections becomes larger and larger. But, the diffusion direction remains unchanged.
The false information diffusion resources and the potential recipients are dependent
individuals in real life, those dependent individuals are easier to be impacted by
other individuals who are same with the dependent individuals in some aspects. So
the public and the influential in group are the key for the government to control the
false information in public crisis. But distribution of the public and the influential in
group is irregular, it is difficult to control the false information diffusion direction.
This finding implies that management organizations should consider countermea-
sures to mobilize the public and improve individual and group initiatives in order
to increase active participation in preventing and controlling false information.

Third, among the various kinds of schemes examined here, sustainable manage-
ment was found to be superior to discrete management which confirms the hypoth-
esis 3 as shown in Figures 5, 6, 9, 10 and 17, 18, 19, 20, 21, 22. Because sustainable
management can affect both the direction and the speed of the diffusion of false
information during public crises as well as the number of false information receivers
to a significant degree, while the effects of discrete management are relatively weak
in all these aspects. Discrete management strategy can only control the false infor-
mation for a short time in some degree, which is harmful to the society in a long run.
Sustainable management strategy can control the whole process of the false informa-
tion diffusion for a long time from the beginning to the end. Thus the government
has a chance to know more about the false information diffusion mechanism and
gain experience from the feedback. This finding suggests that in the process of FIM
during public crises, FIM skills and the execution of various management strategies
must be strengthened and the consistency and continuity of management measures
and countermeasures in each stage should receive enough attention. It will take
some time to organize stuff and resources to control crisis. Relevant departments
establish special emergency response teams in advance. Emergency response teams
can take actions to control the situation immediately when crisis occurs which can
reduce losses caused by lag.

Finally, the most fundamental and effective management method is reducing the
probability of accepting false information during public crises, which confirms the
hypothesis 4 as shown in Figure 17, 18, 19 and 20, 21. Because the false information
diffusion range and direction is smaller and controlled better, the number of false
information recipients is lower. The public is the subject to accept and diffuse the
false information, when they refused to accept the false information, grapevine and
other unknown information, the source of infection and the transmission of infection
are well controlled and even the susceptible population. So reducing the acceptance
probability of false information is the key to solve the problem. If this probability
cannot be reduced, using a timely adaptive management strategy can effectively

44 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

control information diffusion despite incurring high workload and management costs.
In addition, targeted measures to isolate information can control the number of false
information receivers and diffusion scope during public crises, although this is often
difficult in practice. Therefore, combining several programs could be considered.
When crisis occurs, the official media should release timely and accurate information
on the status of the crisis continuously to strengthen the authority. When faced
with gossip and news released by official media, the public are more willing to be
convinced by official news.

FIM during public crises is complex, involving sociology, management, psychol-
ogy, communication, information science, political science, informatics, linguistics,
anthropology, and public relations among many other fields. In future researchers
will study the diffusion of false information in public crises from other aspects, such
as type, sources, lifecycle and so on. In more complex evolution schemes, how to
combine management strategy with management skills more effectively to control
the diffusion of false information during public crises should also be studied more
in-depth.

Acknowledgements

The authors would like to thank for the support from the National Natural Science
Foundation of China under Grants 71301140, 71171174, and 71271187. The authors
are also thankful for the support of the Foundation of Hebei Educational Committee
under Grant QN20131090.

Fund assistance: Study of diffusion mechanism and control of false information in
public crisis of National Natural Science Fund (71301140); Natural Science Fund of
Hebei Province (G2015203425); Hebei higher school science and technology research
project “Mechanism and Evolution of False Information Intervention Study in Public
Emergency” (QN20131090); Electronic commerce and supply chain key laboratory
open fund project in Chongqing (1456027).

REFERENCES

[1] Rapoport, A.—Rebhun, L. I.: On the Mathematical Theory of Rumor Spread.
The Bulletin of Mathematical Biophysics, Vol. 4, 1952, No. 14, pp. 375–383, doi:
10.1007/BF02477853.

[2] Goffman, W.—Newill, V. A.: Generalization of Epidemic Theory. Nature,
Vol. 204, 1964, No. 4955, pp. 225–228.

[3] Daley, D. J.—Kendall, D. G.: Stochastic Rumours. IMA Journal of Applied
Mathematics, Vol. 1, 1965, No. 1, pp. 42–55, doi: 10.1093/imamat/1.1.42.

[4] Dickinson, R. E.—Pearce, C. E. M.: Rumours, Epidemics, and Processes of Mass
Action: Synthesis and Analysis. Mathematical and Computer Modelling, Vol. 38,
2003, No. 11-13, pp. 1157–1167, doi: 10.1016/S0895-7177(03)90116-6.

https://doi.org/10.1007/BF02477853
https://doi.org/10.1093/imamat/1.1.42
https://doi.org/10.1016/S0895-7177(03)90116-6

Diffusion of False Information During Public Crises 45

[5] Thompson, K.—Castro Estrada, R.—Daugherty, D.—Cintrón-Arias, A.:
A Deterministic Approach to the Spread of Rumors. Technical Report BU-1642-M,
Cornell University, 2003.

[6] Kawachi, K.: Deterministic Models for Rumor Transmission. Nonlinear Analysis:
Real World Applications, Vol. 9, 2008, No. 5, pp. 1989–2028.

[7] Lebensztayn, E.—Machado, F. P.—Rodŕıguez, P. M.: On the Behaviour of
a Rumour Process with Random Stifling. Environmental Modelling and Software,
Vol. 26, 2011, No. 4, pp. 517–522, doi: 10.1016/j.envsoft.2010.10.015.

[8] Zhang, Z.—Zhang, Z.: An Interplay Model for Rumour Spreading and Emergency
Development. Physica A: Statistical Mechanics and Its Applications, Vol. 388, 2009,
No. 19, pp. 4159–4166.

[9] Huo, L. A.—Huang, P. Q.—Fang, X.: An Interplay Model for Authorities’ Ac-
tions and Rumor Spreading in Emergency Event. Physical A: Statistical Mechanics
and Its Applications, Vol. 390, 2011, No. 20, pp. 3267–3274.

[10] Zhong, Q.—Qi, W.—Zhang, L.: Social-Pattern Crisis Information Diffusion
Model under Lotka-Volterra System. System Engineering Theory and Practice,
Vol. 32, 2012, No. 1, pp. 104–110 (in Chinese).

[11] Maki, D.—Thomson, M.: Mathematical Models and Applications. Prentice-Hall,
Englewood Cliff, New Jersey, 1973.

[12] Murray, D.: Mathematical Modeling in Epidemiology. Springer, Berlin, 1980.

[13] Kawachi, K.—Seki, M.—Yoshida, H.—Otake, Y.—Warashina, K.—
Ueda, H.: A Rumor Transmission Model with Various Contact Interac-
tions. Journal of Theoretical Biology, Vol. 253, 2008, No. 1, pp. 55–60, doi:
10.1016/j.jtbi.2007.11.024.

[14] Zanette, D. H.: Dynamics of Rumor Propagation on Small-World Networks. Phys-
ical Review Letters, Vol. 65, 2002, No. 4, Art. No. 041908, doi: 10.1103/Phys-
RevE.65.041908.

[15] Moreno, Y.—Nekovee, M.—Pacheco, A. F.: Dynamics of Rumor Spreading in
Complex Networks. Physical Review E, Vol. 69, 2004, No. 6, Part 2, pp. 66–130, doi:
10.1103/PhysRevE.69.066130.

[16] Seeger, M. W.: Chaos and Crisis: Propositions for a General Theory of Crisis
Communication. Public Relations Review, Vol. 28, 2002, No. 4, pp. 329–337, doi:
10.1016/S0363-8111(02)00168-6.

[17] Monge, P. R.—Contractor, N.: Theories of Communication Networks. Oxford
University Press, NY, 2003.

[18] Pan, Z.—Wang, X.—Li, X.: Simulation of Rumors Spread on the Variable Clus-
tering Coefficient Scale-Free Networks. Journal of System Simulation, Vol. 18, 2006,
No. 8, pp. 2346–2348 (in Chinese).

[19] Chu, J.—Tong, S.: Build the Public Crisis Management System Based on CAS
and Analysis the Complexity of the Public Crisis Management System. The First
Session of the China Management Annual Meeting, Beijing, 2006 (in Chinese).

[20] Xuan, H.—Zhang, F.: Simulation of Complex Systems and Applications. Tsinghua
University Press, BeiJing, 2008.

https://doi.org/10.1016/j.envsoft.2010.10.015
https://doi.org/10.1016/j.jtbi.2007.11.024
https://doi.org/10.1103/PhysRevE.65.041908
https://doi.org/10.1103/PhysRevE.65.041908
https://doi.org/10.1103/PhysRevE.69.066130
https://doi.org/10.1016/S0363-8111(02)00168-6

46 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

[21] Wolfram, S.: Cellular Automata as Models of Complexity. Nature, Vol. 311, 1984,
pp. 419–424, doi: 10.1038/311419a0.

[22] Goles, E.: Cellular Automata, Dynamics and Complexity. In: Manneville, P., Boc-
cara, N., Vichniac, G. Y., Bidaux, R. (Eds.): Cellular Automata and Modeling of
Complex Physical Systems. Springer-Verlag Berlin, Heidelberg, Springer Proceedings
in Physics, Vol. 46, 1990, pp. 10–20, doi: 10.1007/978-3-642-75259-9 2.

[23] Binder, P.: Evidence of Lagrangian Tails in a Lattice Gas. In: Manneville, P.,
Boccara, N., Vichniac, G. Y., Bidaux, R. (Eds.): Cellular Automata and Modeling of
Complex Physical Systems. Springer-Verlag Berlin, Heidelberg, Springer Proceedings
in Physics, Vol. 46, 1990, pp. 155–160, doi: 10.1007/978-3-642-75259-9 14.

[24] Couclelis, H.: Cellular Worlds: A Framework for Modeling Micro-Macro Dy-
namics. Environment and Planning A: Economy and Space, Vol. 17, 1985, No. 5,
pp. 585–596.

[25] Couclelis, H.: Of Mice and Men: What Rodent Populations Can Teach Us About
Complex Spatial Dynamics. Environment and Planning A: Economy and Space,
Vol. 20, 1988, No. 1, pp. 99–109.

[26] Couclelis, H.: Macrostructure and Microbehavior in a Metropolitan Area. Envi-
ronment and Planning B: Urban Analytics and City Science, Vol. 16, 1989, No. 2,
pp. 141–154.

[27] Batty, M.—Xie, Y.: From Cells to Cities. Environment and Planning B: Urban
Analytics and City Science, Vol. 21, 1994, No. 7, pp. 531–548.

[28] White, R.—Engelen, G.: Cellular Automata and Fractal Urban Form: A Cellular
Modelling Approach to the Evolution of Urban Land-Use Patterns. Environment and
Planning A: Economy and Space, Vol. 25, 1993, No. 8, pp. 1175–1199.

[29] Clarke, K. C.—Brass, J. A.—Riggan, P. J.: A Cellular Automata Model of
Wildfire Propagation and Extinction. Photogrammetric Engineering and Remote
Sensing, Vol. 60, 1994, No. 11, pp. 1355–1367.

[30] Wolfram, S.: Statistical Mechanics of Cellular Automata. Reviews of Modern
Physics, Vol. 55, 1983, No. 3, pp. 601–644, doi: 10.1103/RevModPhys.55.601.

[31] Fu, Y. W.—Liu, T.—Zhu, F. G.: Research on the Application Background of
Chaos Theory in Public Crisis Management. Journal of Modern Management Science,
2008, No. 2, pp. 7–9 (in Chinese).

[32] Yang, H. Y.: The Research on the of Festival Interpersonal Communication in Mass
Media Age – SMS Communication. Master’s Thesis, Sichuan University, Chengdu,
2006 (in Chinese).

[33] Liu, H.: Chaos Theory Principle and Method for Prediction of the Economic System.
Science Press, Beijing, 2003 (in Chinese).

[34] Xuan, H.—Gao, B.: Management and Social Economy System Simulation. Wuhan
University Press, Wuhan, 2002 (in Chinese).

https://doi.org/10.1038/311419a0
https://doi.org/10.1007/978-3-642-75259-9_2
https://doi.org/10.1007/978-3-642-75259-9_14
https://doi.org/10.1103/RevModPhys.55.601

Diffusion of False Information During Public Crises 47

Xiaoxia Zhu received her Ph.D. degree in management science
and engineering from Harbin Engineering University, China in
2008. She is currently Associate Professor at the Economics and
Management School at Yanshan University, China. Now she is
working for the Ministry of Industry and Information Technol-
ogy as Economic Analysts. Her main research interests include
complex networks, information dissemination and data mining.

Jiajia Hao is pursuing her Master’s degree in management
science and engineering in Yanshan University. Her main re-
search interests include complex networks and crisis manage-
ment.

Yuhe Shen works for The State Radio Monitoring-Center. Her
main research interests include complex networks, and crisis
management.

Tuo Liu received his Ph.D. degree in management science and
engineering from Harbin Engineering University, China in 2009.
He is currently Senior Engineer in the State Grid Energy Re-
search Institute, China. His main research interests include crisis
management and energy economics.

48 X. Zhu, J. Hao, Y. Shen, T. Liu, M. Liu

Mengmeng Liu is pursuing her Master’s degree in manage-
ment science and engineering in Yanshan University. Her main
research interests include complex networks and crisis manage-
ment.

Computing and Informatics, Vol. 37, 2018, 49–75, doi: 10.4149/cai 2018 1 49

RANKING-BASED DIFFERENTIAL EVOLUTION
FOR LARGE-SCALE CONTINUOUS OPTIMIZATION

Li Guo

School of Economics and Management
China University of Geosciences
Wuhan, 430074, China
e-mail: guoli cn@163.com

Xiang Li, Wenyin Gong

School of Computer Science
China University of Geosciences
Wuhan, 430074, China
e-mail: {lixiang, wygong}@cug.edu.cn

Abstract. Large-scale continuous optimization has gained considerable attention
in recent years. Differential evolution (DE) is a simple yet efficient global numerical
optimization algorithm, which has been successfully used in diverse fields. Gen-
erally, the vectors in the DE mutation operators are chosen randomly from the
population. In this paper, we employ the ranking-based mutation operators for the
DE algorithm to improve DE’s performance. In the ranking-based mutation opera-
tors, the vectors are selected according to their rankings in the current population.
The ranking-based mutation operators are general, and they are integrated into
the original DE algorithm, GODE, and GaDE to verify the enhanced performance.
Experiments have been conducted on the large-scale continuous optimization prob-
lems. The results indicate that the ranking-based mutation operators are able to
enhance the overall performance of DE, GODE, and GaDE in the large-scale con-
tinuous optimization problems.

Keywords: Differential evolution, ranking-based mutation, vector selection, large-
scale continuous optimization

50 L. Guo, X. Li, W. Gong

1 INTRODUCTION

During the last few decades, evolutionary algorithms and metaheuristics have been
successfully used for the optimization problems. However, they are mainly applied
for the low- or moderate-dimensional problems. Since there are many real-world
problems (such as neural network training, bio-computing, etc.) that have large
problem size, in recent years, large-scale continuous optimization has gained more
attention [17, 31, 37, 18, 16].

Differential evolution (DE), which was proposed by Storn and Price in 1995 [27,
28], is a simple and powerful evolutionary algorithm for global optimization. Due
to its simplicity, robustness, ease of use, and efficiency, DE has obtained many
successful applications in diverse fields, such as data mining, engineering design,
geophysical inversion, and so on [22, 14]. More details on the state-of-the-art research
within DE can be found in two surveys [20] and [5] and the references therein.

In the original DE algorithm, the core operator is the differential mutation,
and generally, the parents in the mutation are always randomly chosen from the
current population. For example, in the classical “DE/rand/1” mutation, three
parent vectors xr1 , xr2 , and xr3 are selected randomly from the current population.
The indexes r1, r2, and r3 satisfy r1, r2, r3 ∈ [1,NP] and r1 6= r2 6= r3 6= i. Since the
parent vectors in the mutation are selected randomly, it may lead to DE be good at
exploring the search space and locating the region of global minimum, but be slow
at exploitation of the solutions [21]. Based on this motivation, in this paper, we
modify our previous proposed ranking-based mutation operators [11] to enhance the
exploitation ability of DE and employ it for the large-scale continuous optimization
problems.

In the proposed ranking-based mutation operators, each parent vector has a se-
lection probability, which is calculated according to its ranking in the population.
Then, the parent vectors in the mutation are proportionally selected based on the
selection probabilities. The major advantage of our proposed ranking-based muta-
tion operators is that they are very simple and do not introduce any new parameters
at all. In addition, the ranking-based mutation operators are general, they can be
easily incorporated into most of existing DE variants. In this paper, they are in-
tegrated into the original DE algorithm, GODE [32], and GaDE [36] to verify the
enhanced performance. Experiments have been conducted on the large-scale contin-
uous optimization problems. The results indicate that the ranking-based mutation
operators are able to enhance the overall performance of DE, GODE, and GaDE in
the large-scale continuous optimization problems.

The rest of this paper is organized as follows. In Section 2, we briefly intro-
duce the related work, including the DE algorithm and large-scale optimization in
DE. Section 3 describes the ranking-based mutation operators for the DE algorithm
in detail. The experimental results and analysis are shown in Section 4. Finally,
in Section 5, we draw the conclusions from this work. In addition, the detailed
experimental results of rank-DE, rank-GODE, and rank-GaDE are described in Ap-
pendix A.

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 51

2 RELATED WORK

Without loss of generality, in this work, we consider the following numerical opti-
mization problem:

Minimize f(x), x ∈ S (1)

where S ⊆ RD is a compact set, x = [x1, x2, . . . , xD]T , and D is the dimension,
i.e. the number of decision variables. Generally, for each variable xj, it satisfies
a boundary constraint, such that:

xj ≤ xj ≤ xj, j = 1, 2, . . . , D (2)

where xj and xj are respectively the lower bound and upper bound of xj.

2.1 Differential Evolution

Similar to other evolutionary algorithms, differential evolution, which is mainly used
for the numerical optimization problems, is a population-based optimization algo-
rithm. The population consists of NP vectors. Each vector xi, i = 1, . . . ,NP is
initialized within the boundary. There are three operators in the DE algorithms, i.e.
differential mutation, crossover, and selection. DE creates new candidate solutions
through the differential mutation and crossover operations. The selection is applied
between the target solution and its corresponding trial solution, and a candidate
replaces the parent only if it has an equal or better fitness value. The pseudo-
code of the original DE algorithm is shown in Algorithm 1, where D is the number
of decision variables; NP is the population size; F is the mutation scaling factor;
CR is the crossover rate; xi,j is the jth variable of the solution xi; ui is the off-
spring. The function rndint(1, D) returns a uniformly distributed random integer
number between 1 and D, while rndreal[0, 1) gives a uniformly distributed random
real number in [0, 1). 〈·〉D is the modulo operation with divisor D. In Algorithm 1,
the “DE/rand/1/exp” is illustrated, since the exponential crossover obtains very
promising results in large-scale optimization. The binomial crossover and other mu-
tation operators can be found in [22]. As for the terminal conditions, we can either
fix the maximum number of fitness function evaluations (Max NFFEs) or define
a desired solution value-to-reach (VTR).

2.2 Large-Scale Optimization in DE

Many real-world problems can be formulated as numerical optimization problems,
and many of them are large-scale, such as bio-computing, data mining, neural net-
work training, etc. [18]. Due to the importance of the large-scale optimization, using
the evolutionary algorithms and metaheuristics for the large-scale continuous opti-
mization problems has gained considerable attention in recent years, such as the
special sessions in conference [30, 29] and special issue in journal [12].

52 L. Guo, X. Li, W. Gong

Algorithm 1 The DE algorithm with “DE/rand/1/exp”

1: Generate the initial population randomly
2: Evaluate the fitness for each individual in the population
3: while the stop criterion is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 6= r2 6= r3 6= i
6: vi = xr1 + F · (xr2 − xr3)
7: ui = xi

8: jrand = rndint(1, D)
9: ui,jrand

= vi,jrand

10: L = 0
11: while rndreal[0, 1) < CR and L < D do
12: jrand = 〈jrand + 1〉D
13: L = L+ 1
14: ui,jrand

= vi,jrand

15: end while
16: end for
17: for i = 1 to NP do
18: Evaluate the offspring ui

19: if f(ui) is better than or equal to f(xi) then
20: Replace xi with ui

21: end if
22: end for
23: end while

Since DE has obtained very promising performance in the numerical optimiza-
tion [5], many researchers employed it for the large-scale continuous optimization
recently. Yang et al. [34] presented two DE algorithms based on the cooperative
coevolution framework for large-scale optimization problems. Later on, in order
to handle the high-dimensional nonseparable problems, they extended their work
in [34] and proposed a new cooperative coevolution framework [35], where the ran-
dom grouping scheme and adaptive weighting are introduced. In [19], Muelas et
al. proposed a hybrid memetic algorithm based on DE for large-scale optimization
problems. Brest et al. [4] presented a self-adaptive DE, jDElsgo, on large-scale op-
timization. In [32], the authors presented a neighborhood search based sequential
DE for the CEC2010 Special Session on Large Scale Global Optimization. Stanare-
vic [26] hybridized the artificial bee colony with DE for the large scale optimization
problems.

Recently, in the special issue of Soft Computing on the large-scale continuous
optimization, there are seven papers related to the DE algorithm [18]. Brest and
Maučec proposed jDElscop [3], where parameter self-adaptation, three strategies,
and a population size reduction mechanism are combined. In [10], Garćıa-Mart́ınez
et al. proposed the role differentiation mechanism and malleable mating for DE. The

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 53

role differentiation mechanism differentiates the DE population into four groups,
i.e., receiving, placing, leading, and correcting groups. The malleable mating en-
sures some similarity relations between chosen vectors. LaTorre et al. [15] proposed
a memetic algorithm that combines the explorative and exploitative strength of
differential evolution and MTS-LS1. In addition, the multiple offspring sampling
framework has also been used in the hybrid memetic algorithm. Wang et al. [32]
presented an improved DE algorithm based on generalized opposition-based learn-
ing (GOBL) for high dimensional optimization problems, where the opposition-based
population initialization and generation jumping are applied with GOBL. SOUPDE,
proposed by Weber et al. [33], is a shuffle or update parallel DE, where a structured
population algorithm characterized by sub-populations is employed. Based on the
analysis of the similarities and pitfalls of existing parameter adaptation techniques in
DE, Yang et al. [36] proposed a generalized parameter adaptation method in DE for
large-scale optimization problems. In [39], the authors presented the SaDE-MMTS
algorithm to solve large-scale continuous optimization problems. In SaDE-MMTS,
the strategy adaptation along with control parameter values presented in SaDE [23],
the JADE mutation strategy [38], and the modified multi-trajectory search (MMTS)
algorithm are hybridized.

3 RANKING-BASED DE

In this work, we modified our previous proposed ranking-based mutation operators
in [11] and combine them with the original DE algorithm, GODE [32], and GaDE [36]
to improve their performance on the large-scale continuous optimization problems.

3.1 Ranking-Based Mutation

3.1.1 Rankings Assignment

In order to utilize the information of good vectors in the DE population, in this work,
we assign a ranking for each vector according to its fitness. Firstly, the population
is sorted in ascendent order (i.e., from the best to the worst) based on the fitness of
each vector. Then, the ranking of a vector is assigned as follows:

Ri = NP− i, i = 1, 2, . . . ,NP (3)

where NP is the population size. According to Equation (3), the best vector in the
current population will obtain the highest ranking.

54 L. Guo, X. Li, W. Gong

3.1.2 Selection Probability

After assigning the ranking for each vector, the selection probability pi of the ith

vector xi is calculated based on the quadratic model as follows:

pi =

(
Ri

NP

)2

. (4)

Different models can be used to calculate the selection probabilities, and they may
lead to different selection pressure on the better solutions. Note that, in this
work, the quadratic model is used, since it is able to provide better results than
the linear and sinusoidal models. Interested readers can refer to our recent paper
in [11].

Algorithm 2 Ranking-based vector selection for “DE/rand/1” mutation

1: Input: The target vector index i
2: Output: The selected vector indexes r1, r2, r3
3: Randomly select r1 ∈ [1,NP]
4: while rndreal[0, 1) > pr1 or r1 == i do
5: Randomly select r1 ∈ [1,NP]
6: end while
7: Randomly select r2 ∈ [1,NP]
8: while rndreal[0, 1) > pr2 or r2 == r1 or r2 == i do
9: Randomly select r2 ∈ [1,NP]

10: end while
11: Randomly select r3 ∈ [1,NP]
12: while rndreal[0, 1) <= pr3 or r3 == r2 or r3 == r1 or r3 == i do
13: Randomly select r3 ∈ [1,NP]
14: end while

3.1.3 Ranking-Based Vector Selection

Inspired by the role differentiation mechanism proposed in [10], in our proposed
ranking-based mutation operators, the vectors are selected based on their rankings
and roles. Also, the vector can be classified into four different roles (i.e. placing,
leading, correcting, and receiving vectors) as proposed in [10]. Solutions in the
population with higher selection probabilities are more likely to be chosen as the
placing and leading vectors, while poor solutions are more likely to be selected as
the correcting vectors in the DE mutation. As an illustration, the ranking-based
vector selection for the “DE/rand/1” mutation is shown in Algorithm 2. From
Algorithm 2, different from the vector selection in the original DE algorithm, in
the ranking-based vector selection the selection probabilities, which are calculated
based on the rankings, are used to control the selection of different vectors. For

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 55

example, in ranking-based “DE/rand/1” mutation, the placing vector xr1 and the
leading vector xr2 try to select good solutions, but the correcting vector xr3 pro-
portionally chooses the poor solution. Different from the vector selection presented
in [10], our approach does not introduce any new parameters, while in [10] there
are three new parameters, i.e. NP , NL, and NC . In addition, in our ranking-based
vector selection there are no explicit groups to differentiate the vectors in the pop-
ulation.

It is worth pointing out that Algorithm 2 is only an illustration for the “DE/
rand/1” mutation, our proposed ranking-based vector selection is simple and gen-
eral. It is also applicable to other mutation operators. Compared with our pre-
vious work in [11], the major difference is that in this work the correcting vec-
tor is also selected according to its ranking, while in [11] it is only selected ran-
domly.

Algorithm 3 rank-DE: ranking-based differential evolution

1: Generate the initial population randomly
2: Evaluate the fitness for each individual in the population
3: while the stop criterion is not satisfied do
4: Sort the population based on the fitness of each individual ⇐
5: Calculate the selection probability for each individual according to Equa-

tion (4) ⇐

6: for i = 1 to NP do
7: Select r1, r2, r3 as shown in Algorithm 2 ⇐
8: Generate the trial vector ui with ranking-based “DE/rand/1/exp” strategy
9: end for

10: for i = 1 to NP do
11: Evaluate the offspring ui

12: if f(ui) is better than or equal to f(xi) then
13: Replace xi with ui

14: end if
15: end for
16: end while

3.2 DE with Ranking-Based Mutation

By combing the ranking-based mutation operators, we propose the ranking-based
DE algorithm, referred to as rank-DE. The pseudo-code of rank-DE is shown in
Algorithm 3. The differences between Algorithm 1 and Algorithm 3 are highlighted
in “⇐”. Note that in line 8 of Algorithm 3 other ranking-based DE strategies
can also be used to generate trial vector ui. Compared with the original DE algo-
rithm, Algorithm 3 indicates that our proposed ranking-based DE algorithm is very
simple, it does not increase the overall complexity of DE. Additionally, rank-DE

56 L. Guo, X. Li, W. Gong

enhances the exploitation ability of DE due to its ranking-based mutation opera-
tor.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the performance of our proposed ranking-based DE for large-
scale optimization problems, we employ the test suite presented for the special issue
of Soft Computing on scalability of evolutionary algorithms and other metaheuristics
for large-scale continuous optimization problems [12]. The test suite contains 19 test
functions, which can be categorized into four groups:

• Shifted unimodal functions: F1–F2;

• Shifted multimodal functions: F3–F6;

• Other shifted unimodal functions: F7–F11;

• Hybrid composite functions: F12–F19.

All of these functions are tested at D = 50, 100, 200, 500, and 1 000. More details
of these functions can be found in [13].

Algorithm Parameter Settings

DE, rank-DE NP = 60, CR = 0.9, F = 0.5

GODE, rank-GODE NP = 60, CR = 0.9, F = 0.5

GaDE, rank-GaDE NP = 60, p = 0.2, c = 0.1
Fm = 0.5, CRm = 0.9

Table 1. Parameter settings for all compared DE variants

4.1 Parameter Settings

As mentioned above, our proposed ranking-based mutation operators are general,
they can be used in different DE variants. In this work, the ranking-based mutation
operators are integrated into the original DE algorithm, GODE [32], and GaDE [36],
and they are respectively named as rank-DE, rank-GODE, and rank-GaDE. In order
to make a fair comparison between rank-DE and its corresponding non-rank DE, we
adopt the same parameter settings as used in their original literature. The parameter
settings for all compared algorithms are shown in Table 1. The maximal number of
fitness function evaluations (Max NFFEs) are set to 5 000×D as suggested in [12].
All algorithms are performed over 25 independent runs. In addition, in both rank-
DE and rank-GODE the “DE/rand/1/exp” strategy is used as adopted in DE and
GODE. In rank-GaDE, the same strategies are also employed as originally used in
GaDE.

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 57

F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 3.60E−01 8.15E−04 2.57E−01 1.33E−03 1.46E+01 2.69E+00

F3 2.89E+01 1.59E−01 3.06E+01 1.87E−09 1.18E+01 3.24E−12
F4 3.98E−02 3.98E−02 1.05E−13 3.98E−02 0.00E+00 0.00E+00

F5 0.00E+00 9.85E−04 0.00E+00 0.00E+00 0.00E+00 8.88E−04

F6 1.43E−13 0.00E+00 1.24E−14 0.00E+00 0.00E+00 0.00E+00

F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 3.44E+00 3.45E−03 1.67E−01 4.42E−08 1.08E−08 0.00E+00

F9 2.73E+02 9.91E−09 7.77E−06 4.39E−10 6.24E−07 0.00E+00

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11 6.23E−05 1.05E−08 6.44E−06 6.93E−10 1.31E−06 0.00E+00

F12 5.35E−13 0.00E+00 1.33E−13 0.00E+00 0.00E+00 0.00E+00

F13 2.45E+01 4.98E−02 2.55E+01 5.05E−02 1.19E+01 6.24E−01
F14 4.16E−08 3.35E−14 6.24E−09 5.79E−13 9.78E−13 0.00E+00

F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16 1.56E−09 0.00E+00 1.57E−10 5.35E−14 4.78E−12 0.00E+00

F17 7.98E−01 2.21E−01 1.17E+00 3.96E−02 4.97E−01 2.49E−01
F18 1.22E−04 1.18E−10 2.97E−07 6.30E−10 4.82E−08 2.40E−10
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 2. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 50

4.2 Influence of Ranking-Based Mutation

In this section, we evaluate the influence of ranking-based mutation operators to
DE, GODE, and GaDE. The ranking-based DE is compared with its corresponding
non-ranking-based DE, i.e., rank-DE vs. DE, rank-GODE vs. GODE, and rank-
GaDE vs. GaDE. The results for all functions at D = 50, 100, 200, 500, and 1 000
are reported in Tables 2–6, respectively. Note that the results of DE, GODE, and
GaDE are obtained from http://sci2s.ugr.es/eamhco/SOCO-results.xls. In
Tables 2–6, the better results are highlighted in boldface compared between rank-
DEs and their corresponding non-rank-DEs. In addition, as stated in [8, 9], the
multiple-problem statistical analysis is also important to check the behavior of the
stochastic algorithms. Therefore, in order to further prove statistical significance
of the results, we also use the Wilcoxon’s test to compare rank-DEs with their
corresponding non-rank-DEs. The Wilcoxon’s test is a non-parametric statistical
hypothesis test, which can be used as an alternative to the paired t-test when the
results cannot be assumed to be normally distributed [25]. The results, which are
calculated by OriginPro software, are shown in Table 7. In addition, the detailed
results of rank-DE, rank-GODE, and rank-GaDE for all functions at different di-
mensions are shown in Tables 15–17 in the Appendix A.

http://sci2s.ugr.es/eamhco/SOCO-results.xls

58 L. Guo, X. Li, W. Gong

F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 4.45E+00 1.69E−01 3.65E+00 2.10E−01 3.88E+01 4.74E+00

F3 8.01E+01 3.39E+01 8.14E+01 4.14E+01 5.89E+01 2.22E+00

F4 7.96E−02 1.19E−01 8.32E−14 0.00E+00 0.00E+00 0.00E+00

F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 3.10E−13 1.42E−14 2.60E−14 1.48E−14 0.00E+00 0.00E+00

F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 3.69E+02 1.75E+01 7.53E+01 8.50E−06 1.23E−03 3.34E−06
F9 5.06E+02 1.04E−07 1.46E−05 7.32E−10 3.87E−07 0.00E+00

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11 1.28E−04 1.13E−07 1.58E−05 7.30E−10 4.34E−07 0.00E+00

F12 5.99E−11 0.00E+00 7.57E−12 0.00E+00 0.00E+00 0.00E+00

F13 6.17E+01 2.49E+01 6.32E+01 2.87E+01 4.99E+01 8.96E−01
F14 4.79E−02 3.98E−02 4.13E−08 3.98E−02 7.90E−13 0.00E+00

F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16 3.58E−09 1.46E−13 3.75E−10 1.24E−12 2.45E−12 4.21E−13
F17 1.23E+01 1.03E−01 1.11E+01 8.98E−02 3.28E+00 7.19E−01
F18 2.98E−04 2.66E−09 1.11E−06 1.30E−08 1.96E−08 2.47E−09
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 3. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 100

4.2.1 Comparison Between DE and Rank-DE

First, the results of rank-DE is compare with those of DE. From the results shown
in Tables 2–6, we can see that:

• For all functions at D = 50, in 5 functions (F1, F7, F10, F15, and F19) both
DE and rank-DE are able to find the global optimum over all runs. In 12 out of
19 functions, our proposed rank-DE obtains better mean error values than DE.
Only in one function (F5), DE is better than rank-DE. In F5, rank-DE occasion-
ally converges to the local optima. The reason might be that the ranking-based
mutation operator in rank-DE leads to over-exploitation in this problem. There-
fore, this motivates us to study more sophisticated ranking technique that can
control the selection pressure adaptively. We will leave it in our future work.

• When D = 100, there are 6 functions (F1, F5, F7, F10, F15, and F19) whose
global optimum are obtained by both DE and rank-DE over all runs. rank-DE
provides better results than DE in 12 out of 19 functions, but only loses in one
function (F4).

• With respect to D = 200, similar to the results at D = 100, both DE and rank-
DE get the global optimum in 6 functions (F1, F5, F7, F10, F15, and F19). In

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 59

F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 1.92E+01 3.22E+00 1.53E+01 3.59E+00 5.76E+01 2.86E+01

F3 1.78E+02 1.36E+02 1.80E+02 1.42E+02 1.61E+02 9.03E+01

F4 1.27E−01 1.59E−01 4.17E−13 3.98E−02 0.00E+00 0.00E+00

F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.91E−04

F6 6.54E−13 3.09E−14 5.45E−14 3.24E−14 0.00E+00 0.00E+00

F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 5.53E+03 1.15E+03 2.10E+03 9.33E−07 3.02E+00 6.94E−01
F9 1.01E+03 8.19E−07 3.23E−05 9.66E−11 4.53E−09 7.09E−07

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.20E−02 4.20E−02

F11 2.62E−04 8.00E−07 3.12E−05 1.18E−10 1.85E−07 2.21E−06

F12 9.76E−10 2.38E−14 1.20E−10 2.30E−13 4.92E−14 0.00E+00

F13 1.36E+02 1.09E+02 1.38E+02 1.11E+02 1.24E+02 7.63E+01

F14 1.38E−01 1.19E−01 8.17E−02 1.59E−01 2.87E−12 2.17E−13
F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16 7.46E−09 1.84E−12 9.54E−10 1.35E−11 1.58E−12 5.96E−12

F17 3.70E+01 1.13E+01 3.74E+01 1.26E+01 2.45E+01 7.54E−01
F18 4.73E−04 7.96E−02 1.91E−06 3.98E−02 2.53E−08 2.39E−08
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 4. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 200

11 functions, rank-DE is better than DE in terms of the mean error values. In
2 functions (F4 and F18), DE provides better results than rank-DE.

• For all function at D = 500, also in 6 functions (F1, F5, F7, F10, F15, and
F19) both DE and rank-DE obtain the global optimum over all runs. rank-DE
is capable of providing better results in 10 out of 19 functions, but loses in three
functions (F4, F14, and F18).

• When the dimension is scaled up to D = 1 000, for functions F1, F5, F7, F10,
F15, and F19, their global optimum are found by both rank-DE and DE over
all 25 runs. In 12 out of 19 functions, rank-DE improves the results of DE.
DE only gets better mean error value in one function (F18) than that of rank-
DE.

4.2.2 Comparison Between GODE and Rank-GODE

In this section, the ranking-based mutation operator is integrated into GODE [32]
to verify the enhanced performance of our approach. The mean error values of rank-
GODE and GODE are shown in Tables 2–6. From the results, it can be observed
that:

60 L. Guo, X. Li, W. Gong

F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 5.35E+01 2.35E+01 5.81E+01 2.31E+01 7.42E+01 4.69E+01

F3 4.76E+02 4.35E+02 4.76E+02 4.34E+02 4.40E+02 3.80E+02

F4 3.20E−01 4.38E−01 1.62E−03 2.39E−01 0.00E+00 0.00E+00

F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 1.65E−12 8.22E−14 1.43E−13 8.88E−14 1.46E−14 3.44E−14

F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 6.09E+04 2.68E+04 3.93E+04 0.00E+00 1.33E+03 1.32E+03

F9 2.52E+03 6.28E−06 7.84E−05 4.20E−14 0.00E+00 4.44E−05

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.78E−01 1.26E−01
F11 6.76E−04 6.22E−06 8.25E−05 3.72E−14 0.00E+00 4.04E−05

F12 7.07E−09 2.43E−12 7.39E−10 1.81E−11 1.07E−12 7.04E−12

F13 3.59E+02 3.31E+02 3.59E+02 3.34E+02 3.34E+02 3.07E+02

F14 1.35E−01 3.18E−01 7.67E−02 2.79E−01 2.79E−11 8.42E−12
F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16 2.04E−08 2.72E−11 2.24E−09 1.72E−10 1.67E−12 1.38E−10

F17 1.11E+02 8.69E+01 1.12E+02 8.84E+01 9.26E+01 5.24E+01

F18 1.22E−03 3.98E−02 5.06E−06 1.49E−06 5.59E−08 3.99E−10
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.20E−02 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 5. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 500

• In 6 functions (F1, F5, F7, F10, F15, and F19) at D = 50, 100, 200, and 500,
both rank-GODE and GODE consistently get the global optimum over all runs.
At D = 1 000, in 9 functions (F1, F5, F7–F11, F15, and F19) rank-GODE still
obtains the global optimum over all 25 runs. While GODE finds the global
optimum only in 4 functions.

• Regardless of the influence of dimensionality, in the majority of the test func-
tions, our proposed rank-GODE consistently provides better results than those
of GODE. In 12, 12, 10, 11, and 14 functions, rank-GODE respectively gets
better mean error values than GODE at D = 50, 100, 200, 500, and 1 000.

• Rank-GODE is only worse than GODE in 1, 1, 3, 2, and 1 out of 19 functions
at D = 50, 100, 200, 500, and 1 000, respectively.

4.2.3 Comparison Between GaDE and Rank-GaDE

GaDE, proposed by Yang et al. [36], is an adaptive DE variant with a new proposed
generalized parameter adaptation scheme and strategy adaptation. In this section,
our proposed ranking-based vector selection technique is integrated into both of
the mutation operators used in GaDE. The results of rank-GaDE and GaDE are

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 61

F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 8.46E+01 5.03E+01 9.02E+01 4.79E+01 8.93E+01 4.34E+01

F3 9.69E+02 9.27E+02 9.70E+02 9.30E+02 9.45E+02 8.76E+02

F4 1.44E+00 5.97E−01 1.03E+00 7.56E−01 0.00E+00 0.00E+00

F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 3.29E−12 1.75E−13 2.88E−13 1.86E−13 1.66E−14 5.41E−14

F7 0.00E+00 0.00E+00 INF 0.00E+00 0.00E+00 0.00E+00

F8 2.46E+05 1.37E+05 1.86E+05 0.00E+00 1.77E+04 1.59E+04

F9 5.13E+03 2.26E−05 1.70E−04 0.00E+00 0.00E+00 1.80E−04

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.62E−01 8.40E−02
F11 1.35E−03 2.29E−05 1.73E−04 0.00E+00 0.00E+00 1.73E−04

F12 1.68E−08 2.30E−11 1.87E−09 1.57E−10 3.85E−12 1.49E−10

F13 7.30E+02 7.06E+02 7.31E+02 7.08E+02 7.15E+02 6.80E+02

F14 6.90E−01 3.98E−01 6.06E−01 3.98E−01 8.82E−11 7.18E−12
F15 0.00E+00 0.00E+00 INF 0.00E+00 0.00E+00 0.00E+00

F16 4.18E−08 1.28E−10 4.59E−09 8.00E−10 2.35E−12 6.78E−10

F17 2.36E+02 2.11E+02 2.36E+02 2.14E+02 2.19E+02 1.80E+02

F18 2.37E−03 3.98E−02 3.29E−05 3.98E−02 1.30E−07 1.62E−08
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.78E−01 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 6. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 1 000

reported in Tables 2–6. All of the results are averaged over 25 independent runs.
The results in Tables 2–6 show that:

• When D = 50, both rank-GaDE and GaDE can solve 8 functions (F1, F4, F6,
F7, F10, F12, F15, and F19) over all runs. rank-GaDE improves the mean error
values of GaDE in 10 out of 19 functions. GaDE only obtains better results
than rank-GaDE in function F5.

• For all functions at D = 100, in 9 functions (F1, F4–F7, F10, F12, F15, and
F19), their global optimum are obtained by rank-GaDE and GaDE consistently.
In the rest of 10 functions, rank-GaDE gets better results than GaDE.

• For all functions at D = 200, rank-GaDE obtains better results in 8 functions,
but loses in 4 functions compared with GaDE. In the rest of 7 functions, both
rank-GaDE and GaDE get the same mean error values.

• With respect to D = 500, in 9 out of 19 functions rank-GaDE is capable of pro-
vide better results than GaDE. rank-GaDE is worse than GaDE in 5 functions.
Both GaDE and rank-GaDE consistently find the global optimum in the rest of
5 functions (F1, F4, F5, F7, and F15).

62 L. Guo, X. Li, W. Gong

D = 50

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 97 8 3.05E−03 + +

rank-GODE vs. GODE 83 8 6.10E−03 + +

rank-GaDE vs. GaDE 59 7 1.86E−02 + +

D = 100

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 84 7 4.64E−03 + +

rank-GODE vs. GODE 83 8 6.10E−03 + +

rank-GaDE vs. GaDE 55 0 1.95E−03 + +

D = 200

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 78 13 2.15E−02 + +

rank-GODE vs. GODE 70 21 9.42E−02 = +

rank-GaDE vs. GaDE 57 21 1.76E−01 = =

D = 500

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 73 18 5.74E−02 = +

rank-GODE vs. GODE 76 15 3.27E−02 + +

rank-GaDE vs. GaDE 85 20 4.19E−02 + +

D = 1 000

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 86 5 2.44E−03 + +

rank-GODE vs. GODE? 114 6 8.54E−04 + +

rank-GaDE vs. GaDE 84 21 4.94E−02 + +

? In GODE, for functions F7 and F15 “INF” is approximated to 1.00E+20 to
make the multiple-problem Wilcoxon’s test.

Table 7. Results of the multiple-problem Wilcoxon’s test for all DE variants on the mean
error values of functions F1–F19

• When D = 1 000, similar to the results at D = 500, in 5 functions (F1, F4,
F5, F7, and F15) GaDE and rank-GaDE get the global optimum over all runs.
rank-GaDE improves GaDE in 9 functions, but loses in 5 functions.

4.2.4 Summary

To summarize the results shown in Tables 2–6, the multiple-problem analysis on the
mean error values in all functions is tabulated in Table 7. From Table 7, it is clear to

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 63

F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 1.67E−11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 3.60E−01 6.19E+01 2.75E−11 8.15E−04 1.33E−03 2.69E+00

F3 2.89E+01 1.25E+06 7.97E−01 1.59E−01 1.87E−09 3.24E−12
F4 3.98E−02 7.43E+01 1.05E+02 3.98E−02 3.98E−02 0.00E+00

F5 0.00E+00 1.67E−03 2.96E−04 9.85E−04 0.00E+00 8.88E−04

F6 1.43E−13 6.15E−07 2.09E+01 0.00E+00 0.00E+00 0.00E+00

F7 0.00E+00 2.66E−09 1.01E−10 0.00E+00 0.00E+00 0.00E+00

F8 3.44E+00 2.24E+02 0.00E+00 3.45E−03 4.42E−08 0.00E+00

F9 2.73E+02 3.10E+02 1.66E+01 9.91E−09 4.39E−10 0.00E+00

F10 0.00E+00 7.30E+00 6.81E+00 0.00E+00 0.00E+00 0.00E+00

F11 6.23E−05 2.16E+00 3.01E+01 1.05E−08 6.93E−10 0.00E+00

F12 5.35E−13 9.57E−01 1.88E+02 0.00E+00 0.00E+00 0.00E+00

F13 2.45E+01 2.08E+06 1.97E+02 4.98E−02 5.05E−02 6.24E−01

F14 4.16E−08 6.17E+01 1.09E+02 3.35E−14 5.79E−13 0.00E+00

F15 0.00E+00 3.98E−01 9.79E−04 0.00E+00 0.00E+00 0.00E+00

F16 1.56E−09 2.95E−09 4.27E+02 0.00E+00 5.35E−14 0.00E+00

F17 7.98E−01 2.26E+04 6.89E+02 2.21E−01 3.96E−02 2.49E−01

F18 1.22E−04 1.58E+01 1.31E+02 1.18E−10 6.30E−10 2.40E−10
F19 0.00E+00 3.59E+02 4.76E+00 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 8. Comparison of the mean error values among three baseline algorithms and rank-
DEs for functions F1–F19 at D = 50

see that the ranking-based DE variants consistently provides higher R+ values than
those of non-ranking-based DEs, which means that the ranking-based DE variants
are consistently better than the original DE mutation based methods. At α = 0.05,
in 12 out of 15 cases rank-DEs get significantly better results than non-rank-DEs
according to the Wilcoxon’s test. In addition, when α = 0.1, rank-DEs significantly
outperforms non-rank-DEs in 18 out of 19 cases.

In general, from the results shown in Tables 2–7 and the above analysis, we
can conclude that our proposed ranking-based vector selection technique is really
capable of improving the performance of DE. The reason is that the ranking-based
mutation operators enhance the exploitation ability and make ranking-based DE
balance the exploration and exploitation abilities.

4.3 Comparison with Baseline Algorithms

In the previous section, we have verified the enhanced performance of our proposed
ranking-based mutation operators. In this section, in order to make an analysis of
the scalability behavior of our proposed rank-DEs, the comparison to three base-
line evolutionary algorithms for continuous optimization problems is performed as
suggested in [12]. The three baseline algorithms are

64 L. Guo, X. Li, W. Gong

F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 3.56E−11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 4.45E+00 8.58E+01 1.51E−10 1.69E−01 2.10E−01 4.74E+00

F3 8.01E+01 4.19E+06 3.88E+00 3.39E+01 4.14E+01 2.22E+00

F4 7.96E−02 2.19E+02 2.50E+02 1.19E−01 0.00E+00 0.00E+00

F5 0.00E+00 3.83E−03 1.58E−03 0.00E+00 0.00E+00 0.00E+00

F6 3.10E−13 4.10E−07 2.12E+01 1.42E−14 1.48E−14 0.00E+00

F7 0.00E+00 1.40E−02 4.22E−04 0.00E+00 0.00E+00 0.00E+00

F8 3.69E+02 1.69E+03 0.00E+00 1.75E+01 8.50E−06 3.34E−06
F9 5.06E+02 5.86E+02 1.02E+02 1.04E−07 7.32E−10 0.00E+00

F10 0.00E+00 3.30E+01 1.66E+01 0.00E+00 0.00E+00 0.00E+00

F11 1.28E−04 7.32E+01 1.64E+02 1.13E−07 7.30E−10 0.00E+00

F12 5.99E−11 1.03E+01 4.17E+02 0.00E+00 0.00E+00 0.00E+00

F13 6.17E+01 2.70E+06 4.21E+02 2.49E+01 2.87E+01 8.96E−01
F14 4.79E−02 1.66E+02 2.55E+02 3.98E−02 3.98E−02 0.00E+00

F15 0.00E+00 8.13E+00 6.30E−01 0.00E+00 0.00E+00 0.00E+00

F16 3.58E−09 2.23E+01 8.59E+02 1.46E−13 1.24E−12 4.21E−13
F17 1.23E+01 1.47E+05 1.51E+03 1.03E−01 8.98E−02 7.19E−01

F18 2.98E−04 7.00E+01 3.07E+02 2.66E−09 1.30E−08 2.47E−09
F19 0.00E+00 5.45E+02 2.02E+01 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 9. Comparison of the mean error values among three baseline algorithms and rank-
DEs for functions F1–F19 at D = 100

• DE: the original DE algorithm with “DE/rand/1/exp” strategy, CR = 0.9, and
F = 0.5 [28];

• CHC: the real-coded CHC proposed by Eshelman and Schaffer [7];

• G-CMA-ES: a restart CMA-ES with increasing population size [2].

We obtained the results of DE, CHC and G-CMA-ES from http://sci2s.ugr.

es/eamhco/SOCO-results.xls. The results of DE, CHC, G-CMA-ES, rank-DE,
rank-GODE, and rank-GaDE for all functions at D = 50, 100, 200, 500, and 1 000
are respectively reported in Tables 8–12. In these tables, the best and second best
results are highlighted in grey boldface and boldface, respectively. In addition,

the average rankings obtained by each above algorithm in the Friedman test1 are
tabulated in Table 13.

From the results shown in Tables 8–12, we can observe that regardless of the
dimensionality the ranking-based DE variants always get the 1st best mean error
values than the three baseline algorithms in the majority of the functions. For
example, for all functions at D = 500, rank-DE, rank-GODE, rank-GaDE, DE, and

1 The KEEL software [1] (http://www.keel.es/) is used to get the average rankings
obtained by each algorithm based on the Friedman test.

http://sci2s.ugr.es/eamhco/SOCO-results.xls
http://sci2s.ugr.es/eamhco/SOCO-results.xls
http://www.keel.es/

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 65

F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 8.34E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 1.92E+01 1.03E+02 1.16E−09 3.22E+00 3.59E+00 2.86E+01

F3 1.78E+02 2.01E+07 8.91E+01 1.36E+02 1.42E+02 9.03E+01

F4 1.27E−01 5.40E+02 6.48E+02 1.59E−01 3.98E−02 0.00E+00

F5 0.00E+00 8.76E−03 0.00E+00 0.00E+00 0.00E+00 5.91E−04
F6 6.54E−13 1.23E+00 2.14E+01 3.09E−14 3.24E−14 0.00E+00

F7 0.00E+00 2.59E−01 1.17E−01 0.00E+00 0.00E+00 0.00E+00

F8 5.53E+03 9.38E+03 0.00E+00 1.15E+03 9.33E−07 6.94E−01

F9 1.01E+03 1.19E+03 3.75E+02 8.19E−07 9.66E−11 7.09E−07
F10 0.00E+00 7.13E+01 4.43E+01 0.00E+00 0.00E+00 4.20E−02
F11 2.62E−04 3.85E+02 8.03E+02 8.00E−07 1.18E−10 2.21E−06

F12 9.76E−10 7.44E+01 9.06E+02 2.38E−14 2.30E−13 0.00E+00

F13 1.36E+02 5.75E+06 9.43E+02 1.09E+02 1.11E+02 7.63E+01

F14 1.38E−01 4.29E+02 6.09E+02 1.19E−01 1.59E−01 2.17E−13
F15 0.00E+00 2.14E+01 1.75E+00 0.00E+00 0.00E+00 0.00E+00

F16 7.46E−09 1.60E+02 1.92E+03 1.84E−12 1.35E−11 5.96E−12
F17 3.70E+01 1.75E+05 3.36E+03 1.13E+01 1.26E+01 7.54E−01
F18 4.73E−04 2.12E+02 6.89E+02 7.96E−02 3.98E−02 2.39E−08
F19 0.00E+00 2.06E+03 7.52E+02 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 10. Comparison of the mean error values among three baseline algorithms and
rank-DEs for functions F1–F19 at D = 200

G-CMA-ES provides the 1st best results in 8, 9, 11, 6 and 3 functions, respectively.
There are no functions that CHC obtains the best overall results.

The p-values computed by Iman-Davenport test on the mean error values shown
in Tables 8–12 are respectively 1.50E−11, 1.00E−12, 2.30E−11, 2.90E−11, and
1.00E−11 at D = 50, 100, 200, 500, and 1 000. The results indicate that there
are significant differences in the behavior of the compared six algorithms for all the
functions at α = 0.05, regardless of the dimensionality of the test functions.

According to the average rankings obtained by each algorithm in the Friedman
test shown in Table 13, the results show that all of our proposed ranking-based DE
variants obtain better rankings than the three compared baseline algorithms. Re-
gardless of the dimensionality, in all cases, rank-GaDE gets the 1st ranking, followed
by rank-GODE, rank-DE, DE, G-CMA-ES (except D = 500 and D = 1 000)2, and
CHC.

2 In G-CMA-ES, when D = 500 and D = 1 000 the average error values of some
functions are greater than 1.00E + 100, therefore, the average rankings obtained by the
Friedman test do not include the G-CMA-ES in these two cases.

66 L. Guo, X. Li, W. Gong

F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 2.84E−12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 5.35E+01 1.29E+02 3.48E−04 2.35E+01 2.31E+01 4.69E+01

F3 4.76E+02 1.14E+06 3.58E+02 4.35E+02 4.34E+02 3.80E+02

F4 3.20E−01 1.91E+03 2.10E+03 4.38E−01 2.39E−01 0.00E+00

F5 0.00E+00 6.98E−03 2.96E−04 0.00E+00 0.00E+00 0.00E+00

F6 1.65E−12 5.16E+00 2.15E+01 8.22E−14 8.88E−14 3.44E−14
F7 0.00E+00 1.27E−01 7.21E+153 0.00E+00 0.00E+00 0.00E+00

F8 6.09E+04 7.22E+04 2.36E−06 2.68E+04 0.00E+00 1.32E+03

F9 2.52E+03 3.00E+03 1.74E+03 6.28E−06 4.20E−14 4.44E−05

F10 0.00E+00 1.86E+02 1.27E+02 0.00E+00 0.00E+00 1.26E−01
F11 6.76E−04 1.81E+03 4.16E+03 6.22E−06 3.72E−14 4.04E−05

F12 7.07E−09 4.48E+02 2.58E+03 2.43E−12 1.81E−11 7.04E−12
F13 3.59E+02 3.22E+07 2.87E+03 3.31E+02 3.34E+02 3.07E+02

F14 1.35E−01 1.46E+03 1.95E+03 3.18E−01 2.79E−01 8.42E−12
F15 0.00E+00 6.01E+01 2.82E+262 0.00E+00 0.00E+00 0.00E+00

F16 2.04E−08 9.55E+02 5.45E+03 2.72E−11 1.72E−10 1.38E−10
F17 1.11E+02 8.40E+05 9.59E+03 8.69E+01 8.84E+01 5.24E+01

F18 1.22E−03 7.32E+02 2.05E+03 3.98E−02 1.49E−06 3.99E−10
F19 0.00E+00 1.76E+03 2.44E+06 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 11. Comparison of the mean error values among three baseline algorithms and
rank-DEs for functions F1–F19 at D = 500

4.4 Comparison with Reported Results

In the special issue of Soft Computing [12], there are 13 papers published therein. All
of the results are available online at http://sci2s.ugr.es/eamhco/SOCO-results.
xls. In this subsection, we compare the results of rank-DE, rank-GODE, and rank-
GaDE with those of the 13 advanced methods. With respect to the mean error
values, the average rankings obtained by each algorithm in the Friedman test are
reported in Table 14. From the results, it can be seen that MOS [15], which is a mul-
tiple offspring sampling method containing different search strategies, consistently
obtains the best ranking regardless of the dimensionality. The ranking of jDElscop
and rank-GaDE in different dimensions of problems are twisted: in D = 50, 200, and
500, jDElscop is better than rank-GaDE; while in D = 100 and 1 000, rank-GaDE
provides better rankings than jDElscop. However, in overall, rank-GaDE obtains
the 2nd ranking, following by jDElscop, rank-GODE, and rank-DE. It is worth not-
ing that although the ranking-based DE variants are not the best one among all
compared algorithms, they can provide promising results. More importantly, they
improves their non-ranking-based DEs markedly, for example, the overall ranking of
rank-GaDE is 2, while GaDE only ranks 7.

http://sci2s.ugr.es/eamhco/SOCO-results.xls
http://sci2s.ugr.es/eamhco/SOCO-results.xls

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 67

F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 1.36E−11 NA 0.00E+00 0.00E+00 0.00E+00

F2 8.46E+01 1.44E+02 NA 5.03E+01 4.79E+01 4.34E+01

F3 9.69E+02 8.75E+03 NA 9.27E+02 9.30E+02 8.76E+02

F4 1.44E+00 4.76E+03 NA 5.97E−01 7.56E−01 0.00E+00

F5 0.00E+00 7.02E−03 NA 0.00E+00 0.00E+00 0.00E+00

F6 3.29E−12 1.38E+01 NA 1.75E−13 1.86E−13 5.41E−14
F7 0.00E+00 3.52E−01 NA 0.00E+00 0.00E+00 0.00E+00

F8 2.46E+05 3.11E+05 NA 1.37E+05 0.00E+00 1.59E+04

F9 5.13E+03 6.11E+03 NA 2.26E−05 0.00E+00 1.80E−04

F10 0.00E+00 3.83E+02 NA 0.00E+00 0.00E+00 8.40E−02
F11 1.35E−03 4.82E+03 NA 2.29E−05 0.00E+00 1.73E−04

F12 1.68E−08 1.05E+03 NA 2.30E−11 1.57E−10 1.49E−10
F13 7.30E+02 6.66E+07 NA 7.06E+02 7.08E+02 6.80E+02

F14 6.90E−01 3.62E+03 NA 3.98E−01 3.98E−01 7.18E−12
F15 0.00E+00 8.37E+01 NA 0.00E+00 0.00E+00 0.00E+00

F16 4.18E−08 2.32E+03 NA 1.28E−10 8.00E−10 6.78E−10
F17 2.36E+02 2.04E+07 NA 2.11E+02 2.14E+02 1.80E+02

F18 2.37E−03 1.72E+03 NA 3.98E−02 3.98E−02 1.62E−08
F19 0.00E+00 4.20E+03 NA 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 12. Comparison of the mean error values among three baseline algorithms and
rank-DEs for functions F1–F19 at D = 1 000. “NA” means the results are not available.

Algorithm Ranking Ranking Ranking Ranking Ranking
(D = 50) (D = 100) (D = 200) (D = 500) (D = 1 000)

DE 3.5 3.5263 3.3158 3.2368 3.3421

CHC 5.5 5.5 5.6316 4.8947 4.8947

G-CMA-ES 4.5789 4.6579 4.4474 NA NA

rank-DE 2.6579 2.6579 2.6316 2.6053 2.3947

rank-GODE 2.3947 2.5263 2.5263 2.1316 2.3421

rank-GaDE 2.3684 2.1316 2.4474 2.0893 2.0263

Table 13. Average rankings obtained by each algorithm in the Friedman test. “NA”
means not available.

5 CONCLUSIONS

In this paper, we employ our proposed modified ranking-based mutation operators
to enhance the performance of differential evolution. In the ranking-based mutation
operators, the vectors in the mutation operators are selected according to their rank-
ings in the current population. Better solutions are more likely to be selected to be
the placing and leading vectors, while worse solutions have more chance to be chosen
as the correcting vector(s). In general, the proposed ranking-based vector technique

68 L. Guo, X. Li, W. Gong

Algorithm Ranking Ranking Ranking Ranking Ranking Average Overall
(D = 50) (D = 100) (D = 200) (D = 500) (D = 1 000)

SOUPDE 7.7632 8.2105 8.2632 8.0263 7.3684 7.9263 9

DE−D40+Mm 8.3947 8.5263 8.4737 7.8421 7.3158 8.1105 10

GODE 8.9211 8.9737 8.3947 8.3947 6.5789 8.2526 11

GaDE 7.6316 7.5000 6.7895 7.3158 NA 7.3092 7

jDElscop 5.9211 6.5789 6.2105 6.2632 6.5000 6.2947 3

SaDE−MMTS 6.6579 7.3421 7.3421 7.8421 7.1316 7.2632 6

MOS 5.6053 5.7632 5.0263 5.0000 4.5526 5.1895 1

MA-SSW-Chains 9.3684 10.1842 10.6579 12.0526 10.6053 10.5737 15

RPSO-vm 11.5526 10.9211 10.8684 10.3684 8.3684 10.4158 14

Tuned IPSOLS 9.6842 7.7105 7.7105 7.6053 6.5263 7.8474 8

EvoPROpt 15.1316 15.0000 14.8421 14.0000 12.8421 14.3632 16

EM323 10.1842 9.1053 9.1842 9.7895 NA 9.5658 12

VXQR1 10.3947 10.6316 11.0263 10.6842 8.9211 10.3316 13

rank-DE 6.5526 7.3158 7.5263 7.7105 6.5526 7.1316 5

rank-GODE 6.1842 6.4474 6.8421 6.6579 6.0000 6.4263 4

rank-GaDE 6.0526 5.7895 6.8421 6.4474 5.7368 6.1737 2

Table 14. Average rankings obtained by different algorithms in the Friedman test. “NA”
means not available.

is very simple, and it does not introduce any new parameters. In order to verify the
performance of our proposed ranking-based mutation operators, they are integrated
into the original DE, GODE, and GaDE; rank-DE, rank-GODE, and rank-GaDE
are evaluated on the large-scale continuous optimization problems presented in the
special issue of Soft Computing. Experimental results verify our expectation that
the ranking-based mutation operators are consistently able to enhance the perfor-
mance of DE, GODE, and GaDE. Regardless of the dimensionality, ranking-based
DEs achieve very promising results in the large-scale continuous optimization. Com-
pared with the three baseline algorithms, statistical results show that ranking-based
DEs still obtain better rankings.

The ranking-based mutation operators may also be useful in the constrained
optimization and multiobjective optimization. For example, the stochastic ranking
technique [24] and non-dominated sorting method [6] can be possibly used to rank
solutions in the constrained optimization and multiobjective optimization. In our
future, we will try to verify these expectations.

A APPENDIX

In this section, the detailed results of rank-DE, rank-GODE, and rank-GaDE are
reported in Tables 15–17, respectively. In each function, each algorithm is performed
over 25 independent runs. In Tables 15–17, the median value is highlighted in
boldface when it is better than or equal to the mean value in the same function.

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 69

D F Best Median Worst Mean D F Best Median Worst Mean
50 F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F11 6.17E−09 9.93E−09 1.77E−08 1.05E−08

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 6.25E−08 1.13E−07 1.75E−07 1.13E−07
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 6.75E−07 7.90E−07 9.43E−07 8.00E−07
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 5.51E−06 6.25E−06 7.06E−06 6.22E−06

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 2.09E−05 2.26E−05 2.53E−05 2.29E−05
50 F2 5.21E−04 7.79E−04 1.40E−03 8.15E−04 50 F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 1.34E−01 1.69E−01 2.03E−01 1.69E−01 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 2.82E+00 3.24E+00 3.49E+00 3.22E+00 200 1.72E−14 2.47E−14 3.34E−14 2.38E−14
500 2.23E+01 2.36E+01 2.50E+01 2.35E+01 500 1.58E−12 2.49E−12 3.17E−12 2.43E−12

1 000 4.91E+01 5.02E+01 5.16E+01 5.03E+01 1 000 2.01E−11 2.27E−11 2.85E−11 2.30E−11
50 F3 1.77E−14 2.61E−11 3.99E+00 1.59E−01 50 F13 6.16E−08 3.85E−07 3.94E−01 4.98E−02

100 3.12E+01 3.38E+01 3.68E+01 3.39E+01 100 1.91E+01 2.52E+01 2.78E+01 2.49E+01
200 1.31E+02 1.35E+02 1.75E+02 1.36E+02 200 1.06E+02 1.07E+02 1.44E+02 1.09E+02
500 4.29E+02 4.32E+02 4.74E+02 4.35E+02 500 3.28E+02 3.31E+02 3.35E+02 3.31E+02

1 000 9.24E+02 9.27E+02 9.30E+02 9.27E+02 1 000 7.01E+02 7.02E+02 7.45E+02 7.06E+02
50 F4 0.00E+00 0.00E+00 9.95E−01 3.98E−02 50 F14 0.00E+00 2.36E−14 9.57E−14 3.35E−14

100 0.00E+00 0.00E+00 9.95E−01 1.19E−01 100 4.29E−12 7.30E−12 9.95E−01 3.98E−02
200 0.00E+00 0.00E+00 9.95E−01 1.59E−01 200 1.39E−10 3.43E−10 9.95E−01 1.19E−01
500 0.00E+00 0.00E+00 1.99E+00 4.38E−01 500 2.81E−09 4.15E−09 1.99E+00 3.18E−01

1 000 0.00E+00 0.00E+00 3.98E+00 5.97E−01 1 000 1.10E−08 1.38E−08 1.99E+00 3.98E−01
50 F5 0.00E+00 0.00E+00 1.48E−02 9.85E−04 50 F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F16 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 1.11E−14 1.47E−14 1.47E−14 1.42E−14 100 9.08E−14 1.31E−13 2.27E−13 1.46E−13
200 2.89E−14 3.24E−14 3.24E−14 3.09E−14 200 1.38E−12 1.84E−12 2.49E−12 1.84E−12
500 7.86E−14 8.22E−14 8.57E−14 8.22E−14 500 2.23E−11 2.74E−11 3.06E−11 2.72E−11

1 000 1.75E−13 1.75E−13 1.82E−13 1.75E−13 1 000 1.12E−10 1.28E−10 1.40E−10 1.28E−10
50 F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F17 3.46E−07 1.07E−02 3.99E+00 2.21E−01

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 1.95E−05 7.81E−02 2.84E−01 1.03E−01
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 7.69E+00 1.16E+01 1.62E+01 1.13E+01
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 8.50E+01 8.72E+01 8.90E+01 8.69E+01

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 2.10E+02 2.11E+02 2.16E+02 2.11E+02
50 F8 1.29E−03 3.45E−03 8.21E−03 3.45E−03 50 F18 5.53E−11 1.15E−10 1.79E−10 1.18E−10

100 8.89E+00 1.67E+01 3.01E+01 1.75E+01 100 1.84E−09 2.43E−09 5.00E−09 2.66E−09
200 8.92E+02 1.11E+03 1.44E+03 1.15E+03 200 2.50E−08 3.54E−08 9.95E−01 7.96E−02
500 2.30E+04 2.66E+04 3.21E+04 2.68E+04 500 3.15E−07 3.60E−07 9.95E−01 3.98E−02

1 000 1.27E+05 1.37E+05 1.46E+05 1.37E+05 1 000 1.28E−06 1.44E−06 9.95E−01 3.98E−02
50 F9 5.68E−09 9.27E−09 2.06E−08 9.91E−09 50 F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 7.35E−08 1.09E−07 1.40E−07 1.04E−07 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 6.13E−07 8.19E−07 9.60E−07 8.19E−07 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 5.04E−06 6.42E−06 7.55E−06 6.28E−06 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 2.05E−05 2.24E−05 2.66E−05 2.26E−05 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 All the results below 1.00E−14 have been

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 approximated to 0.
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 15. Experimental results of rank-DE for functions F1–F19 at D = 50, 100, 200,
500, and 1 000, where the median value is highlighted in boldface when it is better than
or equal to the mean value in the same function

70 L. Guo, X. Li, W. Gong

D F Best Median Worst Mean D F Best Median Worst Mean
50 F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F11 2.29E−10 6.18E−10 1.48E−09 6.93E−10

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 8.30E−11 6.86E−10 1.58E−09 7.30E−10
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 1.53E−11 7.12E−11 5.04E−10 1.18E−10
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 0.00E+00 1.46E−14 2.11E−13 3.72E−14

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F2 8.02E−04 1.31E−03 2.19E−03 1.33E−03 50 F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 1.72E−01 2.05E−01 2.57E−01 2.10E−01 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 2.93E+00 3.62E+00 3.94E+00 3.59E+00 200 1.21E−13 2.33E−13 3.28E−13 2.30E−13
500 2.23E+01 2.30E+01 2.42E+01 2.31E+01 500 1.42E−11 1.77E−11 2.46E−11 1.81E−11

1 000 4.68E+01 4.78E+01 4.96E+01 4.79E+01 1 000 1.37E−10 1.58E−10 1.79E−10 1.57E−10
50 F3 2.94E−13 7.41E−10 8.27E−09 1.87E−09 50 F13 1.23E−06 4.12E−06 3.48E−01 5.05E−02

100 3.28E+01 3.60E+01 8.42E+01 4.14E+01 100 2.49E+01 2.89E+01 3.31E+01 2.87E+01
200 1.34E+02 1.37E+02 1.82E+02 1.42E+02 200 1.07E+02 1.10E+02 1.49E+02 1.11E+02
500 4.32E+02 4.34E+02 4.38E+02 4.34E+02 500 3.31E+02 3.32E+02 3.72E+02 3.34E+02

1 000 9.28E+02 9.30E+02 9.32E+02 9.30E+02 1 000 7.02E+02 7.05E+02 7.41E+02 7.08E+02
50 F4 0.00E+00 0.00E+00 9.95E−01 3.98E−02 50 F14 1.03E−13 5.08E−13 1.34E−12 5.79E−13

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 2.28E−11 9.93E−11 9.95E−01 3.98E−02
200 0.00E+00 0.00E+00 9.95E−01 3.98E−02 200 1.18E−09 2.67E−09 1.99E+00 1.59E−01
500 0.00E+00 0.00E+00 1.99E+00 2.39E−01 500 1.92E−08 2.68E−08 9.95E−01 2.79E−01

1 000 2.38E−13 9.95E−01 2.98E+00 7.56E−01 1 000 7.16E−08 9.30E−08 1.99E+00 3.98E−01
50 F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F16 2.45E−14 4.99E−14 1.36E−13 5.35E−14

100 1.47E−14 1.47E−14 1.82E−14 1.48E−14 100 6.95E−13 1.21E−12 1.76E−12 1.24E−12
200 2.89E−14 3.24E−14 3.60E−14 3.24E−14 200 8.54E−12 1.36E−11 1.72E−11 1.35E−11
500 8.57E−14 8.93E−14 9.28E−14 8.88E−14 500 1.44E−10 1.75E−10 1.95E−10 1.72E−10

1 000 1.82E−13 1.85E−13 1.92E−13 1.86E−13 1 000 7.25E−10 8.02E−10 8.98E−10 8.00E−10
50 F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F17 4.39E−07 6.60E−06 2.36E−01 3.96E−02

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 1.66E−05 6.28E−02 2.50E−01 8.98E−02
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 9.17E+00 1.30E+01 1.45E+01 1.26E+01
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 8.54E+01 8.88E+01 9.03E+01 8.84E+01

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 2.11E+02 2.14E+02 2.16E+02 2.14E+02
50 F8 1.38E−10 8.45E−09 3.13E−07 4.42E−08 50 F18 2.93E−10 6.11E−10 1.08E−09 6.30E−10

100 9.28E−09 2.84E−07 7.14E−05 8.50E−06 100 7.10E−09 1.25E−08 2.45E−08 1.30E−08
200 1.03E−11 5.35E−08 1.42E−05 9.33E−07 200 9.94E−08 1.36E−07 9.95E−01 3.98E−02
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 1.16E−06 1.47E−06 1.79E−06 1.49E−06

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 4.39E−06 5.13E−06 9.95E−01 3.98E−02
50 F9 1.47E−10 3.64E−10 1.13E−09 4.39E−10 50 F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 1.87E−10 6.01E−10 2.68E−09 7.32E−10 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 7.27E−12 7.92E−11 3.24E−10 9.66E−11 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 4.14E−15 2.19E−14 2.06E−13 4.20E−14 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 All the results below 1.00E−14 have been

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 approximated to 0.
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 16. Experimental results of rank-GODE for functions F1–F19 at D = 50, 100, 200,
500, and 1 000, where the median value is highlighted in boldface when it is better than
or equal to the mean value in the same function

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 71

D F Best Median Worst Mean D F Best Median Worst Mean
50 F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 0.00E+00 4.33E−07 1.15E−05 2.21E−06
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 2.64E−05 3.57E−05 7.15E−05 4.04E−05

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 1.05E−04 1.71E−04 2.59E−04 1.73E−04
50 F2 9.10E−01 2.49E+00 7.88E+00 2.69E+00 50 F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 3.59E−01 3.65E+00 1.79E+01 4.74E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 1.84E+01 2.64E+01 3.80E+01 2.86E+01 200 0.00E+00 0.00E+00 2.59E−14 0.00E+00
500 2.89E+01 4.86E+01 6.32E+01 4.69E+01 500 3.01E−12 6.40E−12 1.78E−11 7.04E−12

1 000 2.85E+01 4.48E+01 6.03E+01 4.34E+01 1 000 8.11E−11 1.40E−10 2.51E−10 1.49E−10
50 F3 0.00E+00 0.00E+00 6.32E−11 3.24E−12 50 F13 4.10E−02 2.94E−01 4.32E+00 6.24E−01

100 5.04E−10 1.04E−01 1.21E+01 2.22E+00 100 1.73E−01 8.50E−01 2.26E+00 8.96E−01
200 4.80E+01 8.57E+01 1.39E+02 9.03E+01 200 6.02E+01 6.59E+01 1.13E+02 7.63E+01
500 3.38E+02 3.79E+02 4.11E+02 3.80E+02 500 2.89E+02 3.06E+02 3.30E+02 3.07E+02

1 000 7.95E+02 8.71E+02 9.67E+02 8.76E+02 1 000 6.22E+02 6.78E+02 7.40E+02 6.80E+02
50 F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F14 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 5.32E−14 1.98E−13 6.29E−13 2.17E−13
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 4.13E−12 8.06E−12 1.25E−11 8.42E−12

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 4.05E−12 7.24E−12 1.02E−11 7.18E−12
50 F5 0.00E+00 0.00E+00 7.40E−03 8.88E−04 50 F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 1.48E−02 5.91E−04 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F16 0.00E+00 0.00E+00 5.48E−14 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 1.16E−13 3.37E−13 1.12E−12 4.21E−13
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 2.98E−12 5.54E−12 1.25E−11 5.96E−12
500 2.84E−14 3.20E−14 6.75E−14 3.44E−14 500 7.88E−11 1.42E−10 1.92E−10 1.38E−10

1 000 4.26E−14 4.97E−14 1.28E−13 5.41E−14 1 000 4.13E−10 6.66E−10 1.00E−09 6.78E−10
50 F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F17 8.12E−08 2.35E−01 4.71E−01 2.49E−01

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 2.82E−01 6.94E−01 1.53E+00 7.19E−01
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 3.85E−01 7.39E−01 1.10E+00 7.54E−01
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 4.44E+01 5.20E+01 5.96E+01 5.24E+01

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 1.73E+02 1.80E+02 1.85E+02 1.80E+02
50 F8 0.00E+00 0.00E+00 5.48E−14 0.00E+00 50 F18 5.10E−11 1.76E−10 5.92E−10 2.40E−10

100 3.89E−07 2.41E−06 9.87E−06 3.34E−06 100 9.64E−10 2.41E−09 5.62E−09 2.47E−09
200 1.58E−01 5.69E−01 3.68E+00 6.94E−01 200 1.74E−08 1.99E−08 7.88E−08 2.39E−08
500 7.36E+02 1.21E+03 2.04E+03 1.32E+03 500 2.05E−10 3.83E−10 5.98E−10 3.99E−10

1 000 1.33E+04 1.55E+04 1.93E+04 1.59E+04 1 000 1.17E−08 1.51E−08 2.11E−08 1.62E−08
50 F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 5.27E−06 7.09E−07 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 1.97E−05 4.39E−05 7.60E−05 4.44E−05 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 9.73E−05 1.60E−04 4.11E−04 1.80E−04 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 All the results below 1.00E−14 have been

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 approximated to 0.
200 0.00E+00 0.00E+00 0.00E+00 1.05E+00
500 0.00E+00 0.00E+00 1.05E+00 1.26E−01

1 000 0.00E+00 0.00E+00 1.05E+00 8.40E−02

Table 17. Experimental results of rank-GaDE for functions F1–F19 at D = 50, 100, 200,
500, and 1 000, where the median value is highlighted in boldface when it is better than
or equal to the mean value in the same function

72 L. Guo, X. Li, W. Gong

From the results it is clear to see that in the majority of the cases the median values
are much better than or equal to the corresponding mean values. For example, for
rank-GODE there are 85 out of 95 cases where the median values are much better
than or equal to the corresponding mean values. The results show that the ranking-
based DEs sometimes occasionally converge to the local optima in some functions.
But, in general, our proposed ranking-based DEs are able to obtain good solutions
within the specified Max NFFEs.

Acknowledgments

The source codes of GODE and GaDE are obtained available online at http://

sci2s.ugr.es/EAMHCO/contributionsSOCO.php.

REFERENCES

[1] Alcalá-Fdez, J.—Sánchez, L.—Garćıa, S.—del Jesus, M. J.—Ven-
tura, S.—Garrell, J. M.—Otero, J.—Romero, C.—Bacardit, J.—Ri-
vas, V. M.—Fernández, J. C.—Herrera, F.: KEEL: A Software Tool to Assess
Evolutionary Algorithms for Data Mining Problems. Soft Computing, Vol. 13, 2009,
No. 3, pp. 307–318, doi: 10.1007/s00500-008-0323-y.

[2] Auger, A.—Hansen, N.: A Restart CMA Evolution Strategy with Increasing Pop-
ulation Size. The 2005 IEEE Congress on Evolutionary Computation, 2005, Vol. 2,
pp. 1769–1776, doi: 10.1109/CEC.2005.1554902.

[3] Brest, J.—Sepesy Maučec, M.: Self-Adaptive Differential Evolution Algorithm
Using Population Size Reduction and Three Strategies. Soft Computing – A Fusion of
Foundations, Methodologies and Applications, Vol. 15, 2011, No. 11, pp. 2157–2174,
doi: 10.1007/s00500-010-0644-5.

[4] Brest, J.—Zamuda, A.—Fister, I.—Sepesy Maučec, M.: Large Scale
Global Optimization Using Self-Adaptive Differential Evolution Algorithm. 2010
IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–8, doi:
10.1109/CEC.2010.5585927.

[5] Das, S.—Suganthan, P. N.: Differential Evolution: A Survey of the State-of-the-
Art. IEEE Transactions on Evolutionary Computation, Vol. 15, 2011, No. 1, pp. 4–31,
doi: 10.1109/TEVC.2010.2059031.

[6] Deb, K.—Pratap, A.—Agarwal, S.—Meyarivan, T.: A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation, Vol. 6, 2002, No. 2, pp. 182–197, doi: 10.1109/4235.996017.

[7] Eshelman, L. J.—Schaffer, J. D.: Real-Coded Genetic Algorithms and Interval-
Schemata. In: Whitley, D. L. (Ed.): Foundation of Genetic Algorithms, Vol. 2, 1993,
pp. 187–202.

[8] Garćıa, S.—Fernández, A.—Luengo, J.—Herrera, F.: A Study of Statis-
tical Techniques and Performance Measures for Genetics-Based Machine Learning:
Accuracy and Interpretability. Soft Computing, Vol. 13, 2009, No. 10, pp. 959–977,
doi: 10.1007/s00500-008-0392-y.

http://sci2s.ugr.es/EAMHCO/contributionsSOCO.php
http://sci2s.ugr.es/EAMHCO/contributionsSOCO.php
https://doi.org/10.1007/s00500-008-0323-y
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1007/s00500-010-0644-5
https://doi.org/10.1109/CEC.2010.5585927
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/s00500-008-0392-y

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 73

[9] Garćıa, S.—Molina, D.—Lozano, M.—Herrera, F.: A Study on the Use of
Non-Parametric Tests for Analyzing the Evolutionary Algorithms’ Behaviour: A Case
Study on the CEC ’2005 Special Session on Real Parameter Optimization. Journal of
Heuristics, Vol. 15, 2009, No. 6, pp. 617–644, doi: 10.1007/s10732-008-9080-4.

[10] Garćıa-Mart́ınez, C.—Rodŕıguez, F.—Lozano, M.: Role Differentiation and
Malleable Mating for Differential Evolution: An Analysis on Large-Scale Optimisa-
tion. Soft Computing – A Fusion of Foundations, Methodologies and Applications,
Vol. 15, 2011, No. 11, pp. 2109–2126, doi: 10.1007/s00500-010-0641-8.

[11] Gong, W.—Cai, Z.: Differential Evolution with Ranking-Based Mutation Opera-
tors. IEEE Transactions on Cybernetics, Vol. 43, 2013, No. 6, pp. 2066–2081.

[12] Herrera, F.—Lozano, M.—Molina, D. (Eds.): Special Issue on Scalability of
Evolutionary Algorithms and Other Metaheuristics for Large Scale Continuous Op-
timization Problems. Soft Computing – A Fusion of Foundations, Methodologies and
Applications, Vol. 15, 2011, No. 11. Published online: 2010.

[13] Herrera, F.—Lozano, M.—Molina, D.: Test Suite for the Special Issue of Soft
Computing on Scalability of Evolutionary Algorithms and Other Metaheuristics for
Large Scale Continuous Optimization Problems. Technical report, Department of
Computer Science and Artificial Intelligence, University of Granada, 2010.

[14] Korošec, P.—Šilc, J.: Using Stigmergy to Solve Numerical Optimization Prob-
lems. Computing and Informatics, Vol. 27, 2008, No. 3, pp. 377–402.

[15] LaTorre, A.—Muelas, S.—Peña, J.-M.: A MOS-Based Dynamic Memetic Dif-
ferential Evolution Algorithm for Continuous Optimization: A Scalability Test. Soft
Computing, Vol. 15, 2011, No. 11, pp. 2187–2199.

[16] Leong, W. J.—Hassan, M. A.: Scaled Memoryless Symmetric Rank One Method
for Large-Scale Optimization. Applied Mathematics and Computation, Vol. 218, 2011,
No. 2, pp. 413–418.

[17] Li, H.-M.—Zhang, K.-C.: A Decomposition Algorithm for Solving Large-Scale
Quadratic Programming Problems. Applied Mathematics and Computation, Vol. 173,
2006, No. 1, pp. 394–403.

[18] Lozano, M.—Molina, D.—Herrera, F.: Editorial Scalability of Evolutionary
Algorithms and Other Metaheuristics for Large-Scale Continuous Optimization Prob-
lems. Soft Computing – A Fusion of Foundations, Methodologies and Applications,
Vol. 15, 2011, No. 11, pp. 2085–2087.

[19] Muelas, S.—La Torre, A.—Peña, J.-M.: A Memetic Differential Evolution Al-
gorithm for Continuous Optimization. Ninth International Conference on Intelligent
Systems Design and Applications (ISDA ’09), 2009, pp. 1080–1084.

[20] Neri, F.—Tirronen, V.: Recent Advances in Differential Evolution: A Survey
and Experimental Analysis. Artificial Intelligence Review, Vol. 33, 2010, No. 1-2,
pp. 61–106.

[21] Noman, N.—Iba, H.: Accelerating Differential Evolution Using an Adaptive Lo-
cal Search. IEEE Transactions on Evolutionary Computation, Vol. 12, 2008, No. 1,
pp. 107–125.

[22] Price, K.—Storn, R. M.—Lampinen, J. A.: Differential Evolution: A Practical
Approach to Global Optimization. Springer-Verlag, Berlin, 2005.

https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1007/s00500-010-0641-8

74 L. Guo, X. Li, W. Gong

[23] Qin, A. K.—Huang, V. L.—Suganthan, P. N.: Differential Evolution Algorithm
with Strategy Adaptation for Global Numerical Optimization. IEEE Transactions on
Evolutionary Computation, Vol. 13, 2009, No. 2, pp. 398–417.

[24] Runarsson, T. P.—Yao, X.: Stochastic Ranking for Constrained Evolutionary
Optimization. IEEE Transactions on Evolutionary Computation, Vol. 4, 2000, No. 3,
pp. 284–294, doi: 10.1109/4235.873238.

[25] Shaw, C.—Williams, K. S.—Assassa, R. P.: Patients’ Views of a New Nurse-Led
Continence Service. Journal of Clinical Nursing, Vol. 9, 2003, No. 4, pp. 574–582.

[26] Stanarevic, N.: Hybridizing Artificial Bee Colony (ABC) Algorithm with Differ-
ential Evolution for Large Scale Optimization Problems. International Journal of
Mathematics and Computers in Simulation, Vol. 1, 2012, No. 6, pp. 194–202.

[27] Storn, R.—Price, K.: Differential Evolution – A Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces. Technical report TR-95-012,
Berkeley, CA, 1995.

[28] Storn, R.—Price, K.: Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces. Journal of Global Optimization,
Vol. 11, 1997, No. 4, pp. 341–359.

[29] Tang, K.—Li, X.—Suganthan, P. N.—Yang, Z.—Weise, T.: Benchmark
Functions for the CEC ’2010 Special Session and Competition on Large-Scale Global
Optimization. Technical report, Nature Inspired Computation and Applications Lab-
oratory, USTC, China, 2009.

[30] Tang, K.—Yao, X.—Suganthan, P. N.—MacNish, C.—Chen, Y. P.—
Chen, C. M.—Yang, Z.: Benchmark Functions for the CEC ’2008 Special Session
and Competition on Large Scale Global Optimization. Technical report, Nature In-
spired Computation and Applications Laboratory, USTC, China, 2007.

[31] Wang, H.—Ni, Q.: A New Method of Moving Asymptotes for Large-Scale Un-
constrained Optimization. Applied Mathematics and Computation, Vol. 203, 2008,
No. 1, pp. 62–71.

[32] Wang, H.—Wu, Z.—Rahnamayan, S.: Enhanced Opposition-Based Differential
Evolution for Solving High-Dimensional Continuous Optimization Problems. Soft
Computing – A Fusion of Foundations, Methodologies and Applications, Vol. 15,
2011, No. 11, pp. 2127–2140.

[33] Weber, M.—Neri, F.—Tirronen, V.: Shuffle or Update Parallel Differential
Evolution for Large-Scale Optimization. Soft Computing – A Fusion of Foundations,
Methodologies and Applications, Vol. 15, 2011, No. 11, pp. 2089–2107.

[34] Yang, Z.—Tang, K.—Yao, X.: Differential Evolution for High-Dimensional Func-
tion Optimization. IEEE Congress on Evolutionary Computation (CEC 2007), 2007,
pp. 3523–3530.

[35] Yang, Z.—Tang, K.—Yao, X.: Large Scale Evolutionary Optimization Using Co-
operative Coevolution. Information Sciences, Vol. 178, 2008, No. 15, pp. 2985–2999.

[36] Yang, Z.—Tang, K.—Yao, X.: Scalability of Generalized Adaptive Differential
Evolution for Large-Scale Continuous Optimization. Soft Computing – A Fusion of
Foundations, Methodologies and Applications, Vol. 15, 2011, No. 11, pp. 2141–2155.

https://doi.org/10.1109/4235.873238

Ranking-Based Differential Evolution for Large-Scale Continuous Optimization 75

[37] Yu, G.—Zhao, Y.—Wei, Z.: A Descent Nonlinear Conjugate Gradient Method for
Large-Scale Unconstrained Optimization. Applied Mathematics and Computation,
Vol. 187, 2007, No. 2, pp. 636–643.

[38] Zhang, J.—Sanderson, A. C.: JADE: Adaptive Differential Evolution with Op-
tional External Archive. IEEE Transactions on Evolutionary Computation, Vol. 13,
2009, No. 5, pp. 945–958.

[39] Zhao, S.-Z.—Suganthan, P. N.—Das, S.: Self-Adaptive Differential Evolu-
tion with Multi-Trajectory Search for Large-Scale Optimization. Soft Computing –
A Fusion of Foundations, Methodologies and Applications, Vol. 15, 2011, No. 11,
pp. 2175–2185.

Li Guo received his Ph.D. degree from the China University of
Geosciences, Wuhan, China, in 2015. He is currently working at
CCCC Infrastructure Maintenance Group Co., Ltd., China.

Xiang Li received the Ph.D. degree from the China University of
Geosciences, Wuhan, China, in 2008. He is currently Associate
Professor with School of Computer Science, China University
of Geosciences. He has published over 30 research papers in
journals and international conferences.

Wenyin Gong received his B.Eng., M.Eng. and Ph.D. degrees
in computer science from the China University of Geosciences,
Wuhan, China, in 2004, 2007, and 2010, respectively. He is Pro-
fessor with the School of Computer Science, China University of
Geosciences. He has published over 50 research papers in jour-
nals and international conferences. His current research interests
include evolutionary algorithms, evolutionary optimization, and
their applications. He served as a reviewer for over 20 interna-
tional journals, such as the IEEE Transactions on Evolutionary
Computation, the IEEE Transactions on Cybernetics, the IEEE

Computational Intelligence Magazine, the ACM Transactions on Intelligent Systems and
Technology, the Information Sciences, the European Journal of Operational Research, the
Applied Soft Computing, and the International Journal of Hydrogen Energy.

Computing and Informatics, Vol. 37, 2018, 76–108, doi: 10.4149/cai 2018 1 76

ENERGY AWARE RESOURCE ALLOCATION
FOR CLOUDS USING TWO LEVEL ANT COLONY
OPTIMIZATION

Ashok Kumar, Rajesh Kumar, Anju Sharma

Department of Computer Science&Engineering
Thapar University
Patiala-147004, India
e-mail: ashok.khunger@gmail.com, {rakumar, anju.sharma}@thapar.edu

Abstract. In cloud environment resources are dynamically allocated, adjusted, and
deallocated. When to allocate and how many resources to allocate is a challeng-
ing task. Resources allocated optimally and at the right time not only improve
the utilization of resources but also increase energy efficiency, provider’s profit and
customers’ satisfaction. This paper presents ant colony optimization (ACO) based
energy aware solution for resource allocation problem. The proposed energy aware
resource allocation (EARA) methodology strives to optimize allocation of resources
in order to improve energy efficiency of the cloud infrastructure while satisfying
quality of service (QoS) requirements of the end users. Resources are allocated to
jobs according to their QoS requirements. For energy efficient and QoS aware alloca-
tion of resources, EARA uses ACO at two levels. First level ACO allocates Virtual
Machines (VMs) resources to jobs whereas second level ACO allocates Physical
Machines (PMs) resources to VMs. Server consolidation and dynamic performance
scaling of PMs are employed to conserve energy. The proposed methodology is im-
plemented in CloudSim and the results are compared with existing popular resource
allocation methods. Simulation results demonstrate that EARA achieves desired
QoS and superior energy gains through better utilization of resources. EARA out-
performs major existing resource allocation methods and achieves up to 10.56 %
saving in energy consumption.

Keywords: Energy efficiency, resource allocation in cloud, dynamic voltage fre-
quency scaling, ant colony optimization, quality of service

Energy Aware Resource Allocation for Clouds Using Two Level ACO 77

1 INTRODUCTION

Cloud computing is a paradigm that has huge potential in enterprise and busi-
ness. It has a large pool of configurable resources which can be acquired and used
on demand [1, 20]. The acquired resources can be accessed over the network. In
cloud, everything is provided as a service. Cloud has three service models, namely:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS). In IaaS, fundamental computing resources like processing, storage,
networks, etc. are provisioned to the consumers for deployment and execution of
arbitrary software [20]. The resources are provisioned and allocated according to
consumers’ demands. Furthermore, resource allocation mechanism is to guarantee
that requirements of all applications are suitably met. Due to all these reasons, re-
source allocation in cloud computing is one of the important challenges. Apart from
resource allocation for performance, i.e., allocating sufficient resources to user appli-
cations in order to satisfy QoS parameters, another challenge posed to researchers
and industry is to minimize the energy consumption and carbon footprints. Accord-
ing to Koomey [18]: “Total data center power consumption from servers, storage,
communications, cooling, and power distribution equipment accounts for 1.7–2.2%
of total electricity used in U.S. in 2010”. With their enormous appetite for energy,
today’s data centers emit as much carbon dioxide as whole of Argentina. If left on
their current path, data center carbon dioxide output will quadruple by the year
2020 [15]. While the cloud energy appetite is growing quickly, industrial organiza-
tions and researchers are finding ways to reduce the energy consumption. Several
methods to reduce the energy consumption of a data center exists. Data centers
infrastructure is generally over-provisioned to sustain availability of resources dur-
ing peak hours. But due to dynamic nature of load average resource utilization is
approximately 15–20% [26, 15]. Energy efficiency can be improved by better man-
agement of resources. One such area for reduction in energy consumption is efficient
resource allocation. A large extent of energy can also be saved by server consol-
idation and turning off idle servers. Sometimes consolidation is not economically
feasible due to constraints such as communication cost of migration, QoS violations
due to interruption in service while consolidating, or unavailability of PM with suffi-
cient free resources where the VM can be migrated. In such cases energy consumed
by PMs can be saved by adjusting its operating voltage/frequency.

In this paper, we proposed EARA methodology that uses ACO for resource al-
location. Resources are allocated to the jobs with the goal to minimize total cost
of execution, total execution time and total energy consumption while satisfying
QoS requirements of the end users. Each QoS parameter of the job is associated
with some weight value that indicates its priority over the others. ACO is applied
at two levels for efficient allocation of resources. The first level ACO allocates VM
resources to jobs whereas the second level ACO allocates PM resources to VMs.
Server consolidation and dynamic performance scaling is employed to conserve en-
ergy. Dynamic performance scaling is used when server consolidation is economically
unfeasible because of high communication cost, QoS violations due to interruption

78 A. Kumar, R. Kumar, A. Sharma

in service or unavailability of destination machine with sufficient free resources. The
proposed methodology is implemented in CloudSim and its effectiveness is evaluated
with jobs having different resource demands and QoS requirements.

The rest of the paper is organized as follows: Related work is presented in
Section 2. Section 3 discusses the energy aware resource allocation methodology
and its mathematical representation. Section 4 explains the technique used for
EARA that is ant colony optimization. Comparative performance analysis of EARA
with the first fit decreasing (FFD), and multi-objective grouping genetic algorithm
(MGGA) is presented in Section 5. Conclusion and the scope of future work is
detailed in Section 6.

2 RELATED WORK

Beloglazov et al. [3] proposed power efficient and QoS aware resource allocation
heuristics. An algorithm for minimization of number of VM migrations is also
proposed. Upper and lower threshold utilization levels are set to detect over-
loaded and underloaded machines. When the resource utilization of a particular
server falls below the lower threshold value, all the VMs running on the machine
are shifted to some other machine. If utilization of a machine is above upper
threshold, one or more VMs are shifted to other machines to keep the utiliza-
tion between the threshold values. They proposed algorithms for single core ma-
chines. In real cloud environment heterogeneous multicore systems are used. Gao
et al. [11] proposed the linear programming based multi-objective ant colony based
system for virtual machine placement to minimize resource wastage and power
consumption. Initial pheromone value is assigned to VM-host movement. The
pheromone value indicates probability of a host to be selected for allocation of
VM under consideration. The authors used only CPU processing speed and mem-
ory requirements of VM while allocating resources to the VMs. Kinger et al. [17]
proposed event driven prediction based proactive temperature aware VM schedul-
ing to keep temperature of a server below the specified upper threshold temper-
ature. Temperature predictor constantly monitors temperature of the physical
machine. The authors used “unified list” to store current as well as threshold
temperature of each node. The unified list is updated after a fixed interval of
time, which would cause network congestion, performance degradation and lim-
ited scalability. Quarati et al. [23] proposed two level brokering algorithm for hy-
brid cloud with the objective to maximize broker’s revenue and user satisfaction.
First level scheduler schedules the requested services on private or public cloud
based on reserved quota of private resources. The authors proposed three first
level scheduling techniques namely feasible, static reservation, and maximum oc-
cupation. Second level of scheduling uses less consuming resource and dynamic
less consuming resource techniques to allocate resources to the services. The re-
quested services are run on physical machine having maximum availability of free
resources. The proposed technique causes uneven distribution of workload among

Energy Aware Resource Allocation for Clouds Using Two Level ACO 79

the servers and overloading of high performance machines. Overloading results
in creation of hot spots and increase in rate of failure. Lee et al. [19] proposed
performance analysis based resource allocation strategy for green cloud. Every
PM in a data center is assigned a performance value based on CPU processing
speed, number of cores, and memory capacity relative to machine having maxi-
mum number of cores, CPU processing speed, and memory capacity. A PM is
allocated to a VM if its performance value fits best the VM requirements. The
proposed method results in hot spots and in overloading of high performance ma-
chines. The improper distribution of load among servers would cause wastage of
energy. Raycroft et al. [24] analyzed the effect of global VM allocation policy
on energy consumption. Simulation is performed for the same type of applica-
tions but real cloud hosts diverse type of applications. Communication cost be-
tween VMs and QoS is not taken into account. Moreover, the authors proposed
movement of VMs between regions which is impractical in case of large sized VM.
Feller et al. [10] proposed multi-dimensional ant colony optimization based work-
load consolidation algorithm. The algorithm uses resource utilization history to
predict future resource demands and dynamically overbooks the resources. The
authors have tested the algorithm on PM having the same capacity, i.e. in homo-
geneous environment. Real cloud environment is heterogeneous in nature, having
machines with different resource capacity. Gao et al. [11] proposed multi-objective
ant colony system algorithm for virtual machine placement that minimizes total
resource wastage and power consumption. The algorithm attempts to utilize server
to its full capacity which would result in creation of hot spots and increase in
number of service-level agreement (SLA) violations. Moreover, using server near
full capacity causes more heat dissipation which results in decrease in server reli-
ability. Nathani et al. [21] proposed modified immediate and advance reservation
algorithms for deadline sensitive leases. The proposed algorithms try to sched-
ule new lease as a deadline sensitive lease in a single or multiple time slots. If
a new lease cannot be scheduled in a single or multiple time slots, the algorithm
reschedules the already scheduled deadline sensitive leases to make a room for new
lease. In case, rescheduling fails to generate deadline constrained schedule, then
backfilling is applied to accommodate new lease. The drawback of the proposed
algorithm is its high lease preemption rate which, in turn, increases the alloca-
tion overhead. Ant colony optimization technique for assigning real-time tasks
to heterogeneous processors is proposed by Chen et al. [7]. Local search tech-
nique is applied to improve energy efficiency of the feasible assignment solution
generated by the proposed assignment algorithm. The authors have claimed that
their algorithm saves 15.8 % energy over prototyped version of ant colony opti-
mization. Huang et al. [14] proposed adaptive sub-optimal resource management
scheme. In the proposed scheme, global resource allocation module uses remain-
ing resource table and resource utilization rate table to estimate number of VMs
required to provide desired level of service. Genetic algorithm (GA) is proposed
for reallocation of resources to achieve better performance. The proposed tech-
nique suffers from a single point failure. Moreover, centralized global resource al-

80 A. Kumar, R. Kumar, A. Sharma

location module, remaining resource table, and resource utilization rate table will
cause performance degradation when the number of requests is large. In [6, 16],
the authors proposed methods to calculate energy consumption of a PM. Castañé
et al. [6] modeled four basic subsystems: computing, memory, storage, and net-
work of a PM to calculate the amount of energy consumed by it. Kim et al. [16]
proposed a methodology for estimating energy consumption of a VM based on its
in-processor events without using a dedicated energy measuring instrument. Per-
formance counters available in modern processor are used to keep the track of
specific type floating point instructions issued by VM. Based on the instruction
type and its count, the energy consumption of VM is estimated. The number
of performance counters available in a processor is limited, so limited number of
instructions can be tracked, and that results in erroneous estimation of energy
consumption. The authors also proposed the energy credit scheduler. The pro-
posed scheduler assigns resources to the VM based on its energy credit. The re-
sources allocated to VM are preempted when its energy credit vanishes. Garg
et al. [12] proposed green cloud computing framework for reducing carbon foot-
print without sacrificing QoS. The authors used Green Offer Directory and Car-
bon Emission Directory to offer green services to the users. The Carbon Emis-
sion Directory maintains data related to the energy efficiency of cloud services.
Based on the information in these two directories, the cost and carbon footprint
of leasing a particular cloud service are calculated. The providers are supposed
to publish carbon footprint and energy efficiency of their services in public direc-
tories. There is no check on the data that is published by the providers. The
service provider can publish manipulated data in order to earn more and for build-
ing its reputation in the market. Xu and Fortes [28] proposed multi-objective
VM allocation algorithm. The authors have taken CPU, and memory parame-
ters for VMs and have claimed reduction in power consumption, thermal dissipa-
tion costs, and resource wastage. Disk utilization and inter VM communication
cost is not taken into consideration. Wu et al. [27] proposed energy efficient pri-
ority job scheduling for cloud computing. The requirements of a job are given
in terms of maximum and minimum CPU frequencies. Every server is assigned
some weight based on its performance/Watt. Servers are selected for jobs ac-
cording to assigned weight and SLA level required by the the users. A job is
assigned to VM running on a selected server that meets its requirements. Fre-
quency of the server is then tuned to reduce energy consumption. However, the
authors have not considered memory, input/output and other requirements of the
job. In [25, 4, 22, 13], the authors proposed energy-conscious consolidation heuris-
tics in order to conserve energy and maximize resource utilization without affecting
the performance of the system. Takeda and Takemura [25] proposed ranking of
physical servers for consolidation and VM placement. Servers with higher priori-
ties are considered more reliable than the servers with lower priority value. Higher
priorities are assigned to newly installed servers. The main drawback of the server
ranking strategy is that the priorities are to be assigned to the server by the operator
manually.

Energy Aware Resource Allocation for Clouds Using Two Level ACO 81

3 ENERGY AWARE RESOURCE ALLOCATION METHODOLOGY

The proposed EARA methodology allocates resources to jobs using ant colony op-
timization. It utilizes the resources efficiently to save energy besides fulfilling the
operational demands of the jobs. Each job has some resource and QoS requirements.
Each QoS parameter of a job is associated with a weight value. EARA allocates
resources to jobs in accordance with their resources demands and weight values of
QoS parameters. The key features of proposed EARA are:

• It deliberately assigns resources to jobs in order to improve the utilization of
resources, thereby increases the energy efficiency of the cloud infrastructure.

• Idle PMs are switched to sleep mode to conserve energy.

• Monitoring of utilization of resources viz. processor, memory, network bandwidth
of a PM for energy efficient resource allocation and management.

• Dynamic performance scaling of servers to conserve energy.

• Server consolidation to minimize number of active servers.

Cluster MCluster 1

Cloud Portal
Frontend

Server

Router

Switch

Users

Cluster 2

Switch
Switch

IP

LNCDVFS

LUDB

...

WA

WLDB

UIDB

RS

RA GIC

GNC

Figure 1. Energy aware resource allocation

The various components of EARA as shown in Figure 1 are:

82 A. Kumar, R. Kumar, A. Sharma

Client

Workload

Web Portal

RS

GIC

UIDB

LNC

DVFS

PM

IP UDB

GNC

RA

Workload

R
eso

u
rce

u
tilizatio

n

Utilization

Information

Util. levelAdjust Voltage/

Frequency

Sleep Mode

Analyze Utilization

History

PM Utilization

Information

Write Utilization

Information

Workload

Schedule

Allocate Resources

Utilization

Information
U

til
iz

at
io

n

In
fo

rm
at

io
n

WA

Entity

Process

Data Flow

Database

Workload

Parameters

Workload

Type

Q
ue

ry

W
or

kl
oa

d

Figure 2. Data flow representation for energy aware resource allocation methodology

Cloud Portal: It provides an interface to the cloud users to input their jobs and
desired QoS.

Workload Analyzer (WA): It analyses QoS requirements of the jobs and classi-
fies them into different classes using k-means cluster algorithm.

Resource Scheduler (RS): It generates schedule of jobs to be executed.

Resource Allocation (RA): It applies ant colony optimization to allocate jobs
to VMs and VMs to PMs. Resources are allocated in accordance with resource
demands and weight values of QoS parameters associated with a job.

Global Information Collector (GIC): It receives the resource utilization data
from information probes (IP) of every PM and stores it in utilization information
database (UIDB).

Utilization Information Database (UIDB): Resource utilization data of every
PM is kept in UIDB for future resource allocation and VM migration decisions.

Global Node Controller (GNC): It initiates live migration of VMs running on
a PM when resource utilization of PM violates lower green threshold (LGT) or
upper green threshold (UGT) limit.

Workload Database (WLDB): It stores the information associated with each
job.

Information Probes (IP): It monitors the utilization of resources viz. processor,
memory, network bandwidth of a PM and records observed values in local uti-
lization database (LUDB).

Local Utilization Database (LUDB): It keeps record of utilization of resources
of PMs.

Dynamic Voltage Frequency Scaling (DVFS): It adjusts the voltage and fre-
quency of the PM in order to save power and to reduce heat dissipation. The

Energy Aware Resource Allocation for Clouds Using Two Level ACO 83

voltage/frequency of PM is adjusted in accordance to resource demands of the
VMs/jobs running over it.

Local Node Controller (LNC): It switches the PM to sleep mode if it is found
idle for specific period of time.

The overview of various components of EARA and information flow among them
is depicted through data flow diagram using Yourdon/DeMarco notation [35] (Fig-
ure 2). The directional lines (arrows) show information exchange between compo-
nents. They do not give any information about timing and sequence of execution of
processes. The client inputs jobs from cloud portal. The frontend server stores the
job’s requirements in workload database for analyzing, energy efficient scheduling,
and allocation. Each job has a different resource and QoS requirements. For ex-
ample, batch job may require storage and computing resources (i.e. memory, CPU),
whereas for online job, network bandwidth may be more critical. WA analyses the
jobs and classifies them into different categories based on weight values of their QoS
parameters. Jobs are then mapped to VMs. Resources are allocated to VMs and
then scheduled on PMs. Once the VM is deployed on the PM, its resource utilization
is monitored by IP after a customizable fixed interval and observed values are stored
in LUDB. When utilization of PM remains below the lower green threshold (LGT)
for two consecutive monitoring intervals, either of the two methods is applied to save
energy consumed by a PM. First, offloading PM by migrating the VM running on
it to some other PM and then switching it to sleep mode. Sometimes, it is economi-
cally unfeasible to migrate VM running on PM to some other PM, either due to high
migration cost, or deadline violation due to migration, or unavailability of PM that
can host the VM due to insufficient available free resources. When VM migration is
not economically feasible, the second method, that is dynamic performance scaling
of PM, is applied. In dynamic performance scaling, voltage/frequency of the PM is
intentionally varied to change its performance. DVFS helps to cut power cost but
at the price of a slower job execution. It is applied when the user deadlines can be
achieved at slower execution speed.

For implementation purposes and subsequent evaluation of EARA, mathemati-
cal equations for energy aware resource allocation, DVFS, and fitness function are
formulated as discussed in the forthcoming subsections.

3.1 Mathematical Modeling of Energy Aware Resource Allocation

EARA contemplates the energy efficient usage of resources. EARA is considered
from both the provider’s and clients’ point of view. It minimizes:

1. total energy consumption for the benefit of service provider, and

2. total execution cost and total time of execution for the end users’ satisfaction.

The following assumptions are taken into considerations while formulating math-
ematical representation of EARA.

84 A. Kumar, R. Kumar, A. Sharma

1. Physical nodes can be unilaterally switched on/off, or put to sleep mode as and
when required.

2. Every PM supports advanced configuration and power interface (ACPI). The
operating system can adjust voltage and frequency to any level supported by
the hardware.

3. PMs and VMs are characterized by processing speed, memory, and network
bandwidth.

4. Transition from one voltage/frequency level to other is instant.

5. Energy consumed by PM during sleep mode is negligible.

6. All the cores of a PM can be operated on the same voltage/frequency level at
a time.

Total power consumption of a PM [2] at any instant is given by Equation (1).

Ptotal = Pdynamic + Pstatic

= ACV 2f︸ ︷︷ ︸
DPC

+V ∗ Ileak︸ ︷︷ ︸
SPC

, (1)

where A is switching activity, C is capacitance, V is voltage, Ileak is the leakage
current, and f is the clock frequency applied to the cores of PM. Ptotal, Pstatic,
and Pdynamic are total power consumption, static power consumption (SPC), and
dynamic power consumption (DPC) of a PM, respectively. SPC is due to leakage
current that is present in any active circuit, and it is independent of clock frequency
and usage scenario. It can be reduced by switching PM to sleep mode [2]. Whereas,
DPC is due to circuit activity and it depends on usage scenario or resource utiliza-
tion. EARA reduces SPC by switching PM to sleep mode as and when required,
whereas DPC is optimized by efficient utilization of resources as explained below.

Suppose s is processing speed, and p is DPC of a PM. Then, s ∝ f , and f ∝ V ,
which implies p ∝ f 3 and p ∝ s3 [34]. Suppose operational requirements of Nt tasks
(jobs) can be fulfilled by Nv number of VMs, and each VM has resources to fulfill
needs of ng tasks. Rg is execution requirement and Eijg total energy consumption
of the tasks deployed on VM g that is instantiated on PM j of cluster i. If rqij is
the execution requirement of task q on this PM, then the execution time tqij of the
task q on this PM with power pqij and processing speed sqij can be calculated from
Equation (2).

tqij =
rqij
sqij

=
rqij(
pqij
) 1

3

, (2)

and the energy consumed by this PM to execute task is given by eqij as shown in
Equation (3).

eqij = pqij.t
q
ij = rqij

(
pqij
) 2

3 = rqij
(
sqij
)2
. (3)

With time constraint Tg, the objective is:

Energy Aware Resource Allocation for Clouds Using Two Level ACO 85

1. to minimize energy consumed (Eijg) by VM g, and

2. the execution time of all tasks Tijg= t1ij+t
2
ij+. . .+t

ng
ij should not exceed deadline

time Tg.

Energy consumption (Eijg) and execution time (Tijg) are calculated as shown in
Equations (4) and (5).

Eijg
(
p1ij, p

2
ij, . . . , p

n
ij

)
= r1ijp

1
ij

2
3 + r2ijp

2
ij

2
3 + . . .+ r

ng
ij p

ng
ij

2
3 , (4)

and

Tijg
(
p1ij, p

2
ij, . . . , p

n
ij

)
=

r1ij

p1ij
1
3

+
r2ij

p2ij
1
3

+ . . .+
r
ng
ij

p
ng
ij

1
3

≤ T. (5)

Both the energy consumption and execution time are functions of p1ij, p
2
ij, . . . , p

ng
ij .

So, solving Equations (4) and (5) using Lagrange multiplier system [37], we get
execution time as represented in Equation (6), and energy consumption, as shown
in Equation (7).

Tijg =
R

3
2
g√
Eijg

, (6)

Eijg = PijgTijg =

(
Rg

Tijg

)3

Tijg =
R3
g

(Tijg)2
(7)

where Rg = r1ij + r2ij + . . . + r
ng
ij is the total execution requirement of all the tasks

deployed on VM g.
Total energy consumption (TEC) by all the VMs can be calculated as shown in
Equation (8).

TEC =
Nv∑
g=1

Eijg. (8)

Total execution time (TET) of Nt tasks running on Nv VMs is calculated as shown
in Equation (9).

TET = Tij1 + Tij2 + . . .+ TijNv . (9)

In order to minimize TET and TEC, every VM has to be carefully mapped to
suitable PM of a cluster.

A set CL = {cli | 1 ≤ i ≤ Nc} of clusters is considered. Each cluster i has
a pool of physical machines PMi = {hij | 1 ≤ j ≤ Hi}. Here, PM j of cluster i
has computing power represented by hij = {hsij, hmij, hnij}, where hsij, hmij,
and hnij are CPU processing speed, memory, and network bandwidth, respectively.
VM computing requirements are represented by vg = {vsg, vmg, vng}, where vsg,
vmg, and vng are processing speed, memory, and network bandwidth of VM g,
respectively. The symbolic notations used in mathematical formulation of EARA
are depicted in Table A1 of Appendix A.

86 A. Kumar, R. Kumar, A. Sharma

Suppose Cijg is total cost (Processing cost + Memory cost + Bandwidth cost) of
running VM g on PM j of cluster i, xijg equal to 1 if VM g is assigned to PM j of
cluster i and 0 otherwise.

Execution cost (ECij) of all the VMs running on PM j of cluster i can be
calculated from Equation (10):

ECij = Cijg ∗ xijg,∀g|xijg=1, (10)

and total cost of execution (COE) of all the VMs can be evaluated using Equa-
tion (11):

COE =
Nc∑
i=1

Hi∑
j=1

ECij. (11)

A VM should be assigned to PM of a cluster in such a way that all the three
conditions, represented by Equations (12), (13), and (14) are satisfied.

Nv∑
g=1

vsijg ∗ xijg ≤ hsij ∗ CPUUGT , ∀i, j|xijg = 1, (12)

Nv∑
g=1

vmijg ∗ xijg ≤ hmij ∗MEMUGT , ∀i, j|xijg = 1, (13)

Nv∑
g=1

vnijg ∗ xijg ≤ hnij ∗BWUGT , ∀i, j|xijg = 1. (14)

These three conditions put a cap on the maximum utilization of PM resources.
Utilization of resources determines power consumption of a PM. In fact, power
consumed by a PM increases linearly with its utilization [3]. EARA uses relationship
between power consumption of a PM and its utilization (Equation (15)) as a basis
for energy consumption calculation.

P = Pidle + (Pmax − Pidle)U (15)

where Pidle is the power consumption when PM is idle, Pmax is the power consump-
tion at 100 % utilization, and P is the power consumption at utilization U ∈ (0, 1) of
the PM. An idle PM consumes 70 % of the power consumed at full load [3]. Whereas,
high utilization of PM resources causes performance degradation because tasks run-
ning on it do not get sufficient resources [3]. So, PM should not be operated at too
low or very high utilization in order to improve its energy efficiency.

EARA assigns PM resources to VMs using ACO. The resource allocation using
ACO is discussed in Section 4. Besides the optimal allocation and management of
PM resources, DVFS is applied as recommended by Wu et al. in [27] to further reduce
the energy consumption of a PM. In DVFS, energy is conserved by intentionally
scaling down the performance of a PM as discussed in the next subsection.

Energy Aware Resource Allocation for Clouds Using Two Level ACO 87

3.2 Dynamic Voltage Frequency Scaling

a) Execution at maximum frequency b) Execution at different frequencies

Figure 3. Dynamic voltage frequency scaling

Modern processors support ACPI, and thus can be operated at different levels
of voltage/frequency. This feature of modern processors has been extensively used
in [37, 36, 34, 33, 32, 27] to reduce energy consumption as well as the heat dissi-
pated by them. In this work, DVFS is used to execute a process/task using different
combination of frequencies/voltages to conserve energy. Figure 3 shows the effect of
executing a task using different combination of supported frequencies. Figure 3 a)
depicts the case of executing a process/task at maximum frequency. The process
may finish well in advance of its deadline time T. The completion of a task some-
times lowers the utilization of a PM below LGT. In such cases energy can be saved
by either server consolidation or dynamic performance scaling of PM. Sometimes
consolidation is not economically feasible due to constraints such as communication
cost of migration, QoS violations due to interruption in service while consolidating,
or unavailability of PM with sufficient free resources where the VM can be migrated.
In such cases energy consumed by PMs can be saved by executing the process us-
ing different combinations of voltage/frequency [37, 36, 34, 33, 32, 27] as shown in
Figure 3 b). In EARA, when the utilization of a PM drops below LGT and remains
less than LGT for two consecutive monitoring periods, voltage/frequency of PM is
adjusted to lower supported level to conserve energy. In case of low utilization, LNC
sends current utilization value ‘U’ to DVFS module shown in Figure 4.

DVFS module calculates voltage/frequency level ‘VF’ that can complete the
workload before user deadline. Voltage/frequency of PM is then adjusted to ‘VF’
to conserve energy. Energy is saved at the cost of slower process execution. Elon-
gated process execution time does not affect user satisfaction because frequencies
are selected in such a manner to complete the process before desired time deadline.
The different frequencies are calculated to complete the task by deadline time T.
The PMs in EARA are assumed to have to ACPI support and can be operated
at any of the discrete h frequencies f1 < f2 < . . . < fh−1 < fh, supported by it.
The key idea behind applying DVFS is to execute tasks using linear combination
of supported frequencies. The minimization of power consumption is formulated as
shown in Equation (16).

88 A. Kumar, R. Kumar, A. Sharma

Figure 4. Sequence diagram for dynamic voltage frequency scaling

minEij =

∑h

l=1 tlACV
2fl, s.t.∑h

l=1 tl ≤ T, tl ≥ 0, for l = 1, 2, . . . , h
(16)

where h is number of supported frequencies, tl is the time period for which the task
is executed at frequency fl.

3.3 Fitness Function

The main goal is to minimize total energy consumption, total execution time, and
cost of execution by the efficient utilization of resources. We used weighted sum
method to scalarize multiple objectives into a single objective. The weighted fitness
function is calculated as shown in Equation (17).

F (Nt) = ξ(TECmin) + ζ(TETmin) + γ(COE) (17)

where

TECmin =
Nv∑
g=1

min(Eijg), ∀i, j, (18)

TETmin =
Nv∑
g=1

min(Tijg), ∀i, j, (19)

0 ≤ ξ, ζ, γ < 1, and ξ + ζ + γ = 1. The value of weights ξ, ζ, and γ depends on the
importance of each objective in the context of resource allocation problem.
Mathematical model formulated for EARA is implemented using ACO metaheuristic
as discussed in the next section.

Energy Aware Resource Allocation for Clouds Using Two Level ACO 89

4 ANT COLONY OPTIMIZATION BASED ENERGY
AWARE RESOURCE ALLOCATION

Ant colony optimization is a metaheuristic optimization technique proposed by
Dorigo in 1992 [9]. Ants secrete a chemical substance called pheromone while for-
aging. Pheromone gets deposited on the paths followed by ants. The amount of
pheromone deposited on the path depends on the number of ants that followed the
path. So a path that is used by large number of ants will have a higher quantity of
the pheromone deposit. Initially, the ants choose random path while searching for
food. But with time the difference in the quantity of pheromone deposited on the
paths guides them to choose the path marked with a strong pheromone concentra-
tion. The larger amount of pheromone on a path attracts more ants to choose that
path again, and finally all the ants converge to the single path. Pheromone evapo-
rates with time, thus reducing the attractive strength of the path, causing ants to
explore more paths to the food source. Pheromone evaporation has the advantage
of avoiding the convergence to locally optimal solution.

Reasons behind choosing ACO for resource allocation are:

1. It can solve certain NP-hard problems in polynomial time.

2. It maintains a balance between acquired knowledge and exploring new solutions
exploiting pheromone evaporation.

3. It gives near to optimal solution.

4. It performs distributed computation to avoid premature convergence.

Ant colony optimization has been applied to solve wide range of combinatorial opti-
mization problems [7, 9, 10, 11, 29]. To solve a combinatorial optimization problem
using ant colony optimization, an instance of the problem has to be mapped to
a graph G = (N,L), called construction graph. Node set N of the graph represents
components of the problem instance and edge set L fully connects the components.
Each edge (u, v) of the graph is associated with pheromone trail τuv and heuristic
information ηuv. Heuristic information can be cost, distance, etc. that is associated
with the edge. Each ant uses a pheromone trail and heuristic information, proba-
bilistically, to construct its own solution of the problem instance. Once the solution
is constructed the pheromone trail associated with every edge is updated to reflect
evaporation, in order to enable ants to forget previously taken bad decision. The
pheromone trail on each edge that belongs to the best solution is then updated.

In this paper, we have applied ACO at two levels for:

1. allocation of VM resources to jobs, and

2. allocation of PM resources to VMs.

Detailed description of the graph construction, pheromone and heuristic informa-
tion, solution construction, pheromone evaporation, and pheromone trail update for
allocation of VM resources to jobs and PM resource to VMs is as follows.

90 A. Kumar, R. Kumar, A. Sharma

4.1 Allocation of VM Resources to Jobs

Each job of end users has some resource demands and QoS requirements. Each QoS
parameter is associated with some value that indicates its priority over the others.
The weights of QoS properties can be specified by three ways: absolute weighting,
relative weighting, and arbitrary weighting [31]. In this work, we used relative
weighting for QoS attributes. ACO metaheuristic for allocation of VM resources to
jobs is explained below:

Construction Graph: The problem of VM resource allocation to jobs is mapped
to construction graph G1 = (N1, L1). The node set N1, consists of all VMs and
jobs. Set L1 of edges fully connects the nodes of the graph G1. Each edge (a, g)
of the graph G1 is assigned pheromone value given by Equation (20).

τag =
1

`a
(20)

where a is unique identification number of a job, g is unique identification num-
ber of a VM, `a is the length of the job a. In general, length of job (cloudlet) is in
millions of instructions. As inverse of job length is used as pheromone value so
shorter jobs will be given preference over the longer ones. Heuristic information
assigned to edge (a, g) is given by Equation (21).

ηag =
X∏
x=1

(Wax)
αx (21)

where X is number of QoS parameters associated with job a, Wax is weight value
of QoS parameter x, and αx is control parameter for QoS attribute x of job a.

Solution Construction: Each ant is initially provided with the list of jobs to be
mapped on VMs. For each job a that is mapped to VM g, variable yag is set
to 1. Variable yag is used to keep record of jobs that have already been assigned.
The probability that an ant k maps job a on VM g is:

℘kag =

(τag)α1(ηag)β1∑
t∈Nk

g
(τtg)α1(ηtg)β1

, if t ∈ N k
g ,

0, otherwise,
(22)

where N k
g , consisting of all the jobs remaining to be mapped, is called feasible

neighborhood of VM g. A job a which has maximum value of ℘kag is mapped
to VM g. The probability of a job selection for mapping on a particular VM
depends on the value of the pheromone trail and heuristic information of the
associated edge. α1 is the parameter to control influence of pheromone trail,
and β1 is parameter to control the overall influence of weight values of QoS
parameters. Both α1 and β1 can have any value between 0 and 1, and their sum
should be equal to one.

Energy Aware Resource Allocation for Clouds Using Two Level ACO 91

Pheromone Trail Evaporation: The pheromone deposited on all the arcs evap-
orates with time by a constant factor 0 ≤ ρ1 ≤ 1, called evaporation rate.
Evaporation avoids unlimited accumulation of pheromone trails on the edges
and enables ants to forget allocation decisions previously taken. Pheromone
evaporation on all the edges of graph G1 is realized by Equation (23).

τag = (1− ρ1)τag, ∀(a, g) ∈ L1. (23)

Pheromone Trail Update: In order to reflect usage of an arc during solution
construction, the pheromone trail on it is updated by an amount equal to inverse
of the number of VMs used by an ant for the solution construction. The update
makes pheromone concentration on some of the arcs stronger than the others.
Strong pheromone concentration on an edge increases the probability of selection
of the associated job. Pheromone update by ant k is realized as:

τag = τag +

N1
a∑

k=1

∆τ kag, ∀(a, g) ∈ S1k (24)

where N1
a is the number of ants, ∆τ kag is the amount of additional pheromone

to be deposited on edge (a, g) which is traversed by ant k while constructing
the allocation solution, and S1k is jobs to VMs mapping solution constructed
by ant k. The amount of pheromone deposited on arc (a, g) by ant k is defined
as follows:

∆τ kag =

1

D1k
, (a, g) ∈ S1k,

0, otherwise,
(25)

where D1k is number of VMs used for mapping of all jobs and calculated as
length of solution S1k.

4.2 Allocation of PM Resources to VM

Construction Graph: The resource allocation problem is mapped to construction
graph G2 = (N2, L2). The node set N2, consists of all VMs and PMs. L2 is
set of edges that fully connects nodes. Each edge (g, j) of the graph G2 is
associated with pheromone trail τgj and heuristic information ηgj, where g is
the identification number of a VM and j is identification number of a PM.
Pheromone trail associated with an edge(g, j) is given by Equation (26):

τgj =
1
vmg
FMj

(26)

92 A. Kumar, R. Kumar, A. Sharma

where vmg is memory requirements of VM g, and FMj is available memory
space of PM j which can be calculated for given g and j using Equation (27):

FMj = hmij −
∑
g

vmijg ∗ xijg, ∀i, j|xijg = 1. (27)

Heuristic information assigned to the edge (g, j) for PM j of cluster i is given
by Equation (28):

ηgj =
1

dij
(28)

where dij is the distance between the frontend server and PM j of cluster i.

Solution Construction: Each ant is initially provided with the list of VMs to be
deployed. xijg is set to 1 for each VM g that is assigned to PM j of cluster i.
Variable xijg is used to keep record of VM that have already been assigned. The
probability that an ant k deploys VM g on PM j of cluster i is:

℘kijg =

(τgj)

α2(ηgj)
β2∑

t∈Nk
j
(τtj)α2(ηtj)β2

, if t ∈ N k
j ,

0, otherwise,
(29)

where N k
j is the feasible neighborhood of PM j, comprising all those VMs which

can still be deployed on it. The probability of choosing a PM j for VM g increases
with the value of associated pheromone trail τgj and heuristic information ηgj.
α2 and β2 are the parameters to control the influence of pheromone trail and
heuristic information, and can have any value between 0 and 1.

Pheromone Trail Evaporation: The pheromone deposited on all the arcs graph
G2 evaporates with time by a constant factor 0 ≤ ρ2 ≤ 1, is called the evapora-
tion rate. Evaporation avoids unlimited accumulation of pheromone trails on the
edges and enables ant to forget allocation decisions previously taken. Pheromone
evaporation on all the edges of graph G2 is realized by Equation (30).

τgj = (1− ρ2)τgj, ∀(g, j) ∈ L2. (30)

Pheromone Trail Update: In order to reflect usage of an arc during solution
construction, pheromone trail on it is updated by the amount equal to inverse
of the length of solution path. The update makes pheromone concentration on
some of the arcs stronger than the others. Strong pheromone concentration
increases the probability of arc selection, which is exploited to optimize the
utilization of PM. Pheromone update by ant k is realized as:

τ kgj = τ kgj +

N2
a∑

k=1

∆τ kgj, ∀(g, j) ∈ S2k (31)

Energy Aware Resource Allocation for Clouds Using Two Level ACO 93

where N2
a is the number of ants, ∆τ kgj is the amount of additional pheromone

to be deposited on arc (g, j) which is traversed by ant k while constructing the
solution, and S2k is solution constructed by ant k, consisting of VMs to PMs
mapping. The amount of pheromone deposited on arc (g, j) by ant k is defined
as follows:

∆τ kgj =

1

D2k
, (g, j) ∈ S2k,

0, otherwise,
(32)

where D2k is computed as sum of lengths of all arcs belonging to solution S2k.

Algorithm 1 EARA

1: procedure EARA(VM) . set of VMs
2: initialization
3: while not Termination Condition do
4: Allocation Solution Construction
5: Pheromone Evaporation
6: Pheromone Trail Update
7: end while
8: return VM to PM map . VM to PM mapping
9: end procedure

Algorithm 2 Initialization

1: procedure Initialization
2: Create construction graph G2(N2, L2) of resource allocation problem
3: Set VM = ID of nodes representing VMs in the construction graph
G2(N2, L2)

4: Set PM = ID of nodes representing PMs in the construction graph
G2(N2, L2)

5: for all g in VM do
6: for all j in PM do
7: Set τgj = 1

vmg
FMj

8: i = getClusterID(j) . get cluster ID of PM j
9: Set ηgj = 1

dij

10: end for
11: end for
12: end procedure

4.3 Algorithms for EARA

The pseudo code for energy aware resource allocation (EARA) using ACO shown in
Algorithm 1, is composed of four phases namely; initialization, allocation solution

94 A. Kumar, R. Kumar, A. Sharma

Algorithm 3 Allocation Solution Construction

1: procedure Resource Allocation(k) . Resource allocation solution
construction for ant k

2: input: Construction graph G2(N2, L2) of the resource allocation problem
3: Set S2k = NULL . Initialize solution set S2k of ant k
4: while not (Are all VMs Alloted?) do
5: if Available(activePM) then
6: Set j = ID of randomly selected PM from list of active PMs
7: i = getClusterID(j) . get cluster ID of PM j
8: else
9: Set j = ID of randomly selected PM from list of newly added PMs

10: . Randomly selects PM representing dummy node of construction graph
11: i = getClusterID(j) . get cluster ID of PM j
12: end if
13: Set N k

j = NULL . feasible neighborhood of PM j
14: Set VMIDs = IDs of VMs yet not assigned to any PM
15: for all g in { VMIDs } do
16: if PM j fulfills processing, memory and network bandwidth require-

ments of VM g then
17: Add VM g to N k

j . Add VM g to feasible neighborhood of PM j

18: Evaluate ℘kijg =
(τgj)

α2(ηgj)
β2∑

t∈Nk
j
(τtj)α2(ηtj)β2

,

19: end if
20: end for
21: VM f

id = NULL . set the fittest VM to NULL
22: P f = 0 . Probability of the fittest VM
23: for all VM g in N k

j do

24: if ℘kijg > P f then

25: VM f
id = g . set the fittest VM ID to g

26: P f = ℘kijg . Change probability of the fittest VM
27: end if
28: end for
29: if VM f

id # NULL then

30: Set g = VM f
id . assign ID of the fittest VM to g

31: Set xijg = 1 . Assign VM g to PM j of Cluster i
32: Add xijg to S2k . update allocation solution of ant k
33: end if
34: end while
35: return (S2k)
36: end procedure

Energy Aware Resource Allocation for Clouds Using Two Level ACO 95

Algorithm 4 Pheromone Evaporation

1: procedure PheromoneEvaporation
2: Set VM = ID of nodes representing VMs in the construction graph
G2(N2, L2)

3: Set PM = ID of nodes representing PMs in the construction graph
G2(N2, L2)

4: for all g in VM do
5: for all j in PM do
6: τgj = (1− ρ2)τgj
7: end for
8: end for
9: end procedure

Algorithm 5 Pheromone Trail Update

1: procedure PheromoneUpdate(k)
2: input: k . ant identifier
3: D2k = Length(S2k) . Calculate length of solution S2k

4: ∆τ k = 1
D2k

5: for all s in S2k do . for each element s in solution S2k

6: g = getVMID(s) . get VM ID from solution element s
7: j = getPMID(s) . get PM ID from solution element s
8: τgj = τgj + ∆τ k . update pheromone information on edge (g, j)
9: end for

10: end procedure

construction, pheromone evaporation, and pheromone trail update. As discussed
earlier ACO is applied at two levels. At first level, ACO is applied to allocate VM
resources to jobs and at second level it is applied to allocate PM resources to VMs.
We have discussed here the pseudo code for allocation of PM resources to VMs only.
The given pseudo code can be easily modified for allocation of VM resources to jobs.

For allocation of PM resources to VMs, list of VMs is passed to the procedure
EARA (Algorithm 1). In the initialization phase as shown in Algorithm 2, con-
struction graph of the problem is created and every edge of the graph is assigned
initial pheromone trail and heuristic information as discussed earlier. The function
getClusterID(), in line number 8, is used to get cluster ID of a PM. Algorithm 3
outlines allocation solution construction phase. It probabilistically maps the VMs
to the appropriate PMs. A PM is selected randomly and VMs from its feasible
neighborhood are assigned to it one by one till UGT is observed. The process is
repeated for each ant until all the VMs are mapped. When all the ants have finished
assigning VMs to PMs, pheromone trail evaporation on all the edges is performed by
Algorithm 4. Pheromone trail on every edge used by an ant for solution construction
is then updated as shown in Algorithm 5.

96 A. Kumar, R. Kumar, A. Sharma

5 PERFORMANCE EVALUATION AND COMPARATIVE ANALYSIS

The performance evaluation of EARA is performed on CloudSim. CloudSim is
a framework for modeling and simulation of cloud computing infrastructure and
services [5]. CloudSim simulation toolkit is used for implementation, testing, and
validation because of large-scale nature of real cloud environment. For perfor-
mance analysis, EARA is compared with existing resource allocation algorithms,
i.e. FFD [30] and MGGA [28]. Five data centers are created with specification as
shown in Table 1. In each data center, PMs complying with specifications, as shown
in Table 2, are created. To conduct comparative analysis, four types of VMs, as
shown in Table 3, are used. FFD, MGGA and EARA are rigorously tested with
jobs having different QoS requirements.

Name PC MC SC BC Time Zone

DC1 3 0.05 0.10 0.10 3.0
DC2 3.5 0.07 0.10 0.11 5.0
DC3 4 0.09 0.10 0.07 5.5
DC4 5 0.10 0.10 0.13 8.0
DC5 5.25 0.12 0.10 0.15 10.0

Name – data center name; PC – processing cost;
MC – memory cost per MB; SC – storage cost
per MB; BC – bandwidth cost; Time Zone –
time zone of data center location

Table 1. Specification of data centers

PM Type CPU Cores RAM Storage BW

1 1 000 4 8 2 10
2 1 500 8 16 2 10
3 2 000 12 32 2 10
4 3 000 20 64 4 10
5 5 000 36 64 4 10

CPU – processing speed in mips; Cores – number
of processing cores; RAM – random access memory
in GB; Storage – permanent storage capacity in TB;
BW – network bandwidth in gbps

Table 2. Specification of physical machines

The aim of executing jobs with different QoS requirements is to test the ef-
fectiveness of EARA in terms of energy efficiency, number of PMs required, and
quality of service. Performance of EARA is analyzed by varying number of jobs in
every simulation run. Simulation is repeated 25 times and in each simulation run,
parameters are set to a value from the range of values given in Table 4.

Energy Aware Resource Allocation for Clouds Using Two Level ACO 97

VM Type CPU PEs RAM BW

1 500 1 512 1
2 1 000 2 1 024 2
3 2 000 4 2 048 4
4 4 000 8 4 096 8

CPU – processing speed in mips; PEs –
number of cores; RAM – random access
memory in MB; BW – network band-
width in gbps

Table 3. Specification of virtual machines

Number of jobs 200–1 200 Varied in every simulation run
Number of datastores 2–5 Stores instances of VMs
Number of ants 10–50 Construct allocation solution
Idle Time 10 min. Time to switch PM to sleep mode
CPUUGT 0.85 UGT for CPU utilization
MEMUGT 0.85 UGT for memory utilization
BWUGT 0.85 UGT for bandwidth utilization
CPULGT 0.30 LGT for CPU utilization
MEMLGT 0.30 LGT for memory utilization
BWLGT 0.30 LGT for bandwidth utilization

Table 4. Simulation parameters

5.1 Comparative Analysis

Figure 5 shows the comparison of the number of PMs used by FFD, MGGA, and
EARA to fulfill the computational requirements of a given number of jobs. EARA
outperforms both FFD and MGGA in terms of the number of PMs used to deploy
a given number of jobs. On an average, EARA uses 11.36 % and 7.68 % lesser number
of PMs than FFD and MGGA, respectively.

Figure 6 shows the comparison of total energy consumed by FFD, MGGA, and
EARA. Total energy consumption of EARA is less than FFD and MGGA because
it uses lesser number of PMs to deploy given number of jobs. It is experimentally
established that EARA is 10.56 %, and 5.43 % more energy efficient than FFD and
MGGA, respectively.

Figure 7 depicts the comparison of percentage resource utilization of PMs by
FFD, MGGA, and EARA. In case of EARA, utilization of 85 % of PMs is between
41–80 %. In case of FFD and MGGA the utilization of more than one third of
PMs is above 80 % which caused the performance degradation of user applications
and resulted in creation of hot spots. Moreover, only 2 % of the PMs are there
in EARA where the utilization is 0–20 % as compared to 5 % and 7 % in FFD
and MGGA, respectively. Therefore, EARA is capable of managing the resources
efficiently.

98 A. Kumar, R. Kumar, A. Sharma

Figure 8 shows the comparison of the average number of VM migrations. The
number of migrations in EARA is less than MGGA but more than FFD. In EARA,
when the utilization of a PM falls below LGT value migration of VMs running over
it is performed. Migration is performed for PMs consolidation so that some of the
PMs can be switched to sleep mode to conserve energy. We observed approximately
two migrations for 1200 jobs, such a small number of migrations does not impact
the performance of the system. Moreover, EARA compensates the energy loss due
to migrations by switching idle PMs to sleep mode.

Figure 9 shows the comparison of number of hot spots created by FFD, MGGA,
and EARA as the number of jobs vary from 200 to 1200. We define a PM as a hot
spot if its resource utilization is 100 %. Maximum number of hot spots are created
by FFD methodology because it tries to utilize PM to its full capacity. However,
EARA does not create any hot spot because it keeps resource utilization of PMs
between LGT and UGT. Hot spots adversely affect the performance and reliability
of PM. Moreover, creation of hot spots demands better cooling arrangements and
also increases chances of hardware failure. Hence, EARA is more reliable and energy
efficient.

Figure 10 shows the comparison of percentage workload of data centers, when
α2 = 0. All the data centers have exactly same computing infrastructure but are at
unequal distance from frontend server. Distance between a datacenter and frontend
server is calculated from time zone of the datacenter. When α2 = 0, EARA gives
weightage to distance while mapping VMs to PMs. As distance of DC1 is least so
EARA distributes the VMs to PMs of DC1 first. Once DC1 resources are used upto
UGT of their capacity, EARA starts assigning jobs to PMs of the datacenter whose
distance is next to distance of DC1 and so on. EARA saves energy by deploying
jobs/VMs over PMs which are nearer to frontend server because more energy is
consumed to transmit jobs/VMs over longer distances. Moreover, deploying VM
over nearer datacenter also improves response time.

0

100

200

300

400

500

600

200 400 600 800 1000 1200

N
u
m

b
er

o

f
 a

ct
iv

e
 P

M
s

Number of VMs

FFD

MGGA

EARA

Figure 5. Comparison of number of PMs required by FFD, MGGA, and EARA

Energy Aware Resource Allocation for Clouds Using Two Level ACO 99

0

20

40

60

80

100

120

140

200 400 600 800 1000 1200

T
o

ta
l

en
er

g
y
 c

o
n
su

m
p

ti
o

n

(k
W

h
)

Number of VMs

FFD

MGGA

EARA

Figure 6. Comparison of total energy consumption by FFD, MGGA, and EARA

5% 11%

20%

26%

38%

FFD

0-20

21-40

41-60

61-80

81-100

7% 9%

19%

26%

39%

MGGA

0-20

21-40

41-60

61-80

81-100

2% 8%

32%
53%

5%

EARA

0-20

21-40

41-60

61-80

81-100

Figure 7. Comparison of PMs utilization in FFD, MGGA, and EARA

Figure 11 shows the comparison of percentage workload of data centers, when
β2 = 0. All the data centers are having five types of PMs with specification as
per Table 2, and the data centers have equal number of specific type of PMs. In
case of EARA, variance of the percentage workload of data centers is less than
that of FFD and MGGA. This is due to the fact that EARA gives more weight to
resource availability when β2 is set to 0. As all the data centers have exactly the
same computing infrastructure, so EARA distributes almost equal workload among
them. This feature of EARA can be exploited for load balancing among datacenters.

Figure 12 shows the comparison of total energy consumption by the cloud com-
puting infrastructure between EARA and EARA-DVFS. In case of EARA-DVFS,
dynamic voltage frequency scaling is not applied. The result shows that EARA
which is employing DVFS saves 8.15 % more energy than EARA-DVFS.

Figure 13 depicts the comparison of computational energy for FFD, MGGA, and
EARA. It is the total energy consumed, measured in Watt hours (Wh), for finding
suitable resources for all the jobs. This figure shows that the EARA consumes less
energy in computation than MGGA but a little more than FFD. On an average,
EARA consumes 0.42 % of total energy consumption if the allocation of resources is
made efficiently. Therefore, EARA is better than FFD and MGGA as the compu-

100 A. Kumar, R. Kumar, A. Sharma

0

0.5

1

1.5

2

2.5

3

200 400 600 800 1000 1200

N
u
m

b
er

 o
f

V
M

 m
ig

ra
ti

o
n
s

Number of VMs

FFD

MGGA

EARA

Figure 8. Comparison of number of VM migrations in FFD, MGGA, and EARA

0

5

10

15

20

25

30

200 400 600 800 1000 1200

N
u
m

b
er

 o
f

 h
o

t-
sp

o
ts

Number of VMs

FFD

MGGA

EARA

Figure 9. Comparison of number of hot spots in FFD, MGGA, and EARA

0

20

40

60

80

100

FFD MGGA EARA

P
er

ce
n
ta

g
e

w
o

rk
lo

ad

DC1

DC2

DC3

DC4

DC5

Figure 10. Comparison of percentage workload of data centers in FFD, MGGA, and
EARA, when α2 = 0

Energy Aware Resource Allocation for Clouds Using Two Level ACO 101

0

20

40

60

80

100

FFD MGGA EARA

P
er

ce
n
ta

g
e

w
o

rk
lo

ad

DC1

DC2

DC3

DC4

DC5

Figure 11. Comparison of percentage workload of data centers in FFD, MGGA, and
EARA, when β2 = 0

0

20

40

60

80

100

120

140

200 400 600 800 1000 1200

T
o

ta
l

en
er

g
y
 c

o
n
su

m
p

ti
o

n

(k
W

h
)

Number of VMs

EARA-DVFS

EARA

Figure 12. Comparison of total energy consumption between EARA and EARA-DVFS

0

100

200

300

400

500

200 400 600 800 1000 1200 E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

 W
h
)

Number of Jobs

FFD

MGGA

EARA

Figure 13. Comparison of computational energy consumption in FFD, MGGA, and
EARA

102 A. Kumar, R. Kumar, A. Sharma

tational energy consumption of 0.42 % is very small compared to the overall energy
gain of 10.56 %.

6 CONCLUSION AND FUTURE WORK

In this paper, energy aware resource allocation methodology using the ant colony
optimization has been proposed. ACO is applied at two levels for efficient allocation
of resources. The first level ACO allocates VMs resources to jobs whereas the sec-
ond level ACO allocates PMs resources to VMs. Resources are allocated to jobs on
the basis of their QoS requirements. Server consolidation and dynamic performance
scaling of PMs are employed to conserve energy. The proposed methodology is im-
plemented in CloudSim and the results are compared FFD and MGGA resource allo-
cation methods. It is experimentally established that the proposed EARA achieves
up to 10.56 % saving in energy consumption through a better utilization of resources
and desired QoS.

In future, EARA can be tested on OpenNebula based private cloud environment
comprising water cooled CPU, and CPU with self steering frequency to confirm its
capability of reducing the energy consumption. Furthermore, temperature aware
resource allocation, and fault tolerant features such as check pointing and replication
can be added to make EARA more robust and reliable.

Acknowledgement

This work is partially supported by the major project granted by the University
Grants Commission, New Delhi, India. File No. 41-652/2012(SR).

Appendix A SYMBOLIC NOTATIONS USED IN EARA

Table A1: List of Symbols

Symbol Definition
CL Set of clusters
cli ith cluster
PMi Set of physical machines in ith cluster
Nc Number of clusters
Nv Number of VMs
Nt Number of tasks/jobs
N1
a Number of ants used in allocating jobs to VMs

N2
a Number of ants used in allocating VMs to PMs

Hi Number of PMs in cluster i
Continued on next page

Energy Aware Resource Allocation for Clouds Using Two Level ACO 103

Table A1 – continued from previous page
Symbol Definition

hij PM j of cluster i
hsij, hmij, hnij CPU speed, memory, and network bandwidth of PM j of

cluster i
Eijg Energy consumed by VM g if executed on PM j of cluster i
Eij Energy consumption of PM j of cluster i
VM Set of VMs
Rg Requirement of VM g
rqij Resource requirement of task q executing on PM j of clus-

ter i
tqij Execution time of task q on PM j of cluster i
pqij Power consumed for executing task q on PM j of cluster i
sqij CPU speed allocated to task q on PM j of cluster i
eqij Energy consumed for executing task q on PM j of cluster i
Tijg Total execution time of all tasks deployed on VM g
h Number of voltage/frequency levels supported by PM
Cijg Total cost of running VM g on PM j of cluster i
xijg 1 if VM g is assigned to PM j of cluster i, 0 otherwise
ECij Execution cost of VMs run on PM j of cluster i
vg VM g
vsg, vmg, vng CPU speed, memory, and network bandwidth of VM g
ng Number of jobs allocated to VM g
G1 Construction graph for jobs to VMs mapping
N1 Set of nodes of construction graph G1

L1 Set of edges of construction graph G1

α1 Parameter to control influence of pheromone trail in G1

β1 Parameter to control influence of heuristic information
in G1

ρ1 Pheromone evaporation rate for graph G1

℘kag Probability of mapping job a to VM g
Wax Weight value of QoS parameter x of job a
`a Length of job a
X Number of QoS parameters
yag is 1 if job a is assigned to VM g, 0 otherwise
N k
g Feasible neighborhood of VM g for ant k

S1k Ant k’s jobs to VMs mapping solution
D1k Number of VMs used in solution k
G2 Construction graph for VMs to PMs mapping
N2 Set of nodes of construction graph G2

L2 Set of edges of construction graph G2

τu,v Pheromone value associated with edge (u, v)
ηu,v Heuristic information associated with edge (u, v)

Continued on next page

104 A. Kumar, R. Kumar, A. Sharma

Table A1 – continued from previous page
Symbol Definition

α2 Parameter to control influence of pheromone trail in G2

β2 Parameter to control influence of heuristic information
in G2

ρ2 Pheromone evaporation rate for graph G2

N k
j Feasible neighborhood of PM j for ant k

FMj Available memory space of PM j
S2k Ant k’s VMs to PMs mapping solution
D2k Length of solution k
dij Distance of PM j of cluster i from frontend server
i, j, g, k, q, k Identifier for cluster, PM, VM, ant, task, and ant, respec-

tively
ξ, ζ, γ Weight values for TEC, TET, and COE, respectively
Pidle Power consumption of idle PM
Pmax Power consumption of PM at 100 % utilization
U Utilization of a PM
P Power consumption of PM at U % utilization
CPUUGT Upper Green Threshold value for CPU
MEMUGT Upper Green Threshold value for Memory
BWUGT Upper Green Threshold value for Bandwidth
CPULGT Lower Green Threshold value for CPU
MEMLGT Lower Green Threshold value for Memory
BWLGT Lower Green Threshold value for Bandwidth
Pdynamic Dynamic power consumption
Pstatic Static power consumption
A Switching activity
C Capacitance
V Voltage
Ileak Leaking current
f Frequency

REFERENCES

[1] Armbrust, M.—Fox, A.—Griffith, R.—Joseph, A. D.—Katz, R. H.—
Konwinski, A.—Lee, G.—Patterson, D. A.—Rabkin, A.—Stoica, I.—
Zaharia, M.: Above the Clouds: A Berkeley View of Cloud Computing. Technical
report No. UCB/EECS-2009-28, EECS Department, University of California, Berke-
ley, 2009.

[2] Beloglazov, A.: Energy-Efficient Management of Virtual Machines in Data Cen-
ters for Cloud Computing. Ph.D. thesis, University of Melbourne, 2013.

[3] Beloglazov, A.—Abawajy, J.—Buyya, R.: Energy-Aware Resource Alloca-
tion Heuristics for Efficient Management of Data Centers for Cloud Computing.

Energy Aware Resource Allocation for Clouds Using Two Level ACO 105

Future Generation Computer Systems, Vol. 28, 2012, No. 5, pp. 755–768, doi:
10.1016/j.future.2011.04.017.

[4] Beloglazov, A.—Buyya, R.: Managing Overloaded Hosts for Dynamic Consol-
idation of Virtual Machines in Cloud Data Centers under Quality of Service Con-
straints. IEEE Transactions on Parallel and Distributed Systems, Vol. 24, 2013, No. 7,
pp. 1366—1379, doi: 10.1109/TPDS.2012.240.

[5] Calheiros, R. N.—Ranjan, R.—Beloglazov, A.—De Rose, C. A. F.—
Buyya, R.: CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms. Software: Prac-
tice and Experience (SPE), Vol. 41, 2011, No. 1, pp. 23–50.

[6] Castañé, G. G.—Núñez, A.—Llopis, P.—Carretero, J.: E-mc2: A Formal
Framework for Energy Modeling in Cloud Computing. Simulation Modeling Practice
and Theory, Vol. 39, 2013, pp. 56–75.

[7] Chen, H.—Cheng, A. M. K.—Kuo, Y.-W.: Assigning Real-Time Tasks to Het-
erogeneous Processors by Applying Ant Colony Optimization. Journal of Par-
allel and Distributed Computing, Vol. 71, 2011, No. 1, pp. 132–142, doi:
10.1016/j.jpdc.2010.09.011.

[8] Chen, J.-J.—Yang, C.-Y.—Kuo, T.-W.—Shih, C.-S.: Energy-Efficient Real-
Time Task Scheduling in Multiprocessor DVS Systems. Asia and South Pacific De-
sign Automation Conference (ASP-DAC ’07), 2007, pp. 342–349, doi: 10.1109/ASP-
DAC.2007.358009.

[9] Dorigo, M.—Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge,
MA, USA, 2004.

[10] Feller, E.—Rilling, L.—Morin, C.: Energy-Aware Ant Colony Based Workload
Placement in Clouds. 12th IEEE/ACM International Conference on Grid Computing
(GRID), 2011, pp. 26–33, doi: 10.1109/Grid.2011.13.

[11] Gao, Y.—Guan, H.—Qi, Z.—Hou, Y.—Liu, L.: A Multi-Objective Ant
Colony System Algorithm for Virtual Machine Placement in Cloud Computing.
Journal of Computer and System Sciences, Vol. 79, 2013, pp. 1230–1242, doi:
10.1016/j.jcss.2013.02.004.

[12] Garg, S. K.—Yeo, C. S.—Buyya, R.: Green Cloud Framework for Improving
Carbon Efficiency of Clouds. Euro-Par 2011 Parallel Processing. Lecture Notes in
Computer Science, Vol. 6852, 2011, pp. 491–502, doi: 10.1007/978-3-642-23400-2 45.

[13] Hsu, C.-H.—Chen, S.-C.—Lee, C.-C.—Chang, H.-Y.—Lai, K.-C.—
Li, K.-C.—Rong, C.: Energy-Aware Task Consolidation Technique for Cloud Com-
puting. IEEE Third International Conference on Cloud Computing Technology and
Science (CloudCom), 2011, pp. 115–121, doi: 10.1109/CloudCom.2011.25.

[14] Huang, C. J.—Guan, C.-T.—Chen, H.-M.—Wang, Y.-W.—Chang, S.-C.—
Li, C.-Y.—Weng, C.-H.: An Adaptive Resource Management Scheme in Cloud
Computing. Engineering Applications of Artificial Intelligence, Vol. 26, 2013, No. 1,
pp. 382–389.

[15] Kaplan, J. M.—Forrest, W.—Kindler, N.: Revolutionizing Data Center En-
ergy Efficiency. Technical report, McKinsy & Company, 2008.

https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1109/TPDS.2012.240
https://doi.org/10.1016/j.jpdc.2010.09.011
https://doi.org/10.1109/ASPDAC.2007.358009
https://doi.org/10.1109/ASPDAC.2007.358009
https://doi.org/10.1109/Grid.2011.13
https://doi.org/10.1016/j.jcss.2013.02.004
https://doi.org/10.1007/978-3-642-23400-2_45
https://doi.org/10.1109/CloudCom.2011.25

106 A. Kumar, R. Kumar, A. Sharma

[16] Kim, N.—Cho, J.—Seo, E.: Energy-Credit Scheduler: An Energy-Aware Virtual
Machine Scheduler for Cloud Systems. Future Generation Computer Systems, Vol. 32,
2014, pp. 128–137, doi: 10.1016/j.future.2012.05.019.

[17] Kinger, S.—Kumar, R.—Sharma, A.: Prediction Based Proactive Thermal Vir-
tual Machine Scheduling in Green Clouds. The Scientific World Journal, Vol. 2014,
2014, Art. No. 208983, pp. 92–103, doi: 10.1155/2014/208983.

[18] Koomey, J.: Growth in Data Center Electricity Use 2005 to 2010. 2014, http:

//www.analyticspress.com/datacenters.html.

[19] Lee, H. M.—Jeong, Y.-S.—Jang, H. J.: Performance Analysis Based Resource
Allocation for Green Cloud Computing. The Journal of Supercomputing, Vol. 69,
2014, No. 3, pp. 1013–1026.

[20] Mell, P.—Grance, T.: The NIST Definition of Cloud Computing, 2011.

[21] Nathani, A.—Chaudhary, S.—Somani, G.: Policy Based Resource Allocation in
IaaS Cloud. Future Generation Computer Systems, Vol. 28, 2012, No. 1, pp. 94–103,
doi: 10.1016/j.future.2011.05.016.

[22] Nathuji, R.—Schwan, K.: VirtualPower: Coordinated Power Management in Vir-
tualized Enterprise Systems. ACM SIGOPS Operating Systems Review, Vol. 41, 2007,
No. 6, pp. 265–278, doi: 10.1145/1294261.1294287.

[23] Quarati, A.—Clematis, A.—Galizia, A.—D’Agostino, D.: Hybrid
Clouds Brokering: Business Opportunities, QoS and Energy-Saving Issues.
Simulation Modeling Practice and Theory, Vol. 39, 2013, pp. 121–134, doi:
10.1016/j.simpat.2013.01.004.

[24] Raycroft, P.—Jansen, R.—Jarus, M.—Brenner, P. R.: Performance
Bounded Energy Efficient Virtual Machine Allocation in the Global Cloud. Sustain-
able Computing: Informatics and Systems, Vol. 4, 2014, pp. 1–9.

[25] Takeda, S.—Takemura, T.: A Rank-Based VM Consolidation Method for Power
Saving in Datacenters. IPSJ Transactions on Advanced Computing Systems, Vol. 3,
2010, No. 2, pp. 138–146, doi: 10.2197/ipsjtrans.3.88.

[26] Vogels, W.: Beyond Server Consolidation. Queue, Vol. 6, 2008, No. 1, pp. 20–26,
doi: 10.1145/1348583.1348590, doi: 10.1145/1348583.1348590.

[27] Wu, C.-M.—Chang, R.-S.—Chan, H.-Y.: A Green Energy-Efficient Scheduling
Algorithm Using the DVFS Technique for Cloud Datacenters. Future Generation
Computer Systems, Vol. 37, 2014, pp. 141–147, doi: 10.1016/j.future.2013.06.009.

[28] Xu, J.—Fortes, J. A. B.: Multi-Objective Virtual Machine Placement in Vir-
tualized Data Center Environments. IEEE/ACM International Conference on
Green Computing and Communications (GreenCom), 2010, pp. 179–188, doi:
10.1109/GreenCom-CPSCom.2010.137.

[29] Yin, P.-Y.—Wang, J.-Y.: Ant Colony Optimization for the Nonlinear Resource
Allocation Problem. Applied Mathematics and Computation, Vol. 174, 2006, No. 2,
pp. 1438–1453.

[30] Yue, M.: A Simple Proof of the Inequality FFD (L) ≤ 11/9 OPT (L) + 1, ∀L for
the FFD Bin-Packing Algorithm. Acta Mathematicae Applicatae Sinica, Vol. 7, 1991,
No. 4, pp. 321–331.

https://doi.org/10.1016/j.future.2012.05.019
https://doi.org/10.1155/2014/208983
http://www.analyticspress.com/datacenters.html
http://www.analyticspress.com/datacenters.html
https://doi.org/10.1016/j.future.2011.05.016
https://doi.org/10.1145/1294261.1294287
https://doi.org/10.1016/j.simpat.2013.01.004
https://doi.org/10.2197/ipsjtrans.3.88
https://doi.org/10.1145/1348583.1348590
https://doi.org/10.1145/1348583.1348590
https://doi.org/10.1016/j.future.2013.06.009
https://doi.org/10.1109/GreenCom-CPSCom.2010.137

Energy Aware Resource Allocation for Clouds Using Two Level ACO 107

[31] Tran, V. X.—Tsuji, H.—Masuda, R.: A New QoS Ontology and Its QoS-Based
Ranking Algorithm for Web Services. Simulation Modelling Practice and Theory,
Vol. 17, 2009, No. 8, pp. 1378–1398.

[32] Wang, P.—Qi, Y.—Liu, X.: Power-Aware Optimization for Heterogeneous Multi-
Tier Clusters. Journal of Parallel and Distributed Computing, Vol. 74, 2014, No. 1,
pp. 2005–2015.

[33] Guérout, T.—Monteil, T.—Da Costa, G.—Calheiros, R. N.—
Buyya, R.—Alexandru, M.: Energy-Aware Simulation with DVFS.
Simulation Modelling Practice and Theory, Vol. 39, 2013, pp. 76–91, doi:
10.1016/j.simpat.2013.04.007.

[34] Zhai, B.—Blaauw, D.—Sylvester, D.—Flautner, K.: Theoretical and Prac-
tical Limits of Dynamic Voltage Scaling. Proceedings of the 41st Design Automation
Conference, 2004, pp. 868–873, doi: 10.1145/996566.996798.

[35] Data Flow Diagram. 2015, https://en.wikipedia.org/wiki/Data_flow_diagram.
Accessed: January 5, 2015.

[36] Marzolla, M.—Mirandola, R.: Dynamic Power Management for QOS-Aware
Applications. Sustainable Computing: Informatics and Systems, Vol. 3, 2013, No. 4,
pp. 231–248.

[37] Bertsekas, D. P.: Chapter 4 – Exact Penalty Methods and Lagrangian Methods. In:
Bertsekas, D. P. (Ed.): Constrained Optimization and Lagrange Multiplier Methods.
Academic Press, 1982, pp. 179–301, doi: 10.1016/B978-0-12-093480-5.50008-8.

https://doi.org/10.1016/j.simpat.2013.04.007
https://doi.org/10.1145/996566.996798
https://en.wikipedia.org/wiki/Data_flow_diagram
https://doi.org/10.1016/B978-0-12-093480-5.50008-8

108 A. Kumar, R. Kumar, A. Sharma

Ashok Kumar received his M.Sc. degree in information technol-
ogy from Punjab Technical University, Jalandhar. Currently he
is pursuing his doctoral degree in cloud computing from Thapar
University, Patiala. His research interests include cloud comput-
ing, internet of things and fog computing. He has five research
publications in reputed journals and conferences.

Rajesh Kumar is currently working as Professor in the Com-
puter Science and Engineering Department, Thapar University,
Patiala. He received his M.Sc., M.Phil. and Ph.D. degrees from
IIT Roorkee. He has more than 21 years of UG & PG teaching
and research experience. He wrote over 101 research papers for
various international and national journals and conferences. He
has, so far, guided 10 Ph.D. and 23 M.E./M.Sc. theses. His
current areas of research interests include FANETs, resource
scheduling and fault tolerance in clouds.

Anju Sharma is working as Assistant Professor in the Com-
puter Science and Engineering Department, MRSPTU, Bathin-
da. Her research interests include smart grid computing, cloud
computing, IoT and fog computing. She has varied numbers of
publications in international journals and conferences of repute.
She is Senior Member of International Association of Computer
Science and Information Technology (IACSIT) and professional
member of ACM India, IEEE. She is an active member (TCM
and reviewer) of varied conferences.

Computing and Informatics, Vol. 37, 2018, 109–141, doi: 10.4149/cai 2018 1 109

TOWARDS A FORMALIZATION OF A FRAMEWORK
TO EXPRESS AND REASON ABOUT SOFTWARE
ENGINEERING METHODS

Miguel Morales-Trujillo∗

Facultad de Ingenieŕıa, Universidad Nacional Autónoma de México
Mexico City, Mexico
e-mail: migmor@ciencias.unam.mx

Hanna Oktaba, Francisco Hernández-Quiroz

Facultad de Ciencias, Universidad Nacional Autónoma de México
Mexico City, Mexico
e-mail: {hanna.oktaba, fhq}@ciencias.unam.mx

Boris Escalante-Raḿırez

Facultad de Ingenieŕıa, Universidad Nacional Autónoma de México
Mexico City, Mexico
e-mail: boris@servidor.unam.mx

Abstract. Software Engineering is considered a knowledge-intensive discipline, in
which knowledge creation, collection and sharing is an uninterrupted process. How-
ever, a large part of this knowledge exists in a tacit form and depends on practition-
ers. Therefore defining a mechanism to transform tacit knowledge into explicit one
is of upmost importance. This paper presents a formalization approach to represent
Software Engineering practitioners’ tacit knowledge, which is related to their ways
of working, as a set of explicit statements. The formalization is based on KUALI-
BEH, which is a normative kernel extension of ESSENCE formal specification, and
consists of three parts: an ontology to share a common representation of knowledge

∗ corresponding author

110 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

as a set of concepts; a Situational Method Engineering based algebra that represents
well-defined method properties and operations; and a knowledge representation of
the ontology and algebra using Description Logics. The main objectives of this
initial formalization are to improve communication among humans and machines,
computational inference and reuse of knowledge.

Keywords: Software engineering, situational method engineering, ontology, de-
scription logics, ESSENCE, KUALI-BEH

Mathematics Subject Classification 2010: 68-N30

1 INTRODUCTION

Precisely specifying the process by which a Software Engineering activity takes place
is a challenging task [1]. Every aspect of software development, particularly in large
systems, demands a great deal of knowledge and understanding of the software
practitioner [2].

Moreover, according to [3] and [4], creating software is one of the most know-
ledgeintensive professions. Software Engineering community has been motivated
to collect all the knowledge that practitioners possess; the activity of knowledge
gathering has become a relevant research line for the discipline.

Since knowledge creation is an uninterrupted process, it is true about its col-
lection as well, thus we need a process to manage it. In [5] it is established that
knowledge management process should address all of the following tasks:

1. to acquire new knowledge;

2. to transform the knowledge from tacit or implicit into explicit knowledge;

3. to systematically store, disseminate, and evaluate knowledge; and

4. to apply knowledge in new situations.

Providing Software Engineering with a knowledge-based approach allows us to
create models and reason about them. At this point the wide scope of the discipline
becomes an obstacle. Presentation and integration of the knowledge-based approach
into the everyday working world of software engineers is a critical challenge for the
Knowledge-Based Software Engineering (KBSE) community [4].

In 1992 [4] identified three crucial questions to give Software Engineering a know-
ledge-based focus:

1. What part of the software process is targeted?

2. What knowledge is applicable and how can it be represented, acquired, and
maintained?

Towards a Formalization of KUALI-BEH an ESSENCE Extension 111

3. How can we present the knowledge to developers, teams, and managers to im-
prove the quality, cost, and timeliness of software development?

By finding answers to these questions, that are still valid, researchers will be
able to create a model to represent the knowledge of a targeted software process.
Once the model of a process is precisely defined in a formal manner, process analysis
techniques can be applied to such a model to identify problematic and erroneous
steps, or to leverage efficiency improvements [1].

The objective of this paper is to present a formalization, which was created as
a way of improvement of the communication among humans and machines, and
of reasoning about the tacit knowledge possessed by Software Engineering practi-
tioners. In particular, the paper is focused on the practitioners’ ways of working
during software projects. The proposed formalization is built on KUALI-BEH [6],
a Normative Annex of ESSENCE – Kernel and Language for Software Engineering
Methods [7], which is an Object Management Group (OMG) formal specification.
The proposal uses three types of formalization: an ontology to share a common
representation of knowledge as a set of concepts; an algebra based on Situational
Method Engineering (SME) to represent well-defined method properties and opera-
tions; and a knowledge representation of the ontology and algebra using Description
Logics (DL).

The motivation behind creating a formalization based on an ESSENCE Kernel
extension is the lack of reasoning mechanisms in metamodels, like SPEM [8], or
standards like ESSENCE itself. Moreover, the main reason that motivated the
formalization was to provide Software Engineering practitioners with a mechanism
to reason about the knowledge they possess. As [9] stated, there is a need to provide
“a simple specification language to describe any type of activity in a company, in
a concurrent and modular fashion”, which is also useful for software engineers.

This paper is organized as follows: the background is presented in Section 2,
Section 3 demonstrates the proposed formalization, Section 4 describes its validation,
Section 5 mentions the intended usage of the formalization, and conclusions and
future work are discussed in the final section.

2 BACKGROUND

This section presents KUALI-BEH as the object to be formalized, and the following
formalization approaches: Ontologies, SME and DL.

2.1 ESSENCE – Kernel and Language for Software Engineering Methods

In 2011 OMG initiated a standard project, the outcome of which was ESSENCE:
a four layer approach that defines a kernel, a language and permits the construction
of software engineering methods, see Figure 1 (left side).

The ESSENCE kernel is a set of universal components involved in software
engineering efforts, which are expressed in a language by the syntax and semantics

112 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

rules. The path that guided the definition of ESSENCE was the separation of
concerns, and it therefore defines three areas of concern: Customer, Solution and
Endeavor. Another relevant concept is activity space, which according to [7], is
the representation of the essential things to do; it describes the challenges a team
faces when developing, maintaining, and supporting software systems. Within each
area of concern an activity space is provided, in which practitioners can model the
state of a particular software project with the help of a previously defined set of
Abstract-Level Project Health Attributes (ALPHAs), see Figure 1 (right side).

Figure 1. ESSENCE architecture and its areas of concern [7]

The Endeavor area of concern contains everything to do with team members and
the way in which they approach their work [7]. Two ALPHAs are associated with the
Endeavor: Work and Way-of-Working. In the context of software engineering, work
is everything that the team does to meet the goals of producing a software system.
The work is guided by the practices that make up the team’s way-of-working. The
Way-of-Working is the tailored set of practices and tools used by a team to guide
and support their work, which evolves according to specific working contexts [7].

In particular, although the Endeavor area of concern addresses the practitioners’
practical knowledge, it does not indicate how to express it nor how to reason about
it. This lack of expressive mechanisms stimulated the extension of ESSENCE in the
form of KUALI-BEH as an alternative to allow practitioners to transform their tacit
knowledge into explicit knowledge. KUALI-BEH covers the top two layers of the
ESSENCE architecture, which are Methods and Practices, and offers mechanisms
to identify, express, agree, execute, optimize and consolidate ways of working. Con-
sequently, KUALI-BEH became an extension of the ESSENCE Kernel, presented as
a Normative Annex of the formal specification.

2.2 KUALI-BEH

KUALI-BEH is based on a set of common concepts involved in software projects and
provides a framework for authoring Software Engineering Methods. KUALI-BEH is
composed of two views: static and operational.

Towards a Formalization of KUALI-BEH an ESSENCE Extension 113

The static view defines the common concepts needed for the definition of the
practitioners’ diverse ways of working (see Figure 2), and arranges them into meth-
ods composed of practices. This knowledge creates an infrastructure of methods
and practices that is built and used by practitioners.

Figure 2. KUALI-BEH concepts and their relationships and attributes

The operational view is related to the software project execution. It provides
work teams with mechanisms how to enact a method and adapt its practices to
a specific context and stakeholder needs.

The KUALI-BEH static view target audience represents Software Engineering
practitioners, who will be able to express their actual ways of working using KUALI-
BEH to author methods and practices. The knowledge produced by practitioners
should be validated and approved before being accumulated and shared, both inside
and outside the organization.

During the process of authoring of methods and practices KUALI-BEH advises
practitioners with regard to certain attributes. The set of practices that comprise
a method should preserve the properties of coherency, consistency and sufficiency [6],
which are formally defined in Section 3.2.3.

114 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

Having expressed methods and practices, practitioners can identify the method
to be followed during software project execution. Due to the fact that every project
is different, the work team will need to adapt the selected method, for which KUALI-
BEH defines the following adaptations operations [6]:

1. substitution,

2. concatenation,

3. combination and

4. splitting.

These operations are explained in Section 3.2.4.
To carry out a formalization process of the software project common concepts,

method properties and adaptation operations presented in KUALI-BEH, we used
ontologies for the definition of common concepts, SME and Set Theory to state
method properties and adaptation operations and DL for knowledge representation.
They are described in more detail in the next subsections.

2.3 Ontologies

According to [10] an important challenge faced by current communities of researchers
and practitioners in the field of Software Engineering and Technology is the lack of
explicit knowledge shared among members of a group/project, with other groups
and with other stakeholders.

The ambiguity of natural language implies potential mistakes and nonproduc-
tive efforts. Ontologies can mitigate these problems and, furthermore, some authors
have intended to use ontologies as the back-bone of software tools and environ-
ments [10].

An ontology, defined by [5], is a data model that represents a set of concepts
within a domain and relationships between those concepts, and it is used to reason
about objects within that domain.

In [11] the main usages of ontologies in Software Engineering are

1. to clarify the knowledge structure,

2. to reduce conceptual and terminological ambiguity, and

3. to allow the sharing of knowledge.

Ontologies are meant to conceptualize; in the words of [11], conceptualization
is understood to be “an abstract and simplified version of the world to be rep-
resented: a representation of knowledge based on objects, concepts and entities
existing within the studied area, as well as the relationships existing among them”.
In [12] the authors have also considered it important to enrich this definition with
the requirements of being formalized so that a machine can process it, and be-
ing shared, where the acquired knowledge is the consensus of a community of ex-
perts.

Towards a Formalization of KUALI-BEH an ESSENCE Extension 115

Using ontologies brings the following benefits:

1. they can be checked for inconsistencies;

2. reasoning can help to detect derived relationships or implicit class member-
ships;

3. errors can be removed, thus improving the quality of a knowledge base;

4. ontologies can be imported and shared [5].

Implementation of ontologies in Software Engineering in order to understand
a specific field of knowledge is quite broad. For example, engineering of the on-
tology for the Software Engineering Body of Knowledge [13], software development
methodologies and endeavours [14], software maintenance ontology [15], software
measurement [16], an ontological approach to the SQL:2003 [17].

As we mentioned before, ontologies represent knowledge items in the form of con-
cepts, relationships and attributes, which must be expressed as statements. There
are different formats and languages to represent statements, e.g. Resource Descrip-
tion Framework (RDF) [18] or Web Ontology Language (OWL) [19].

RDF is a general-purpose language for representing and referencing information
on the Web, and is intended for situations in which this information needs to be
processed by applications rather than be presented to people directly [5]. RDF
represents simple statements as a graph of resources, their properties and values.
Based on [5] an RDF statement is composed of three elements:

1. Subject that is someone or something considered as a resource, it may be any
person or item represented by a Uniform Resource Identifier (URI);

2. Predicate that indicates the subject’s relation to another concept or the subject’s
activity; and

3. Object that defines what the subject is related to or what the subject is doing.

As for OWL, it is a markup language built on RDF and is used to publish and
share ontologies on the web [5].

The usage of standardized languages like RDF and OWL helps to define and
share ontologies. However, an important part of ontologies is the possibility of
generating new knowledge, which is called reasoning. A tool that supports applying
logic, querying and reasoning with ontologies is called a reasoner. Examples of
reasoners are RACER1, HermiT2, FaCT++3.

It is important to mention that most of the tools that support management
of ontologies comprise more than one module, one of which is a reasoner. For the
purposes of this formalization HermiT was chosen as a reasoner.

1 http://www.ifis.uni-luebeck.de/~moeller/racer/
2 http://hermit-reasoner.com/
3 http://owl.man.ac.uk/factplusplus/

http://www.ifis.uni-luebeck.de/~moeller/racer/
http://hermit-reasoner.com/
http://owl.man.ac.uk/factplusplus/

116 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

2.4 Situational Method Engineering

SME focuses on configuration of system development methods tuned to the situation
of a project at hand [20]. SME aims to support software engineering by providing
means for appropriate method engineering. That includes all aspects of creating,
using and adapting a software development method based on local conditions, it is
focused on formalising the use of methods for systems development [21]. Any coher-
ent product, activity, or tool being part of an existing generic or situational method
is a method fragment [20]. In other words, method fragments are building blocks of
a situational method. It is important to mention that, in SME, a formalized method
is usually an ideal type created as an abstraction of existing ‘good practices’ [22].

According to [23], SME contributes to reach the requirements of flexibility, ex-
perience accumulation, integration and communication, and quality. By flexibility
it is assumed that the method to be used in a certain development project is situ-
ational, that is, completely tuned to the project situation at hand. The controlled
adaptability of the method allows for the addition and accumulation of the project
experience. All methods are based on one common repository, in which the building
blocks of methods are also stored; this contributes to integration and communica-
tion. The fact that flexibility should be controlled guarantees that the constructed
situational method meets the same quality requirements as standard methods.

The relevance of these requirements is present in the current research; in a recent
study [21] discusses issues like tailoring a constructed method in order to apply it to
a particular context (see flexibility), comparing chunks, fragments and components,
and creating a methodology from them. Besides, the author addresses such questions
as how to consider methods as action knowledge (see experience accumulation), and
how to assess the quality of the method parts, the constructed method and its
effectiveness in practice (see quality).

An initial formalization of method fragments is developed by [23] and organized
in four groups: Sets, Predicates, Functions and Rules. This particular approach was
used to formalize KUALI-BEH.

2.5 Description Logics

DL [24] is a family of knowledge representation (KR) formalisms that represents
the knowledge of an application domain [25]. It is a popular formalism for ontolo-
gies and is regarded as the foundation of some ontology languages due to the fact
that ontologies contain knowledge about a domain in a precise and unambiguous
manner [1].

DL has been shown as common language for ontologies appearing in a Software
Engineering process that needs support from Knowledge Engineering and is the
natural successor in terms of evolution of UML [26]. The basic DL family is the
AL-languages [27], and it follows the syntax rule of:

C,D → A | > | ⊥ | ¬A | C uD | ∀R.C | ∃R.>.

Towards a Formalization of KUALI-BEH an ESSENCE Extension 117

It is possible to create statements and build a knowledge base using this lan-
guage. A knowledge base in DL comprises two areas: the Terminological Knowledge
(TBox) and the Assertional Knowledge (ABox).

The TBox is a collection of concepts and roles. Concepts represent the entities
of a “universe”, while Roles denote the relations (properties or associations) be-
tween these concepts. In other words, the TBox introduces vocabulary of a specific
domain. The basic form of a declaration in a TBox is a concept definition, that
is, the definition of a new concept in terms of other previously defined concepts.
For example, in the context of KUALI-BEH we can define a Practitioner as a Per-
son who is also a Software Engineer, so in DL this concept acquires the following
representation:

Practitioner ≡ Person u SoftwareEngineer.

On the other hand, the ABox contains assertions about named individuals in
terms of this vocabulary, that is, it contains extensional knowledge about the domain
of interest. For example:

Person(“Miguel”) u SoftwareEngineer.

It states that the individual “Miguel” is a Person and also a Software Engi-
neer. Given the above example of a Tbox, we obtain the assertion that Miguel is
a Practitioner, which now belongs to the ABox.

There are some restrictions when working with DL and according to [25] the
most important are that:

1. only one definition for a concept name is allowed, and

2. definitions are acyclic in the sense that concepts are neither defined in terms of
themselves nor in terms of other concepts that indirectly refer to them.

At this point we can observe that Person and Software Engineer are atomic
concepts, but DL offers the possibility of building complex descriptions inductively
using concept constructors [25]. By adding more constructors to AL we obtain more
expressive languages. Table 1 shows the spectrum of AL families.

Family Added Constructor Expression

U Union C tD
E Full existential quantification ∃R.C
N At most and at least restrictions ≤ n R, ≥ n R
C Negation ¬C
O One of a1, . . . , an
I Inverse relation P,Q,R→ R−

Q Qualified number restriction ≤ nR.C, ≥ nR.C
R Complex role inclusion P ◦Q ⊆ R

Table 1. DL family of languages, adapted from [26]

118 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

Due to the fact that DL belongs to a KR formalism and to the assumption that
a KR system always answers user’s queries in a reasonable time, the reasoning and
decision procedures of DL are its strength [25]. Besides, a knowledge representation
system based on DL and derived from a KR formalism assures four main elements:
the TBox and the ABox, together with a reasoner (Inference System) and a user
interface (Interface), see Figure 3.

Figure 3. Architecture of a system based on DL, adapted from [1] and [2]

3 KUALI-BEH FORMALIZATION

This section presents the KUALI-BEH formalization, which is divided into three
parts: the ontology of common concepts; the representation of method proper-
ties and adaptation operations using SME; and the representation of the ontology
through DL.

3.1 KUALI-BEH Language

KUALI-BEH language is an initial approach to share a common representation of
knowledge as a set of concepts, attributes and relationships of a domain in the form
of ontology, abbreviated as KB-O. This ontology offers method engineers the means
how to describe, analyze and reason about software projects and information related
to them.

Due to its simplicity and the fact that it was created specifically for Software
Engineering, Representation Formalism for Software Engineering Ontologies (REF-
SENO) [28] was chosen to define the KB-O ontology. REFSENO provides constructs
to define concepts with their attributes and relationships between them. The con-
struction of REFSENO ontologies is based on three tables that use text and, op-
tionally, diagrams and contain a glossary of concepts, attributes and relationships,
respectively. REFSENO allows definition of cardinalities for the relationships and
value ranges for the attributes.

The specification of an ontology should contain the modeled domain, the purpose
of the ontology, the scope, and administrative information like the authors and
knowledge sources [28]. Table 2 displays the KB-O requirements specification. Below

Towards a Formalization of KUALI-BEH an ESSENCE Extension 119

is the KB-O definition based on the general background and the KB-O requirements
specification mentioned above.

Domain Software Projects

Last modified date January 14, 2016 (updated)

Conceptualized by KUALI-KAANS Research Group

Purpose To describe the common concepts involved
in software projects and their relationships

Level of formality Semi-formal (UML Diagrams, text
and REFSENO tables)

Table 2. KB-O requirements specification

3.1.1 Definition of KB-O

After establishing the KB-O requirements specification, we carried on with the de-
velopment of the ontology itself, using the suggested by REFSENO process model
and a Unified Modeling Language (UML) [29] Class diagram. Note that for the pur-
pose of this paper, a reduced version of REFSENO is presented in order to maintain
it readable and easy to assimilate.

The resulting ontology consists of a graphical representation, a UML class di-
agram, and a textual semi-formal representation of knowledge using REFSENO.
Figure 2 shows the corresponding UML class diagram.

3.1.2 Concepts Glossary

The concepts glossary lists alphabetically all the concepts of the ontology. One
row of the concepts glossary corresponds to one concept. The columns are labeled
Name, Definition and Example, denoting the respective components of the concept
definition. REFSENO requires an extra column named References; however, in this
case it was omitted and, instead, a reference list with all the sources considered to
create the respective concept definition is reported in [6].

Table 3 displays a fragment of the glossary from the KUALI-BEH ontology4,
showing the specific concepts used in this paper in order to illustrate the proposed
formalization. The full version can be consulted in [6].

3.1.3 Relationships

Relationships model the way in which a particular software engineering entity is
related to other software engineering entities and are labeled as follows: Name, Con-

4 This definitions were created in the context of ESSENCE standardization process.
ISO/IEC 24744:2007 (now 2014) was not considered because of important differences be-
tween both efforts, for example in the clabject and powertype concepts. As future work
we consider to make a comparison between the concepts of both standards.

120 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

Name Definition Example

Method A method is a composition of a coherent,
consistent and sufficient set of practices, with
a specific purpose that fulfills the stakeholder
needs under specific conditions.

Software
Implementation

MPI The methods and practices infrastructure (MPI)
is a set of methods and practices learned by the
organization members by experience, abstraction
or apprehension. This base of knowledge is
continuously expanded and modified by the
practitioners.

Organizational
Base
of Knowledge

Practice A practice is work guidance, with a specific
objective, that advises how to produce a result
originated from an input. This guide provides
a systematic and repeatable set of activities
focused on the achievement of the practice
objective and result.

Software
Requirements
Analysis

Practitioner A practitioner is a professional in Software
Engineering that is actively engaged in the
discipline. The practitioner should have the
ability to make a judgment based on his or her
experience and knowledge.

Miguel

Table 3. KB-O concepts glossary

cepts (cardinality) and Description. The relationships of this ontology are equivalent
to the non-terminal concept attributes defined in REFSENO. Table 4 shows a subset
of the 29 relationships of KB-O.

Name Concepts (Cardinality) Description

Consumes Practice (*) – Input (*) A practice consumes
an input.

Is assigned to Work Team (*) – Software
Project (*)

A work team is assigned
to a software project.

Is composed of Method (*) – Practice (*) A method is composed
of practices.

Is formed of Work Team (*) –
Practitioners (*)

A work team is formed
of practitioners.

Produces Practice (*) – Result (*) A practice produces
a result.

Table 4. KB-O relationships

Towards a Formalization of KUALI-BEH an ESSENCE Extension 121

3.1.4 Attributes

An attribute is represented using the concept attribute table, which is concept-
specific and contains one row for every attribute. The columns are labeled as fol-
lows: Name, Description, Mandatory and Type. The attributes of this ontology are
equivalent to the terminal concept attributes defined in REFSENO. Table 5 presents
the attributes of KB-O.

Attribute
(of Concept)

Description Mandatory Type

Objective (Practice) Description of the goal that
a practice pursues.

Yes Text

Purpose (Method) Description of the goal that
a method pursues.

Yes Text

Status (Work
Product)

Description of the actual state
or situation of a work product.

No Text

Table 5. KB-O attributes

3.2 KUALI-BEH Algebra

Based on the ideas outlined in [20] and [23], we defined KUALI-BEH algebra (KB-A),
which is a set of axioms, predicates, functions and operations to represent the
KUALI-BEH method properties and operations. KB-A is defined in the next sub-
sections.

3.2.1 KB-A Axioms and Definitions

The methods and practices infrastructure (MPI) contains all the elements that are
built using the common concepts. Therefore, it is the first axiom of KB-A.

Axiom 1. Let MPI be all the things that can be created using KUALI-BEH.

MPI = {M⊕P ⊕ J ⊕W ⊕ C}

where

M = {m | m is a method},
P = {p | p is a practice},
J = {j | j is a software project},
W = {w | w is a work product},
C = {c | c is a condition}.

Axiom 2. W and C are disjoint sets.

W ∩ C = ∅.

122 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

Definition 1. Let p1, . . . , pn be practices, a method m composed of this set of
practices can be expressed as m = {p1, . . . , pn}.

Definition 2. The definition of any element of the KUALI-BEH static view is a con-
ceptual definition and is denoted by the letter “c” as super-index. For example,
a conceptual definition of a work product w is denoted as wc, which is related to its
characteristics.

Definition 3. The definition of any element of the KUALI-BEH operational view
is a technical definition and is denoted by the letter “t” as super-index. For example,
a technical definition of a work product w is denoted as wt, which is its instance.

Definition 4. The practitioners are the only individuals who can determine whe-
ther:

1. similarity between inputs and results is held;

2. the method purpose is fully achieved; and

3. the objective of a practice supports a method purpose.

This ability corresponds to the practitioner’s judgment.

3.2.2 KB-A Functions and Predicates

In this section we discuss the functions defined in the KB-A.
The objective of a practice p is obtained through the function objective applied

to the conceptual definition of the practice.

objective : P −→ Text.

In a similar way, the purpose of a method m is obtained through the function
purpose applied to the conceptual definition of the method.

purpose :M−→ Text.

In the same way, the status of a work product w is obtained through the function
status applied to the technical definition of the work product.

status :W −→ Text.

In order to decide whether the purpose of a method is fully achieved, the function
fully achieved is defined.

fully achieved :M−→ B.

The function similarity is defined in order to decide whether a work product
or condition fits the characteristics required by an input or result. Comparing the

Towards a Formalization of KUALI-BEH an ESSENCE Extension 123

technical definition against the conceptual definition of a work product or condition,
practitioners can decide on their similarity.

similarity : (Wc ∪ Cc)× (W t ∪ Ct) −→ B.

Likewise, the functions input and result are defined for methods and practices.
These functions receive a practice or a method and return a set of work products
and/or conditions.

input : M∪P −→W ∪ C,

result : M∪P −→W ∪ C.

The KUALI-BEH predicates are expressed in the following way:

• produces(pi, r) denotes that a practice pi produces a result r:

produces : P × (W ∪ C),

• consumes(pj, i) denotes that a practice pj consumes an input i:

consumes : P × (W ∪ C),

• precedes(pi, pj) denotes that a practice pi precedes a practice pj:

precedes : P × P ,

• follows(pj, pk) denotes that a practice pj follows a practice pk:

follows : P × P ,

• supports(p,m) denotes that the objective of a practice p supports the purpose
of a method m:

supports : Pc ×Mc.

3.2.3 KB-A Method Properties

In order to represent method properties, as stated in Definition 1, let us define
a method m ∈M as a set:

m = {p | p ∈ P}.

The coherency, consistency and sufficiency properties of a method are defined
below.

124 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

Coherency. Let us define a function named coherency, which receives a method
and returns true if it is coherent or false if it is not.

coherency :M−→ B.

This function coherency(m) is evaluated as follows:

coherency(m) =

true if for all practices pi of a method m, the objective

of pi supports the purpose of m,

false otherwise.

(1)
In other words we have:

if ∀p ∈ m, supports(objective(pc), purpose(mc)) = true.

Consistency. Let us define the function consistency, which receives a method and
returns true if it is consistent or false if it is not.

consistency :M−→ B.

This function consistency(m) is evaluated as follows:

consistency(m) =

true if all the practice inputs are produced and all

the practice results are consumed, except for
the method input and result;

false otherwise.

(2)

In other words we have:

if ∀p1 ∈ m ∃p2, p3 ∈ m(produces(p1, r)→ consumes(p2, r) ∨ result(mc) = r)

∧ (consumes(p1, i)→ produces(p3, i) ∨ input(mc) = i).

Sufficiency. Let us define the function sufficiency, which receives a method and
returns true if it is sufficient or false if it is not.

sufficiency :M−→ B.

This function sufficiency(m) is evaluated as follows:

sufficiency(m) =

true if the method m is coherent, consistent and its

purpose is fully achieved,

false otherwise.

(3)

In other words we have:

if coherency(m) ∧ consistency(m) ∧ fully achieved(m) = true.

Towards a Formalization of KUALI-BEH an ESSENCE Extension 125

3.2.4 KB-A Adaptation Operations

In order to express the operations of adaptation, let us define a practice P as a triple
formed by an Input (I), an Objective (O) and a Result (R)

P = (I, O,R).

The operations of substitution, concatenation, combination and splitting are
defined below.

Substitution. The substitution of practices consists in replacing a practice by
another equivalent practice.

Let P1 = (I1, O1, R1) and P2 = (I2, O2, R2) be practices.

P1 can be substituted by P2 if and only if

P1 ≡ P2.

Notice that similarity is recognized and dictated by the practitioner’s judgment.
After applying the adaptation operation the original properties of a method are
preserved, since the new practice holds an objective, input and result similar to the
substituted practice.

Concatenation. If one practice has a result similar to the input of another prac-
tice, both can be integrated into one practice, applying the concatenation operation,
which is defined as follows:

Let P1 = (I1, O1, R1) and P2 = (I2, O2, R2) be practices and R1 is similar to I2.

A practice P3 is a correct concatenation of the practices P1 and P2 if

P3 = (I1, O1 ∧O2, R2).

Combination. A combination of practices consists of bringing two different prac-
tices into one and is defined as follows:

Let P1 = (I1, O1, R1) and P2 = (I2, O2, R2) be practices.

P = (I, O,R) is a correct combination of P1 and P2 if

I is similar to I1 ∪ I2 and

R is similar to R1 ∪R2 and

O ≡ O1 ∧O2.

Splitting. A splitting of practices consists in the partition of the original practice
into two different practices preserving the original objective and similar inputs and
results. Formally, the splitting operation is defined as follows:

126 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

Let P1 = (I1, O1, R1) and P2 = (I2, O2, R2) be practices.

P1 and P2 are a correct split of P = (I, O,R) if

I1 ∪ I2 is similar to I and

R1 ∪R2 is similar to R and

O1 ∧O2 ≡ O.

Strictly following these rules while applying the adaptation operations to prac-
tices assures the preservation of the original properties of coherency, consistency and
sufficiency of a method.

3.3 KUALI-BEH Knowledge

In this section we discuss KB-K, short for the knowledge representation of KUALI-
BEH using DL and based on KB-O. To make a clear picture of the process of creating
KB-K, we will provide some examples. Let us consider the concept practitioner
defined in Table 3 of KB-O. This concept can be defined using sets as:

{x | Practitioner(x)}.

To express roles we proceed in a similar way. Let us consider the relationship
isFormedOf presented in Table 4. This relationship expresses that a work team is
formed of practitioners, and it can be denoted as follows:

{(x, y) | isFormedOf(x, y)}.

Now let us transform these sets into First Order Logic (FOL) predicates, which
is a common transformation process of semantic networks and ontologies. Let us
assume that every work team in our organization must be formed of practitioners.
This assertion can be rewritten in FOL as:

∀x.WorkTeam(x)→ ∃y.isFormedOf(x, y) ∧ Practitioner(y).

Then, this predicate can be rewritten again, but now in DL:

WorkTeam v ∀isFormedOf.Practitioner.

In a similar way, the inverse relationship of isFormedOf can be represented as
the relationship belongsTo. This expresses that each practitioner in the organization
belongs to a work team, and can be represented as follows:

Practitioner v ∃belongsTo.WorkTeam.

The creation process of KB-K used two DL association types:

Towards a Formalization of KUALI-BEH an ESSENCE Extension 127

has-part: This type can be used to denote aggregation and composition in
UML [30]. Although these associations are completely different in UML, since
they denote strong and weak relationships, in DL has-part can represent both
of them.

is-a: This type is equivalent to the generalization in Entity-Relationship model or
to inheritance in Object Oriented paradigm. It is a general association that can
be interpreted as is-a-kind-of and is-an-instance-of.

For example, we identified in KUALI-BEH that an Activity consists of four
elements: Knowledge and Skills, Tasks, Tools and Measures (see Figure 2). So,
expressing in DL that an Activity has-parts we have:

Activity v (∃ requires.KnowledgeAndSkills) ∧
((∃ isDecomposedIn.Task) ∨

(∃ isCarriedOutUsing.Tool) ∨
(∃ isMeasuredIn.Measure) ∨ true).

Notice that only Knowledge and Skills are mandatory, while Task, Tool and
Measure are not.

In KUALI-BEH the Stakeholder Needs is a specialization of a WorkProduct.
Then, we can say that StakeholderNeeds is-a WorkProduct, which is written in DL
as:

StakeholderNeeds vWorkProduct.

This association is used for the three instances defined in KB-O: Stakeholder
Needs, Project Conditions and Software Product.

To represent an attribute, for example, we know that a WorkProduct has an
attribute named status and its datatype is String, so we have:

{x | WorkProduct(x) ∧ (∃s.Status(x, s) ∧ String(s))}.

In DL the datatype equivalent to String is Text, so we can represent a Work
Product in DL as follows:

WorkProduct v (= 1 (status.Text)).

Let us examine a more general example: if we have a work product named
Database Model and its status is Draft, in DL we have:

WorkProduct(“DatabaseModel”) ∧
Status(“DatabaseModel”, “Draft”) ∧ Text(“Draft”).

3.3.1 Definition of KB-K

After having transformed KB-O into DL expressions, we generated KB-K, which is
defined as follows:

128 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

Method:

v (= 1 (mpi.MPI)) ∧
(∃ isComposedOf.Practice) ∧

(∃ isEnactedIn.SoftwareProject) ∧
(= 1 (purpose.Text)).

MPI:

v (∃ stores.SoftwareProject) ∨
(∃ stores.Method) ∨
(∃ stores.Practice) ∨

(∃ stores.WorkProduct) ∨
(∃ stores.Condition).

Practice:

v (∃method.Method) ∧
(∃ consumes.Input) ∧
(∃ produces.Result) ∧

(∃ isVerifiedUsing.VerificationCriteria) ∧
(∃ has.Activity) ∧

(= 1 (objective.Text)).

Practitioner:

v (∃workTeam.WorkTeam) ∧
(∃ possesses.KnowledgeAndSkills).

WorkTeam:

v (∃ isFormedOf.Practitioner) ∧
(∃ isAssignedTo.SoftwareProject).

Due to space restrictions, only 4 definitions are presented. The full KB-K is
available online on WebProtege site5.

5 http://webprotege.stanford.edu/#Edit:projectId=d846a165-258c-4ce9-b703-
44a29dd690c8

http://webprotege.stanford.edu/#Edit:projectId=d846a165-258c-4ce9-b703-44a29dd690c8
http://webprotege.stanford.edu/#Edit:projectId=d846a165-258c-4ce9-b703-44a29dd690c8

Towards a Formalization of KUALI-BEH an ESSENCE Extension 129

4 VALIDATION

This section presents a KB-K proof of concept and exemplifies the KB-K usage
through a method, which was expressed in a real organization during the validation
stage of KUALI-BEH. At the end, we present a comparison with related work.

4.1 Proof of Concept

As it has been mentioned before, DL systems not only store terminologies and
assertions, but also offer services to reason about them. Typical reasoning tasks are
to determine whether a description is satisfiable (i.e., non-contradictory) [25]. In
order to show the usage of KB-K, we offer a proof of concept through an example
in the next subsections.

4.1.1 Source of the Example

To prove the usefulness of the proposed formalization, we need an example of an ex-
pressed way of working that would contain a description of a software project activ-
ity. In this case, the example was taken from Annex C: Case Studies and Examples
of [8] and is a fragment of a typical information system delivery process done in
Fujitsu DMR Macroscope modeled in SPEM:

The Information System Delivery Process is developed during the Preliminary
Analysis phase and consists of only one iteration that is the First Joint Require-
ments Planning Workshop. In this iteration the Define Owner Requirements task
is developed by the System Architect role in three steps: Define objectives based on
stated needs, Define the key issues and Determine the relevant enterprise princi-
ples. Besides, one work product is required to start the task and two new items are
produced, the Enterprise Architecture, Assessment of Current System and Owner
Requirements, respectively.

The specific SPEM elements appear in bold fonts. Acronyms of each element
of the process are presented in the parenthesis, this with the purpose of facilitating
process representations in KB-K.

Activity {kind: Phase}: Preliminary Analysis (PA)
Process: Information System Delivery Process (ISDP)

Activity {kind: Iteration}: First Joint Requirements Planning
Workshop (FJRPW)
TaskUse: Define Owner Requirements (DOR)

RoleUse: System Architect (SA)
WorkDefinitionParameter {kind: in}

WorkProductUse: Enterprise Architecture (EA)
WorkDefinitionParameter {kind: out}

WorkProductUse: Assessment of Current System (ACS)
{state: initial draft}

130 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

WorkProductUse: Owner Requirements (OR)

{state: initial draft}
Steps

Step: Define objectives based on stated needs (DOBOSN)

Step: Define the key issues (DTKI)

Step: Determine the relevant enterprise principles (DREP)

At this point we have an expressed way of working, but how well is it defined?
It was implied in [1] that the process was not fully completed and five inconsisten-
cies related to two major classes of problems were pointed out. Firstly, Phase and
Iteration have no performer. Since both elements are a specialization of an Activ-
ity, they must have at least one performer each. Secondly, the WorkProductUse’s
kinds are not clear, because they are defined through the WorkDefinitionParame-
ter. And it is not possible to know precisely if a specific work product is input or
output.

In order to prove that KUALI-BEH solves these inconsistencies, the Fujitsu way
of working was modeled using the formalization presented in this paper.

4.1.2 Example of KB-K Usage

To provide a comparison between SPEM and KUALI-BEH, a partial mapping be-
tween the KUALI-BEH concepts and the SPEM elements was done. Table 6 shows
a subset of the mapping and contains only the concepts required for the purpose of
the example.

SPEM KUALI-BEH

Process Method

Activity Practice

TaskUse Activity

Step Task

RoleUse KnowledgeAndSkills

WorkProductUse WorkProduct

Table 6. Mapping between KUALI-BEH and SPEM concepts

This research followed the idea of [31] who propose the use of ontologies for
the evaluation of metamodels. In their study, they create a reference ontology, i.e.,
an ontology of method in general against which they can then compare any given
‘branded’ method or SME approach [21].

Towards a Formalization of KUALI-BEH an ESSENCE Extension 131

Based on the mapping (Table 6), we obtain the following expressions, which are
equivalent to the process fragment presented in the previous subsection:

Method(“ISDP”) ∧ isComposedOf(“ISDP”, “FJRPW”) ∧
Practice(“FJRPW”) ∧ has(“FJRPW”, “DOR”) ∧

Activity(“DOR”) ∧ requires(“DOR”, “SA”) ∧
KnowledgeAndSkills(“SA”) ∧ isDecomposedIn(“DOR”, “DOBOSN”) ∧

isDecomposedIn(“DOR”, “DTKI”) ∧ isDecomposedIn(“DOR”, “DREP”) ∧
Task(“DOBOSN”) ∧ Task(“DTKI”) ∧ Task(“DREP”) ∧

input(“DOR”, “EA”) ∧WorkProduct(“EA”) ∧
Status(“EA”, “initial draft”) ∧ Text(“initial draft”) ∧

result(“DOR”, “ACS”) ∧WorkProduct(“ACS”) ∧
Status(“ACS”, “initial draft”) ∧ Text(“initial draft”) ∧

result(“DOR”, “OR”) ∧WorkProduct(“OR”).

It is worth mentioning that using Protégé (version 5.0.0) and HermiT (ver-
sion 1.3.8.413) we demonstrated the satisfiability of this example. Figure 4 shows
the resulting KB-K graph generated using Protégé.

Figure 4. KB-K inferred model

It can be noticed that DOR has a performer (SA) and each of the work products
associated with DOR can be differentiated as inputs (blue arrow) or results (pink
arrows).

132 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

4.1.3 Results of the Example

It was pointed out by Wang [1] that direct reasoning about models built using
metamodels like SPEM is difficult and it is hard to keep these models consistent,
thus making SPEM to be not the best choice when analyzing models. Nevertheless,
we found that KUALI-BEH is capable of representing ways of working through
a clear model that preserves its structure [32].

Our example has demonstrated how the SPEM inconsistencies found by [1] can
be corrected. These inconsistencies are solved by KUALI-BEH because

1. KUALI-BEH has a well-defined hierarchical approach, and

2. KUALI-BEH does not have reflexive associations.

Since KUALI-BEH’s structure is a tree, the dependencies of its elements can be
hierarchically stated. As a consequence, the practitioners’ ways of working are mod-
eled as a fixed structure avoiding ambiguities and allowing a uniform interpretation
of data.

Importantly, KUALI-BEH has no cyclical dependencies and no element can be
defined recursively, which is a major drawback in SPEM. For example, in the above
described Fujitsu process, an Activity can represent either a process or an iteration
using the stereotype kind ; however, the elements that form an activity remain the
same regardless of the fact that different kinds of objects are modeled. In fact, this
constitutes the main cause of inconsistencies found in [1].

Last but not least, the coherency, consistency and sufficiency properties, defined
in KUALI-BEH, can be evaluated and are meant to decide if the expressed way of
working is well or ill-formed, thus giving practitioners an initial means of verifying
and improving their own ways of working.

4.2 Examples Obtained from Case Studies

During the validation of KUALI-BEH, specifically during case studies, we iden-
tified situations where the formalization was used in order to improve practices
and methods created by participants. It is important to mention that the val-
idation focus was not the formalization per se, however, the case study partici-
pants naturally used properties and operations to improve their practices and meth-
ods.

The first appearance of a formalization element occurred when practitioners of
case study 1, reported in [32], evaluated the consistency of its method, called IB.
In particular, one practice produced two results that consequently became input
for another practice. The problem was that the practice did not consume one of
the results. This behavior occurred because the practices were executed by different
practitioners. After having expressed explicitly the whole method, both practitioners
realized that there exists a practice which result (a subset of it) is not similar to
the input of the rest of the method’s practices. In other words, the practice was

Towards a Formalization of KUALI-BEH an ESSENCE Extension 133

producing a result that nobody else consumed:

∃p1 ∈ IB(produces(p1, r) but @pi ∈ IB consumes(pi, r).

Therefore:
consistency(IB) = false.

Another instance of the formalization occurred during the case study 3. At
a particular moment of method authoring, the participants decided to adapt the
defined method using adaptation operations. On the one hand, they needed to
split a practice in order to make it easier to execute and distribute the work. On
the other hand, they wanted to merge four practices having similar objectives and
create a more generic practice that could be applied in different contexts. When
this was done empirically, we evaluated the rules defined by the adaptation oper-
ations against the method properties confirming that the latter were totally pre-
served.

4.3 Comparison with Related Work

Method engineering approaches offer guidance to express methods and methods frag-
ments with the purpose of formalizing knowledge and tailoring methods to particular
situations. Aharoni [33] identifies four approaches: the OPEN Process Framework
(OPF) [34], the assembly-based SME approach [35], the scenario-based approach [36]
and the application-based approach [37].

These fragment representation approaches were evaluated by Aharoni in terms
of expressiveness, consistency, formalism and comprehensibility. He reports the lack
of comprehensibility of the obtained representations where only 1 of 4 approached
supports assembly operations and formalisms. Besides, all the four approaches rely
on visual semi-formal languages. There is a special need to provide a formal repre-
sentation and to define adequate operations to manipulate methods.

On the other hand, these approaches require the means to represent methods
or processes, i.e. a process modeling language (PML). For example, an extensively
used PML in software engineering is UML. In [38] several other PMLs, such as Petri
nets, Business Process Model and Notation (BPMN) [39] and SPEM are mentioned.

Analyzing the variety of alternatives to modelling methodologies and hence many
aspects of SME, it is generally agreed that there are at least three core elements: pro-
ducer, work unit and work product [21]. SPEM and ISO/IEC 24744 [40] follow this
line and, together with BPMN and UML, are the most representative alternatives
for modeling processes.

However, some drawbacks can be identified. Firstly, SPEM, which is also a OMG
standard specially created for Software Engineering methods, is perceived as very
complex and hard to tackle making it difficult to learn [41]. Second, despite for-
malism and structure advantages of the ISO/IEC 24744, the introduced concepts
are not only unfamiliar to practitioners, but also are distanced from their con-
text [42]. Finally, as reported by [43], the important drawbacks of UML, BPMN

134 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

and other PMLs remain deficiency of evolution, evaluation and human decision sup-
port.

KUALI-BEH formalization supports a comprehensive representation of know-
ledge and permits to reason about created methods. On the one hand, it is based
on a simpler set of concepts (KB-O), allows a formal representation and manip-
ulation of methods (KB-A) and provides a method rationale mechanism (KB-K).
On the other hand, the KUALI-BEH concepts are compatible with alternatives
used in the software engineering community, e.g. SPEM, BPMN or UML. There-
fore, any process that is modelled with these alternatives can be formalized through
KUALI-BEH taking advantage of its simplicity, common language and method rea-
soning.

5 INTENDED USAGE

According to [44], the main objectives of formalizations are to improve the commu-
nication, computational inference and reuse of knowledge. As a whole, the formal-
ization of KUALI-BEH (KB-K, KB-O and KB-A) is a starting point to motivate and
improve these aspects, giving practitioners and organizations a viable alternative to
structure their wide tacit knowledge.

KB-O offers a unified vocabulary (terms and definitions) and improves commu-
nication among humans, consequently discussions and agreements over a specific
domain are possible.

Applying KB-A, its rules and properties, we can manipulate knowledge in a uni-
form and standardized manner and achieve communication between humans and
computers.

With KB-K, comprising a knowledge base and inference rules, the communica-
tion between software tools will foster the exchange and analysis of data. Besides,
providing a structure and a management mechanism to the knowledge involved in
software projects, we will be able to make computational inferences. Moreover,
practitioners will have means to evaluate and enrich their knowledge.

It is important to keep in mind that the target audience of KUALI-BEH for-
malization is process engineers; this formalization aims at providing them with the
means of description, analysis and reasoning about software projects.

According to [45], an advantage for knowledge representation is the coupling
between theory and practice. In fact, KUALI-BEH was born as a proposal to
bridge the gap between theory and practice by structuring and reasoning about
practitioners’ knowledge and enriching the Software Engineering body of know-
ledge. It has also been validated by practitioners directly involved in software
developer organizations with solid results [32], which has encouraged its formal-
ization.

Finally, the main intended usage of the formalization is to establish the basis for
creating a Computer-Aided Method Engineering (CAME) tool. There is a necessity
for creating a tool that would fulfill the needs defined by [23] or [46], and which were

Towards a Formalization of KUALI-BEH an ESSENCE Extension 135

never completely achieved, based on the words of [47]: “Unfortunately none of these
tools can express the process part of a method and support the enactment of the
method process mode”. We hope that KB-K, -A, and -O will become the basis of
a tool that really helps practitioners to carry out the processes of method authoring
and enactment.

The tool, named KB-Tool, is currently being developed. We already released
two modules: the first module expresses and shares ways of working using KB-O; the
second module uses KB-A to determine the accomplishment of method properties.
The module that integrates KB-K with the reasoning process is still a prototype
and is under development. The idea is to go from manual to systematic (semi-
automatic) and then to automatic approaches [9]. As it was mentioned before, the
proof of concept used the functionalities provided by Protégé.

6 CONCLUSIONS AND FUTURE WORK

KUALI-BEH formalization preserves the foundations of SME. On the one hand it
defines the common concepts required to express the practitioners’ ways of working
by taking advantage of KUALI-BEH ontology. On the other hand, it permits the
adaptation of its elements, practices and methods, in a controlled manner using the
KUALI-BEH adaptation operations and properties defined as a set of axioms, def-
initions, predicates and functions. Following these rules it is possible to customize,
modify and assemble complex elements from other elements.

Moreover, the hierarchical organization of KUALI-BEH common concepts allows
for the consistency on the granularity level of its elements, no matter if it is analyzed
separately or as a part of a whole.

Finally, through DL, a knowledge representation formalism, which is able to
capture virtually almost all class-based representation formalisms used in Artificial
Intelligence, Software Engineering, and Databases [45], we can improve communica-
tion among humans and machines, allow for computational inference and promote
the reuse of knowledge.

We can conclude that with KUALI-BEH formalization it is possible to build
a knowledge base with the following characteristics:

1. it has the necessary knowledge (completeness);

2. the knowledge is reliable to the real world (correctness);

3. the knowledge is not self-contradictory (consistency); and

4. the system has efficient algorithms to perform inferences (competence), which,
according to [2], are the stringent requirements for a knowledge base.

Besides, as stated in [48], the practical usefulness of a formal semantics for a language
is that it provides a rigorous standard that can be used to judge the correctness of
an implementation, in our case the correct forming of ways of working.

136 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

This work is at the initial stage, and the DL representation of KUALI-BEH is the
first step to provide method engineers with an alternative to reason directly about
the actual knowledge, which is expressed by practitioners themselves, so several lines
arise as future work. In the first place our research group will work on:

1. enhancing the robustness and completeness of KB-A;

2. proving the usefulness and applicability of KB-K applying it to more real life
cases and ways of working;

3. making the formalization available to method engineers for feedback and im-
provements; and

4. use existing theory expression methods, like Petri nets or fuzzy logic, to capture
and check inconsistencies of expressed ways of working.

Second, but not less important is to develop and release a fully functional tech-
nological environment, which will motivate more practitioners to use KUALI-BEH
and will result in the spread of the proposal and its formalization.

Acknowledgment

The authors thank Pascual Julian Iranzo, Ph.D. for his expert advice in Description
Logics.

This work has been funded by the Postdoctoral Fellowships Program of the Gen-
eral Directorate of the Academic Staff (DGAPA-UNAM) and the PAPIIT project
IN113013 (DGAPA-UNAM); the Graduate Science and Engineering Computing
(PCIC-UNAM) and CONACYT (Mexico).

REFERENCES

[1] Wang, S.—Jin, L.—Jin, C.: Represent Software Process Engineering Metamodel
in Description Logic. Proceedings of World Academy of Science, Engineering and
Technology, Vol. 11, 2006, pp. 109–113.

[2] Devanbu, P. T.—Jones, M. A.: The Use of Description Logics in KBSE Systems:
Experience Report. Proceedings of the 16th International Conference on Software
Engineering (ICSE ’94), Los Alamitos, CA, USA. IEEE Computer Society Press,
1992, pp. 23–35.

[3] Edwards, J.: Managing Software Engineers and Their Knowledge. In: Aurum, A.,
Jeffery, R., Wohlin, C., Handzic, M. (Eds.): Managing Software Engineering Know-
ledge. Springer, Berlin, Heidelberg, 2003, pp. 5–27, doi: 10.1007/978-3-662-05129-0 1.

[4] Selfridge, P. G.—Hoebel, L. J.—White, D. A.: The Sixth Annual Knowledge-
Based Software Engineering Conference (KBSE-91). SIGART Bulletin, Vol. 3, 1992,
No. 1, pp. 33–35, doi: 10.1145/130836.130839.

[5] Schneider, K.: Experience and Knowledge Management in Software Engineering.
Springer-Verlag, Berlin, Heidelberg, 2009, doi: 10.1007/978-3-540-95880-2.

https://doi.org/10.1007/978-3-662-05129-0_1
https://doi.org/10.1145/130836.130839
https://doi.org/10.1007/978-3-540-95880-2

Towards a Formalization of KUALI-BEH an ESSENCE Extension 137

[6] Morales-Trujillo, M.—Oktaba, H.: KUALI-BEH Software Project Common
Concepts. Technical Report, Object Management Group, Needham, MA, USA, 2012.

[7] OMG. ESSENCE – Kernel and Language for Software Engineering Methods. Version
1.0, Formal/2014-11-02, Object Management Group, Needham, MA, USA, 2014.

[8] OMG. Software and Systems Process Engineering Metamodel (SPEM). Version 2.0,
Formal/2008-04-01, Object Management Group, Needham, MA, USA, 2008.

[9] Masalagiu, C.—Chin, W.-N.—Andrei, Ş.—Alaiba, V.: A Rigorous Methodol-
ogy for Specification and Verification of Business Processes. Formal Aspects of Com-
puting, Vol. 21, 2009, No. 5, pp. 495–510, doi: 10.1007/s00165-009-0106-y.

[10] Calero, C.—Ruiz, F.—Piattini, M. (Eds.): Ontologies for Software Engineering
and Software Technology. Springer-Verlag, Berlin, Heidelberg, 2006, doi: 10.1007/3-
540-34518-3.

[11] Ruiz, F.—Hilera, J.: Using Ontologies in Software Engineering and Technology.
In: Calero, C., Ruiz, F., Piattini, M. (Eds.): Ontologies for Software Engineering and
Software Technology. Springer, Berlin, Heidelberg, 2006, pp. 62–119.

[12] Gómez-Pérez, A.—Fernández-López, M.—Corcho, O.: Ontological Engineer-
ing. Springer-Verlag, London, 2004.

[13] Abran, A.—Cuadrado, J.—Garćıa-Barriocanal, E.—Mendes, O.—
Sánchez-Alonso, S.—Sicilia, M.: Engineering the Ontology for the SWEBOK:
Issues and Techniques. In: Calero, C., Ruiz, F., Piattini, M. (Eds.): Ontologies for
Software Engineering and Software Technology. Springer, Berlin, Heidelberg, 2006,
pp. 120–138.

[14] González-Pérez, C.—Henderson-Sellers, B.: An Ontology for Software De-
velopment Methodologies and Endeavours. In: Calero, C., Ruiz, F., Piattini, M.
(Eds.): Ontologies for Software Engineering and Software Technology. Springer,
Berlin, Heidelberg, 2006, pp. 139–168.

[15] Dias, M.—Anquetil, N.—De Oliveira, K.: Organizing the Knowledge Used in
Software Maintenance. Journal of Universal Computer Science, Vol. 9, 2003, No. 7,
pp. 641–658.

[16] Garćıa, F.—Bertoa, M. F.—Calero, C.—Vallecillo, A.—Rúız, F.—
Piattini, M.—Genero, M.: Towards a Consistent Terminology for Software Mea-
surement. Information and Software Technology, Vol. 48, 2006, No. 8, pp. 631–644.

[17] Calero, C.—Ruiz, F.—Baroni, A.—Brito, F.—Piattini, M.: An Ontological
Approach to Describe the SQL:2003 Object-Relational Features. Computer Standards
and Interfaces, Vol. 28, 2006, No. 6, pp. 695–713, doi: 10.1016/j.csi.2005.09.002.

[18] W3C. Web Ontology Language. Standard, World Wide Web Consortium, Cambridge,
MA, 2012.

[19] W3C. Resource Description Framework. Standard, World Wide Web Consortium,
Cambridge, MA, 2014.

[20] Harmsen, F.—Brinkkemper, S.: Design and Implementation of a Method Base
Management System for a Situational CASE Environment. Proceedings of the Asia
Pacific Software Engineering Conference, 1995, doi: 10.1109/APSEC.1995.496992.

https://doi.org/10.1007/s00165-009-0106-y
https://doi.org/10.1007/3-540-34518-3
https://doi.org/10.1007/3-540-34518-3
https://doi.org/10.1016/j.csi.2005.09.002
https://doi.org/10.1109/APSEC.1995.496992

138 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

[21] Henderson-Sellers, B.—Ralyté, J.—Agerfalk, P.–Rossi, M.: Situa-
tional Method Engineering. Springer-Verlag, 2014. ISBN 978-3-642-41466-4, doi:
10.1007/978-3-642-41467-1.

[22] Agerfalk, P.—Ahlgren, K.: Modelling the Rationale of Methods. In: Khosrow-
pour, M. (Ed.): Managing Information Technology Resources in Organizations in
the Next Millennium. Proceedings of the 10th Information Resources Management
Association International Conference. IDEA Group, Hershey, PA, 1999, pp. 184–190.

[23] Harmsen, F.—Brinkkemper, S.—Oei, H.: Situational Method Engineering for
Information System Project Approaches. In: Verrijn Stuart, A. A., Olle, T. W. (Eds.):
Methods and Associated Tools for the Information Systems Life Cycle. Proceedings
of the IFIP WG 8.1 Working Conference, Maastricht, Netherlands, September 1994.
IFIP Transactions A-55, North-Holland, 1994, pp. 169–194. ISBN 0-444-82074-4.

[24] Baader, F.—Calvanese, D.—McGuinness, D. L.—Nardi, D.—Patel-
Schneider, P. F. (Eds.): The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, New York, NY, USA, 2003.

[25] Baader, F.—Nutt, W.: Basic Description Logics. In: Baader, F., Calvanese, D.,
McGuinness, D. L., Nardi, D., Patel-Schneider, P. F. (Eds.): The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge University Press,
2003, pp. 47–100.

[26] Kaplanski, P.: Description Logic as a Common Software Engineering Artifacts
Language. 1st International Conference on Information Technology (IT 2008), IEEE,
2008, pp. 1–4.

[27] Schmidt-Schauss, M.—Smolka, G.: Attributive Concept Descriptions with Com-
plements. Artificial Intelligence, Vol. 48, 1991, No. 1, pp. 1–26.

[28] Tautz, C.—von Wangenheim, C.: REFSENO: A Representation Formalism for
Software Engineering Ontologies. IESE-Report No. 015.98/E, Fraunhofer Institute
IESE, 1998.

[29] OMG. Unified Modeling Language (UML) Infrastructure. Version 2.5, Formal/15-03-
01, Object Management Group, Needham, MA, USA, 2015.

[30] Sattler, U.: Description Logics for the Representation of Aggregated Objects. In:
Horn, W. (Ed.): Proceedings of the 14th European Conference on Artificial Intelli-
gence, Berlin, Germany, 2000, pp. 239–243.

[31] Iacovelli, A.—Souveyet, C.: Towards Common Ground in SME: An Ontology
of Method Descriptors. In: Ralyté, J., Mirbel, I., Deneckère, R. (Eds.): Engineer-
ing Methods in the Serviceoriented Context. Proceedings of 4th IFIP WG8.1 Work-
ing Conference on Method Engineering (ME 2011), Paris, France. Springer, Heidel-
berg, IFIP Advances in Information and Communication Technology, Vol. 351, 2011,
pp. 77–90.

[32] Morales-Trujillo, M.—Oktaba, H.—Piattini, M.: Using Technical-Action-
Research to Validate a Framework for Authoring Software Engineering Methods. 17th

International Conference on Enterprise Information Systems (ICEIS ’15), INSTICC,
2015, pp. 15–27, doi: 10.5220/0005338800150027.

[33] Aharoni, A.—Reinhartz-Berger, I.: Representation of Method Fragments:
A Comparative Study. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (Eds.):

https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.5220/0005338800150027

Towards a Formalization of KUALI-BEH an ESSENCE Extension 139

Situational Method Engineering: Fundamentals and Experiences. Springer, Boston,
MA, IFIP Advances in Information and Communication Technology, Vol. 244, 2007,
pp. 130–145.

[34] Firesmith, D.—Henderson-Sellers, B.—Zowghi, D.: Using the OPEN Pro-
cess Framework to Produce a Situation-Specific Requirements Engineering Method.
Software Engineering Institute, 2005.

[35] van de Weerd, I.—Brinkkemper, S.—Souer, J.—Versendaal, J.: A Sit-
uational Implementation Method for Web-Based Content Management System-
Applications: Method Engineering and Validation in Practice. Software Process: Im-
provement and Practice, Vol. 11, 2006, No. 5, pp. 521–538.

[36] Rolland, C.—Plihon, V.—Ralyté, J.: Specifying the Reuse Context of Scenario
Method Chunks. Proceedings of the 10th International Conference on Advanced In-
formation Systems Engineering (CAiSE ’98). Springer, Lecture Notes in Computer
Science, Vol. 1413, 1998, pp. 191–218, doi: 10.1007/BFb0054226.

[37] Sturm, A.—Reinhartz-Berger, I.: Applying the Application-Based Domain
Modeling Approach to UML Structural Views. International Conference on Con-
ceptual Modeling (ER 2004). Lecture Notes in Computer Science, Vol. 3288, 2004,
pp. 766–779, doi: 10.1007/978-3-540-30464-7 57.

[38] Kelemen, Z. D.—Kusters, R. J.—Trienekens, J.—Balla, K.: Selecting
a Process Modeling Language for Process Based Unification of Multiple Standards
and Models. Technical Report TR201304, Budapest, Hungary, 2013.

[39] OMG. Business Process Model and Notation (BPMN). Version 2.0, Formal/2011-01-
03, Object Management Group, Needham, MA, USA, 2011.

[40] ISO/IEC, 24744 Software Engineering – Metamodel for Development Methodologies.
International Organization for Standardization, 2007.

[41] Niknafs, A.—Asadi, M.: Towards a Process Modeling Language for Method
Engineering Support. 2009 WRI World Congress on Computer Science and In-
formation Engineering, 2009, pp. 674–681, doi: 10.1109/CSIE.2009.956, doi:
10.1109/CSIE.2009.956.

[42] Morales-Trujillo, M.—Oktaba, H.—Piattini, M.: Bottom-Up Authoring of
Software Engineering Methods and Practices. Journal of Applied Research and Tech-
nology, Elsevier, Submitted 2016.

[43] Zamli, K. Z.—Mat Isa, N. A.: A Survey and Analysis of Process Modeling Lan-
guages. Malaysian Journal of Computer Science, Vol. 17, 2004, No. 2, pp. 68–89.

[44] Gruninger, M.—Lee, J.: Ontology: Applications and Design. Communications of
the ACM, Vol. 45, No. 2, 2002, pp. 39–41.

[45] Zhang, Y.—Zhang, W.: Description Logic Representation for Requirement Specifi-
cation. In: Shi, Y., van Albada, G. D., Dongarra, J., Sloot, P. M. A. (Eds.): Computa-
tional Science (ICCS 2007). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 4488, 2007, pp. 1147–1154.

[46] Abad, Z. S. H.—Sadi, M. H.—Ramsin, R.: Towards Tool Support for Situational
Engineering of Agile Methodologies. 2017 17th Asia Pacific Software Engineering Con-
ference (APSEC 2010), IEEE, 2010, pp. 326–335.

https://doi.org/10.1007/BFb0054226
https://doi.org/10.1007/978-3-540-30464-7_57
https://doi.org/10.1109/CSIE.2009.956
https://doi.org/10.1109/CSIE.2009.956

140 M. Morales-Trujillo, H. Oktaba, F. Hernández-Quiroz, B. Escalante-Ramı́rez

[47] Arni-Bloch, N.: Towards a CAME Tools for Situational Method Engineering. In-
teroperability of Enterprise Software and Applications, IFIP-ACM, 2005.

[48] Boronat, A.—Meseguer, J.: An Algebraic Semantics for MOF. Formal Aspects
of Computing, Vol. 22, 2010, No. 3-4, pp. 269–296, doi: 10.1007/s00165-009-0140-9.

Miguel Morales-Trujillo received his Ph.D. in computer
science from the National Autonomous University of Mexico
(UNAM). He is the UNAM Representative at the Object Man-
agement Group. He has been Assistant Professor at the Science
Faculty of the UNAM since 2010. His research interests are soft-
ware engineering and process engineering.

Hanna Oktaba received her Ph.D. in computer science from
the University of Warsaw, Poland. She has been Full Profes-
sor at the UNAM since 1983. She was in charge of the Mo-
ProSoft project for the Mexican government’s PROSOFT pro-
gram. She is Technical Leader of the Mexican delegation in
WG24 of ISO/IEC JCT1 SC7. Nowadays she leads the KUALI-
KAANS research group. Her research interests are software en-
gineering and software quality.

Francisco Hern�andez-Quiroz received his Ph.D. in computer
science from the Imperial College of Science, Technology and
Medicine in London. He has been Full Professor at the UNAM
since 2002. His research interests are computability theory and
its practical and philosophical implications, as well as modal
logic in computer science and philosophy.

https://doi.org/10.1007/s00165-009-0140-9

Towards a Formalization of KUALI-BEH an ESSENCE Extension 141

Boris Escalante-Ram��rez received his Ph.D. in computer
science from the Technical University of Eindhoven. His research
interests are computational models of human vision and their
applications to digital image processing. He is a member of the
National Research System of Mexico.

Computing and Informatics, Vol. 37, 2018, 142–164, doi: 10.4149/cai 2018 1 142

ADAPTIVE AGGREGATION OF FLOW RECORDS

Adrián Pekár, Martin Chovanec

Institute of Computer Technology
Technical University of Košice, Slovakia
e-mail: {adrian.pekar, martin.chovanec}@tuke.sk

Liberios Vokorokos, Eva Chovancová
Peter Feciľak, Miroslav Michalko

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Slovakia
e-mail: {liberios.vokorokos, eva.chovancova,

peter.fecilak, miroslav.michalko}@tuke.sk

Abstract. This paper explores the problem of processing the immense volume
of measurement data arising during network traffic monitoring. Due to the ever-
increasing demands of current networks, observing accurate information about every
single flow is virtually infeasible. In many cases the existing methods for the reduc-
tion of flow records are still not sufficient enough. Since the accurate knowledge of
flows termed as “heavy-hitters” suffices to fulfill most of the monitoring purposes,
we decided to aggregate the flow records pertaining to non-heavy-hitters. However,
due to the ever-changing nature of traffic, their identification is a challenge. To
overcome this challenge, our proposed approach – the adaptive aggregation of flow
records – automatically adjusts its operation to the actual traffic load and to the
monitoring requirements. Preliminary experiments in existing network topologies
showed that adaptive aggregation efficiently reduces the number of flow records,
while a significant proportion of traffic details is preserved.

Keywords: Network traffic monitoring, IPFIX, exporter, flow record, data reduc-
tion, adaptive aggregation, heavy-hitter, resource utilization

Mathematics Subject Classification 2010: 68M10, 68M12, 90B18, 90B20

Adaptive Aggregation of Flow Records 143

1 INTRODUCTION

Traffic monitoring has a significant role in the design, management and optimization
of present computer networks. In order to achieve the full-featured operation of
the network it is essential to measure and evaluate various characteristics of the
traffic. Nowadays, the most commonly used data measurement methods are based
on collecting information about the network and its traffic at the level of flows.

Network monitoring by flow-level based measurement platforms – either imple-
menting the NetFlow v9 [1] or IPFIX [2] protocols – is based on the analysis of
information obtained from traffic properties and characteristics. Flow-level infor-
mation has a wide range of use from analyzing the traffic of the network through
anomaly detection up to ensuring QoS. Collecting flow-level information can provide
meaningful information about the dynamics of network traffic as well. Further, it
is also used for a variety of network monitoring tasks such as user and application
monitoring, traffic engineering, capacity planning, accounting, security applications
(IDSes and IPSes) and performance analysis. Despite its popularity, flow-level mea-
surement is still surrounded by several issues. As networks are continuously growing
in

1. size,

2. connected users and

3. the volume of transmitted data (traffic),

their operation and management are becoming more and more complex. In conse-
quence, current flow-based network monitoring systems generate a huge volume of
measurement data what represents one of the most critical issues from the view of
both data processing (analysis) and interpretation (visualization) [3].

In the following sections we provide a formal as well as informal description of
our systematic approach that have finally led to the design of a yet another adap-
tive aggregation method. They discuss several methods/techniques and phenomena
by the combination of which we achieved the aggregation of flow records and its
adaptability to the traffic character.

1.1 State-of-the-Art

Over the past decades many approaches were taken to create a unified standard for
monitoring the traffic which flows through the network. In consequence, various
techniques and methods were proposed. All of these methods have their advantages
and disadvantages. Some of them may excel in data reduction, but, on the other
hand, the obtained information may be less detailed and have coarse granularity.
On the contrary, other techniques may provide fine granularity, but data reduction
may not be sufficient enough. Generally, most of the techniques have been in-
corporated into unified standards for retrieving network device- and traffic-specific
information. Therefore, they are usually associated with a standard or protocol.

144 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

The most commonly used protocols in network traffic measurement are counters
(SNMP counts [4]), flow-level information (Netflow/IPFIX [1, 5, 2]) and sampled
flow (sFlow [6]).

Although SNMP counts are simple and lightweight to process, they do not pro-
vide enough details about the network traffic. When details about the traffic seman-
tics are required, three main technologies come into consideration: packet capture,
sFlow and NetFlow/IPFIX. Some of them affect the data reduction more and some
less. Although NetFlow and IPFIX are surrounded by some challenges, their bene-
fits far outweigh their shortcomings and in comparison with other approaches they
provide more flexibility. Thus, collecting flow-level information is currently the most
preferred way to perform measurements. It provides measurement data at a rela-
tively high aggregation level while a considerable portion of traffic semantics needed
for various network monitoring tasks is still retained. However, gathering flow-level
information has to face some issues. The most emerging one is the volume of mea-
surement data [7, 3]. In general, the main aim of the network is to ensure the smooth
and fast transfer of traffic data. If the network has to deal with measurement data
at the very same time, it can easily cause over-utilization of various network entities
(e.g. inter-networking devices) and the network’s operation. For example, if the
individual inter-networking devices are involved in forwarding of measurement data
between the observation point(s) and the monitoring system(s), their performance
can be adversely affected. Similar situation occurs in case of routers which besides
capturing packets are involved in the creation and export of flow records.

A recent approach to programmable networks is the Software Defined Network-
ing (SDN) architecture, which is aimed, besides other things, at this issue. As
described in [8], the main idea behind SDN is to allow developers to rely on network
resources in the same easy manner as they do on computing or storage resources.
This is reached by decoupling the control and data planes of the network, i.e., the
network intelligence is logically centralized in software-based controllers (or control
plane), and network devices become simple packet forwarding devices (or data plane)
that can be programmed via an open interface (e.g. ForCES [9], OpenFlow [10, 11],
etc.).

OpenFlow is currently the most commonly deployed Software Defined Network-
ing (SDN) technology. Since the source code of the software running on the switches
is usually inaccessible nor can be modified, it is difficult for the science-research com-
munity to test new ideas in current environments. OpenFlow was proposed to stan-
dardize the communication between the switches and the software-based controller
in an SDN architecture, thus enabling researchers to test new ideas in a production
hardware. It provides means to control a switch without requiring the vendors to
expose the code of their devices. In the OpenFlow architecture the software-based
controller is responsible for managing the forwarding information of one or more
switches; while the hardware only handles the forwarding traffic according to the
rules set by the controller [11].

Since OpenFlow separates the control plane and data plane of networking de-
vices [11], it should be considered – as also suggested in [12] – a flow-based configura-

Adaptive Aggregation of Flow Records 145

tion technology for packet forwarding devices, rather than a flow export technology.
However, although it was not specifically developed for tasks related to data export
and network monitoring, according to [13], flow-level information available within
the OpenFlow control plane (e.g. packet and byte counters) was recently used for
performing network measurements as well.

1.2 IPFIX-Based Measurement Platforms

At present, the vast majority of monitoring tools are performing the measurement
of flow-level information using either the NetFlow [1] or the IPFIX [2] protocol.
Since we expect IPFIX to be the industry standard for flow monitoring in the near
future, and considering the fact that between IPFIX and NetFlow is just a slight
difference, in the following we will analyze the process of network traffic monitoring
in the context of the IPFIX specification.

IPFIX defines a format and a protocol for the export of information about IP
flows. IP flow is defined as an unidirectional stream of IP packets identified by
a common five-tuple (flow keys); specifically the protocol type, source IP address,
destination IP address, source port and destination port. Basically, network traffic
monitoring is based on the analysis of the exported information. The properties (e.g.
the total number of bytes of all packets belonging to a certain flow) and character-
istics (e.g. source IP address) of the flow are carried in flow records. The export
of flow records represents a push-based mechanism, where the data are transmitted
from the IPFIX exporter(s) to the IPFIX collector(s) over either the TCP, UDP
or the SCTP protocol. Actually, the exporters and the collectors are the essential
components of any IPFIX-based measurement platform.

Exporter is a device which basically hosts two processes: the metering and the
exporting. Each of these processes can have one or more instances. In general,
each exporter sends flow records to one or more collectors. The flow records are
generated by the metering process(es).

The architecture of the exporter along with the metering and exporting processes
is shown in Figure 1. The inputs for flow record generation are the packets
themselves. It logically follows that the essential task of the metering process
is packet capture. Its further optional functions include timestamping, packet
selection (sampling and filtering) and classification.

Another important function of the metering process is maintaining the flow
records. Tasks related to the maintenance of flow records include their creation,
update, detection of flow expiration, passing the flow records to the exporting
process and their removal. In practice, these tasks are performed using a flow
cache.

The exporting process is situated a layer higher (see Figure 1). It provides
an interface between the metering process(es) and the collecting process(es). In
simple terms, it sends (exports) the flow records obtained from the metering

146 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

Observartion
Point

Packet Header Capturing

Timestamping

Packet Selection

Classification

Maintaning Flow Records

Network

Exporting

Flow Selection

Creating IPFIX
Data/Template Records

Packets

Flow Records

IPFIX
Exporter

IPFIX
Packets

M
et

er
in

g
Pr

oc
es

s

Ex
po

rt
in

g
Pr

oc
es

s

IPFIX
Collector

Core functions
Optional functions

Figure 1. The general architecture of the exporter

process(es) to one or more collectors. The method of exporting the flow records
is defined by the IPFIX protocol. Its further functional block is flow selection
that using sampling or filtering can provide further reduction of data destined
for export. This functional block of the exporting process is optional.

The metering process generates the flow records on the basis of the flow keys.

Flow keys are used to determine the conditions for creating flow records. In gen-
eral, flow keys are information elements (IEs) [5] that define IP flows. The most
commonly used information elements that serve as flow keys for flow genera-
tion are the sourceIPv4Address, destinationIPv4Address, sourceTransportPort,
DestinationTransportPort and protocolIdentifier1. However, some information
elements, for example those which belong to the timestamp and counter groups,
cannot serve as flow keys.

Collector is a device which hosts a collecting process. The collecting process re-
ceives flow records from one or more exporting processes [5]. The main goal of
the collector is to extract the measured properties and characteristics of the flow
from the flow records. For efficiency, this information is stored and carried in
information elements.

1 Note that the notation of information elements in this work are in conformity with
the IPFIX information model [5].

Adaptive Aggregation of Flow Records 147

How the flow records are exported to the collector(s) is defined by the IPFIX
protocol. Actually, they are transmitted by two kinds of information: templates and
data. In simple terms, flow records are carried in data records and the structure of
these data records is defined by the templates. It follows from the fact that traffic
information depends on the purpose of the measurement and the network structure.

The information extracted from the data records can be stored in a database
and/or directly sent to one or more external evaluating entities by mechanisms
such as the Analyzer–Collector Protocol (ACP) introduced in one of our previous
contributions [14]. Given the base functionality of the external entity (i.e. analysis),
in the following we will refer to it as analyzer.

Analyzer provides further processing and analysis of the information about flows.
More comprehensive analyzers also provide a GUI for both the visualization of
the information obtained from the database/collector and the management of
the architecture’s lower components (i.e. exporter and collector). However, the
analyzer itself is not a part of the IPFIX specification. For this reason, neither
its requirements and functionalities, nor the communication principles between
the analyzer and the other components of the IPFIX-based metering tool are
limited.

In conclusion, monitoring and analyzing the network traffic based on the IPFIX
protocol, as depicted in Figure 2, can be split into the following steps:

1. The information obtained from the captured packets after timestamping, sam-
pling, classification, etc., are encapsulated into IPFIX messages and sent from
the exporter(s) to the collector(s).

2. In the collector, after parsing the currently obtained template/data record, the
obtained flow-level data are stored in the database of the metering platform
and/or sent directly to the analyzer.

3. The analysis over the flow-level information is performed by an analyzing appli-
cation. For example, the data obtained from a database can be processed and
visualized in a form of plots. Obviously, these plots will vary according to the
wanted type of analysis.

Internet Exporter Analyzer

Database
Collector

Packets

IP
F
IX

IPFIX
Specification

SQL

S
Q

L

D
irect Connection

Figure 2. General architecture of a monitoring platform implementing IPFIX

148 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

1.3 Problem Statement

When too many flows are present in the traffic, IPFIX-based measurement plat-
forms [15, 16] have to deal with several issues. The root cause of the issues is con-
cerning the exporter(s), however, the immense volume of measurement data (flow
records) also has a high impact on the evaluating processes. The issues which can
rise during measurements are the following:

• Due to the connectionless nature of the UDP protocol, its use is avoided in many
cases. Especially when the loss of information is not affordable (e.g. anomaly
detection). It logically follows that TCP can provide a solution. However, when
TCP is used and the export rate is too high, due to the (expected) overload
of the collector, network congestion may occur between the exporter(s) and the
collector(s). In consequence, the performance and accuracy of the evaluation
processes might be significantly reduced.

• When using either TCP or SCTP, another issue represents their congestion
avoidance mechanism. When the export rates are limited by congestion avoid-
ance, the flow records can overwhelm the exporter. The expectable overflow of
the flow cache (buffer) can subsequently result in

1. the overutilization of the exporter’s resources,

2. the subsequent (radical) degradation of the flow records’ accuracy and

3. even in the exporter’s crash.

In network monitoring, the last issue represents a worst case scenario and its
prevention is highly desirable in all circumstances.

• Even if there was a pair of exporter and collector capable of serving the problem-
free export of flow records, the immense volume of data still represents an issue
in the analyzer. With respect to the results of the experiments stated in [7], the
demands related to the storage, processing, analysis, evaluation and visualization
of the flow records proportionally grow with their number.

Flow records are obviously not only an issue of two parties (i.e. exporter and
collector). Their analysis, evaluation and interpretation in the analyzer represent
also a demanding task. We can conclude that the core of the problems is the huge
number of flow records, which the exporter has to process and how it provides the
data for the upper layers. Since it is unable to measure the traffic on a per-flow
basis, in order to optimize the monitoring systems, the measurement data amount
has to be reduced.

1.4 Related Work

Initial efforts [17, 18] to monitor the network on a per-flow basis appeared to be
unscalable. The cost and speed of the memory required for a simple measurement

Adaptive Aggregation of Flow Records 149

of a large number of flows and subsequent generation of flow records proved to be
prohibitive. In response, packet and flow sampling techniques started to be used to
reduce the complexity of the metering and monitoring devices [19, 20, 21]. Since
these methods use sampling, they are exposed to a trade-off between monitoring
accuracy and limited resources (e.g. memory size, CPU speed).

The paper by Dressler and Münz [22] introduces an aggregation mechanism
for efficient and flexible use in flow accounting scenarios. Their approach is con-
trolled by aggregation rules that allow adapting to several application require-
ments. However, their proposed approach counts only with the requirements of
the monitoring purpose. They do not adapt the aggregation to the traffic behav-
ior.

Hu et al. [23] proposed an entropy-based adaptive flow aggregation algorithm.
They claim that their mechanism provides a relief from DoS attacks and other secu-
rity breaches. Unlike the mechanism designed by Dressler and Münz, this algorithm
does not take into account that the arbitrarily defined flow aggregates usually do
not meet the requirements of the monitoring purpose.

The most accurate version of the document [24] extending the IPFIX stan-
dard provides a common implementation-independent basis for an intermediate
component between the exporter and collector to handle flow aggregation. How-
ever, since the export of flow records between the exporter and the mediator is
performed over the same protocols as between the exporter and the collector (i.e.
TCP, UDP, SCTP), this standard still does not address the issues described in Sec-
tion 1.3. As we already stated, the issue of immense volume of flow records has to
be solved at the lowest layer of the IPFIX-based measurement platform. Passing
“the core of the problem” to the higher layers is not a good strategy to solve the
issue.

A promising way how to deal with large data sets is to deploy various data
reduction methods in the storage system of the monitoring tool. Although this
solution – as described in one of our previous works [7] – can bring positive results,
in a long term – as described in our further work [3] – they still do not represent
an appropriate workaround. Mainly due to the fact that the network has a lot more
devices than the monitoring system. This results in an incomparable difference
between their computation resources, i.e. the resources for traffic generation and
traffic measurement. Therefore, the issue of immense volume of flow records have
to be solved at the lowest layer of the IPFIX-based measurement platform, i.e. in
the exporter. Passing “the core of the problem” to the higher layers is not a good
strategy.

We can conclude that all the aforementioned approaches provide a solution to
the immense volume of measurement data at an acceptable level. A common de-
nominator of these approaches is that even if they adapt their operation to several
conditions, they do so only to one at a time. Intuitively, we can expect that increas-
ing the number of conditions taken into consideration during the adaptation process
should bring further improvements.

150 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

2 ADAPTIVE AGGREGATION OF FLOW RECORDS

Monitoring mechanisms, whether it comes to the utilization of resources or to the
“volume of the measurement data/required granularity of information” ratio, often
perform inefficiently. It is mainly due to the absence of capabilities by which they
could adapt their “behavior” to the actual state of the network. With no doubt,
given the ever changing character of present network traffic, this adaptation is diffi-
cult to achieve. Even if adaptability is achieved, like in case of the approaches from
Section 1.4, it is usually performed according to only a single criterion/condition.
However, if there was a way to adapt the operation of the monitoring tool not only
to the traffic character but also to the requirements of the monitoring purpose, the
immense volume should not be longer an issue at higher layers (i.e. collector, ana-
lyzer). This is the basic idea that evolved to our proposed method – the adaptive
aggregation of flow records.

2.1 Aggregation of Flow Records

The general architecture of the exporter (see Figure 1) provides several options
where the number of flow records can be reduced, specifically:

• two in the metering process: sampling and filtering (denoted in Figure 1 as
Packet Selection);

• and two in the exporting process: sampling and filtering (denoted in Figure 1
as Flow Selection).

As we can see, sampling and filtering techniques can be applied at two different
layers on data of two different character. While sampling and filtering represent
in the metering process a packet selection task, in the exporting process they are
a task of flow selection. In addition, there are several other methods for data re-
duction whose implementation in the exporter would not violate the IPFIX spec-
ification (their most appropriate location is between the metering and exporting
processes). However, methods such as K-means or dimensionality reduction (e.g.
Cluster Analysis, Principal Component Analysis, etc.) are – due to their complex-
ity and computation demands – not suitable for implementation in the exporter [3].
This leaves us, as suggested in the IPFIX specification [2], with three further data
reduction techniques: sampling, filtering and aggregation. Although each of them
have their advantages and disadvantages, aggregation provides the most compre-
hensive solution for data reduction. It combines the advantages of both, sampling
and filtering. Indeed, while it can efficiently reduce the number of flow records (like
sampling); using subnet masks, it also provides a way to focus only on a specific
measurement target (like filtering). Its main advantage is that unlike sampling,
which discards an uncertain number of packets, the aggregated flow record reflects
all the flow properties. However, we can often observe that even with aggregation,
the number of measured flow records within a relatively small time interval is still

Adaptive Aggregation of Flow Records 151

too high [20, 23, 25]. Therefore, in order to achieve the reduction of flow records,
we had to make a shift away from the classical way of their aggregation.

2.2 Aggregation of Non-Heavy-Hitter Flows

Examination of various phenomena in flows that can be statistically described by
either self-similarity, first-order similarity (long-range dependence) or heavy-tailed
distribution have been an objective of several research activities [26, 27]. A common
observation which can be deduced from these research activities is that a very small
percentage of flows carry the main part of the traffic (in bytes). We generally refer
to these flows as heavy-hitter flows.

Heavy-hitters and non-heavy-hitters enable us to examine the dynamics and se-
mantics of network traffic from a new perspective. Their main advantage is that
the differentiation of flows into two main classes (i.e. heavy-hitters and non-heavy-
hitters) can radically contribute to the reduction of the volume of flow records. In
addition, several research activities [20, 28, 21, 27] report that for many monitoring
purposes the accurate knowledge of heavy-hitters is still sufficient enough. These
monitoring purposes include anomaly and attack detection, scalable differentiated
services, usage-based pricing and accounting, making decisions about network up-
grades and peering. Therefore, instead of aggregating flow records in a classical
manner, we rather performed this critical tasks of the exporter with respect to the
heavy-tailed nature of network traffic.

From the well-know and commonly used flow types [27] we can deduce that the
elephant flow2 is the one for which holds that the smallest percentage of its flows
accounts for the largest percentage of the transmitted data. It logically follows that
in case of mouse flows, the largest percentage of the flows accounts for the smallest
percentage of the transmitted data. Therefore, from the view of data reduction, the
highest level of compression of flow records can be achieved by the aggregation of
mouse flows. Considering the all above, we proposed the aggregation of flow records
on the basis of the separation of flows into elephant flows and mouse flows:

We keep the heavy-hitters (elephants) in their original form and rather aggregate
the non-heavy-hitters (mice); where

elephant flow is a flow in which the total number of transferred data expressed in

bytes
(
nf
td

)
is larger than or equal to a predefined threshold T , i.e.

elephant
def
= nf

td ≥ T ; and (1)

2 The method of assigning the names to the flow types depends on the characteristics
these flows exhibit in network traffic [28].

152 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

mouse flow is a flow in which the total number of transferred data expressed in

bytes
(
nf
td

)
is less than a predefined threshold T , i.e.

mouse
def
= nf

td < T . (2)

It is obvious that the evaluation of Equations (1) and (2) requires an accurate know-

ledge of the total number of transferred data
(
nf
td

)
of each flow. Fortunately, the

octetTotalCount information element of the IPFIX information model [5] provides
exactly such a measure, according to which:

octetTotalCount is the total number of octets (bytes) in incoming packets for
a given flow at an observation point.

In conclusion, flows meeting the following condition will be aggregated:

aggregate the flow record
def
= octetTotalCount < T. (3)

From the perspective of resource utilization, the accurate estimation of thres-
hold T is a critical task. Due to the dynamic nature of the traffic its value cannot
be estimated by performing a one-time experiment, because – although it would be
suitable for the identification of mice at one point in time – it will be unsuitable at
another point in time. This led us to its adaptation to the traffic load.

2.3 Adapting the Aggregation to the Traffic Character

The proposed aggregation adaptability is based on the resource utilization of the
exporter. For this purpose we track two parameters, the exporter’s CPU utilization
and memory utilization. The number of actually processed packets are directly
proportional to these two parameters. It means that if the traffic increases, the
number of captured packets grows as well. As a result, the exporter experiences an
increase in the CPU and memory load. On the contrary, if the traffic decreases,
since the number of captured packets in the exporter shrinks, the CPU and memory
load decreases as well. We can therefore conclude that:

the number of processed packets ∝ CPU load (%) ∝Memory load (%). (4)

As a result, we can define four different loads (characters) of the network traffic:

• Weak traffic – traffic utilizing 1/3 of the exporter’s CPU and memory resources.

• Moderate traffic – traffic utilizing 2/3 of the exporter’s CPU and memory re-
sources.

• Strong traffic – traffic utilizing 3/3 − k part of the exporter’s CPU and mem-
ory resources, where the subtraction of k determines the maximum resource
utilization while the exporter still reliably processes all the captured packets.

Adaptive Aggregation of Flow Records 153

• Critical traffic – traffic utilizing 3/3 of the exporter’s CPU and memory re-
sources. In other words, this traffic is utilizing the exporter to the maximum of
its resources, resulting in packet loss.

These individual network traffic loads are depicted in Figure 3.

Memory Load

1/3

CPU Load

1/3 2/3 3/3

2/3

3/3
3/3 - k

(3/3 - k)

W
eak

Traf
fic

Mod
era

te
Traf

fic

Str
on

g
Traf

fic

Critical Traffic
(loss occurs) y = kx

Figure 3. Traffic loads defined by the resource utilization of the exporter

Using these traffic types, instead of estimating the real character of the traffic we
rather estimate how it is perceived by the exporter. Since the direct proportionality
(Equation (4)) works in both directions, we can observe the network traffic character
by estimating the resource utilization of the exporter. If we consider the resource
utilization increases (decreases) to be a continuous process, we can define several
condition (state) changes by its discretization into time slices using regularly spaced
intervals. This allows us to adapt the threshold – for the separation of the flows
into heavy-hitters and non-heavy-hitters – to the actual state of traffic. Considering
all the above, the process of adapting the threshold to the individual states of the
traffic consists of the following steps:

1. Observe the CPU and memory3 utilization of the exporter in discrete time inter-
vals. For each time slice compute the value by averaging the CPU and memory
load. As a result, we get a set of n observations O of the resource utilization of
the exporter at each time slice t; i.e.

O = {ot, ot+1, . . . , ot+n} t = 0, 1, . . . , k (5)

3 Note that in case of the exporter, by over memory utilization we mean the load of
the cache in which it holds the captured packets, i.e. packet cache.

154 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

where each observation o is computed by averaging the CPU and memory load
at time t, i.e.

ot = (cput + memoryt)/2. (6)

2. At the initialization of the aggregation process, compute the average resource
utilization (ARU) from all the observed values since the last process of aggre-
gation; i.e.

ARU =

∑k
i=0 ot+i

k
. (7)

3. Given the value of ARU , determine the pertaining traffic character (TCh), i.e.

TCh =

Weak if ARU ∈ {1, 2, . . . , 32},
Moderate if ARU ∈ {33, 34, . . . , 65},
Strong if ARU ∈ {65, 68, . . . , 98},
Critical if ARU ∈ {99, 100}.

(8)

In words, determine the pertaining actual traffic character (TCh) depending on
the actual average resource utilization of the exporter (ARU).

4. Adjust the value of the threshold (T) for the separation of elephant and mouse
flows to the actual traffic character (TCh) according to the following criteria:

if TCht or TCht+1 == Critical then

T =

 2Td if TCht < TCht+1,

Td

2
if TCht > TCht+1

else

T =

{
T + (|ARUt − ARUt+1|) % of Td if TCht < TCht+1,

T − (|ARUt − ARUt+1|) % of Td if TCht > TCht+1

(9)

where Td is the default threshold determined by pilot measurements. In words,
if there was a transition where either the traffic character at the previous process
of aggregation (Tcht) or the current traffic character (TCht+1) was Critical, set
the threshold T to the double or halve of the default threshold (Td) depending
on the direction of this transition. Otherwise, i.e. if Tcht or Tcht+1 was Weak,
Moderate or Strong, if the traffic character at the previous process of aggregation
(Tcht) was smaller than the current traffic character (TCht+1) (i.e., the number
of packets increased), T will be increased by as many percent of the default
threshold (Td), by as many the average resource utilizations (ARU) in time t
and t + 1 differ. However, if TCht was larger than TCht+1 (i.e. the number of
packets decreased), T will be decreased by as many percent of Td, by as many
the ARUs in time t and t + 1 differ.

5. Store the current values of the actual traffic character (TCh) and the actual
average resource utilization (ARU) for the next iteration of this process.

Adaptive Aggregation of Flow Records 155

All we need to do is to set an initial threshold and an estimate of the resource
utilization of the exporter at the beginning of the measurement. The aforementioned
procedure will automatically adjust the threshold to the traffic character in which
the individual packets of the flows are captured. In addition, since the individual
traffic characters are computed via averaging, our method can also deal with various
peaks in the traffic (i.e. they will be averaged out).

2.4 Adapting the Aggregation to the Purpose of the Monitoring

Aggregation obviously causes some information losses. As a result, the information
provided by aggregated flow records has a coarse granularity. On the other hand,
our aim is to retain as many details of the network traffic as possible. This makes
a trade-off between the granularity of information and the volume of flow records.
Although our approach neglects the informational value of mouse flows, during the
aggregation we still want to preserve as many details about non-heavy-hitters as
possible. With respect to the nature of aggregation, this can be achieved only if
we take the purpose of monitoring into account. If we know which information
elements provide the most valuable information for the monitoring, all we need to
do is to take them into account during the process of aggregation. If we order the
information elements serving as flow keys [2] from the lowest to the highest according
to a ranking indicating the significance of the information element in the context of
the network monitoring purpose, we get n different levels of aggregation:

1. The first level of aggregation is performed over the information element with
the lowest ranking. As a result, the information carried by the aggregated flow
records has the “least coarse” level of granularity4.

2. The second level of aggregation is performed over the information element with
the lowest ranking among the remaining information elements (i.e. the next
information element). As a result, the information carried by the aggregated
flow records has a coarser level of granularity.

3. The same procedure is repeated iteratively until it gets to the last information
element.

4. The last level of aggregation is performed over the nth information element hav-
ing the highest ranking. As a result, the information carried by the aggregated
flow records has the coarsest level of granularity.

This procedure5 is illustrated in Figure 4.
In consequence, even if we focus only on heavy-hitter flows, this method allows

to aggregate efficiently among the mouse flows. As a result, we can further separate
mouse flows into different classes that preserve the details of the traffic at various
levels of granularity.

4 The finest level of granularity provides the not aggregated heavy-hitter flow records.
5 Note that this approach represents a generalized form of the Gradual Flow Key Re-

duction method [29].

156 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

Flow Record 5M
ou

se
 F

lo
w

s
fo

r
A

gg
re

ga
tio

n

IE 1

IE n-1

. . .

IE 1

IE n-k

. . .

. . .
IE 1

Ranking

. . .

L
e
v
e
l
s

o
f

A
g
g
r
e
g
a
t
i
o
n

Aggregation
over IE with
lowest ranking

Aggregation
over IE with
lowest ranking
among the
remaining IEs

Aggregation
over IE with
highest ranking

Reorganization
of Mouse Flows

Aggregation
of Mouse Flows

Flow Record 4

Flow Record 3

Flow Record 2

Flow Record 1

. . .

Figure 4. Adapting the aggregation to the purpose of the monitoring based on [29]

2.5 Triggering the Process of Aggregation

The organization of packets into flows is a continuous process. Depending on whether
there is a record in the flow cache pertaining to the actually processed packet or not,
the existing flow record is updated or a new one is created. Obviously, the value
of octetTotalCount of those packets that belong to the same flow is conditioned by
these creations and updates. However, our approach for the separation of heavy-
hitter and non-heavy-hitter flows is based exactly on this value (see Equation (3)).
In consequence, the aggregation frequency must not be too low.

This is due to the fact that during a too short period of time the metering process
cannot capture enough information about the flows to separate them correctly into
elephants and mice. As a result, all the flows will be identified as mouse flows and
thus, they will be all aggregated; even those that are in real elephant flows. In
addition, a constantly running aggregation process can cause overutilization of the
exporter. Therefore, instead of carrying out aggregation at every point in time,
we decided for its execution in particular time periods. For this purpose we define
an aggregation frequency variable.

Aggregation frequency (Af) is the measure of time period expressed in millisec-
onds (ms) or the several fractions of it (e.g. microseconds, nanoseconds, etc.)
after which the aggregation of non-heavy-hitter flows takes place.

In other words, Af represents the rate at which the aggregation is performed.
The determination of its value, as in case of the threshold, highly depends on the
character of the traffic. It means that “weak” network traffic requires a different
value of Af than “strong” network traffic. For example, while in the case of weak
traffic, aggregation performs properly at higher aggregation frequency values (e.g.

Adaptive Aggregation of Flow Records 157

Af = 500 ms), in the case of strong network traffic it provides accurate results at
lower aggregation frequency values (e.g. Af = 100 ms). However, since the threshold
is already automatically adapted to the traffic character by the method described
in Section 2.3, there is no need to adjust also the aggregation frequency (Af). In
simple words, instead of adapting the value of Af we rather adapt the threshold, by
which we should achieve the same result.

3 PRELIMINARY EXPERIMENTS

The module of adaptive aggregation was implemented in the BEEM component of the
SLAmeter IPFIX-based measuring platform [16] as a full-featured functional block
between the metering and the exporting processes. The aim of the experiments was
to verify the functionality of the SLAmeter with and without the proposed method.
For this reason we generated the same artificial traffic by several packet generators.

The accurate operation of adaptive aggregation required some conditions to be
satisfied. The individual information elements [5] that were set as flow keys for
the generation of flow records were the following: protocolIdentfier (highest rank),
sourceTransportPort, destinationTransportPort, destinationIPv4Address, sourceIP-
v4Address (lowest rank). The pilot measurement showed that the BEEM processed
the packets in every 35 000 ns. With respect to the predefined size of the allocated
memory for the flow records (flow cache = 8 MB), the value of Af was set to 250 ms in
the BEEM; where Af is the time period after which the aggregation of non-heavy-hitter
flows takes place. During this time interval, the BEEM was able to hold approximately
7 150 records in its flow cache at a time. Measurement results also showed that the
total value of transferred octets of almost 92 % of the identified flows was less than
10 000. In other words, during this pilot measurement the BEEM did not capture any
flow having more than 10 000 B (bytes) of transferred data till its passive expiration.
Considering all the above, the initial threshold T for the identification of elephant
and mouse flows was set to 10 000 octets in the BEEM, i.e. octetTotalCount < 10 000.

Assuming these prerequisites were satisfied, the process of adaptive aggregation
consisted of the iterative execution of the following two phases:

1. the adaptation phase, in which the threshold T was adjusted according to the
method described in Section 2.3; and

2. the aggregation phase, in which the individual flow records were aggregated
according to the method described in Section 2.4.

The results of the experiments are summarized in Tables 1 and 2.
Without adaptive aggregation, as shown in Table 1, approximately 120 000 flows

(sessions) were generated and as a result created approximately 300 000 flows records
in the flow cache. However, since the flow cache after a specific period of time
(around time 10:30:00) was utilized to its maximum, an undetermined number of
packets was not organized into flow records. Therefore, the values in Table 1 cannot
be considered as complete and have a certain bias. Moreover, the average load of

158 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

the flow cache was over 90 % during the whole measurement. The flow-rate plot
pertaining to this measurement is shown in Figure 5 (denoted with red). From the
plot we can see that the average number of flows per a second was between 30 and 50.

Measurement Characteristics Results

Number of generated packets 1 950 448

Number of flows 121 641

Number of transferred data
1 455.1

(in MB)

Total number of flow records 281 537

Average load of Flow Cache 90 %

Table 1. Results without adaptive aggregation

With adaptive aggregation the threshold T was automatically adjusted accord-
ing to the method described in Section 2.3. The summary of the measurement is
shown in Table 2. As we expected, the average load of the flow cache was lower,
(i.e. around 20 %) during the whole measurement. The flow-rate plot pertaining to
this measurement is shown in Figure 5 (denoted with blue color). From the plot we
can see that the average number of flows per a second was between 7 and 15. The
plot perfectly emphasizes the coarse granularity of the observed information result-
ing from the aggregation. In addition, adaptive aggregation also handled the burst
in the flows that caused the erroneous operation of BEEM during the measurement
without adaptive aggregation.

Measurement Characteristics Results

Number of generated packets 1 950 448

Number of flows 3 460

Number of transferred data
1 455.1

(in MB)

Total number of flow records 6 670

Average load of Flow Cache 20 %

Table 2. Results with adaptive aggregation

Discussion

Adaptive aggregation radically reduced the number of flows. However, when we
compared the error rate between the measurements, we found that there was a trade-
off between the accurate identification of elephant/mouse flows and the load of flow
cache. In numbers, although the load of the flow cache was around 20 % during
the measurement with adaptive aggregation, the error rate of the identification of
mouse flows was around 12–14 %. The determination of the error rate was achieved
by the reconstruction of the flows exported and stored in the database from the first

Adaptive Aggregation of Flow Records 159

Figure 5. Combined flow-rate plot resulted from the measurements. Red colored flow-rate
plot pertains to the measurement without adaptive aggregation (Meas. 1). Blue colored
flow-rate plot pertains to the measurement with adaptive aggregation (Meas. 2).

measurement and compared with the results from the second measurement (time
intervals with packet loss were discarded).

We can therefore conclude that aggregation involves a certain error rate into
the measurements. However, when comparing this bias while all data are preserved
and a certain data loss because of memory issues, this error rate can be considered
acceptable. In summary, our approach has a significant impact on the monitoring
systems that implement IPFIX for collecting information about IP flows. Since in
case of the adaptation to the traffic character we did not consider the utilization of
the link bandwidth, the accuracy of the measurements still highly depends on the
initial value of the estimated threshold.

4 CONCLUSION AND FUTURE WORK

In this paper we introduced yet another approach whose aim is to address the issues
related to the volume of measurement data produced during network monitoring. Its
main contribution is the method of adaptive aggregation that adjusts its operation
to the network character and to the purpose of monitoring. To the best of our
knowledge, only a few methods adapts their behavior to more than one factor.
The results presented in Section 3 proved that by adaptive aggregation we can
efficiently reduce the number of measurement data and it has a positive impact on
the measurement platform. We can therefore conclude that our proposed approach

160 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

considerably contributes to the research area of the measurement platforms based
on the IPFIX protocol.

Since adaptive aggregation, due to the error rate, brings a certain bias into the
measurement data, in the future, the method of adjusting the threshold for the
identification of (non) heavy-hitters will be extended with the utilization of the link
bandwidth as well. The proposed approach will be also examined in network moni-
toring scenarios with long duration. We will also review the possibility to implement
dynamic Bayesian networks, by which the traffic could be classified according to the
assumption that the probability distribution of different traffic types are far from
each other in the same network.

Acknowledgments

This publication is the result of the Project implementation: University Science
Park TECHNICOM for Innovation Applications Supported by Knowledge Technol-
ogy, ITMS: 26220220182, supported by the Research & Development Operational
Programme funded by the ERDF. We support research activities in Slovakia/This
project is co-financed by the European Union.

REFERENCES

[1] Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC3954, 2004, doi:
10.17487/rfc3954.

[2] Claise, B.—Trammell, B.—Aitken, P.: Specification of the IP Flow Informa-
tion Export (IPFIX) Protocol for the Exchange of Flow Information. RFC7011, 2013,
doi: 10.17487/rfc7011.

[3] Pekár, A.—Chovancová, E.—Fanfara, P.—Trelová, J.: Issues in the Pas-
sive Approach of Network Traffic Monitoring. Proceedings of the 17th IEEE Interna-
tional Conference on Intelligent Engineering Systems (INES), 2013, pp. 327–332, doi:
10.1109/INES.2013.6632836.

[4] Case, J.—Fedor, M.—Schoffstall, M.—Davin, J.: Simple Network Manage-
ment Protocol (SNMP). RFC1157, 1990, doi: 10.17487/rfc1157.

[5] Claise, B.—Trammell, B.: Information Model for IP Flow Information Export
(IPFIX). RFC7012, 2013, doi: 10.17487/rfc7012.

[6] Phaal, P.—Lavine, M.: sFlow Version 5. Specification, sFlow.org, 2004.

[7] Vokorokos, L.—Pekár, A.—Ádám, N.: Data Preprocessing for Efficient Eval-
uation of Network Traffic Parameters. Proceedings of the 16th IEEE International
Conference on Intelligent Engineering Systems (INES), 2012, pp. 363–367, doi:
10.1109/INES.2012.6249860.

[8] Nunes, B. A. A.—Mendonca, M.—Nguyen, X.-N.—Obraczka, K.—
Turletti, T.: A Survey of Software-Defined Networking: Past, Present, and Future
of Programmable Networks. IEEE Communications Surveys and Tutorials, Vol. 16,
2014, No. 3, pp. 1617–1634, doi: 10.1109/SURV.2014.012214.00180.

https://doi.org/10.17487/rfc3954
https://doi.org/10.17487/rfc7011
https://doi.org/10.1109/INES.2013.6632836
https://doi.org/10.17487/rfc1157
https://doi.org/10.17487/rfc7012
https://doi.org/10.1109/INES.2012.6249860
https://doi.org/10.1109/SURV.2014.012214.00180

Adaptive Aggregation of Flow Records 161

[9] Haleplidis, E.—Salim, J. H.—Halpern, J. M.—Hares, S.—Penti-
kousis, K.—Ogawa, K.—Wang, W.—Denazis, S.—Koufopavlou, O.:
Network Programmability with ForCES. IEEE Communications Surveys and
Tutorials, Vol. 17, 2015, No. 3, pp. 1423–1440, doi: 10.1109/COMST.2015.2439033.

[10] Kang, M.—Kang, E.-Y.—Hwang, D.-Y.—Kim, B.-J.—Nam, K.-H.—
Shin, M.-K.—Choi, J.-Y.: Formal Modeling and Verification of SDN-OpenFlow.
Proceedings of the 6th IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST), 2013, pp. 481–482.

[11] Lara, A.—Kolasani, A.—Ramamurthy, B.: Network Innovation Using Open-
Flow: A Survey. IEEE Communications Surveys and Tutorials, Vol. 16, 2014, No. 1,
pp. 493–512.

[12] Hofstede, R.—Čeleda, P.—Trammell, B.—Drago, I.—Sadre, R.—
Sperotto, A.—Pras, A.: Flow Monitoring Explained: From Packet Capture to
Data Analysis with NetFlow and IPFIX. IEEE Communications Surveys and Tuto-
rials, Vol. 16, 2014, No. 4, pp. 2037–2064.

[13] Yu, C.—Lumezanu, C.—Zhang, Y.—Singh, V.—Jiang, G.—Madhy-
astha, H. V.: FlowSense: Monitoring Network Utilization with Zero Measurement
Cost. Passive and Active Measurement (PAM 2013). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 7799, 2013, pp. 31–41, doi: 10.1007/978-3-
642-36516-4 4.

[14] Pekár, A.—Révés, M.—Giertl, J.—Feciľak, P.: Overview and Insight into
the MONICA Research Group. Central European Journal of Computer Science,
Vol. 2, 2012, No. 3, pp. 331–343.

[15] Jakab, F.—Koščo, Ľ.—Potocký, M.—Giertl, J.: Contribution to QoS Pa-
rameters Measurement: The BasicMeter Project. Proceedings of the International
Conference on Emerging eLearning Technologies and Applications, 2005, pp. 371–377.

[16] Pekár, A.—Feciľak, P.—Michalko, M.—Giertl, J.— Révés, M.: SLAme-
ter – The Evaluator of Network Traffic Parameters, Proceedings of the 10th IEEE
International Conference on Emerging eLearning Technologies and Applications (IC-
ETA), 2012, pp. 291–295, doi: 10.1109/ICETA.2012.6418318.

[17] Ramabhadran, S.—Varghese, G.: Efficient Implementation of a Statistics
Counter Architecture. ACM SIGMETRICS Performance Evaluation Review (PER),
Vol. 31, 2003, No. 1, pp. 261–271, doi: 10.1145/781027.781060.

[18] Shah, D.—Iyer, S.—Prabhakar, B.—McKeown, N.: Analysis of a Statis-
tics Counter Architecture. Hot Interconnects 9, 2001, pp. 107–111, doi:
10.1109/HIS.2001.946701.

[19] Estan, C.—Keys, K.—Moore, D.—Varghese, G.: Building a Better NetFlow.
ACM SIGCOMM Computer Communication Review (CCR), Vol. 34, 2004, No. 4,
pp. 245–256.

[20] Estan, C.—Varghese, G.: New Directions in Traffic Measurement and Ac-
counting. Proceedings of the 2002 ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM), 2002,
pp. 323–336, doi: 10.1145/633025.633056.

https://doi.org/10.1109/COMST.2015.2439033
https://doi.org/10.1007/978-3-642-36516-4_4
https://doi.org/10.1007/978-3-642-36516-4_4
https://doi.org/10.1109/ICETA.2012.6418318
https://doi.org/10.1145/781027.781060
https://doi.org/10.1109/HIS.2001.946701
https://doi.org/10.1145/633025.633056

162 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

[21] Lu, Y.—Wang, M.—Prabhakar, B.— Bonomi, F.: ElephantTrap: A Low Cost
Device for Identifying Large Flows. Proceedings of the 15th Annual IEEE Symposium
on High-Performance Interconnects, 2007, pp. 99–108, doi: 10.1109/HOTI.2007.13.

[22] Dressler, F.—Münz, G.: Flexible Flow Aggregation for Adaptive Network Moni-
toring. Proceedings of the 31st IEEE Conference on Local Computer Networks, 2006,
pp. 702–709, doi: 10.1109/LCN.2006.322180.

[23] Hu, Y.—Chiu, D.-M.—Lui, J. C. S.: Entropy Based Adaptive Flow Aggregation.
IEEE/ACM Transactions on Networking, Vol. 17, 2009, No. 3, pp. 698–711.

[24] Trammell, B.—Wagner, A.—Claise, B.: Flow Aggregation for the IP Flow
Information Export (IPFIX) Protocol. RFC7015, 2013, doi: 10.17487/rfc7015.

[25] Cheng, G.—Gong, J.: Adaptive Aggregation Flow Measurement on High Speed
Links. Proceedings of the 11th IEEE Singapore International Conference on Commu-
nication Systems (ICCS 2008), 2008, pp. 559–563, doi: 10.1109/ICCS.2008.4737246.

[26] Papagiannaki, K.—Taft, N.—Bhattacharyya, S.—Thiran, P.—Salama-
tian, K.—Diot, C.: A Pragmatic Definition of Elephants in Internet Backbone
Traffic. Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment
(IMW ’02), 2002, pp. 175–176, doi: 10.1145/637201.637227.

[27] Smith, R. D.: The Dynamics of Internet Traffic: Self-Similarity, Self-Organization,
and Complex Phenomena. Advances in Complex Systems, Vol. 14, 2011, No. 6,
pp. 905–949.

[28] Lan, K.-C.—Heidemann, J.: A Measurement Study of Correlations of Internet
Flow Characteristics. Computer Networks, Vol. 50, 2006, No. 1, pp. 46–62.

[29] Irino, H.—Katayama, M.—Chaki, S.: Study of Adaptive Aggregation on IPFIX.
Proceedings of the 7th Asia-Pacific Symposium on Information and Telecommunica-
tion Technologies (APSITT), 2008, pp. 86–91.

Adrián Pek�ar graduated at the Department of Computers and
Informatics of the Faculty of Electrical Engineering and Infor-
matics at the Technical University of Košice, Slovakia in 2011.
Since then, his scientific research has been focused on the opti-
mization of measurement platforms based on the IPFIX proto-
col. He defended his Ph.D. thesis in the field of network traffic
characteristics measurements and monitoring in 2014. Recently,
his scientific research was extended to investigate also the issues
related to monitoring and virtualization of cloud networks. His
area of interest includes QoS, IPFIX, network traffic manage-

ment and engineering, cloud computing and virtualization.

https://doi.org/10.1109/HOTI.2007.13
https://doi.org/10.1109/LCN.2006.322180
https://doi.org/10.17487/rfc7015
https://doi.org/10.1109/ICCS.2008.4737246
https://doi.org/10.1145/637201.637227

Adaptive Aggregation of Flow Records 163

Martin Chovanec received his Engineering degree in Infor-
matics in 2005 from the Faculty of Electrical Engineering and
Informatics, Technical University of Košice. In 2008 he received
his Ph.D. degree at the Department of Computers and Informat-
ics of the Faculty of Electrical Engineering and Informatics of the
Technical University of Košice and his scientific research was fo-
cused on network security and encryption algorithms. Currently,
he is Director of the Institute of Computer Technology of the
Technical University of Košice.

Liberios Vokorokos graduated (M.Sc.) with honors at the
Department of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics at the Technical Univer-
sity of Košice in 1991. He defended his Ph.D. thesis in the field
of programming devices and systems in 2000. In 2005 he became
Professor of Computer Science and Informatics. Since 1995 he
has worked as an educationist at the Department of Computers
and Informatics. His scientific research focuses on parallel com-
puters of the Data Flow type. He also investigates the issues
related to the complex systems diagnostics. He is the Dean of

the Faculty of Electrical Engineering and Informatics of the Technical University of Košice.

Eva Chovancov�a graduated (M.Sc.) at the Department of
Computers and Informatics at the Faculty of Electrical Engi-
neering and Informatics of the Technical University of Košice in
2009. She defended her Ph.D. thesis in the field of computers
and computer systems in 2012; her thesis title was “Specialized
Processor for Computing Acceleration in the Field of Computer
Vision”. Since 2012 she has worked as Assistant Professor at
the Department of Computers and Informatics. Her scientific
research is focused on the multicore computer architectures.

Peter Feci�lak graduated (M.Sc.) at Department of Comput-
ers and Informatics at Faculty of Electrical Engineering and In-
formatics, Technical University of Košice in 2006. In 2009, he
finished his Ph.D. studies at the named department with the
focus on optimization of computer networks. Currently, he is
working as an employee of DCI, FEI, Technical University of
Košice. His current teaching and research interests are computer
networks, network monitoring, quality of services and smart en-
ergy systems.

164 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko

Miroslav Michalko received his Ph.D. in informatics from
the Technical University of Košice (TUKE), Slovakia. For more
than 10 years he is a member of a well recognized research in-
stitution – the Computer Networks Laboratory at Department
of Computers and Informatics (DCI) of TUKE. Currently he is
Assistant Professor at DCI TUKE and gives lectures in the field
of computer networks. His research includes multimedia content
delivery, video streaming services, web and cloud services, inno-
vative teaching and learning techniques and IoE/IoT solutions.

Computing and Informatics, Vol. 37, 2018, 165–185, doi: 10.4149/cai 2018 1 165

EXPLORATION OF COMPILER OPTIMIZATION
SEQUENCES USING A HYBRID APPROACH

Tiago Cariolano de Souza Xavier, Anderson Faustino da Silva

Departament of Informatics
State University of Maringá
Maringá, Paraná, Brazil
e-mail: tiago.cariolano@gmail.com, anderson@din.uem.br

Abstract. Finding a program-specific compiler optimization sequence is a chal-
lenge, due to the large number of optimizations provided by optimizing compilers.
As a result, researchers have proposed design-space exploration schemes. This paper
also presents a design-space exploration scheme, which aims to search for a compiler
optimization sequence. Our hybrid approach relies on sequences previously gener-
ated for a set of training programs, with the purpose of finding optimizations and
their order of application. In the first step, a clustering algorithm chooses optimiza-
tions, and in the second step, a metaheuristic algorithm discovers the sequence, in
which the compiler will apply each optimization. We evaluate our approach using
the LLVM compiler, and an I7 processor, respectively. The results show that we
can find optimization sequences that result in target codes that, when executed
on the I7 processor, outperform the standard optimization level O3, by an average
improvement of 8.01 % and 6.07 %, on Polybench and cBench benchmark suites,
respectively. In addition, our approach outperforms the method proposed by Purini
and Jain, Best10, by an average improvement of 24.22 % and 38.81 %, considering
the two benchmarks suites.

Keywords: Compilers, optimizations, sequence, performance

Mathematics Subject Classification 2010: 68-N20

166 T.C. de Souza Xavier, A. F. da Silva

1 INTRODUCTION

Optimizing compilers provide a large number of transformations, known as optimiza-
tions, which are applied during the compilation process [25]. The aim is to create
a target code semantically equal to the source code, but with good performance. Due
to the large number of optimizations and the fact that each optimization interacts
with each other in complex ways, it is a challenge, even for an expert programmer, to
find good optimization sequences. To minimize this challenge, optimizing compilers
offer optimization levels (e.g. O0, O1, O2 and O3 in the case of LLVM), which consist
of specific sequences.

The choice of optimizations and their order of application has a significant im-
pact on performance [19]. In addition, it is program-specific dependent [4, 6, 10, 11,
21, 22].

Exhaustive design-space exploration, although possible, takes a long time to
make it suitable for use in typical iterative compilers. Therefore, researchers engage
in proposing design-space exploration schemes to find a program-specific optimiza-
tion sequence using few evaluations.

In this paper, we propose a hybrid approach to search for good optimization
sequences aiming at performance improvements. First of all, a training stage tries
to choose good sequences. After the deployment stage, which relies on previously
generated sequences, it discovers a program-specific optimization sequence. In our
approach, we employ several strategies: random sampling, genetic algorithm, clus-
tering, metaheuristic, and a reduction scheme.

On one hand, the choice of optimizations is based on the premise that similar
programs react approximately the same way, when they are compiled using the same
sequence. In such manner, a new program can be improved by the optimizations
used on a similar program. However, discovering the order of application is based
on the premise that this problem is similar to the Traveling Salesman Problem.
Therefore, it is possible to develop a reduction algorithm to transform a problem
into another, in order to solve it using an existing solution, and then utilizing such
result as a solution for the previous conflict.

The experimental results show that our approach finds an optimization sequence
that outperforms the standard optimization level O3, besides the approach proposed
by Purini and Jain [24], Best10, considering Polybench and cBench as bench-
marks suites.

2 OUR APPROACH

During compilation, the compiler applies several optimizations, in order to improve
the target code. However, some optimizations can be useful to a specific program,
but not to another. Thus, the most appropriate approach is to choose optimizations
and their order of application, considering that it is program-specific dependent.

In this paper we present a design-space exploration scheme that chooses and
orders optimizations.

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 167

2.1 Overview

It is possible to choose and order optimizations easily, based on the assumption
that two similar programs react in the same manner, when they are compiled using
the same optimizations. Thus, we can compile a new program by applying the
optimizations utilized on a similar and previously-compiled program. In addition,
based on the assumption that a problem can be transformed into another, we can
convert the problem of discovering the order of application into the well-known
Traveling Salesman Problem (TSP) [2], and use a well-known solution to solve the
TSP.

Our approach can be outlined as:

1. Training stage

(a) Generate the training data

i Extract the feature vector f , using compiler level O0
ii Record the feature vector f

iii Record the benchmark running time, using compiler level O3

(b) Generate the training data for O3

i Instrument each training program
ii For each training program

A Select a set of optimizations and apply them
B Record the running time

2. Deployment stage

(a) Choose the optimizations

i Collect feature vector f1 from each training program, using compiler
level O0

ii Extract feature vector f2 from the test program, using compiler level O0
iii Reduce f1 and f2 to the most significant components using the Principal

Component Analysis PCA

iv Cluster the new feature vectors f1′ and f2′ into N clusters
v Extract the best set of optimizations from each training program, which

belongs to the same cluster of the test program

(b) Discover the order of application

i For each set of optimizations selected

A Reduce the problem of discovering the order of application into the
TSP

B Solve the TSP

C Transform the solution into an optimization sequence

(c) Return the optimizations and their order of application

168 T.C. de Souza Xavier, A. F. da Silva

2.2 Training Stage

The training stage aims to collect pieces of information about several training pro-
grams. As a result, this stage provides a small knowledge base (KB).

The KB can be viewed as a table composed by several entries, where each entry
consists in four fields, namely:

1. Program name;

2. Runtime for the program, when it is compiled using optimization level O3;

3. Feature vector, when the program is compiled using optimization level O0; and

4. Compiler optimization sequences and their runtime.

2.2.1 Generating the Feature Vector

The feature vector is composed of dynamic information, which is collected during
program execution. This means that such vector characterizes the dynamic behavior
of the program. We use performance counters as feature vectors.

Performance counters are dynamic information that consists of performance data
such as the number of issued instructions, completed instructions, cache accesses,
cache hits, cache misses, mispredicted branches, and others. They are traditionally
used for hardware performance analysis [3, 8, 14, 16].

The work of Cavazos et al. [4] was the first to propose the use of performance
counters to characterize programs and measure their similarities. A recent work [7]
also demonstrated that performance counters is a good strategy to measure the
similarity between two programs. In this paper, we characterize programs in the
same manner.

The use of performance counters is attractive, because they do not limit the
program class, which the system is able to handle. As a result, our system (strategy)
can find a good compiler optimization sequence for any program.

Table 1 presents the features used in our approach.

Type Features

L1 ICM L1 DCM L1 STM L1 TCM L1 LDM L2 DCR L2 TCA
L2 DCW L2 STM L2 TCM L2 TCR L2 DCA L2 TCW L2 ICR

Cache L2 DCH L2 DCM L2 ICA L2 ICM L2 ICH L3 DCR L3 TCA
L3 DCW L3 TCM L3 TCR L3 DCA L3 TCW L3 ICR L3 ICA

Branch BR PRC BR UCN BR NTK BR INS BR MSP BR TKN BR CN

SIMD VEC SP VEC DP

Floating Point FDV INS FP INS DP OPS FP OPS SP OPS

TLB TLB DM TLB IM

Cycles REF CYC TOT CYC STL ICY STL ICY

Insts TOT INS

Table 1. Features

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 169

In order to standardize the feature vectors of training and test programs, we nor-
malize each feature by TOT INS. To collect these features, we use the tools PAPI [18]
and PerfSuite [12].

2.2.2 Generating Training Data for Optimization Level O3

The optimizations used to generate training data belong to the optimization level O3.
They are presented in Table 2.

inline prune-eh scalar-evolution

argpromotion inline-cost indvars

gvn functionattrs loop-idiom

slp-vectorizer sroa loop-deletion

globaldce domtree loop-unroll

constmerge early-cse memdep

targetlibinfo lazy-value-info memcpyopt

no-aa jump-threading sccp

tbaa loop-unswitch dse

tailcallelim adce notti

ipsccp loop-simplify block-freq

instcombine loop-rotate loop-vectorize

verify licm simplifycfg

globalopt loops branch-prob

deadargelim lcssa basicaa

reassociate barrier basiccg

correlated-propagation strip-dead-prototypes

Table 2. Optimizations

The process of creating compiler optimization sequences is guided by the follow-
ing criteria:

• Every optimization appears only once;

• Every optimization can appear in any position;

• Every optimization has to address the compilation infrastructure rules; and

• All sequences, in KB, have 40 optimizations.

The first criterion indicates that we do not explore the use of an optimization
several times, even though this occurs in all optimization levels, in the case of LLVM.
The second one indicates that there are no restrictions when a specific optimization
should be applied. The third one indicates that a new sequence cannot violate the
safety of the LLVM. In the fourth criterion, the creation process tries to give the same
characteristic to every sequence.

Several strategies can be used to build a base of sequences. We use the strategy
proposed by Purini and Jain [24], which consists in using random and genetic al-
gorithms to create effective sets of optimizations. The random algorithm generates

170 T.C. de Souza Xavier, A. F. da Silva

sets utilizing a uniform and random sampling of the search space. While, the genetic
algorithms use a sophisticated way to build sets, and explore the search space. The
algorithms are described as follows.

Random Algorithm. This iterative algorithm randomly generates 500 sequences.

Genetic Algorithm with Rank Selector. This algorithm generates sets using
a genetic process, such as crossover and mutation. A simple genetic algorithm
consists in randomly generating an initial population, which will result in an it-
erative evolution process. Such procedure of evolving a population (or a genera-
tion) involves choosing the parents; applying genetic operators; evaluating new
individuals; and finally a reinsertion operation deciding which individuals will
compose the new generation. This iterative process is performed until a stopping
criterion is reached. The first generation is composed of individuals that are gen-
erated by a uniform sampling of the optimization space. Evolving a population
includes the application of two genetic operators: crossover, and mutation. The
first operator has a probability of 90 % for creating a new individual. The sec-
ond operator, mutation, has a probability of 2 % for transforming an individual.
Two types of mutation procedures were proposed:

1. to exchange two optimizations from random points; and

2. to change one optimization in a random point.

Both operators have the same probability of occurrence, though only one mu-
tation is applied over the individual selected to be transformed. This iterative
process uses elitism, which maintains the best individual in the next genera-
tion. Furthermore, it runs over 100 generations and 60 individuals, and finishes
whether the standard deviation of the current fitness score is less than 0.01, or
the best fitness score does not change in three consecutive generations.

Genetic Algorithm with Tournament Selector. It is similar to the previous
strategy, but instead of using a rank selector it uses a tournament selector
(Tour = 5).

Each strategy creates two sequences in each round. The first sequence is created
utilizing the specific scheme (random or genetic), and the second one is the first
sequence modified by human knowledge.

The LLVM’s manual suggests that some optimizations should precede and/or
succeed a specific optimization for its effectiveness, so that the first sequence is
updated to reflect this knowledge. This update follows the criteria:

• loops should appear before the first loop optimization;

• inline-cost should appear before inline and always-inline; and

• verify should be the last optimization.

After generating several sequences, we select the two best sequences for each
training program; one is the best sequence generated by each algorithm, and the
other is the best updated sequence.

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 171

Each sequence can contain optimizations that do not contribute to the pro-
gram speedup or have a negative impact on the program. Therefore, the next
step is to eliminate these unnecessary optimizations using the Sequence Reduction

Algorithm, also proposed by Purini and Jain [24].
As the training stage uses 61 training programs, our KB has 366 sequences.

2.2.3 Training Benchmarks

The training programs are composed of microkernels, which were taken from LLVM’s
test-suite. These are programs composed of a single source code, and have short
running times. Table 3 shows the training programs.

ackermann flops-6 matrix

ary3 flops-7 methcall

bubblesort flops-8 misr

chomp flops n-body

dry fp-convert nestedloop

dt hash nsieve-bits

fannkuch heapsort objinst

fbench himenobmtxpa oourafft

ffbench huffbench oscar

fib2 intmm partialsums

fldry lists perlin

flops-1 lowercase perm

flops-2 lpbench pi

flops-3 mandel-2 puzzle

flops-4 mandel puzzle-stanford

flops-5 queens queens-mcgill

quicksort random realmm

recursive reedsolomon richards bench

salsa20 sieve spectral-norm

strcat towers treesort

whetstone

Table 3. Microkernels

2.3 Deployment

The deployment stage performs seven steps in order to choose optimizations and
their order of application, namely:

1. Extract the feature vector f from the test program, using compiler level O0;

2. Cluster the training and test programs, based on their feature vectors;

3. Extract from each training program, which belongs to the same cluster of the
test program, their sequences;

172 T.C. de Souza Xavier, A. F. da Silva

4. Reduce the problem of choosing the order of applying compiler optimizations
into the TSP;

5. Solve the TSP;

6. Transform the TSP’s result into a solution to choose and order optimizations;
and

7. Return the best target code.

2.3.1 Choosing Optimizations

The choice of optimizations is based on the premise that we can find similar patterns
among programs, which give important insights for determining potential optimiza-
tions.

Based on the premise that similar programs react approximately the same way,
when they are compiled using the same optimizations, we choose the optimizations
that will be enabled during the compilation of the test program from a similar
training program. In such manner, each program is represented by a feature vector
forming points in a multidimensional space, and a clustering algorithm that operates
in this space trying to group points that are proximate.

The task of the clustering algorithm is to group a set of programs, in such a way
that programs in the same group (cluster) are more similar to each other than to
those that belong to other clusters [28].

Finding similar programs is a task performed in two steps. First, we extract the
feature vectors from the training and test programs. Second, the clustering algo-
rithm reduces the feature vectors to the most significant components using PCA [28],
and clusters the programs. In this moment, we know which programs are similar.

After clustering the programs, we extract from each training program, which
belongs to the same cluster (C) of the test program, their sequences.

Even though the word sequence indicates order, in this point the extracted
sequences only indicate the optimizations that will be enabled during the compilation
of the test program. As ordering optimization is also a program-specific problem,
we need to analyze the test program. In our strategy, ordering optimization is
based on the insights given by the sequences, which achieve performance on training
programs.

In a nutshell, each specific optimization that appears in the extracted sequences
forms the set of optimizations that will be enabled by the compiler. In addition,
these sequences give insights on when the compiler should apply each optimization.

2.3.2 Discovering the Order of Application

After choosing the optimizations, the next step is to discover the order of application.
Such process is performed by extracting knowledge from KB, which is associated with
the training programs (their sequences) that belong to C.

This knowledge is obtained by analyzing pairs of optimizations, in order to find
patterns that are meaningful to the test program. In fact, these patterns determine

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 173

how we will join the pairs to form a new sequence. Therefore, based on these patterns
we modify the order of application.

If we consider that optimizations are vertices, and that there is a cost of apply-
ing oi before oj, and vice-versa, the problem of choosing the order of application can
be reduced into the well-known Asymmetric Traveling Salesman Problem (ATSP) [2].

It is important to note that the asymmetric version is the appropriate algorithm,
because the performance of applying the optimization oi before oj can be different
from applying oj before oi.

The performance of a pair of optimizations can be viewed as a cost. If after
analyzing the previously-generated sequences, we consider that applying the opti-
mization oi before oj will reduce the performance of the test program, therefore, we
provide a high cost to the pair (oi, oj) in order to reflect this behavior.

The cost of a pair of optimizations is based on the frequency of all pairs. Given
a set of optimizations S, we analyze the sequences previously generated in order to
find how often all possible pairs formed with S optimizations occur in the sequences
that belong to C. As the sequences previously generated can provide speedup to
the training programs, our approach is guided by the assumption that pairs with
high frequency are a potential order.

Reducing Our Problem into ATSP. To reduce the problem of discovering the
order of application into ATSP, we perform three steps:

1. Create a complete digraph;

2. Map optimizations to vertices; and

3. Weigh the edges.

The first two steps are trivial. To perform the third, we need to infer the cost
of the pair (oi, oj), which is based on the frequency that oi appears before oj in the
sequences that belong to the cluster C and is defined as:

Freq Prog(p, oi, oj) = {s ∈ Dom(ES(p)) | (oi ∧ oj ∈ s) ∧ oi ≺ oj} .

As a result of using Freq Prog, the function Freq that returns how often oi
appears before oj is defined as:

Freq(oi, oj) =
∑
p∈C

Freq Prog(p, oi, oj). (1)

If Freq(oi, oj) < Freq(oj, oi), our approach considers that the application of
(oj, oi) is the best choice. This means that the higher Freq(oj, oi) is (implying
in a low value of Freq(oi, oj)), the higher the cost of (oi, oj) will be. Therefore,
the cost of applying the pair (oi, oj) is given by the inverse frequency of that pair,
Cost(oi, oj) = Freq(oj, oi).

174 T.C. de Souza Xavier, A. F. da Silva

Not all pairs of optimizations appear in all C sequences, as a result a high
variation occurrence between two different pairs is possible, on their frequencies. To
solve this problem, the cost is normalized as follows:

Cost(oi, oj) =
Freq(oj, oi)

Freq(oi, oj) + Freq(oj, oi)
. (2)

With this standardization, Cost(oi, oj) will always range from 0 to 1. In addition,
if there are only (oj, oi) occurrences, thus Cost(oi, oj) = 1, which is the highest
possible cost.

Solving the ATSP. The algorithm that solves the ATSP is based on Ant Colony
Optimization (ACO) [9].

ACO is a metaheuristic of combinatorial optimization, which is based on the
behavior of real ants. A metaheuristic is “a set of algorithmic concepts that can be
used to define heuristic methods applicable to a wide set of different problems” [9].
This metaheuristic was well exploited and firstly applied to the Traveling Salesman
Problem (TSP) [2, 9].

The execution of an ACO algorithm is composed of cycles. Each ant is usually
a constructive method and its behavior can be noted when, in order to choose the
next vertex to where the ant must go, a probability is used which is calculated based
on two factors: pheromone trail and heuristic information [27, 1]. Once the solutions
are constructed by the ants, they are used to update the pheromone trail.

In our ACO-based algorithm, each ant constructs a solution S, choosing vertices
to move to an iterative process. The choice of a vertex v, which was not visited, is
based on the probability p, as follows:

pkij =

{
[τij]

α[ηi]
β∑

k/∈Visitedk
[τij]α[ηij]β

if j /∈ Visitedk,

0 otherwise,
(3)

where τij is the pheromone on edge (i, j), ηij = 1/dij is the visibility of the vertex j
by ant k positioned on i, dij is the distance between i and j, Visitedk is the set of
vertices visited by the ant k, α is the importance of the pheromone and β is the
importance of the visibility (heuristic information).

After all ants construct their solutions, the algorithm updates the pheromone
trails. This, stored on matrix P|V |×|V |, is initialized with 1 for each edge between
non-adjacent vertices and with 0 for each edge between adjacent vertices. Updating
the pheromone trail involves the persistence of the current trail by a τ factor, and
the evaporation that is based on a ρ factor. The evaporation (Equation (4)), and
the general form of depositing pheromone (Equation (5)) are as follows:

Pij = ρPij, ∀i, j ∈ V, (4)

Pij = Pij + ∆τ kij, ∆τ kij =
Q

Tk
(5)

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 175

where Q is an empirical parameter and Tk is the length of the tour found by the
ant k.

These steps are repeated until the algorithm reaches 100 cycles.

2.3.3 Returning the Best Target Code

After choosing optimizations and their order of application, there are L∗2 sequences;
L sequences extracted from the KB, and new L sequences, in which the order of
the optimizations was modified. To find the best optimizations and their order,
we measure the performance of each target code using each sequence. After this
evaluation, we return the best target code.

3 EXPERIMENTAL SETUP AND METHODOLOGY

This section describes the experimental setup and the steps taken to ensure mea-
surement accuracy, besides outlining the methodology used in the experiments.

Platform. The experiments were conducted on a machine with an Intel processor
Core I7-3779, 8 MB of cache, and 8 GB of RAM. The operating system is Ubuntu
14.04, with kernel 3.13.0-37-generic.

Compiler. Our technique was implemented on top of LLVM 3.5 [13, 15]. The choice
of LLVM is based on the fact that it allows full control over the optimizations.
This means that it is possible to enable a list of optimizations through the
command line. In addition, the position of each optimization indicates its order.
Neither GCC nor ICC provides these features, thus, we need to use LLVM to show
the results of our strategy.

Benchmark Suites. The experiments use the Polybench suite [23] with a large
dataset, and the cBench suite [5] with dataset 1, as test programs.

Measurement. The results are based on the arithmetic average of five executions.
In the experiments, the machine workload was as minimal as possible. In other
words, each instance was executed sequentially. In addition, the machine did
not have an external interference, and the running time variance was close to
zero.

Baseline. The baseline is the LLVM’s highest compiler optimization level, O3. In
terms of running time, the optimization levels O2 and O3 have similar perfor-
mance, on several programs. Therefore, we choose the highest compiler opti-
mization level, O3.

Cross-Validation, Clustering, and ACO. The experiments use two distinct
groups of programs, separating one group for training and the other for testing.
Therefore, the experiments perform a holdout cross-validation. The clustering
algorithm used was Farthest First, which is implemented on Weka [28]. In fact,
we evaluate Expectation Maximization, Kmeans, and Farthest First, and the

176 T.C. de Souza Xavier, A. F. da Silva

latter obtained the best results. We use ACO to solve ATSP because it was ex-
tensively studied on the TSP. In addition, its way of choosing the next vertex is
helpful for our purpose.

Parameters. The parameters used are:

• Clustering: [10, 15], and [30, 35]. It indicates that the clustering-based algo-
rithm will try to find at least 10 centroids, and at most 15; or at least 30, and
at most 35, respectively. The former tries to gather the training programs,
while the latter tries to scatter the training programs.

• ACO: α = 1; β = 5; ρ = 0.99; and Q = 100.

Metrics. The evaluation uses three metrics to analyze the results, namely:

1. Average Percentage Improvement (API): indicates how much our strategy
outperforms the compiler optimization level O3;

2. Average Percentage Improvement Excluding (APIE) Programs: indicates how
much our strategy outperforms the compiler optimization level O3, consid-
ering only the programs whose performance outperforms the compiler opti-
mization level O3’s performance; and,

3. Number of Programs Achieving Improvement (NBI): indicates the number of
programs whose performance, obtained with our strategy, was better than
using the compiler optimization level O3.

The improvement is calculated as follows:

Speedup = baseline running time/new running time,

Improvement = (Speedup− 1) ∗ 100.

Training and Deployment Cost. The training, which builds sequences, is a high
time-consuming phase. It took several days, which is a significant amount
of time. However, it is important to note that it is performed only once,
besides performed at the factory. The deployment cost is calculated as fol-
lows:

Deploymentcost = Ctime +Otime +

Sequences∗2∑
S=0

(
Comptime +

5∑
N=0

Runtime

)

where Ctime is the time spent to choose optimizations; Otime is the time spent to
order optimizations; Comptime is the time spent to compile the program using
a specific sequence; and Runtime is the program running time.

Choosing and ordering optimizations takes only 20 % of the system response
time in our experiments. It is directly proportional to the size of the ATSP, be-
sides the size of the KB. The other portion of the system response time (80 %)
is caused by the need of compiling and running a program several times, in

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 177

order to evaluate a sequence and ensure measurement accuracy. In our exper-
iments, choosing and ordering optimizations took from 0.015 (adi) to 6.755
(gramschmidt) seconds, while evaluating sequences took from 0.06 to 9 460.5
seconds.

Best10. In order to evaluate the effectiveness of our approach, we compare it with
the one proposed by Purini and Jain [24]. They proposed an approach that
extracts the best 10 optimization sequences, from a small search space, and use
these sets to compile all programs. They argue that it is possible to outperform
the optimization levels using only 10 sets.

Briefly, the approach used to select the best 10 sequences can be summarized in
five steps:

1. Generate training data to N programs;

2. Extract the best sequence from each training program;

3. Remove the duplicate sequences;

4. Remove from each sequence the optimizations that do not contribute to re-
duce the running time; and finally

5. Extract from the search space the best 10 sequences.

4 RESULTS

This section evaluates our hybrid approach that searches for good optimizations
and their order, aiming at performance improvements. In other words, this section
evaluates our approach that searches for sequences that outperform the optimization
level O3 in terms of running time.

Tables 4 and 5 present the results. In these tables OT.15 means our approach
created at most 15 centroids, OT.35 our approach produced at most 35 centroids,
Best10 is the algorithm proposed by Purini and Jain, and BestAll means the
maximum improvement available for compiling the test program with all sequences
on KB.

Overview. Our approach is able to find sequences that outperform the well-engi-
neered compiler optimization level O3, besides Best10. Only in five benchmarks
(Polybench.adi, Polybench.ludcmp, cBench.lame, cBench.patricia,
and cBench.sha) Best10 outperforms our approach. In some cases the two
approaches have similar performance to BestAll. Our approach achieves the
maximum available improvement on 26 programs, while Best10 on 23 bench-
marks. In addition, our hybrid approach outperforms BestAll on 5 programs:
Polybench.jacobi-2d, Polybench.lu, Polybench.reg detect,
cBench.tiff2bw, and cBench.pgp e.

Metrics. API means that the gap between our approach and BestAll is less than
the gap between Best10 and BestAll. This gap is 16.82 %, 41.33 %, and 37.38 %,
respectively for OT.15, OT.35 and Best10, on Polybench; and 26.42 %, 39.03 %

178 T.C. de Souza Xavier, A. F. da Silva

Benchmark OT.15 OT.35 Best10 BestAll

2mm 11.72 1.72 11.71 11.75

3mm 12.47 12.47 12.46 12.48

adi 0.002 −18.14 3.75 3.75

atax 6.72 2.58 6.36 7.44

bicg 0.97 0.97 0.97 0.97

cholesky 14.22 14.21 14.26 33.24

correlation 12.42 12.36 12.33 12.44

covariance 12.45 12.44 12.44 12.47

doitgen 12.27 12.27 11.67 12.55

durbin 0.75 0.00 −3.28 3.51

dynprog 12.28 0.00 11.99 12.28

fdtd-2d 6.29 −19.87 −4.89 6.30

fdtd-apml 3.42 0.00 3.58 8.00

floyd-warshall 0.00 0.00 0.00 0.01

gemm 11.04 11.07 0.01 11.09

gemver 1.59 −1.93 −3.76 3.02

gesummv 0.003 −4.74 0.00 1.26

gramschmidt 6.23 6.23 0.01 6.24

jacobi-1d 4.72 0.00 0.00 7.26

jacobi-2d 9.99 15.77 3.96 3.96

ludcmp 0.01 0.01 22.07 22.13

lu 22.13 22.12 0.03 7.03

mvt 1.90 1.90 0.00 1.90

reg detect 12.35 28.25 12.33 12.44

seidel-2d 41.67 41.75 41.33 41.69

symm 7.14 7.12 7.12 15.3

syr2k 0.00 0.00 0.00 0.01

syrk 0.00 0.00 0.02 0.02

trisolv 4.39 1.59 4.40 7.34

trmm 11.09 0.01 0.01 11.12

API 8.01 5.65 6.03 9.63

APIE 8.29 11.31 7.14 9.63

NBI 30 26 27 30

Table 4. The improvements on Polybench

and 55.27 %, on cBench. It means that in general, these gaps are 21.18 %,
40.36 % and 45.37 %, respectively. APIE also indicates that our approach out-
performs Best10. However, NBI indicates that the two approaches and Best10

have a similar performance.

Benchmarks. The general results, mainly API, show that our approach and Best10

perform better on Polybench. It can be explained by the fact that Poly-
bench is composed of kernels, while cBench of complete programs. However,

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 179

Benchmark OT.15 OT.35 Best10 BestAll

bitcount −46.45 −46.45 −45.75 −10.77

qsort1 10.45 10.45 6.71 10.45

susan c 30.88 30.88 27.04 32.48

susan e 5.75 6.29 1.86 6.88

susan s 1.06 0.97 0.78 1.06

bzip2d 49.25 49.25 39.97 49.26

bzip2e 5.73 5.50 4.39 7.03

lame 3.22 6.16 8.75 8.75

mad 2.45 1.99 1.30 2.19

tiff2bw 17.04 14.94 7.45 13.32

tiff2rgba 15.45 15.07 7.49 15.11

tiffdither 2.06 −0.77 0.12 1.13

tiffmedian 25.89 22.14 23.05 26.02

dijkstra 0.59 0.14 0.43 0.64

patricia 0.00 −1.08 0.56 0.56

rsynth 0.46 −1.83 0.38 0.46

stringsearch1 −15.92 −28.91 −18.24 −0.36

blowfish d 4.12 4.18 4.12 4.18

blowfish e 4.10 4.10 3.94 4.16

pgp d 5.13 4.97 1.91 6.51

pgp e 4.72 0.96 0.59 3.49

rijndael d 1.97 3.25 0.003 3.54

rijndael e −0.32 −2.24 −2.21 −0.32

sha 6.95 6.95 7.605 7.66

adpcm c 13.12 12.98 5.83 15.05

adpcm d 16.46 15.08 11.18 16.58

CRC32 2.13 2.13 2.13 2.13

gsm 3.85 3.63 1.97 3.88

API 6.07 5.03 3.69 8.25

APIE 9.70 10.09 6.78 9.70

NBI 25 22 25 25

Table 5. The improvements on cBench

the performance loss on cBench is due to the three programs that BestAll

does not outperform with optimization level O3, namely: cBench.bitcount,
cBench.stringsearch1 and cBench.rijndael e. If we remove these three
benchmarks, the scenario changes. In this case, API is 9.31 %, 8.73 %, 6.78 %
and 9.70 %, respectively for OT.15, OT.35, Best10 and BestAll. The gap de-
creases from BestAll, and also reinforces that using a hybrid approach is the
best choice.

180 T.C. de Souza Xavier, A. F. da Silva

Best10. It is important to remember that our approach and Best10 have dif-
ferent premises. The former argues that it is necessary to handle individ-
ual programs, which means that the choice of optimizations and their order
is program-specific dependent. The latter argues that it is possible to cover
several sets of programs using the same sequences. The results indicate that
handling individual programs tends to decrease the gap between the strategy
and the maximum available improvement, consequently enhancing the perfor-
mance.

Evaluations. Using a strategy that creates several centroids ([30, 35]) outperforms
Best10, however it increases the distance from the maximum available improve-
ment. Although, creating few centroids ([10, 15]) increases the performance, this
strategy expands the response time. The problem is that this strategy creates
less centroids, grouping more programs on the same cluster. As a result, more
sequences will be evaluated. Best10 needs to evaluate only 10 sequences. The
strategy that creates about 35 centroids needs to evaluate at most 20 ∗ 2 se-
quences (20 programs in the same cluster plus 20 new sequences after changing
their order), while that one that creates about 15 centroids needs to evaluate at
most 30 ∗ 2. This means that in terms of evaluations, Best10 is better than our
hybrid approach.

5 RELATED WORK

Cavazos et al. [4] proposed a machine learning strategy to find compiler optimiza-
tions for a specific program. This work was the first to use performance counters to
measure the similarity between two programs. A machine learning strategy creates
a prediction model in a training stage, based on the behavior of several training
programs, and the prediction model, in a deployment (or test) stage, predicts the
set of optimizations that will be enabled to compile the unseen program. In a train-
ing stage, Cavazos’s strategy randomly creates several compiler optimization sets
for a group of training programs. After the creation of several sets, their strategy
collects the performance counters of each training programs. Based on these two
pieces of information, a model based on a logistic regression scheme is created, which
will predict the set of optimizations. The deployment stage collects the performance
counters of the test program, invokes the prediction model, and finally returns the
best target code.

They demonstrated that a machine learning strategy is able to outperform the
compiler optimization levels. Furthermore, they also demonstrated that the use
of performance counters is a good strategy to measure the similarity between two
programs. Our strategy is similar to such method, because we also use a machine
learning scheme and measure the similarity between two programs in the same man-
ner. However, while Cavazos et al. tried to find optimizations, our work is one step
further due to its searches and optimization orders.

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 181

De Lima et al. [7] proposed the use of a case-based reasoning strategy to find
compiler optimizations for a specific program. They argue that it is possible to find
good compiler optimizations, from previous compilations, for an unseen program.
This strategy creates several compiler optimization sets in a training stage. After-
wards, in the deployment stage, the strategy infers a good compiler optimization
set for a new program. This step is based on the similarity between two programs.
De Lima et al. proposed several models to measure similarity, also based on feature
vectors, which is composed by performance counters. They demonstrated that it is
possible to infer a good compiler optimization set that achieves multiple goals; for
example, runtime and energy. The limitation of this work is that it does not handle
the problem of ordering optimizations.

Purini and Jain [24] proposed a strategy to find good compiler optimization
sets, which are able to cover several programs. This means that they do not han-
dle this problem as program-dependent. The strategy to find several sets consists
in using random and genetic algorithms to create effective sets of optimizations.
After creating several sets, they eliminate the optimizations, from each set, that
does not contribute to the performance. Finally, they proposed an algorithm that
analyzes all sets, and extracts the best 10 sets. As a result, each test program is
compiled using 10 sets, and the best target code is returned. They demonstrated
that it is possible to find a small group of sets that are able to cover several pro-
grams.

Our strategy uses Purini’s and Jain’s strategy to provide a knowledge base of
good compiler optimizations sets; however, we handle the problem of finding good
optimizations as a program-dependent problem.

Tartara and Crespi [26] proposed a long-term strategy, the goal of which is
to eliminate the training stage. In their strategy, the compiler is able to learn,
during every compilation, how to generate good target code. In fact, they pro-
posed the use of a genetic algorithm that creates several heuristics based on the
static characteristics of the test program [20]. Basically, this strategy performs two
tasks. First, it extracts the characteristics of the test program. Secondly, the ge-
netic algorithm creates heuristics inferring which optimizations should be enabled.
They demonstrated that it is possible to eliminate the training stage, using long-
term learning. While Tartara’s and Crespi’s work does not need a training stage,
our work does; however, we handle two problems concerning compiler optimiza-
tions.

Martins et al. [17] proposed a clustering strategy in order to find good compiler
optimizations sets. In fact, they proposed algorithms to find good optimizations,
besides algorithms to order optimizations. The strategy used by Martins et al. is
similar to Purini’s and Jain’s, both use random and genetic algorithms. This means
that their strategy can be considered as an iterative compilation, where the test
program is compiled with different sets of optimizations, and the best version is
chosen. Our strategy is classified as a machine learning strategy, which tries to
reduce the number of times that a test program needs to be evaluated.

182 T.C. de Souza Xavier, A. F. da Silva

6 CONCLUDING REMARKS

The selection of compiler optimizations and their order of application has a signifi-
cant impact on performance. In addition, we need to remember that this problem is
program-specific dependent. Therefore, a good approach is to propose a design-space
exploration scheme to find the program-specific optimization sequence.

In this paper we proposed a design-space exploration scheme, which aims to
find good compiler optimization sequences. Our approach employs several strate-
gies, namely: random sampling, genetic algorithm, clustering, metaheuristic, and
a reduction scheme.

We implemented a hybrid approach on top of the LLVM compiler, and the experi-
ment results show that it finds optimization sequences that outperform the standard
optimization level O3, besides the approach proposed by Purini and Jain, Best10.

The deficiency of our approach is the system response time, due to the number
of evaluations. In a future work we will investigate a strategy to decrease the system
response time. In addition, as programs are composed by several subroutines and
each one will probably be best-optimized by a specific sequence, another future work
will be to handle each subroutine.

REFERENCES

[1] Abdelbar, A. M.—Wunsch, D. C.: Improving the Performance of MAX-MIN Ant
System on the TSP Using Stubborn Ants. Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation (GECCO ’12), New York, NY,
USA, ACM, 2012, pp. 1395–1396, doi: 10.1145/2330784.2330949.

[2] Applegate, D. L.—Bixby, R. E.—Chvátal, V.—Cook, W. J.: The Traveling
Salesman Problem: A Computational Study. Princeton University Press, 2007.

[3] Bertran, R.—Gonzalez, M.—Martorell, X.—Navarro, N.—Ayguade,
E.: Decomposable and Responsive Power Models for Multicore Processors Using
Performance Counters. Proceedings of the 24th ACM International Conference on
Supercomputing (ICS ’10), New York, NY, USA, ACM, 2010, pp. 147–158, doi:
10.1145/1810085.1810108.

[4] Cavazos, J.—Fursin, G.—Agakov, F.—Bonilla, E.—O’Boyle, M. F. P.—
Temam, O.: Rapidly Selecting Good Compiler Optimizations Using Performance
Counters. Proceedings of the International Symposium on Code Generation and
Optimization (CGO ’07), Washington, DC, USA, IEEE Computer Society, 2007,
pp. 185–197, doi: 10.1109/CGO.2007.32.

[5] The Collective Benchmarks, 2014, http://ctuning.org/wiki/index.php/CTools:
CBench. Access: January 20, 2016.

[6] Chabbi, M. M.—Mellor-Crummey, J. M.—Cooper, K. D.: Efficiently Explor-
ing Compiler Optimization Sequences with Pairwise Pruning. Proceedings of the 1st

International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop
Era, New York, NY, USA, ACM, 2011, pp. 34–45, doi: 10.1145/2000417.2000421.

https://doi.org/10.1145/2330784.2330949
https://doi.org/10.1145/1810085.1810108
https://doi.org/10.1109/CGO.2007.32
http://ctuning.org/wiki/index.php/CTools:CBench
http://ctuning.org/wiki/index.php/CTools:CBench
https://doi.org/10.1145/2000417.2000421

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 183

[7] de Lima, E. D.—de Souza Xavier, T. C.—da Silva, A. F.—Ruiz, L. B.: Com-
piling for Performance and Power Efficiency. 23rd International Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS), 2013, pp. 142–149.

[8] Dongarra, J.—London, K.—Moore, S.—Mucci, P.—Terpstra, D.: Using
PAPI for Hardware Performance Monitoring on Linux Systems. Proccedings of the
Conference on Linux Clusters: The HPC Revolution, Linux Clusters Institute, 2001.

[9] Dorigo, M.—Stützle, T.: Ant Colony Optimization. Bradford Books, MIT Press,
Cambridge, Massachusetts, 2004.

[10] Fang, S.—Xu, W.—Chen, Y.—Eeckhout, L.—Temam, O.—Chen, Y.—
Wu, C.—Feng, X.: Practical Iterative Optimization for the Data Center. ACM
Transactions on Architecture and Code Optimization (TACO), Vol. 12, 2015, No. 2,
pp. 15:1–15:26.

[11] Foleiss, J. H.—da Silva, A. F.—Ruiz, L. B.: An Experimental Evaluation of
Compiler Optimizations on Code Size. Proceedings of the Brazilian Symposium on
Programming Languages, São Paulo, Brazil, EACH USP, 2011, pp. 1–15.

[12] Kufrin, R.: PerfSuite: An Accessible, Open Source Performance Analysis Environ-
ment for Linux. Proceedings of the Linux Cluster Conference, Chapel, 2005.

[13] Lattner, C.—Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. Proceedings of the International Symposium on Code
Generation and Optimization (CGO 2004), Palo Alto, California, March 2004, doi:
10.1109/CGO.2004.1281665.

[14] Lim, M. Y.—Porterfield, A.—Fowler, R.: SoftPower: Fine-Grain Power Es-
timations Using Performance Counters. Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing (HPDC ’10), New York,
NY, USA, ACM, 2010, pp. 308–311, doi: 10.1145/1851476.1851517.

[15] LLVM Team. The LLVM Compiler Infrastructure, 2016, http://llvm.org. Access:
January 20, 2016.

[16] Malone, C.—Zahran, M.—Karri, R.: Are Hardware Performance Counters
a Cost Effective Way for Integrity Checking of Programs? Proceedings of the Sixth
ACM Workshop on Scalable Trusted Computing (STC ’11), New York, NY, USA,
ACM, 2011, pp. 71–76, doi: 10.1145/2046582.2046596.

[17] Martins, L. G. A.—Nobre, R.—Cardoso, J. A. M. P.—Delbem, A. C. B.—
Marques, E.: Clustering-Based Selection for the Exploration of Compiler Optimiza-
tion Sequences. ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 13, 2016, No. 1, pp. 8:1–8:28, doi: 10.1145/2883614.

[18] Mucci, P. J.—Browne, S.—Deane, C.—Ho, G.: PAPI: A Portable Interface to
Hardware Performance Counters. Proceedings of the Department of Defense HPCMP
Users Group Conference, 1999, pp. 7–10.

[19] Muchnick, S. S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997.

[20] Namolaru, M.—Cohen, A.—Fursin, G.—Zaks, A.—Freund, A.: Practi-
cal Aggregation of Semantical Program Properties for Machine Learning Based
Optimization. International Conference on Compilers Architectures and Synthe-

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1851476.1851517
http://llvm.org
https://doi.org/10.1145/2046582.2046596
https://doi.org/10.1145/2883614

184 T.C. de Souza Xavier, A. F. da Silva

sis for Embedded Systems (CASES ’10), Scottsdale, United States, 2010, doi:
10.1145/1878921.1878951.

[21] Park, E.—Cavazos, J.—Alvarez, M. A.: Using Graph-Based Program Charac-
terization for Predictive Modeling. Proceedings of the Tenth International Symposium
on Code Generation and Optimization (CGO ’12), New York, NY, USA, ACM, 2012,
pp. 196–206, doi: 10.1145/2259016.2259042.

[22] Park, E.—Kulkarni, S.—Cavazos, J.: An Evaluation of Different Modeling
Techniques for Iterative Compilation. Proceedings of the 14th International Confer-
ence on Compilers, Architectures and Synthesis for Embedded Systems, New York,
NY, USA, ACM, 2011, pp. 65–74.

[23] Polybench. The Polyhedral Benchmark Suite. Access: March 2, 2014.

[24] Purini, S.—Jain, L.: Finding Good Optimization Sequences Covering Program
Space. ACM Transactions on Architecture and Code Optimization (TACO), Vol. 9,
2013, No. 4, pp. 56:1–56:23, doi: 10.1145/2400682.2400715.

[25] Srikant, Y. N.—Shankar, P.: The Compiler Design Handbook: Optimizations
and Machine Code Generation. 2nd ed., CRC Press, Inc., Boca Raton, FL, USA,
2007.

[26] Tartara, M.—Crespi Reghizzi, S.: Continuous Learning of Compiler Heuristics.
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 9, 2013,
No. 4, pp. 46:1–46:25, doi: 10.1145/2400682.2400705.

[27] Tavares, J.—Pereira, F. B.: Towards the Development of Self-Ant Systems. Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’11), New York, NY, USA, ACM, 2011, pp. 1947–1954.

[28] Witten, I. H.—Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

https://doi.org/10.1145/1878921.1878951
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1145/2400682.2400715
https://doi.org/10.1145/2400682.2400705

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 185

Tiago Cariolano de Souza Xavier got his B.Sc. and M.Sc.
degrees in computer science from the State University of Mar-
ingá, Brazil, in 2012 and 2014, respectively. Nowadays, he is
a Ph.D. student in computer science at the Federal University of
Rio de Janeiro, Brazil. His research interest is in compilers and
mobile systems.

Anderson Faustino da Silva is Professor in the Department
of Informatics, State University of Maringá, Brazil, where he has
been teaching since 2008. He received his B.Sc. degree in com-
puter science from the State University of West Paraná, Brazil,
in 2000, and his M.Sc. and Ph.D. degrees also in computer scien-
ce from the Federal University of Rio de Janeiro, Brazil, in 2003
and 2006, respectively. His research interest is in compilers and
parallel and distributed computing.

Computing and Informatics, Vol. 37, 2018, 186–212, doi: 10.4149/cai 2018 1 186

HYBRID DATA RACE DETECTION
FOR MULTICORE SOFTWARE

Alper Sen, Onder Kalaci

Department of Computer Engineering
Bogazici University, Turkey
e-mail: {alper.sen, onder.kalaci}@boun.edu.tr

Abstract. Multithreaded programs are prone to concurrency errors such as dead-
locks, race conditions and atomicity violations. These errors are notoriously difficult
to detect due to the non-deterministic nature of concurrent software running on mul-
ticore hardware. Data races result from the concurrent access of shared data by
multiple threads and can result in unexpected program behaviors. Main dynamic
data race detection techniques in the literature are happens-before and lockset al-
gorithms which suffer from high execution time and memory overhead, miss many
data races or produce a high number of false alarms. Our goal is to improve the
performance of dynamic data race detection, while at the same time improving its
accuracy by generating fewer false alarms. We develop a hybrid data race detection
algorithm that is a combination of the happens-before and lockset algorithms in
a tool. Rather than focusing on individual memory accesses by each thread, we
focus on sequence of memory accesses by each thread, called a segment. This al-
lows us to improve the performance of data race detection. We implement several
optimizations on our hybrid data race detector and compare our technique with
traditional happens-before and lockset detectors. The experiments are performed
with C/C++ multithreaded benchmarks using Pthreads library from PARSEC suite
and large applications such as Apache web server. Our experiments showed that
our hybrid detector is 15 % faster than the happens-before detector and produces
50 % less potential data races than the lockset detector. Ultimately, a hybrid data
race detector can improve the performance and accuracy of data race detection,
enhancing its usability in practice.

Keywords: Software testing and debugging, multithreaded programs, data race,
concurrency, happens-before, lockset

Mathematics Subject Classification 2010: 68-N19

Hybrid Data Race Detection for Multicore Software 187

1 INTRODUCTION

Multicore processors provide high computation power, however, in order to utilize
the increased power, concurrent software must be designed and written. Concur-
rency is achieved by multithreading in many systems. The interleaving of multiple
threads can result in concurrency bugs which are hard to reproduce.

Data race is a well-known concurrency problem which is defined as two threads
accessing a single memory address where at least one access is write and there is no
appropriate synchronization among the accesses [19]. There have been many works
in the past for detection of data races in multithreaded programs. The prior work
is divided into two broad categories, which are static data race detection [28, 22, 3]
and dynamic data race detection [13, 21, 2, 20, 15, 31].

Static data race detectors generate all possible thread interleavings and data
races are searched among these interleavings. This approach is often infeasible due
to state space explosion problem [12]. Moreover, they end up with many false posi-
tives due to the interleavings that are not possible to happen with any input data.
Typically, the number of false positives is more than the number of real races [18].
Dynamic data race detectors observe memory accesses while an application is run-
ning. This approach is scalable to real life programs. The deficiency of dynamic
analysis is that they consider an execution with a single input data, which limits
the coverage of the analysis. Due to limited coverage, dynamic detectors miss some
of the potential data races. In other words, dynamic detectors produce false neg-
atives. In order to overcome this problem, dynamic analysis must be repeatedly
executed with different inputs. Due to its scalability and potentially lower false
positive rates, dynamic data race detection is the most commonly used method of
data race detection.

There are two state-of-the-art algorithms used in dynamic data race detection,
lockset and happens-before data race detection algorithms. Lockset algorithm [25]
checks whether two threads access a shared variable while holding a common lock
or not. For each shared memory address, the algorithm maintains a candidate lock-
set. Lockset detectors produce many false positives. In other words, some of the
data races detected by the detectors are not real races. The main source of the
false positives is that the detectors ignore all the synchronization operations ex-
cept for locks. For instance, the detectors produce false positives for every shared
memory access where the synchronization among accesses is generated by condi-
tion variables. Happens-before data race detection algorithm is based on Lam-
port’s happens-before relation [13]. Happens-before relation defines a partial order
among the events generated during the execution of a program in a distributed
system. This relation has been extended for applications using shared memory as
well. Happens-before data race detection algorithms utilize vector clocks for main-
taining the happens-before relation [21, 15]. These detectors do not produce false
positives, however they may miss real races (false negative). Happens-before based
detectors suffer from high execution time and memory overhead. The size of each
vector clock is proportional to the number of threads count in the program. On the

188 A. Sen, O. Kalaci

contrary, lockset based detectors are scalable and can be implemented with a low
overhead.

There has been prior work [20, 26, 11, 21] for combining the benefits of lockset
and happens-before detectors in a hybrid data race detector that has good per-
formance and few false positives. We develop a hybrid approach in this paper as
well. Almost all dynamic data race detection algorithms [2, 20, 21, 12, 15, 5] de-
tect potential data races by tracking accesses on each memory address during the
execution. This can result in memory overhead, which is crucial when working with
large programs. Our algorithm instead detects potential races by tracking accesses
on each segment [26], where a segment is formed by consecutive memory accesses
of a single thread. No synchronization operation is allowed inside a segment, thus,
all the memory accesses use the same vector clocks and the same locks. Moreover,
as we later show in Table 2, for most of the applications, the number of segments is
much less than the number of memory addresses accessed. This observation allows
us to reduce memory overhead.

We propose four optimizations on our segment based hybrid algorithm. The first
optimization is based on the observation that vector clock values of a segment does
not change after it is assigned. Thus, we added a limited vector clock cache for the
vector clocks of segments. The second optimization is based on exploiting the same
memory accesses inside a segment. If a memory address is accessed more than once
inside a segment, the second and subsequent accesses have no effect on detecting
the potential data races. The third optimization is based on the active number of
segments. We define a maximum number of active segments, if that is exceeded,
we start discarding older segments. Although this may lead to missing some of
the potential data races, performance increase is considerable in many cases. Our
last optimization is based on sampling a user given percentage of memory accesses
during analysis.

We implemented our hybrid detector and our optimizations using PIN Dynamic
Binary Instrumentation (DBI) tool [14]. This tool allows us to work with binaries
of applications rather than their source code, which may be crucial in commer-
cial settings. In order to compare our hybrid detector we also implemented using
PIN a lockset based detector (Eraser [25]) and a happens-before based detector
(DJIT+ [21]). We performed experiments on 8 different applications from PAR-
SEC benchmark suite [1], Apache httpd web server [9] and a parallel compression
tool pbzip2 [6]. All benchmarks are written in C/C++ using Pthreads library. Our
experiments showed that our hybrid detector is 15 % faster than happens-before
detector and produces 50 % less potential data races than lockset detector.

The main contribution of this work can be summarized as follows:

• We develop a segment-based hybrid dynamic data race detector and present
a formal treatment of the concepts and our algorithms.

• We propose four different optimizations on the hybrid algorithm. Two of these
optimizations increase the performance of data race detection without sacrificing
the precision. The remaining two optimizations provide a trade-off between

Hybrid Data Race Detection for Multicore Software 189

the number of potential data races detected and the performance of data race
detection.

• We implement our techniques in a tool and compare with traditional dynamic
data race algorithms on large multithreaded benchmarks.

The rest of the paper is organized as follows. Section 2 gives background on our
multithreaded program model and happens-before relation. We describe dynamic
data race detection algorithms in Section 3. In Section 4, we present our segment
based hybrid data race detection algorithm and describe several optimizations on
this algorithm in Section 5. We discuss experimental results in Section 6, which is
followed by related work and conclusions.

2 BACKGROUND

Figure 1. Overview of our dynamic data race detection

In Figure 1, an overview of our dynamic data race detection is displayed. A dy-
namic binary instrumentation tool instruments a multithreaded application and
when this instrumented program is executed it generates events, which are input
to the data race detection algorithm. Then, the algorithm decides whether the
application has potential data race(s) or not.

2.1 Multithreaded Program Model

In this work, we consider multithreaded C/C++ applications that use the Pthreads
library [23]. A multithreaded program consists of threads, memory addresses, and
synchronization objects such as locks, condition variables, barriers, and semaphores.

During the execution of an instrumented program, a sequence of atomic opera-
tions (events), denoted by ex, . . . , ey, are generated by each thread. We utilize the
following types of events in our data race detection algorithms, similar to earlier
works [20, 5, 26].

• READ(x, ti): Memory address x is read by thread ti.

• WRITE(x, ti): Memory address x is written by thread ti.

190 A. Sen, O. Kalaci

• ACCESS(x, ti): Either READ(x, ti) or WRITE(x, ti).

• WR LOCK(l, ti): Lock l is acquired write-held by thread ti.

• RD LOCK(l, ti): Lock l is acquired read-held by thread ti.

• LOCK(l, ti): Either WR LOCK(l, ti) or RD LOCK(l, ti).

• UNLOCK(l, ti): Lock l is released by thread ti. This is also composed of read
and write unlock operations.

• SIGNAL(cv, ti): Unblock at least one of the threads that are blocked on the
condition variable cv.

• SIGNAL ALL(cv, ti): Unblock all threads currently blocked on the condition
variable cv.

• WAIT(cv, ti): Thread ti blocks on a condition variable cv.

We use the notion of synchronization points to generate the causality relation-
ship among events. The following pair of corresponding events constitute the start
(left) and the end (right) of synchronization points, denoted by SYNCH POINTS:
(UNLOCK(l, ti),LOCK(l, tj)), (SIGNAL(cv, ti),WAIT(cv, tj)), (SIGNAL ALL(cv,
ti),WAIT(cv, tj)). Note that similar synchronization points can be defined for
semaphores, barriers as well as thread creation and exit events.

2.2 Happens-Before Relation and Vector Clocks

There exist several techniques for tracking the concurrency information or the depen-
dencies between events. Lamport’s happened-before relation [13], which is a partial
order relation, is used for capturing ordering between events generated during the
execution of a concurrent program. More formally, the happens-before relation (→)
among two events ex and ey is denoted as (ex → ey) and is the smallest transitive
relation that satisfies the following properties (where x 6= y and i 6= j) [21, 5]:

• Program Order: (ex ∈ ti ∧ ey ∈ ti) ∧ (ex is executed before ey in ti),

• Synchronization Order: (ex ∈ ti∧ey ∈ tj)∧(i 6= j)∧(ex and ey is a pair of events
from SYNC POINTS),

• Transitivity: (ex → ez) ∧ (ez → ey).

Two events, ex and ey are concurrent (‖) if neither of them happens-before the
other, that is, ex ‖ ey ⇔ (¬(ex → ey) ∧ ¬(ey → ex)).

Vector clocks [4, 17] are used to capture the happens-before relation among the
events generated during program execution. A vector clock assigns timestamps to
events such that the partial order relation between events can be determined by
using the timestamps. A vector clock, V C, consists of a vector of n integers where
n is the total number of threads in the execution. V Ci identifies the vector clock of
thread ti and V Ci[j] holds the logical time of thread tj known by thread ti. Initially,
V Ci[j] = 0, for i 6= j, and V Ci[i] = 1. A thread increments its own component of

Hybrid Data Race Detection for Multicore Software 191

the vector clock after each event. For certain events that will be described in the
next section, it updates its vector clock by taking a component wise maximum with
the vector clock included in the message.

Below we describe these common vector clock operations:

• INIT(V Ci): Initialize a Vector Clock, V Ci[j] = 1, for i == j and V Ci[j] = 0,
for i 6= j,

• INCREMENT(V Ci): Increment a Vector Clock, V Ci[i] = V Ci[i] + 1,

• RECV(V Ci, V Cj): Receive Vector Clock, V Ci[k] = max(V Ci[k], V Cj[k]), ∀k ∈
{1, . . . , n},
• Compare Two Vector Clocks: V Ci < V Cj is true, if ∀k ∈ {1, . . . , n} : V Ci[k] ≤
V Cj[k] ∧ ∃k ∈ {1, . . . , n} : V Ci[k] < V Cj[k].

We say that ex → ey iff ex.V C < ey.V C. Hence, vector clocks precisely capture
the happens-before relation.

A sample execution of the vector clock algorithm is given in Figure 2, where
the tuples in brackets represent the vector clocks. In the example, event (action) s
happened-before t since [1, 0, 0] < [2, 1, 3], where vi < vj if all elements of vi are less
than or equal to the corresponding elements of vj and at least one element of vi is
strictly less than the corresponding element of vj. Whereas u is concurrent with t
since their vector clocks are not comparable.

Figure 2. Happens-before relation and vector clocks

3 DATA RACE DETECTION ALGORITHMS

We briefly describe two state-of-the-art algorithms in data race detection, namely
happens-before algorithm and lockset algorithm.

3.1 Happens-Before Data Race Detection

Happens-before data race detection algorithms check whether concurrent accesses
by multiple threads to the same memory address are possible, if so they return a race

192 A. Sen, O. Kalaci

warning. These detectors do not produce false positives but they can produce false
negatives.

We describe DJIT+ [21] algorithm as the happens-before algorithm. The al-
gorithm maintains a vector clock for each thread ti, denoted by V Ci, which is
initialized at startup. A vector clock is kept for each synchronization object s,
denoted by s.V C, which is initialized to all zeros at startup. For each left event
of a SYNC POINTS, such as UNLOCK(s, ti) the following operations take place,
s.V C = V Ci and V Ci = INCREMENT(V Ci). Similarly, for each right event
of a SYNC POINTS, such as LOCK(s, ti), the following operation takes place,
V Ci = RECV(V Ci, s.V C). For example, in Figure 2, in Thread 1, one can think
of having an UNLOCK event after the second event with vector clock [2, 1, 0] and
the corresponding LOCK event occurs on Thread 3 changing the vector clock to
[2, 1, 3]. Two vector clocks are kept for each memory address x, denoted by xr.V C
and xw.V C, which are used to keep track of the last read and the last write to x by
each thread, respectively.

In Algorithm 1, we display the race detection portion of the happens-before
based data race detection algorithm. For each read of x by ti in line 1, the algorithm
checks whether xw.V C happens-before V Ci in line 3. If not, a race is detected in
line 12. Similarly, for each write of x by ti in line 6, the algorithm checks whether
each of xw.V C and xr.V C happens-before V Ci. If one of them does not, then the
algorithm concludes a potential data race in line 12. Note that by exploiting the
transitivity of the happens-before relation, the algorithm can decide on potential
race conditions by only comparing the vector clock of the last read and write with
the vector clock of the current access.

Algorithm 1 Happens-Before based data race detection algorithm

Input: Thread ti generates a memory access event on address x, ACCESS(x, ti)
Output: Potential data race detected or not

1: if ACCESS(x, ti) == READ(x, ti) then
2: xr.V C[i] = V Ci[i];
3: if xw.V C < V Ci then
4: return false; . No Race Found
5: end if
6: else if ACCESS(x, ti) == WRITE(x, ti) then
7: xw.V C[i] = V Ci[i];
8: if (xw.V C < V Ci) ∧ (xr.V C < V Ci) then
9: return false; . No Race Found

10: end if
11: end if
12: return true; . Race Found

Hybrid Data Race Detection for Multicore Software 193

3.2 Lockset Data Race Detection

Lockset data race detection algorithms check whether accesses by multiple threads
to the same memory address can occur while threads are not holding a common lock,
if so they return a race warning. These detectors do not produce false negatives but
they can produce false positives for a given execution.

We describe Eraser [25] algorithm as the basic lockset algorithm and show it in
Algorithm 2. For each shared memory address x, the algorithm maintains a can-
didate lockset, CLS(x). The name candidate is given since the algorithm cannot
determine which lock is intended for which memory address. Thus, via candidate
locksets, the algorithm attempts to infer whether a shared memory address is pro-
tected by a unique lock throughout the execution. When a memory address is
accessed for the first time during the execution, its candidate lockset is assigned
to include all possible locks. Then, on each access in line 1, its candidate lockset
is updated to its intersection with the lockset of the thread that is executing the
access, LS(ti). This lock refinement step aims to find the unique locks that protect
the variable during the execution. If the intersection ends up with an empty set in
line 2, the algorithm concludes that there is a potential data race in line 3. Eraser
lockset algorithm includes optimizations and we implemented the Eraser lockset
algorithm that includes optimizations in this paper.

Algorithm 2 Lockset based data race detection algorithm

Input: Thread ti generates a memory access event on address x
Output: Potential data race detected or not

1: CLS(x) = CLS(x) ∩ LS(ti)
2: if CLS(x) == {} then
3: return true; . Race Found
4: end if
5: return false; . No Race Found

3.3 Hybrid Data Race Detection

When the above two approaches are examined in terms of preciseness, lockset de-
tectors can produce false positives, whereas happens-before based detectors can
produce false negatives. In terms of performance, lockset detectors are scalable,
whereas happens-before based detectors are not because happens-before detectors
require a high memory and processing overhead.

A hybrid data race detector combines the lockset and happens-before approa-
ches. A naive hybrid algorithm maintains two vector clocks and a lockset for each
memory address. Such an approach may help reduce the number of false positives
compared to a lockset detector. However, performance of the detector would be
worse than a happens-before based detector. First, the memory requirements would

194 A. Sen, O. Kalaci

be more than a happens-before detector since it also uses a lockset for each memory.
Second, the computation overhead would increase since both vector clock compar-
isons and lockset calculations are needed.

4 SEGMENT BASED HYBRID DATA RACE
DETECTION ALGORITHM

In order to combine the best of traditional race detectors, we developed a seg-
ment based hybrid algorithm that utilizes the concept of a segment to improve
performance. Our segment based hybrid approach is based on Threadsanitizer [26]
algorithm. We formalize this algorithm and extend it with several performance
optimizations as discussed in the next chapter.

A segment segi of a thread ti is a sequence of memory accesses of ti, denoted
by {ei}, where the lockset and vector clock of the segment is the same as that of
thread ti. No function calls or synchronization operations are allowed inside a seg-
ment. The outcome of this is that all the events inside a segment are executed while
the thread holds the same vector clock and the same locks. Thus, the vector clocks
and the locksets could be kept on the granularity of segments instead of memory
accesses. Since we observe that the total number segments is much less than the
total number of memory addresses in an execution for most of the applications, this
approach reduces the memory requirements and increases the performance consid-
erably as shown in the experiments.

Our segment based hybrid algorithm maintains several data structures as shown
in Table 1. Algorithm 3 shows how these data structures are updated during pro-
gram execution. Note that a happens-before relation is established from a SIGNAL
to a WAIT but not from an UNLOCK to a LOCK operation as in the case for
happens-before algorithm. This is because the happens-before relation on lock
operations ensures that the same lock is used by threads during memory access,
however the lockset algorithm portion of the hybrid algorithm will consider this
case.

For each memory access in line 17 of Algorithm 3, Algorithm 4 is executed. In
Algorithm 4, first, the current segment of thread ti that is executing the memory
access is obtained as segi in line 1. Then, in line 2 for the write access, writer seg-
ment set of the memory address is updated so that it only includes segments that
do not happen-before the current executing segment in line 3. Additionally, the
current segment is added to the writer segment set of the memory address. Simi-
larly, reader segment set of the memory address is updated so that it only includes
segments that do not happen-before the current executing segment in line 4. It
can be observed from the definition of concurrency that segments in write segment
sets are pairwise concurrent, similarly for read segment sets. This is a useful per-
formance optimization because accesses from non-concurrent segments, which are
happens-before ordered, cannot cause a potential data race on a shared memory
address.

Hybrid Data Race Detection for Multicore Software 195

Thread ti
Vector Clock V Ci

Writer Lockset WRLS(ti)
Reader Lockset RDLS(ti)

Segment si
Vector Clock segi.V C
Writer Lockset WRLS(segi)
Reader Lockset RDLS(segi)

Condition Variable cv

Vector Clock cv.V C

Memory Address x

Writer Segment Set WRSTx.
Reader Segment Set RDSTx.

Table 1. Segment-based hybrid algorithm data structures

It can be seen from Algorithm 4 that read and write accesses update segment
sets differently. On write accesses, both writer and reader segment sets are updated
(line 3 and 4), whereas, on read accesses, only reader segment set is updated (line 6).
The reason is as follows, on write accesses, it is safe to remove any of the read accesses
from RDSTx. Remember that, RDSTx consists of concurrent segments where x is
read. Since there is no read-read type of data race, removing any segment from
RDSTx does not lead to missing any races. On the contrary, on read accesses it is
not safe to remove any segment from WRSTx. The reason is that, it may lead to
missing a write-write data race because the removed segment might have a potential
race with one of the prospective segments in the same set. The outcome of this is
that all segments within any segment set are concurrent with each other. However,
not all segments in RDSTx are concurrent with all segments in WRSTx, which is
handled while checking race among WRSTx and RDSTx.

Algorithm 5 describes the data race checking between segment sets check-
Race(WRST,RDST), which is called at line 8 in Algorithm 4. The algorithm checks
for common locks among concurrent segments such that one segment is a writer seg-
ment and the other is either a reader or a writer segment since there is no read-read
data race. If the segments are a writer and a reader segment then the algorithm also
makes sure that there is no happens-before relation from the writer to the reader
segment as shown in line 8. We know that a happens-before relation cannot exist
from the reader to the writer as these have been removed during the reader segment
set update in Algorithm 4. If the algorithm could not find a common lock among
concurrent segments (lines 4 and 9), it returns true indicating a data race. Note
that if any two segments are ordered by the happens-before relation, they are not
checked for data race, which is similar to the happens-before algorithm. Then, if two
segments are concurrent then they are checked for holding a common lock, which is
similar to the lockset algorithm.

196 A. Sen, O. Kalaci

Algorithm 3 Segment based hybrid data race detection algorithm instrumentation
for each operation

Input: Thread ti generates an operation op
Output: Instrumented program

1: if op is thread creation then
2: INIT(V Ci); WRLS(ti) = RDLS(ti) = {}
3: else if op is segment creation then
4: segi.V C = V Ci; WRLS(segi) = WRLS(ti); RDLS(segi) = RDLS(ti)
5: else if op is WAIT(cv, ti) then
6: RECV(V Ci, cv.V C)
7: else if op is SIGNAL(cv, ti) then
8: RECV(cv.V C, V Ci); INCREMENT(V Ci)
9: else if op is WR LOCK(l, ti) then

10: WRLS(ti) = WRLS(ti) ∪ {l}
11: else if op is WR UNLOCK(l, ti) then
12: WRLS(ti) = WRLS(ti) \ {l}
13: else if op is RD LOCK(l, ti) then
14: RDLS(ti) = RDLS(ti) ∪ {l}
15: else if op is RD UNLOCK(l, ti) then
16: RDLS(ti) = RDLS(ti) \ {l}
17: else if op is WRITE(x, ti) or READ(x, ti) then
18: ACCESS(x, ti)
19: end if

4.1 Segment Based Hybrid Algorithm Example

We now show an execution of our segment-based hybrid approach. A sample execu-
tion of the events belonging to two different threads and the state of data structures
for each line of the execution is described in Figure 3. For simplicity, we do not
display RDSTx and RDLS of threads.

Algorithm 4 Segment-based hybrid data race detection algorithm – ACCESS(x, ti)

Input: Thread ti generates a memory access event on address x
Output: Potential data race detected or not

1: segi = CurrentSegment(ti)
2: if ACCESS(x, ti) == WRITE(x, ti) then
3: WRSTx = {segx | segx ∈WRSTx ∧ ¬(segx.V C → segi.V C)} ∪ segi
4: RDSTx = {segx | segx ∈ RDSTx ∧ ¬(segx.V C → segi.V C)}
5: else if ACCESS(x, ti) == READ(x, ti) then
6: RDSTx = {segx | segx ∈ RDSTx ∧ ¬(segx.V C → segi.V C)} ∪ segi
7: end if
8: checkRace(WRSTx, RDSTx)

Hybrid Data Race Detection for Multicore Software 197

Algorithm 5 Segment-based hybrid data race detection algorithm –
checkRace(WRST,RDST)

Input: Writer Segment Set WRST, Reader Segment Set RDST
Output: Potential data race detected or not

1: for wr1 ∈WRST do
2: for wr2 ∈WRST do
3: if WRLS(wr1) ∩WRLS(wr2) = {} then
4: return true; . Write-Write Race Found
5: end if
6: end for
7: for rd ∈ RDST do
8: if ¬(wr1.V C → rd.V C) ∧ (WRLS(wr1) ∩ RDLS(rd) = {}) then
9: return true; . Read-Write Race Found

10: end if
11: end for
12: end for
13: return false; . No Race Found

After t1 acquires lock l1, a new segment s1 is initialized. Memory address x is
written in s1, thus, s1 is added to WRSTx in ACCESS algorithm. s1 is finalized
when l1 is released by t1. Then, after t2 acquires l1, segment s2 is initialized. When
x is written in s2, it is added to WRSTx in ACCESS algorithm since s1 and s2

are concurrent. Since both s1 and s2 have a common lock, which is l1, checkRace
algorithm does not produce a data race alarm. The execution ends up with no race,
which is a True Negative.

5 OPTIMIZATIONS ON SEGMENT-BASED HYBRID ALGORITHM

In this section, we are going to discuss four optimizations that we proposed and
implemented on segment-based hybrid algorithm.

5.1 Optimization 1: Storing Vector Clock Comparison History Cache

We observed that maintaining a vector clock comparison history cache for the pre-
viously calculated vector clock comparisons can increase the performance of data
race detection. This is motivated by the fact that multiple memory accesses can
belong to the same segment and since all these memory accesses have the same
vector clock as the segment that they belong to, there may be an excessive number
of comparison operations between the same vector clocks. For each vector clock,
we keep a list that holds the previous comparisons of the vector clock with other
vector clocks. Since the same vector clock could be accessed concurrently, a lock is
required for accessing the list. These two requirements increase the total memory
requirement of data race detection but improves the performance as shown in the

198 A. Sen, O. Kalaci

Line Thread 1 Thread 2
1 WR LOCK(l1, t1)
2 WRITE(x, t1) ∈ s1

3 WR UNLOCK(l1, t1)
4 WR LOCK(l1, t2)
5 WRITE(x, t2) ∈ s2

6 WR UNLOCK(l1, t2)

Line V C1 WRLS(t1) V C2 WRLS(t2) WRSTx

0 〈1, 0〉 {} 〈0, 1〉 {} {}
1 〈1, 0〉 {l1} 〈0, 1〉 {} {}
2 〈1, 0〉 {l1} 〈0, 1〉 {} {s1}
3 〈1, 0〉 {} 〈0, 1〉 {} {s1}
4 〈1, 0〉 {} 〈0, 1〉 {l1} {s1}
5 〈1, 0〉 {} 〈0, 1〉 {l1} {s1, s2}
6 〈1, 0〉 {} 〈0, 1〉 {} {s1, s2}

Figure 3. A program execution with segment-based hybrid algorithm and update of data
structures during the execution

experiments. We also only cache vector clocks of segments since after initialization
their values do not change, whereas vector clocks of threads and synchronization
objects can change during execution, increasing computation overhead.

Our optimization is formalized in Algorithm 6. For each vector clock V Ci, a list
vci prev comparisons and a lock vci lock is required. On each comparison, first the
local cache vci prev comparisons is searched. If the result is already there, there is
no need to make comparison. Otherwise, the comparison is done and the result is
added to vci prev comparisons.

The algorithmic complexity of this optimization is O(n), where n is the vector
clock history size.

Algorithm 6 Optimization 1

Input: Vector Clocks vc1 and vc2

Output: Comparison of vc1 and vc2

1: LOCK(vc1 lock);
2: result = vc1 prev comparisons(vc2);
3: if result == None then
4: result = compare(vc1, vc2)
5: vc1 prev comparisons(vc2) = result
6: end if
7: UNLOCK(vc1 lock);
8: return result;

Hybrid Data Race Detection for Multicore Software 199

5.2 Optimization 2: Multiple Accesses of a Single Variable in a Segment

This optimization exploits the fact that repeated memory accesses of the same type
and same variable belonging to the same segment do not make a difference in terms
of race detection. This is because the earlier of the accesses will have already been
added to the writer or reader segment set of the variable and since the later access
has the same vector clock and locksets it will not have any impact. This opti-
mization can quickly be added to the ACCESS algorithm as shown in Algorithm 7.
There is no extra memory requirement for implementing this optimization. The
only requirement is the increased CPU utilization. The algorithmic complexity of
this optimization is O(n), where n is the average number of segments in the segment
sets.

Algorithm 7 Optimization 2 – updated Algorithm ACCESS

Input: Thread ti generates a memory access event on address x
Output: Potential data race detected or not

1: segi = CurrentSegment(ti)
2: if ACCESS(x, ti) == WRITE(x, ti) then
3: if segi 6∈WRSTx then
4: WRSTx = {segx | segx ∈WRSTx ∧ ¬(segx.V C → segi.V C)} ∪ segi
5: RDSTx = {segx | segx ∈ RDSTx ∧ ¬(segx.V C → segi.V C)}
6: end if
7: else if ACCESS(x, ti) == READ(x, ti) then
8: if segi 6∈ RDSTx then
9: RDSTx = {segx | segx ∈ RDSTx ∧ ¬(segx.V C → segi.V C)} ∪ segi

10: end if
11: end if
12: checkRace(WRSTx,RDSTx)

5.3 Optimization 3: Limiting The Total Number of Segments

In segment-based hybrid approach, many of the segments do not cause potential
data races. For instance, most segments do not access shared variables. Or even
if some shared variables are accessed, many of the segments are happens-before
ordered or protected by a common lock. Also, we make the observation that in
general segments that are closer to each other in terms of execution time are more
likely to cause race conditions. Therefore, discarding some of the segments may
increase the performance while preserving the number of potential data races found.

In our implementation, we define a limit that identifies the maximum number of
segments that can be utilized by our segment-based hybrid approach. Whenever the
total number of segments exceeds the maximum number, we discard a previously
created segment and remove that segment from any of the segment sets that it

200 A. Sen, O. Kalaci

is present. We utilize a FIFO queue for choosing which segment to be discarded.
Although limiting the maximum number of segments increases the performance of
data race detection, it may lead to missing some of the potential data races since
the discarded segment can be a part of a potential data race in the execution.

It is important that the limit should be determined exclusively for each appli-
cation. In our experiments, we choose the maximum number relative to the total
segment count in the original execution.

In the worst case, the algorithmic complexity of this optimization is O(n), where
n is the total number of segment sets in the execution.

5.4 Optimization 4: Proportional Detection of Data Races

It is widely accepted that dynamic data race detection requires excessive processing
power and memory. This hinders the utilization of dynamic data race detection
tools in real deployed environments. PACER [2] proposes proportional detection
of data races. It makes a proportionality guarantee by detecting data races at
a rate equal to the sampling rate. Our sampling approach takes advantage of this
observation but it is simpler than PACER with no proportionality guarantee. On
each memory access operation in Algorithm 3, according to the given sampling rate,
we decide whether to call ACCESS procedure or not. Specifically, a random integer
is generated between 0 and 100. We use an equidistributed uniform pseudo-random
number generator [16].

If the generated integer is smaller than the sampling rate, we execute the in-
strumentation for the memory access. Our experiments show that the percentage
of instrumented memory accesses still converges to the sampling rate.

6 EXPERIMENTS

In this section, we describe our implementation and experiments on dynamic data
race detection. We implemented three dynamic data race detection algorithms, lock-
set, happens-before, and segment-based hybrid algorithm. We also show the results
of our optimizations described in the previous section. We performed experiments
with eight multi-threaded applications from PARSEC benchmark suite [1]. We also
used a parallel compression tool pbzip2 [6] and Apache httpd web server [9] as test
cases. All the experiments were performed on a PC running Linux with a 4 cores
CPU of 2.27 GHz and 32 GB of memory. We ran each experiment 10 times and
averaged the results.

We implemented the detectors using PIN dynamic binary instrumentation (DBI)
tool [14]. PIN allows us to work with binaries of applications rather than their
source code, which may be crucial in commercial settings. In our implementation,
we utilized the just-in-time compiler JIT mode of PIN. This allows instrumenta-
tion to be done at different granularities such as instruction, trace, image or rou-
tines. We used routine instrumentation for the synchronization function calls. For

Hybrid Data Race Detection for Multicore Software 201

instance, a callback is inserted after pthread mutex lock function so that our hy-
brid algorithm updates the caller thread’s writer lockset. For memory accesses we
used trace instrumentation. We know that instruction instrumentation enables to
insert one analysis call for every instruction executed. In fact, instruction instru-
mentation could be useful for inserting an analysis call for every read and write
instruction so that data race detection algorithms’ memory access algorithms could
be executed. However, reducing the number of analysis calls results in efficient in-
strumentation. Therefore, instead of instruction instrumentation we prefer trace
instrumentation. A trace is composed of a sequence of Basic Block (BBL). A BBL
is a single entrance and single exit sequence of instructions. Thus, by trace instru-
mentation we firstly iterate over BBLs that forms the trace that is instrumented.
Then, for each BBL we iterate over instructions and call a function for each read
or write instruction that is executed. The number of analysis calls is reduced from
the executed instruction count to the number of executed traces. We developed
a tool, called Dyndatarace, that incorporates our solution and can be accessed on-
line1.

In our implementations, we utilized the same implementation for the common
parts of different detectors as much as possible. For instance, we use the same
implementation of vector clocks for both the hybrid algorithm and the happens-
before algorithm. Similarly, we used the same implementation of locksets for both
the hybrid algorithm and the lockset algorithm.

While potential data races are being searched, it is crucial to track the dynamic
allocations and deallocations to prevent false alarms. In our implementations, we
overcome this problem by tracking all memory allocations and deallocations. When-
ever a deallocation is executed, all the shadow memory state that is kept for the
corresponding allocation call is cleaned up.

Execution Time Potential Data Races

Benchmark

B
a
se

T
im

e
(s

ec
)

#
T

h
re

a
d

#
M

em
o
ry

A
d

d
r.

#
S

eg
m

en
t

E
m

p
ty

L
o
ck

se
t

H
y
b

ri
d

H
a
p

p
en

s-
B

ef
o
re

L
o
ck

se
t

H
y
b

ri
d

H
a
p

p
en

s-
B

ef
o
re

×264 0.18 15 4 579 993 6 225 2.92× 13.80× 20.26× 25.20× 184 27 1
freqmine 0.27 15 18 525 725 1 350 2.42× 117.93× 332.41× 261.56× 76 23 7
vips 0.22 18 22 883 398 32 044 3.67× 103.69× 250.21× 315.43× 174 64 0
swaptions 0.14 4 47 837 320 1.91× 72.43× 134.98× 202.15× 0 0 0
bodytrack 0.18 5 5 803 300 8 702 2.72× 18.67× 31.24× 50.37× 47 5 4
fluidanimate 0.25 4 1 303 047 2 163 828 1.43× 89.42× 85.10× 113.52× 281 35 0
streamcluster 0.25 8 166 555 163 641 1.73× 75.28× 133.05× 178.56× 19 14 0
canneal 1.90 4 3 012 749 1 380 4.13× 16.41× 20.88× 26.71× 1 1 0
pbzip2 1.40 16 1 050 268 157 60 2.32× 41.92× 44.27× 50.30× 29 23 0
httpd 26.11 22 251 943 229 900 2.21× 13.32× 24.11× 26.75× 1777 1151 0

average 3.09 11.10 5 762 481 262 315 2.54× 56.29× 107.65× 125.06× 258 134 1

Table 2. Results for three race detectors

1 https://github.com/onderkalaci/dyndatarace

https://github.com/onderkalaci/dyndatarace

202 A. Sen, O. Kalaci

In our experiments we compare the behavior of detectors in terms of execu-
tion overhead as well as the number of potential data races. Table 2 displays our
experimental results. In the table we show the overhead (slowdown) of dynamic
binary instrumentation over the uninstrumented execution in the column denoted
by Empty, which does not perform any computations or analysis related to data
race detection but the overhead of instrumenting memory accesses. We also display
the slowdown of each data race detector with respect to the Empty implementation.
On average, execution slow down is 125× for happens-before detector, 107× for
hybrid detector and 56× for lockset detector. Memory requirements are 2 084 M for
happens-before detector, 1 258 M for hybrid detector and 916 M for lockset detector.
Hence, the slow downs are arranged as Happens-before > Hybrid > Lockset as ex-
pected. Lockset slowdown is less than half of the happens-before and hybrid. This
is acceptable since heavy memory and execution overhead of vector clocks are not
present in the lockset. On the average, happens-before is about 15 % slower than
hybrid.

In terms of the number of data races detected by each algorithm, the results are
again expected and are as follows, Lockset > Hybrid > Happens-before. On average,
the potential number of data races detected by happens-before, hybrid and lockset
detectors are 1, 134, and 258, respectively. As discussed in the previous sections,
lockset detectors produce too many false positives. On the contrary, happens-before
detectors do not produce any false positives, but they can miss some of the potential
data races. Hybrid algorithm poses characteristics from both approaches.

We performed experiments to measure the impact of increasing number of
threads on the number of data races. For some of the applications, we were able
to change the number of the threads that run concurrently without changing the
inputs. Such applications include x264, freqmine, fluidanimate, canneal and pbzip2.
For these applications, we performed three different experiments with different num-
ber of threads as shown in Table 3. Our experiments show that although the exe-
cution time depends on the thread count, the total number of potential data races
detected are not affected.

Application Original Execution Experiment-1 Experiment-2 Experiment-3

x264 15 18 20 32

freqmine 15 18 20 32

fluidanimate 4 6 8 12

canneal 4 6 8 12

pbzip2 16 12 20 32

Table 3. Number of thread counts for different experiments

6.1 Results of Optimizations on Segment-Based Hybrid Algorithm

In this section, we explore the experimental results of the optimizations that are
applied to the segment-based hybrid algorithm.

Hybrid Data Race Detection for Multicore Software 203

Since our goal is to find the best performance due to optimizations, we explore
a combination of them rather than exploring optimizations individually. We first
check the combination of Optimization 1 and 2 since these optimizations do not
affect the number of data races and the best combination parameters are searched.
Then we add either one of Optimization 3 and 4 to these two, since Optimization 3
and 4 cannot be combined. The reason is that both Optimization 3 and 4 lead to
false negatives and affect the performance. Therefore, it would be difficult to infer
the effect of each optimization on results when they are combined. The presented
execution time values are relative to the execution of segment-based hybrid algorithm
with no optimization applied.

Application Execution Time

History Size 0 1 10 50 250

×264 0.92× 0.95× 0.88× 0.89× 0.99×
freqmine 0.98× 0.85× 0.86× 0.83× 0.84×
vips 0.98× 0.9× 0.86× 0.97× 0.97×
swaptions 1.16× 1.44× 1.42× 1.33× 1.42×
bodytrack 1.09× 0.99× 0.95× 0.98× 1.03×
fluidanimate 0.96× 0.78× 0.77× 0.78× 0.79×
streamcluster 0.91× 0.68× 0.68× 0.68× 0.68×
canneal 0.99× 0.95× 0.99× 0.94× 0.97×
pbzip2 1.02× 1.0× 0.99× 1.0× 0.98×
httpd 0.71× 0.61× 0.62× 0.67× 0.64×
average 0.97× 0.91× 0.90× 0.91× 0.93×

Table 4. Optimization 1 and Optimization 2

6.2 Optimization 1 and Optimization 2

Table 4 shows the performance change by the addition of Optimization 1 when
Optimization 2 is always enabled, since Optimization 2 almost always improves
performance. On the average, when the vector clock history size is set to 10, the
maximum performance is achieved.

For some of the applications such as swaptions, Optimization 1 reduces the
performance, independent of the history size. In this case, unsuccessful searches in
the vector clock history utilize CPU so much that the gain of successful searches
cannot compensate the unsuccessful ones.

6.3 Optimization 1, Optimization 2 and Optimization 3

Table 5 displays the effect of Optimization 3 when Optimizations 1 and 2 are applied
with a vector clock history size of 10. The table shows the effect of limiting the total
segment count on both the execution time and the number of potential data races.

204 A. Sen, O. Kalaci

Since each application executes a different number of segments during execution,
the parameter that is altered is the percentage of number of segments with respect
to all segments in the original execution, displayed in row Limit. For instance, when
the total number of segments are limited to 50 % of the original execution for that
application, the performance is increased 17 % while only 4 of the potential data
races are missed. We observe that even when the limit is set to 4 % the number
of data races remain similar to the original and the performance improves by 31 %.
However, the execution time does not decrease in a linear fashion. A potential reason
for this is that the operation of destroying a segment requires a lot computation,
that is the destroyed segment must be removed from all of the segment sets that it
is a member of.

Limit 100 % 50 % 32 % 18 % 12 % 4 % 1 %
Application Time Race Time Race Time Race Time Race Time Race Time Race Time Race

×264 0.91× 27 0.90× 27 0.86× 27 0.86× 27 0.88× 27 0.80× 26 0.66× 4
freqmine 0.88× 23 0.41× 23 0.40× 23 0.36× 23 0.31× 23 0.29× 19 0.88× 19
vips 0.87× 64 0.88× 63 0.88× 59 0.87× 55 0.79× 53 0.77× 38 0.61× 0
swaptions 1.44× 0 1.40× 0 1.34× 0 0.98× 0 0.95× 0 0.87× 0 1.32× 0
bodytrack 0.97× 5 0.83× 3 0.73× 0 0.77× 0 0.80× 0 0.71× 0 0.64× 0
fluidanimate 0.81× 35 0.67× 34 0.68× 34 0.66× 34 0.61× 34 0.59× 33 0.79× 22
streamcluster 0.72× 14 0.61× 14 0.59× 14 0.57× 14 0.55× 14 0.44× 14 0.50 14
canneal 1.0× 1 1.01× 1 0.92× 1 0.90× 1 0.95× 1 0.91× 1 0.98× 1
pbzip2 0.99× 23 0.98× 23 1.00× 23 0.98× 20 0.98× 17 0.97× 17 0.96 0
httpd 0.68× 1 151 0.62× 1 121 0.58 1 113 0.61× 1 113 0.58× 1 097 0.57× 1 097 0.68× 56

average 0.93× 134 0.83× 130 0.80× 129 0.76× 128 0.74× 126 0.69× 124 0.80× 11

Table 5. Results of Optimization 1, Optimization 2 and Optimization 3. Limit between
100 %–1 %.

6.4 Optimization 1, Optimization 2, and Optimization 4

Table 6 displays the effect of Optimization 4 when Optimizations 1 and 2 are applied
with a vector clock history size of 10. The table shows that on average execution
times and the number of potential data races roughly converge to the sampling rate,
until 16 % sampling rate. When the sampling rate is decreased further, due to the
overhead of creating and managing segments, performance does not converge to the
sampling rate. Furthermore, for pbzip2, the execution time is not converging to
the sampling rate since this application makes too many I/O operations, which is
a bottleneck.

6.5 Vector Clock Operation Performance

In this section, we compare the average number of vector clock operations per mem-
ory access between the happens-before and hybrid detectors. In the happens-before
Algorithm 1, the number of vector clock comparisons is one or two depending on
the access type as can be seen from lines 3 and 8, respectively. As the proportion
of reads increases, the average number of vector clock comparisons per memory ac-
cess is expected to decrease. In the segment-based hybrid approach, the number

Hybrid Data Race Detection for Multicore Software 205

Sample Rate 100 % 71 % 50 % 16 % 5 % 2 %

Application Time Race Time Race Time Race Time Race Time Race Time Race

×264 0.92× 27 0.66× 23 0.49× 19 0.17× 12 0.11× 9 0.10× 3

freqmine 0.88× 23 0.21× 23 0.13× 23 0.04× 12 0.02× 11 0.06× 4

vips 0.87× 64 0.67× 53 0.49× 35 0.12× 17 0.07× 1 0.06× 0

swaptions 1.54× 0 0.74× 0 0.67× 0 0.23× 0 0.21× 0 0.19× 0

bodytrack 1.01× 5 0.91× 0 0.52× 1 0.16× 0 0.08× 0 0.07× 0

fluidanimate 0.82× 35 0.56× 28 0.44× 27 0.08× 12 0.06× 2 0.06× 2

streamcluster 0.74× 14 0.42× 13 0.33× 12 0.12× 5 0.04× 2 0.05× 0

canneal 1.02× 1 0.82× 1 0.65× 1 0.37× 0 0.28× 0 0.31× 0

pbzip2 1.04× 23 0.97× 13 0.81× 6 0.74× 1 0.72× 0 0.75× 0

httpd 0.71× 1 151 0.41× 797 0.29× 478 0.08× 111 0.12× 23 0.04× 15

average 0.96× 134 0.64× 95 0.48× 60 0.21× 17 0.17× 4 0.17× 2

Table 6. Results of Optimization 1, Optimization 2 and Optimization 4. Sample rate
between 100 %–2 %.

of vector clock operations depends on the size of the segment set for each memory
access which increases as the number of concurrent accesses to a memory address
increases. The comparisons are done in two different points in segment-based hybrid
algorithm in lines 3, 4, 6 of Algorithm 4 and line 8 of Algorithm 5.

Application Hybrid Happens-Before

x264 2.12 1.07

freqmine 14.87 1.16

vips 7.99 1.11

swaptations 4.78 1.04

bodytrack 2.85 1.13

fluidanimate 1.85 1.08

streamcluster 2.58 1.07

canneal 2.54 1.34

Firefox 0.34 1.07

pbzip2 0.99 1.07

httpd 22.80 1.37

average 5.70 1.13

Table 7. Average number of vector clock comparison per memory access

The number of vector clock operations cannot be determined statically. There-
fore, to calculate the average number of vector clock operations in both algo-
rithms, we create two variables (m access cnt, vc compare cnt) and on each mem-
ory access, we increment the value of m access cnt and on each vector clock com-
parison, we increment the value of vc compare cnt. Then, after the execution
completes, we calculate the vector clock comparison per memory access, vcavg =
vc compare cnt/m access cnt. Table 7 shows vcavg for both algorithms. As expected,

206 A. Sen, O. Kalaci

vcavg is 1.13 for happens-before algorithm, whereas, for segment-based hybrid algo-
rithm, vcavg is 5.70. Therefore, we can conclude that on average, happens-before
algorithm performs better than the hybrid segment-based algorithm in terms of the
average number of vector clock operations per memory access.

6.6 Memory Performance

We show the memory requirements of lockset, happens-before and segment-based
hybrid algorithms for each application in Table 8. The results show that hybrid
detector’s memory requirement is almost 40 % less than happens-before detector
and 30 % more than lockset detector. These results are expected since utilization of
vector clocks increases memory requirements remarkably. Happens-before detectors
are entirely based on vector clocks, lockset detectors do not utilize vector clocks and
hybrid detectors are partially based on vector clocks.

Application Lockset Hybrid Happens-Before

x264 794 884 2 785

freqmine 1 444 2 201 3 873

vips 1 502 2 220 3 564

swaptations 304 574 744

bodytrack 752 1 408 2 062

fluidanimate 674 886 1 240

streamcluster 513 590 574

canneal 750 904 1 766

pbzip2 721 910 1 104

Firefox 1 066 1 271 1 971

httpd 1 562 1 990 3 244

average 916 1 258 2 084

Table 8. Memory requirements for data race detection algorithms (MB)

7 SUMMARY OF RESULTS

We proposed four different optimizations on our algorithm to improve performance.
The first two improvements do not alter the number of data races that are detected in
any of the benchmark applications. When the first two optimizations are combined
they reduce the execution time by 10 %, if the vector clock comparison history cache
size is set to 10. The last two improvements alter both the execution time and data
races detected relative to the original application. For the third optimization, when
the total number of segments is limited to 50 % of the number of segments in the
original application, execution time decreases by 17 % where the number of potential
races almost remains the same. For the last optimization, average execution times
and the number of detected data races roughly converge to a user given sampling

Hybrid Data Race Detection for Multicore Software 207

rate. We also performed experiments which show that the memory requirements of
happens-before algorithm is more than segment-based hybrid algorithm, whereas,
hybrid algorithm executes more vector clock comparisons on the average than the
happens-before.

We showed that a hybrid race detector has several advantages over other types
of race detectors as described above. However, due to the use of instrumentation
there is a big slowdown for all detectors that can make it impractical for online
execution purposes. We discuss potential improvements in future work.

8 RELATED WORK

Dynamic data race detection algorithms proposed in the literature are based on
lockset approach, happens-before approach or combination of both approaches. In
this section we explore these approaches and their differentiated variants. Eraser [25]
is the pioneer of the lockset based detectors. Since lockset based detectors only
recognize locks, the synchronization formed among threads by other primitives such
as condition variables or barriers are ignored. Thus, false positives are inevitable
with lockset detectors.

Happens-before detectors inspect data races by verifying the happens-before
relation among memory accesses. The happens-before relation is represented by
vector clocks in many happens-before based detectors such as DJIT+ [21] and Lite-
Race [15]. Contrary to lockset detectors, happens-before detectors do not produce
any false positives. However, they miss some potential data races. In other words,
pure happens-before based detectors produce false negatives. DJIT+ and other
traditional happens-before detectors suffer from high execution time and memory
overhead. The size of vector clocks are proportional to the number of threads in
the system. Therefore, memory requirements and comparison complexity of vector
clocks are proportional to the thread count. In order to overcome these performance
issues several enhancements have been proposed. FastTrack [5] implements a scalar
data structure, called epoch, consisting of two integers, and replaces vector clocks
with epochs whenever possible. This replacement does not affect the precision of the
happens-before algorithm. iFT [7] represents an improvement over the FastTrack
method. It reduces the average runtime and memory overhead to 84 % and 37 %,
respectively, of those of FastTrack.

PACER [2] proposes a sampling method on FastTrack algorithm. It makes
a proportionality guarantee such that it detects potential data races at a rate equal
to the sampling rate. LiteRace [15] is another happens-before data race detection
algorithm that applies a different sampling approach than ours, and detects 70 % of
data races by sampling only 2 % of memory accesses. This work is orthogonal to
ours. With low sampling rates, Carisma [32] can detect race conditions also.

Hybrid data race detector algorithms combine happens-before and lockset de-
tectors. One of the main purposes of these detectors is to solve the false positive
problem of lockset approach and false negative problem of happens-before approach.

208 A. Sen, O. Kalaci

In [20], the combination of both approaches is implemented where their algorithm
incurs a higher overhead than lockset detector, but the number of false positives is
decreased. AccuLock [30] is a hybrid detection algorithm that combines FastTrack
and a new Lockset analysis. RaceTrack [31] implements a hybrid adaptive algorithm
that automatically pays more attention to the more suspicious code. The algorithm
aims to increase the precision while decreasing the overhead. Threadsanitizer [26]
and Helgrind+ [11] decrease the execution overhead by inspecting data races among
segments instead of memory addresses similar to ours. We implemented several
other optimizations in this work that do not exist in those works and present a more
formal treatment of segments, which was not done previously.

There are other approaches for race detection as well. Race detection can be
considered as a safety verification problem for concurrent programs. Model checking
is a formal verification technique that can find and prove the absence of races. Safety
or liveness can be given in the form of temporal logics such as LTL or CTL. Model
checking has been used in the context of race detection [8, 24]. However, due to the
exponentiality of both the program path and the scheduling space model checking
does not scale well to large programs. Runtime verification, similar to testing, deals
only with observed execution of a program, whereas model checking considers all
possible executions. Similar to model checking, in runtime verification temporal logic
specifications can be used and one can generate trace reorderings under scheduling
constraints to find bugs unseen in the observed execution [10].

In [27], the authors propose a new relation, called casually precedes, which is
a more generalized relation than happens-before relation. This new relation does
not sacrifice from the precision of happens-before relation, instead, it enables the
detector to produce fewer false negatives. In [10], the authors present a sound
predictive race detection technique based on a new foundation of maximal causal
model incorporating the control flow information. There is also work on parallelizing
data race detection [29] which shows that with 4 cores as the original application,
they can speed up the median execution time by 4.4 for a happens-before detector
and by 3.3 for a lockset race detector.

9 CONCLUSION

We presented a new segment-based hybrid data race detection algorithm with opti-
mizations, which is a combination of happens-before and lockset algorithms. Data
race detectors suffer from low performance and may produce many false alarms. We
use the concept of segments as well as several other optimizations to improve its
performance and reduce false alarms. We implemented our algorithms using a dy-
namic binary instrumentation platform. We compared our results with traditional
lockset-based and happens-before based data race detection algorithm on several
multithreaded applications and obtained favorable results. Our hybrid detector is
15 % faster than the happens-before detector and produces 50 % less potential data
races than the lockset detector.

Hybrid Data Race Detection for Multicore Software 209

As a future work, the segment method can be applied to happens-before al-
gorithm where it could improve the performance without sacrificing the precision.
Although our dynamic binary instrumentation allows us to work with binaries of
applications and does not require the source code, we will investigate other efficient
instrumentation techniques, such as compiler based instrumentation, to improve the
applicability of detectors in industrial settings.

Acknowledgment

This research was supported in part by Bogazici University Research Fund 13662.

REFERENCES

[1] Bienia, C.—Kumar, S.—Singh, J. P.—Li, K.: The PARSEC Benchmark
Suite: Characterization and Architectural Implications. International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), 2008, doi:
10.1145/1454115.1454128.

[2] Bond, M.D.—Coons, K. E.—McKinley, K. S.: PACER: Proportional Detec-
tion of Data Races. Proceedings of the 31st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’10), 2010, pp. 255–268, doi:
10.1145/1806596.1806626.

[3] Engler, D.—Ashcraft, K.: RacerX: Effective, Static Detection of Race Condi-
tions and Deadlocks. ACM SIGOPS Operating Systems Review – SOSP ’03, Vol. 37,
2003, No. 5, pp. 237–252, doi: 10.1145/945445.945468.

[4] Fidge, C.: Logical Time in Distributed Computing Systems. IEEE Computer,
Vol. 24, 1991, No. 8, pp. 28–33, doi: 10.1109/2.84874.

[5] Flanagan, C.—Freund, N. S.: FastTrack: Efficient and Precise Dynamic Race
Detection. Communications of the ACM, Vol. 53, 2010, No. 11, pp. 93–101, doi:
10.1145/1839676.1839699.

[6] Gilchrist, J.: Parallel Data Compression with bzip2. Proceedings of the Interna-
tional Conference on Parallel and Distributed Computing and Systems, 2004.

[7] Ha, O.-K.—Jun, Y.-K.: An Efficient Algorithm for On-the-Fly Data Race
Detection Using an Epoch-Based Technique. Scientific Programming, 2015,
Art. No. 205827, doi: 10.1155/2015/205827.

[8] Henzinger, A.T.—Jhala, R.—Majumdar, R.: Race Checking by Con-
text Inference. ACM SIGPLAN Notices, Vol. 39, 2004, No. 6, pp. 1–13, doi:
10.1145/996841.996844.

[9] The Apache HTTP Server Project – 2.2.22, 2014. Accessed: May 2014.

[10] Huang, J.—O’Neil Meredith, P.—Rosu, G.: Maximal Sound Predictive Race
Detection with Control Flow Abstraction. ACM SIGPLAN Notices, Vol. 49, 2014,
No. 6, pp. 337–348.

[11] Jannesari, A.—Bao, K.—Pankratius, V.—Tichy, F.W.: Helgrind+:
An Efficient Dynamic Race Detector. Proceedings of the IEEE International

https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1145/945445.945468
https://doi.org/10.1109/2.84874
https://doi.org/10.1145/1839676.1839699
https://doi.org/10.1155/2015/205827
https://doi.org/10.1145/996841.996844

210 A. Sen, O. Kalaci

Symposium on Parallel and Distributed Processing (IPDPS 2009), 2009, doi:
10.1109/IPDPS.2009.5160998.

[12] Kahlon, V.—Yang, Y.—Sankaranarayanan, S.—Gupta, A.: Fast and Ac-
curate Static Data-Race Detection for Concurrent Programs. In: Damm, W., Her-
manns, H. (Eds.): Computer Aided Verification (CAV ’07). Lecture Notes in Com-
puter Science, Vol. 4590, 2007, pp. 226–239.

[13] Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem. Communications of the ACM (CACM), Vol. 21, 1978, No. 7, pp. 558–565, doi:
10.1145/359545.359563.

[14] Luk, C.-K.—Cohn, R.—Muth, R.—Patil, H.—Klauser, A.—Lowney, G.—
Wallace, S.—Reddi, V. J.—Hazelwood, K.: Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’05), 2005, pp. 190–200, doi: 10.1145/1065010.1065034.

[15] Marino, D.—Musuvathi, M.—Narayanasamy, S.: LiteRace: Effective Sam-
pling for Lightweight Data-Race Detection. Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’09), 2009,
pp. 134–143, doi: 10.1145/1542476.1542491.

[16] Matsumoto, M.—Nishimura, T.: Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS), Vol. 8, 1998, No. 1, pp. 3–30, doi:
10.1145/272991.272995.

[17] Mattern, F.: Virtual Time and Global States of Distributed Systems. Proceedings
of the Workshop on Distributed Algorithms (WDAG), 1989, pp. 120–131.

[18] Naik, M.—Aiken, A.—Whaley, J.: Effective Static Race Detection for Java. Pro-
ceedings of the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’06), 2006, pp. 308–319, doi: 10.1145/1133981.1134018.

[19] Netzer, R.H.B.—Miller, B. P.: What Are Race Conditions? Some Issues and
Formalizations. ACM Letters on Programming Languages and Systems (LOPLAS),
Vol. 1, 1992, No. 1, pp. 74–88, doi: 10.1145/130616.130623.

[20] O’Callahan, R.—Choi, J.-D.: Hybrid Dynamic Data Race Detection. Proceed-
ings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’03), 2003, pp. 167–178, doi: 10.1145/781498.781528.

[21] Pozniansky, E.—Schuster, A.: Efficient On-the-Fly Data Race Detection in Mul-
tithreaded C++ Programs. Proceedings of the Ninth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’03), 2003, pp. 179–190.

[22] Pratikakis, P.—Foster, S. J.—Hicks, M.: LOCKSMITH: Context-Sensitive
Correlation Analysis for Race Detection. Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’06), 2006,
pp. 320–331, doi: 10.1145/1133981.1134019.

[23] POSIX Pthreads, IEEE Std 1003.1, 2013 Edition, http://www.unix.org/version4/
ieee_std.html, 2014.

[24] Qadeer, S.—Wu, D.: KISS: Keep It Simple and Sequential. ACM SIGPLAN No-
tices – PLDI ’04, Vol. 39, 2004, No. 6, pp. 14–24, doi: 10.1145/996841.996845.

https://doi.org/10.1109/IPDPS.2009.5160998
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1542476.1542491
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/781498.781528
https://doi.org/10.1145/1133981.1134019
http://www.unix.org/version4/ieee_std.html
http://www.unix.org/version4/ieee_std.html
https://doi.org/10.1145/996841.996845

Hybrid Data Race Detection for Multicore Software 211

[25] Savage, S.—Burrows, M.—Nelson, G.—Sobalvarro, P.—Anderson, T.:
Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM
Transactions on Computer Systems, Vol. 15, 1997, No. 4, pp. 391–411, doi:
10.1145/265924.265927.

[26] Serebryany, K.—Iskhodzhanov, T.: ThreadSanitizer: Data Race Detection in
Practice. Proceedings of the Workshop on Binary Instrumentation and Applications
(WBIA ’09), 2009, pp. 62–71, doi: 10.1145/1791194.1791203.

[27] Smaragdakis, Y.—Evans, J.—Sadowski, C.—Yi, J.—Flanagan, C.:
Sound Predictive Race Detection in Polynomial Time. Proceedings of the 39th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’12), 2012, pp. 387–400, doi: 10.1145/2103656.2103702.

[28] Voung, J.W.—Jhala, R.—Lerner, S.: RELAY: Static Race Detection on
Millions of Lines of Code. Proceedings of the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC-FSE ’07), 2007, pp. 205–214, doi:
10.1145/1287624.1287654.

[29] Wester, B.—Devecsery, D.—Chen, P.M.—Flinn, J.—Narayanasamy, S.:
Parallelizing Data Race Detection. Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’13), 2013, pp. 27–38, doi: 10.1145/2451116.2451120.

[30] Xie, X.—Xue, J.: Acculock: Accurate and Efficient Detection of Data Races. Pro-
ceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation
and Optimization (CGO ’11), 2011, pp. 201–212.

[31] Yu, Y.—Rodeheffer, T.—Chen, W.: Racetrack: Efficient Detection of Data
Race Conditions via Adaptive Tracking. Proceedings of the Twentieth ACM Sym-
posium on Operating Systems Principles (SOSP ’05), 2005, pp. 221–234, doi:
10.1145/1095810.1095832.

[32] Zhai, K.—Xu, B.—Chan, W.K.—Tse, T.H.: CARISMA: A Context-Sensitive
Approach to Race-Condition Sample-Instance Selection for Multithreaded Applica-
tions. Proceedings of the 2012 International Symposium on Software Testing and
Analysis (ISSTA 2012), 2012, pp. 221–231, doi: 10.1145/2338965.2336780.

https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/2451116.2451120
https://doi.org/10.1145/1095810.1095832
https://doi.org/10.1145/2338965.2336780

212 A. Sen, O. Kalaci

Alper Sen received his B.Sc. and M.Sc. degrees in electrical and
electronics engineering from Middle East Technical University,
Ankara, Turkey, in 1995 and 1997, respectively, and his Ph.D.
degree in electrical and computer engineering from the Univer-
sity of Texas at Austin, Austin, in 2004. He was Technical Staff
Member with Freescale Semiconductor, Austin, and an Adjunct
Faculty Member with the University of Texas at Austin, until
2009. Currently he is Associate Professor with the Department
of Computer Engineering, Bogazici University. His current re-
search interests include verification of hardware and software

systems, parallel programming, embedded systems, and system-level designs.

Onder Kalaci received his B.Sc. degree in computer engineer-
ing from Middle East Technical University, Ankara, Turkey, and
his M.Sc. degree in computer engineering from the Bogazici Uni-
versity. He is currently Ph.D. student at the Bogazici University.

Computing and Informatics, Vol. 37, 2018, 213–228, doi: 10.4149/cai 2018 1 213

ELLIPSE DETECTION IN FORENSIC
BLOOD STAIN IMAGES ANALYSIS

Tomasz Wójtowicz, Dariusz Bu lka

CYBID Ltd.
Kuźnicy Ko l latajowskiej 15c/L2
31-234 Kraków, Poland
e-mail: tomasz.wojtowicz@ii.uj.edu.pl

Abstract. This paper presents an algorithm for ellipse detection on stains of blood,
which is directly suited for the needs of forensic analysis. The algorithm is of the
edge-analyzing type. It performs convexity detection and is able to split contours
of overlapping ellipses by concave regions analysis. A filtering is applied to the fit
ellipses to reduce the results only to those results necessary for blood drop trajectory
tracing. Results for running time and fitting quality tests performed on real-life and
artificial data are presented. The solution answers to both quality and running time
expectations of the field of application.

Keywords: Ellipse detection, ellipse fitting, edge analysis, contour segmentation,
blood stain, forensic analysis

1 INTRODUCTION

The modern forensic analysis employs computer to recreate the site of an accident or
a criminal action with the use of dedicated modeling software, basically 3D, currently
also 4D (with time). The on-site measurements and taken pictures allow to create
a polygon mesh and orthophotomap textures for this mesh. One particular feature
found in pictures that meets with high attention are the blood stains. It is possible
to recreate the trajectory of a blood drop that created a given stain, producing
a valuable insight into the analysed event, if the geometric characteristics of such
stain are obtained. The trajectory tracing is a rather simple Newtonian/Bernoulli
mechanics, the really difficult part is to produce a proper geometric description of
a stain. This process is currently done manually by encircling a blood stain image

214 T. Wójtowicz, D. Bu lka

with a vector ellipse on screen. It is an exhausting and error-prone proces with
scenes that sometimes may contain tens or hundreds of blood stains. For this reason,
automation of this process is desired. This paper presents a working automatic blood
stain detection algorithm, which uses ellipse detection, and is implemented with the
aim to augment the scene modelling software.

There are substantial differences between the scientific interest in ellipse detec-
tion and the requirements of this particular field of application. The scientific papers
of the topic usually boast the fitness of their algorithms in the terms of a number
of detected ellipses and how complicated the input may be. On the other hand, the
aspect of running time is often skipped in those papers. For the forensic analysis
it is not necessary to detect every single ellipse there may happen. For instance it
would be more productive to produce 20 representative ellipses rather than flood
the user with 200 of them. By representative we mean such ones which will not
be found as a questionable evidence in the court – only highly regular stains really
matter, so the algorithm should not bother with disfigured stains. Therefore, we
have introduced a filtering mechanism to reduce the output to those ellipses which
would be the most relevant.

However, the running time becomes an important matter. The presented so-
lution is supposed to work in an interactive mode, aside or within the modelling
software. On the average computer found in the forensic laboratory the detection
time should take some 10 seconds. Be it 10 minutes, the solution is useless, as
the technician would do the job manually in that time. This restriction practically
eliminates more complicated approaches that are known for having a longer running
time.

Figure 1 presents a fragment of a taken picture of a real blood stain. This
is the input on which the algorithm is typically working and such is the average
quality. As seen in the picture, the edge of a stain is blurred, what in binarisation
produces a certain level of jagginess. The stain has a tail and occasional extruding
or intruding artifacts, all of which must be removed before the ellipse fitting takes
place. Moreover, occasionally two or more separate splatters intersect, resulting in
a cojoined stain just like the one in this picture. Cojoined stains are considered
a lesser quality evidence, nevertheless the algorithm must correctly detect them just
to know that status. The algorithm presented in this paper succesfully copes with
the problems mentioned above.

1.1 State of the Art

Ellipse detection is an important topic in computer image understanding with nu-
merous different applications, many of which in natural sciences, medicine and re-
lated fields. There are several different approaches to ellipse detection, employing
various techniques, what is reflected in running times and output qualities of particu-
lar solutions. One such approach, probably the eldest, are voting based algorithms,
such as Hough transform and its variants [3, 9]. Another approach is based on
genetic algorithms, such as [10] which executes the detection as a multi-objective

Ellipse Detection in Forensic Blood Stain Images Analysis 215

Figure 1. A stain of real blood consisting of two joined splatters, both with comet tails.
Also visible camera flash reflection

optimization. Third approach is edge analysis [2, 5, 6, 7, 8], to which the algorithm
presented herein belongs.

The edge-analysing designs typically implement following steps: region of in-
terest (ROI) extraction, arc detection and joining, ellipse fitting, result improve-
ment/filtering. For instance, the paper [5] proposes such algorithm, which extracts
the ROI with the use of gradient. Then with the use of Gaussian Mixture Model the
arcs are detected, then the Bayesian Ying-Yang Harmony learning algorithm super-
vises arc joining, ellipse fitting and result improvement. Unfortunately, the paper
skips a running time discussion. It appears upon the description that it is at least
O(n log n), with a large linear coefficient too. Another paper [1] proposes an ellipse
fitting algorithm with great capability of detecting intersecting ellipses. The paper
however skips the ROI extraction aspect, presenting only the edge analysis topic.
Aside the common elements, this algorithm performs its specific Ellipse Refinement
operations, which repeat certain steps until the best result is found. While offering
a very high quality of the result, the running time of this algorithm is not mention
but again appears too high.

The algorithm presented in this paper is similar to the algorithms such as [1, 5],
but we managed to create a solution which performs the above mentioned steps in
much simpler way, which results in a smaller period of running time, practically
around Θ(n) with just one exception (the surface filter, Sections 4, item 4), and still
maintaining the quality on the acceptable level.

2 BINARISATION

Binarisation is the process of highlighting the regions of interest, which in case of
this edge-analysing algorithm would be the outlines of blood stains. There are two
well known approaches: a gradient-based and a direct classification. The gradient-
based method is very common in edge detection. It exploits the fact that an edge is
a boundary between different colors or shades, therefore difference in pixel values will
be the greatest at the edge. We have tested this method for blood stains and found it
working, yet not satisfactorily. The differences among the obtained gradient values
resulted in incomplete, torn outline, which would complicate the further processing.

216 T. Wójtowicz, D. Bu lka

Some of the effort of the algorithms [1, 5] is to combat the problem of gradient-based
binarisation.

Because the blood stains are all in a narrow and very well specified range of
color, we have discovered that direct classification works very well in this application.
The direct classification method works by inspecting each pixel whether it depicts
blood. In order to execute this method, the input image is converted into HSV
(hue, saturation, value) color space, in which the possible colors of blood can be
represented as one continous subset of each component. The decision process for
each pixel is simply to check whether its HSV components are within the expected
ranges.

Obviously there will be situations where the algorithm should look for stains of
color outside the predefined normal blood range. For instance, with time, a blood
stain may fade even to invisibility. The forensic technicians reveal such ones with
luminol, after which the blood stain will be of blue color. Also liquids other than
blood may be of interest. To answer these needs, our application provides a “color
picker” tool, with which a user should point at least two possibly different pixels
within the ROI in order to establish custom ranges for classification (an appropriate
margin will be added automatically). This color picker can also be used to narrow
down the ranges for normal blood stains. Note that whether the liquid would be
arterial blood, venous blood, luminol treated, or perhaps coffee, all the stains in
one picture would be of the same color, therefore color picking of one representative
stain should result in all of them being properly detected.

The result of this process are white stains on the black background. The outline
of a stain may now be easily extracted with any well known algorithm. Note that in
this approach the result is always a closed loop outline without any forementioned
problems related to the gradient-based method. The extracted outline is stored not
as a 2D image, but as a one dimensional list of coordinates which preserves the
neighborhood of edge pixels.

3 OUTLINE ANALYSIS

The purpose of this stage is to obtain out of the outline a vector ellipse described by
five parameters (x, y, a, b, φ) where x, y are the center point coordinates, a, b are the
axes lenghts and φ is the direction angle. The ellipse fitting algoritm will produce
a worthy result only if the fitting is perfomed on pixels which belong to an elliptic
curve. Figure 3 presents an outline obtained from the blood stain image in Figure 1
and it is full of unwanted features. The processing discussed in this section filters the
outline to obtain only elliptic arcs and arranges them in sets representing separate
ellipses if so necessary.

3.1 Convexity and Concavity Detection

In this step it is decided whether a given pixel belongs to the convex or concave frag-
ment of the outline. First in order to do so, each pixel is described by the parameter

Ellipse Detection in Forensic Blood Stain Images Analysis 217

value of turn which marks how much the curve turns in the proximity of this pixel
and in which direction. The value of turn for a given pixel B is calculated based
on two auxiliary pixels A and C which are step away in the pixel neighbourhood
sense. The step should be high enough to ignore noise and jagginess occuring due to
binarsation of blurred edge, yet it must be low enough not to overlook the concavity
we are trying to find. The best value is just above the point where the average
noise no longer causes false detection. We have tried different functions calculating
the step value from the pixel count in the outline, among which constant and linear
functions, to establish that square-root-like curve works the best. On our test set,
the step = 30 works optimally for outlines larger that 200 pixels. For the smaller
ones it needs to be firmly reduced, but for the greater ones it does not need to grow
equally fast, hence the use of square root curve.

The formula (1) defines the value of turn (Bα) as a measurement of how much
~BC bends from ~AB (Figure 2). It is 0.0 when ABC are colinear, and rises propor-

tionally. After the (1) calculation, a plus or minus sign is assigned to specify whether
it turns left or right. For this reason, the entire outline must be traversed in one
direction, because ABC produces the same value but opposite sign than CBA.

Bα = acos

(
~AB · ~BC
|AB||BC|

)
. (1)

Figure 2. The method of measuring the value of turn

3.2 Outline Segmentation

In a closed convex outline every pixel’s value of turn is of the same sign, provided
the outline was traversed in one direction. Consequently, any concave feature will
manifest itself as the opposite sign. In order to determine which sign represents the
convexity, one must only check which sign is more frequent. In this step the convex
segments are being identified on that basis (Figure 3). It is important to note, that
we allow to be classified as convex the pixels whose value of turn is slightly of the
opposite sign, like 0.001 radian. This small overlap neutralizes the effect of random
classification of straight segments.

218 T. Wójtowicz, D. Bu lka

Figure 3. The outline of stain from Figure 1 with convex parts (black) identified

3.3 Segment Joining

Each segment obtained in the previous step is a convex fragment of the investigated
stain’s edge. If fed into the fitting algorithm right now, it would result in a separate
ellipse fit for each such segment (Figure 4), which is a wrong result. The segments
must now be organized into sets such that each one contains fragments of only one
ellipse.

Figure 4. Useless fitting of unjoined segments

Only the neighbouring segments may be joined by their appropriate ends, thus
if there are N segments out of the outline, there are exactly N joining decisions to
be made. The general idea of the decision making process devised by the authors
is depicted in the Figures 5 and 6. The thick gray lines are the convex segments,
the thinner one is the earlier detected concave impurity. If the tangent versors are
facing the same direction nearby the corresponding ends of the segments, we assume
that the segments are parts of the same curve and therefore should be joined (Fig-
ure 5). Otherwise, if the versors are facing essentially different direction, like around
V-shaped junction of two splatters, then we assume these are separate curves (Fig-
ure 6). The Euclidean distance limit also must be taken into consideration. Note
Figure 6: the versors far enough from the V-shaped junction are facing the same
direction. Without the distance limit this would be mistaken as an instance of
Figure 5 case.

In our implementation, the tangent versor in each pixel is represented as a single
value named azimuth. It is an angle between the tangent versor and one arbitrarily

Ellipse Detection in Forensic Blood Stain Images Analysis 219

Figure 5. Tangent versors around an impurity in the stain’s edge

Figure 6. Tangent versors around a two splatters’ junction point

chosen straight line. We are using the already obtained value of turn information
to calculate the azimuth. If for the ith pixel in the whole outline we denote iα for
the value of turn and iβ for the azimuth, then we calculate it as:

iβ =
1

step

i−1∑
0

iα. (2)

This way, the tangent versor of the 0th pixel becomes the arbitrally chosen
straight line. This method turns out to be very accurate – the azimuth value cal-
culated again in the 0th pixel after passing the entire outline misses 2π by less than
10−8 radians, up to 10−13 in the best noted cases.

In the decision process of joining for given two neighouring segments, each pair
of pixels, one taken from the first segment, the other from the second, is inspected.
This is the only O(n2) operation in this part of the algorithm, however, with the
Euclidean distance limit mentioned earlier, which should be set between 0.25 and
0.5 of step, only very limited fraction of pixels is inspected on the corresponding
ends of the segments. Considering that the number of segments is also very limited,
the resulting running time impact is negligible.

For each inspected pair of pixels the absolute difference of azimuths is considered.
The segments will be joined if the difference is below the limit which differentiates
between cases of Figure 5 and Figure 6. Additionally, to help with more accurate
fitting, the pixels from that pair, which has the smallest difference in azimuth,
become the new endings of their respective segments.

Segments getting joined means that they are placed in one set as still separate
segments. It does not mean that the gap between their respective ends is filled with
artificial pixels. The ellipse fitting algorithm does not require that the input con-
stitutes one connected component, and also there might be certain legal objections

220 T. Wójtowicz, D. Bu lka

on processing the evidence by the use of assumptions. The proposed system, as it
is now, operates only on the real data.

3.4 Ellipse Fitting

The sets of segments are now fed into the ellipse fitting algorithm. The results are
vector ellipses. Figure 7 shows the result in regard to the input segments, whereas
Figure 8 shows the result superimposed on the input picture. More about the ellipse
fitting algorithm is presented in Appendix A.

Figure 7. Remaining fragments of outline (black) being the input to the fitting algorithm
and vector ellipses out of them (gray). This result is correct.

Figure 8. Vector ellipses from Figure 7 imposed on the original picture before filtering.
Note the largest ellipse exceeds the back part of the splatter. Just like the “comet tail”,
this back part is deformed by viscosity phenomenons. What really matters is how well
the vectorized ellipse follows the front part of the splatter and in the shown case it is
a successfull result.

4 RESULT FILTERING

The results from previous stage are vector ellipses produced from convex sets of pix-
els. However, not all of them represent a worthy result. One problem, as visible in
Figure 8, is that additional fittings happened on convex parts of the tails. Another
one are incorrect fittings whenever the input segment was too short to produce a fit-
ting correctly covering the edge of a stain. We employ a system of four consecutive
filters:

Ellipse Detection in Forensic Blood Stain Images Analysis 221

1. The thickness filter removes all results which smaller axis is below 6 pixels.
Aside the tiny ellipses which definitely are not a worthy results, occasionally
there happen to be results of the fitting algorithm’s instability on near-straight
segments: grotesque ellipses of 0-pixel width and height exceeding the picture’s
dimensions.

2. The bounding-box filter compares the bounding boxes of an ellipse and the out-
line from which it was produced. If the ellipse protrudes over a specified margin,
it is deleted, because ideally the ellipse should be exactly over the outline.

3. The area filter calculates from the bounding box the area covered by the ellipse.
For all ellipses out of a single outline, removed are the ones whose area is less
than 25 % of the largest one of them.

4. The surface filter inspects the surface encircled by an ellipse on the binarized
image and calculates the percentage of the “white” area, effectively answering
to what extent the ellipse encircles a bloody surface. If it is below 90 %, the
ellipse is removed.

The filters 1 and 3 deal with the ellipses in the tail. The filters 2 and 4 deal
with the fittings which do not encircle a stain correctly. In case of the filter 4 also
correct fittings on damaged stains are removed, because for a court evidence only
these matter which are being an unquestionable evidence and it has been assumed
that 90 % of undamaged surface be the threshold.

As for running time, the filters 1, 2 and 3 require only one conditional check
each, also bounding box and area calculation is not exhausting, therefore their time
impact is negligible. On the other hand, the filter 4 needs to inspect every single pixel
in the encircled area, therefore its running time is like O(n2). In the aim of speeding
it up we had been testing solutions where only a fraction of all pixels is visited,
chosen by either pattern or Monte Carlo method. However, as the running time
tests have shown (Section 5.2), the solution meets the assumed time requirements
with the filter visiting all the pixels. Note that, if there were no filter 2, the filter 4
would very well cover its functionality, therefore the filter 2 works as a preprocessor
which speeds up the filter 4.

5 PERFORMANCE TESTING

The presented algorithm has been tested in two separate experiments, one using
real, the other artificial images. The first one used 45 pictures of real blood stains
provided by a forensic laboratory of the police. The purpose of this experiment
is to test the quality of produced results on this kind of pictures for which it has
been designed. Because of the limitations of this experiment, which are mentioned
below, another experiment with artificial images has been performed to capture the
algorithm performance in more quantitative terms.

222 T. Wójtowicz, D. Bu lka

5.1 Real Images

The basic problem with images depicting real blood stains is that there is no a priori
information of what stains are there on the picture and where, therefore there is no
straighforward way to tell which are the correct results. The algorithm has been
designed to replace a human job, therefore we worked out the problem by performing
manual encirclings, just like forensic technicians do, and then compared the results
with the output of the algorithm. Whenever a detected ellipse matches the manual
one within visually acceptable tollerance, we record a success event (S). If a detected
ellipse intersects a manual one, yet its properties exceed the tollerance, then we
record a mistake (M). If there is a manual ellipse and no detected ellipse, we call it
underfit (U) and the opposite case we call overfit (O). By treating manual ellipses
as one population and the detected ones as the other, we are able to calculate Dice
coefficient out of the aforementioned sets (# denotes set’s cardinality):

Dice =
2 ·#S

#(S ∪M ∪ U) + #(S ∪M ∪O)
. (3)

One important matter discovered in this experiment is that not all provided
pictures were worthy as an input. Good pictures are these which depict the stains
in a proper resolution – stain’s diameter of 50 pixels would be a desirable value,
with no upper limit. In the bad pictures the blood stains are tiny, usually around
the established lower threshold of 6 pixel diameter. With such low resolution the
signal-to-noise ratio is low and so is the numerical stability, in effect giving poor
results. Apparently the bad pictures have been taken only to provide a photographic
overview of the scene, whereas the good one were taken with the blood tracing in
mind. For the bad ones even manual encircling is not a sound option as there are
uncertainties in human understanding of the picture.

On the good pictures, 154 ellipses were detected manually, the algorithm de-
tected 222, getting Dice coefficient of 69.4 %. Expressing the classes as a fraction
of the manual result we get: success S = 83.9 %, mistakes M = 5.8 %, underfit
U = 10.3 % (sums up to 100 % of manual fittings), and overfit O = 51.83 %. The
best case for one file was: Dice 78 %, S = 95.5%, M = 3.0 %, U = 1.5 % and
O = 46.3 %. The numbers of success, mistakes and underfit show that the algo-
rithm has a desirable tendency to fit correctly or does not fit at all. On the other
hand the relatively high number of overfits show that it also finds irrelevant objects.
However, for a human operator it is much easier job to select and delete such overfits
rather than perform the encirclings. An auxiliary experiment has shown that raising
the size threshold from 6 to 12 pixel can reduce the number of overfits by the factor
of 3, however also affecting other classes by a lesser degree.

In the case of bad pictures, there results are even incomparable between the files,
as there are controversies in human interpretation of the picture. In general, the
results are worse, as for instance in one file it was Dice 32.8 %, S = 40.7 %, mistakes
not counted – too small stains, underfit U = 59.3 % and overfit O = 107.4 %. In

Ellipse Detection in Forensic Blood Stain Images Analysis 223

another one it was: Dice 46.8 %, S = 66.7 %, M = 23.3 %, U = 10 %, O = 95 %.
The increase in mistakes and overfit in comparison to good pictures is directly linked
to the problems with numerical stability. Note that the bad file is only, if the
picture contains only the too small stains. If a picture is mixture of too small and
appropriate stains, then we can skip the tiny ones and treat the larger ones as the
good input.

5.2 Running Time

The algorithm has been designed with the running time in concern, because it is
supposed to work as a tool in an interactive process, therefore it should not overuse
the operator’s patience. Note that the parts of the algorithm dealing with the largest
input are all Θ(n), and whenever there is a part of O(n2) (Sections 3.3, 4 item 4),
the “n” is significantly smaller. It has been assumed for practical reason, that 10
seconds is target running time for an average file.

Our time testing setup consists of a laptop of the year 2013, Intel Core i5-3340M
2.70 GHz, 16 GB DDR3-1600 RAM, OS Windows 7 Professional. The application
was compiled under Visual Studio 2010 in the Release mode, with the use of OpenCV
library’s functions (findContours, fitEllipse) and structures (Mat) as well as STL
containers (vector, list, deque, set). The code was executed in one thread – no
pararell processing.

The test consisted of the mentioned 45 pictures of real blood stains, each having
between 12 and 18 million pixels. The average running time was 2.464 seconds with
standard deviation of 0.431 sec., giving an average throughput of 7.16 million pixels
per second (standard deviation 0.82 Mpix/sec.). The running time is mostly affected
by the number of detected ellipses: correlation coefficient of 76 %. The correlation
between running time and amount of bloody surface is 57 % and between running
time and the number of pixels in the picture is the least of them of 54 %. Moreover,
the correlation between number of ellipses and amount of bloody surface is only
44 %. As expected, the number of ellipses affects the throughput with correlation
coefficient of −80 %. The target time of 10 seconds should be attainable even on
older computers.

5.3 Artificial Images

The artificial image consists of a painted ellipse. Because we know exactly what
were the parameters for the painting routine, we can precisely measure how well
the detection results match. In this test we skip the binarisation step (the painted
ellipse would either binarize fully or not at all), as well as we skip the filters, to
measure just the performance of the edge-analysis, joining and fitting described in
Section 3.

The most interesting question is how the algorithm performs on the damaged
outline, just as it may occur with real stains. For this reason we introduced a damage
mechanism – the surface of the ellipse is punctured randomly with artifacts. We

224 T. Wójtowicz, D. Bu lka

use two types of artifacts: the fine one is a 1-pixel square which imitates “pepper
and salt” noise such as from high ISO sensitivity, bad pixels on camera sensor and
physical impurites of a size of a grain of sand. The coarse one is 3x3 square to imitate
impurities like hairs, fibers, tangles of dust, air bubbles, but also some camera flash
reflections. The parameter damage factor D represents the percentage of the ellipse’s
surface which is lost due to the applied damage. Obviously, the isolated artifacts
inside the ellipse have no contribution to the test, as the algorithm works solely
on the outline, but those which coincide with the edge evidently produce an effect.
Because of the stochastic nature of the damage process, each test was repeated 100
times and the average was taken to eliminate coincidence.

In each test an ellipse of sizes 180×300 (Large), 100×150 (Medium) and 40×70
(Small) was painted as if it came out of binarisation, then damaged in either Fine
or Coarse process (producing 6 cases: LF, MF, SF, LC, MC, SC) to the assumed
level of D = [0.0; 0.55], step 0.05. Such setup resulted in 7 200 individual test
instances. The parameters of the painted ellipse (x, y, a, b, φ) and the detected one
(x′, y′, a′, b′, φ′) were used to calculate the following scores of accuracy A:

Aφ = 100 %− |φ− φ
′|

π
, (4)

Aab = 100 %−
|a
b
− a′

b′
|

a
b

, (5)

Axy = 100 %−
√

(x− x′)2 + (y − y′)2√
w2 + h2

. (6)

In the angular accuracy Aφ formula (4), π is the range of the returned value by
the fitting algorithm. In the center point accuracy Axy formula (6), w, h represent
the dimensions of a bounding rectangle of the original ellipse.

As seen in Figures 9, 10, 11, the algorithm works reliably up to D = 30 %.
Keeping in mind, that the stains with surface damage above 10 % would be discarded
by the surface filter anyway, this leads to the conclusion that the devised algorithm
is well capable of performing the entrusted task.

6 CONCLUSION

The blood drop trajectory tracing functionality of the forensic modelling software
requires the blood stains to be vectorised in the form of ellipses. The solution pre-
sented herein provides automation of this process, which otherwise is done manually.
The authors’ experience in manual encircling for the need of the Section 5.1 test has
shown that manual encircling is a highly exhausting task. It may take from 5
to 20 minutes to perform manual fitting on one picture file, however the effort re-
quired to establish carefully all the ellipse’s parameters with 1 pixel precision, and
so for each one ellipse individually, makes the operators wearier with each following

Ellipse Detection in Forensic Blood Stain Images Analysis 225

Figure 9. Angular accuracy

Figure 10. Axes accuracy

file, tempting them to start skipping certain stains for their comfort. Considering
that for forensic technicians the manual fitting is not the essence of their job, rather
a small but laborious task in the chain of many other, the automatic detection is
going to spare technicians’ energy for tasks where human input is more worthy.

The design of this solution took into account the qualitative requirements of what
possibly may be a court evidence, so the algorithm tries to emphasize the results
on the most trustworthy appearing input. The obtained test results show that the
quality of the produced result meets the requirements of the field of application so
does the running time.

226 T. Wójtowicz, D. Bu lka

Figure 11. Center point accuracy

Acknowledgements

This work has been financially supported by the National Centre for Research and
Development (http://www.ncbr.gov.pl/) as a part of the project “Reconstruction
of the Course of Events Based on Bloodstain Pattern Analysis” (DOBR/0006/R/
ID1/2012/03) realized within Defence and Security Programme (2012–2015).

Thanks to professor Zbis law Tabor, Ph.D. of Cracow University of Technology
for critical feedback during the development process.

Thanks to CLKP, the Central Forensic Laboratory of the Police (http://clk.
policja.pl/) for supplying the pictures of real blood stains.

A ELLIPSE DETECTION BY CONIC FITTING

The paper [4] investigates six approaches to the ellipse detection, four of which are
of the algebraic distance type with the running time of 26n, whereas the two other
have 50n and 1 300n. The algebraic distance is the fastest approach and therefore
it is widely used for the task, as in the OpenCV’s function fitEllipse used in our
implementation.

With the help of the conic section equation:

v5x
2 + v4xy + v3y

2 + v2x+ v1y + v0 = 0 (7)

the algebraic distance seeks such v = [v5, v4, v3, v2, v1, v0]
T which satisfies the above

equation with the smallest sum of errors for the given input set S = {(x, y)}. The
four algebraic distance algorithms described in [4] differ in the way how it is achieved.

http://www.ncbr.gov.pl/
http://clk.policja.pl/
http://clk.policja.pl/

Ellipse Detection in Forensic Blood Stain Images Analysis 227

One way is to create the design matrix D of n × 6 (n is the count of S) such that
D · v implements the Equation (7). Now, the sought result can be found by solving
an eigensystem

DTDv − λv = 0. (8)

The sought value v will be the eigenvector corresponding to the smallest eigen-
value λ. In the final step, the obtained v is transformed into the commonly used
(x, y, a, b, φ).

REFERENCES

[1] Bai, X.—Sun, C.—Zhou, F.: Splitting Touching Cells Based on Concave Points
and Ellipse Fitting. Pattern Recognition, Vol. 42, 2009, No. 11, pp. 2434–2446, doi:
10.1016/j.patcog.2009.04.003.

[2] Chia, A. Y.-S.—Rahardja, S.—Rajan, D.—Leung, M. K.: A Split and Merge
Based Ellipse Detector with Self-Correcting Capability. IEEE Transactions on Image
Processing, Vol. 20, 2011, No. 7, pp. 1991–2006.

[3] Duda, R. O.—Hart, P. E.: Use of the Hough Transformation to Detect Lines and
Curves in Pictures. Communications of the ACM, Vol. 15, 1972, No. 1, pp. 11–15,
doi: 10.1145/361237.361242.

[4] Fitzgibbon, A. W.—Fisher, R. B.: A Buyer’s Guide to Conic Fitting. Proceed-
ings 6th British Machine Vision Conference (BMVC ’95), Birmingham, 1995, Part 2,
pp. 513–522, doi: 10.5244/C.9.51.

[5] Huang, L.—Ma, J.: A Probabilistic Mixture Approach to Automatic Ellipse De-
tection. Proceedings of the International Conference on Image Processing, Computer
Vision, and Pattern Recognition (IPCV 2013), 2013, pp. 573–580.

[6] Kim, E.—Haseyama, M.—Kitajima, H.: Fast and Robust Ellipse Extraction from
Complicated Images. Proceedings of IEEE International Conference on Information
Thechnology and Applications (ICITA 2002), 2002, pp. 357–362.

[7] Mai, F.—Hung, Y. S.—Zhong, H.—Sze, W. F.: A Hierarchical Approach for
Fast and Robust Ellipse Extraction. Pattern Recognition, Vol. 41, 2008, No. 8,
pp. 2512–2524, doi: 10.1016/j.patcog.2008.01.027.

[8] Prasad, D. K.—Leung, M. K. H.—Quek, C.: ElliFit: An Unconstrained, Non-
Iterative, Least Squares Based Geometric Ellipse Fitting Method. Pattern Recogni-
tion, Vol. 46, 2013, No. 5, pp. 1449–1465, doi: 10.1016/j.patcog.2012.11.007.

[9] Xu, L.—Oja, E.—Kultanen, P.: A New Curve Detection Method: Random-
ized Hough Transform (RHT). Pattern Recognition Letters, Vol. 11, 1990, No. 5,
pp. 331–338, doi: 10.1016/0167-8655(90)90042-Z.

[10] Yao, J.—Kharma, N.—Grogono, P.: A Multi-Population Generic Algorithm for
Robust and Fast Ellipse Detection. Pattern Analysis and Application, Vol. 8, 2005,
No. 1-2, pp. 149–162.

https://doi.org/10.1016/j.patcog.2009.04.003
https://doi.org/10.1145/361237.361242
https://doi.org/10.5244/C.9.51
https://doi.org/10.1016/j.patcog.2008.01.027
https://doi.org/10.1016/j.patcog.2012.11.007
https://doi.org/10.1016/0167-8655(90)90042-Z

228 T. Wójtowicz, D. Bu lka

Tomasz W�ojtowicz received his M.Sc. in computer science
from Jagiellonian University and is a Ph.D. candidate therein.
His research interests include pattern recognition, computer vi-
sion, artificial inteligence and also biocybernetics and evolution-
ary biology.

Dariusz Bu lka received his M.Sc. in computer science from
AGH University of Science and Technology. He is the Chief Engi-
neer in CYBID Ltd., a company developing specialized software
and systems for forensic analysis, simulations, data gathering
and crime/accident event reconstruction.

Computing and Informatics, Vol. 37, 2018, 229–243, doi: 10.4149/cai 2018 1 229

PARALLELIZATION OF ANT SYSTEM FOR GPU
UNDER THE PRAM MODEL

Andrej Brodnik

Department of Information Science and Technology
University of Primorska
Glagoljaška 8
6000 Koper, Slovenia
&
Faculty of Computer and Information Science
University of Ljubljana
Tržaška cesta 25
1000 Ljubljana, Slovenia
e-mail: andrej.brodnik@upr.si

Marko Grgurovič

Department of Information Science and Technology
University of Primorska
Glagoljaška 8
6000 Koper, Slovenia
e-mail: marko.grgurovic@student.upr.si

Abstract. We study the parallelized ant system algorithm solving the traveling
salesman problem on n cities. First, following the series of recent results for the
graphics processing unit, we show that they translate to the PRAM (parallel ran-
dom access machine) model. In addition, we develop a novel pheromone matrix
update method under the PRAM CREW (concurrent-read exclusive-write) model
and translate it to the graphics processing unit without atomic instructions. As
a consequence, we give new asymptotic bounds for the parallel ant system, result-
ing in step complexities O(n lg lg n) on CRCW (concurrent-read concurrent-write)
and O(n lg n) on CREW variants of PRAM using n2 processors in both cases. Fi-
nally, we present an experimental comparison with the currently known pheromone

230 A. Brodnik, M. Grgurovič

matrix update methods on the graphics processing unit and obtain encouraging
results.

Keywords: Parallel random access machine, graphics processing unit, ant system,
metaheuristics, traveling salesman problem, combinatorial optimization

Mathematics Subject Classification 2010: 68-W10

1 INTRODUCTION

In this paper, we study the parallel variants of the Ant System (AS) algorithm,
which is part of the ant colony optimization (ACO) family of metaheuristics. The
ACO family of algorithms simulate the behavior of real ants which find paths using
pheromone trails. A number of variations on the basic idea exist, such as the Ant
System [7], Ant Colony System [6], the MAX -MIN Ant System [16] and many
others. In this paper we focus on the canonical Ant System algorithm, which can be
adapted to solve a variety of combinatorial optimization problems such as vehicle
routing [2], quadratic assignment [13], subset problems [11] and others. In this
paper, we will limit ourselves to the traveling salesman problem (TSP).

The adoption of the graphics processing unit (GPU) as a computing platform in
recent years has triggered a wave of papers discussing the parallelization of known
algorithms. Recent papers [4, 12, 17] have focused on providing a parallel version
of Ant System for the GPU. In this paper, we show that these algorithms are more
general and can be studied in absence of GPU specifics. In line with this observation,
we suggest a move towards more well-understood theoretical models such as the
parallel random access machine (PRAM). This greatly facilitates asymptotic analysis
and subsequently allows one to see where the algorithms could be improved.

The main goal of this paper is to investigate efficient AS algorithms for vari-
ants of the PRAM model of computation and to identify how these might be useful
in practice. We break down the AS algorithm into two separate phases: Tour
Construction and Pheromone Update. Then we show that the existing GPU algo-
rithms for AS can be translated to the PRAM model, which permits to perform
asymptotic analysis. While Tour Construction remains efficient even on PRAM, we
identify bottlenecks in the Pheromone Update phase, which are caused by reliance
on atomic instructions that are not readily available on most variants of PRAM (or
older GPUs). We overcome this with a novel Pheromone Update algorithm that
does not require such instructions. Finally, we show that these results are relevant
in practice when atomic instructions are not available. We do this by implementing
the resulting Pheromone Update algorithm on the GPU and we obtain significantly
better results in case of no atomic instructions.

The paper is structured as follows. In Section 2 we briefly introduce the PRAM
model, the traveling salesman problem, and the Ant System algorithm in its se-

Parallelization of Ant System for GPU under the PRAM Model 231

quential form. In Section 3 we provide PRAM implementations of the Ant System
algorithm and show how to improve them, and finally we provide results of empirical
tests on the GPU. In Section 4 we provide conclusions and suggestions for future
work.

2 BACKGROUND

2.1 Parallel Random Access Machine

The PRAM model is a variant of the random access machine (RAM) adapted to
parallel execution. We denote the number of processors by p. In this paper, we deal
with two types of synchronous PRAM: concurrent-read exclusive-write (CREW) and
concurrent-read concurrent-write (CRCW). The CREW variant assumes that each
memory location is tied to a specific processor, and only that processor can write
to it. However, any processor can read from any memory location. In contrast,
the CRCW variant has no such restriction. Since under CRCW all processors can
write to the same location, it is typical to parametrize the CRCW variant by how
the competing writes are handled. In this paper we consider two standard ways of
doing that:

• COMMON: All processors must write the same value.

• COMBINING: All values being concurrently written are combined using some
operator (e.g. addition, maximum, etc.).

In this paper we will focus on CREW, CRCW and COMBINING CRCW algorithms,
where by CRCW we mean algorithms that run under the COMMON variant. An im-
portant parallel operation which we will make extensive use of is finding the largest
element in an array of n elements. Throughout the paper we will use S(n) to denote
the step complexity of a parallel algorithm, i.e. the number of steps executed. The
work complexity of an algorithm, denoted by W (n), corresponds to the total num-
ber of operations executed (over all processors). It is important to note that finding
the maximum among n numbers can be performed in S(n) = O(lg lg n) time under
CRCW [15] with p = n. However, it is only possible in S(n) = O(lg n) time under
CREW with the same number of processors. The work complexity is W (n) = O(n)
in both cases. Under COMBINING CRCW, finding the maximum can be performed
in S(n) = O(1) and W (n) = O(n) by making use of the combining mechanism in
a trivial way (i.e. setting it to be the maximum operation).

2.2 The Traveling Salesman Problem

In the traveling salesman problem (TSP), we are given a complete, directed graph
G = (V,E), with V and E being the sets of vertices and edges, respectively. We are
also given a function ` : E → R+ which maps each edge to its length. To simplify
notation, we define n = |V |. The task, then, is to produce a permutation Π of V

232 A. Brodnik, M. Grgurovič

with the least cost. Let Πk denote the vertex at position k in the permutation Π.
The cost of a permutation Π of V is then defined as:

`(Πn,Π1) +
∑

2≤k≤n

`(Πk−1,Πk).

Observe, that even though our formulation requires a complete graph, sparse
graphs can be handled by inserting the missing edges with length ∞. Undirected
graphs can also be handled simply by creating two directed edges for each undirected
edge, with equal lengths assigned to them.

2.3 Ant System for the TSP

As in the description of the TSP problem, we assume we are given a directed, com-
plete graph G = (V,E). We then define the heuristic matrix η and the pheromone
matrix τ , both of dimensions n × n. The heuristic matrix is constant throughout
the algorithm and represents the quality of an edge (u, v). Formally, we choose
ηu,v = 1/`(u, v). The pheromone matrix changes throughout the execution of the
algorithm. Two parameters α and β regulate the importance of pheromone and
heuristic information, respectively.

Algorithm 1 Sequential Ant System

1: procedure AntSystem(α, β, ρ, totalIterations)
2: Allocate matrices of size n× n: η, τ , chance, π, tabu
3: Allocate vector of size n: score
4: for iter := 1 to totalIterations do
5: Initialize(α, β, τ, η, score, chance, π, tabu)
6: TourConstr(η, score, chance, π, tabu)
7: PheromoneUpdate(τ, ρ, score)
8: end for
9: end procedure

Ants then build solutions according to:

p(v|p, S) =
ταp,v · ηβp,v∑

w∈N(p,S) τ
α
p,w · η

β
p,w

(1)

where p(v|p, S) is the probability of choosing vertex v when at position p and ac-
cording to the current partial solution S. The feasible neighborhood of the current
incomplete solution is defined by N(p, S). Since the TSP does not permit returns
to previously included vertices (except for the last vertex), those vertices have prob-
ability zero of being included. This is typically accomplished by having each ant
keeping the track of a tabu list.

Parallelization of Ant System for GPU under the PRAM Model 233

Algorithm 2 Sequential Initialize

1: procedure Initialize(α, β, τ, η, score, chance, π, tabu)
2: Allocate vector of size n: sum
3: for i := 1 to n do
4: sum[i] := 0
5: end for
6: for i := 1 to n do
7: for j := 1 to n do
8: sum[i] := sum[i] + τ [i, j]α · η[i, j]β

9: end for
10: end for
11: for i := 1 to n do
12: for j := 1 to n do
13: chance[i, j] := τ [i, j]α · η[i, j]β/sum[i]
14: tabu[i, j] := 1
15: end for
16: end for
17: for i := 1 to n do
18: π[i, 1] := i
19: score[i] := 0
20: tabu[i, i] := 0
21: end for
22: end procedure

Once solutions are constructed, they are evaluated to obtain their respective
qualities, which in most cases is simply the inverse of the cycle length. Once eval-
uated, the qualities are used to update the pheromone matrix. First, each cell of
the pheromone matrix is decreased by a constant factor (evaporation) and then in-
creased according to the solution score (pheromone deposit). Let f(S) denote the
score of solution S and let Z be the set of all solutions produced by the ants, where
each ant contributes a single solution. Then, the pheromone update stage is defined
by:

τv,w ← (1− ρ) · τv,w +
∑

S∈Z|(v,w)∈S

f(S). (2)

When considering AS for TSP, the recommended number of ants equals the
number of vertices [8]. Thus hereof we always assume we have n ants, each starting
its solution in a different vertex. The Ant System algorithm, as we have described
it, can be formalized as Algorithm 1. An initialization stage (Algorithm 2) was
added where certain bookkeeping tasks can be performed. The tour construction
(Algorithm 3) and pheromone update (Algorithm 4) stages correspond to what we
have described. In line 7 of Algorithm 3 we call the function rand(), which is
supposed to return a random uniformly distributed real number in the range (0, 1).
This is the source of randomness in the algorithm, and allows it to implement the

234 A. Brodnik, M. Grgurovič

Algorithm 3 Sequential Tour Construction

1: procedure TourConstr(η, score, chance, π, tabu)
2: for i := 1 to n do
3: for k := 2 to n do
4: v := 0
5: c := −∞
6: for j := 1 to n do
7: t := chance[π[i, k − 1], j] · rand() · tabu[i, j]
8: if t ≥ c then
9: c := t

10: v := j
11: end if
12: end for
13: π[i, k] := v
14: tabu[i, π[i, k]] := 0
15: score[i] := score[i] + η[π[i, k − 1], π[i, k]]
16: end for
17: end for
18: for i := 1 to n do
19: score[i] := score[i] + η[π[i, n], π[i, 1]]
20: end for
21: end procedure

probabilistic selection according to Equation (1). The algorithm also uses a number
of matrices, which play the following roles: chance stores the visit probability values
(cf. (1)), π holds the solutions, tabu is used to prevent infeasible solutions. The
vector score holds the computed score for each solution.

3 PARALLEL ANT SYSTEM

It is conceptually simpler to consider Ant System as a combination of two algorithms:
tour construction and pheromone update (lines 6 and 7 in Algorithm 1, respectively).
Attempts at parallel AS, e.g. [5, 3], are usually not very attractive for the PRAM
model, since they either employ coarse parallelization or neglect certain parts of
parallel AS, typically pheromone update. However, it turns out that parallel AS
algorithms for the GPU model [12, 17, 4] translate almost without any effort to the
PRAM model. Thus, we focus exclusively on the translation and improvement of
the GPU algorithms. It is important to note that the unit of parallelism in the GPU
is a thread while on a PRAM the unit of parallelism is a processor. However since
the PRAM is a theoretical model, the actual meaning of processor in this context is
abstract.

Parallelization of Ant System for GPU under the PRAM Model 235

Algorithm 4 Sequential Pheromone Update

1: procedure PheromoneUpdate(τ, ρ, score)
2: for i := 1 to n do
3: for j := 1 to n do
4: τ [i, j] := (1− ρ) · τ [i, j]
5: end for
6: end for
7: for i := 1 to n do
8: for k := 2 to n do
9: τ [π[i, k − 1], π[i, k]] := τ [π[i, k − 1], π[i, k]] + score[i]

10: end for
11: τ [π[i, n], π[i, 1]] := τ [π[i, n], π[i, 1]] + score[i]
12: end for
13: end procedure

Due to the decomposition of AS into two algorithms (construction and update),
the complexity of AS becomes the worst of the two. We will now explore strategies
for each algorithm.

3.1 Tour Construction

The simplest method (cf. [12, 17]) delegates each ant to a unique processor. Now,
since each ant stochastically considers each vertex n times (cf. (1)) and has p = n
processors, this amounts to step complexity S(n) = O(n2) and work complexity
W (n) = O(n3).

A remarkable contribution of [4] is their strategy for parallel tour construction.
Their tour construction method uses p = n2 processors and associates each ant with
n processors. When each ant can make use of n processors, it can effectively generate
multiple random numbers in parallel. Then, the maximum operation is used to
choose one among n neighbouring vertices, again in parallel. In total, n maximum
operations are performed per ant. When translating this result to the PRAM model,
the step complexity of the algorithm depends on the model of computation. In the
case of CREW, the maximum can be found with a step complexity S(n) = O(lg n)
and work complexity W (n) = O(n). Since there are n maximum operations per ant
this brings the step complexity to S(n) = O(n lg n). There are n ants in total, each
performing n maximum operations, meaning the work complexity remains W (n) =
O(n3). However, under CRCW, maximum can be performed in S(n) = O(lg lg n)
step complexity (see e.g. [15]), thus the step complexity of the algorithm becomes
S(n) = O(n lg lg n), with the work complexity remaining the same as in the CREW
case. Under COMBINING CRCW, this is further reduced to S(n) = O(n) by simply
taking the combining operation to be maximum.

It is possible to further reduce the step complexity of the CRCW algorithm to
S(n) = O(n) using p = n3 processors and a different method to find the maximum

236 A. Brodnik, M. Grgurovič

which takes S(n) = O(1): simply compare all pairs of elements in the array in
parallel. However, we will restrict ourselves to p = n2, since the large amount of
additional processors required hardly justifies the lg lg n gain.

3.2 Pheromone Update

Once tour is constructed, the pheromone update must be performed. In [12, 17]
the latter is accomplished sequentially rather than in parallel, i.e., one processor
performs the update in S(n) = O(n2) and W (n) = O(n2) while others are waiting.
This method is appropriate if we use the first construction method, which also has
a step complexity of O(n2), but it becomes a bottleneck if we choose the more
parallel construction method of [4].

Two pheromone update methods can be found in [4]. The first is straightforward
and is based on atomic instructions for addition (cf. the summation in Equation (2)).
This method corresponds to the use of COMBINING CRCW with the combining
operation set to addition. Thus, we already have one parallel method for pheromone
update with p = n and running with a step complexity of S(n) = O(n) and a work
complexity of W (n) = O(n2). If we allow p = n2, then the update can be performed
in S(n) = O(1).

The second method of [4] which they refer to as “scatter to gather” is more com-
putationally intensive, but does not use atomic instructions. In this case each cell of
the pheromone matrix is represented by a distinct processor, so we require p = n2.
Each processor loops through all solutions, summing only the relevant qualities. So-
lutions are of size O(n) and there are n solutions, meaning each processor performs
S(n) = O(n2) operations. Since there are n2 processors, this yields a W (n) = O(n4)
work complexity. This method works under both CREW and CRCW models, but
in terms of computational complexity, it is uninteresting. Better bounds are ac-
complished by performing pheromone update sequentially, i.e. by a single processor
while others wait. Nonetheless, we mention this method because we will show how
to improve its complexity.

3.3 Improvements

In this subsection, we propose a novel method for pheromone update, which im-
proves the currently known bounds under the CREW and CRCW models. Tour
construction in our algorithm is performed as in [4], which translates effortlessly to
the PRAM. However, instead of using their “scatter to gather” pheromone update,
we develop a new technique.

Theorem 1. Pheromone update using p = n2 processors can be performed in
S(n) = O(n) and W (n) = O(n3) under a CREW PRAM.

Proof. Each ant already stores a list of n entries, which correspond to vertices in
the order it visited them. In addition to this list, we require that each ant also

Parallelization of Ant System for GPU under the PRAM Model 237

stores an array edge of length n, implicitly storing which edge was used to reach
a particular vertex. For example, if the edge (u, v) was used to visit vertex v, then
we would set edge[v] := u. During pheromone update, we can now check whether
a given solution S contains the desired edge in constant time. Without this array,
we would have to inspect every element of the solution, which would take O(n)
time. There are n solutions, so the step complexity of pheromone update becomes
S(n) = O(n) and the work complexity becomes W (n) = O(n3). �

The pseudocode for the parallel algorithm is shown in Algorithms 5, 6, 7 and 8.
PRAM algorithms use a scalar processor identifier. To improve readability we use
a two-dimensional processor identifier (x, y) ∈ [n] × [n], where [n] = {1, 2, . . . , n}.
Remember that each ant is using n processors, so the x component of the identifier
denotes an ant and the y component denotes an ant’s processor. The algorithm
consists of an initialization phase, where we compute the probability (chance matrix)
of choosing certain edges and reset structures after each iteration. We explicitly
denote variables that are local to each processor by prefixing them with a local
identifier in their initialization. All matrices in the algorithm are of size n× n. The
matrices η, τ , chance, π, tabu and vector score were already described in Section 2.
Additional matrices exist for the parallel algorithm which have the following roles:
R holds the results from parallel random number generation and edge is used as
described in the proof of Theorem 1.

Theorem 2. Algorithm 5 executes on a CREW PRAM.

Proof. It is easy to see that writes to R (line 3 in Algorithm 7) and τ (lines 2 and 5
in Algorithm 8) preserve write exclusivity since only processor (x, y) writes to R[x, y]
and τ [x, y]. We lump together the proof of write exclusivity for chance (line 8 in
Algorithm 6), tabu (lines 9 and 13 in Algorithm 6 and line 7 in Algorithm 7), score
(line 12 in Algorithm 6 and lines 8 and 13 in Algorithm 7) and edge (lines 6 and 12
in Algorithm 7). Observe that in each case the processor’s y index is set to one.
For score, which only has one dimension, this avoids conflicts. The rest are matrices
and all writes from processor (x, 1) are to cells (x, k) where k ∈ [n], which does not
lead to any conflicts. Note that the proof for the write exclusivity of π (line 11 in
Algorithm 6 and line 4 in Algorithm 7) is the same. Naturally, we require that the
parallel implementation of arg max observes the write exclusivity of π (which leads
to different implementations on CREW and CRCW). �

Corollary 1. Algorithm 5 executes under a CRCW PRAM.

It is easy to see that the suggested pheromone update method can be sped up
if more processors are provided. For example, given p = n3 processors, each cell
in the pheromone matrix can be represented by n processors, allowing pheromone
summation to be performed using reduction. However, there seems little incentive
to do so, since the complexity of parallel Ant System algorithm becomes dominated
by the tour construction step.

238 A. Brodnik, M. Grgurovič

Algorithm 5 Parallel Ant System

1: procedure PAntSystem(α, β, ρ, totalIterations)
2: Allocate matrices of size n× n: R, η, τ, chance, π, tabu, edge
3: Allocate vector of size n: score
4: for i := 1 to totalIterations do
5: for (x, y) ∈ [n]× [n] in parallel do
6: PInitialize(x, y, α, β, τ, η, score, chance, π, tabu)
7: PTourConstr(x, y, R, η, score, chance, π, tabu, edge)
8: PPheromoneUpdate(x, y, τ, ρ, edge, score)
9: end for

10: end for
11: end procedure

Algorithm 6 Parallel Initialize

1: procedure PInitialize(x, y, α, β, τ, η, score, chance, π, tabu)
2: if y = 1 then
3: local float sum := 0
4: for i := 1 to n do
5: sum := sum + τ [x, i]α · η[x, i]β

6: end for
7: for i := 1 to n do
8: chance[x, i] := τ [x, i]α · η[x, i]β/sum
9: tabu[x, i] := 1

10: end for
11: π[x, 1] := x
12: score[x] := 0
13: tabu[x, x] := 0
14: end if
15: end procedure

Table 1 summarizes complexity bounds derived from the previous work as well as
new bounds resulting from the improvements presented in this paper. Since a single
iteration of the parallel Ant System algorithm requires both tour construction and
pheromone update, the bound becomes the worse of the two.

3.4 Empirical Comparison

We implemented different pheromone update methods on the GPU. We used Nvidia
CUDA, which was also used in recent papers [4, 12, 17] studying the parallel GPU
implementation of the Ant System algorithm. Compared to the GPU, the PRAM
model is much simpler. While programs on the PRAM execute in SIMD (single
instruction, multiple data) lock-step fashion, the GPU model of execution is the

Parallelization of Ant System for GPU under the PRAM Model 239

Algorithm 7 Parallel Tour Construction

1: procedure PTourConstr(x, y, R, η, score, chance, π, tabu, edge)
2: for k := 2 to n do
3: R[x, y] := chance[π[x, k − 1], y] · rand() · tabu[x, y]
4: Compute (arg maxi∈{1...n}R[x, i]) and store result in π[x, k]
5: if y = 1 then
6: edge[x, π[x, k]] := π[x, k − 1]
7: tabu[x, π[x, k]] := 0
8: score[x] := score[x] + η[π[x, k − 1], π[x, k]]
9: end if

10: end for
11: if y = 1 then
12: edge[x, π[x, 1]] := π[x, n]
13: score[x] := score[x] + η[π[x, n], π[x, 1]]
14: end if
15: end procedure

Algorithm 8 Parallel Pheromone Update

1: procedure PPheromoneUpdate(x, y, τ, ρ, edge, score)
2: τ [x, y] := (1− ρ) · τ [x, y]
3: for k := 1 to n do
4: if edge[k, y] = x then
5: τ [x, y] := τ [x, y] + score[k]
6: end if
7: end for
8: end procedure

significantly more ambiguous SIMT (single instruction, multiple threads), where
such lock-step guarantees are lost. Together with details like different levels of
memory with different speeds and capacities, writing programs becomes a matter of
mixing theoretical and practical considerations. With this paper we mainly focus
on the theoretical aspects of such programs by studying them in the cleaner PRAM
model, then transferring them over to the “messier” GPU.

The tests were run on an Nvidia GeForce GTX 560Ti using stock Nvidia fre-
quencies. Test instances were taken from TSPLIB [14], which are standard test
cases. We included some of the instances that have also been used by [4] to facil-
itate comparisons. We compared only the pheromone update stage, since our tour
construction step is identical to the one presented in [4], thus we refer readers in-
terested in comparisons between various tour construction methods or comparisons
between the parallel and sequential code to that paper.

We tested three methods: atomic, scatter-gather and non-atomic fast. The
atomic method updates the pheromone matrix using atomic instructions for addi-
tion. The scatter-gather method is the non-atomic method proposed by [4]. Finally,

240 A. Brodnik, M. Grgurovič

Previous Work

CREW CRCW CMB. CRCW

Tour [4]
S(n) O(n lg n) O(n lg lg n) O(n)
W(n) O(n3) O(n3) O(n3)

PH [4]
S(n) O(n2) O(n2) O(1)
W(n) O(n2) O(n2) O(n2)

Total
S(n) O(n2) O(n2) O(n)
W(n) O(n3) O(n3) O(n3)

This Paper

CREW CRCW

PH
S(n) O(n) O(n)
W(n) O(n3) O(n3)

Total
S(n) O(n lg n) O(n lg lg n)
W(n) O(n3) O(n3)

Table 1. Previous and new bounds for the parallel Ant System, which is comprised of two
sub-algorithms: tour construction and pheromone (PH) update. We denote the COMBIN-
ING CRCW model by CMB. CRCW. Step and work complexities are denoted by S(n)
and W (n), respectively. All bounds assume n2 processors.

Method

Instance Atomic [4] Scatter-Gather [4] Non-Atomic Fast

att48 0.06 1.29 0.19

kroC100 0.11 17.35 0.51

a280 0.47 759.14 3.61

pcb442 0.82 4 681 11.5

d657 1.74 22 · 103 34.7

pr1002 3.48 118 · 103 114.8

pr2392 16.39 3 800 · 103 1 525.4

Table 2. Running time (milliseconds) of pheromone update methods on TSPLIB instances

the non-atomic fast method is the one suggested in this paper. We also remark
that, in our case, the atomic update method made full use of p = n2 threads, since
we found its performance to be significantly better compared to p = n threads,
as used in [4]. The results are shown in Table 2 and are also shown as a plot in
Figure 1.

It is reassuring to see that the theoretical improvements also translate into prac-
tice. While the atomic variant is significantly faster, many older GPUs still in use
today do not have access to the appropriate atomic instructions. Thus, these results
are practically relevant for GPU implementations if code is expected to work on all
GPUs currently in use.

Parallelization of Ant System for GPU under the PRAM Model 241

att48 kroC100 a280 pcb442 d657 pr1002 pr2392
10−2

10−1

100

101

102

103

104

105

106
106.5

ti
m

e
(m

il
li
se

co
n
d
s)

Atomic
Scatter-Gather

Non-Atomic fast

Figure 1. Plotted running times of pheromone update methods on TSPLIB instances

4 CONCLUSION

In this paper we have shown that recent parallel variants of the Ant System al-
gorithm for the GPU systems can be easily modeled by the more general PRAM
model. This makes them both simpler to understand and to analyze. The fa-
cilitation in a theoretical analysis allowed us to determine which parts of the al-
gorithm needed improvement. It turned out that in two out of three variants
of PRAM models studied, the parallel Ant System algorithm was dominated by
the pheromone update. We proposed a new pheromone update method that im-
proves the asymptotic bound of the parallel Ant System algorithm to such an
extent, that the entire algorithm becomes dominated by the tour construction
phase.

Future research directs us to study the possibility of application of the pro-
posed pheromone update method to other algorithms in the ACO family. More-
over, optimization problems other than the TSP could be parallelized in a sim-
ilar fashion. The algorithms could be studied under various other parallel com-
putation models. Last but not least, we are also interested in other algorithms
that could be more efficiently parallelized if they are split into two phases or more
phases.

242 A. Brodnik, M. Grgurovič

REFERENCES

[1] Bilchev, G.—Parmee, I. C.: The Ant Colony Metaphor for Searching Continuous
Design Spaces. In: Fogarty, T. C. (Ed.): Evolutionary Computing (AISB EC 1995).
Springer, Lecture Notes in Computer Science, Vol. 993, 1995, pp. 25–39.

[2] Bullnheimer, B.—Hartl, R. F.—Strauss, C.: An Improved Ant System Al-
gorithm for the Vehicle Routing Problem. Annals of Operations Research, Vol. 89,
1999, pp. 319–328, doi: 10.1023/A:1018940026670.

[3] Bullnheimer, B.—Kotsis, G.—Strauss, C.: Parallelization Strategies for the
Ant System. In: De Leone, R. et al. (Eds.): High Performance Algorithms and Soft-
ware in Nonlinear Optimization. Springer, Boston, Applied Optimization, Vol. 24,
1998, pp. 87–100.

[4] Cecilia, J. M.—Garćıa, J. M.—Nisbet, A.—Amos, M.—Ujaldón, M.: En-
hancing Data Parallelism for Ant Colony Optimization on GPUs. Journal of
Parallel and Distributed Computing, Vol. 73, 2013, No. 1, pp. 42–51, doi:
10.1016/j.jpdc.2012.01.002.

[5] Delisle, P.— Krajecki, M.—Gravel, M.—Gagné, C.: Parallel Implementa-
tion of an Ant Colony Optimization Metaheuristic with OpenMP. Proceedings of the
Third European Workshop on OpenMP, International Conference on Parallel Archi-
tectures and Compilation Techniques, 2001, pp. 8–12.

[6] Dorigo, M.—Gambardella, L. M.: Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation, Vol. 1, 1997, No. 1, pp. 53–66, doi: 10.1109/4235.585892.

[7] Dorigo, M.—Maniezzo, V.—Colorni, A.: Ant System: Optimization by
a Colony of Cooperating Agents. IEEE Transactions on Systems, Man and Cybernet-
ics, Part B (Cybernetics), Vol. 26, 1996, No. 1, pp. 29–41, doi: 10.1109/3477.484436.

[8] Dorigo, M.—Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA,
2004.

[9] Korošec, P.—Šilc, J.: Using Stigmergy to Solve Numerical Optimization Prob-
lems. Computing and Informatics, Vol. 27, 2008, No. 3, pp. 377–402.

[10] Korošec, P.—Šilc, J.—Filipič, B.: The Differential Ant-Stigmergy Algorithm.
Information Sciences, Vol. 192, 2012, pp. 82–97, doi: 10.1016/j.ins.2010.05.002.

[11] Leguizamon, G.—Michalewicz, Z.: A New Version of Ant System for Subset
Problems. In: Angeline, P. J. et al. (Eds.): Proceedings of the Congress on Evolu-
tionary Computation (CEC ’99), Washington, D.C., July 1999, pp. 1459–1464, doi:
10.1109/CEC.1999.782655.

[12] Li, J.—Hu, X.—Pang, Z.—Qian, K.: A Parallel Ant Colony Optimization Al-
gorithm Based on Fine-Grained Model with GPU-Acceleration. International Jour-
nal of Innovative Computing, Information, and Control, Vol. 5, 2009, No. 11 (A),
pp. 3707–3716.

[13] Maniezzo, V.—Colorni, A.: The Ant System Applied to the Quadratic Assign-
ment Problem. IEEE Transactions on Knowledge and Data Engineering, Vol. 11,
1999, No. 5, pp. 769–778, doi: 10.1109/69.806935.

https://doi.org/10.1023/A:1018940026670
https://doi.org/10.1016/j.jpdc.2012.01.002
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/3477.484436
https://doi.org/10.1016/j.ins.2010.05.002
https://doi.org/10.1109/CEC.1999.782655
https://doi.org/10.1109/69.806935

Parallelization of Ant System for GPU under the PRAM Model 243

[14] Reinelt, G.: TSPLIB – A Traveling Salesman Problem Library. INFORMS Journal
on Computing, Vol. 3, 1991, No. 4, pp. 376–384, doi: 10.1287/ijoc.3.4.376.

[15] Shiloach, Y.—Vishkin, U.: Finding the Maximum, Merging, and Sorting in a Par-
allel Computation Model. Journal of Algorithms, Vol. 2, 1981, No. 1, pp. 88–102, doi:
10.1007/BFb0105127.

[16] Stützle, T.—Holger, H. H.: MAX-MIN Ant System. Future Generation Com-
puter Systems, Vol. 16, 2000, No. 8, pp. 889–914.

[17] You, Y.-S.: Parallel Ant System for Traveling Salesman Problem on GPUs. In:
Raidl, G. et al. (Eds.): Genetic and Evolutionary Computation Conference (GECCO
2009), New York, July 2009, pp. 1–2.

Andrej Brodnik received his Ph.D. from the University of
Waterloo, Ontario, Canada. In 2002 he moved to University of
Primorska. During the same time he also worked as Researcher
and Adjoined Professor with the University of Technology in
Lule̊a, Sweden. He authored several tens of various scientific
papers. He is also author and co-author of patents in Sweden
and USA. The CiteSeer and ACM Digital Library lists over 200
citations of his works. Currently he holds positions with the
University of Ljubljana and the University of Primorska.

Marko Grgurovi�c is a Ph.D. student in computer science at
the University of Primorska. He received his B.Sc. (2010) and
M.Sc. (2012) degrees in computer science from the University
of Primorska. His research interests lie in theoretical computer
science, particularly in the design and analysis of algorithms.

https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1007/BFb0105127

Computing and Informatics, Vol. 37, 2018, 244–268, doi: 10.4149/cai 2018 1 244

REGULARIZED SURFACE AND POINT LANDMARKS
BASED EFFICIENT NON-RIGID MEDICAL IMAGE
REGISTRATION

Said Khalid Shah

Department of Computer Science
University of Science and Technology, Bannu
Khyber Pukhtoun Khawa, Pakistan
e-mail: skhalids2000@yahoo.com

Abstract. Medical image registration is one of the fundamental tasks in medical
image processing. It has various applications in field of image guided surgery (IGS)
and computer assisted diagnosis (CAD). A set of non-linear methods have been
already developed for inter-subject and intra-subject 3D medical image registration.
However, efficient registration in terms of accuracy and speed is one of the most
demanded of today surgical navigation (SN) systems. This paper is a result of
a series of experiments which utilizes Fast Radial Basis Function (RBF) technique
to register one or more medical images non-rigidly. Initially, a set of curves are
extracted using a combined watershed and active contours algorithm and then tiled
and converted to a regular surface using a global parameterization algorithm. It
is shown that the registration accuracy improves when higher number of salient
features (i.e. anatomical point landmarks and surfaces) are used and it also has no
impact on the speed of the algorithm. The results show that the target registration
error is less than 2 mm and has sub-second performance on intra-subject registration
of MR image real datasets. It is observed that the Fast RBF algorithm is relatively
insensitive to the increasing number of point landmarks used as compared with the
competing feature based algorithms.

Keywords: Medical image registration, deformation, radial basis functions, image
guided surgery, radiotherapy

Non-Rigid Medical Image Registration 245

1 BACKGROUND

Literature study showed that non-rigid medical image registration methods per-
form better and produce good results in case of deformable soft tissue than rigid
registration. Rueckert et al. [13] have demonstrated the superiority of free-form de-
formations based on B-splines when compared to rigid and affine transformations
applied to MRI breast images. Non-rigid registration techniques are usually divided
into two broad categories: intensity based and feature based. Intensity based tech-
niques directly operate on gray values but require optimization criteria like mutual
information (MI) to find the best possible mapping. Such methods are accurate but
computationally expensive. On the other hand, feature based techniques require to
identify (manually or semi-automatically) the corresponding feature points, contours
or even surfaces between images, to map one image onto the other.

Chui et al. [1] formulated feature-based non-rigid registration as a non-rigid point
matching problem using points, contours and curves. They developed an algorithm
called TPS-RPM (Thin Plate Spline – Robust Point Matching) along with thin-plate
splines (TPS’s) as the parameterisation of the non-rigid spatial mapping.

Levin et al. [6, 7] developed a technique for improving the speed of the point
landmarks based non-rigid registration using a standard PC based on the built-in
fast tri-linear interpolation feature of off-the-shelf graphics cards available in market.
They execute a thin-plate spline (TPS) based warp at discrete positions on a grid
that overlays each slice of the image data and has a configurable size. Built-in
interpolation capability of the underlying card is used to calculate the intensity
values of the voxels of each grid cell. With a data set of 512× 512× 173 voxels and
92 manual point landmarks, they reduced the registration time from 148.2 seconds
to 1.63 seconds using a brute force implementation of the grid based warp. However,
the accuracy of the grid based approach was less than the corresponding brute force
approach.

Another more recent example is the work by Lapeer et al. [5]. They adapted
the method of Livne and Wright [8] and developed a point-based algorithm for fast
medical registration using RBFs. They showed that the warp speed reduced to 0.54 s
for a size 2563 dataset (CT/MRI) of the Vanderbilt Database using 8–44 manually
defined point landmarks. They also concluded that the most optimum and theoret-
ically correct RBF function for 3D is the bi-harmonic spline instead of the ‘popular’
thin-plate spline (which is only optimal in 2D).

Usually point-based methods are often used in SN systems for head and neck
surgery by medical experts due to ease of identification of corresponding landmark
features. Further, they use it as a similarity metric such as the Target Registration
Error (TRE) to measure the registration accuracy. However, if more point land-
marks are needed then it is more time consuming and becomes impractical. On
the other hand, surface based registration uses more or sufficient number of points,
but involves a pre-processing step (called segmentation) to extract corresponding
surfaces and again results in consuming more processing time. Though, few point
landmarks are required to run the registration algorithm, but the use of more ac-

246 S.K. Shah

curately placed landmarks improves the registration accuracy much more and thus
a hybrid approach of point-based and surface-based registration will be a good op-
tion to register two corresponding 3D surfaces or 3D volumes. This can be obtained
by applying a point-based registration technique to a set of corresponding landmarks
of two images or volumes obtained in the form of a few corresponding manual land-
marks and a corresponding parameterized surface with the same number of points.

This paper presents a non-rigid feature based registration method aimed at pre-
or intra-operative registration of medical images during surgical guidance. There-
fore, the method needs to be fast enough for SG and having an acceptable accuracy
i.e. less than 2 mm. The technique uses radial basis functions (RBFs), and more
particularly the biharmonic spline (BHS), to define a non-linear mapping function
between 3D images to be registered.

The presented registration method is a non-rigid point-based method [5] where
the corresponding features are anatomical point landmarks and surfaces, the latter
being generated by extracting corresponding curves from images to be registered
using a semi-automatic method based on active contours and watersheds [4]. The
extracted curves are then converted to 3D parameterized surfaces using a 3D sur-
face generation [9] algorithm and a proper surface parameterization technique of
Yoshizawa et al. [19]. Furthermore, the method is largely insensitive to the number
of point landmarks used and has no effects on algorithm speed during the evaluation
stage, i.e. execution time, as compared to similar methods. Accuracy of the registra-
tion should improve by using higher number of point landmarks during registration
which is subject to accurate landmarks placement. Practically manual landmarks
placement is not only time consuming during the registration process but also prone
to errors. Therefore, we use two corresponding parameterized surfaces for the two
volumes to be registered. Parameterized surfaces will not only increase the number
of points but also minimize user involvement in landmarks placement and prepara-
tion. The rest of this paper describes the methods we used to obtain 3D curves, 3D
surface generation and parameterization, the fast RBF technique and a comparative
experiment of the fast RBF method with other feature-based non-rigid registration
methods.

2 METHODS AND ALGORITHMS

2.1 Initial Contours (Curves) Extraction

Previously [5], we use manual way to place single anatomical point landmarks in
matching slices of both images to be registered. We found that increasing landmarks
increased the accuracy of the registration. But this manual way is time consuming,
prone to errors and also requires the knowledge of expert such as radiologist. To
increase the number of point landmarks for the corresponding images to be regis-
tered, we extend our point based method to curve-based method; the latter uses
the boundary curves. The corresponding curves (point sets) with sufficient num-
ber of points were extracted from the both images using two popular techniques:

Non-Rigid Medical Image Registration 247

active contours; and watersheds. Both methods have certain limitations, i.e., the
watershed technique is sensitive to image noise, causes over-segmentation and ac-
tive contours suffer from initialization problems. The problem of over-segmentation
in watersheds [4] was removed by using internal and external markers into regions
of interest while the output of watersheds solves the active contour initialization.
Both techniques overcome each other’s limitations resulting into a smooth and ac-
curate contour. The immersion-based watershed technique presented by Vincent
and Soille [17] and extended by Lapeer et al. [4] to convert watershed boundaries
into valid active contours using a boundary following algorithm was used. Once
a boundary contour, which is piece-wise linear, is obtained, we resample each curve
with a fine set of points (at pixel level) into a fixed and coarser set of points (at
edgel level) by continuously reducing a given set of points into a two point set based
on the computation of a mid point value. The resampling algorithm actually pa-
rameterises the input curves so they have the same number of points. This process
is repeated to get sufficient number of curves for the surface generation of both
datasets. The resultant set of corresponding boundary landmarks (curve) along
each slice are triangulated to form a 3D surface for each dataset.

2.2 From Curves to 3D Surface Generation

First we build an initial 3D surface using the curves obtained from the slices and
then parameterized to be used for registration. To get a surface mesh from two
adjacent and parallel curves we apply the advancing-front algorithm [9]. It uses
tiling to generate a mesh from a 3D set of points (curves). In order to get the
internal mesh for the last curve which covers the ROI for the corresponding slice,
we do calculate the mean position based on the boundary points of the last curve
and every boundary point is connected simply to the mean position. Though this
may give a fan triangulation (see Figure 1), a remeshing algorithm (coming later)
can automatically fill the boundary region with well-shaped triangles. Figure 1
shows an example of two triangulated MRI data sets of human heads downloaded
from Vanderbilt database, which we think to register. Fan triangulation contains
obtuse triangles and that is not good for the application like registration. There-
fore, we need a proper reparameterization method for correspondence creation and
also a suitable optimisation technique to minimize the aspect ratio of obtuse trian-
gles.

2.3 3D Surface Parameterization

Surface Parameterisation (SP) is the process of dividing a 3D surface into subsur-
faces (patches), followed by finding one-to-one mapping between each subsurface
and a planar domain. It can also be referred to as surface flattening, because it
maps a 3D surface into a flat (2D) surface. Most of the time surfaces of arbitrary
and complex shapes such as a human head or brain are represented by a collection of

248 S.K. Shah

Figure 1. Corresponding mesh models after applying the advancing-front algorithm [9] to
two adjacent and parallel curves obtained from MR-T1 dataset of Vanderbilt database.
The mean point position of the last curve points is calculated and its triangulation with
every point on the last curve is the point of maximum curvature of the ROI.

triangles and their mapping is piecewise linear. SP has various applications in com-
puter graphics and geometric modeling, for example texture mapping, remeshing,
surface repairing, and creation of regular and structured surfaces.

The concept of a SP has been extensively discussed in differential geometry,
and Floater et al. [3] have presented a detailed survey about recent advances in
it. SP is the process of finding a mapping function which converts a 3D surface to
an equivalent 2D planar surface, i.e., it deforms a 3D surface in a continuous fashion
to a planar domain. However, a better SP is the one which creates a smooth one-
to-one mapping with a minimum deformation (metric distortion). Floater et al. [3]
have further classified this mapping (SP) which can either be:

• conformal, i.e., has no distortion in angles, or

• equi-areal, i.e., has no distortion in areas, or

• isometric, i.e., minimises some combination of angle distortion and area distor-
tion.

The literature shows that a lot of work has been carried out on each of the above
mapping methods used in SP.

If a mapping is conformal and equi-areal then the mapping is isometric, i.e., it
preserves distances, areas, and angles. Isometry is one of the most desirable prop-
erties of any parameterisation to be achieved during flattening, which means that
a 3D surface after parameterisation should have all the features in their correspond-
ing parameter domain as well. Moreover, isometric parameterisation exists only if
a surface is locally ‘flatable’ (developable). But for our work with particular (tar-
geted) applications, we found that minimising some combination of angle and area

Non-Rigid Medical Image Registration 249

distortion [14, 19] (isometric parameterisation) which has the feature of reproduc-
tion, i.e., a surface will be reproducible (developable) if and only if the mapping
used is bijective [3], would be a better choice.

The work in this section is for targeted and specific registration applications
where large deformations are involved, e.g. brain MR images. Surface parameteri-
sation will develop a global surface based correspondence measure for two or more
such images to be registered. Such a correspondence is produced through flattening
(initial parameterisation) each surface to a common parametric domain, followed by
distortion measurement in the initial parameterisation and an optimisation proce-
dure that further improves the two surface’s alignment in a spatial or parametric
domain. We use a 2D square as a parametric domain in this work, but this can
be extended to any other domain (sphere, cylinder, torus) based on the target ap-
plication and shape of the object. The technique, we use for flattening the 3D
surface is based on the efficient low-stretch parameterisation method of Yoshizawa
et al. [19], which is a global parameterisation method and has both features of
minimising angles and areas distortion. We then optimise the initial parameterisa-
tion (correspondence) obtained through Yoshizawa et al. [19] by using our proposed
parameterisation technique given below.

2.3.1 Our Parameterisation Approach

Our proposed parameterisation method consists of three steps. First, it param-
eterises the 3D surface using the algorithm by Yoshizawa et al. [19] and creates
an initial parameterisation. Second, it re-meshes the flattened mesh using a regular
triangular grid followed by an optional surface adjustment. The third step takes
the initial parameterisation [19] as an input and gradually improves it using repa-
rameterisation. A logical flow diagram of our proposed surface parameterisation
approach is given as follows:

3D image surface
↓

Build initial parameterisation
↓

Resample the surface with a regular grid
↓

Adjust the surface using 3D-back projection (optional)
↓

Surface smoothing via reparameterisation

The three steps of the proposed parameterisation approach are explained below:

i) Initial parameterisation. Our initial parameterisation approach is based on
the flattening [2] and stretch minimisation [19] method. During research ex-
periments on meshes it was observed that the method of Yoshizawa et al. [19]
is preferred for global parameterisation of large and complex meshes such as

250 S.K. Shah

Figure 2. Left (original MR image) and right (deformed MR image); both are the corre-
sponding 2D flattened meshes after applying the initial parameterisation algorithm [19]
to the 3D meshes given in Figure 1. The deformation is visible from the curves structure
in the mesh.

the one shown in Figure 1. It is not only a fast and efficient technique but it
also produces a parameterised mesh while trying to reduce production of obtuse
triangles. Obtuse triangles will impact the registration results (TRE) directly,
if not avoid or reduce them to a certain extent. Figure 2 shows the 2D plane
meshes on a unit square generated after applying the initial parameterisation
method [19]. The connectivity of the flattened 2D mesh is the same as that of
the original 3D mesh. All the coordinates (i.e. both x and y) of the flattened
mesh are normalized and in the range [0, 1] .

ii) Resampling (remeshing) using a structured 2D grid. After flattening
of the 3D mesh, we need to rebuild the original 3D surface from the flattened
mesh coordinates. The resampling will generate a new 3D surface with proper
coordinates to be used to the established correspondence representation of two
or more surfaces. As we want to increase the number of points and distribute
them uniformly to the original surface, we create a regular and triangular 2D
grid Gr of an arbitrary n×n size instead of the flattened one. For example a 2D
regular triangular grid of size 30 × 30 (see Figure 4 first row with two grids of
size 30×30) is used to represent and rebuild the original 3D meshes of Figure 1.
The size of the grid is configurable and set by the user. This particular grid
of size 30 × 30 will create exactly 900 landmarks and will be used during the
registration process.

In order to get the corresponding 3D point for each vertex of the 2D grid,
we use the barycentric coordinates of the corresponding parametric triangle in
the parametric domain to calculate the corresponding 3D positions for each
vertex of Gr. For example, to get the 3D coordinates of a point p

′

(x′ ,y′ ,z′)
∈ <3

having a corresponding point u ∈ <2 in a parametric triangle (u1, u2, u3) with

Non-Rigid Medical Image Registration 251

barycentric coordinates (λ1, λ2, λ3), this can be mapped (φ) as:

φ(u1)λ1 + φ(u2)λ2 + φ(u3)λ3,

i.e.
p
′

(x′ ,y′ ,z′)
= xλ1 + yλ2 + zλ3 (1)

where λ1, λ2, λ3 ≥ 0, and λ1 + λ2 + λ3 = 1. x, y, and z represent the 3D
coordinates of the corresponding 3D triangle to which the point p

′
belongs. It

is a piecewise linear map and its inverse is represented as ui : <3 → <2. The
mapping used during resampling is visualised in Figure 3.

Figure 3. A barycentric mapping of given point u in a certain parametric trian-
gle (u1, u2, u3) with barycentric coordinates (λ1, λ2, λ3), which corresponds to a point
p
′

(x′ ,y′ ,z′)
∈ <3 through a parameterisation P

After replacing each vertex position of Gr by a corresponding 3D position, we
get a new 3D mesh with a uniform and equivalent number of points for each of
the two corresponding meshes of Figure 1. Figure 4 shows the corresponding
a) regular meshes, b) resampled and c) meshes flattened back to 2D using repa-
rameterisation. The discrepancies in c) show that the parameterisation itself
introduces errors which are visually apparent from the differences in comparing
the original a) 2D grid with the one c) flattened back to 2D after reparame-
terisation. Images in row b) show the corresponding resampled meshes of the
meshes shown in Figure 1 after sampling by a regular grid. Now, we have two
new meshes (row b) with the same number of points and with a known and
established one-to-one correspondence between their points. The corresponding
points can be used onward for training and test purposes during registration.

iii) Reparameterisation : Reducing triangle obtuseness. We start with
an initial parameterisation U0 and then improve it further to U1 . . . U opt by repa-
rameterisation. We stop the optimisation procedure when an optimum value in

252 S.K. Shah

a)

b)

terms of minimum distortion (stretching error) over the whole mesh is obtained.
We observed that the first optimisation step already improves the quality of
mesh parameterisation. Figure 5 shows the parameterisation result of the man-
nequin head model and an MR-T1 dataset surface. It is clear from the third
image in first and second row of Figure 5 that the first step (U1) has better
results as compared to U0 due to reparameterisation, and also the triangles have
better aspect ratios. Similarly, Figure 6 further demonstrates that the reparam-
eterisations (U1, U2, U3) produce triangles of better aspect ratios as compared
to initial parameterisation [19] (U0).

The total stretching error measured quantitatively during initial parameteri-
sation (U0) and reparameterisations (U1, U2, U3, U4) is shown in Table 1 for each
model. It shows that after the first step (U0) the stretch converges to a constant
value, hence we stop the optimisation process.

Non-Rigid Medical Image Registration 253

c)

Figure 4. The first row a) shows the two regular grids of size 30×30 each, the second row
b) corresponds to the resampled meshes of Figure 1 using the grids in the previous row,
whereas the third row c) shows the corresponding 2D meshes of row b) flattened back to
2D using the same algorithm. The discrepancies in c) in comparison to a) show that the
parameterisation itself introduces errors.

Technique U0 U1 U2 U3 U4

Mannequin head model 1.36 1.42 1.35 1.34 1.35

MR-T1 surface 1.16 1.01 1.01 1.02 1.02

Table 1. Row one and two show the total stretch for mannequin head and MR-T1 surface
models during the initial parameterisation U0 and reparameterisation U1, U2, U3, and U4,
respectively

2.4 The Fast Radial Basis Functions Method

The Radial Basis Function (RBF) method is one of the most widely used technique
to approximate or interpolate data scattered in more than one dimensions. The
purpose of interpolation is to approximate a real-valued function f(x) over a finite
set of values f = (f1, . . . , fN) at the distinct points X = {x1, . . . ,xN} ⊂ Rd. In
similar situation, one chooses an RBF, s(x), for representing such approximations,
normally of the following general form:

s(x) = p(x) +
N∑
i=1

λiφ (‖x− xi‖) , x ∈ Rd (2)

254 S.K. Shah

U0 U1 U2 U3

Figure 5. The images from left to right of both rows show the corresponding meshes of
a mannequin head model and an MR-T1 dataset surface before and after (first and second
image in both rows) the initial parameterisation [19] (U0) while the last three images (U1,
U2, U3) represent the meshes after applying the proposed reparameterisation technique
three times to the initial parameterisation U0. For the MR-T1 dataset, the last four
surfaces show the image data and mesh together.

U0 U1 U2 U3

Figure 6. The same sequence as in the bottom row of Figure 5 but displayed in mesh
format only

where p(x) is a polynomial, λi is a real-valued weight1, φ is the (radial) basis function
and ‖x − xi‖ = r is the Euclidean distance between x and xi. So, an RBF might
be defined as a weighted sum of a radially symmetric basis function, added together
with a polynomial term.

The basis function φ can take several forms, but three of them have a common
property of minimizing specific quantities of energy [10], which makes them suitable

1 The λ weights are determined in the ‘calculation’ step using a least mean squares
approach. This step is followed by the ‘evaluation’ step which applies the RBF to (usually)
all voxels. The latter step is much more time-consuming than the former one.

Non-Rigid Medical Image Registration 255

for use in 2D and 3D non-rigid medical image registration techniques. Rohr [10]
further shows that the biharmonic spline (BHS): φ(r) = r and the thin-plate spline
(TPS): φ(r) = r2 log r, both minimize a bending energy potential of order two in
3D and 2D space, respectively. Thus to warp 3D image data, the BHS is therefore
the choice to be preferred. Lapeer et al. [5] confirmed its theoretical optimality in
3D as shown by Rohr experimentally.

Lapeer et al. [5] rewrite Equation (2) without the linear polynomial part for sake
of clarity, and extend it to 3D for evaluation of i = 1 . . .m evaluation points/voxels
(targets) represented by the target vector xi, after having found the spline param-
eters λj for j = 1 . . . n landmarks represented by the source (landmark) vector yj:

s(xi) =
n∑
j=0

λ(yj)φ(‖xi − yj‖), i = 0, 1, . . . ,m. (3)

Livne and Wright [8] describe a new technique for fast multilevel evaluation of RBF
expansions. The main idea of the fast RBF technique is to accurately represent
a smooth RBF, φ, on a regular and coarser grid with few nodes as compared to the
full voxel set of the image data, and thus the expensive summation in Equation (3)
needs to be applied to these few nodes only. The rest of the voxel values can finally
be computed using a less expensive formulation based on the values determined for
the surrounding nodes. Unlike the grid based approach by Levin et al. [7], those
are the RBF coefficients that are interpolated within the grid and not the intensity
values of the voxels.

The main principle behind the fast RBF method is to encapsulate the source
(landmarks) and target (voxel) points in two new separate and corresponding uni-
form grids of size H. The new uniform grids overlap the old landmark and voxel
sets respectively, which results into a two stage conversion process of the RBF in
Equation (3). The first stage is to calculate the level H expansion coefficients re-
placing the original source points (landmarks) with their corresponding grid points
by using a centered pth order tensor product interpolation:

φ(‖xi − yj‖) =
∑

j:Jkεσ
(k)
j

ωjJ3ωjJ2ωjJ1φ(‖xi −Y(J1,J2,J3)‖) (4)

where j = 0, 1, . . . , n and for dimension k = 1, 2, 3: σ
(k)
j :=

{
Jk :

∣∣∣Y (k)
Jk
− y(k)

j

∣∣∣ <
pH/2

}
, where ωjJk are the new centered pth-order interpolation weights from the

coarse centres Y
(k)
Jk

to the landmark positions y
(k)
j . The second stage replaces the

original target points (i.e. voxels) with their corresponding grid points using the
same approach:

φ(‖xi −YJ‖) =
∑
Ikεσ̄

(k)
i

ω̄iI3ω̄iI2ω̄iI1φ(‖X(I1,I2,I3) −YJ‖) (5)

256 S.K. Shah

where i = 0, 1, . . . ,m, J = (J1, J2, J3), and for dimension k = 1, 2, 3: σ̄
(k)
i :={

Ik :
∣∣∣X(k)

Ik
− x(k)

i

∣∣∣ < pH/2
}

, where ω̄iIk are the centered pth-order interpolation

weights from the coarse evaluation point X
(k)
Ik

to the level h (original image grid

size) evaluation point x
(k)
i .

The so called anterpolation method is used to properly distribute the known RBF
coefficients λ(yj) at each landmark position to the surrounding nodes of grid Y. More
detail of the fast RBF method in 1D and 2D, and 3D can be found in [8] and [11],
respectively.

2.5 Performance Metric

The following two performance metrics were used to access the accuracy of our
method:

Target Registration Error (TRE): It is the RMS error between the homologous
validation landmarks after registration. The distance between every correspond-
ing pair of points of the two meshes (surfaces) is calculated to determine how
close and well registered the surfaces are. The closer the registered surfaces, the
better the registration. This distance is calculated as an RMS error between the
corresponding test landmarks after the registration process.

Normalized Mutual Information (NMI): As the NMI metric (Studholme
et al. [16]) is suited to both mono-modal and multi-modal scenarios, we use
this metric for image similarity measurement. It is the overlap invariant, and
has an optimal and minimum value of 2.0 and 1.0, respectively.

3 EXPERIMENTAL RESULTS

After getting the corresponding surfaces (set of 3D points) of a pair of images, we fit
the spline to the corresponding training landmarks to get the transformation matrix
and spline parameters (weights) for final registration and validation (using the test
landmarks). A quantitative experiment has performed, to show that the fast RBF
method is insensitive in terms of speed to an increasing number of accurately placed
landmarks in the form of corresponding surface points. Further, it is also shown
that the increasing number of accurately placed landmarks improves the registration
accuracy as well. For this purpose, six different competing methods are tested:

1. Brute force (non-optimized) RBF – applying a standard software based method
which applies the spline model to each voxel in the data set without any optimi-
sation. This method is considered to be the gold standard in terms of accuracy.

2. Brute force (non-optimized) RBF with hardware acceleration – the same algo-
rithm as before but implemented on the GPU (Graphics Processing Unit) which
enables a significant speedup due to its parallel processing capabilities.

Non-Rigid Medical Image Registration 257

3. Fast RBF method – the software-based optimised algorithm as described in
Section 2.4. In our previous work [5], it is observed that optimal value for the
H parameter in the model is 0.025.

4. Fast RBF method with hardware acceleration – the previous method imple-
mented on the GPU.

5. The grid approach by Levin et al. [7] with two different grid sizes.

6. The FFD (free form deformation) based non-rigid registration algorithm of
Rueckert et al. [13, 15] implemented in IRTK (The Image Registration
Toolkit) [12], is used to compare the results of our proposed Fast RBF method
with the state-of-art technique IRTK using NMI (for multi-model image reg-
istration), warp time and as well as visual assessment in the form of differ-
ence images. In FFD based registration, we set the initial control point spac-
ing to 25.6 mm and run up to three levels in a coarse-to-fine fashion, where
level 1 represents the coarsest level and level 3 represents the finest (optimised)
level.

To evaluate the speed-optimized algorithms which use hardware acceleration,
i.e. 2., 4. and 5., in terms of accuracy, the brute force algorithm 1. is considered as
the gold standard. This is because current GPU’s, despite being significantly faster
than CPU’s, only have 32 bits for floating point representation, whereas CPU’s
have 64 bits, what affects the accuracy of the warp. The experiments were run on
computer under the Windows XP operation system. The hardware in the computer
included: Intel Core 2 Quad 6600+ CPU; 3 GB of DDR2 RAM; and an NVIDIA
GeForce 8800GTX Graphics Card with 768 MB memory.

3.1 Non Rigid Image Registration Using Real Datasets

The MR datasets of three subjects of the ADNI database (adni.loni.ucla.edu) were
used and resampled to 2563 with 1 mm slice thicknesses. These datasets were used
to test intra-patient point based non-linear registration from the original dataset to
its natural deformed version (see Figures 11 to 13, columns 1 and 2 of all rows).
We ran our experiment with an increased number of landmarks by using first a few
anatomical point landmarks followed by a combination of surface points with few
manual anatomical point landmarks. This way the increase in point landmarks
represents more and more deformations in corresponding images and will eventually
improve the registration results. During the experiment, we used the BHS spline
rather than TPS, due to its suitability for 3D non-rigid medical image registration
in terms of speed and accuracy, as shown in [5].

Results of the different registration algorithms with ADNI datasets are given in
Table 2.

258 S.K. Shah

BHS (φ(r) = r)
25 Landmarks Warp Time in sec. NMI %NMI TRE in mm

Brute force S/W 28.55 (1.54) 1.202 (0.043) 100.0 1.63 (0.49)
Brute force H/W 0.51 (0.05) 1.192 (0.036) 99.1 1.63 (0.49)
Fast RBF S/W 0.025 15.27 (0.47) 1.202 (0.043) 100.0 1.63 (0.49)
Fast RBF H/W 0.025 0.53 (0.04) 1.199 (0.041) 99.6 1.63 (0.49)
Grid 13 0.43 (0.01) 1.144 (0.066) 95.1 1.63 (0.49)
Grid 138 16.31 (1.08) 1.144 (0.066) 95.1 1.63 (0.49)

450+25 Landmarks Warp Time in sec. NMI %NMI TRE in mm

Brute force S/W 486.48 (4.02) 1.227 (0.013) 100.00 1.81 (0.20)
Brute force H/W 2.42 (0.47) 1.214 (0.027) 98.9 1.81 (0.20)
Fast RBF S/W 0.025 31.15 (1.04) 1.227 (0.024) 100.0 1.81 (0.20)
Fast RBF H/W 0.025 0.62 (0.02) 1.222 (0.021) 99.6 1.81 (0.20)
Grid 13 2.69 (0.06) 1.146 (0.051) 93.4 1.81 (0.20)
Grid 138 282.25 (2.78) 1.143 (0.052) 93.1 1.81 (0.20)

800+25 Landmarks Warp Time in sec. NMI %NMI TRE in mm

Brute force S/W 843.04 (5.30) 1.222 (0.025) 100.00 1.48 (0.13)
Brute force H/W 3.91 (0.20) 1.210 (0.020) 99.1 1.48 (0.13)
Fast RBF S/W 0.025 35.65 (1.56) 1.223 (0.027) 100.0 1.48 (0.13)
Fast RBF H/W 0.025 0.80 (0.01) 1.219 (0.024) 99.8 1.48 (0.13)
Grid 13 4.53 (0.02) 1.137 (0.045) 93.1 1.48 (0.13)
Grid 138 485.71 (3.10) 1.136 (0.044) 93.0 1.48 (0.13)

IRTK (FFD) Warp Time in sec. NMI %NMI TRE in mm

Level 1 ≈ 240.00 1.217 (0.040) 99.1 N/A
Level 2 ≈ 888.00 1.251 (0.039) 101.9 N/A
Level 3 ≈ 3 700.00 1.268 (0.039) 103.3 N/A

Table 2. Results after applying the BHS basis function for non-rigid registration of the
MR-T1 ADNI datasets of the same subject taken at different time points. 25 point land-
marks were used for training and 25 for validation in the first part of the table. In the
second part of the table, 450 surface based landmarks were used for training, while another
450 surface based point landmarks were used for validation, plus an additional 25 manually
placed point landmarks were used. The third part is similar to the second part but the
number of training and validation landmarks are both increased to 800. The last part (last
three rows) of the table shows the results after applying the multilevel free form defor-
mation (FFD) non-rigid registration algorithm of Rueckert et al. [13, 15] implemented in
IRTK (The Image Registration Toolkit) [12]. The FFD based results are calculated after
different levels of registration, i.e. level 1, 2, and 3. All tests were run over 5 subjects. All
the values show the averages along with standard deviation in brackets. Second column
shows the evaluation, i.e. warp time of the RBF in seconds. The third column shows the
NMI. The next column shows the %NMI as compared to the Brute-Force Software and
used as the golden standard. The fifth and final column shows the TRE in mm which is
evaluated on the validation landmarks – note that the latter is the same for all methods
as its calculation is based on the same BHS model.

Non-Rigid Medical Image Registration 259

4 RESULTS AND DISCUSSION

4.1 Quantitative Results: ADNI Datasets

Let us first have a look at the evaluation time of different algorithms. The sec-
ond column in Table 2 shows that the evaluation time of the Fast RBF method
(both software and hardware versions) is only marginally affected by increasing the
number of landmarks with a factor of almost 20, unlike all other methods which
are proportionally more affected. In comparison to IRTK, the evaluation time of
the Fast RBF hardware accelerated method is in subseconds, while IRTK takes ap-
proximately 240, 888, and 3 700 seconds during level 1, 2 and 3, respectively, using
each dataset. Thus, the evaluation time of the Fast RBF method in hardware is
significantly less dependent on the number of landmarks used than for competing
methods, and it is substantially faster than the IRTK method as well as the other
competing algorithms.

The final column in Table 2 shows the TRE in mm which is evaluated on the vali-
dation landmarks. It should be noted that the TRE is the same for all methods as its
calculation is based on the same BHS model. The average TRE with 475 landmarks
is slightly worse, however the standard deviation is substantially smaller despite be-
ing measured over a much larger set of validation points illustrating a statistically
more significant result. Similarly, the average TRE with 825 landmarks is decreasing
with the increase in number of landmarks from 475 to 825. The table shows that
the average TRE for 825 landmarks is 1.48 mm, which is better than when using 25
(1.63 mm) and 475 (1.81 mm) landmarks.

0 100 200 300 400 500 600 700 800 900

Number of Landmarks

1.5

1.6

1.7

1.8

1.9

2

T
R

E
(m

m
)

TRE versus Number of point landmarks

Figure 7. Effect of the number of point landmarks on TRE of each warping algorithm

It can also be seen from Figure 7, that the TRE (with error bars) goes up
(from 1.63 mm to 1.81 mm) initially due to manual error in landmarks placement
but then going down (from 1.81 mm to 1.48 mm) with the increase (from 475 to 825)
in number of surface point landmarks. The error bars further indicate that point

260 S.K. Shah

0 100 200 300 400 500 600 700 800 900

Number of Landmarks

1.12

1.14

1.16

1.18

1.2

1.22

1.24
N

M
I

NMI versus Number of Landmarks

Brute Force Software

Brute Force Hardware

Fast RBF Software

Fast RBF Hardware

Grid 13x13 Software

Grid 138x138 Hardware

Figure 8. Effect of the number of landmarks on NMI of each warping algorithm

landmarks created using parameterisation are more consistent than the manually
placed anatomical point landmarks. Furthermore, there are no statistically signif-
icant differences (p >> 0.10) between TRE’s of the upper and middle part of the
Table 2 (t = −0.643, dof = 8, p = 0.54), as well as between the upper and lower
part of the Table 2 (t = −0.471, dof = 8, p = 0.65) but the TRE’s of the middle and
lower part of the Table 2 (t = 2.471, dof = 8, p = 0.038) has significant difference
based on a two-tailed t-test p value (i.e. p < 0.05).

Looking at the accuracy using the NMI metric (third column of Table 2), we
see virtually no loss in accuracy for the Fast RBF method in software as compared
to the gold standard (brute force software) and when implemented in hardware, its
accuracy is better than the brute force hardware implementation. The NMI of the
larger landmark sets (475 and 825) is better than when using just 25 landmarks.
The IRTK method shows slightly better results in term of NMI with increment of
deformation levels (level 1 to level 3), but this is due to local support features of FFD
based registration. The difference images in Figures 11 to 13 (see last column in all
rows) also justify this. As can be seen from the difference images, where the local
regions are aligned slightly better using the IRTK algorithm than the proposed
Fast RBF method which is based on global support RBFs (the BHS function).
This problem of Fast RBF could likely be removed by using locally constrained
RBFs [18].

Figure 8 indicates that the NMI of the Fast RBF hardware and software based
algorithms is almost the same with both sets of landmarks, i.e. 475 and 825, which
is better than using a few (25) manual point landmarks only2.

2 The result of the FFD method are not displayed as this method does not depend on
the number of landmarks.

Non-Rigid Medical Image Registration 261

0 100 200 300 400 500 600 700 800 900

Number of Landmarks

90

92

94

96

98

100
%

N
M

I

%NMI versus Number of landmarks

Brute Force Software

Brute Force Hardware

Fast RBF Software

Fast RBF Hardware

Grid 13x13 Software

Grid 138x138 Hardware

Note: Brute force Software and Fast RBF Software

have similar accuracy i.e. %NMI

Figure 9. Effect of the number of landmarks on %NMI of each warping algorithm, com-
pared against the non-optimised ‘Brute force’ software based method (gold standard)

The %NMI metric shows the performance of the optimised techniques in com-
parison to the non-optimised ‘Brute force’ software based method (gold standard).
Figure 9 shows tha %NMI drawn against the number of landmarks. This suggests
that the fast RBF method implemented in hardware exhibits the highest correspon-
dence (99 % +) as compared to the brute force implementation. The main reason
of the loss in accuracy is due to the single floating point precision capability of the
GPU used.

4.2 Visual Results: ADNI Datasets

The following figures show the results for visual assessment and comparison with
IRTK. Figure 10 represents the corresponding triangulated parameterised (red and
green) meshes before (separately) and after (fused) the registration experiment.
Images in the last row of Figure 10 show the deformation vectors between the cor-
responding vertices of the two meshes before (leftmost) and after (center and right-
most) the registration experiment. These vectors are visualised through color coding
from blue to red in ascending order of deformation. The vectors in the center and
right most image show the TRE error (as a displacement) between the validation
landmarks before and after the registration process.

Figures 11 to 13 show arbitrarily selected transverse slices from the full resolution
MR ADNI datasets. The first two images of the first row of each figure show the
original dataset and its natural deformed version before registration, whereas the last
two images show corresponding registered and absolute difference images after the

262 S.K. Shah

Figure 10. The first two images in the first row show the corresponding triangulated
parameterised (red and green) meshes and the last image shows their combination before
the registration experiment. In the last image, a white displacement line is drawn between
every two corresponding vertices of the two meshes. The second row from left to right
shows the images of the above row by using colored surfaces. The third row from left to
right shows the fused meshes and surfaces after the registration experiment. Images in
the last row show the deformation vectors between the corresponding vertices of the two
meshes (leftmost) before and (center and rightmost) after the registration experiment.
These vectors are visualised through color coding from blue to red in ascending order
of deformation. The vectors in the center and rightmost image shows the TRE error
(as a displacement) between the validation landmarks before and after the registration
process.

Non-Rigid Medical Image Registration 263

registration experiment performed with our method (Fast RBF). Row 2 corresponds
to the registered and absolute difference images after the registration experiment
performed with IRTK at level 1 and 3, respectively. The first three images in some
rows show the corresponding training and validation (red and blue) landmarks before
registration, and after (red, blue and green, respectively) registration.

Figure 11. All the rows from left to right show arbitrarily selected transverse slices from
the full resolution MR datasets (ADNI database). The first two images of row 1 illustrate
the original and naturally deformed MR image before registration, while the last two
images show corresponding registered and absolute difference images after the registration
experiment performed with our method (Fast RBF). Row 2 corresponds to the registered
and absolute difference images after the registration experiment performed with IRTK at
level 1 and 3, respectively. The first three images in some rows show the corresponding
training and validation (red and blue) landmarks before registration, and after (red, blue
and green, respectively) registration.

5 CONCLUSION

In this article, we have presented the Fast RBF non-rigid registration method for
medical imaging data using anatomical point landmarks and optimised parame-
terised surfaces, respectively. We have seen that the increase in the number of
landmarks affects both accuracy and evaluation time. The number of point land-
marks increased from anatomical point landmarks to a surface which represents an
image deformation field better than the standalone anatomical point landmarks.
The hardware implementation of the algorithm to run the evaluation part of the
algorithm in less than a second using standard computer with a latest graphic card.

The evaluation (warp) time of both the hardware and software implementation
of the Fast RBF algorithm is clearly less susceptible to the number of point land-

264 S.K. Shah

Figure 12. For each image block: Both rows show arbitrarily selected transverse slices
from the full resolution MR datasets (ADNI database). The first two images of row 1
illustrate the original and naturally deformed MR image before registration, while the
last two images show corresponding registered and absolute difference images after the
registration experiment performed with our method (Fast RBF). Row 2 corresponds to
the registered and absolute difference images after the registration experiment performed
with IRTK at level 1 and 3, respectively.

Non-Rigid Medical Image Registration 265

Figure 13. For each image block: Both rows show arbitrarily selected transverse slices
from the full resolution MR datasets (ADNI database). The first two images of row 1
illustrate the original and naturally deformed MR image before registration, while the
last two images show corresponding registered and absolute difference images after the
registration experiment performed with our method (Fast RBF). Row 2 corresponds to
the registered and absolute difference images after the registration experiment performed
with IRTK at level 1 and 3, respectively.

266 S.K. Shah

marks used as compared to the other tested competing methods. It is considered
that the use of more accurately placed point landmarks using surface parameteri-
sation and reparameterisation improves its accuracy and makes the algorithm more
favourable for IGS applications where both speed and accuracy are critical. We
presented experiments on real medical datasets with a larger non-rigid deformation,
for example MR images of the brain. It was observed that Fast RBF in software
and hardware outperforms the feature-based methods both in terms of speed and
accuracy, whilst performs a little bit less well in accuracy (when expressed in terms
of NMI) than the FFD based method, which is due to iterative nature of the FFD.

REFERENCES

[1] Chui, H.—Rangarajan, A.: A New Point Matching Algorithm for Non-Rigid
Registration. Computer Vision and Image Understanding, Vol. 89, 2003, No. 2-3,
pp. 114–141, doi: 10.1016/S1077-3142(03)00009-2.

[2] Floater, M. S.: Parametrization and Smooth Approximation of Surface Triangu-
lations. Computer Aided Geometric Design, Vol. 14, 1997, No. 3, pp. 231–250, doi:
10.1016/S0167-8396(96)00031-3.

[3] Floater, M. S.—Hormann, K.: Recent Advances in Surface Parameterization.
Proceedings Multiresolution in Geometric Modelling 2003, 2003, pp. 259–284.

[4] Lapeer, A.C.—Tan, R. J.—Aldridge, R.V.: Active Watersheds: Combining
3D Watershed Segmentation and Active Contours to Extract Abdominal Organs
from MR Images. In: Dohi, T., Kikinis, R. (Eds.): Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2002). Springer, Berlin, Lecture Notes in
Computer Science, Vol. 2488, 2002, pp. 596-603.

[5] Lapeer, R. J.—Shah, S.K.—Rowland, R. S.: An Optimised Radial Basis Func-
tion Algorithm for Fast Non-Rigid Registration of Medical Images. Computers in
Biology and Medicine, Vol. 40, 2010, No. 1, pp. 1–7.

[6] Levin, D.—Dey, D.—Slomka, P. J.: Acceleration of 3D, Nonlinear Warping Us-
ing Standard Video Graphics Hardware: Implementation and Initial Validation. Com-
puterized Medical Imaging and Graphics, Vol. 28, 2004, No. 8, pp. 471–483, doi:
10.1016/j.compmedimag.2004.07.005.

[7] Levin, D.—Dey, D.—Slomka, P.: Efficient 3D Nonlinear Warping of Computed
Tomography: Two High-Performance Implementations Using OpenGL. In: Gal-
loway, R.L. Jr., Cleary, K. R. (Eds.): Medical Imaging 2005: Visualization, Image-
Guided Procedures, and Display. Proceedings of the SPIE, Vol. 5744, 2005, pp. 34–42,
doi: 10.1117/12.595935.

[8] Livne, O. E.—Wright, G.B.: Fast Multilevel Evaluation of Smooth Radial Basis
Function Expansions. Electronic Transactions on Numerical Analysis, Vol. 23, 2006,
pp. 263–287.

[9] Lo, S.H.: A New Mesh Generation Scheme for Arbitrary Planar Domains. In-
ternational Journal for Numerical Methods in Engineering, Vol. 21, 1985, No. 8,
pp. 1403–1426.

https://doi.org/10.1016/S1077-3142(03)00009-2
https://doi.org/10.1016/S0167-8396(96)00031-3
https://doi.org/10.1016/j.compmedimag.2004.07.005
https://doi.org/10.1117/12.595935

Non-Rigid Medical Image Registration 267

[10] Rohr, K.: Landmark-Based Image Analysis Using Geometric and Intensity Models.
Kluwer Academic Publishers, 2001, doi: 10.1007/978-94-015-9787-6.

[11] Rowland, R. S.: Fast Registration of Medical Imaging Data Using Optimised Radial
Basis Functions. Ph.D. thesis, University of East Anglia, 2007.

[12] Rueckert, D.: Image Registration Toolkit (IRTK). http://www.doc.ic.ac.uk/

~dr/software/index.html, 2006.

[13] Rueckert, D.—Sonoda, L. I.—Hayes, C.—Hill, D. L.G.—Leach, M.O.—
Hawkes, D. J.: Nonrigid Registration Using Free-Form Deformations: Application
to Breast MR Images. IEEE Transactions on Medical Imaging, Vol. 18, 1999, No. 8,
pp. 712–721, doi: 10.1109/42.796284.

[14] Sander, P.V.—Snyder, J.—Gortler, S. J.—Hoppe, H.: Texture Mapping
Progressive Meshes. Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’01), 2001, pp. 409–416, doi:
10.1145/383259.383307.

[15] Schnabel, J. A.—Rueckert, D.—Quist, M.—Blackall, J.M.—Castella-
no-Smith, A.D.—Hartkens, T.—Penney, G. P.—Hall, W.A.—Liu, H.—
Truwit, C. L.—Gerritsen, F.A.—Hill, D. L.G.—Hawkes, D. J.: A Generic
Framework for Non-Rigid Registration Based on Non-Uniform Multi-Level Free-
Form Deformations. Medical Image Computing and Computer-Assisted Intervention
(MICCAI 2001). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 2208, 2001, pp. 573–581, doi: 10.1007/3-540-45468-3 69.

[16] Studholme, C.—Hill, D. L.G.—Hawkes, D. J.: An Overlap Invariant Entropy
Measure of 3D Medical Image Alignment. Pattern Recognition, Vol. 32, 1999, No. 1,
pp. 71–86, doi: 10.1016/S0031-3203(98)00091-0.

[17] Vincent, L.—Soille, P.: Watersheds in Digital Spaces: An Efficient Algo-
rithm Based on Immersion Simulations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 13, 1991, No. 6, pp. 583–598. ISSN 0162-8828, doi:
10.1109/34.87344.

[18] Wendland, H.: Piecewise Polynomial, Positive Definite and Compactly Supported
Radial Functions of Minimal Degree. Advances in Computational Mathematics,
Vol. 4, 1995, pp. 389–396, doi: 10.1007/BF02123482.

[19] Yoshizawa, S.—Belyaev, A.—Seidel, H. P.: A Fast and Simple Stretch-
Minimizing Mesh Parameterization. Proceedings of the Shape Modeling Applications,
2004, pp. 200–208.

https://doi.org/10.1007/978-94-015-9787-6
http://www.doc.ic.ac.uk/~dr/software/index.html
http://www.doc.ic.ac.uk/~dr/software/index.html
https://doi.org/10.1109/42.796284
https://doi.org/10.1145/383259.383307
https://doi.org/10.1007/3-540-45468-3_69
https://doi.org/10.1016/S0031-3203(98)00091-0
https://doi.org/10.1109/34.87344
https://doi.org/10.1007/BF02123482

268 S.K. Shah

Said Khalid Shah received his Master’s degree in computer
science (1999) from Department of Computer Science, Univer-
sity of Peshawar. From 2000 to 2004, he worked as Lecturer at
the Department of Computer Science, University of Peshawar,
Pakistan. In 2004, he joined the University of Science and Tech-
nology, Bannu, KPK, Pakistan as Lecturer and then he was pro-
moted to Assistant Professor in 2012. He received his Ph.D.
degree from the University of East Anglia, UK, with a thesis on
non-rigid medical image registration in 2011. After completing
his Ph.D., he joined the University of Science and Technology,

Bannu where he was responsible for teaching various computer science subjects and also
supervising academic/industrial research projects in the area of medical image processing
and analysis such as segmentation, visualization, and registration.

	1_3091-10465-1-PB
	2_2298-10466-1-PB
	3_2527-10467-1-PB
	4_3082-10468-1-PB
	5_3366-10469-1-PB
	6_2974-10470-1-PB
	7_3375-10471-1-PB
	8_3421-10472-1-PB
	9_3424-10487-1-PB
	10_3446-10475-1-PB
	11_3059-10476-1-PB

