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Abstract. The recent attempts to use supervised learning techniques for process
model matching have yielded below par performance. To address this issue, we have
transformed the well-known benchmark correspondences to a readily usable format
for supervised learning. Furthermore, we have performed several experiments using
eight supervised learning techniques to establish that imbalance in the datasets
is the key reason for the abysmal performance. Finally, we have used four data
balancing techniques to generate balanced training dataset and verify our solution
by repeating the experiments for the four datasets, including the three benchmark
datasets. The results show that the proposed approach increases the matching
performance significantly.
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1 INTRODUCTION

Process models are the conceptual models that represent business operations of
an enterprise. These models are widely acknowledged as useful artifacts for doc-
umenting software development requirements as well as configuring ERP systems.
Process Model Matching (PMM) refers to the identification of the corresponding
activities between a pair of process models that represent identical or similar behav-
ior [1]. For a further understanding of PMM problem, consider the excerpt process
models of two universities presented in Figure 1. Both process models are composed
of a start node represented by a circle, an end node represented by a solid circle,
four activities represented by a rectangle with rounded edges, control flow between
activities represented by arrow signs, and two gateways represented by a diamond
sign having “+” signs. In the figure, the four shaded areas (C1, C2, C3 and C4)
represent the four corresponding activity pairs that should be identified by a match-
ing technique based on the similarity of activity labels. While the identification of
corresponding activities having identical labels is a trivial task, the real challenge
lies in the identification of activities having similar business semantics but different
formulation of labels.

Figure 1. Illustration of the PMM problem

The identification of corresponding activities has several use cases [2]. Firstly, it
is a pre-requisite to evaluate if the given process models are similar. Secondly, match-
ing techniques, if embedded to a process model repository, can avoid redundant
process models, which may lead to several inconsistencies. Thirdly, it can also play
a pivotal role in querying process model repository, as querying involves matching
the query model and the models stored in the repository. Finally, harmonizing pro-
cess model variants is another use of process model matching. Due to these diverse
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use cases of PMM, a plethora of techniques have been developed [3, 4]. However,
a recent study has highlighted that the F1 score of these techniques vary between
0.45 and 0.67 [5]. This lower value of F1 score highlights the need for developing
PMM techniques that can identify corresponding activities with a higher accuracy.

Supervised learning techniques have been widely used in the natural language
processing for a variety of text processing tasks, such as word sense disambiguation,
text matching, and named entity recognition [6, 7]. It is because the supervised
learning techniques use training data to elicit knowledge and subsequently utilize
it to predict the solution of a given problem. On the contrary, the unsupervised
learning techniques use mathematical models or heuristics to generate a solution of
the given problem, without using any insights from the existing solutions. From
the text processing literature, it is abundantly established that typically supervised
learning techniques have outperformed unsupervised techniques for several text pro-
cessing tasks [8]. However, the potential of supervised learning techniques is yet to
be fully exploited in the context of PMM. For instance, a recent attempt [9] to adapt
a supervised learning technique on the PMMC ’15 datasets has achieved an F1 score
of 0.61 that is substantially less than the maximum F1 score of 0.67, achieved by
a traditional unsupervised approach [5].

In this study, we have experimentally established the cause of abysmal perfor-
mance of supervised learning techniques, and we propose a solution to rectify it.
Specifically, we make the following main contributions. Firstly, we have employed
a systematic protocol to transform the benchmark correspondences into a readily
usable form for the supervised learning techniques. Secondly, we have performed
several experiments to establish that the presence of imbalance in the datasets im-
pedes the performance of supervised learning techniques. Precisely, we have used
ten different feature measures for training, we tweaked the weights of tokens, and
we adjusted the size of training datasets. Finally, to rectify the imbalance problem,
we have proposed a data balancing based technique and evaluated its effectiveness
for process model matching.

The rest of the paper is organized as follows: Section 2 presents the protocol that
we have employed to transform the benchmark datasets. Section 3 investigates the
causes of below par performance of the supervised learning techniques. Section 4
presents our proposed solution and the experimental setting that we have used
to evaluate the proposed technique. The analysis of the results are presented in
Section 5. A brief overview of the related work is presented in Section 6. Finally, in
Section 7 we draw conclusions.

2 TRANSFORMATION OF BENCHMARK DATASETS

In this section, we present our first contribution, the transformation of benchmark
dataset to make it readily available for supervised learning techniques. Below, we
introduce the three widely used datasets, and the protocol that we have used to
transform the benchmark datasets.
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Source datasets. We conducted a comprehensive search of process model match-
ing literature by querying multiple digital repositories, such as Springerlink and
ScienceDirect, using several keywords. The retrieved items were manually screen-
ed to obtain 17 research articles that have experimentally evaluated the effectiveness
of PMM techniques. Table 1 provides the list of the studies and the datasets used
in these studies for the evaluation of the process model matching techniques. It can
be observed from the table that all the existing studies have either used PMMC ’15
datasets or their earlier versions for the evaluation. This indicates that any findings
that stem from the use of the PMMC ’15 datasets are acceptable for the community.

Dataset References

Earlier version of a PMMC ’13 dataset [11, 19, 20]
PMMC ’13 datasets [21, 22]
PMMC ’15 datasets [1, 2, 3, 5, 9, 23, 24, 25, 26, 27, 28, 29]

Table 1. Benchmark datasets used in literature

The PMMC ’15 datasets include University Admission (UA), Birth Registration
(BR), and Asset Management (AM) collections of 9, 9 and 72 process models, respec-
tively. The models are designed in BPMN, PNML and EPML formats having 289,
238, and 1 993 activities, respectively. Furthermore, each dataset includes 36 pro-
cess model pairs and benchmark correspondences between activities of each process
model pair. The key features of the PMMC ’15 datasets that we have used are
the following: Firstly, the datasets are publicly available hence the results produced
using them are universally verifiable. Secondly, they include real-world process mod-
els from three different domains, providing sufficient diversity. Hence, any findings
based on these datasets are likely to be applicable to other domains. Lastly, each
dataset also includes a collection of gold standard correspondences that can be used
as a benchmark for the evaluation of process matching techniques.

Although the collections of process models have sufficient diversity to chal-
lenge the capabilities of process matching techniques but the initial screening of
the datasets revealed that the benchmark correspondences are not readily usable
for the supervised learning techniques. It is due to the following reasons: Firstly,
the storage format of each dataset is different. Secondly, the benchmark correspon-
dences are limited to equivalent or optimal equivalent pairs, whereas the sub-optimal
equivalent pairs and the pairs in which one label subsumes the other label are not
provided. Thirdly, information regarding unequivalent pairs is not explicitly pro-
vided.

Transforming the benchmark datasets. In the first transformation step, we
wrote a parser that can extract activity labels from BPMN, PNML and EPML
formats (the formats in which the three datasets are currently available), and store
them in CSV files. Subsequently, we generated a cross-product between all activities
of each process model pair which resulted in 36 675, 25 045 and 30 764 activity pairs
for the UA, BR and AM datasets, respectively. In the second step, the activity
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pairs that were declared equivalent in the PMMC ’15 gold standard were marked as
equivalent pairs in the cross-product, by parsing the gold standard available in the
RDF format. In the third step, we engaged two researchers with expertise in process
modeling to evaluate the remaining pairs in the cross-product. Specifically, the
experts were explicitly told to mark an activity pair as equivalent even if that activity
pair is a sub-optimal or a subsumption pair. Finally, the disagreements between the
two researchers were resolved with the help of another expert. Accordingly, for each
dataset, we generated a CSV file that contains activity labels, as well as human
decision about corresponding pairs. Hence, making the datasets readily available
for supervised learning techniques by omitting the hassle of parsing multiple data
formats. The detailed specifications of each dataset is presented in Table 2.

UA BR AM

No. of Model Pairs 36 36 36
No. of Pairs in the Dataset 36 675 25 045 30 764
No. of Positive Examples 232 645 222
No. of Negative Examples 36 443 24 400 30 542
Imbalance Ratio 1:157 1:38 1:138

Table 2. Specification of the human benchmark

3 PROCESS MODEL MATCHING USING SUPERVISED LEARNING

In this section, we present our second contribution, experimentation to identify the
cause of the below par performance of supervised learning techniques.

3.1 Supervised Learning Techniques

We have selected eight diverse supervised learning techniques for our experiments
as each technique has its own strenghts and weaknesses. These techniques are,
Naive Bayes, Simple Logistic, IBK, AdaBoostM1, Decision Table, J48, LMT, and
Random Forest. We have selected these techniques due to their effectiveness in text
processing tasks.

Among these techniques, Naive Bayes is a robust generative classification al-
gorithm that is less sensitive to noisy data and produces stable predictions. It is
widely acknowledged as an effective technique for word disambiguation. Whereas,
in Simple Logistic, LogitBoost is used as a base weak learner to fit the logistic
models. The repetitions of LogitBoost are cross-validated to produce the optimum
results. K-Nearest Neighbor (IBK) selects a feature-space based on the nearest
neighbors. J48 is an implementation of a decision tree algorithm to predict class
labels. AdaBoostM1 algorithm focuses on the hard-to-learn examples using pseudo-
loss function. Decision tables are used as hypothesis-space for supervised learning
in the Decision Table algorithm. Logistic Model Trees is the supervised learning
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algorithm that combines logistic regression to decision tree learning algorithm to
improve results. These techniques reduce both bias and variance due to its con-
stituent methods. Lastly, Random Forest is an ensemble classification technique
which uses bagging and decisions trees to predict the class labels.

3.2 Feature Measures

We have selected ten text matching measures that are widely used to compute
similarity between a pair of sentences. The reasons for the choice of such a large
number of features are twofold: firstly, to supplement the impact of an individual
feature on a learning technique. Secondly, to increase the breadth of the knowledge
base of a learning technique and thereby offering more opportunities for eliciting the
hidden knowledge. A brief overview of these measures are as follows:

Levenshtein distance. A distance based measure that computes distance between
two input strings by computing a normalized score of the minimum number of
character edit operations required to convert one label into the other. For two
labels l1 and l2, the Levenshtein distance is computed as follows:

editnorm(l1, l2) = 1− |edit distance(l1, l2)|
min(|l1|, |l2|)

.

Cosine similarity. This similarity measure generates a vector representation of
both labels. Subsequently, the similarity is computed by the cosine of angle
between the two vectors.

cossim(l1, l2) =

−→
l1 •
−→
l2(

|
−→
l1 ||
−→
l2 |
) .

Euclidean distance. Similar to cosine similarity, it first generates a vector repre-
sentation of both labels. Subsequently, euclidean distance is the square root of
the sum of squared differences between the vectors of two labels. Formally, it is
defined as follows:

EUdis(l1, l2) =
[(−→
l1 −

−→
l2

)
•
(−→
l1 −

−→
l2

)]1/2
.

Monge-Elkan. A token based approach in which similarity between two labels is
computed by measuring the average of the similarity values between pairs of
more similar tokens within label l1 and l2 [13]. Formally, it is defined as follows:

MonEl sim(l1, l2) =
1

|l1|

|l1|∑
i=1

max{sim(l1i , l2j)}
|l2|
j=1.
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Block distance. Block distance is depicted in two dimensions with discrete vectors.
It calculates the distance between two data points using a grid-like path. The
bock distance between two data points is the aggregation of the differences of
their corresponding components. Formally, it is defined as follows:

Blockdist(l1, l2) =
n∑

i=1

|l1i − l2i|.

Jaccard similarity. A set theory based measure that treats each label as a collec-
tion of tokens. According to this measure, each label is tokenized into words and
represented as a set. Jaccard similarity is then the ratio between the number of
common words between the two sets and total number of words in both sets.

Jacsim(l1, l2) =
|S(l1) ∩ S(l2)|
|S(l1) ∪ S(l2)|

.

Jaro-Winkler distance. A type of string edit distance that is faster than the
Levenshtein distance as it computes the similarity between two labels by count-
ing the number of matching characters in the strings and transpositions. For-
mally, it is defined as follows:

Mw(l1, l2) = Mj + (lp (1−Mj)),

Mj =
1

3
+

s

|l1|
+

s

|l2|
+
s− t
s

where l is the length of the common prefix, p is the constant scaling factor, and
s is the number of matching characters between the two labels. Furthermore,
Mj represents Jaro distance, s is the number of matching labels, and t is half
the number of transpositions.

TagLink token similarity. It is an adaptive hybrid method of tag-based and
link-based similarity in which Tag Commonness (TC) and Link Strength (LS) is
dynamically determined. The main idea behind this method is to combine the
tag-based and link-based approach to achieve the optimal similarity results. It
uses a variation of Jaccard similarity as link-based similarity (δlink) and a vari-
ation of tf-idf cosine similarity as a tag-based similarity (δtag) [33]. Formally, it
is defined as follows:

TagLink(l1, l2) =
TCl1

TCl1 + LSl2

δtag(l1,l2) +
LSl1

TCl1 + LSl2

δlink(l1,l2).

Matching Coefficient. An elementary vector based approach which counts the
number of similar terms on which both vectors are non-zero. This similarity
measure is useful if attributes have symmetry in data, i.e., they carry comparable
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information. It is sensitive to the variable input and does not generalize very
well.

MC =
number of matching attributes

total number of attributes
.

Soundex. A phonetic based measure that encodes homophones for the same rep-
resentation so that they can be matched even when there is a minor difference
in spellings. In simple words, the words that rely on similarity of pronunciation
rather than the vocabulary are declared as similar.

3.3 Datasets

We have used four datasets for experimentation, three PMMC datasets and another
Large (LR) dataset that has been recently developed [31], to demonstrate the exter-
nal validity of our findings. A key feature of the LR dataset is that it is handcrafted
to challenge the abilities of PMM techniques. The LR dataset contains 600 process
models from different genres and benchmark correspondences between 406 process
models pairs. The dataset contains 89 559 activity pairs, including 6 443 equiva-
lent pairs and 83 115 unequivalent pairs with an imbalance ratio of 1:13. All the
four datasets used for experimentation were available in CSV format having four
columns, an identifier, a pair of activities, and human decisions.

3.4 Conducting the Experiments

For the experiments each label was tokenized, stop words were removed, and each
token was stemmed to generate its corresponding stem. Subsequently, the val-
ues of all the 10 features were computed for each activity pair which were given
as input features to the eight supervised learning techniques. For each experi-
ment, the corresponding dataset was divided into training and testing datasets.
To reduce the bias that might occur due to the choice of training and testing
dataset, 10-fold cross-validation was performed for each dataset separately. Note
that we have used a widely used features selection technique, Information Gain,
to identify the optimal set of features, and subsequently used the optimal set
of features for experimentation. However, the effectiveness scores were compro-
mised, therefore, the results presented in this study are generated by all the 10 fea-
tures.

We have used Precision, Recall and F1 scores to evaluate the effectiveness of
supervised learning techniques. In the context of process model matching, Preci-
sion (P) refers to the proportion of activity pairs that are declared equivalent by
a technique and also marked equivalent in the human benchmark. Recall (R) refers
to the proportion of activity pairs that are marked equivalent in the human bench-
mark and also declared equivalent by a technique, whereas, F1 is the harmonic mean
of P and R.
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3.5 Results

Table 3 shows the average F1 scores of each supervised learning technique. Note, we
have synthesized the results to separately evaluate the effectiveness of each technique
for equivalent and unequivalent pairs, separately. From the results we have observed
the following:

Performance variation between Equivalent (EC) and Unequivalent (UE)
pairs. It can be observed from Figure 2 that the F1 scores of EC pairs are sig-
nificantly less than the corresponding UE pairs. Furthermore, this difference in
performance can be observed across all the techniques and for the three PMMC
datasets, as well as the additional LR data. Hence, we conclude that the imbal-
ance problem can be generalized as the main cause of the abysmal performance
of the supervised learning techniques. We believe that a key reason of this dif-
ference in performance is that the unequivalent pairs significantly outnumbered
equivalent pairs for all the three datasets. This imbalance in the data limits the
learning of each technique and consequently impedes their performance for the
equivalent pairs.

Performance variation between techniques. The performance variation be-
tween supervised learning techniques is represented by the box plots in Fig-
ure 3. It can be observed from the figure that there is a significant varia-
tion between the performances of the supervised learning techniques for the
equivalent pairs. However, such a variation is not apparent for the unequiv-
alent pairs. These results indicate that the availability of the larger number
of unequivalent pairs in the training data provides ample opportunities for
all the supervised learning techniques to learn and predict the performance
of the unequivalent pairs. However, the relatively small number of equivalent
pairs in the training data does not provide equal opportunities for all the su-
pervised learning techniques. This is due to two possible reasons, either the
available equivalent pairs are not appropriate for an accurate learning, or the
available equivalent pairs have contradictions which cannot be resolved due to
scarcity of examples. These results confirm our hypothesis that the presence
of imbalance in the data impedes the performance of supervised learning tech-
niques.

Performance variation across datasets. It can be observed from Figure 4 that
the F1 scores for the unequivalent pairs in all the datasets are comparable. On
the contrary, for the equivalent pairs, the F1 scores of AM dataset are sig-
nificantly less than the other datasets. This indicates that the AM dataset
does not have sufficient or appropriate examples to learn and predict the per-
formance of equivalent pairs. It is because the AM dataset contains a large
number of process models and activities, whereas the benchmark correspon-
dences merely contain 222 equivalent pairs. Thus, the equivalent pairs of AM
dataset do not have sufficient examples to encompass the diversity of their mod-
els.
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UA BR AM LR
Techniques EC UE EC UE EC UE EC UE

Naive Bayes 0.549 0.927 0.585 0.846 0.444 0.76 0.364 0.942

Simple Logistic 0.644 0.957 0.505 0.854 0 0.896 0.287 0.968

IBK 0.781 0.966 0.693 0.871 0.393 0.874 0.39 0.953

AdaBoostM1 0.7 0.962 0.592 0.861 0 0.896 0.33 0.967

Decision Table 0.767 0.967 0.606 0.867 0.342 0.887 0.291 0.968

J48 0.813 0.971 0.612 0.857 0.333 0.889 0.313 0.968

LMT 0.787 0.967 0.605 0.864 0.3 0.892 0.311 0.968

Random Forest 0.827 0.975 0.694 0.886 0.377 0.89 0.472 0.972

Table 3. F1 scores of supervised learning techniques (EC = Equivalent pairs and UE =
Unequivalent pairs)

NB

SL

IBK

ABM1

DT

J48

LMT

RF

0.5

0.6

0.7

0.8

0.9

1

EC UE

a) UA dataset

NB

SL

IBK

ABM1

DT

J48

LMT

RF

0.5

0.7

0.9

EC UE

b) BR dataset

NB

SL

IBK

ABM1

DT

J48

LMT

RF

0.3

0.5

0.7

0.9

EC UE

c) AM dataset

NB

SL

IBK

ABM1

DT

J48

LMT

RF

0.3

0.5

0.7

0.9

EC UE

d) LR dataset

Figure 2. Performance variation of F1 scores between equivalent and unequivalent pairs

4 THE PROPOSED SOLUTION

In this section, we present our third contribution which is based on the use of
data sampling technique to balance the training data and ensure that a supervised
learning technique has equal opportunity to elicit the knowledge for equivalent and
unequivalent pairs. Listing 1 provides an overview of our proposed solution. It
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Figure 3. Performance variation of F1 scores between techniques
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Figure 4. Performance variation across datasets of F1 scores between equivalent and un-
equivalent pairs

includes pseudo-codes for feature extraction, pre-processing of labels, and balancing
the training data.

In the listing, Pi is an ith process model, and LPi,P j[ ][ ] represents the array of all
the activity labels in the two process models, Pi and Pj. Furthermore, APLPi,Pj

[ ]
represents the array of all the activity pairs between the two process models Pi
and Pj. Finally, SLT represents a supervised learning technique. In contrast to
the existing studies that use term weights as features, we are the first to use a set
of similarity scores between activity labels as features. Furthermore, we have also
introduced the idea of using sampling techniques to balance the training data in the
context of process model matching.

float ourAlgo(APL{Pi,Pj}[ ]) { // get benchmark decision for each activity

pair.

bool bmcDecisions[ ] = getBMC(APL{Pi,Pj}[ ]) //10-fold cross-validation

for (r = 1 to 10) {

//divide data in two parts, training (TR) and testing (TS) activity

pairs.

APL{Pi,Pj}[TR][TS] = dataDivider(APL{Pi,Pj}[ ], bmcDecisions[ ])

//check the imbalance ratio a constant.

if (getImbalanceRatio(bmcDecisions[ ]) < α) { // balance training

data

APL{Pi,Pj}[TR] = dataBalTech(APL{Pi,Pj}[TR])

}

//TRAINING

LPi,P j[ ][ ] = preProcessing(APL{Pi,Pj}[TR])

sim[ ][ ] = feature-extraction(LPi,P j[ ][ ])

SLT-Trained = tain&learn(STL, sim[ ][ ])

//TESTING

LPi,P j[ ][ ] = preProcessing(APL{Pi,Pj}[TS])

sim[ ][ ] = feature-extraction(LPi,P j[ ][ ]) // Returns SLT
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decisions for each pair

SLTDecisions[ ][ ] =applySLT(SLT-Trained, sim[ ][ ])

F1Score[r] = computeAccuracy(SLTDecisions[ ][ ], bmcDecisions[

])

}

avgF1Score = computeAverage (F1Score[ ])

return avgF1Score

}

/* * Omits trival variations in labels */

LPi,P j[ ][ ] preprocessing(APL{Pi,Pj}[ ] ) {

for (k=1 to length of APL{Pi,Pj}[ ]) {

APL{Pi,Pj}[k] = tokenize(APL{Pi,Pj}[k])

APL{Pi,Pj}[k] = removeStopWords(APL{Pi,Pj}[k]) //coversion to stem

words

APL{Pi,Pj}[k] = stemming(APL{Pi,Pj}[k])

}

return LPi,P j[ ][ ]

}

/* * Returns similarity scores of each pair */

sim[ ][ ] feature-extraction(LPi,P j[ ][ ]) {

for (each metric m) {

for (k=1 to length of LPi,P j[ ][ ]) {

sim[k][m]= computeSimilarity(LPi,P j[ ][ ], m)

}

}

return sim[ ][ ]

}

Listing 1. Our approach to improve performance of supervised learning techniques

4.1 Data Balancing Techniques

A brief overview of the data balancing techniques are as follows:

Distribution-based balancing. In the distribution-based balancing different
probability distributions are learned from imbalanced dataset to form a balanced
dataset [15]. We have used Gaussian distribution for balancing the training data
using Box and Muller method, as it is widely acknowledged as an sampling tech-
nique for adequately approximating the models. In our experiments, it models
the univariate relation of class labels with the features.

Spread subsample. It uses random subsamples method to select the spread be-
tween minority and majority classes [16]. In this method, one can use uniform
distribution of samples so that the number of majority class samples are reduced
to minority class samples to balance the distribution of imbalanced dataset.
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Synthetic minority oversampling (SMOTE). SMOTE is a pseudo oversam-
pling technique in which minority class instances are increased by generating
new pseudo instances and thus decrease the spread between minority and major-
ity classes [17]. In particular, firstly, the minority class instances are identified.
Subsequently, the neighbors of the minority class instances are selected and new
minority class instances are added based on the selected neighbors.

Class balancer. In the class balancer technique, the instances in the dataset are
reweighed and as a result each class contains the same total weight [18]. The
aggregated weight of all instances is kept constant. The weights of only first
batch of instances are altered so that it can be employed with the Filtered
Classifier.

4.2 Experimental Setup

For the experiments, we have used the same four datasets that were used in the ex-
periments presented in Section 3.4. Furthermore, the same evaluation measures, pre-
processing, similarity scores, features, training-testing ratio, 10-fold cross-validation
and the same supervised learning algorithms have been used. However, for con-
ducting the experiments, we have employed four different data balancing tech-
niques to identify a training dataset, whereas the testing dataset remained un-
changed.

4.3 Results

Table 4 shows the average F1 score of 10-fold cross-validation for each supervised
learning technique. Similar to the results of the previous experiments, the results of
equivalent and unequivalent pairs are separated to highlight the differences between
their scores. Note, we generated P, R and F1 scores separately for 12 data subsets,
which are produced by applying 4 data balancing techniques on UA, BR and AM
datasets. However, for brevity only the F1 scores are presented in the Table 4. From
the results, we have observed the following:

Reduced performance variation between equivalent and unequivalent
pairs. It can be observed from Figure 5, that after data balancing the F1 scores
for equivalent pairs become comparable with the unequivalent pairs. Addition-
ally, from the comparison of Figure 2 and 5, it can be observed that the variation
between the F1 scores of equivalent and unequivalent pairs is significantly re-
duced. This indicates that all the balancing techniques choose appropriate and
sufficient examples for equivalent as well as unequivalent pairs. It further in-
dicates that the chosen examples are effective for learning and prediction of
equivalent and unequivalent pairs.

Reduced performance variation between techniques. From the comparison
of Figure 3 and 6, it can be observed that the sizes of box plot quartiles for
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Techniques Distribution Base Undersampling SMOTE Class Balancer
EC UE EC UE EC UE EC UE

UA Dataset

Naive Bayes 0.967 0.967 0.682 0.766 0.689 0.733 0.686 0.771

Simple Logistic 0.881 0.885 0.861 0.861 0.867 0.831 0.833 0.838

IBK 0.852 0.879 0.908 0.909 0.977 0.97 0.903 0.911

AdaBoostM1 0.857 0.875 0.817 0.853 0.841 0.763 0.82 0.857

Decision Table 0.82 0.814 0.841 0.873 0.938 0.922 0.856 0.866

J48 0.852 0.847 0.909 0.908 0.965 0.956 0.912 0.916

LMT 0.881 0.885 0.9 0.897 0.97 0.962 0.902 0.91

Random Forest 0.881 0.885 0.923 0.928 0.98 0.975 0.916 0.922

BR Dataset

Naive Bayes 0.875 0.857 0.667 0.752 0.653 0.78 0.662 0.75

Simple Logistic 0.871 0.862 0.631 0.718 0.615 0.765 0.64 0.722

IBK 0.793 0.806 0.821 0.812 0.872 0.887 0.799 0.818

AdaBoostM1 0.852 0.847 0.65 0.741 0.646 0.785 0.664 0.757

Decision Table 0.721 0.712 0.677 0.759 0.673 0.785 0.682 0.762

J48 0.71 0.69 0.679 0.745 0.79 0.823 0.779 0.781

LMT 0.852 0.847 0.687 0.695 0.789 0.827 0.767 0.777

Random Forest 0.813 0.786 0.817 0.816 0.849 0.878 0.786 0.813

AM Dataset

Naive Bayes 0.857 0.842 0.697 0.68 0.673 0.646 0.687 0.639

Simple Logistic 0.814 0.82 0.709 0.687 0.699 0.678 0.689 0.658

IBK 0.806 0.793 0.679 0.658 0.846 0.847 0.675 0.723

AdaBoostM1 0.772 0.794 0.719 0.69 0.717 0.691 0.727 0.689

Decision Table 0.678 0.689 0.73 0.683 0.748 0.72 0.741 0.689

J48 0.708 0.655 0.768 0.709 0.77 0.708 0.743 0.676

LMT 0.793 0.806 0.746 0.7 0.784 0.749 0.736 0.684

Random Forest 0.774 0.759 0.664 0.686 0.837 0.851 0.717 0.748

LR Dataset

Naive Bayes 1 1 0.587 0.744 0.564 0.812 0.59 0.743

Simple Logistic 0.868 0.896 0.638 0.729 0.683 0.921 0.64 0.733

IBK 0.868 0.896 0.655 0.652 0.821 0.932 0.539 0.743

AdaBoostM1 0.873 0.892 0.595 0.74 0.565 0.813 0.572 0.740

Decision Table 0.814 0.82 0.64 0.732 0.654 0.882 0.629 0.73

J48 0.915 0.918 0.633 0.732 0.898 0.94 0.612 0.743

LMT 0.868 0.896 0.638 0.73 0.73 0.812 0.612 0.752

Random Forest 0.966 0.968 0.69 0.735 0.843 0.883 0.673 0.732

Table 4. Result of supervised learning techniques using balanced datasets
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Figure 5. Performance variation of F1 scores between equivalent and unequivalent pairs
after data balancing
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Figure 6. Performance variation of F1 scores between techniques after data balancing

equivalent pairs are decreased for UA and AM datasets, representing that the
variation between the performance of supervised learning techniques is reduced
for these datasets. It implies that the data balancing has provided equal op-
portunity for all the supervised learning techniques for UA and AM datasets.
On the contrary, the size of the quartiles for BR dataset has increased slightly
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Figure 7. Performance variation across datasets of equivalent and unequivalent pairs after
applying data balancing



376 K. Shahzad, A. Mazhar, G. Mustafa, F. Aslam

after data balancing, indicating that the variation between performance of the
supervised learning techniques has increased.

Reduced performance variation across datasets. It can be observed from
Figure 7 that for the equivalent as well as the unequivalent pairs there is no
significant gap between the performances of the supervised learning techniques
across the three datasets. This indicates that data balancing has provided better
opportunities to all the techniques across the three datasets.

5 ANALYSIS OF THE RESULTS

To evaluate the significance of performance gain that was achieved due to the pro-
posed approach, we have applied Friedman ANOVA test between balanced and
imbalanced datasets. The test is applied to the F1 scores of the 10-folds by setting
significance level to 0.05. The results of Distribution based balancing technique are
presented in Table 5. From the results presented in Table 5 we have observed the
following:

Significant performance gain: The increase in the performance of the supervised
learning techniques is statistically significant for the equivalent pairs. This ob-
servation is valid for all the supervised learning techniques and across the three
datasets.

Insignificant performance reduction for unequivalent pairs: For unequiva-
lent pairs, the reduction in the performance is statistically insignificant in ma-
jority of the cases. Furthermore, in a few cases the performance even improved
significantly.

Based on the above observations, we conclude that the use of data balancing in
supervised learning techniques enhances the efficiency of process model matching,
whenever the imbalance is large. However, the balance techniques may not be
equally effective when the imbalance ratio is small.

6 RELATED WORK

Process model matching was initially considered a rudimentary problem for com-
puting similarity between process models, querying process model repositories, har-
monization of process models, detection of process clones [32, 34], etc. However,
recent studies [2, 3, 4] have recognized the importance of process model matching
beyond its traditional usage. Consequently, a plethora of process model matching
techniques have been developed. We have conducted a comprehensive survey of
process model matching techniques by employing a snowballing approach. More
specifically, we started with a process model matching survey [5] and performed
forward and backward tracing to identify the studies that focus on identifying cor-
responding activities between a pair of process models. Accordingly, we identified
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Technique UA Dataset BR Dataset AM Dataset

EC UE EC UE EC UE

Naive Bayes S+ S+ S+ S+ S+ S+

Simple Logistic S+ NS S+ NS S+ NS

IBK S+ NS S+ NS S+ NS

AdaBoostM1 S+ S- S+ S- S+ S-

Decision Table NS NS S+ NS S+ NS

J48 S+ S- S+ S- S+ S-

LMT S+ NS S+ NS S+ NS

Random Forest S+ S- S+ S- S+ S-

Table 5. Friedman-ANOVA test between imbalanced and distribution based balanced
datasets. S represents significant, NS insignificant, where + and − represent increase
and decrease in performance, respectively.

domains specific, as well as generic studies. However, for brevity, we have only dis-
cussed generic studies. Our comprehensive examination of techniques revealed that
the matching techniques can be subdivided into two broad categories, supervised
and unsupervised techniques.

Unsupervised Techniques. These techniques use text matching measures to
identify corresponding activities between a pair of process models. Typically, these
techniques are composed of two phases [9]. The first phase computes similarity
score between activities of process models, whereas the second phase converts the
similarity score into a binary decision of corresponding activities or not [5]. These
techniques are further divided into syntactic and semantic measures [5]. A brief
overview of these techniques are as follows:

Syntactic measures: The measures in this category merely rely on the surface
form of the words that constitute the labels of the participating activities. That
is, these measures compute the similarity between a given pair of activities by
tokenizing labels into words, and subsequently comparing the words by using
string comparison operations [35]. Typically, distance-based measures, such as
Edit-distance, Levenshtein distance, Hamming distance, and Jensen-Shannon
distance, have been used for the comparison. These measures compute the
similarity between two words by counting the minimum number of string edit
operations (insertion, deletion, and update) required to convert one word into the
other word. A lower value of edit distance represents higher similarity between
the labels and vice versa.

In addition to the distance-based measures, Dice similarity and Cosine similarity
are also used for syntactic comparison. Dice similarity is the ratio between the
number of shared words between two activities and the total number of words in
the two activities [36]. On the contrary, Cosine similarity transforms each word
or a label into a vector and computes the similarity as cosine of angle between
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the activity vectors [19]. Furthermore, other syntactic similarity measures, such
as Jaccard similarity and Longest Common Subsequence, have been used for
process matching.

The syntactic measures yield high accuracy in case the vocabulary of participat-
ing activity labels is comparable, however there are at least two cases in which
these measures do not yield high accuracy:

1. the considered activities are composed of unrelated words having similar
spellings, such as “give contract” and “live contact”,

2. the activities are composed of words with same meaning but different vocab-
ulary, such as “evaluate applicant” and “assess candidate”.

Semantic measures. These measures address the limitations of the syntactic mea-
sures as they take into account the meanings or relatedness of the considered
words. To that end, this technique relies on a large lexical English database,
called WordNet [37]. Specifically, the participating labels are tokenized into
words and pre-processed to generate root form of each word. Subsequently, the
similarity between words is computed by using the similarity or relatedness of
words.

The similarity based measures rely on the similarity between two words by con-
sidering their synonyms. The examples of the similarity based techniques are
Static weighted word comparison [38], Dice with synonyms, and intersection of
synonyms. These techniques yield higher matching accuracy between the labels
in which a concept is represented by different words.

In contrast to the similarity based measures, a relatedness based measure takes
into consideration the co-relatedness of words, represented by is-a relationship
between the concepts in the WordNet topology. That is, the words having
shorter path between them are considered more similar that the ones having
longer path. Lin, Lesk, Wu & Palmer, Leacock, and Jiang similarity are the
relatedness based semantic measures [39].

Supervised Techniques. Recent studies have attempted to increase the accu-
racy of process model matching using supervised learning techniques [9, 3, 40]. The
F1 scores achieved by the supervised learning technique for the three PMMC ’15
datasets are 0.54, 0.38 and 0.61, which are slightly higher than the F1 scores achieved
by the matchers participating in the latest edition of the PMM contest in 2015.
Furthermore, a state-of-the-art approach has proposed to combine the strengths of
individual matchers using an ensemble of multiple matchers [3] to improve the ac-
curacy of PMM. The most recent study [40] has proposed a word-embeddings based
approach to increase the accuracy of process matching to achieve an F1 score of
0.84, 0.72 and 0.91. A key limitation of the proposed approach is that its analy-
sis is limited to a unified F1 score, without distinguishing between equivalent and
unequivalent pairs.
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7 CONCLUSION

Due to the growing interest in process model matching, a plethora of unsuper-
vised learning techniques have been developed. Recent attempts have been made to
introduce supervised learning for process model matching, without achieving a sig-
nificantly higher accuracy than the traditional unsupervised techniques. This is an
anomaly, because the supervised learning techniques are proven to significantly out-
perform unsupervised techniques for a variety of text processing tasks. Therefore,
the aim of this paper is to investigate the cause behind the abysmal performance of
the supervised learning techniques in process model matching and suggest a solution
to improve their performance.

To this end, in this paper, we have made three main contributions. Firstly,
we have transformed the existing benchmark correspondences into a readily usable
form for the supervised learning techniques. Secondly, we have conducted a series of
experiments using eight state-of-the-art supervised learning techniques and synthe-
sized the results to establish that the presence of imbalance in the datasets adversely
affects the matching results. Thirdly, we applied four different data balancing tech-
niques to achieve groundbreaking accuracy in the process model matching. That is,
our proposed solution achieved a maximum F1 score of 0.98, whereas the plethora
of existing techniques for process model matching (including both supervised and
unsupervised techniques) were able to achieve a maximum F1 score of merely 0.67.
Furthermore, even the average F1 score of 0.79 achieved by our solution is higher
than the maximum F1 score of 0.67 achieved by all the existing techniques. In the
future, we plan to use the state-of-the-art deep learning techniques for process model
matching.
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Similarity of Business Process Models: Metrics and Evaluation. Information Systems,
Vol. 36, 2011, No. 2, pp. 498–516, doi: 10.1016/j.is.2010.09.006.

[39] Shahzad, K.—Pervaz, I.—Nawab, A.: WordNet-Based Semantic Similarity Mea-
sures for Process Model Matching. In: Zdravkovic, J., Grabis, J., Nurcan, S., Stirna, J.
(Eds.): Joint Proceedings of the BIR 2018 Short Papers, Workshops and Doc-
toral Consortium, 17th International Conference Perspectives in Business Informat-
ics Research (BIR 2018), Stockholm, Sweden, 2018. CEUR Workshops Proceedings,
Vol. 2218, 2018, pp. 33–44.

[40] Shahzad, K.—Kanwal, S.—Malik, K.—Aslam, F.—Ali, M.: A Word-
Embedding-Based Approach for Accurate Identification of Corresponding Activi-
ties. Computers and Electrical Engineering, Vol. 78, 2019, No. 1, pp. 218–229, doi:
10.1016/j.compeleceng.2019.07.011.

https://doi.org/10.1016/j.is.2010.09.006
https://doi.org/10.1016/j.compeleceng.2019.07.011


384 K. Shahzad, A. Mazhar, G. Mustafa, F. Aslam

Khurram Shahzad is Tenure Track Assistant Professor at the
Punjab University College of Information Technology (PUCIT),
University of the Punjab, Lahore. He obtained his Masters
and Ph.D. from KTH – Royal Institute of Technology, Stock-
holm. He has been associated with Information Systems Groups
at Technical University Eindhoven, Eindhoven, and University
of Fribourg, Fribourg. He has published more than 35 papers in
international conferences and journals.

Arslaan Mazhar received his Bachelor’s degree in software en-
gineering from the Mirpur University of Science and Technology,
Mirpur, Pakistan, and his M.Phil. degree in computer science
from Punjab University College of Information Technology, Uni-
versity of the Punjab, Lahore.

Ghulam Mustafa received his M.Sc. degree in computer sci-
ence from COMSATS Institute of Information Technology
(CIIT), Lahore, Pakistan, in 2007 and his Ph.D. degree in com-
puter science and technology from Beijing Institute of Technol-
ogy (BIT), Beijing, China in 2015. He is currently Assistant
Professor at the Department of Information Technology, The
University of the Punjab, Gujranwala Campus, Pakistan. His re-
search interests include artificial intelligence, recommender sys-
tems and machine learning.

Faisal Aslam received his Ph.D. from University of Freiburg,
Germany and Post Doctorate from TU Delft, The Netherlands.
He was also Research Fellow at Lund University, Sweden. Cur-
rently, he is Assistant Professor at the University of the Punjab.
He has published in reputed journals and conferences.



Computing and Informatics, Vol. 39, 2020, 385–409, doi: 10.31577/cai 2020 3 385

PERCEPTUAL QUALITY ASSESSMENT OF DIGITAL
IMAGES USING DEEP FEATURES

Nisar Ahmed

Department of Computer Engineering
University of Engineering and Technology, Lahore
Pakistan
e-mail: nisarahmedrana@yahoo.com

Hafiz Muhammad Shahzad Asif

Department of Computer Science
University of Engineering and Technology, Lahore
Pakistan
e-mail: shehzad@uet.edu.pk

Abstract. Perceptual quality assessment is a tough task especially in the absence
of reference information. No-reference image quality assessment is more challenging
than full-reference or reduced reference methods, as the system has to model the
different image distortions in the form of a quality score. Most of the approaches
are based on handcrafted features which are based on natural scene statistics and
are specific to some distortion types. These approaches provide high correlation
with human opinion score for datasets containing specific distortions, but they fail
to generalize well in scenarios were multiple distortions or real-time distortions are
present in images. Deep learning algorithms, on the other hand, demonstrated their
abilities to learn expert features with better discriminatory power for various classi-
fication and regression tasks. It is a big challenge to use those deep learning methods
for image quality assessment as the image datasets with human opinion score are
very small and cannot be used effectively to train a deep learning algorithm. We
experimented with activations of different deep layers of thirteen pre-trained mod-
els and checked for their suitability for the task of no-reference quality assessment.
Fine-tuning of these models on quality assessment datasets provided even better
performance. A Gaussian process regression model is trained on these activations
to perform the quality assessment and it provided state-of-the-art performance.
Cross-dataset validation demonstrated its performance further and also provided
further prospects of research in this direction.
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1 INTRODUCTION

Assessment of perceptual quality of digital images can be very useful in several im-
age processing applications. Image quality assessment algorithms can be used to
monitor the video or image quality to optimize the parameters of image-processing
algorithms. Such system can be used to adjust compression ratio, amount of color
saturation, contrast adjustment, etc. It can also be used to evaluate the performance
of image acquisition hardware and amount of perceptual distortions occurring dur-
ing transmission. Usually the above applications are based on full-reference methods
which require the original image to compare the extracted features with distorted
image for assessment of amount of distortion, but this approach has practical limi-
tations. Full-reference methods can be used to assess the compression performance,
but they cannot be used to assess the perceptual distortion in transmitted video
when the original one is not available (e.g. broadcasting) or in case of evaluation of
image acquisition/enhancement. Moreover, full-reference approaches measure the
amount of change in original and distorted image but in case of image enhancement
applications such as contrast enhancement the perceptual quality of reproduced im-
age is better than the original image and full-reference approaches fail to provide
quality score for these applications.

No-reference image quality assessment is therefore crucial for several image pro-
cessing systems for evaluation of perceptual image quality. These approaches do
not require any reference image for comparison but they extract or learn discrimi-
natory features from images which can be used to assess the perceptual quality. On
the contrary, due to lack of information, it is harder for no-reference image quality
assessment algorithms to assess the perceptual quality better than full-reference ap-
proaches. It is therefore more difficult for no-reference approaches to adapt to the
behavior of human visual system and result in decreased prediction performance in
terms of correlation with Mean Opinion Score (MOS).

No-reference quality assessment is usually performed by extracting handcrafted
features such as natural scene statistics and then training a regression algorithm to
obtain the quality score. Many no-reference image quality assessment algorithms are
proposed in the literature and development of a robust quality assessment algorithm
is dependent on quality discrimination ability of the features. Mittal et al. [1], Liu
et al. [2] and Sazzad et al. [3] extracted features in the spatial domain. Saad et al. [4],
Ma et al. [5] and Liu et al. [6] worked on transform domain features. He at el. [7] and
Chang et al. [8] used sparse representation for image quality assessment. These ap-
proaches can predict perceptual quality in high correlation to the human judgments.
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Deep features, on the other hand, are the activations of convolutional neu-
ral networks which are extracted to perform different classification and regression
tasks [9, 10, 7, 11]. These features demonstrated very powerful capabilities for im-
age quality assessment task as well [12, 13, 14, 15]. There are two approaches to
extract deep features, one is to use the pre-trained CNN model and extract deep
features [9, 15] and the other is to fine-tune the model on your problem set and
then perform the feature extraction [10]. The second approach is required on the
problem of image quality as it is of different nature than the original dataset (Im-
ageNet) which is used in the pre-trained model. Some researchers designed their
own architecture [16, 17, 18] or used a previously designed architecture to train
from scratch for feature extraction. The deep feature based approaches are much
better at predicting perceptual image quality than the handcrafted feature based.
However, there is no clarity as how to obtain most representative feature set for
perceptual image quality assessment.

In this work, we have performed an analysis of different deep features to iden-
tify the most representative feature set for image quality assessment. Our contri-
butions are twofold, the first involves identification of most suitable way of deep
feature extraction and the second is construction of a quality prediction model by
using Gaussian process regression (GPR). The identification of deep features ex-
traction method is performed by first selecting thirteen popular CNN architectures,
pre-trained on ImageNet, and performing feature extraction at different bottleneck
layers. Eight of these pre-trained models are fine-tuned on image quality database
and then deep features are extracted in a similar manner. The best performing
feature set is used to train a GPR as it has been demonstrated that the GPR is the
most suitable regression algorithm for the task of image quality assessment. The
specific contributions are highlighted below:

• We have provided a comparison of deep features performance for image quality
using several popular pre-trained models with and without fine-tuning.

• We have extracted deep features at several bottleneck points and provided three
best points to extract features in these architectures for image quality.

• We have highlighted and used NASNet after fine-tunning for feature extraction
as it provided most quality aware features.

• We have proposed a Gaussian process regression based model trained using deep
features to obtain state-of-the-art performance on several benchmark databases.

2 RELATED WORK

Bosse et al. [19] presented a deep neural network based quality assessment approach.
They follow configuration of a Siamese network in which the differences of extracted
features for original and distorted images are taken and features are fused to perform
regression with fully connected neural network. The whole process is applied in
patch-wise fashion and weighted averaging is used for final quality score. As their
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approach requires both pristine and distorted image, their approach is only useful
for full-reference quality assessment.

Zhang et al. [15] presented a study of effectiveness of deep features for image
quality assessment. They described the use of VGG, AlexNet and SqueezeNet for
extraction of deep features and demonstrated that they are very good at prediction
of image quality. They presented a new dataset of images with ‘just noticeable
difference’ images to demonstrate the performance of deep networks. They demon-
strated with VGG pre-trained model on their dataset that deep features are superior
to almost all of the models utilizing handcrafted features with full-reference or re-
duced reference. It is to highlight that only VGG network provides a rich feature
representation among the three used architectures but the more advanced architec-
tures with deeper representation may prove more useful for the task of image quality
assessment.

Gao et al. [9] has presented a deep CNN based image quality predictor. They
have used VGG model pre-trained on 1 000 ImageNet categories. They extracted the
deep features at each layer and trained a Support Vector Regression (SVR) on each
of the deep features. These SVR are combined to form an ensemble to predict the
image quality. They tested their model on several benchmark datasets and reported
comparable performance. The idea behind their approach is very näıve. But the
issue is that combining the deep features from all the layers results in a very large
feature set size which is computationally expensive at one end and has a very large
feature space at the other end. This large feature space will easily overfit the model
rather than learning a more generalized form because the training database used in
their experiment is relatively small.

Bianco et al. [17] proposed the use of convolutional neural networks for the task
of image quality assessment. They used features extracted from the layers of CNN
and also proposed their own architecture for quality prediction. Their final proposal
is a deep feature extractor and these features are pooled and provided to an SVR for
quality assessment. Multiple crops of an image are used and their estimated scores
are averaged to provide the final quality score. They have demonstrated their model
on five benchmark datasets and claimed comparable performance. Their architec-
ture is very primitive, but they have used different learning strategies to improve
the prediction performance. These learning strategies combined with a deeper and
representative architecture may prove helpful in obtaining better prediction perfor-
mance.

Fan et al. [18] proposed a CNN based two stage image quality assessment ap-
proach. The first phase identifies the type of distortion present in the image and
the second stage contains multiple image quality assessment modules trained for
each distortion type. The quality score is provided based on the distortion type
identified in the previous stage. This approach can be used with success for some
specific distortion types only and cannot be applied to naturally distorted images
which contain number of image distortions occurring simultaneously.

Guan et al. [10] proposed a deep features based image quality assessment ap-
proach. The first step in their approach performs spatial sampling and the next
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stage performs the feature extraction through CNN. There are two configurations,
one performs 5 × 5 and then 7 × 7 convolution and the other performs 7 × 7 con-
volutions and their activations are concatenated to obtain the final feature vector.
The next layer performs patch-wise quality assessment and weight learning for the
specific patch. The last layer finds the global image quality by weighted addition
of patch-wise quality. Their approach uses bilinear pooling by extracting features
with different sized filters, but the depth of CNN architecture is not very deep and
better representations cannot be obtained.

Bosse et al. [20] proposed a deep neural network based image quality assessment
approach. The input image is divided into patches and quality is estimated for
each patch and final score is obtained by averaging these quality scores. They
have provided another architecture for patch-wise weighted aggregation which uses
an additional fully-connected layer to learn the weight for each patch and then patch-
wise weighted averaging is used for score calculation, and it has shown superior
performance over the other. The patch based CNN models are easier to train and
can be used on variable sized inputs by combining the scores of multiple image
crops.

Bare et al. [16] proposed a specialized CNN for image quality assessment. They
have used six convolutional layers along with skip connections and sum layers in
their architecture. The output of last sum layer is provided to a fully connected
layer of 1 024 and regression score is obtained to indicate quality for a single patch.
The overall quality can be obtained by averaging over the patch estimates. The
drawback of these approaches is that the proposed architecture cannot be com-
pletely trained using small image database and there is high probability of overfit-
ting.

Hou et al. [11] proposed a deep image quality assessment approach based on qual-
itative scoring. Their work is based on the premise that humans prefer to provide
quality judgment qualitatively rather than quantitatively, so following the qualita-
tive approach would be more beneficial. Natural Scene Statistics (NSS) features
are provided to deep belief network to learn qualitative representations which are
then converted to quantitative scores for further utilization. They have presented
a new direction of research in the area of image quality assessment and more work
is required to improve its efficacy.

There are two approaches to perform image quality assessment,

1. handcrafted features based and

2. deep features based.

It has been demonstrated experimentally that deep features based approaches are
better at quality assessment keeping in view the complexity of factors affecting the
perceptual quality of an image. It can be observed from the literature that there is
no consensus in the use of a pre-trained model for deep features extraction. Most
of the researchers has used primeval architectures such as VGG and AlexNet, but
it is not clear whether it is the best pre-trained model or some other pre-trained
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model can perform better. Moreover, some authors has presented their own archi-
tectures which are inspired from AlexNet or have entirely different architecture. It
is highlighted that these architectures cannot be optimally trained keeping in view
the size of database they used for its training (typically containing up to 3 000 im-
ages). Therefore, we have found the need to highlight the efficacy of deep features
extracted from the popular pre-trained models. We have extracted deep features at
several bottleneck points and presented the three best layers for their extraction,
their relative performance and the size of feature set to highlight the computational
complexity. Moreover, the deep features are extracted with and without fine-tuning
and important observations are highlighted to guide the reader about the architec-
ture which provide the most quality aware features.

3 METHODOLOGY

Assessment of image quality in the absence of reference information is a complex
task. No-reference quality assessment of digital images is a subjective task and there
is a slight variation in quality score provided by different humans based on content
and type of distortions. Therefore, subjective opinion of a number of humans is
obtained and averaged to obtain MOS. Development of a machine learning model to
perform quality assessment is therefore modeling of Human Visual System (HVS).
The conventional approach towards this task is extraction of Natural Scene Statistics
(NSS) in either spatial domain [1, 2, 3] or spectral domain [2, 4, 5, 6, 21] and then
training of a regression algorithm such as SVR. The performance of the trained
model is therefore based on feature set obtained through NSS. A quality aware
feature set will provide better estimate of perceptual quality. HVS is a näıvely
understood system and therefore its modeling through extraction of NSS is a tough
task and there is always room for improvement.

Convolutional Neural Networks demonstrated expertise in the area of visual
recognition in the past few years. They automatically learn the discriminatory fea-
tures and perform the task of visual recognition with high accuracy and achieve/beat
the human level accuracy. Some researchers [19, 17, 18, 10, 16, 11] have tried to
utilize CNN for the task of image quality assessment. Their works use expertly
curated deep learning architectures as well as pre-trained CNN models which are
originally trained for the task of visual recognition. As the datasets with subjective
score (i.e. MOS) are limited due to involvement of subjective scoring nature and the
largest dataset with MOS contains 3 000 images [22]. Training from scratch with
3 000 images cannot be performed successfully on deeper models therefore shallow
CNN are designed for this task which lack the impressive performance provided by
CNN in visual recognition. Moreover, the pre-trained networks are originally de-
signed for object recognition and their fine-tuning provides better performance than
NSS based methods but it still needs improvement.

Recently some researchers have explored the use of activations of deep CNN
layers [19, 15, 9, 17, 10] for training of a SVR to perform the quality assessment



Perceptual Quality Assessment Using Deep Features 391

task and achieved an impressive performance. These activations of deep layers are
also referred to as deep features and have shown a good performance in several tasks
which have a small dataset size and are different in nature than the pre-trained
model itself. One of these researchers explored AlexNet, VGG and SqueezeNet and
extracted the activations of its fully connected layers to estimate quality. Similarly,
the other works principally focus on the pre-trained VGG model, as it has been
demonstrated that it provides a rich representation of image content. Gao et al. [9]
on the other hand extracted deep features from each layer of VGG and trained
an SVR for each of them and constructed an ensemble to perform image quality
estimation.

3.1 Deep Features Extraction from Pre-Trained CNNs

We have opted the approach of deep features to train an image quality assessment
model. In contrast to the previous work, we have explored a number of pre-trained
models to select the one with most quality aware features. We have performed
an extensive experimentation on thirteen pre-trained models and extracted the acti-
vations at several deep layers of these CNN models instead of the last fully-connected
layer. Table 1 provides the list of pre-trained CNN models along with three best
performing layers of each model with Root Mean Squared Error (RMSE), Pearson
Linear Correlation Coefficient (PLCC), Spearman Rank Order Correlation Coeffi-
cient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC). Size of
feature vector for each layer is also provided to indicate the corresponding complex-
ity of feature space.

Some observations based on Table 1 are highlighted below:

1. Final activations did not provide the most quality aware features as these are
more focused on visual recognition. However, activations of the layers earlier in
the CNN are better suited for the task of image quality assessment.

2. Deeper networks with more number of filters provided better image quality as-
sessment performance as compared to networks with lesser number of filters.

3. Networks with better visual recognition performance are also better for image
quality assessment task, especially the networks which have larger number of
filters.

3.2 Deep Features Extraction after Fine-Tuning the Pre-Trained CNNs

Pre-trained CNNs are trained on ImageNet visual recognition dataset which has
images of objects falling in 1 000 different categories. CNNs trained on these images
have learned the features which are most suitable to the task of visual recognition
but may not perform very well on image quality assessment task. It is therefore
attempted to fine-tune these CNNs on image quality assessment datasets and then
extract the activations. The pre-trained CNN architecture is modified by removing
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# Architecture RMSE PLCC SROCC KROCC Features Layer Name
1 AlexNet 0.7729 0.7679 0.7435 0.5512 1 000 fc8
2 AlexNet 0.7784 0.7865 0.7700 0.5760 4 096 fc7
3 AlexNet 0.7648 0.7904 0.7761 0.5802 4 096 fc6
4 Vgg16 0.8148 0.8343 0.8214 0.6309 100 352 conv5 3
5 Vgg16 0.7879 0.8433 0.8354 0.6471 100 352 conv5 2
6 Vgg16 0.7274 0.8377 0.8327 0.6478 100 352 conv5 1
7 GoogleNet 0.7966 0.7483 0.7259 0.5359 1 000 loss3-classifier
8 GoogleNet 0.6680 0.8266 0.8176 0.6232 50 176 Inception5bOutput
9 GoogleNet 0.9313 0.6877 0.8241 0.6364 163 072 Inception4eOutput

10 SqueezeNet 0.8588 0.7956 0.7835 0.5878 100 352 fire8-concat
11 SqueezeNet 0.7875 0.8139 0.8065 0.6101 75 264 fire7-concat
12 SqueezeNet 0.7655 0.8107 0.8115 0.6181 75 264 fire6-connect
13 ShuffleNet 0.9566 0.6856 0.6597 0.4724 1 000 ’node 202’
14 ShuffleNet 0.9127 0.6946 0.6477 0.4717 26 656 ’node 198’
15 ShuffleNet 0.8708 0.7091 0.6642 0.4820 26 656 ’node 174’
16 InceptionV3 0.7198 0.8036 0.7551 0.5706 131 072 mixed9
17 InceptionV3 0.6802 0.8286 0.7921 0.6122 81 920 mixed8
18 InceptionV3 0.7190 0.8082 0.7718 0.5911 221 952 mixed6
19 DenseNet201 0.6645 0.8375 0.8127 0.6328 94 080 conv5 block32

concat
20 DenseNet201 0.6494 0.8413 0.8165 0.6362 92 512 conv5 block31

concat
21 DenseNet201 0.6690 0.8393 0.8115 0.6289 90 944 conv5 block30

concat
22 MobileNetV2 0.7317 0.8050 0.7717 0.5840 7 840 block 15 add
23 MobileNetV2 0.7416 0.7897 0.7654 0.5757 62 720 Conv 1
24 MobileNetV2 0.7283 0.7923 0.7680 0.5717 15 680 block 16 project
25 ResNet50 0.6422 0.8455 0.8317 0.6458 100 352 add 15
26 ResNet50 0.6449 0.8470 0.8320 0.6455 200 704 add 14
27 ResNet50 0.6608 0.8376 0.8310 0.6405 200 704 add 12
28 ResNet101 0.6758 0.8312 0.8156 0.6273 200 704 res5b
29 ResNet101 0.6980 0.8362 0.8265 0.6416 200 704 res5a
30 ResNet101 0.6819 0.8305 0.8102 0.6274 200 704 res4b21
31 Inception- 0.6851 0.8216 0.7873 0.6006 133 120 block8 9

ResNet-V2
32 Inception- 0.6871 0.8199 0.7856 0.6059 133 120 block8 8

ResNet-V2
33 Inception- 0.6945 0.8171 0.7776 0.5953 133 120 block8 7

ResNet-V2
34 Xception 0.7786 0.7590 0.7094 0.5251 1 000 add 12
35 Xception 0.7443 0.7855 0.7500 0.5607 262 808 add 11
36 Xception 0.7502 0.7882 0.7462 0.5616 262 808 add 10
37 NASNet 0.8858 0.7347 0.7288 0.5385 1 000 predictions
38 NASNet 0.5735 0.8909 0.8982 0.7160 487 872 normal concat 13
39 NASNet 0.7095 0.8438 0.8555 0.6721 325 248 reduction concat

reduce12

Note: Best performing layer with its corresponding scores is in bold.

Table 1. Quality assessment performance using pre-trained CNN models
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the ‘softmax’ and ‘classification’ layers and adding a fully-connected layer with one
neuron and a regression layer. The training is performed with a low learning rate
of 0.0001. As the training dataset contains different image size than the pre-trained
models, we have used random crop from the image with size complying with the
pre-trained model. This will provide regularization by not letting the training archi-
tecture to learn the content of the images. Resizing is not used as the image scale
is observed to affect the perception of quality. The training is performed for a total
of 30 epochs with Adam optimizer. The training progress for MobileNet-v2 for 20
epochs is depicted in Figure 1.

Figure 1. Training progress of MobileNet-v2

We have combined five benchmark datasets for image quality assessment to per-
form the fine-tuning of these pre-trained CNN models. The fine-tuning is performed
with eight pre-trained architectures and the activations of different layers of trained
models are obtained and trained with Support Vector Regression (SVR). The pre-
dictions from the trained model are evaluated by calculating RMSE, PLCC, SROCC
and KROCC and reported in Table 2.

Observations based on results of Table 2 are highlighted below:

1. The fine-tuning of CNN models has adjusted the pre-trained models weights
in a way to make it predict the image quality, so the extracted activations are
quality aware features and provide better estimates.



394 N. Ahmed, H.M. S. Asif

# Architecture RMSE PLCC SROCC KROCC Layer Name Features

1 VGG16 0.6407 0.8474 0.8323 0.6426 fc8 1 000

2 VGG16 0.7594 0.8121 0.7944 0.5994 fc7 4 096

3 VGG16 1.0467 0.6827 0.6672 0.4834 fc6 4 096

4 ShuffleNet 0.7391 0.8115 0.7934 0.5993 node 202 1 000

5 ShuffleNet 0.7541 0.792 0.7751 0.5805 node 198 26 656

6 ShuffleNet 0.7612 0.7912 0.758 0.568 node 186 26 656

7 DenseNet201 0.535 0.8966 0.8826 0.7022 fc1000 1 000

8 DenseNet201 0.5439 0.8943 0.8818 0.7024 conv5 block32
concat 94 080

9 DenseNet201 0.5061 0.9085 0.896 0.7228 conv5 block30
concat 90 944

10 MobileNet-V2 0.5784 0.8736 0.8583 0.6704 Logits 1 000

11 MobileNet-V2 0.605 0.8616 0.8438 0.6531 Conv 1 62 720

12 MobileNet-V2 0.6454 0.8425 0.8211 0.6326 block 16 project 15 680

13 ResNet50 0.5129 0.9065 0.897 0.7211 fc1000 1 000

14 ResNet50 0.5037 0.9066 0.8946 0.7167 add 16 100 352

15 ResNet50 0.4978 0.9094 0.9039 0.7307 add 15 100 352

16 Inception- 0.4676 0.925 0.9187 0.7586 block8 9 133 120
ResNet-V2

17 Inception- 0.4729 0.9268 0.9202 0.7596 block8 7 133 120
ResNet-V2

18 Inception- 0.4684 0.9282 0.923 0.7654 block8 8 133 120
ResNet-V2

19 Xception 0.5704 0.8946 0.8833 0.6989 predictions 1 000

20 Xception 0.5712 0.8867 0.8775 0.6946 add 12 1 000

21 Xception 0.7044 0.8148 0.7958 0.6003 add 10 262 808

22 NASNet-Large 0.4432 0.9357 0.9327 0.7768 predictions 1 000

23 NASNet-Large 0.5117 0.9129 0.9006 0.732 normal concat 17 487 872

24 NASNet-Large 0.5242 0.9041 0.8879 0.7139 normal concat 16 487 872

Note: Best performing layer with its corresponding scores is in bold.

Table 2. Quality assessment performance using fine-tuned CNN models

2. More the training data, better are the deep features for quality estimation as
experimented with different combinations of image quality assessment datasets
and augmentation methods.

3. After fine-tuning, the last layers started providing higher performance as the
model is learning the quality aware features.

3.3 Proposed Approach

Tables 1 and 2 provide the quality estimation performance of deep features us-
ing SVR with linear kernel with single image crop only. These results demon-
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strate the effectiveness of deep features for the problem of image quality estima-
tion. Some of these models have performed better or comparable to the top per-
forming models described in literature. We have chosen pre-trained NASNet and
trained it for 1 000 iterations using Adam optimizer with 0.003 learning rate. Ran-
dom cropping is used during training as the NASNet input image size is differ-
ent from the images in benchmark databases. Random cropping serves two pur-
poses, firstly, it converts image size equal to the NASNet input size, and secondly,
it serves as the regularization method by varying the cropping region of the im-
age.

The feature extraction phase on the other hand provides the cropped region of
the input image to generate probabilities in the last fully connected layer of 1 000
neurons which are used as features. It is to be noted that during training random
image regions are used for training in each epoch and therefore performing the
quality estimate at several different crops of the image will provide a better estimate.
We, therefore, performed random cropping ad feature extraction for 10 random
crops and an averaging ensemble is constructed to make the final prediction. The
predicted image quality is therefore an average of 10 predictions obtained from
different cropped regions of the image under test.

These features can be used to train a regression algorithm to provide quality
estimates. It has been observed that the subjective quality scores are the mean
opinion scores and therefore they tend to follow normal distribution as shown in
Figure 2.

Figure 2. Histogram of mean opinion scores for TID2008 with Gaussian curve
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Therefore, we decided to model the problem using Gaussian Process Regression
(GPR) which is a stochastic Gaussian process-based algorithm. A Gaussian process
is based on random variables and any finite set of these variables follows a joint
Gaussian distribution. The standard form of Gaussian process can be defined by it
mean µ(x) and covariance Cv(x, y) functions and is provided in Equation (1).

f(x) = G(µ(x), Cv(x, y) (1)

where x and y are the random variables

• µ(x) = E[f(x)] and

• Cv(x, y) = E [(f(x)− µ(x))(f(y)− µ(y))].

A number of different methods can be used to train a Gaussian process [23].
The function to make mean predictions for the GPR is provided in Equation (2)
which is defined for a single test point only.

(ρx) = κT∗
(
Cv + σ2

nI
)
y (2)

where κ∗ = κ(x∗). There are different options of covariance functions for GPR, but
we have used the Matérn covariance function with parameter 5/2 which is defined
in Equation (3). This covariance function provided best modeling for our scenario.

Cv(x, y) = σ2
m

(
1 +

√
5r

σl
+

5r2

(3σl)2

)
exp

(
−
√

5r

σl

)
(3)

where, r is the distance function and σ2 is the maximum allowed variance.

Figure 3. Left: Number of objective function evaluation vs the minimum objective func-
tion value. Right: Objective function value for corresponding value of sigma.

Optimization of hyperparameters is performed to find the optimal value of sigma,
as it is crucial for the estimation of the covariance function. Bayesian optimization
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is used to perform hyperparameter search and the curve for number of function
evaluation is plotted against objective function value and provided in Figure 3.

Figure 4. Model training work flow

The flow chart of feature extraction and model training is provided in Figure 4.
Five datasets are used in the process of fine-tuning and model training and validation
is performed for each dataset individually. Ablation study is conducted to check if
the final CNN architecture used is optimal for the image quality assessment task
and its results are reported in the next section.

4 RESULTS AND DISCUSSION

Some of the benchmark datasets for image quality assessment are provided in Tab-
le 3. These datasets have different number of distortion types and scoring method
is either MOS or Differential MOS (DMOS). The scores are standardized using
the below formula, so they fall in the same range and the cross-dataset evaluation
becomes possible.

x1 =
x− x2
σ

(4)

where x is the original score, x2 is the mean of subjective scores and σ is the standard
deviation of subjective scores.

The performance of the final method is measured by finding the correlation be-
tween the predicted quality score and the human subjective evaluation. Three cor-
relation measures: Pearson Linear Correlation Coefficient (PLCC) and Spearman’s
Rank-Order Correlation Coefficient (SROCC) and Kendall Rank-Oder Correlation
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Dataset Number of Number of Scoring
Name Reference Images Distorted Images Method Range

LIVE-I 29 460 DMOS 0–100

LIVE-II 29 982 DMOS 0–100

TID2008 25 1 700 MOS 1–10

TID2013 25 3 000 MOS 1–10

CSIQ 30 900 DMOS 0–1

Table 3. Benchmark datasets for image quality assessment

Coefficient (KROCC) along with RMSE are reported for each test dataset. Table 4
provides the results of experimental testing on five benchmark datasets.

Datasets RMSE PLCC SROCC KROCC

TID2013 0.4300 0.9685 0.9717 0.8636

TID2008 0.4316 0.9487 0.9504 0.8161

CSIQ 0.0552 0.9802 0.9776 0.8696

LIVE-I 4.5840 0.9779 0.9754 0.8267

LIVE-II 3.5696 0.9752 0.9741 0.8597

Table 4. Correlation and RMSE of the proposed scheme on five benchmark datasets

The bar-chart in Figure 5 provides ground-truth values in the form of bar (green)
and the predicted values in the form of stem (red) for 20 random values. Whereas
Figure 6 provides the scatter plot between ground-truth and predicted values along
with fitting of regression line and value of R-squared. These two plots are pro-
vided for TID2013 database and similar plots can be obtained for other benchmark
database. It can be noted that the proposed model provided a good quality pre-
dicted performance and can be used as a representative model for the objective
quality assessment.

4.1 Residual Analysis

The residuals are the difference between the ground-truth and predicted values and
are normally plotted in the form of a bar chart. As the value of residual can be
negative or positive so the bar-chart is pivoted on the x-axes with the y-axes pro-
viding the magnitude of the residuals. Figure 7 provides the bar chart of residuals
for 750 (20 %) testing values of TID2013 database. The residual analysis is impor-
tant in the identification of model’s behavior. The residuals are checked for their
normal distribution and two tests are conducted for this purpose. The histogram of
residuals is plotted with Gaussian fitting in Figure 8 a) and probability plot of the
residual is provided in Figure 8 b) indicating the residuals are very close to a normal
distribution. The histogram is showing a symmetric distribution around zero and
follows a close trend with Gaussian curve plotted for comparison. The validation of



Perceptual Quality Assessment Using Deep Features 399

Figure 5. Model training work flow

normality test of residuals indicates that the underlying assumptions of the model
are true.

4.2 Cross-Dataset Evaluation

Generalization is a major challenge in the no-reference image quality assessment.
A model trained on one dataset usually performs poor on some other dataset which
has a different type of distortions and uses a different experimental setup. We have
therefore evaluated the performance of the proposed model by training it on one
type of dataset and testing on other type of datasets. There are three categories of
datasets in our experiment:

1. TID2008 and TID2013,

2. CSIQ, and

3. LIVE-I and LIVE-II.

Three experiments are conducted and reported in Tables 5, 6 and 7.

The generalizability of the proposed method can be explained due to use of
a deeper architecture which provides more abstract representations of the learned
features. The selected feature set is therefore the representative of image quality and
provides features which are quality aware rather than content aware. Moreover, we
have incorporated random cropping and other image augmentation strategies such
as rotation, scaling and translation to make it robust to small variations. The scores
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Figure 6. Model training work flow

of the different databases are standardized so the model trained on one database
can predict the other database.

4.3 Comparison with Existing Methods

The performance of the proposed scheme is demonstrated in comparison to the
existing methods. Ten top performing deep learning based methods are incorporated
in the comparison. We have used two performance metrics PLCC and SROCC as
they are the widely reported metrics and comparison is performed against three
widely used datasets. The results of the comparison are reported in Table 8. It
can be noted that LIVE is the most widely used dataset whereas few of the authors
has reported performances for other datasets. Two best performing methods on
each dataset are in bold face. It can be noted that the proposed approach has
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Figure 7. Bar-chart of residuals for test set of TID2013

Evaluation Measure LIVE-I LIVE-II CSIQ

RMSE 5.1542 4.7514 1.2172

PLCC 0.8917 0.8815 0.8912

SROCC 0.8801 0.8798 0.8814

KROCC 0.8204 0.8102 0.8204

Table 5. Training on category-I dataset and testing on LIVE-I, LIVE-II and CSIQ
datasets

Evaluation Measure LIVE-I LIVE-II TID2008 TID2013

RMSE 7.2174 4.1572 0.7524 2.1872

PLCC 0.8617 0.8421 0.8157 0.7214

SROCC 0.8531 0.8681 0.8624 0.7189

KROCC 0.8278 0.7907 0.7124 0.5891

Table 6. Training on category-II dataset and testing on LIVE-I, LIVE-II, TID2008 and
TID2013 datasets

Evaluation Measure TID2008 TID2013 CSIQ

RMSE 0.7813 1.2415 2.1571

PLCC 0.8354 0.7354 0.8872

SROCC 0.8781 0.7257 0.8798

KROCC 0.7254 0.5914 0.8012

Table 7. Training on category-III datasets and testing on TID2008, TID2013 and CSIQ
datasets
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a) Histogram of residuals with Gaussian fitting

b) Probability plot of normal distribution

Figure 8. Normality tests using histogram of residuals and probability plots
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provided the highest performance by using a single learning algorithm with multiple
crops.

Dataset LIVE LIVE TID2013 TID2013 CSIQ CSIQ

Metric PLCC SROCC PLCC SROCC PLCC SROCC

[19]a 0.972 0.96 0.855 0.835 – –

[19]b 0.963 0.954 0.787 0.761 – –

[9] 0.959 0.966 0.838 0.819 0.968 0.961

[17] 0.98 0.97 0.96 0.96 0.97 0.96

[18] 0.957 0.953 – – 0.894 0.877

[24] 0.952 0.95 – – – –

[10] 0.973 0.969 – – – –

[20] 0.972 0.96 – – – –

[16] 0.974 0.971 – – – –

[11] 0.93 0.927 – – – –

[26] 0.958 0.957 0.894 0.877 0.949 0.93

[27] 0.95 0.953 0.952 0.959 0.929 0.948

Proposed 0.977 0.975 0.968 0.972 0.98 0.978

Table 8. Comparison with the existing methods

The good performance of the proposed approach can be explained by the use of
a representative feature set. Perceptual quality of digital images is based on various
factors such as color, contrast, noise, sharpness, artifacts and some factors which are
not related to quality such as content, viewing angle and composition. Handcrafted
features are therefore focused to some specific aspects of quality such as artifacts
generating due to compression or some specific image processing. Moreover, these
handcrafted features can model some specific classes of blur or noise but they cannot
be generic to be used for all sort of impairments appearing in digital images. Deep
features on the other hand are learned automatically on the basis of quality score
(MOS). Therefore, deep features seem to be better candidates for image quality
assessment.

Extraction of deep features which are quality aware is a tough task as the features
can be quality aware only when the training algorithm is provided with a sufficient
size of training data having different content. The size of training data is a very
important factor when using a deep learning algorithm as these algorithms have
a large number of parameters which are required to be trained, and over-fitting can
easily occur if the training data is not sufficient. The limitation of the training data
is slightly overcome by using augmentation which increased the effective dataset size,
but a larger database will definitely be of help. The experimentation with different
architectures with and without fine-tuning have highlighted the factors affecting
the extraction of quality aware features, and we therefore selected NASNet-Large
pre-trained model and obtain deep features after its fine tuning.

Most of the approaches highlighted in the related work used support vector
machines for quality prediction which is a convenient and easy way. It provides
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a reasonably good performance, but it is not an optimized algorithm in our obser-
vation. We have analyzed the MOS and observed that it nearly follows a Gaussian
distribution and therefore can be modeled with Gaussian process regression. The
optimization of hyperparameter for GPR resulted in final model which has high
performance and good generalization. The resulting model therefore outperformed
most of the existing approaches. The further improvement can be brought by train-
ing the CNN architecture with a larger and representative dataset and using the
ensemble learning methods, and these two will be explored in our further work.

4.3.1 Statistical Significance Test

The Pearson and Spearman’s correlation is provided in the Table 9 for comparison
of the proposed scheme with the existing schemes. It is, however, worth mentioning
that the absolute comparison of correlation coefficients can be sometime mislead-
ing and therefore statistical significance tests are performed to check if the propose
scheme is statistically superior to the existing approaches. We have used one-sided
t-test for hypothesis testing, whereas the null hypothesis is stated as the mean
correlation of the row algorithm is greater than the mean correlation of the col-
umn algorithm. The hypothesis testing is performed with 95 % confidence interval.
A value of ‘1’ indicates that the row algorithm is statistically superior to the column
algorithm whereas a value of ‘−1’ indicates that the row algorithm is statistically
not superior to the column algorithm. The value of ‘0’ indicates an indistinguishable
scenario of the row and column algorithm.

[19]a [19]b [9] [17] [18] [24] [10] [20] [16] [11] [26] [27] Proposed

[19]a 0 1 1 1 1 1 1 1 1 1 1 1 1

[19]b 1 0 1 1 1 1 1 1 1 1 1 1 1

[9] 1 1 0 1 1 1 1 1 1 1 1 1 1

[17] 1 1 1 0 1 1 1 1 1 1 1 1 1

[18] 1 1 1 1 0 1 1 1 1 1 1 1 1

[24] 1 1 1 1 1 0 1 1 1 1 1 1 1

[10] 1 1 1 1 1 1 0 1 1 1 1 1 1

[20] 1 1 1 1 1 1 1 0 1 1 1 1 1

[16] 1 1 1 1 1 1 1 1 0 1 1 1 1

[11] 1 1 1 1 1 1 1 1 1 0 1 1 1

[26] 1 1 1 1 1 1 1 1 1 1 0 1 1

[27] 1 1 1 1 1 1 1 1 1 1 1 0 1

Proposed 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 9. One-sided T-Test

4.4 Ablation Study

The ablation studies have been widely used in the area of neuroscience to tackle
the complexities of these systems. Similarly the ablation experiments are being
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used in the area of artificial neural networks owing to their increasing complex-
ity. These experiments involve removal of a certain part of the neural network
architecture to check their effect on the overall performance of the artificial neural
network. These studies investigate the efficacy of the key components of the model
and the experiments are done using TID2013 database. Table 1 and Table 2 provide
the performance of the pre-trained CNN architectures by selecting an intermediate
layer for feature extraction and discarding the layers following this layer. It was
noted that without fine-tuning, the complete CNN architecture is not important for
image quality assessment as the later layers have learned the features specific to
object recognition task. However, the fine-tuning will make the later layers to learn
the complex representations for image quality assessment and the last layer of the
network performed better for image quality assessment. Table 10 highlights the per-
formance of the selected architecture by keeping the complete architecture, removing
last 41 layers and removing last 82 layers. It can be noted that the highest perfor-
mance is obtained by keeping the complete architecture. Moreover, the complete
architecture compacts the size of feature set, making it easy to train a regression
algorithm.

# Ablation Experiment FeatureSet RMSE PLCC SROCC KROCC

1 Keeping complete architecture 1 000 0.4432 0.9357 0.9327 0.7768

2 By removing last 41 487 872 0.5117 0.9129 0.9006 0.732

3 By removing last 82 487 872 0.5242 0.9041 0.8879 0.7139

Table 10. Ablation experiment on NASNet-Large using TID2013 database

4.5 Computational Complexity

The experiments are performed on the Intel® Xeon® Processor E5-2687W with
512 GB SSD, 32 GB RAM and RTX 2070 GPU. The training of NASNet-Large for
fine-tuning on image quality database is performed for 30 epochs for a batch size
of 16 and it took almost 120 hours for training. The training of the NASNet-Large
is a one-time job and feature extraction can be performed for each image in order
to access the quality. The training and hyperparameter optimization of GPR took
23 minutes. The total training time is therefore 120.5 hours. Whereas in the testing
phase, deep feature extraction takes 1.8 seconds per image and score prediction takes
less than 120 milliseconds making it a total of less than 2 seconds per image. The
testing is reported based on single core CPU only.

5 CONCLUSION

The paper presents a comprehensive insight to the use of deep features for the task
of image quality assessment. As HVS is a näıvely understood subject and NSS
does not perform consistently better for image quality assessment, the use of CNN
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can help to overcome this limitation. Shallow CNN cannot learn the quality aware
features and becomes a poor candidate, whereas the deep CNN requires a large
number of training images which is not possible due to the subjective nature of image
quality. Owing to the visual recognition performance of CNN, we have experimented
with 13 popular pre-trained CNN models for feature extraction and eight of these
were used to perform fine-tuning on a combination of five image quality assessment
databases. Deep activation of NASNet-Large provided best quality estimate and
a Gaussian process regression based model is trained using these features. Averaging
of quality score over multiple image crops is used as the input image has a larger size
then the input of NASNet architecture. The proposed methodology provided good
results which are comparable with the state of the art in no-reference image quality
assessment. An extensive analysis is performed to demonstrate the robustness and
generalization of the proposed model.

5.1 Future Work

1. Experimental testing revealed that GPR is a good algorithm for assessment of
image quality. However, ensemble learning approaches should be explored to
further increase the performance.

2. The training dataset size can be improved to obtain better features, the dataset
size can be increased by using weakly supervised approaches.

3. Moreover, a self-collected dataset with subjective evaluation from local users
and having distortions introduced during the process of image acquisition will
be used for generalization testing.

4. Combination of extracted features from a different pre-trained model may pro-
vide better performance. As the deep feature has a large size, a dimensionality
reduction technique may be employed before training the regression algorithm.
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Abstract. Using service function chains, Internet Service Providers can customize
the use of service functions that process the network flows belonging to their cus-
tomers. Each network flow is injected into a service chain according to the flow
features. Since most of the malicious applications try not to get the proper analy-
sis by imitating some valid and famous applications, classification based on simple
flow features may waste processing power by using inappropriate service chains for
evasive flows. In this paper, we have explored an application-aware classification
approach using machine learning methods. Using CatBoost as a machine learning
method, a model is created and used for traffic classification. We have provided
some statistical reports on how this approach is compared with simple flow feature-
based approaches in malicious environments and how feature selection can impact
classification correctness. Choosing the most suitable number of features at the
right time can beat traditional approaches in classification quality and provide bet-
ter results in the service function chaining environment.

Keywords: Service function chaining, classifier, machine learning, catboost

Mathematics Subject Classification 2010: 68M10

1 INTRODUCTION

The ability to classify network traffic is crucial in the operation and management
of networks. Simple flow features like source and destination port numbers or
layer 4 protocol are traditionally used for traffic classification, or mapping flows
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into traffic classes. Since most modern applications use famous port numbers on
their server-side and lots of malicious applications try to evade the proper analysis
by imitating other applications features, traditional approaches have proven to be
ineffective. The solution to inefficiencies of flow-based classification approaches is to
harness application characteristics of the flows and making the network application-
aware.

By leveraging service function chaining, Internet Service Providers are able to
customize the services provided to their users, based on the type of traffic. Services
are provided as predefined chains specific to special traffic types. In an application-
aware service function chaining network, service chains are selected more accurately,
the most related flows are steered into the chains and fewer resources are wasted.
Classification of network flows in the service chaining classifier node can be based
on flow characteristics or the type of traffic (Figure 1). Using the latter approach,
the classifier must do a thorough analysis of the flow’s packets to detect the type
of traffic. Legacy traffic classification techniques are famous as the most expensive
task in the network and they cannot be effective in situations where applications
get frequent updates and change their signatures.

Figure 1. Service function chaining classifier node

Using machine learning algorithms in Internet traffic classification has recently
received some attention [1, 2, 3, 4, 5, 6]. These approaches assume that applications
send data in some patterns. These patterns can be used to classify traffic flows in
different application classes. Flow features like the length of the flow, packet size,
or total packet numbers can be used to find the application’s behavioral pattern.
Flow features collected in various observation windows, lead to results with different
accuracy. Finding the best observation window is a key factor in any classification
scenario [7].

This paper explores the idea of using machine learning methods in service func-
tion chaining. Using CatBoost [8], decision tree models are created to examine
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classification results in different conditions. An important point to consider when
using any traffic classification method in service function chaining is that the clas-
sification should be performed at the early stages of a flow’s life. Delayed traffic
classification can impose an unnecessary burden on service functions for processing
unrelated flows. By intelligently choosing the observation window and selecting the
proper feature list, machine learning-based traffic classification at the beginning of
flow is possible. Based on what was said, the motivation for the current work is
to find a suitable solution for using machine learning methods in service function
chaining. Therefore, the contributions of the current paper are the following:

• Use of a machine learning method in a service function chaining classifier node,

• Presenting an appropriate feature list extracted from the early stages of a traffic
flow’s life,

• Providing solutions for the special challenges that are present when machine
learning methods are used in service function chaining environments,

• Proposing a machine learning-based early classification method with a high de-
tection rate in service function chaining.

Different observations window sizes at the early stages of a flow’s life are used
for creating classification models. Based on the results, the best observation window
size is selected and the desired feature list is detected. The results are compared
with a signature-based approach to prove their effectiveness.

The rest of this paper is organized as follows. Section 2 provides the related
work. Design and implementation details and challenges are described in Section 3.
The results of the experiments accompanied by a detailed explanation are provided
in Section 4. Finally, Section 5 concludes the paper.

2 RELATED WORKS

This section is dedicated to the works related to the topics that are discussed in this
paper. We have divided all the topics into two categories of service function chaining
and application-aware classification, and machine learning algorithms and tools for
traffic classification. Each category is examined individually and some of the works
done in that area are introduced. We start with service function chaining and
application-aware classification which is the area where the problem was originally
defined. We will start with the service function chaining problem statement and
also introduce some of the solutions provided to solve those issues. Then, the notion
of application-aware classification is stated and after that, some of the works done
in this area are discussed. When we are done with the service function chaining
part, we will introduce some of the works done in internet traffic classification using
machine learning algorithms.
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2.1 Service Function Chaining and Application Aware Classification

What serves as a service chain is the production of a related list of network functions
and, consequently, the steering of network flows among them. The use of network
service functions in traditional networks is accompanied by a set of constraints.
As some of these constraints are described below, each of which will be briefly
described [9, 10].

The first one described here is the topological dependency. The way network
services are deployed in a computer network directly affects the order in which
they are used for traffic processing and creates constraints when adding or chang-
ing network services. Another constraint present in the traditional networks is the
configuration complexity which is a consequence of topological dependency. Con-
sidering service function chaining in this environment, simple actions like chang-
ing the order of service chains requires changes to the topology. Consistent or-
dering of service functions is another constraint which is the direct consequence
of the dependency on topology. Many of the network functions work in a way
that they need to be deployed in a specific order. Whereas changing the order
in which service functions process network traffic is complex and difficult. An-
other important constraint is named the traffic selection criteria which refers to the
problem that all traffic on a particular network segment traverses all service func-
tions whether or not the traffic requires those services. Besides the aforementioned
constraints, there are some others like constrained high availability, application of
service policy, etc. that make the use of service function chaining inevitable. Ser-
vice function chaining provides a set of solutions to resolve the problems existing
in traditional networks and to make the network management more elastic and
robust [10, 11].

The three solutions provided by the SFC working group at IETF to overcome
the above constraints are service overlay, service classification, and SFC encapsula-
tion. Service overlay is about creating service functions connectivity built on top
of the existing network topology. It will be possible to create an arbitrary topology
for connecting service functions in a required topology. Service classification and re-
classification procedures are used to select which traffic enters an overlay and alter
the sequence of service functions applied to traffic. Finally, using SFC encapsulation
enables the exchange of metadata in the data plane between different components
of the service chain [10, 12, 13, 15].

One of the challenges about traffic classification in service function chaining
is using application data to select the service overlay where a network flow is go-
ing to be processed. In other words, instead of using the mere port numbers or
the flow’s network-level characteristics for traffic classification, information about
applications involved in the generation of the traffic is used. Therefore, service
overlays are selected more intelligently, and using service chaining’s maximum po-
tential becomes possible [14]. A deep packet inspection (DPI) function can do the
task of application-aware service classification in a service function chaining sce-
nario.
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One of the works that has made use of the output of the traffic detection function
(DPI service function) in creating service function chains is the StEERING [16].
The result of processing the traffic in DPI and the detected applications might be
used in service chain selection for a network flow or it may alter the chain already
selected for the flow. As the detection of applications in a DPI function might not
be possible with the first received packet in flow, passing the packets to a new chain
after the detection is finished might result in an incomplete analysis in some service
functions.

SIMPLE is another solution that provides the definition of traffic routing poli-
cies between network services and translates these policies into traffic forwarding
rules [17]. Different traffic classes along with their corresponding service function
chains are defined by the network admin which are used for creating traffic forward-
ing rules based on the current state of the underlying network. Resource manager,
dynamics handler, and rule generator are the three key components in SIMPLE
system. Resource manager is in charge of providing the state of resources available
in the network for the rule generator component which is the place where traf-
fic forwarding rules are created. Dynamics handler detects the changes in traffic
which are made by the service functions and provides the necessary information
for the rule generator to create new forwarding rules. This component uses packet
payload to find the connection between two distinct forms of one flow in the net-
work.

There is also another solution for using the result of traffic detection in software-
defined networks that has utilized the idea of delayed traffic flows [18]. When a
new traffic flow is received at the ingress to the network, the packets are delayed
and they are mirrored to a DPI box for the traffic detection process. When the
result is provided, the traffic scheduling module installs forwarding rules in the
network and the flow packets are allowed to pass. Clearly, the solution of delayed
network flows cannot be used in high-performance networks where a huge amount
of network traffic is passing. A solution that has incorporated the traffic detection
procedures in the network controller is also available, it cannot respond to scalability
requirements in high-performance networks [19]. Other work that has mentioned the
use of traffic detection tool results to reroute the traffic flows in the network has also
ignored the importance of all packets being processed in the network functions [20,
21].

Using DPI as a service is another work done in this area. The idea is to remove
the deep packet inspection function from service functions like IDS or Firewall and
deploy it in a separate service function. Other services in a service chain can lever-
age the metadata provided by DPI service function without running deep packet
inspection procedures themselves. Actually, what this work states is that deep
packet inspection is done in multiple service functions in a single chain and it is
the main reason for processing delay in each service. By using the idea proposed in
this work, deep packet inspection procedures are only executed once in every service
chain where other services use the results of deep packet inspection analysis in that
service [22].
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2.2 Machine Learning Algorithms and Tools for Traffic Classification

Machine learning refers to a set of techniques and algorithms that are able to learn
from data and make predictions on data. Such algorithms overcome the process of
following strict rules and instructions provided in a program by making data-driven
predictions and decisions, through building a model from training inputs. Machine
learning techniques can be split into three categories of unsupervised learning, su-
pervised learning, and semi-supervised learning based on the amount of labeled data
used in their training process. Since only the use of supervised learning techniques
is present in the current work, we will only focus on the works which have used
supervised learning techniques for traffic classification.

A supervised machine learning algorithm uses a labeled dataset for training.
Every instance in the dataset contains the same set of features which is mapped
to a given known label [23]. The result of the training phase is a model which can
be used to predict the label for unknown set of data with the same feature list.
To the best of our knowledge, there are no works that have specifically leveraged
a supervised machine learning algorithm in a service function chaining classifier
node. Because of that, we only discuss some works that have used a supervised
machine learning for the general idea of traffic classification.

One of the works that rely on behavioral features of internet applications which
are present at the start of the flow and do not use the packet payload to extract
any features, claims to have achieved 99.8 percent of accuracy. Considering a set
of 248 flow features from the beginning of individual network flows with different
observation windows size, it leverages feature selection algorithms to find the best
subset of features. Finally, the feature subset is used to train a model and the
model is used for classifying unknown flows. The authors believe that if the traffic
classification system is going to work near real-time with a considerable throughput,
an appropriate and small set of features must be selected from a small number of
packets in a limited duration. This work has used C4.5 decision tree since it had
a low complexity and finally, they believe using features extracted from 5 or 6 packets
in the network can achieve the highest accuracy [24]. The complete 248 features are
detailed in [25].

A solution comprised of signature-based and machine learning methods is also
proposed that claims 99.7 percent of accuracy in traffic classification [26]. After
labeling the dataset using Snort and using multiple techniques for extracting the
best set of traffic features, the model is created using a multi-classifier and it is used
for traffic classification. Although the authors have mentioned that they have not
placed a constraint on feature extraction window size, it seems like the final feature
list is dependent on the full trace of a network flow.

There is another work that has considered the use of statistical features of a flow
for traffic classification using machine learning. This work combines unsupervised
and supervised machine learning algorithms to provide a method for internet traffic
classification. It extracts traffic features and clusters them using an unsupervised
machine learning algorithm. The result is used as the training data in a supervised
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machine learning algorithm and the output model is finally used for classifying un-
seen traffic flows. They claim that the method has an accuracy of 90 percent for
classifying unseen traffic flows. A set of five and eight features is selected for unidi-
rectional and bidirectional flows, respectively. Both feature lists can be provided at
the end of a flow [27].

Another solution that has proposed a two-phased machine learning approach
by using an unsupervised machine learning method for feature extraction and us-
ing a supervised machine learning algorithm for traffic classification has provided
a feature list completely dependent on the full flow trace [28].

Taking into account the related works in the two sections related to service
function chaining and machine learning techniques, the need for doing a similar
classification work in service function chaining environments is felt. This work is
allocated to the idea of using machine learning tools in the classifier node in service
function chaining.

3 DESIGN AND IMPLEMENTATION

In this section, the proposed approach for traffic classification in service chained en-
vironments is discussed. Starting from the nature of malicious traffic and inability
of the traditional approaches to classify this type of traffic, continuing with pre-
senting the architecture where the proposed approach is used and finishing with the
implementation details.

3.1 Design Challenges and Requirements

Traditionally, applications used proprietary port numbers on their server-side. Net-
work traffic was mostly not encrypted and protocols like HTTPS were not so com-
monly used. For example, port number 80 was reserved for HTTP protocol and
the protocol’s traffic was plain text. Nowadays, traffic is mostly encrypted whether
the application is malicious or not and port hopping is a common technique to
evade network analysis devices like firewalls or IDS/IPS. Malicious applications are
increasing every day and can change their traffic pattern easily.

In this situation, using simple port numbers or pattern matching approaches for
detecting applications is inappropriate and the decision made on such knowledge
cannot be trusted. So, deep packet inspection devices that utilize signature-based
approaches that need heavy processing are not suitable for some scenarios. Besides,
the nature of applications’ traffic is always changing and signatures used in the
aforementioned approaches need to be updated constantly and cannot be sufficient
in all cases. This makes it challenging for service function chaining scenarios to
use application characteristics in traffic classification. Therefore, malicious network
flows may find the chance to stay out of sight of appropriate analyzing services by
imitating benign applications’ characteristics. Besides, service resources are wasted
analyzing the wrong imitating flows. By mentioning signature-based or pattern-
based schemes, this paper refers to the approaches that utilize a set of predefined
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rules and signatures for traffic classification. Signatures are created by following the
strict rules and instructions provided in an application, after analyzing the appli-
cation’s traffic. The classification of a network flow is performed by comparing the
details of multiple packets in the flow with the predefined set of rules and signatures.
Examples of the commonly used signatures are the server-side port numbers used
by Internet applications and string patterns present in the applications’ data.

Recent research studies have shown that machine learning approaches can be
leveraged in the process of network traffic classification. Machine learning can be
used to construct models that learn to decide whether a network flow is malicious
or not, directly from the data and without any predefined rules [29]. Each Internet
application’s network traffic has some characteristics and behavioral patterns that
can be used to predict other unknown network flows from the same application. By
extracting historical or application-specific features from labeled network flows and
feeding them into a supervised learning algorithm, models can be created to classify
network flows.

Results show that some approaches have achieved better than 95 percent of
accuracy by using machine learning algorithms [2, 24, 26, 28]. In this work, we have
used some historical and application-specific features of network flows and created
a model to be used in a classifier node in service function chaining scenarios. By
mentioning machine learning-based schemes, the paper refers to the category of
approaches that use supervised machine learning methods for training a classifier
based on an application’s available network traces. Instead of comparing details of
a flow with predefined signatures, multiple flow characteristics are extracted and
used for making a data-driven prediction about the flow.

One of the main goals in applying service function chaining in a network is to
differentiate the services provided for network flows. As most machine learning-
based approaches proposed for traffic classification are based on features extracted
from a full flow, using machine learning methods in a service function chaining
classifier is challenging. Delayed traffic classification can cause unnecessary burdens
on unrelated services and changing a flow’s path in the middle of its life results in
an incomplete state in some service functions. Therefore, early traffic classification
is a necessity in a network applying service function chaining.

3.2 Proposed Solution

There are a lot of features that can be extracted from a total flow. Lots of them
need the flow to be finished to become available [25]. But this cannot be achieved in
service function chaining scenarios where real-time classification is needed. In this
case, flows must be classified as soon as possible to be analyzed in the corresponding
service chains. Otherwise, since some stateful services may need to inspect all the
packets in a flow, the classifier has to enable multiple services that belong to different
classes for packet inspection. Technically, some services need to store state for each
flow processed by them. When a new flow enters a service chaining network while
it has not been mapped into a class, it needs to be injected into a default chain of
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multiple services belonging to different classes. This way, the state stored in those
services is complete even after classification. The natural result of using a default
service chain is that the resources on some services are wasted on unrelated packets.
Figure 2 illustrates two stages of a flow’s life in the network, before and after the
classification. The packets in the flow are steered into the default service chain until
the successful classification results are prepared for the flow. After that, only the
services corresponding to the flow specific service chain are present.

a)

b)

Figure 2. Illustration of a flow’s life in a network a) before and b) after flow classification

Some previous work has mentioned that considering a total of 5 or 6 packets
from the start of flow can achieve the highest possible accuracy for traffic classifi-
cation [24]. In service function chaining scenarios there is a tradeoff between the
number of packets used for feature extraction and the load on the services belong-
ing to each chain (as depicted in Figure 3). So, finding the best point for flow
classification (feature extraction windows size) is the key to using machine learning
algorithms in such environments.
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Figure 3. The tradeoff between the packet number and the load on services

In this work, the list of features used for traffic classification is categorized into
historical and application-specific features. The list of historical features contains the
5-tuple characteristics of each flow which are the source and destination IP address,
transport layer protocol, source, and destination port numbers. By historical it
refers to the fact that network flows from specific client locations to specific server
locations may happen again. It is true most of the time that a triad of server IP
address, protocol, and the port number corresponds to a specific application server
on the Internet. If we consider the habits of the clients in using the internet, the
5-tuple feature list may lead to a good prediction result for unknown flows.

In the application-specific feature list, besides the list of historical features, the
features related to the application traffic patterns have been considered. Because
of this, only the packets containing at least one byte of data have been used for
feature extraction. By configuration, features from up to three data packets are
used for traffic classification. The list of features extracted from each data packet is
as follows:

• the size of transport layer payload (application data),

• the size of the captured data from network,

• the packet direction (from client or reverse),

• packet number in flow,

• TCP header push flag,

• packet entropy.

The size of the application data in the first packets may contain important
information about the application. For example, this data is normally small for
the first packet in an SSL flow. Besides, some malicious applications may try to
segment data packets to a specific size or create messages of a specific size that can
be considered as a pattern. To consider the size of other network layers’ headers, the
size of the captured data is also considered. In most client/server applications, the
client sends the first data packet but this may be different in some other applications.
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Also, it may be done by some malicious applications. This is the reason that data
packet direction is considered. To consider the number of packets without data, the
number of packets in the flow is also considered. TCP header push flag is also set
in some applications’ data packets which is also considered. Finally, packet entropy
is also used as a feature that can specify whether the data is encrypted or not. This
is an important feature for detecting some applications.

3.3 Technological and Implementation Details

The purpose of the experiments is to show how machine learning can help to classify
network flows in a malicious environment where a good percent of the flows try to
evade detection or analysis by imitating some famous applications’ patterns. Also,
to specify the best way to use machine learning algorithms in a service chaining
environment. For this reason, nine application classes of Unknown, HTTP, DNS,
HTTPS, FTP, Telnet, SSH, SMTP, and QUIC are considered. There are lots of
malicious applications that try to evade detection by leveraging some of these famous
protocols’ characteristics (using their default port number for example). The classes
have been chosen to somehow simulate the diverse nature of the Internet. All the
experiments done by using machine learning algorithms are also compared with
experiments done using a signature-based scheme where only port numbers are used
for the classification of flows. In the end, some other experiments using pattern
matching techniques are also presented.

CatBoost is a machine learning method based on gradient boosting over de-
cision trees. Gradient boosting is a machine learning technique that can be used
in classification problems by creating an ensemble of classifiers, typically decision
trees. Gradient boosting trees have some properties that can perform excellently in
network traffic classification [30]. In this work we have used CatBoost to create the
model used for traffic classification. CatBoost performs well in the classification of
traffic into several classes and it can be a great choice to be used in this work [31].

30 Gigabytes of network traffic has been captured from a company’s network
where a vast amount of malicious applications are active. The company provides
Internet access for a group of people comprising scientists, students, and other peo-
ple. The data was captured with a rate of 21 Mbps for more than four hours at
peak time. After cleaning the data by removing TCP flows without SYN packet
and removing flows with no data packets and also, removing duplicate flows, about
450 thousand flows are left. These flows are fed into two available DPI modules (one
of them is a commercial DPI and the other one is open source nDPI [32]) and they
are all labeled with classes mentioned above. Traffic flows in this data set belong
to all of the classes with different proportions. This labeled data set is used as the
train data to be fed into CatBoost and to create the model.

Two smaller traffic captures have also been prepared for running the experi-
ments. One of them is captured in a network where a mix of multiple traffic classes
is active and some malicious flows exist in it. The other one is captured in the same
network where the training data was captured. They are named mixed traffic and
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malicious traffic, respectively. By malicious, it refers to the fact that the rate of
using deceptive techniques by applications present in this network is higher.

For each traffic capture the following set of experiments is performed. At first,
the traffic is fed into a signature-based classifier where only port numbers are used
to detect flows (the port number is used as a representative for signature-based
methods). For each traffic class, its default port number(s) is used as the signature.
After the classification of a flow, packets are sent into a service chain specific to that
class where they are processed. Besides the signature-based classification, multiple
tests are done using machine learning algorithms. One test is done only using
historical features. After that, three tests are done with application-specific features
extracted from one, two, or three data packets.

There is a difference between a flow classified in Unknown class and an unclas-
sified flow. For a flow that is classified as unknown, we can say for sure that it
does not belong to any other class. But, for an unclassified flow, nothing can be
said about its class. Therefore, for flows classified to Unknown class no services are
used and the traffic is passed unprocessed. The results of the tests are compared to
two main parameters. The first one is the quality of classification of flows and the
second one is the load on each service chain and consequently, on services.

4 EVALUATION RESULTS

In this section, we investigate the results of the tests mentioned above for the three
metrics of accuracy, recall, and precision. Accuracy is about the number of flows
predicted correctly in each test. Technically, it specifies the number of flows cor-
rectly predicted in a class and correctly predicted not in a class. Recall considers
the number of flows in each class which is predicted correctly. In other words, it
specifies the number of flows that are actually in a class and have been correctly
predicted. Finally, precision specifies what percent of the positive predictions are
correct. Figure 4 presents the formulas for calculating accuracy, recall and preci-
sion. As mentioned above, two data sets are prepared to run the tests. Before
we run the tests, each data set is examined using the same DPI modules that we
used for labeling the training data and these results are used for evaluating each
metric. After that, each data set is once tested in a signature-based scenario and
then in multiple machine learning scenarios. The average value of accuracy, recall,
and precision are calculated for each type of test and when the result of all tests
is examined, the average values are compared to find the best approach for traf-
fic classification. In the end, the amount of traffic load on service chains is also
investigated.

Figure 5 presents the results of the signature-based tests on two mixed and ma-
licious data sets. Mixed data set refers to the traffic captured in an environment
where a mix of benign and malicious applications are active with a broad list of ap-
plications and the malicious data set refers to the traffic captured in an environment
where a vast amount of active applications are malicious. The results for mixed and
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Figure 4. Formulas for calculating accuracy, recall, and precision

malicious traffics are distinguished using their colors. Results of accuracy, recall,
and precision are all depicted in Figure 5.

As can be seen in Figure 5, all application classes except HTTPS and Unknown
result a high accuracy of more than 90 percent. This means that with respect
to those classes, most traffic flows are predicted correctly in a signature-based ap-
proach. The reason for a lower accuracy in HTTPS class is the fact that this port
number is the most popular port number between malicious applications and all
the applications that need to hide themselves from the sight of network analysis
devices. The accuracy for the Unknown class is also low because the failure in clas-
sifying HTTPS traffic results in decreased accuracy for the Unknown class. A large
number of Unknown flows must be classified in HTTPS class which is the result of
evasive techniques employed in malicious applications.

Like the accuracy, we can see a high value of recall for most classes except the
Unknown class. A low value of recall for class Unknown implies a high percentage of
unknown flows which are incorrectly classified in other classes. The value presents
the percentage of correctly predicted Unknown flows. Aside from the Unknown
class, we see a lower recall for class HTTP compared with other classes. This
implies that also for HTTP traffic there are some flows that have not used their
default port number which is port number 80. This must be true since there are
many HTTP servers running on port numbers 8080 or some other ports similar
to this one. For HTTPS class we see a very high value of recall. The reason for
this one is that almost all HTTPS traffic has used its default port number and
nearly all of these flows are predicted correctly. Since some of the traffic classes
were not present in the malicious traffic data, they are depicted without the value
of recall.

By looking at the precision results in Figure 5, we will come up with more
interesting conclusions. A low value of precision for a specific class is the result of
some other flows incorrectly predicted in this class. As we can see, the class Unknown
has a high value of precision while classes like HTTPS, SSH, or QUIC have resulted
in lower values of precision. This means that a large number of Unknown flows
have incorrectly been predicted as other classes. This is where we can see the track
of malicious applications trying to mitigate other application properties. Classes
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Figure 5. Results for signature-based scenario

without a precision value are also present since no traffic flow has used their default
port number.

Besides the above discussion, we can see lower values in almost all metrics for
the mixed data compared to the malicious data. This can emphasize the fact that
the same trend of using evasive techniques is active in both networks.

After discussing the signature-based detection scheme, it is time to consider the
results of machine learning-based experiments. Machine learning-based detection
using a historical feature list (flow characteristics as mentioned before) is considered
first. When speaking about a historical feature list, tracking the type of flows from
specific clients to specific servers on the Internet is considered. When the model
is created based on the type of flows originated from some clients to servers on
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the Internet, it can predict unseen flows from the same clients to the same servers
based on what it has seen historically. Based on the similarities of the new flows’
characteristics with the flows used in model creation, new flows can be classified.

As mentioned in the previous section, the historical feature list is the 5-tuple
of source/destination IP address, protocol, and source/destination port numbers
extracted for each flow. Figure 6 compares the results for the machine learning-
based classification using historical features in both mixed data and malicious data.

Figure 6. Results for historical features based scenario

Before we speak about the results presented in Figure 6, it should be reminded
that the data set used to create the model for all the experiments was provided in
a network with malicious traffic where lots of flows on famous port numbers are of
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other unknown protocols. So, we can look for the effects of such a phenomenon in
all experiments.

As it can be seen in Figure 6, the accuracy results for all traffic classes in
malicious data are more than 90 percent while we see lower values of accuracy for
some classes in mixed data. Since this experiment only considers the historical
data for creating the model and the malicious data set was captured in the same
networks as the training data, the higher accuracy for malicious data is justifiable.
A high value of accuracy for the malicious traffic implies that the use of historical
information in a network may be effective in application classification.

We can see a similar result comparing recall between mixed and malicious traf-
fics. For most of the classes the value of recall for mixed traffic is less than the
value of recall for malicious traffic. We believe this must also be the result of the
difference between networks where training data and the mixed data are captured.
As an exception, we can see that the DNS class has resulted a better recall for the
mixed traffic data. Clearly, the list of DNS servers in all the networks all over the
world is similar. This is the reason the amount of recall is not lower for mixed data.
Also, the presence of a lot of malicious applications in the malicious network may
cause a lower recall for that case since there may be some traffic flows trying to
mitigate DNS traffic while they are not actually DNS.

Following the same pattern, we see lower precision for the test with the mixed
data. Lower precision shows a lower percentage of correct positive predictions which
can be justified considering the different networks mixed and malicious traffic where
captured.

Considering the mixed data traffic, we can see that the precision for HTTPS
and SSH classes is lower than the other classes. Comparing the result of precision
in these classes in the mixed data with the same classes in the malicious traffic, we
see much better results for the malicious data. This emphasizes the fact that the
characteristics of these application classes are desirable with malicious applications
and the lack of historical information about the traffic can result in lower precision
when predicting application classes.

We saw the effects of using historical features in flow classification both for
mixed and malicious traffic. Now we want to enter some features related to the
actual application payload into the experiments. These features are listed in the
previous section and they are categorized based on the number of data packets
where the flow classification takes place. First, we look at the results where only the
first data packet is considered. Figure 7 presents the results for this experiment.

It can be seen that adding some application payload features to the model can do
the magic where the accuracy results for all classes in both data sets are more than
90 percent. This result presents the power of a good machine learning scheme when
application-specific features are considered for classification. We can see that when
application payload characteristics are added to the model, the difference between
the accuracy for mixed data and malicious data is reduced.

Now that we have seen the result of using application-specific features in flow
classification, it is time to increase the number of features by using more data
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Figure 7. Results for application-specific features based scenario with one packet

packets in flow classification. Figure 8 presents the classification results when the
classification is done as the second data packet is received in the flow and features
related to the application payload are from the first and the second data pack-
ets.

Before speaking about the results presented in Figure 8, it should be noted that
in any traffic data set, there may be some flows with only one data packet. So,
when considering the second data packet for flow classification, some of the flows
remain unclassified until they finish. The results presented in the above table are
only considering the classified flows and unclassified ones are ignored. So, if for
example it says that 10 percent of the flows are in HTTP class, it is referring to the
set of classified flows and not the unclassified ones.
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Figure 8. Results for application-specific features based scenario with two packets

Considering the results presented in Figure 8, we see the accuracy of more than
95 percent in all application classes. Compared to the results of experimenting
with only one data packet, we can also see an increase in the value of recall for
almost all classes. This result can also be observed for precision values. Some
incompatible results for some of the classes (like the reduced recall for SSH) may
be judged by the one packet flows which are omitted from the results in the current
figure.

Finally, we want to consider one more data packet in the flow classification
procedure. As the third data packet is added to the procedure, more features specific
to that packet are added to the model. Besides, as mentioned above, the natural
consequence of waiting for more packet until traffic classification, is the reduction in
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the number of classified flows. Figure 9 presents the result of the experiment using
three data packets where only the classified flows are considered to calculate the
values.

Figure 9. Results for application-specific features based scenario with three packets

Surprisingly, we see a reduction in calculated metrics for different classes com-
pared to the previous tests. Although the reason may be that some valid flows
with less than two data packets have been omitted from the results and the amount
of true positive results has been reduced, it seems like using two data packets for
feature extraction cannot result as good as approaches using fewer data packets. It
should also be mentioned that commonly DNS flows only have two data packets
consisting of a request packet and a response packet. Also, the existence of HTTP
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flows with only one request packet and only one response packet is common. These
sentences are mentioned to emphasize the previous statement.

Table 1 provides a numerical representation of all the results. A result of 100 per-
cent for accuracy refers to the fact that all the corresponding flows in test data were
correctly classified and no false positive or false negative cases were present. For
recall, a result of 100 percent means that there were no false negative cases present
and a value of 100 percent for precision means that there were no false positives.
For recall and precision, a value of 0 percent means that no true positive cases were
present and none of the positive cases were correctly classified.
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Precision 69.87 75 95.22 94.68 96.53 92.71 99.34 95.74 99.29 95.65
Recall 100 99.13 91.28 77.39 89.45 77.39 87.72 78.95 87.42 77.88
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IC

Accuracy 98.54 99.92 99.55 99.93 99.53 99.93 99.66 99.94 99.67 99.94

Precision 0 99.42 0 97.06 0 68.01 0 72.61 0 67.35
Recall 0 98.27 0 24.19 0 44.28 0 44.81 0 39.76

S
M

T
P

Accuracy 100 99.97 100 98.87 100 99.12 100 99.23 100 99.28

Precision 100 80.75 100 36.62 75 32.64 100 25.74 100 26.15
Recall 100 100 100 100 100 96.92 100 98.37 100 98.28

S
S
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Accuracy 100 99.93 100 99.51 99.98 99.43 100 99.24 100 99.3

Precision 0 98.89 0 0 0 0 0 0 0 0
Recall 0 100 0 0 0 0 0 0 0 0

T
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Accuracy 100 100 100 99.81 100 99.81 100 99.81 100 99.81

Precision 0 100 0 100 0 100 0 100 0 100
Recall 0 100 0 3.1 0 5.43 0 2.34 0 2.34

F
T

P

Accuracy 100 100 100 99.73 100 99.74 100 99.73 100 99.73

Precision 56.32 41.09 87.42 42.27 99.93 98.46 99.93 99.07 100 98.97
Recall 100 100 99.16 99.6 99.16 97.41 99.54 96.68 99.93 97.05
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Accuracy 81.39 78.4 96.37 79.44 99.78 99.38 99.88 99.4 99.98 99.45

Precision 99.2 87.29 98.22 99.97 99.58 99.97 100 99.99 100 100
Recall 100 99.98 43.34 85.9 61.84 97.94 95.83 99.67 81.55 97.06
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Accuracy 99.95 96.45 96.58 96.56 97.73 99.49 99.77 99.94 99.7 99.95

Precision 97.98 93.8 97.99 84.15 97.5 96.53 98.04 95.05 96.53 93.22
Recall 99.32 89.76 99.49 92.93 99.66 91.43 99.64 89.22 99.49 83.53
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Accuracy 99.75 98.1 99.77 97.12 99.74 98.62 99.8 98.85 99.88 98.97

Precision 99.83 94.59 93.47 82.12 95.37 95.48 98.58 95.9 98.4 95.48
Recall 64.95 44.94 93.64 52.48 99.34 98.73 99.58 98.73 99.68 98.66
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Accuracy 79.63 72.8 92.27 72.08 96.76 97.17 99.1 98.09 99.24 98.23

Table 1. Results of precision, recall, and accuracy for all scenarios
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After discussing the results of traffic prediction in each test for different applica-
tion classes, it is time to compare different approaches for traffic classification and
choosing the most suitable one. The average value for each metric is calculated for
all tests and a separate diagram is created for each metric. Figure 10, Figure 11 and
Figure 12 present the results of accuracy, recall and precision, respectively.

We can see in Figure 10 that for the malicious traffic, accuracy has been in-
creased by each new test where the lowest accuracy has been experienced in the
signature-based test and the highest one is experienced when three data packets
are used for feature extraction. The results for the mixed data are similar to the
results of malicious traffic as the highest accuracy is achieved when three data pack-
ets are used for feature extraction but they have an interesting difference. As we
can see, the accuracy has been reduced when using the historical machine learning
approach for mixed data. As mentioned previously, the reason for this phenomenon
is that the network where malicious traffic has been captured is the same as the
network where the training data was captured. Therefore, the flow characteristics
may not follow the same pattern historically. It should also be mentioned that the
accuracy for all tests using the application-specific features has reached 99 percent
and the difference between tests with two data packets and three data packets is
negligible.

Figure 10. Comparing accuracy for malicious and mixed data

As we can see in Figure 11, the amount of recall is almost the same for both data
sets when the signature based approach is utilized at first. For the mixed data we
see a reduction in recall value as the tests proceed with the lowest value experienced
with historical features approach. For the malicious data, the highest recall value
is experienced when two data packets are used for feature extraction and it reduces
when the number of packets is increased to three. We believe the reason that the
value of recall for malicious data is more than the recall for mixed data is the choice
of feature list and the fact that malicious data is captured in the same network as
the training data.
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Figure 11. Comparing recall for malicious and mixed data

Figure 12. Comparing precision for malicious and mixed data

Like the results presented for recall, the precision value starts almost the same
for both data types when the signature-based approach is tested, the lowest value
for the mixed data is when historical features machine learning approach is tested
and the highest value for the malicious data is seen when two data packets are used
for testing the application-specific machine learning approach. Again, it seems like
the fact that malicious data is captured in the same network as the training data
has had a positive effect on the results.

The reason that signature-based tests for both malicious and mixed data are
almost the same is that no feature related to the network environment is used in
those tests. Based on the above experiments, we can see that when the training data
and the test data are both captured in the same network, we can get the best results
with the application-specific features approach when two data packets are used for
feature extraction. Considering the case of service function chaining, this theory
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may not be the best choice. To make sure, we need to investigate how different
approaches affect the load in the network.

Now that we have discussed the classification results in multiple experiments, it
is time to discuss about the load imposed on service chains prepared for application
classes. When the classification of a flow is done on one of its packets, that packet
and the packets after that will all be injected into the chain prepared for the cor-
responding class. Flows classified in Unknown protocols class are not processed in
any chain and their packets are passed unprocessed. If classification is postponed to
data packets after the first one, packets in that flow must be processed in all services
(in all chains) so the flow receives a complete service and the state created in those
services is not incomplete.

Figure 13 presents the amount of load on all service chains in all experiments for
mixed and malicious data sets. The load is calculated as the percentage of all data
packets (where the actual processing is done) that have entered all service chains
over the total number of data packets.

Figure 13. Comparison of load on service chains for mixed and malicious data

What can be seen in the above chart is that as we track the experiments until
the one using the application-specific features on the first data packet, the amount
of load on all service chains is decreased and gets more meaningful. The reason is
that flow classification is becoming more accurate and the resources are not wasted
for processing unrelated packets. But as we go on to the experiments using the
second and the third data packets, we see an increase in the load imposed on service
chains. The reason for this increase is that as the classification is postponed to
future data packets, unclassified flows must be processed in all service chains so
that the services in the correct service chain do not miss any packets. So, while
adding delay to classification time may help in better classification, it results in
more load on service chains which is contrary to the main purpose of service chaining
idea.
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The total trend of the diagram is the same for mixed and malicious traffic data
but the load on service chains is higher when testing with the malicious data in
contrast with the mixed. The reason for the higher load when using malicious
data is not necessarily the result of correctness in classification. A greater pro-
portion of Unknown traffic may be present in the mixed data and when a flow is
classified as Unknown, it will not be processed in any of the service chains. So,
the variation of traffic classes in a traffic data set can impact the load on service
chains.

Before we finish this part and in order to make more powerful results, we have
made another comparison between another signature-based classification method
and the machine learning methods. This signature-based method is pattern match-
ing. We have labeled the malicious data set with three classes of Unknown, Google,
and Instagram and used the same data set in multiple experiments to see how ma-
chine learning can be compared with other signature-based methods. Figure 14
presents the results of accuracy, recall, and precision from five experiments using
pattern matching and machine learning methods. As we can see, the accuracy is
around 95 percent in all the experiments which means that if we consider the cor-
rectness of all predictions on network flows, a very good result has been provided.
Even if we consider recall, we can see that pattern matching has achieved a value
as good as the best machine learning methods.

Figure 14. Comparing accuracy, recall and precision when using machine learning meth-
ods against pattern matching

The most interesting part of the result is about precision where the pattern
matching method presents weaker results compared to some other methods. The
DPI module used for labeling the data set leveraged the same pattern matching
procedure, but after the application protocol is totally parsed. In other words,
the module has intelligently compared each signature pattern with the most appro-
priate location in packet payload. There are some applications that try to evade
detection by using signatures of famous applications in their payload. For example,
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a malicious application which uses HTTPS protocol can mention Google in subject
alternative name section in its certificate. To avoid the complexities of protocol pars-
ing in DPIs, the pattern matching method used in current experiment has blindly
searched for each pattern in the whole packet payload. The reason for a low preci-
sion is that there are some flows that have been classified in one of these classes by
mistake.

5 CONCLUSIONS

The current work focused on using machine learning techniques in a service func-
tion chaining classifier node by leveraging a method named CatBoost. Taking into
account the new evasive techniques used by malicious applications active on the
Internet, the traditional classification methods like signature-based detection are
believed to be ineffective. There needs to be a way for classifying the unknown ap-
plication flows without following the strict instructions provided by the signatures
for known applications. Machine learning can help to classify unknown applica-
tion flows only by considering the data itself and without the use of application
signatures.

By selecting a list of historical and application-specific features and using a la-
beled data set, we used CatBoost to create models that are used for classifications
of unseen network flows in a service function chaining environment. The classified
flows were forwarded into a predefined service chain composed of specific services
to the selected class where they are processed according to the actual application
type. Considering the quality of traffic classification and the load imposed on ser-
vices, there exists a challenge for selecting the number of packets for extracting the
application-specific features. As more packets are considered before the classifica-
tion of a network flow, more features are available, and possibly, higher quality is
achieved.

In our experiments, we have found out that taking into account the service
function chaining problem statement, the best number of data packets considered
for feature extraction is one. Although selecting one more data packet can slightly
increase the classification quality, we believe that the amount of load saved by using
only one packet can have more benefits in a service chaining environment. For
example, a lower load on service chains can make space for more throughput in
the network. This is while the difference in classification quality between methods
using one and two data packets is not much at least in respect to accuracy. Also,
based on the selection of features extracted from each flow, it is clear that the
classification quality will increase if training data and test data are captured in the
same network.

Finally, it can be said that using a machine learning method with proper se-
lection of its properties can be a good replacement for traditional signature-based
classification and to avoid the expensive, complex procedures of deep packet inspec-
tion modules.
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Abstract. Traffic light recognition in urban environments is crucial for vehicle
control. Many studies have been devoted to recognizing traffic lights. However,
existing recognition methods still face many challenges in terms of accuracy, runtime
and size. This paper presents a novel robust traffic light recognition approach
that takes into account these three aspects based on image processing and deep
learning. The proposed approach adopts a two-stage architecture, first performing
detection and then classification. In the detection, the perspective relationship and
the fractal dimension are both considered to dramatically reduce the number of
invalid candidate boxes, i.e. region proposals. In the classification, the candidate



440 M. Che, M. Che, Z. Chao, X. Cao

boxes are classified by SqueezeNet. Finally, the recognized traffic light boxes are
reshaped by postprocessing. Compared with several reference models, this approach
is significantly competitive in terms of accuracy and runtime. We show that our
approach is lightweight, easy to implement, and applicable to smart terminals,
mobile devices or embedded devices in practice.

Keywords: Traffic light recognition, color features, perspective relationship, fractal
dimension, SqueezeNet

Mathematics Subject Classification 2010: 68U10

1 INTRODUCTION

Traffic light recognition in urban environments is crucial in many cases, such as in
detecting traffic signs during semiautomatic or fully autonomous driving [1], helping
pedestrians with some form of visual impairment [2], estimating the distance between
vehicles and detected traffic lights [3] and assisting in the correction of the map
coordinates of a floating car [4]. Thus, many studies address the problem of detecting
traffic lights, and it remains an active challenge.

Traffic light recognition belongs to the field of object recognition, i.e. object
detection in computer vision. The crucial task of object recognition requires solving
two problems: locating objects and then classifying them. Current approaches to
traffic light recognition can be divided into two categories: two-stage strategies and
one-stage strategies. Regarding the former, the region proposals are generated first.
Then, some classifiers are used to classify the region proposals. Many methods can
be used to create region proposals. The sliding window method is the easiest, but
it is time-consuming. Eventually, selective search was proposed [5, 6]. This method
combines the strengths of both an exhaustive search and segmentation. In terms
of efficiency, selective search is better than the sliding window method. However,
selective search is not sensitive to small objects, such as traffic lights, and its runtime
is longer. In contrast to the time-consuming selective search, a speed-up algorithm,
i.e. edge detection, was proposed [7]. Edge detection achieves higher object recall
and is faster to compute. However, the algorithm does not perform well when
segmenting individuals. Another study used binary semantic segmentation to detect
region proposals. However, both the precision and computing speed of the method
on a CPU need to be improved [8]. Some studies generate region proposals from
other perspectives, such as spot light detection [9], color and shape features [10, 11,
12, 13, 14], map information [15] and so on. These methods usually require making
strong assumptions and may generate many redundant candidate regions. However,
they are based primarily on image processing techniques; thus, their runtimes are
relatively short.
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In the two-stage strategy, the typical classifiers include template matching [9, 16],
the support vector machine (SVM) [17], the hidden Markov model (HMM) [18],
and deep learning [17, 19, 20]. The template matching technology is the earliest
object recognition application and is easy to operate. However, its rate of correctly
recognized traffic lights is closely related to the templates. A stiff template always
limits the adaptability of the method to individual objects, especially for dynamic
traffic lights in fisheye camera images. The SVM is a better classifier due to its self-
learning. However, the SVM performs better on small sample training sets. When
the training data becomes large, the SVM becomes time-consuming and has a very
limited accuracy when addressing a multiclassification problem. The HMM can help
in determining the current state of the traffic light detected based on the obtained
state processing. The accuracy achieved by this method is not too high. Owing to
the recent advances and performances of deep neural networks, deep learning has
been used for image classification. The very representative and popular model is the
R-CNN [21] and its accelerated versions [22, 23, 24]. The R-CNN uses the features
in the image extracted by deep learning to train the classifier. This process makes
the accuracy of object recognition optimal in effect. However, it is time-consuming
and requires much storage space. Moreover, it still has problems in identifying small
objects, such as traffic lights [25].

In contrast to the two-stage strategy, the one-stage architecture is quite differ-
ent, as it does not use any prior knowledge of the object locations. It uses algorithms
to directly output categories and the corresponding positioning. The more popu-
lar models include YOLO [26] and the SSD [27]. YOLO, that is, “You Only Look
Once”, is a unified and real-time object detector that uses only a single deep neu-
ral network to detect objects in images. The smaller version of YOLO, i.e. fast
YOLO, performs well when conducting real-time object detection in a video [28].
However, YOLO makes more localization errors and lags behind state-of-the-art
detection systems in terms of accuracy [26]. Thus, an improved YOLO approach,
i.e. YOLO v2 (also called YOLO 9000), was proposed. Compared with YOLO,
YOLO v2 uses a novel multiscale training method, runs at varying sizes, and of-
fers an easy tradeoff between speed and accuracy [29]. Then, an advanced YOLO
approach, i.e. YOLO v3, was presented. YOLO v3 is obviously faster than the ref-
erence approaches when realizing the same accuracy [30]. From YOLO to YOLO
v3, the speed increases, while the accuracy does not, especially regarding the loca-
tion precision. The SSD model appeared after the YOLO model. The SSD com-
pletely eliminates proposal generation and subsequent pixel or feature resampling
stages and encapsulates all computations in a single network, which makes the SSD
easy to train and optimize. The experimental results show that the SSD has com-
petitive accuracy relative to that of the comparison models and is much faster.
However, the SSD is not very good at or even unable to perform small object recog-
nition. In addition, similar to the YOLO model, the size of the SSD is also very
large.

Overall, the two-stage approaches have higher precision and a longer runtime,
while the one-stage methods have lower precision but a shorter runtime. Deep
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learning has high precision, but its model is usually very large, which is extremely
disadvantageous for devices with lower memory and weaker processors outside the
laboratory. Moreover, deep learning does not seem to be compatible with the accu-
racy and runtime.

In this paper, our approach takes a two-stage architecture to ensure high recog-
nition accuracy. We used image processing to generate the region proposals and
then applied the deep convolution neural network (CNN) to classify them. To re-
duce the runtime, we further optimized the detector by considering the perspective
relationship and the fractal dimension. To decrease the model size, we introduced
the lightweight SqueezeNet model, which strongly compresses the dimensions of the
feature map [31]. Finally, based on the ground-truth image dataset, the performance
of our approach was tested.

2 MATERIALS AND METHODS

2.1 Dataset Description

To evaluate our traffic signal recognition approach, two datasets for real scenes
were employed. The first dataset includes data that we collected, which were de-
rived from the position-image synchronous data captured by the driving recorder
on a floating car. The time interval of the image set is 5 s. The dataset was
recorded in the urban areas of Nantong and contained red, green and blue (RGB)
color images. The image quality of the dataset is relatively high and has a resolu-
tion of 800 × 600 pixels. The dataset contains more than 700 images and more
than 1 000 traffic lights. The scenes in the dataset can be divided into simple
scenes and complex scenes. In the former, the traffic signals are exposed to the
sky and are easily identifiable. In the latter, the backgrounds of traffic signals
are diverse and may include trees, buildings, piers, and billboards. Moreover,
the taillights of cars and outdoor lights resemble traffic signals from a distance,
which causes further interference. In this situation, traffic signals are not recogniz-
able.

The latter dataset is the publicly available benchmark dataset of the La Route
Automatise (LaRA) benchmark provided by de Charette et al. [9]. The camera
applied in the LaRA dataset has a focal length of 12 mm and a resolution of 640×480
pixels. The image color mode of the dataset is RGB full color. This dataset has been
recorded in French urban areas and has more than 11 000 frames, many of which are
stationary. To strengthen the difference between two adjacent frames, we resampled
the source dataset every 5 frames. In the resampled data, some very blurry frames
will be removed manually. The final resampled data contain more than 1 500 frames
and more than 2 000 traffic lights. Use of the dataset allows a comparison between
our approach and the reference methods.
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2.2 Method Schema

2.2.1 Detector

A traffic light has a few special and important features, such as its border shape,
lamp holder color and light color, which help people to distinguish it in real scenes.
However, in image processing, the traffic light border shape is difficult to extract
because it is easily affected by the illumination intensity, the light size and distur-
bances from background pixels. At night or when the traffic light is either very small
or embedded in foliage, the traffic light border shape is very difficult to estimate.
The illumination intensity and the light size also significantly affect the lamp holder
color in the image. By contrast, the traffic light color, which is noteworthy and
unique whether at day or at night, is relatively stable and is applied to locate the
candidate regions of traffic lights.

The images in RGB mode are first converted to the hue, saturation, and value
(HSV) color space. Compared with the RGB color space, the HSV color space is
more suitable for segmentation and is more robust against illumination variation [12].
In this section, the regions of red, green and yellow are extracted to create the
candidate boxes, i.e. the region proposals, that contain the traffic lights. The desired
color is extracted from an image based on the HSV values resulting from the statistics
of the positive samplings (Figure 1).

Figure 1. Color statistics of traffic lights in RGB mode

Suppose the triple (h, s, v) represents the HSV value of every pixel in an image;
the expected color needs to satisfy the empirical relationships. In Figure 1, the range
of each component in the color triple is calculated. Then, there is a slight change
in the range. This process is performed to cover the traffic light color as much as
possible and to find as many candidate regions as possible (Figure 2 b)).

To detect the red lights, the color thresholds were set as follows.

0 ≤ hred1 < 15, 115 ≤ sred1 ≤ 255, 115 ≤ vred1 ≤ 255, (1)
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165 ≤ hred2 ≤ 180, 120 ≤ sred2 ≤ 255, 90 ≤ vred2 ≤ 255. (2)

To extract the green and yellow lights, the color thresholds were set as shown
below.

55 ≤ hgreen < 90, 60 ≤ sgreen ≤ 255, 90 ≤ vgreen ≤ 255, (3)

15 ≤ hyellow ≤ 25, 195 ≤ syellow ≤ 255, 205 ≤ vyellow ≤ 255. (4)

During the color extraction, the candidate regions, i.e. the approximate posi-
tions of the traffic lights, were detected (Figure 2 b)), and the corresponding binary
images were created. To further calculate the profiles of the candidate regions,
the CHAIN APPROX SIMPLE contour approximation algorithm in OpenCV was
applied. In the algorithm, by compressing the horizontal, vertical, and diagonal
segments and leaving only the end points, as little key pixels as possible are used
to present the outlines. According to the contours of the candidate regions, the
homologous bounding rectangle can be calculated. Then, the candidate box was
estimated as follows.

bw = int(w′ · c · k), bh = int(h′ · c · k), (5)

w′ = min(w, h), h′ = min(w, h) (6)

where bw and bh are the width and height of the candidate box, respectively. w and h
are the width and height of the bounding rectangle, respectively. The coefficient c
is the ratio of the traffic light width to the lamp holder border width. In this paper,
c equals 2.0. The zoom factor k ranges from 1.0 to 1.5. It can expand the background
pixel information around the traffic light and can contribute to determining whether
or not the candidate region contains the traffic light.

In the candidate boxes, some contain traffic lights, while some contain noise
(Figure 2 c)). Apparently, some candidate boxes do not contain traffic lights because
their size is inappropriate. To remove the obvious noise, the size estimation formula
for the traffic lights was used. Depending on the perspective, everything looks small
at a distance and large up close. Thus, a mathematical relationship exists between
the light width and the corresponding y-coordinate value (Figure 3).

bw′ = −0.101 · y + 38.43 + t (7)

where bw′ denotes the estimated box width, y denotes the y-coordinate value, and
t denotes the tolerance. When bw is less than bw′, the candidate box is most likely
noise. With this process, noisy boxes that are obviously smaller or larger than the
normal size will be removed (Figure 2 d)). At the same time, some indistinguish-
able disturbance terms, e.g., some countdowns of traffic lights, are also removed
(Figure 2 d)). Obviously, this process is carried out to reduce the number of false
positives and shorten the runtime for recognizing traffic lights.
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Figure 2. Sample detections of traffic lights in an image. a) is the original image, b) rep-
resents the candidate regions, c) represents the rough candidate boxes, d) represents the
candidate boxes processed via size-noise reduction based on the perspective relationship,
e) represents the candidate boxes processed via overlap removal with IOU, and f) repre-
sents the candidate boxes further processed via texture-noise reduction with the fractal
dimension.

Figure 3. Relationship between the light width and the corresponding y-coordinate value

During the image processing above, multiple candidate boxes may be covering
each other around the same traffic light. To remove the overlapping boxes, the
intersection over union (IOU) method was applied, and the threshold was set to 0.6.
As a result, the remaining candidate boxes became small in number but contained
nearly all traffic lights (Figure 2 e)).

Now, the detector is quite qualified for the detection task. To further shorten
the runtime of the proposed approach, we need to reduce the backgrounds of the
candidate boxes. In Figure 2 e), some candidate boxes do not visibly contain traffic
lights. We can make this judgment by the image texture. The fractal dimension
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is a useful feature for texture segmentation in image processing [32]. The box-
counting approach is one of the most frequently used techniques for estimating the
fractal dimension of an image and is defined below.

F = lim
r→0

log(Nr)

log(1/r)
(8)

where F is the fractal dimension and Nr is the least number of boxes that must
completely cover the broken lines in the scale r. Before calculating the fractal
dimension, the image first needs to be processed by the Sobel filter. Then, the
image is transformed to binarization. Thus, the gray plane is converted to the
broken lines in two dimensions (Figure 4). By calculating the numbers of white and
black pixels, respectively, the ratio equation is as follows.

R =
N(pix = 255)

N(pix = 255) + N(pix = 0)
(9)

where R is the ratio and N(pix = 255) and N(pix = 0) denote the number of pixels,
with values equal to 255 and 0, respectively.

The conspicuous texture discrepancy between traffic lights and backgrounds can
be quantified by calculating the fractal dimension and the R value (Figure 4). The
fractal dimension of traffic lights principally ranges from 1.3 to 2.0. However, the
fractal dimension range for backgrounds is from 0 to 2. Thus, a threshold line
can be drawn to distinguish them. The R value is also helpful in distinguishing
traffic lights and backgrounds. As shown in Figure 4 g), the fractal dimension of the
image was high, indicating that the texture of the image was rough. The spatial
distribution of the texture may be similar to that of traffic lights, which makes it
difficult to distinguish the texture. However, its R value was evidently lower than
that of traffic lights. Therefore, the texture noise can be further eliminated by the
R value.

2.2.2 Classifier

Once the candidate boxes are generated, the classification task can begin. In this
paper, the candidate boxes contain four states, i.e. the backgrounds, red lights,
green lights and yellow lights. To distinguish them, SqueezeNet was employed.
Among the SqueezeNet modules, the fire module, which is comprised of a squeeze
convolution layer and an expand layer, is the building block. It can enable the CNN
to preserve accuracy on a limited budget of parameters [31]. SqueezeNet begins
with a standalone convolution layer (conv1), followed by 8 fire modules (fire2–9), and
finally ending with a conv layer (conv10). The number of filters per fire module from
the beginning to the end is gradually increased. Moreover, SqueezeNet performs
max-pooling with a stride of 2 after layers conv1, fire4, fire8, and conv10. According
to the SqueezeNet architecture, we reproduced it with the TensorFlow library. The
size of the input image was adjusted to 64 × 64. The channel of each layer retained
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Figure 4. Texture discrepancy between traffic lights and backgrounds

its original value. The number of categories was set to 4. The learning rate was set
to 0.0001. The input images were first processed by the equalization method before
training SqueezeNet.

2.2.3 Postprocessing

The candidate boxes were transformed into classified boxes after processing them
with the classifier. At this step, several overlaps may still exist among the boxes.
To collapse them, the non-maximum suppression (NMS) method was needed. NMS
is a key postprocessing step in many computer vision tasks. On the basis of the
sorted scores, it uses an iterative procedure to retain only one box per group,
corresponding to the precise local maximum of the response function, ideally ob-
taining only one detection per object [33]. Then, the perspective relationship
(Equation (7)) was used again to slightly reshape the boundaries of the recognized
traffic lights. The overall processes of the entire method are summarized in Fig-
ure 5.

2.3 Reference Methods

The performance of the proposed approach is compared with that of several popular
approaches. One approach is YOLO v3, which was briefly introduced in the first
section. YOLO v3 still imitates the mechanism of the human visual system. It
strives to predict what objects are present and where they are by looking at an image
only once. Similar to the previous versions, YOLO v3 regards object detection as
a single regression problem, straight from image pixels to bounding box coordinates
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Figure 5. Flow chart of the proposed approach

and class probabilities. The codes of YOLO are open. According to the instructions,
YOLO v3 is used on the Linux platform.

Other approaches include the de Charette approach [9], DeepTLR model [19],
FusionTLR model [25], Bayesian algorithm [35], Haltakov approach [11], and Siogkas
approach [36]. These approaches, which have been validated using a publicly avail-
able dataset, are applied to evaluate our method. Details about these approaches
are provided in the corresponding literature.

2.4 Evaluation Metrics

The approaches used to evaluate the recognition performances are defined as follows:

Acc = (TP + TN)/(TP + TN + FP + FN), (10)

Pre = TP/(TP + FP), (11)

Rec = TP/(TP + FN), (12)

F1 = 2 · (Pre× Rec)/(Pre + Rec) (13)

where Acc is the accuracy, TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the number of false
negatives. Pre is the precision, and Rec is the recall. According to the Pre and Rec
values, the F1 score is calculated.
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When compared with other models, the metric ‘AUC’, i.e. the area-under-the-
curve, of the precision-recall curves was also used in addition to the above indicators.

2.5 Experimental Situation

The image dataset was divided into two parts: training data and verification data.
In the training data, the training samples created by the detector contain the red
lights, green lights, yellow lights and backgrounds. The backgrounds account for
nearly 94 %. To balance the sample ratios, we used some strategies to process
the positive sample data. These strategies include moving the four borders of the
traffic light separately, graying the image, scaling the image, using a Gaussian filter,
sharpening the image, equalizing the image, stretching the image to the left and
right, and stretching the image upward and downward. Based on the image dataset,
the model training and verification platform was a single-core CPU @ 2.5 GHz.

3 RESULTS ANALYSIS

3.1 Classifier Performance

The classifier, i.e. SqueezeNet, used in the proposed approach was trained 25 000
times by learning the training datasets (Figure 6). The corresponding weight files
were produced per 2 500 times. The accuracy varied sharply before 3 000 iterations
and gently after. The maximum value of the accuracy was 0.973, which appeared
near the 22 000th iteration. The variation in the loss function curve was acute from
beginning to end. However, the trend of the loss curve was clear. At the 12 500th

iteration, the minimum value appeared, and the corresponding accuracy was 0.968.
After that, the change was slightly dramatic. However, the trend of the loss curve
was not affected.

Figure 6. Training curve of the classifier

The validation dataset was used to evaluate the classification performance. Fig-
ure 7 shows the precision and recall of the classifier at different iterations. Before the
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7 500th iteration, the manifestation, i.e. distinguishing the four types of candidate
boxes, was unsatisfactory. In this stage, the classifier distinguished the red traffic
lights and the green traffic lights comparatively easily. However, for the yellow traffic
lights and the backgrounds the situation was terrible. The precision of distinguish-
ing backgrounds was lower than 0.8, and the recall was higher than 0.9. The recall
of distinguishing the yellow traffic lights was lower than 0.7, and the precision was
higher than 0.87. These results indicate that more yellow traffic lights were falsely
classified as backgrounds by the classifier. After that the 7 500th iteration, the clas-
sifier produced better classification results. Both the precision and the recall when
distinguishing the four types of candidate boxes were high. Figure 8 also provides
the overall classification accuracy and the corresponding F1 score. Obviously, at the
12 500th iteration, the performance of the classifier was the best. The performance
when distinguishing red traffic lights was inferior to that when distinguishing green
traffic lights but better than that when distinguishing yellow traffic lights.

Figure 7. Precision a) and recall b) of the classifier

Figure 8. Overall classification accuracy and F1 score of the classifier

3.2 Recognition Evaluation

The verification images were used to evaluate the recognition performance of the
proposed approach. The F1 score varied with the IOU threshold (Figure 9). Obvi-
ously, the overall recognition accuracy declined with increasing IOU. The situation
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Figure 9. Relationships between the recognition accuracy and the IOU

remained the same for each type of traffic light. However, irrespective of the change
in the IOU, the average IOU curve always exceeded 0.6. When the IOU was lower
than 0.1, the total F1 score maximum value was 0.951, and the corresponding av-
erage IOU was 0.611. In the figure, when the IOU falls between 0.1 and 0.3, the
total F1 score only slightly varied and was always higher than 0.9. When the IOU
varied from 0.3 to 0.45, the total F1 score was always greater than 0.8. When the
IOU was between 0.45 and 0.6, the total F1 score was always greater than 0.6.

These results suggest that the performance of the proposed approach in terms
of recognizing traffic lights was satisfactory. The estimation of the light boundaries
by the proposed approach was also approbatory. Moreover, the red traffic light
recognition performance achieved by the proposed approach was inferior to the per-
formance of green traffic light recognition but superior to that of yellow traffic light
recognition.

The runtime of the proposed approach was analyzed (Figure 10). After the ad-
dition or removal of modules, the runtimes of the corresponding approaches were
compared. In Figure 10 a), the total runtime of the ‘full’ approach was the shortest,
followed by that of the ‘perspective’ approach, while the longest was that of the
‘none’ approach. In the runtime list of each approach, the elapsed time of the de-
tector was the shortest. However, the detector of the ‘fractal’ approach had a longer
elapsed time than that of the other approaches, which was associated with the fractal
computation. Relative to the others, the detector of the ‘fractal’ approach required
extra time to accomplish the fractal-computation task. Multiple values needed to
be calculated in each candidate box to estimate the fractal dimension. Thus, the
stage of the ‘fractal’ approach was somewhat time-consuming.

The elapsed time of the classifier was longest and directly affected the total
runtime of each approach. In fact, in this stage, the elapsed time was related to
the classifier-self and the number of candidate boxes. The former, i.e., the classifier
distinguishing each candidate box, was approximately 5.5 ms. The latter was not
constant. When the number of candidate boxes was large, the elapsed time of the
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classifier was necessarily long, and vice versa. When neither the perspective relation
module nor the fractal dimension module was used, the number of candidate boxes
was very large. Conversely, the number of candidate boxes was small. Thus, the
elapsed time of the ‘none’ approach was the longest, followed by that of the ‘fractal’
approach, while the shortest was that of the ‘all’ approach. Therefore, the two
modules played important roles in reducing the runtime (Figure 10 b)). The time
compression ratio of the perspective relation module was as high as 0.57 and that of
the fractal dimension module was 0.29. Using the two modules synchronously, the
time compression ratio was as high as 0.62. Finally, the average runtime needed to
process a single image for the ‘full’ approach was approximately 240 ms, indicating
that the proposed approach can process four images per second. When detecting
traffic lights under the offline condition, the proposed approach was very fast. Even
so, the proposed approach can completely satisfy the practical requests for some
online tasks requiring real-time image processing, such as processing the floating car
data from the low frequency (> 30 s) to the high frequency (1–10 s).

Figure 10. Analysis of runtime. In the figures, ‘perspective’ denotes the approach contain-
ing the perspective relation module; ‘fractal’ denotes the approach containing the fractal
dimension module; ‘all’ denotes the approach containing the two modules; and ‘none’ rep-
resents the approach without the two modules.

Figure 11 shows the performance in recognizing the different sizes of traffic lights.
The minimum resolution of the proposed approach for recognizing the traffic lights
was set to five pixels. When the size of the traffic lights was lower than 8 pixels,
the F1 score was always higher than 0.92. When the size of the traffic lights was
expanded to 11 pixels, the proposed approach yielded its best results. Then, the F1
score of the proposed approach declined. This decline is related to the chromatism
of traffic lights, which is frequently caused by light pollution. For example, when
the backlight behind the traffic light is too bright, the traffic light color becomes
lighter. In this case, the proposed approach can do nothing due to the existence
of chromatism. The statistics showed that larger traffic lights were more likely to
be impacted by light pollution than smaller lights, which explains the phenomenon
above. From another perspective, the proposed approach has prominent advantages
in recognizing small traffic lights.
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Figure 11. Traffic light size recognition performance achieved by using the proposed ap-
proach

4 DISCUSSION

4.1 Comparison with the Other Reference Models

A comparison of the recognition results of different approaches based on the LaRA
dataset is shown in Table 1. Compared with state-of-the-art approaches, the F1
score of the proposed approach was slightly lower than that of the Bayesian al-
gorithm but higher than the scores of other approaches. The recognition perfor-
mance of the proposed approach in the reference models is superior. Similar to
the Bayesian algorithm and de Charette approach, the precision of the proposed
approach was higher than that of the recall. This finding shows that the error
rate for traffic signals recognized by the proposed approach was lower than the
omission rate. However, opposite results were obtained for the Haltakov approach,
Siogkas approach and DeepTLR model. During the verification, we discovered that
some traffic signals appeared very small and some light textures were vague. In
addition, the similarity between the traffic signals and the backgrounds due to the
lower image quality hindered detection. These factors reduced the recall of the
proposed approach and increased the omission rate. In addition to comparing the
F1 scores, the area under the curve (AUC) indicators were also compared. Specif-
ically, a comparison between the proposed approach and the FusionTLR model
was performed. The red light recognition performance achieved by the FusionTLR
model was obviously better than the green light recognition performance. How-
ever, the case of the proposed approach was completely different. For the LaRA
dataset, some red signals that were quite small and blurry were very similar to
the backgrounds. Thus, their detection using the proposed approach was diffi-
cult.

The runtime costs were also analyzed. The runtime of the proposed approach
was approximately 120 ms per image on the LaRA dataset, which is longer than
that of most approaches and indicates that the proposed approach based on the
current implementation was relatively disadvantaged in processing the video im-
ages.
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Approach Precision Recall F1 AUCRed AUCGreen Platform Reference

Bayesian
algo.

0.987 0.947 0.966 [35]

FusionTLR 0.920 0.893 CPU [25]

Haltakov
approach

0.728 0.801 0.763 CPU [11]

Siogkas
approach

0.612 0.938 0.741 CPU [36]

DeepTLR 0.856 0.907 0.881 GPU [19]

de Charette
approach

0.845 0.535 0.655 CPU [9]

Ours 0.904 0.897 0.900 0.898 0.930 CPU

Table 1. Comparison of the proposed approach with state-of-the-art methods using the
LaRA dataset

Furthermore, we compared the proposed approach with the other more famous
object detection model, i.e. the YOLO model. The validation results revealed that
the performances of YOLO were unsatisfactory on both our datasets and the LaRA
dataset. The statistical results showed that both the precision and recall of YOLO
were lower than those of the proposed approach. A comparison of their vision
results is shown in Figure 12. Subplot (a) shows that the proposed approach can
distinguish the red and yellow lights better. However, YOLO falsely classified the
yellow lights as red lights. In subplot (b2), mistakes and omissions in recognizing
the traffic lights occurred when using YOLO. This observation indicates that YOLO
is unsuitable for detecting small objects, which is in agreement with the viewpoints
of some studies [20, 25].

4.2 Strategies for Further Model Optimization

4.2.1 Improving the Recognition Accuracy

The recognition accuracy of the proposed approach depends on the candidate box
quality of the detector and the classification accuracy of the classifier. The candidate
boxes produced by our detector did not ensure coverage of all traffic lights. The
statistics showed that the probability of the candidate boxes covering all traffic lights
was approximately 0.98. The reason for this was that our detector was sensitive
to the image color, which was closely related to the image quality. Many factors
affect the image quality of an on-vehicle camera. The major elements contain image
blurring due to shaking of the camera, color distortion due to light pollution, and
the lower resolution of the camera. Upon encountering poor image quality, omission
may occur for the candidate boxes. Therefore, further optimization of our detector
will be studied in future work.

In the subsequent classification, a deep CNN, i.e. SqueezeNet, was applied.
SqueezeNet is small and has a high classification precision. However, in this paper,
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Figure 12. Vision results on 1) our validation dataset and 2) the LaRA validation dataset
obtained by a) the proposed approach and b) the YOLO model

there is an upper limit to its classification precision. When training SqueezeNet,
we found some difficulty in exceeding the F1 score of 0.97 regardless of how the
training samples were adjusted. Thus, we designed and developed a new and simple
but highly efficient deep CNN classifier, denoted as SimpleNet. SimpleNet contains
two convolution layers, two pooling layers and two fully connected layers. The loss
function uses cross entropy. After tens of thousands of iterations, the F1 score of
SimpleNet can reach 0.985, which is then very difficult to exceed. Figure 13 shows
the misclassifications between the classifiers. Obviously, both classifiers faced the
same major challenges in distinguishing the backgrounds and traffic lights. However,
the misclassification error between the interiors of the traffic lights was lower for the
classifiers. Although SimpleNet has better classification performance, its file size is
large, and the runtime is long. Therefore, some tradeoff among the model runtime,
accuracy and size must occur.

By examining the classification data, we found that the contexts around some
traffic lights were inadequate. This inadequacy caused the backgrounds to be sim-
ilar to the traffic lights, especially for small traffic lights. The smallest resolution
of the proposed approach was 5 pixels. When the size further decreased, the traffic
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Figure 13. Analysis of the misclassification of classifiers

lights became very similar in appearance to the backgrounds. As a result, it was
difficult to detect them by human eyes. This situation makes some traffic light de-
tection systems meaningless because the on-vehicle camera was too far away from
the traffic lights. Usually, human eyes require an increase in context information,
i.e., expansion of the visual boundaries, to recognize small objects. However, this
increase did not significantly improve the classifier performance because too many
contextual data will overwrite the features of traffic lights. This deficiency stems
from the fact that the classification by the CNN is based on the local image tex-
ture [34]. Thus, to resolve this problem, the use of contextual data to improve the
classification performance of our classifier will be researched in future work.

4.2.2 Reducing the Runtime

Compared with that of the other traffic light recognition approaches, the runtime
of the proposed method is slightly longer. However, the runtime of the proposed
method can be considerably reduced in theory.

First, the proposed approach adopts serial computing technology, i.e. single-
thread sequential processing, in the implementation. In the candidate box classifi-
cation, the classifier sequentially classifies the candidate boxes. If more candidate
boxes exist, the serial processing mechanism of the classifier will lead to accumu-
lation of the runtime. Therefore, the overall runtime will be longer. In fact, no
correlation among the candidate boxes exists, which is good for parallel computing.
Under a single-core CPU, the processing of a single candidate box with our classifier
requires approximately 5.5 ms. If multiprocess is used, according to Figure 10 a), the
total time needed by the proposed approach to process a single image should not
exceed 25 ms to ensure that video image processing and online real-time processing
are possible. Therefore, in theory, it is feasible to use parallel computing to optimize
the proposed approach, and the computational efficiency after the optimization will
be significantly improved.
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Second, for video images, the target tracker technology, which has a runtime
advantage when processing frame images, can be coupled to our model. The mul-
tiple trackers were initialized at first by the traffic light boxes recognized by the
proposed approach in the previous frame image and were then used to find the
new positions of traffic lights in the next frame image and update the target po-
sition corresponding to each tracker, thereby improving the traffic light detection
efficiency.

Finally, for on-vehicle camera images, the location of traffic lights has a certain
regularity. In some areas, a high probability of traffic lights exists, while in other
areas, the probability might be small or equal to zero. For example, the probability
of a traffic light appearing above the horizon in an image is large. In contrast, traffic
lights typically do not appear below the horizon. Therefore, an invalid scan of the
algorithm can be prevented by setting the view boundary appropriately, thereby
improving the detection efficiency and quality.

In addition, using a GPU for calculations may also significantly improve the
efficiency of the proposed approach. Therefore, according to the above strategies,
further optimization of the proposed approach to reduce the runtime will be per-
formed in future studies.

4.3 Potential for Migrating to Embedded Devices

Currently, automatic recognition of traffic signs is very important for vehicle au-
tomatic driving or assisted driving. Traffic sign recognition systems have become
an integral part of Advanced Driver Assistance Systems (ADAS). Fast, robust and
real-time automatic traffic sign detection and recognition can significantly increase
driving safety. Although many traffic signal recognition methods are available, they
are not easily migrated to embedded devices because the hardware performance of
embedded devices is generally lower than the computer conditions in the labora-
tory.

With the constraint, the proposed approach should meet the specified conditions.
First, the proposed approach has a high accuracy rate and recall rate in terms of
the recognition performance and has better performance in reference approaches.
Second, the proposed approach has the potential to improve the time efficiency in
terms of the cost calculation. According to the previous analysis, when multiple pro-
cesses are employed for parallel classification and the target tracker technology has
been adopted, this approach is fully applicable to online real-time recognition tasks.
Last, the proposed approach is lightweight. The total size of the approach, including
the trained weight file, does not exceed 10 MB. The approach only depends on the
OpenCV and Tensorflow libraries during implementation; thus, it has minimal de-
pendence on third-party development libraries and implementation is simple. These
characteristics enable the proposed approach to have great potential for migration
to embedded devices.

Similar to other methods, the proposed approach inevitably contains some pa-
rameters and coefficients, such as the hue, saturation and value (HSV) thresholds
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applied to extract the traffic signal candidate regions, the coefficients for estab-
lishing the perspective relationship equation, and the fractal and R thresholds
applied for texture denoising. The optimal values of these parameters and coef-
ficients may be related to the test environments. When migrating from one re-
gion to another region, these parameters and coefficients may need to be adjusted
slightly to obtain better recognition results. However, if the training data are suf-
ficient, these parameters and coefficients will yield global values or local optimal
values classified by region in the form of a list. The same situation applies to
the weight file of the classifier. The proposed approach at this time can address
the variability of the scenarios as much as possible and no additional setting is
required.

In future work, the model migration research for embedded devices, such as
Raspberry Pi with ARM chip, will be investigated, and a comparative analysis will
be performed with the existing ADAS products.

5 CONCLUSION

We proposed an approach to detect traffic lights by using a combination of image
processing and deep learning. First, we designed a detector to create candidate
boxes that can cover all traffic lights based on image processing. In the process,
the perspective relationship and the fractal dimension were both considered to dra-
matically reduce the number of invalid candidate boxes. Then, the candidate boxes
were transformed into classified boxes by using the classifier. Finally, the traffic
light boxes were produced from the classified boxes via postprocessing. Overall, the
approach occupies a small amount of storage space.

We trained and validated the proposed approach on our dataset and the LaRA
dataset. Several state-of-the-art methods were employed as the reference approaches.
The results showed that the performance of the proposed approach in terms of rec-
ognizing traffic lights was satisfactory. In addition, estimation of the light boundary
by the proposed approach was approbatory.

The red traffic light recognition performance achieved by the proposed approach
was inferior for green traffic lights but superior for yellow traffic lights. The proposed
approach has prominent advantages in recognizing small traffic lights.

Compared with the reference models, the proposed approach has a significant
competitive advantage in terms of the recognition accuracy. Under the current
serial program architecture, the proposed approach was relatively disadvantaged in
processing video images. However, the runtime of the proposed approach can be
further greatly reduced in future work by using parallel computing to carry out
optimization.

Furthermore, the proposed approach was very small regarding the model size.
The file size of the proposed approach including the CNN weight file was less
than 10 MB. Thus, this approach can be used on smart terminals, mobile devices or
embedded devices in the future.
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Abstract. The problem of measuring similarity between sentences is crucial for
many applications in Natural Language Processing (NLP). Most of the proposed
approaches depend on similarity of words in sentences. This research considers se-
mantic relations between words in calculating sentence similarity. This paper uses
Discourse Representation Structure (DRS) of natural language sentences to mea-
sure similarity. DRS captures the structure and semantic information of sentences.
Moreover, the estimation of similarity between sentences depends on semantic cov-
erage of relations of the first sentence in the other sentence. Experiments show that
exploiting structural information achieves better results than traditional word-to-
word approaches. Moreover, the proposed method outperforms similar approaches
on a standard benchmark dataset.

Keywords: Sentence similarity, discourse representation structure, structural sim-
ilarity

1 INTRODUCTION

Natural language processing has gained the focus of research especially after the
explosion of data expressed in natural languages. Moreover, the wide use of so-
cial media and the need to analyze this data makes natural language tasks crucial.
Measuring the similarity between natural language sentences is located at the core
of many tasks to process natural language data. For instance, many approaches
such as text classification, summarization, question answering, semantic search, and
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plagiarism checking depend on sentence similarity [24, 33, 34]. Accuracy of calcula-
tion of sentences similarity affects these applications. Consequently, the problem of
measuring the sentence similarity has got a lot of focus.

Measuring similarity between natural language sentences means estimating the
degree of semantic relatedness between these sentences. The solutions for the prob-
lem of measuring sentence similarity still need improvement to accurately assess
the similarity. Most of the previously proposed approaches depend on words of
sentences. However, a sentence does not contain words only. Semantic relations
between words are important components of a sentence.

Deep learning techniques that achieved good results in computer vision are also
used in sentence similarity task. Word semantic representation is generated using
deep learning techniques [20]. In this representation similar words have close vectors
in the representation space. These numerical vector representations, normally of 300
length, for words, are used to get semantic similarity of sentences [21, 4].

Discourse Representation Theory (DRT) is a framework for representing the
meaning of natural language sentences in a formal semantic approach [11]. DRT
uses mental representation, which is DRS, to handle the meaning across sentence
boundaries. DRT is used to implement language understanding systems [5]. DRS,
which is used in DRT, consists of two main components: a set of discourse referents
and a set of conditions. Consider this sentence “A woman walks. She smokes.” This
sentence can be represented in DRS as shown in Figure 1. The first line contains
the set of referents (x and y). The other part is the set of conditions upon these
referents.

Figure 1. DRS representation for the sentence “A woman walks. She smokes.”

This paper proposes a new approach for measuring sentence similarity. The pro-
posed approach extracts semantic relations between words. Based on the similarity
of semantic relations in sentences the similarity is calculated.

The main contribution of this work is calculating sentence structural similarity
based on the semantic representation DRS that captures semantic and structural
information of sentences. Unlike the traditional word-to-word approach, the pro-
posed approach considers semantic relations between words in measuring similarity.
Moreover, the proposed approach uses word embeddings to calculate the similarity
between words.

The proposed approach is tested using standard datasets. Li2006 dataset [8]
which is widely used in the evaluation of sentence similarity approaches is used to
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evaluate the proposed approach. Moreover, MSRP dataset [3] which is used for para-
phrase detection is also used to evaluate the performance of the proposed method.
Experiments show that using DRS in sentence similarity improves measuring simi-
larity.

The rest of this paper is organized as follows. Section 2 mentions the related
work. Section 3 explains the proposed approach. A detailed example to get the
similarity between two sentences is shown in Section 4. Section 5 describes the
experiments and discusses the results. Finally, Section 5 concludes the presented
work.

2 RELATED WORK

Different approaches have been proposed to calculate sentence similarity. Some
of these approaches are string-based that consider the sentence as a sequence of
characters. The similarity between two sequences of characters is assessed using
string similarity methods such as q-grams [22] and Levenshtein distance [15].

Moreover, some approaches depend on word similarity to measure sentence sim-
ilarity. These approaches consider the sentence as a set of words. WordNet [18],
which is a lexical database for the English language, is widely used to find simi-
larity between words. However, many approaches depend on analyzing big corpora
to capture the semantics of words based on co-occurrences of words [24]. Latent
Semantic Analysis (LSA) is one of the approaches that statistically analyzes big
corpora to generate word semantic representation in a vector. Cosine similarity
between these vectors measures the semantic similarity between words. Some ap-
proaches combine both methods (WordNet and corpus analyzing) to find similarity
between sentences [25, 1].

The approaches for sentence similarity can be classified into three main classes:
word-to-word based similarity, vector-based similarity, and structure-based app-
roach [26]. In the word-to-word approach, the sentence similarity is calculated
based on the similarity between the words in sentences. The second category
depends on converting sentences to vectors that capture the semantic features of
these sentences. Sentence similarity is calculated based on the similarity between
these vectors. The third class of the approaches that measure sentence similarity is
structure-based which exploits the structural information of sentences to calculate
similarity.

Kenter and de Rijke in [21] propose an approach for measuring sentence sim-
ilarity based on word embedding. They used word representation generated from
deep learning to measure word similarity. Different pre-trained word vectors are
used to measure sentence similarity. In addition to using word embeddings, TF-
IDF weighting schema is used to consider word importance in the sentence. This
approach is considered a word-to-word based approach. However, this approach
ignores structural information of sentences. The structure of a sentence reveals
important information that helps in the similarity measure.
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Abdalgader and Skabar proposed to use word sense disambiguation and synonym
expansion to improve sentence similarity [12]. Firstly, the sentences are processed
and the meaning of the words are determined. A union vector for both sentences is
constructed by finding the union of both sets of words. Additionally, the original set
of words of each sentence is expanded by synonyms of the words belonging to this
set. A vector representation for each sentence is constructed by finding the similarity
between words in the union vector and words of that sentence vector. Finally, the
cosine similarity between the two vectors is calculated as the semantic similarity
between the two sentences. Although good results have been achieved using this
approach, it needs external resources such as WordNet which is not available for all
languages in high accuracy.

Some approaches combine different word similarity methods to calculate sen-
tence similarity. For example, Li et al. in [25] proposed an approach to measure
sentence similarity based on semantic net and corpus statistics. They computed se-
mantic similarity between words based on a lexical database, which captures human
knowledge, and based on a statistically analyzed corpus. In addition, word order
similarity is calculated to measure order similarity for common words. A similar
approach has been proposed by Pawar and Mago [1]. They combined WordNet and
corpus analysis measures to assess sentence similarity. However, these approaches
do not use structure information of sentences. In addition, external resources are
needed to compute the similarity. The measured similarity depends on the accuracy
of the used resources.

On the other hand, vector-based approaches generate vector representation for
sentences and calculate similarity between these vectors. Skip-Thought [13] is a neu-
ral network model designed to train sentences and get vector representation that
captures features of sentences. This model is similar to the skip-gram model that
is used to get word vector representation. The idea is that similar sentences have
similar features and close vectors. This model is used for sentence similarity sys-
tems. The input to their system is the words’ vectors of sentences and the output
is sentence vectors. These vectors are used to calculate sentence similarity.

Lee et al. in [14] introduced structure-based method to calculate sentence simi-
larity. They extract grammar links from sentences and construct a grammar matrix
in which rows represent links in the smaller (in length) sentence and columns rep-
resent links of the other sentence. Moreover, WordNet [18] is used to measure the
similarity between words. The final similarity is calculated based on the constructed
grammar matrix. Although this approach exploits lexical relations between words,
it ignores semantic relations between words. Semantic relations are more helpful to
assess semantic similarity between sentences.

Paraphrase detection is one task that is very related to sentence similarity. Re-
cently Ferreira et al. proposed an approach for identifying paraphrases [27]. Their
approach depends on extracting features and classifying a pair of sentences based
on the extracted features. The extracted features are calculated based on lexi-
cal similarity, syntactic similarity, and semantic similarity. Lan and Xu proposed
a learning-based approach that used sub-word level representation to detect para-
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phrases [35]. However, these approaches can be used in paraphrase detection and
do not assign a similarity value for a sentence pair. Moreover, these approaches do
need labeled data.

Figure 2. Proposed system architecture

3 SENTENCES SIMILARITY

A lot of NLP applications, such as social media analysis, question answering, and
plagiarism, depend on sentence similarity. Consequently, the accuracy of measuring
relatedness between sentences is a crucial task for many applications. The pro-
posed approach exploits structure information in DRS representation of sentences
to improve measuring sentence similarity. The input to the proposed system is two
sentences and the output is a similarity value between 0 and 1.

As shown in Figure 2, calculating structural similarity between two sentences
contains three steps. The first is generating DRS graphs for the inputted sentences.
The second step is constructing a relation similarity matrix and the final step is
calculating the structural similarity based on the relation matrix.

Structural information of a sentence helps to assess the sentence similarity [23].
Moreover combining structural similarity and word-based similarity improves the
assessed similarity between sentences. As the first step for calculating structural
similarity, each sentence is parsed and the output is passed to a semantic analyzer
which outputs DRS graph representation equivalent to the sentence. Based on DRS
graph representation of the sentences, a graph matching technique is used to measure
the similarity between the two sentences. The following sub-sections explain the
details of these steps.

3.1 Generation of Discourse Representation Structure

In order to get the structure of a sentence, a parser is used and semantic relations
between words are extracted. A sentence semantic graph is constructed based on
extracted relations. In this graph nodes represent words and edges represent se-
mantic relations between words. The structural similarity of sentences is calculated
based on the constructed graphs. In this paper, C & C parser [28] is used to parse
sentences. In addition, the Boxer system [9] is used to get the semantic relations
between sentence entities.
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C & C parser contains many taggers such as Part Of Speech (POS) tagger and
CCG supertagger. These taggers are highly efficient [9]. In addition, C & C con-
tains Name Entity Recognizer which can determine ten different types of entities
(organization, location, person, email, URL, first name, surname, title, quotation,
and unknown name). C & C parser tags the words in a sentence with POS from
the Penn treebank [17]. Then it builds sentence structure based on Combinatorial
Categorial Grammar (CCG) paradigm. The output of the parsing is a syntax tree
in which each node has POS tag, lemma, and name entity tag.

Based on the output of C & C parser, the Boxer system builds semantic repre-
sentation for a sentence. The Boxer is a free software for analyzing text semantically.
It depends on CCG and C & C parser to generate Discourse Representation Struc-
ture (DRS) for sentence text. DRS represents natural language text semantically.
DRS captures the semantic of text and models it into related entities. DRS can
be converted to other semantic formats such as first-order-logic [2]. The proposed
approach uses semantic relations in DRS to calculate sentence similarity.

For example, consider these sentences: S1 = “The boy who kills the snake is
strong.” and S2 = “The boy is injured by a snake.” The output of the Boxer system
for these sentences is shown in Table 1. The DRS representation contains the words
in sentences and the relations between words. For example the relation theme in S1

connects the words kills and snake. Table 2 shows relations of both sentences.
Based on the output of the Boxer system, a semantic graph representation for

the sentence is generated. Figure 3 shows the graph representation for the sentence
S1 = “The boy who kills a snake is strong.” This graph captures the structure
information of the sentence. Semantic relatedness between sentences is measured
based on the generated graphs. Table 2 shows relations of DRS representation in
both sentences.

Figure 3. Sentence graph representation

3.2 DRS Graph Based Similarity

There are different techniques for solving graph matching problem. Graph matching
is used in many applications in different fields [16]. For example, graph matching is
used for measuring the similarity between documents [10]. In this paper structural
sentence similarity is measured using sentences graphs. Based on the generated DRS
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S1 = “The boy who kills the snake is strong.” S2 = “The boy is injured by a snake.”

k3 attribute c6:strong:0 0 [ ]
k3 concept c0:boy:0 0 [ ]
k3 concept c2:snake:0 0 [ ]
k3 event c3:kill:0 0 [ ]
k3 referent k3:e1 0 [ ]
k3 referent k3:s1 0 [ ]
k3 relation c1:equality 0 [ ]
k3 role c5:theme:1 0 [ ]
k3 role c7:experiencer:1 0 [ ]
k3 role c4:agent:-1 0 [ ]
k3 referent k3:x1 1 [ The ]
c0:boy:0 instance k3:x1 2 [ boy ]
k3 referent k3:x2 1 [ who ]
c3:kill:0 instance k3:e1 1 [ kills ]
k3 referent k3:x3 1 [ the ]
c2:snake:0 instance k3:x3 2 [ snake ]
k3 surface k3:s1 2 [ is ]
k3:s1 main k3 1 [ ]
c6:strong:0 arg k3:s1 3 [ strong ]
c1:equality int k3:x1 3 [ ]
c1:equality ext k3:x2 0 [ ]
c5:theme:1 int k3:e1 2 [ ]
c5:theme:1 ext k3:x3 0 [ ]
c7:experiencer:1 int k3:s1 1 [ ]
c7:experiencer:1 ext k3:x1 0 [ ]
c4:agent:-1 int k3:x2 2 [ ]
c4:agent:-1 ext k3:e1 0 [ ]

k3 attribute c4:strong:0 0 [ ]
k3 concept c0:man:0 0 [ ]
k3 concept c5:snake:0 0 [ ]
k3 event c1:kill:0 0 [ ]
k3 referent k3:e1 0 [ ]
k3 referent k3:s1 0 [ ]
k3 role c2:theme:1 0 [ ]
k3 role c3:experiencer:-1 0 [ ]
k3 role c6:agent:1 0 [ ]
k3 referent k3:x1 1 [ The ]
c0:man:0 instance k3:x1 2 [ man ]
k3 surface k3:e1 2 [ is ]
k3:e1 main k3 1 [ ]
c1:kill:0 instance k3:e1 3 [ killed ]
k3 referent k3:x2 2 [ a ]
c4:strong:0 arg k3:s1 1 [ strong ]
c5:snake:0 instance k3:x2 4 [ snake ]
c2:theme:1 int k3:e1 1 [ ]
c2:theme:1 ext k3:x1 0 [ ]
c3:experiencer:-1 int k3:x2 3 [ ]
c3:experiencer:-1 ext k3:s1 0 [ ]
c6:agent:1 int k3:e1 4 [ ]
c6:agent:1 ext k3:x2 1 [ by ]

Table 1. DRS representation generated from Boxer system: (on left) DRS representation
for sentence S1 and (on right) DRS for sentence S2

graphs for sentences, a relation matrix is constructed. Rows of this matrix represent
relations of the first graph and columns represent relations of the second graph. Cell
i, j in the matrix is filled with similarity value between relation i belonging to the
first sentence and relation j belonging to the second sentence. Structural sentence
similarity is calculated from this matrix.

3.2.1 Relation Similarity

As shown in Table 1, each relation has a name and links between the interior word
and the exterior word. The similarity value between two relations is calculated in
three steps:

Measuring the similarity between names of relations. The proposed ap-
proach distinguishes between the case when both relations have the same name
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S1 = “The boy who kills the snake is strong.” S2 = “The boy is injured by a snake.”

boy→ equality→ who
kills→ theme→ snake
strong→ experiencer→ boy
who→ agent→ kills

killed→ theme→ man
snake→ experiencer→ strong
killed→ agent→ snake

Table 2. Relations of sentence S1 and relations of sentence S2 according to DRS repre-
sentation

and the case when both relations have different names. The similarity value in
the first case is higher than in the second case. If both relations have the same
name the similarity value is 1. Otherwise the similarity value will be 0.7. This
value has been assigned based on a tuning experiment using Li2006 dataset [8].
This value is working for every dataset.

Measuring similarity between interior nodes. Word embeddings [20] are used
to calculate the similarity between interiors words of both relations. Word vec-
tors which are trained on part of Google News1 is used to get the word vector.
The cosine similarity between words’ vectors is calculated as the similarity be-
tween these words. In addition, word expansion is used to improve the word
similarity measure. Two lists of words are obtained from the two words using
expansion. The max similarity between these two lists is chosen as the similarity
between the two words.

Measuring similarity between exterior nodes. Word embeddings are also used
to find similarity between exterior words.

The following equation is used to calculate the similarity between two relations
R1 and R2.

RelSim(R1, R2) =
Sim(IR1, IR2) + Sim(ER1, ER2)

2
∗ NameSim(R1, R2). (1)

Sim(IR1, IR2) is the similarity between interior word of R1 and interior word of R2.
NameSim assesses similarity between names of relations.

For example, the similarity between theme relation in S1 and theme relation in
S2 is calculated as follows:

• Similarity between names of relations is 1.

• Similarity between interior nodes: the interior word for theme relation in S1 is
kills and interior word for theme relation in S2 is killed . Sim(kills ,Killed) is
0.94.

• Similarity between exterior nodes: Sim(snake,man) is 0.08.

The final similarity between these relations is calculated according to Equation (1).

1 This data set is publicly available at https://code.google.com/archive/p/

word2vec/

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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3.2.2 Word Expansion

The proposed approach uses word expansion when measuring the similarity between
two words. A word can be considered an expansion to another if there is an equality
relation between them. For example, in Figure 3 the word boy can be used as
expansion to the word who. When measuring the similarity between a word w1 and
another w2, the proposed approach gets a list of words equal to w1 and a list of
words equal to w2. The similarity between all words in the two lists is calculated
and the max similarity is selected to represent the similarity between w1 and w2.

3.2.3 Calculating Structural Similarity

The proposed approach calculates the structural similarity by guessing to what ex-
tent the relations of sentence S1 are covered by sentence S2. This can be calculated
based on the constructed matrix. In order to measure coverage of a relation belong-
ing to the first sentence in the second sentence, the maximum similarity between this
relation and all relations in the second sentence is selected. The structural similarity
between S1 and S2 is calculated as follows:

Simst(S1, S2) =

∑n
i maxSim(Ri, S2) ∗WRi∑n

i WRi

(2)

where n is the number of relations in S1 and WRi is the weight for the relation Ri.
The weight of relations is used to reflect the importance of different relations accord-
ing to its effect on the sentence meaning. Since the generated relations are limited,
a fixed weight is assigned to each relation (Table 3). Common semantic roles have
a high weight. Relations such as agent and theme have higher weights than other
relations.

Relation Name Weight

agent 8

theme 8

experiencer 6

is 4

in 3

other relations 1

Table 3. Weights for relations

4 EXPERIMENTS

The proposed approach has been implemented and tested against standard datasets
to prove its effectiveness. The implemented system takes two sentences in natural
language as input and measures the similarity between them. The output value
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R & G Human Li Islam Pawar Omiotis Grammar Farouk Proposed
Number Assess- 2006 [7] [1] [6] Based [4] Approach

ment [25] [14]

1 0.01 0.33 0.06 0.023 0.11 0.22 0.104 0.121

5 0.005 0.29 0.11 0.07 0.10 0.06 0.12 0.161

9 0.005 0.21 0.07 0.015 0.10 0.35 0.087 0.067

13 0.108 0.53 0.16 0.292 0.30 0.32 0.204 0.207

17 0.048 0.36 0.26 0.366 0.30 0.41 0.246 0.317

21 0.043 0.51 0.16 0.231 0.24 0.44 0.276 0.178

25 0.065 0.55 0.33 0.279 0.30 0.07 0.30 0.271

29 0.013 0.34 0.12 0.133 0.11 0.20 0.243 0.188

33 0.145 0.59 0.29 0.762 0.49 0.07 0.244 0.423

37 0.13 0.44 0.2 0.10 0.11 0.07 0.218 0.276

41 0.28 0.43 0.09 0.045 0.11 0.02 0.264 0.203

47 0.35 0.72 0.3 0.161 0.22 0.25 0.332 0.283

48 0.355 0.64 0.34 0.54 0.53 0.79 0.386 0.317

49 0.29 0.74 0.15 0.299 0.57 0.38 0.397 0.288

50 0.47 0.69 0.49 0.253 0.55 0.07 0.175 0.378

51 0.14 0.65 0.28 0.302 0.52 0.39 0.133 0.303

52 0.485 0.49 0.32 0.842 0.6 0.84 0.428 0.387

53 0.483 0.39 0.44 0.89 0.5 0.18 0.382 0.433

54 0.36 0.52 0.41 0.783 0.43 0.32 0.286 0.24

55 0.405 0.55 0.19 0.315 0.43 0.38 0.243 0.402

56 0.59 0.76 0.47 0.977 0.93 0.62 0.489 0.521

57 0.63 0.7 0.26 0.477 0.61 0.82 0.318 0.359

58 0.59 0.75 0.51 0.892 0.74 0.94 0.388 0.496

59 0.86 1 0.94 0.856 1 1 0.889 0.80

60 0.58 0.66 0.60 0.898 0.93 0.89 0.549 0.484

61 0.52 0.66 0.29 0.934 0.35 0.08 0.265 0.339

62 0.77 0.73 0.51 1 0.73 0.94 0.594 0.46

63 0.56 0.64 0.52 0.7 0.79 0.95 0.367 0.525

64 0.955 1 0.93 0.873 0.93 1 0.876 0.85

65 0.65 0.83 0.65 0.854 0.82 – 0.578 0.597

Table 4. Results of the proposed approach and other approaches using Li2006 dataset

of the implemented system is between 0 to 1 (0 means no similarity and 1 means
completely similar). In order to show the impact of using DRS of sentences, the
proposed system is compared to other systems using standard datasets.

4.1 Li2006 Dataset

A short text semantic similarity benchmark dataset [8] is used to evaluate the pro-
posed system. It is one of the widely used datasets in sentence similarity evalu-
ation [25, 14, 7]. Originally, this dataset was created by Rubenstein and Goode-
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Method Pearson Correlation Spearman Correlation

Li 2006 0.815 0.812

Islam 0.846 0.83

Pawar 0.781 0.823

Omiotis 0.857 0.889

Grammar based 0.714 0.639

word embedding 0.852 0.81

proposed approach 0.872 0.894

Table 5. Comparison between the proposed method and other methods

nough to measure word similarity [19]. The original dataset contains 65 pairs of
words. Li et al. [25] added the definition of each word using the Collins Cobuild
dictionary to use this dataset in sentence similarity. These 65 pairs of sentences
are manually graded by 32 English native speakers according to the similarity de-
gree.

The proposed system has been fed with pairs of sentences from Li2006 dataset.
For each pair of sentences a similarity degree is returned. Table 4 shows the results
of the proposed system along with other previously proposed systems. The results
are shown in Table 4 for a subset of the selected benchmark. This subset contains
30 pairs of sentences selected carefully to cover different similarity ranges [14]. The
proposed system is compared with classic approaches that do not use labeled data
such as word-to-word or structure-based approaches. The results of Li approach [25],
STS Meth [7] which integrates different word similarity methods, Pawar [1] which
combines WordNet and corpus analysis to measure sentences similarity, Omiotis
system [6] which is a new measure of semantic relatedness between texts, are in-
cluded in Table 4. In addition, a similar approach to the proposed system which
uses grammar-based similarity technique [14] is also included in the comparison.
Moreover, results of Farouk’s approach [4] which uses word embeddings in measur-
ing the similarity are also included in Table 4. The Pearson correlation coefficient
is calculated between each system results and human rating. Equation (3) is used
to calculate the correlation between the human rating and the proposed system.

r =
n
∑n

i xiyi −
∑n

i xi

∑n
i yi√

n
∑n

i x
2
i − (

∑n
i xi)2

√
n
∑n

i y
2
i − (

∑n
i yi)

2
(3)

where n is the number of sentence pairs, x is the similarity value of the proposed
approach and y is human similarity value. The proposed approach has achieved the
best results comparing to other systems in Table 4. The proposed system achieved
0.872 Pearson correlation with human similarity.

In addition, Spearman correlation is calculated to show the relationship be-
tween the results of different systems and human measured similarity. Equation (4)
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explains how to calculate Spearman correlation.

rs = 1− 6
∑n

i Di

n3 − n2
(4)

where n is the number of samples and D is the difference between the human as-
sessment and the system assessment. As shown in Table 5, the proposed system
achieves the best results among all other systems.

Figure 4. Results of the proposed system comparing to human raters

Figure 4 shows the achieved results comparing to human results in the Li2006
dataset. After calculating the average assessment of all human participants, Pear-
son correlation is calculated between the average assessment and each individual
human assessment. As shown in Figure 4, the worst correlation between all partici-
pants is 0.594. The proposed approach achieves better than the mean of all human
participants.

4.2 MSRP Dataset

Microsoft Research Paraphrase dataset [3] is widely used to evaluate sentence simi-
larity techniques. It contains more than 5 000 pairs of sentences. It was partitioned
into two sets. The first set contains around 4 200 pairs of sentences and is used as
a training set. The other set contains around 1 700 pairs of sentences and is used
for testing. Each pair is labeled by 1 (paraphrased) or 0 (not paraphrased). In our
experiment the testing set is used to test the proposed approach.

In this experiment the proposed approach calculates the similarity between each
pair of sentences and assigns a value between 0 and 1. A threshold value should be
used to convert the calculated similarity value to 0 or 1. If the calculated similarity
value is above the threshold, this pair is considered as the paraphrases. Different
threshold values have been used previously in the literature. Omiotis approach used
0.2 as a threshold value [6], and 0.5 is used by Achananuparp in [32]. A tuning
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experiment using hill-climbing algorithm [33] on MSRP training dataset determined
that 0.45 is the threshold value for the proposed approach.

Metric Accuracy Precision Recall F-measure

Islam 72.64 74.65 89.13 81.25

Omiotis 69.97 70.78 93.40 80.52

grammar based 71.02 73.90 91.07 81.59

Farouk 71.6 76.2 83.3 79.6

proposed approach 70.46 72.34 89.30 79.93

Table 6. Results of the proposed approach and other approaches using MSRP dataset

Table 6 shows the achieved results and other approaches results in the MSRP
dataset. Although the results of the proposed system are not the best, these results
are comparable to other systems.

4.3 Results and Discussion

The experiments show that measuring similarity based on structural information
of sentences gives better results than the traditional word-to-word approach. The
proposed approach which uses C & C parser and the Boxer system to generate DRS
representation for sentences outperforms other systems in Pearson correlation and
spearman correlation measures.

However, the proposed approach achieves 70 % accuracy on the MSRP dataset.
The results of MSRP dataset are not very good such as Li2006 dataset. This is
because the proposed approach depends on the structure of sentences. The better
structure of sentences the better performance of the proposed system. The first
dataset (Li2006) is derived from a dictionary which means its sentences are well-
structured. Consequently, the proposed approach achieves good results. However,
the second dataset (MSRP) is derived from news sources on the web. This may
explain the results of the second experiment.

Although the proposed approach outperforms other classic approaches in Li2006
dataset, it is sensitive to sentence structure. The performance of the proposed system
will not be in the same high level with data that loose structure such as twitter
messages. Moreover, DRS representation can be generated for many languages
such as French [29], Chinese [30]. The proposed approach can be applied to other
languages if DRS representation can be generated for that language.

5 CONCLUSION

The problem of finding the similarity between natural language sentences is im-
portant for many applications. Moreover, the structure of a sentence can reveal
important information that helps in measuring sentence similarity. The proposed
approach exploits structural information to calculate sentence similarity.
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The proposed approach uses C & C parser and the Boxer system to generate
DRS representation for sentences. This semantic representation captures the rela-
tions between words. Sentence similarity calculated based on the similarity between
relations in both sentences. Moreover, word embedding is used to measure the sim-
ilarity between words of relations. Experiments using standard datasets show the
effectiveness of the proposed approach. The proposed approach performs well espe-
cially in case of well-structured sentences. Moreover, the proposed system achieves
0.872 Pearson correlation with human similarity. The proposed system outperforms
other classical systems that depend on word-to-word and structure-based similarity.
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Abstract. Differential evolution (DE) is an efficient population-based search algo-
rithm with good robustness, however, it is challenged to deal with high-dimensional
problems. In this paper, we propose an improved multi-population differential evo-
lution with best-and-current mutation strategy (mDE-bcM). The population is di-
vided into three subpopulations based on the fitness values, each of subpopula-
tions uses different mutation strategy. After crossover, mutation and selection, all
subpopulations are updated based on the new fitness values of their individuals.
An improved mutation strategy is proposed, which uses a new approach to gener-
ate base vector that is composed of the best individual and current individual. The
performance of mDE-bcM is evaluated on a set of 19 large-scale continuous opti-
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formance compared to the contestant algorithms and better efficiency for large-scale
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1 INTRODUCTION

Large-scale global optimization (LSGO), characterized by its high-dimensional de-
cision variables and time-consuming objective functions, is a ubiquitous and spon-
taneous process that frequently appears in the real world problems. It has been
increasingly considered as one of the most challenging issues in engineering opti-
mization and the most active research fields. In recent years, the corresponding
technologies that calculate the global optimal solution for LSGO have got some
significant progresses in mechanical design, environment engineering, chemical en-
gineering design, bioinformatics, image processing and other fields.

Differential evolution (DE), first proposed by Storn and Price [1, 2], is one of the
most competitive Evolutionary Algorithms (EAs) currently in use [3, 4], and it has
been applied to solve LSGO [5, 6]. Like the standard EAs, as a population-based,
heuristic and stochastic search technique, DE first generates an initial population
randomly in the feasible solution space as candidate solutions, and then generates
a next generation of population through crossover, mutation, selection and other
evolutionary operations, which move the population toward the global optimum.
Different from the standard EAs, the mutation operation of DE is realized by the
linear combination of the base vector and the difference vector of some individuals.
Because it does not need derivative information of solving problems [7], and it has
strong robustness in complex function optimization, DE receives wide attention and
application, however, with the size and complexity of LSGO growing dramatically,
the performance of DE algorithm will be terribly deteriorated. In other words, due
to the curse of dimensionality, DE has encountered great difficulties in dealing with
high-dimensional LSGO problems.

To improve performance of EAs for LSGO, numerous methods based on DE,
including DE’s variants and hybridization, were proposed. To solve slow convergence
and stagnation caused by high-dimensional in LSGO, DE algorithm is improved from
nine mechanisms, such as strategies and their adaptations, subpopulations, etc. Due
to the difference of solving problems, no algorithm has been a winner on all LSGO
benchmark functions so far [6].

In this paper, we propose a multi-populations DE with best-and-current muta-
tion strategy, called mDE-bcM, aimed at improving the search precision and solving
large-scale optimization problems. The mDE-bcM divides the population into three
subpopulations based on the fitness value, each subpopulation uses a given mutation
strategy. We propose a new improved mutation strategy that uses a linear combina-
tion of the best vector and current vector to produce the base vector. The mutation
scale factor is not a fixed value, but a random one to improve the diversity of the
population. After one evolution, every subpopulation updates on the base of the
new fitness value rank. And this technology mitigates the risk of lower diversity,
enhances the rate of convergence, promotes the whole algorithm performance. This
paper also uses two different strategies on three subpopulations, one is elitism and
the other is random migration. Elitism strategy keeps one subpopulation which has
good fitness values from participating in the evolution of the next generation, and
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it maintains the other two subpopulations to update. Random migration strategy
randomly selects ten individuals in one subpopulation which has good fitness val-
ues, five of them exchange with a random sample of five individuals in the general
population, another five exchange with a random sample of five individuals in the
poor population.

The mDE-bcM performance is evaluated on two sets of large-scale global opti-
mization benchmark functions with dimensions ranging from 50 to 1 000, the results
show that mDE-bcM is capable to solve continuous large-scale problems effectively
and produce competitive results when compared with the state-of-the-art algorithms
which are designed specifically to solve such problems.

The rest of the paper is structured as follows. Classic DE is introduced in
Section 2, a brief review of related works on multi-populations and mutation stra-
tegy is presented in Section 3, the proposed algorithm (mDE-bcM) is introduced in
Section 4, experimental set-up is presented in Section 5, experimental results and
analysis are presented in Section 6. Finally, the work is concluded in Section 7.

2 CLASSIC DIFFERENTIAL EVOLUTION

2.1 Initialization

An initial population X0 = {x1, . . . ,xNP} in DE is randomly generated in the entire
search space (unconstrained) or the feasible solution space (constrained). Based on
real number coding, the initial value of the jth decision variable of the ith individual
at generation g = 0 is generated among the prescribed lower bound xmin = {xjmin |
j = 1, . . . , D} and upper bound xmax = {xjmax | j = 1, . . . , D} by:

xji,0 = xjmin + rand(0, 1) · (xjmax − x
j
min), i = 1, 2, . . . , NP, j = 1, 2, . . . , D (1)

where D is the dimensions of the problem, NP is population size, rand(0, 1) is
a uniformly distributed random variable within the range (0, 1).

2.2 Mutation Operation

In DE, the variation vector vi,g = {vji,g | j = 1, . . . , D} is composed of a base

vector xi,r1,g = {xji,r1,g | j = 1, . . . , D} and the differential vector xi,r2,g − xi,r3,g

of two random individuals xi,r2,g and xi,r3,g in the gth generation population, the
differential vector xi,r2,g − xi,r3,g is scaled by the scale factor F . How to generate
the variation vector is called mutation strategy, the most commonly used mutation
strategies are summarized in [8]:

• DE/rand/1:
vi,g = xi,r1,g + F · (xi,r2,g − xi,r3,g) (2)

• DE/rand/2:

vi,g = xi,r1,g + F · (xi,r2,g − xi,r3,g) + F · (xi,r4,g − xi,r5,g) (3)
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• DE/best/1:
vi,g = xbest,g + F · (xi,r1,g − xi,r2,g) (4)

• DE/best/2:

vi,g = xbest,g + F · (xi,r1,g − xi,r2,g) + F · (xi,r3,g − xi,r4,g) (5)

• DE/rand-to-best/1:

vi,g = xi,g +K · (xbest,g − xi,g) + F · (xi,r1,g − xi,r2,g) (6)

• DE/rand-to-best/2:

vi,g = xi,g +K · (xbest,g − xi,g) + F · (xi,r1,g − xi,r2,g + xi,r3,g − xi,r4,g) (7)

• DE/current-to-rand/1:

vi,g = xi,g +K · (xi,r1,g − xi,g) + F · (xi,r2,g − xi,r3,g). (8)

The parameters r1, r2, r3, r4 and r5 are exclusive integers generated randomly
within the range of [1,NP], xbest,g is the individual which has the best fitness value
in the gth generation population, xi,r1,g, xi,r2,g, xi,r3,g, xi,r4,g and xi,r5,g are target
vectors selected from the gth generation population, K is randomly selected in [0, 1],
F is the scale factor.

2.3 Crossover Operation

Trial vector ui,g = {uji,g | j = 1, . . . , D} is generated by crossover operator. The DE
generally employs two kinds of crossover methods, namely binomial crossover (bin)
and exponential crossover (exp).

In binomial crossover, at least one component uji,g of trial vector ui,g is provided
randomly by the variation vector vi,g, that is as follows:

uji,g =

{
vji,g, rand(0, 1) ≤ CR or j = jrand,

xji,g, otherwise,
(9)

where j = 1, . . . , D, jrand is a randomly chosen integer in the range [1, D], CR ∈ (0, 1)
is the crossover rate.

Exponential crossover operation is as follows:

uji,g =

{
vji,g, j = 〈l〉D, 〈l + 1〉D, . . . , 〈l + L− 1〉D,
xji,g, otherwise,

(10)

where integer l ∈ [1, D], integer L ∈ [l, D] depends on the crossover probability
(CR), the angular bracket 〈l〉D denotes a modulo function with modulus D. That
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is to say, starting with lth component, L components are continuously selected from
the variation vector vi,g as the component of trial vector ui,g, the remaining D-L
components of trial vector ui,g are from xi,g.

2.4 Selection Operation

The selection operation chooses the best individual according to the fitness value
of target vector and trial vector in the gth generation population, as shown in the
following:

xi,g+1 =

{
ui,g, f(ui,g) < f(xi,g),
xi,g, otherwise,

(11)

where xi,g+1 is the next generation target vector.

3 RELATED WORK

The DE is a simple, effective, population-based optimization technique, but it
is inefficient for solving LSGO because of the computational complexity of high-
dimensional LSGO [9]. Many researches have been devoted to solve these problems,
and their research directions are mainly focused on multiple populations, mutation
strategy, parameters control, population size adaptation, problem decomposition
and so on, all of which are aimed at reducing the computational complexity in
high-dimensional LSGO.

Multiple populations are one of the most widely used methods of problem de-
composition, which can enhance the DE performance by parallel computing [10] and
enhance the population diversity by dividing the population into independent sub-
populations [11], meanwhile smaller subpopulations are efficient at quickly improving
their fitness values, but smaller subpopulations might likely dissipate diversity and
cause premature convergence [10].

Lampinen first tried to apply multiple populations to DE algorithm [12], who di-
vided a population into multiple subgroups in DE calculation. Zaharie [13] proposed
a DE with a multi-population approach. Weber et al. [14] proposed a parallel dif-
ferential evolution, named SOUPDE, which was a multi-population algorithm with
a differential evolution logic. In SOUPDE, the subpopulations quickly exploited
some areas of the decision space, a new search logics, integrated shuffling and up-
dating mechanisms were introduced into the subpopulation to avoid a diversity loss
and premature convergence. Chen et al. [15] proposed a parallel differential evolu-
tion with multi-population and multi-strategy, which divided an initial population
into three subpopulations with different mutation strategies, and the subpopulations
evolved independently at first, and then communicated with each other at regular in-
tervals. Ali et al. [11] proposed a multi-population DE algorithm, called mDE-bES,
the population was divided into four independent subgroups, each with different
mutation and update strategies, a novel mutation strategy that used information
from either the best individual or a random individual was used, individuals be-
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tween the subgroups were exchanged at the end of each function evaluations epoch.
Wu et al. [16] proposed a multi-population ensemble DE, called MPEDE, which
simultaneously consisted of three mutation strategies, i.e., “current-to-pbest/1”,
“current-to-rand/1” and “rand/1”. MPEDE had three equally sized smaller indi-
cator subpopulations and one much larger reward subpopulation, each constituent
mutation strategy has one indicator subpopulation. After some iterations, the best
performing mutation strategy was determined according to the ratios between fit-
ness improvements and consumed function evaluations, the reward subpopulation
was allocated to the determined best performing mutation strategy dynamically.

All these studies show that population decomposition may be an effective and
feasible method, which can not only reduce the complexity of calculation by reducing
the population size, but also facilitate parallel calculation to improve the efficiency
of calculation.

Mutation strategy also has a significant impact on the performance of DE, for
each individual, the number of successful generations related to a certain mutation
strategy [9]. Mutation strategy is represented by DE/x/y/z. Among them, x means
the way of selecting vectors in mutation operation, its possible values are “Rand”,
“best”, “current”, “Rand to best”, etc.; y represents the number of differential
vectors in mutation operation, usually y = 1 or 2; z refers to crossover method,
mainly including binomial (bin) and exponential (exp).

In order to improve the performance of DE algorithm, some researchers have
proposed many improved mutation strategies in recent years.

Price et al. have proposed 10 mutation strategies of DE [2], including DE/rand
/1/bin, DE/rand/1/exp, DE/best/1/bin, DE/best/1/exp, DE/rand/2/bin, DE
/rand/2/exp, DE/best/2/bin, DE/best/2/exp, DE/rand-to-best/1/bin, DE
/rand-to-best/1/exp, some of them have been described in Section 2.2.

Zhang et al. [17] proposed a new DE algorithm, called JADE, with a new mu-
tation strategy “DE/current-to-pbest/1” as follows:

vi,g = xi,g + Fi · (xp
best,g − xi,g) + Fi · (xr1,g − xr2,g) (12)

where xp
best,g is an individual randomly chosen from the top 100p% individuals in

the current population, p ∈ (0, 1], and Fi is the mutation factor randomly generated
for each xi. The parameter adaptation in JADE automatically updated the con-
trol parameters, the “DE/current-to-pbest/1” used the optional archive to provide
information of progress direction by historical data.

Kong et al. [18] proposed mutation operator based on symbolic function strategy:

vi,g = (1− w)xi,g + w · (s1xbest,g + s2xr1,g) + F · (xr2,g − xr3,g) (13)

where w is a random number between 0 and 1, s1 and s2 are symbolic functions.
Zhang et al. [19] adopted a directional mutation operator, which could be com-

bined with any other DE mutation strategy:

vi,g = xr1,g + F · δr2,g (14)
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where δr2,g is a difference vector from the pool of difference vectors. If ui,g will
survive and become xi,g+1 after crossover operation, which shows that ui,g must
contain some better components than xi,g, the difference vector ui,g−xi,g should be
a descent direction at xi,g, and was saved into the pool of difference vectors.

Qiu et al. [20] proposed fractal mutation factor differential evolution (FMDE)
algorithm, which consisted of an additional mutation factor simulated by a different
Hurst index Fractal Brownian Motion (FBM), the proposed mutation strategy, im-
proved from JADE’s “DE/current-to-pbest/1”, was divided into two parts to reflect
the changes of overall and random of the target population, it is defined as follows:

vi,g = xi,g + (Fi + Fi,FBM) · (xp
best,g − xi,g + λ · (xr1,g − xr2,g)) (15)

where Fi is variation factor of the overall changes, it changes near its position pa-
rameter µF and obeys cauchy distribution, Fi,FBM is variation factor of the random
changes, λ is an additional control parameter.

Raghav et al. [21] proposed a new “Memory based DE” (MBDE) where had two
“swarm operators”, and their operators based on the pBEST and gBEST mechanism
of particle swarm optimization, their “Swarm Mutation” is as follows:

vi,g = xi,g +

∣∣∣∣∣ f(pBEST
i,g )

f(xWORST
i,g )

∣∣∣∣∣ (pBEST
i,g − xi,g

)
+

∣∣∣∣∣ f(gBEST
g )

f(xWORST
i,g )

∣∣∣∣∣ (gBEST
g − xi,g

)
(16)

where pBEST
i,g is the personal best position of the vector xi,g, g

BEST
i,g is the global best

position of the vector xi,g, f(pBEST
i,g ), f(gBEST

g ) and f(xWORST
i,g ) are the personal best

function value, the global best function value and the worst function value of vector
xi,g in the current generation g, respectively.

Different mutation strategies adapt to different types of optimization problems.
For example, DE/rand/1/exp is suitable for the optimization of multimodal func-
tions, DE/best/1/exp is suitable for the optimization of unimodal functions. To
further improve the performance of DE, multiple mutation strategies are used.

Elsayed et al. [22] proposed 4 new mutation strategies “DE/rand/3”, “DE/best
/3”, “DE/rand-to-current/2” and “DE/rand-to-best and current/2” as follows:

• DE/rand/3:

vi,g = xr1,g + Fi · ((xr2,g − xr3,g) + (xr4,g − xr5,g) + (xr6,g − xr7,g)) (17)

• DE/best/3:

vi,g = xbest,g + Fi · ((xr1,g − xr2,g) + (xr3,g − xr4,g) + (xr5,g − xr6,g)) (18)

• DE/rand-to-current/2:

vi,g = xr1,g + Fi · ((xr2,g − xi,g) + (xr3,g − xr4,g)) (19)
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• DE/rand-to-best and current/2:

vi,g = xr1,g + Fi · ((xbest,g − xr2,g) + (xr3,g − xr4,g)). (20)

These mutation strategies used three or two differential vectors, which get the
benefit of the arithmetic recombination and the random effect to investigate the
search space for both separable and non-separable unimodal test problems.

Elsayed et al. used four mutation strategies on four subpopulations, respectively.
Tong et al. [23] proposed an improved multi-population ensemble DE (IMPEDE)

and used a new mutation strategy “DE/pbad-to-pbest/1” instead of the mutation
strategy “DE/rand/1”, “DE/pbad-to-pbest/1” is defined as follows:

vi,g = xi,g + F · (xpbest,g − xpbad,g) (21)

where xpbest,g, xpbad,g are individuals randomly chosen from the best top or the bad
top 100p% individuals in the current population, respectively, p ∈ (0, 1], the new
strategy “DE/pbad-to-pbest/1” utilized the information of the bad solution (pbad)
and the good solution (pbest) to balance exploration and exploitation.

Except “DE/pbad-to-pbest/1” over subpopulation pop1, Tong et al. used “DE
/current-to-rand/1” over subpopulation pop2 , “DE/pbad-to-pbest/1” over subpop-
ulation pop3.

Xu et al. [24] proposed a new adaptive differential evolution named CAMDE,
which defined two new multi-population-based mutation operators, denoted as “DE
/current-to-nbest/u” and “DE/current-to-rand/u” as follows:

• DE/current-to-nbest/u:

vi,g = xi,g + F · (xnbest,g − xi,g) + F · (x̃r1,g − xr2,g) (22)

• DE/current-to-rand/u:

vi,g = xi,g + F · (xr2,g − xi,g) + F · (x̃r1,g − xr3,g) (23)

where xnbest,g means the non-dominated best solution, and x̃r1,g is randomly chosen
from the union Xg ∪ Yg of the main population Xg and the external population
Yg, Yg = {y1,g, . . . ,yK,g} is composed of individuals better than the corresponding
target vector xi,g, K is the maximal size of the population Yg.

In CAMDE, each of two mutation operators is selected with equal probability.

4 IMPROVED MULTI-POPULATION DIFFERENTIAL EVOLUTION
WITH BEST-AND-CURRENT MUTATION STRATEGY
(MDE-BCM)

In DE algorithm, the reasonable control parameter setting and excellent mutation
strategy directly affect the convergence of algorithm, the performance and relia-
bility of the solution. Meanwhile, different strategies and parameters setting are
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adapted to the different optimization problems. Optimizing different benchmarks
with different characteristics such as uni-modal, multi-modal, continuous, discrete,
low-dimension, high-dimension requires different mutation strategies and suitable
parameters. For these reasons, the proposed algorithm in this paper divides the
population into three subpopulations S1, S2 and S3 based on the fitness value, each
of which follows a different mutation strategy and corresponding parameters. This
technology could reduce the burden of parameter selection, increase the diversity of
population, and improve the rate of convergence of the algorithm.

The structure of mDE-bcM algorithm is written in Algorithm 1.

Algorithm 1 Pseudo code of mDE-bcM

Set CR = 0.9, F = 0.5; Initialize NP, Gm, D; Set g = 0;
Initialize the population randomly distributed in the solution space;

for i = 1 to NP do
Calculate f(xi,0) for each individual xi,0 in initial population X0;

end for
Rank xi,0 based on f(xi,0);
Partition initial population X0 into S1, S2, S3 with the same size NP/3;
while (g < Gm) do

for each xi,g in Sk (k = 1, 2, 3) do
vi,g = mutation(xi,g);
ui,g = crossover(xi,g,vi,g);
xi,g+1 =selection(xi,g,ui,g);
Calculate f(xi,g+1) for each new individual xi,g+1 in subpopulation Sk;

end for
Xg+1 =

⋃k
1 Sk, (k = 1, 2, 3);

Rank xi,g+1 based on f(xi,g+1);
Partition Xg+1 into new S1, S2, S3 with the same size;
Update the best archive of S2 and S3 by selecting randomly 10 individuals

from S1;
Set g = g + 1;

end while

The mDE-bcM algorithm is described as follows.

4.1 Multiple Subpopulations

The mechanism of multi-population ensures that each subpopulation is not affected
by the interference of other subpopulations in the process of evolution. Moreover,
it also improves the diversity of the population to a certain degree. If the diver-
sity of one subpopulation get worse, individuals with a large difference in the other
two subpopulations do not get worse because they are evolved independently, the
diversity of the population will be improved through migration among subpopula-
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tions. Meanwhile, multi-population also makes it possible to parallelize which can
effectively reduce the computational time.

4.2 Evolutionary Process

The mDE-bcM firstly initializes the entire population by randomly generating indi-
viduals with D dimensions, then the fitness values are calculated and sorted for all
individuals. Based on the fitness values, the population is divided into three sub-
populations that are S1, S2 and S3. the size of each subpopulation is NP1 = NP/3.
S1 is a subpopulation with better fitness, S2 is a subpopulation with general fitness,
S3 is a subpopulation with poor fitness. Three subpopulations evolve respectively
and concurrently within each subpopulation. After crossover, mutation and selec-
tion, three subpopulations S1, S2 and S3 are combined into one population, the
fitness values of individuals in the combined population are recalculated and all
individuals are sorted, then combined population is divided into three subpopula-
tions according to the fitness values. Finally, the algorithm enters the next itera-
tion.

4.3 Best and Current Mutation Strategy

Traditional mutation strategy in dealing with high-dimensional problems can not
get good convergence effect. Inspired by a greedy mutation strategy “DE/current-
to-pbest/1” in [11], we proposed a new mutation strategy called “DE/best-and-
current/1”.

Different from the classic mutation strategy which selects one of the population
members as the base vector, and also different from mDE-bES in [11] which selects
the best or a random individual as the base vector, we use a linear combination
of the best vector xbest,g and current vector xi,g. Mutation scale factor F also is
a random value, instead of a fixed value. Mutant vector vi,g is created as follows:

vi,g = (a1xbest,g + a2xi,g) + rand(0, 1) · (xr1,g + xr2,g) (24)

where r1, r2 are random exclusive integers within the interval [1,NP/3], a1, a2 are
scalars randomly selected between (0, 1), and a1 + a2 = 1.

In order to avoid the degradation of the offspring, S1 is an elitist-population, it
adopts the traditional mutation strategy “DE/rand/1”. S2 and S3 use a random
migration strategy and user-defined best-and-current mutation strategy (as shown
in formula (24), the random migration strategy randomly selects 10 individuals from
S1, 5 of them are xbest,g in S2 and 5 of them are xbest,g in S3. Then, S1, S2 and S3
evolve in parallel using two different evolution strategies.



Improved Multi-Population Differential Evolution for LSGO 491

5 EXPERIMENTAL SET-UP

5.1 Benchmark Functions

The algorithm was tested on 19 benchmark large-scale global continuous optimiza-
tion functions (F1–F19). The functions were taken from the special issue of Soft
Computing on scalability of evolutionary algorithms [25, 26], the dimensions of
these functions in the special issue were 50, 100, 200, 500 and 1 000, respectively,
the optimal solutions for all these functions are known. Each function runs 25 times
independently to evaluate the performance of the algorithm. The definitions of the
functions F1–F11 are shown in Table 1. In Table 2, the functions F12–F19 are gen-
erated by hybridizing a non-separable function Fns with other function F ′ using
a splitting mechanism that defines the ratio of variables which are evaluated by Fns

using parameter mns.

F Name Definition Range f(x∗)

F1 Shif. Sphere Function f1(x) =
∑D

i=1 x
2
i [−100, 100]D −450

F2 Shif. Schwefel Problem 2.21 f2(x) = maxi∈[1,D] |xi| [−100, 100]D −450

F3 Shif. Rosenbrock’s Function f3(x) =
∑D

i=1(100(x2i + xi+1)
2 + (xi − 1)2) [−100, 100]D 390

F4 Shif. Rastrigin’s Function f4(x) =
∑D

i=1[x
2
i − 10 cos(2πxi) + 10] [−5, 5]D −330

F5 Shif. Griewank’s Function f5(x) = 1
4000

∑D
i=1 x

2
i −

∏D
i=1 cos xi√

i
+ 1 [−600, 600]D −180

F6 Shif. Ackley’s Function
f6(x) = −20exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
−exp

(
1
D

∑D
i=1 cos(2πxi) + 20 + e

) [−32, 32]D −140

F7 Shif. Schwefel’s Problem 2.22 f7(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D 0

F8 Shif. Schwefel’s Problem 1.2 f8(x) =
∑D

i=1(
∑i

j=1 xj)
2 [−65.536, 65.536]D 0

F9 Shif. Extended f10
f9(x) =

(∑(D−1)
i=1 f10(xi, xi+1)

)
+ f10(xD, x1)

f10(x) = (x2 + y2)0.25(sin2(50(x2 + y2)0.1) + 1)
[−100, 100]D 0

F10 Shif. Bohachevsky
f10(x) =

∑D
i=1[x

2
i + 2x2i+1 − 0.3 cos(3πxi)

−0.4 cos(4πxi+1) + 0.7]
[−15, 15]D 0

F11 Shif. Schaffer f11(x) =
∑D−1

i=1 (x2i + x2i+1)
0.25(sin2(50(x2i + x2i+1)

0.1) + 1) [−100, 100]D 0

Table 1. Properties of functions F1–F11

Function Fns F ′ mns Range f(x∗) Function Fns F ′ mns Range f(x∗)

F12 F9 F1 0.25 [−100, 100]D 0 F16 F9 F1 0.75 [−100, 100]D 0
F13 F9 F3 0.25 [−100, 100]D 0 F17 F9 F3 0.75 [−100, 100]D 0
F14 F9 F4 0.25 [−5, 5]D 0 F18 F9 F4 0.75 [−5, 5]D 0
F15 F10 F7 0.25 [−10, 10]D 0 F19 F10 F7 0.75 [−10, 10]D 0

Table 2. Properties of functions F12–F19 (functions F12–F19 are hybridized by a non-
separable function Fns with other function F ′)
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5.2 Parameter Settings

During experimentation, control parameters of the mDE-bcM algorithm are set as
follows based on parameter tuning simulation results:

Number of subpopulations is set to 3.
The population size (NP = 60) is maintained constant during the evolution

process.
DE crossover operator: binomial.
Crossover rate: CR = 0.9.
The mDE-bcM and other DE variants were coded in Matlab environment.
The computations were carried out using a PC with Intel(R) Core(TM) i3-

2350M @2.3 GHz CPU and 2 GB RAM while running Matlab R2012a on 64-bit
Windows operating system.

6 NUMERICAL RESULTS AND DISCUSSIONS

6.1 Simulation Results

The error values (f(x) − f(x∗)) for all test functions, including the best, median,
mean, worst values and standard deviation, are reported in Tables 3 and 4, where
f(x) is the global optimum we found, f(x∗) is the global optimum in Tables 3 and 4,
and dimensions D = 50, 100, 200, 500 and 1 000. The error values (f(x)−f(x∗)) was
adopted as a performance metric of algorithms. The number of function evaluations
(FEs) for each category of dimensions for these problems is set as 30 000.

D Values F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Best 4.62E−97 4.04E−44 4.90E+01 0.00E+00 0.00E+00 8.88E−16 1.32E−49 3.94E−81 1.76E−23 1.76E−23
Median 1.55E−94 5.83E−43 4.90E+01 0.00E+00 0.00E+00 8.88E−16 1.07E−47 2.04E−79 1.24E−22 1.24E−22

50 Mean 2.05E−92 8.26E−43 4.90E+01 0.00E+00 0.00E+00 8.88E−16 4.44E−47 8.30E−79 1.87E−22 1.87E−22
Worst 1.59E−91 3.18E−42 4.90E+01 0.00E+00 0.00E+00 8.88E−16 2.02E−46 6.89E−78 5.58E−22 5.58E−22
Std 2.71E−93 1.16E−43 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.25E−47 2.92E−79 3.83E−23 3.83E−23

Best 7.18E−195 2.13E−86 9.90E+01 0.00E+00 0.00E+00 8.88E−16 2.00E−97 1.06E−159 4.88E−47 0.00E+00
Median 1.68E−190 1.99E−85 9.90E+01 0.00E+00 0.00E+00 8.88E−16 9.96E−96 1.82E−157 3.34E−46 0.00E+00

100 Mean 1.42E−188 3.07E−85 9.90E+01 0.00E+00 0.00E+00 8.88E−16 1.07E−94 6.65E−157 6.52E−46 0.00E+00
Worst 9.55E−188 1.44E−84 9.90E+01 0.00E+00 0.00E+00 8.88E−16 5.30E−94 8.03E−156 2.07E−45 0.00E+00
Std 0.00E+00 1.10E−85 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.04E−95 9.30E−158 1.46E−46 0.00E+00

Best 0.00E+00 3.41E−163 1.99E+02 0.00E+00 0.00E+00 8.88E−16 1.52E−161 0.00E+00 0.00E+00 0.00E+00
Median 0.00E+00 1.05E−162 1.99E+02 0.00E+00 0.00E+00 8.88E−16 4.69E−161 0.00E+00 0.00E+00 0.00E+00

200 Mean 0.00E+00 1.03E−162 1.99E+02 0.00E+00 0.00E+00 8.88E−16 4.82E−161 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 1.55E−162 1.99E+02 0.00E+00 0.00E+00 8.88E−16 9.20E−161 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.64E−162 0.00E+00 0.00E+00 0.00E+00

Best 0.00E+00 3.62E−163 4.99E+02 0.00E+00 0.00E+00 8.88E−16 1.51E−161 0.00E+00 0.00E+00 0.00E+00
Median 0.00E+00 1.07E−162 4.99E+02 0.00E+00 0.00E+00 8.88E−16 5.42E−161 0.00E+00 0.00E+00 0.00E+00

500 Mean 0.00E+00 1.05E−162 4.99E+02 0.00E+00 0.00E+00 8.88E−16 5.79E−161 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 1.55E−162 4.99E+02 0.00E+00 0.00E+00 8.88E−16 1.17E−160 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.68E−162 0.00E+00 0.00E+00 0.00E+00

Best 0.00E+00 3.87E−163 9.99E+02 0.00E+00 0.00E+00 8.88E−16 1.71E−161 0.00E+00 0.00E+00 0.00E+00
Median 0.00E+00 1.10E−162 9.99E+02 0.00E+00 0.00E+00 8.88E−16 5.99E−161 0.00E+00 0.00E+00 0.00E+00

1 000 Mean 0.00E+00 1.08E−162 9.99E+02 0.00E+00 0.00E+00 8.88E−16 6.46E−161 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 1.55E−162 9.99E+02 0.00E+00 0.00E+00 8.88E−16 1.36E−160 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.14E−162 0.00E+00 0.00E+00 0.00E+00

Table 3. Experimental results obtained by mDE-bcM on functions F1–F10
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D Values F11 F12 F13 F14 F15 F16 F17 F18 F19

Best 7.47E−24 7.80E−23 3.70E+01 3.61E−49 2.16E−23 1.20E+01 3.48E−24 1.17E−45 3.61E−49
Median 6.55E−23 4.59E−22 3.70E+01 2.66E−47 1.18E−22 1.20E+01 3.19E−23 1.24E−44 2.66E−47

50 Mean 1.07E−22 6.56E−22 3.70E+01 1.48E−46 1.69E−22 1.20E+01 4.27E−23 2.48E−44 1.48E−46
Worst 3.24E−22 1.90E−21 3.70E+01 7.37E−46 4.76E−22 1.20E+01 1.20E−22 1.04E−43 7.37E−46

Std 2.27E−23 1.19E−22 0.00E+00 5.16E−47 3.23E−23 0.00E+00 8.31E−24 2.36E−45 5.16E−47

Best 4.02E−47 7.06E−45 8.70E+01 4.35E−97 8.64E−46 1.20E+01 6.39E−48 3.09E−90 4.35E−97
Median 4.54E−46 6.65E−44 8.70E+01 2.83E−95 8.34E−45 1.20E+01 7.86E−47 9.52E−89 2.83E−95

100 Mean 1.33E−45 1.12E−43 8.70E+01 5.84E−94 1.17E−44 1.20E+01 1.59E−46 3.56E−87 5.84E−94
Worst 4.74E−45 3.91E−43 8.70E+01 3.19E−93 3.62E−44 1.20E+01 5.11E−46 2.99E−86 3.19E−93

Std 3.04E−46 2.67E−44 0.00E+00 1.56E−94 2.13E−45 0.00E+00 3.33E−47 3.28E−87 1.56E−94

Best 0.00E+00 0.00E+00 1.87E+02 1.28E−161 0.00E+00 1.20E+01 0.00E+00 9.04E−168 1.28E−161
Median 0.00E+00 0.00E+00 1.87E+02 4.21E−161 0.00E+00 1.20E+01 0.00E+00 1.34E−166 4.21E−161

200 Mean 0.00E+00 0.00E+00 1.87E+02 4.39E−161 0.00E+00 1.20E+01 0.00E+00 3.51E−166 4.39E−161
Worst 0.00E+00 0.00E+00 1.87E+02 8.68E−161 0.00E+00 1.20E+01 0.00E+00 2.05E−165 8.68E−161

Std 0.00E+00 0.00E+00 0.00E+00 5.56E−162 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.56E−162

Best 0.00E+00 0.00E+00 4.87E+02 1.52E−161 0.00E+00 1.20E+01 0.00E+00 1.76E−171 1.52E−161
Median 0.00E+00 0.00E+00 4.87E+02 5.45E−161 0.00E+00 1.20E+01 0.00E+00 4.05E−170 5.45E−161

500 Mean 0.00E+00 0.00E+00 4.87E+02 5.77E−161 0.00E+00 1.20E+01 0.00E+00 7.99E−170 5.77E−161
Worst 0.00E+00 0.00E+00 4.87E+02 1.17E−160 0.00E+00 1.20E+01 0.00E+00 4.55E−169 1.17E−160

Std 0.00E+00 0.00E+00 0.00E+00 7.65E−162 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.65E−162

Best 0.00E+00 0.00E+00 9.87E+02 1.76E−161 0.00E+00 1.20E+01 0.00E+00 4.66E−173 1.76E−161
Median 0.00E+00 0.00E+00 9.87E+02 5.85E−161 0.00E+00 1.20E+01 0.00E+00 9.61E−172 5.85E−161

1 000 Mean 0.00E+00 0.00E+00 9.87E+02 6.35E−161 0.00E+00 1.20E+01 0.00E+00 6.07E−171 6.35E−161
Worst 0.00E+00 0.00E+00 9.87E+02 1.36E−160 0.00E+00 1.20E+01 0.00E+00 4.19E−170 1.36E−160

Std 0.00E+00 0.00E+00 0.00E+00 9.33E−162 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.33E−162

Table 4. Experimental results obtained by mDE-bcM on functions F11–F19

Tables 3 and 4 show that there are 11 functions where median values are equal
to 0, then 4 functions whose median values are less than 10E−160, and 4 functions
where median values are worse than 10E−160 in 19 functions, when D = 1 000.
But when D = 50, there are 2 functions whose median values are equal to 0, and
17 functions whose median values are worse than 10E−160, what shows that the
algorithm mDE-bcM performs well in solving high-dimensional problems.

Tables 3 and 4 also show that there are 10 functions whose median values are
equal to 0, 5 functions whose median values are less than 10E−160, and 4 functions
whose median values are worse than 10E−160 in 19 functions, when D > 200,
which shows that the algorithm mDE-bcM performs well when the dimension D
exceeds 200.

But Tables 3 and 4 also reveal that the mDE-bcM appears to have difficulties on
function F3 (Shifted Rosenbrock’s function), F5 (Shifted Griewank’s function), F6

(Shifted Ackley’s function), F13 (hybrid composition function) and F16 (hybrid com-
position function), regardless of the dimension. Functions F3 and F6 are multimodal
functions, functions F13 and F16 are hybrid composition functions and hybridized
by a non-separable function F9 with other function F3 or F1. This shows that
the algorithm mDE-bcM performs poorly on some multimodal functions, although
it performs well on multimodal function F4. If it is used in multimodal function
optimization, premature convergence must be avoided.

In Table 3 and 4, the mean error is better than its corresponding median, which
means that individuals are evenly distributed in the population, without much worse
values.
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F17  F18  F19

F13 F14 F15 F16

 F9 F10 F11 F12

F5 F6 F7 F8

 F1  F2 F3
 F4

Figure 1. The best value and the mean value, where dimension D = 500, the test functions
are from F1 to F19

The best values and the mean values of 19 test functions are shown in Figure 1,
where dimension D = 500, number of iteration is 30 000. The horizontal axis is
the number of iterations (FEs), and the vertical axis is the error values of fitness
(log).

From Figure 1, the continuous optimization process of the mDE-bcM on func-
tions F1–F19 can be observed, showing that the mDE-bcM has excellent performance
on most functions. But the best error and mean error were rapidly reduced in the
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early stages of iteration and slowly changed in the later stages of iteration on F3,
F6, F13 and F17, uniformly reduced on other functions. By analyzing individuals in
population, we observed that rapid convergence occurred on F3, F6, F13 and F17, ap-
proximate optimal solutions are found after about 300 generations, and after that,
improvements are very slow, and more generations only consume the processing
time, what shows that the mDE-bcM has general performance on these functions.
In fact, a single mutation strategy always performs poorly.

In addition, the curve is interrupted on F4, F5 and F10, because the error values
(f(x)− f(x∗)) are less than 0 and the vertical axis is logarithmic.

Overall, the mDE-bcM was able to optimize on 2 functions at D = 50, 3 func-
tions at D = 100, 11 functions at D = 200, 11 functions at D = 500, and 11
functions at D = 1 000. It was also able to obtain high quality results for the rest
of the functions at different dimensions with small errors.

In summary, the mDE-bcM has excellent performance on most functions, espe-
cially in high dimension, although it encounters difficulties in a few functions.

6.2 Parameter Tuning

In this subsection, we will evaluate the sensitivity of the proposed algorithm to
some parameters. The decision variables to be adjusted in mDE-bcM include the
population size (NP) and mutation strategies.

In these tests, we varied NP at a time while keeping the other parameters fixed,
or used different strategies in the evolutionary process. We performed 25 indepen-
dent runs for every set of parameters. In order to test the effect of the population
size (NP) and mutation strategies more clearly, the population was not grouped,
only one population was used.

Table 5 shows results of parameter tuning while population size NP changes
from 30 to 300, where D = 500. Figure 2 shows comparison between our best-
and-current mutation strategy and 7 classic mutation strategies, where NP = 60,
D = 500.

NP 30 60 90 180 300

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.28E−189
F3 4.99E+02 4.99E+02 4.99E+02 4.99E+02 4.99E+02
F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 1.41E−161 1.51E−161 1.73E−161 3.95E−158 4.87E−95
F8 0.00E+00 0.00E+00 0.00E+00 1.27E−258 3.34E−155
F15 1.08E−161 1.52E−161 1.60E−161 4.27E−159 1.01E−94
F19 2.45E−169 1.76E−171 6.06E−172 5.02E−154 7.32E−94

Table 5. Population size (NP) tuning. The data in Table 5 are the average of 25 calcula-
tions, where D = 500.

Table 5 exhibits different errors during the fitness evaluations while the mDE-
bcM selects different population size NP, it is obvious that better results can be
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obtained where NP < 90, and optimal results can be obtained on most functions
while NP = 60. Bigger population size makes it easier for individuals in the popu-
lation to carry more abundant genes, maintain the diversity of the population and
quickly obtain high-quality solutions, but it also means that more extra fitness eval-
uations are done, what consumes more computing time. A smaller population size
means shorter computing time, but it leads to poor population diversity and calcu-
lation success rate. Although the mDE-bcM can also obtain better results on some
functions while NP = 30, as a compromise, we select NP = 60 in this paper, and
sub-population size is 20 after grouping.

The mean values of our best-and-current mutation strategy and other 7 mutation
strategies on functions F1, F2, F6, F7, F8 and F9 are shown in Figure 2.
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Figure 2. Comparisons between our best-and-current mutation strategy and 7 mutation
strategies on functions F1, F2, F6, F7, F8 and F9

Figure 2 illustrates that our best-and-current mutation strategy performs better
than most traditional mutation strategies, because its base vector is linear combi-
nation of the best vector xbest,g and current vector xi,g, instead of the best vector
xbest,g or the random/current vector xi,g, so it inherits two excellent genes of the
parent as base vectors at the same time. Like other methods, best-and-current mu-
tation strategy also converges rapidly on functions F1, F2, F6 and F7, that means
the mDE-bcM and other mutation strategies fall into prematurity and individuals
become the same, test results on 19 functions also show that a single mutation
strategy will always perform poorly on some functions, so it is necessary to adopt
multiple mutation strategies or combinations of them.
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6.3 Computational Complexity Analysis

The mDE-bcM divides initial populationX0 into three subpopulations S1, S2 and S3,
subpopulation size is reduced to NP/3, then mDE-bcM carries out the evolutionary
operations such as crossover, mutation and selection in parallel, but it is still a serial
algorithm structure between two runs, so computational complexity is determined
by the number of calls to genetic operators, as shown in the following [27, 28]:

O(D ·NP/3 ·Gm). (25)

In mDE-bcM, the outer loop controls the number of iterations and its maximum
value is Gm, and the inner loop controls the number of individuals involved in
evolution and its maximum value is NP/3, each individual contains D components.
In formula (25), D and Gm are necessary for high dimension and high precision,
so reducing the number of individuals from NP to NP/3 can effectively reduce the
computational complexity, which is the value of multiple populations with parallel
computing.

6.4 Comparison with Other State-of-the-Art Optimization Techniques

In this section, we compared mDE-bcM with two groups of state-of-the-art opti-
mization algorithms, which is because these two groups of algorithms were tested
on SOCO 2011 [25, 26]. Like the analysis in literature [29], different algorithms
have different performance in different test function suites, no algorithm is always
excellent in all test function suites. For example, MOS-CEC2013 [30] performs
best on the CEC 2010 benchmark suite [31] and CEC 2013 benchmark suite [32],
but ranks 6th on the SOCO 2011 benchmark suite, MOS-SOCO2011 [33] performs
best on the CEC 2010 benchmark suite, but ranks 4th on the SOCO 2011 bench-
mark suite and 8th CEC 2013 benchmark suite. On the other hand, the algorithms
from the first group are all tested in different dimensions, which can reflect the
ability of the algorithm to deal with large-scale optimization problems in different
dimensions, whereas the algorithms from the second group are all tested in the di-
mension of 1 000, which only reflects the high-dimensional processing ability of the
algorithm.

For this reason, both groups of algorithms were tested by researchers on 19
benchmark large-scale global continuous optimization functions, these functions
were taken from the special issue of Soft Computing on scalability of evolution-
ary algorithms [25, 26], the algorithms from the first group were compared in [11],
whereas the algorithms from the second group were compared in [34].

We have also used the Friedman test for multiple comparisons to check differ-
ences among the considered algorithms, the statistical methods include:

1. Overall ranking according to the Friedman test: we firstly rank each algorithm
according to its mean value for each function, then compute its average ranking
on all the functions.
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2. # Best: This is the number of functions for which each algorithm obtains the
best results compared to all the other algorithms.

3. nWins: This is the number of our mDE-bcM is better than, similar to and worse
than that of the corresponding algorithm according to the Wilcoxon Signed Rank
Test in a pair-wise comparison [35].

4. The Friedman test: The Friedman test can detect whether there are significant
differences between the behavior of multiple algorithms.

The comparison algorithms in the first group are as follows:

1. The classic DE algorithm [1]. The strategy is “DE/rand/1/exp”, CR = 0.9,
F = 0.5.

2. Real-coded Genetic Algorithm (CHC) [36]. It is a real-coded genetic algorithm
using interval-schemata as an analysis tool and was tested by 13 test func-
tions.

3. CMA-ES [37]. It introduced a restart-CMA evolution strategy and was evalu-
ated on 25 test functions of the CEC 2005 whose dimension D = 10, 30 and
50. In CMA-ES, the default population size prescribed for the (µW , λ)-CMA-ES
grew with logD and equaled to λ = 10, 14, 15 for D = 10, 30, 50, respectively.
On multi-modal functions, the optimal population size λ could be considerably
greater than the default population size.

4. MA-SSW [38]. Molina et al. proposed a memetic algorithm based on local
search chains for high dimensionality, MA-SSW-Chains used the Subgrouping
Solis Wets’ algorithm as its local search method, in which only a random sub-
set of the variables was explored and this subset would change after a certain
number of evaluations. MA-SSW-Chains is considered to be one of the best
algorithms in CEC 2010 benchmark suite.

5. MTS-LS1 [39]. It introduced multiple agents to search the solution space and was
evaluated on 7 test functions of the CEC 2008 special session and competition
on large scale global optimization. Each agent in MTS-LS1 did an iterated local
search using one of three candidate local search methods and might find its way
to a local optimum or the global optimum. MOS-SOCO2011 based on MTS-
LS1 is considered to be one of the best algorithms in SOCO 2011 benchmark
suite.

6. SaDE [7]. In SaDE, the trial vector generation strategies with their associated
parameters values were gradually self-adapted by learning from previous suc-
cessful experiences. SaDE was evaluated on 26 test functions, two of which were
chosen from [40].

7. EvoPR [41]. Rahnamayan et al. proposed the evolutionary path relinking
(EvoPR) to finding a global optimum of multi-modal functions and uncon-
strained large-scale problems, EvoPR was tested on 19 test functions for the
special issue of Soft Computing on scalability of evolutionary algorithms and
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other metaheuristics for large scale continuous optimization problems [25] with
dimensions ranging from 50 to 1 000.

8. mDE-bES [11]. The mDE-bES utilized exponential crossover, and divided the
population into four subgroups, each of which employed a certain modified mu-
tation strategy, CR ∈ [0.2, 0.9] and F ∈ [0.5, 0.9].

The algorithms from the first group were initially tested on different functions,
but were finally tested on the same initial population, same benchmark suite F1–F19
and same stopping rule in [11], and dimension changed from 50 to 1 000, but G-CMA-
ES is not evaluated at dimension 1 000.

The comparison algorithms in the second group are from literature [29, 34].
[29] provided a comprehensive comparison of the performance of several algorithms
evaluated on the CEC 2010, CEC 2013 and SOCO 2011 benchmark suites, [34]
compared its algorithm CCJADE with six state-of-the-art algorithms, according
to their analysis, the algorithms with excellent performance in recent years are as
follows:

1. MOS-CEC2013 [30]. MOS-CEC2013 is a hybrid algorithm that combines a po-
pulation-based search algorithm, a Genetic Algorithm (GA), with two powerful
local searches (the Solis Wets’ algorithm and a variation of the MTS-LS1 local
search). It was the champion of the competition on LSGO used the CEC 2013
LSGO benchmark suite in 2013 which defined 15 test functions with dimension
1 000 or 905 in [32].

2. MOS-SOCO2011 [29, 33]. MOS-SOCO2011 combined a Differential Evolution
(DE) algorithm and the first of the local searches of the MTS algorithm (MTS-
LS1), and used the Multiple Offspring (MOS) framework which made the seam-
less combination of multiple search algorithm in a dynamic way. It obtained the
best overall results among all the algorithms included in the 2011 special issue
of the Soft Computing journal.

3. jDElscop [42]. The jDElscop was a self-adaptive DE algorithm that used three
different DE strategies (DE/rand/1/bin, DE/rand/1/exp and DE/best/1/bin),
a sign-change control mechanism for the F parameter and a new population size
reduction mechanism. It was the runner-up in the 2011 special issue of the Soft
Computing journal.

4. GaDE [43]. GaDE was a generalization of the adaptive DE algorithm, which
used a probability distribution to adapt the value of each of the parameters
of the algorithm for each of the individuals of the population. It obtained the
third place among all the algorithms included in 2011 special issue of the Soft
Computing journal.

5. DECC-G [44]. The DECC-G was a cooperative coevolution algorithm, which
divided large problems into small components that were optimized independently
by certain EAs. It won the second place in the competition on LSGO in 2013
and the fourth place in 2015.
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6. CCJADE [34]. The CCJADE used a surrogate-assisted CC (SACC) optimizer,
in which fitness surrogates are exploited within the low-dimensional subcompo-
nents resulting from the problem decomposition, and it was tested on the SOCO
2011 benchmark suite where D = 1 000.

7. L-SHADE [45]. The L-SHADE further extended SHADE with Linear Popu-
lation Size Reduction (LPSR), which continually decreased the population size
according to a linear function, and L-SHADE was evaluated on CEC2014 bench-
marks.

8. LM-CMA-ES [46]. The LM-CMA-ES was a computationally efficient limited
memory Covariance Matrix Adaptation Evolution Strategy for large scale opti-
mization, which sampled candidate solutions according to a covariance matrix
reproduced from m direction vectors selected during the optimization process,
the decomposition of the covariance matrix into Cholesky factors could reduce
the time and memory complexity of the sampling. LM-CMA-ES could efficiently
solve fully non-separable problems and reduce the overall run-time.

The algorithms from the second group were initially tested on different functions,
but were finally tested on the same functions at dimension 1 000 in [34].

Because of the difference of the running environment, such as hardware plat-
form, programming language and program efficiency, etc., the performance of dif-
ferent algorithms is very different, and the test results in different environments are
actually not comparable. Therefore, the test results of the algorithms in the first
group are coming from [11], the test results of the algorithms in the second group
are coming from [34], because they give the best results that these algorithms can
get.

The comparison results of the mDE-bcM and the first group of algorithms is
shown in Tables 6, 7, 8, 9 and 10, we run for 25 times on every function F1 − F19,
where D changes from 50 to 1 000. Results highlighted in boldface show the best
mean values for each function. As suggested in the special issue [25], all values below
1.00E−14 are approximated to 0.00E+00.

Tables 6, 7, 8, 9 and 10 show that the proposed mDE-bcM has superior per-
formance compared with the first group of algorithms on functions F1 − F19, while
D changes from 50 to 1 000. As indicated in Tables 6, 7 and 8, the mDE-bcM can
obtain optima except functions F3, F13 and F17, where D changes from 50 to 200.
In Tables 9 and 10, the mDE-bcM can obtain optima except functions F3 and F13,
where D changes from 500 to 1 000. The number of times the mDE-bcM can obtain
the optimal solution is higher than that of other algorithms.
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DE CHC CMA-ES MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 0.00E+00 1.67E−11 0.00E+00 0.00E+00 0.00E+00 2.68E+01 1.22E−02 0.00E+00 0.00E+00
F2 8.84E−11 6.19E+01 2.75E−11 7.61E−02 8.84E−14 1.21E+02 3.71E−01 1.52E+01 0.00E+00
F3 1.63E+02 1.25E+06 7.97E−01 4.79E+01 1.63E+02 7.46E+04 1.12E+02 4.76E−05 4.90E+01
F4 0.00E+00 7.43E+01 1.05E+02 r1.19E−01 0.00E+00 1.07E+01 4.96E−02 1.77E+01 0.00E+00
F5 7.68E−03 1.67E−03 2.96E−04 0.00E+00 7.68E−03 1.87E−01 5.13E−02 0.00E+00 0.00E+00
F6 0.00E+00 6.15E−07 2.09E+01 4.89E−14 0.00E+00 4.63E−02 6.85E−03 3.97E−14 0.00E+00
F7 0.00E+00 2.66E−09 1.01E−10 0.00E+00 0.00E+00 0.00E+00 2.63E−02 0.00E+00 0.00E+00
F8 9.56E−12 2.24E+02 0.00E+00 3.06E−01 9.65E−12 6.92E+05 2.08E+02 1.64E−09 0.00E+00
F9 1.03E+02 3.10E+02 1.66E+01 2.94E+02 1.03E+02 3.00E−02 8.02E+00 0.00E+00 0.00E+00
F10 0.00E+00 7.30E+00 6.81E+00 0.00E+00 0.00E+00 2.94E−02 4.80E−02 0.00E+00 0.00E+00
F11 1.04E+02 2.16E+00 3.01E+01 r4.49E−03 1.04E+02 8.35E−02 9.68E+00 1.15E−08 0.00E+00
F12 1.34E+01 9.57E−01 1.88E+02 0.00E+00 1.34E+01 4.80E+01 r2.27E+00 0.00E+00 0.00E+00
F13 2.94E+01 2.08E+06 1.97E+02 3.02E+01 2.94E+01 3.42E+09 4.22E+01 2.50E−01 3.70E+01
F14 5.52E+01 6.17E+01 1.09E+02 0.00E+00 5.52E+01 4.22E+03 9.97E−01 9.60E+00 0.00E+00
F15 0.00E+00 3.98E−01 9.79E−04 0.00E+00 0.00E+00 8.50E−03 6.38E−02 0.00E+00 0.00E+00
F16 4.06E+01 2.95E−09 4.27E+02 4.06E−03 4.06E+01 1.36E+01 5.63E+00 0.00E+00 0.00E+00
F17 2.17E+02 2.26E+04 6.89E+02 2.60E+01 2.17E+02 2.36E+05 6.77E+01 2.42E−01 1.20E+01
F18 5.65E+01 1.58E+01 1.31E+02 0.00E+00 5.65E+01 2.72E+01 1.62E+00 5.65E−05 0.00E+00
F19 0.00E+00 3.59E+02 4.76E+00 0.00E+00 0.00E+00 1.15E−01 5.03E−02 0.00E+00 0.00E+00

Table 6. Comparison of mDE-bcM and the first group of algorithms for 25 runs on func-
tions F1–F19, where D = 50

DE CHC CMA-ES MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 3.79E+00 3.56E−11 0.00E+00 0.00E+00 1.09E−12 3.13E+01 4.34E−02 0.00E+00 0.00E+00
F2 7.58E+01 8.58E+01 1.51E−10 7.01E+00 4.66E−10 1.26E+02 3.30E+00 4.00E+01 0.00E+00
F3 1.27E+02 4.19E+06 3.88E+00 1.38E+02 2.32E+02 1.11E+05 3.98E+02 4.90E−01 9.90E+01
F4 2.85E+00 2.19E+02 2.50E+02 1.19E−01 1.05E−12 1.58E+01 1.07E−01 1.87E+01 0.00E+00
F5 3.05E−01 3.83E−03 1.58E−03 0.00E+00 6.70E−03 3.53E−01 3.92E−02 0.00E+00 0.00E+00
F6 4.34E−01 4.10E−07 2.12E+01 6.03E−14 1.20E−12 8.32E−02 2.50E−04 1.44E−13 0.00E+00
F7 0.00E+00 1.40E−02 4.22E−04 0.00E+00 0.00E+00 0.00E+00 9.17E−02 0.00E+00 0.00E+00
F8 4.74E+02 1.69E+03 0.00E+00 3.48E+01 1.43E−03 2.83E+05 2.27E+03 2.32E−03 0.00E+00
F9 3.71E−03 5.86E+02 1.02E+02 5.63E+02 2.20E+02 3.00E−02 2.91E+01 0.00E+00 0.00E+00
F10 0.00E+00 3.30E+01 1.66E+01 0.00E+00 0.00E+00 4.73E−02 2.05E−01 0.00E+00 0.00E+00
F11 8.58E−04 7.32E+01 1.64E+02 1.09E−01 2.10E+02 3.05E−01 2.60E+01 0.00E+00 0.00E+00
F12 2.71E+00 1.03E+01 4.17E+02 3.28E−03 3.91E+01 3.79E+01 5.01E+00 5.36E−04 0.00E+00
F13 5.87E+01 2.70E+06 4.21E+02 8.35E+01 1.75E+02 3.42E+09 1.40E+02 8.50E+00 8.70E+01
F14 2.21E+00 1.66E+02 2.55E+02 0.00E+00 2.04E+02 3.92E+03 1.24E+00 1.16E+01 0.00E+00
F15 0.00E+00 8.13E+00 6.30E−01 0.00E+00 0.00E+00 3.99E−02 6.56E−02 0.00E+00 0.00E+00
F16 3.52E+00 2.23E+01 8.59E+02 1.61E−02 1.04E+02 1.96E+01 8.29E+00 0.00E+00 0.00E+00
F17 1.58E+01 1.47E+05 1.51E+03 9.92E+01 4.17E+02 2.34E+05 1.97E+02 6.65E−03 1.20E+01
F18 8.76E−01 7.00E+01 3.07E+02 0.00E+00 1.22E+02 3.05E+01 3.34E+00 4.46E−01 0.00E+00
F19 0.00E+00 5.45E+02 2.02E+01 0.00E+00 0.00E+00 2.71E−01 1.43E−01 0.00E+00 0.00E+00

Table 7. Comparison of mDE-bcM and the first group of algorithms for 25 runs on func-
tions F1–F19, where D = 100

With the increase of dimension, the mDE-bcM has more obvious advantages,
the number of functions on which it can obtain the optimal value is increasing, while
the ability of other algorithms to obtain the optimal value is decreasing. Therefore,
we can conclude that mDE-bcM is more suitable for dealing with large-scale high-
dimension optimization problems.

The average ranking, the number of functions with best results and the nWins
value for mDE-bcM and the first group of algorithms are reported in Table 11.
Limited to space, we only give the statistical results at dimension 1 000.
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DE CHC CMA-ES MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 8.55E+00 8.34E−01 0.00E+00 0.00E+00 2.29E+00 2.03E+01 8.03E−02 0.00E+00 0.00E+00
F2 1.05E+02 1.03E+02 1.16E−09 3.36E+01 4.54E−09 1.03E+02 8.03E+00 4.15E+01 0.00E+00
F3 3.32E+05 2.01E+07 8.91E+01 2.50E+02 1.69E+02 4.82E+04 2.91E+02 1.35E+02 1.99E+02
F4 6.98E+00 5.40E+02 6.48E+02 4.43E+00 2.34E−12 6.25E+00 3.52E−01 9.27E−13 0.00E+00
F5 4.05E−01 8.76E−03 0.00E+00 0.00E+00 5.42E−03 6.43E−02 2.68E−02 0.00E+00 0.00E+00
F6 7.14E−01 1.23E+00 2.14E+01 1.19E−13 2.38E−12 2.73E−02 6.22E−01 0.00E+00 0.00E+00
F7 0.00E+00 2.59E−01 1.17E−01 0.00E+00 0.00E+00 0.00E+00 3.82E−02 0.00E+00 0.00E+00
F8 5.76E+03 9.38E+03 0.00E+00 7.23E+02 1.42E+01 4.47E+05 1.34E+04 8.71E−01 0.00E+00
F9 8.79E−03 1.19E+03 3.75E+02 1.17E+03 4.27E+02 3.00E−02 6.22E+01 0.00E+00 0.00E+00
F10 4.19E−02 7.13E+01 4.43E+01 0.00E+00 0.00E+00 1.59E−02 1.04E+00 0.00E+00 0.00E+00
F11 5.07E−03 3.85E+02 8.03E+02 3.50E−01 4.28E+02 4.89E−03 5.93E+01 0.00E+00 0.00E+00
F12 3.61E+00 7.44E+01 9.06E+02 1.75E−02 8.42E+01 4.63E+01 1.00E+01 0.00E+00 0.00E+00
F13 1.49E+02 5.75E+06 9.43E+02 1.68E+02 2.53E+02 3.16E+09 1.71E+02 9.45E+01 1.87E+02
F14 4.75E+00 4.29E+02 6.09E+02 9.76E−01 3.98E+02 4.09E+03 3.75E+00 1.20E+01 0.00E+00
F15 0.00E+00 2.14E+01 1.75E+00 0.00E+00 0.00E+00 5.38E−03 3.80E−01 0.00E+00 0.00E+00
F16 3.70E+00 1.60E+02 1.92E+03 6.02E−02 1.97E+02 9.49E+00 1.74E+01 0.00E+00 0.00E+00
F17 2.23E+01 1.75E+05 3.36E+03 7.55E+01 6.07E+02 2.36E+05 1.56E+02 8.39E−02 1.20E+01
F18 2.37E+00 2.12E+02 6.89E+02 4.29E−04 2.34E+02 1.69E+01 8.85E+00 8.93E−11 0.00E+00
F19 4.19E−02 2.06E+03 7.52E+02 0.00E+00 0.00E+00 1.00E−01 2.15E+00 0.00E+00 0.00E+00

Table 8. Comparison of mDE-bcM and the first group of algorithms for 25 runs on func-
tions F1–F19, where D = 200

DE CHC CMA-ES MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 2.46E+01 2.84E−12 0.00E+00 0.00E+00 5.77E−12 1.34E+01 0.00E+00 3.92E−13 0.00E+00
F2 1.44E+02 1.29E+02 3.48E−04 7.86E+01 5.34E−06 9.23E+01 2.04E+01 4.56E+01 0.00E+00
F3 1.12E+05 1.14E+06 3.58E+02 6.07E+02 2.20E+02 2.62E+04 5.97E+02 4.16E+02 4.99E+02
F4 1.63E+01 1.91E+03 2.10E+03 1.78E+02 5.62E−12 1.31E+00 1.45E+00 1.91E−11 0.00E+00
F5 4.73E−01 6.98E−03 2.96E−04 0.00E+00 4.24E−03 7.48E−03 3.03E−02 1.83E−13 0.00E+00
F6 1.06E+00 5.16E+00 2.15E+01 2.63E−13 6.18E−12 4.63E−01 1.21E+00 3.56E−14 0.00E+00
F7 0.00E+00 1.27E−01 7.21E+153 4.69E−14 1.46E−12 0.00E+00 8.06E−03 0.00E+00 0.00E+00
F8 6.70E+04 7.22E+04 2.36E−06 1.32E+04 6.16E+03 3.21E+05 7.05E+04 5.48E+02 0.00E+00
F9 1.12E−02 3.00E+03 1.74E+03 2.53E+03 1.00E+03 3.00E−02 1.75E+02 0.00E+00 0.00E+00
F10 2.93E−01 1.86E+02 1.27E+02 2.80E−01 0.00E+00 8.41E−03 3.29E+01 0.00E+00 0.00E+00
F11 2.43E−01 1.81E+03 4.16E+03 4.21E+01 1.00E+03 2.22E−03 1.77E+02 0.00E+00 0.00E+00
F12 1.16E+01 4.48E+02 2.58E+03 2.55E+01 2.47E+02 4.61E+01 1.73E+01 0.00E+00 0.00E+00
F13 4.02E+02 3.22E+07 2.87E+03 4.00E+02 5.05E+02 2.97E+09 5.75E+02 3.23E+02 4.87E+02
F14 1.16E+01 1.46E+03 1.95E+03 5.65E+01 1.10E+03 3.91E+03 9.00E+00 1.68E+01 0.00E+00
F15 4.19E−02 6.01E+01 2.82E+262 5.53E+00 1.08E−12 2.84E−03 2.25E+00 0.00E+00 0.00E+00
F16 1.32E+01 9.55E+02 5.45E+03 1.08E−01 4.99E+02 5.82E+00 4.87E+01 0.00E+00 0.00E+00
F17 6.94E+01 8.40E+05 9.59E+03 1.38E+02 7.98E+02 2.38E+05 3.94E+02 6.65E+01 1.20E+01
F18 3.87E+00 7.32E+02 2.05E+03 2.41E−03 5.95E+02 9.43E+00 3.28E+01 0.00E+00 0.00E+00
F19 8.39E−02 1.76E+03 2.44E+06 0.00E+00 0.00E+00 1.00E−01 5.00E+01 0.00E+00 0.00E+00

Table 9. Comparison of mDE-bcM and the first group of algorithms for 25 runs on func-
tions F1–F19, where D = 500

In Table 11, the algorithm that obtains the best ranking, number of functions
with the best results and the nWins value is mDE-bcM, followed by mDE-bES. The
average ranking of mDE-bcM is 1.21, the numbers of functions that mDE-bcM is
better than that of DE, CHC, MA-SSW, MTS-LS1, SaDE, EvoPR, mDE-bES are
18, 19, 18, 13, 18, 19, 8, respectively. This shows that mDE-bcM has obviously good
optimization performance.

The Friedman test reported a p-value = 9.42E−14 for Table 10, which is below
the significance level α = 0.05, and it means that there are statistical differences



Improved Multi-Population Differential Evolution for LSGO 503

DE CHC MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 3.71E+01 1.36E−11 0.00E+00 1.15E−11 3.49E+01 4.00E−05 8.24E−13 0.00E+00
F2 1.63E+02 1.44E+02 1.39E+02 2.25E−02 1.43E+02 3.21E+01 5.97E+01 0.00E+00
F3 1.59E+05 8.75E+03 1.22E+03 2.10E+02 1.62E+05 1.12E+03 9.00E+02 9.99E+02
F4 3.47E+01 4.76E+03 1.58E+03 1.15E−11 3.21E+01 4.08E+02 4.03E+01 0.00E+00
F5 7.36E−01 7.02E−03 5.92E−04 3.55E−03 6.33E−01 3.72E−02 0.00E+00 0.00E+00
F6 8.70E−01 1.38E+01 1.46E−09 1.24E−11 4.28E−01 1.97E+00 1.28E−12 8.88E−16
F7 0.00E+00 3.52E−01 6.23E−13 0.00E+00 0.00E+00 1.50E−04 0.00E+00 0.00E+00
F8 3.15E+05 3.11E+05 7.49E+04 1.23E+05 3.08E+05 2.15E+05 7.98E+03 0.00E+00
F9 6.26E−02 6.11E+03 5.99E+03 1.99E+03 3.00E−02 4.07E+02 0.00E+00 0.00E+00
F10 1.67E−01 3.83E+02 2.09E−05 0.00E+00 1.47E−01 3.86E+02 0.00E+00 0.00E+00
F11 4.42E−02 4.82E+03 5.27E+01 1.99E+03 4.56E−01 3.96E+02 0.00E+00 0.00E+00
F12 2.58E+01 1.05E+03 9.48E−02 5.02E+02 3.43E+01 3.23E+01 0.00E+00 0.00E+00
F13 8.24E+04 6.66E+07 1.02E+03 8.87E+02 3.27E+09 1.13E+03 6.34E+02 9.87E+02
F14 2.39E+01 3.62E+03 7.33E+02 2.23E+03 3.71E+03 4.31E+02 2.45E+01 0.00E+00
F15 2.11E−01 8.37E+01 1.16E−13 0.00E+00 1.11E−01 1.26E+02 0.00E+00 0.00E+00
F16 1.83E+01 2.32E+03 2.19E+00 1.00E+03 2.37E+01 8.44E+01 0.00E+00 0.00E+00
F17 1.76E+05 2.04E+07 3.26E+02 1.56E+03 1.62E+05 6.75E+02 1.88E+02 1.20E+01
F18 7.55E+00 1.72E+03 2.58E+01 1.21E+03 3.54E+01 1.95E+02 2.49E−01 0.00E+00
F19 2.51E−01 4.20E+03 1.56E−12 0.00E+00 9.32E−01 2.03E+02 0.00E+00 0.00E+00

Table 10. Comparison of mDE-bcM and the first group of algorithms for 25 runs on
functions F1–F19, where D = 1 000

DE CHC MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

Ranking 4.58 6.37 3.42 3.42 4.79 4.79 1.79 1.21
# Best 1 0 1 5 1 0 10 17
nWins-better 18 19 18 13 18 19 8 –
nWins-similar 1 0 1 4 1 0 9 –
nWins-worse 0 0 0 2 0 0 2 –
p-value 2.21E−05 1.31E−05 2.21E−05 4.50E−03 2.21E−05 1.31E−05 1.14E−02 –

Table 11. Average ranking, number of functions with the best results, nWins value and
the Friedman test for mDE-bcM and the first group of algorithms for 25 runs on functions
F1–F19, where D = 1 000

as the negation of the null hypothesis. Used mDE-bcM as the control algorithm,
further the Friedman tests show that mDE-bcM have been significant differences
with other 7 algorithms.

The comparison results of mDE-bcM and the second group of algorithms are in
Table 12, we run for 25 times on every function F1 − F19, where D = 1 000, except
for our mDE-bcM, FEs is 5× 106.

The average ranking, the number of functions with best results and the nWins
value for mDE-bcM and the second group of algorithms are reported in Table 13.

In Table 13, the algorithms that obtain the best ranking are mDE-bcM and
MOS-SOCO2011, number of functions with the best results is mDE-bcM, followed
by MOS-SOCO2011, and the numbers of functions that mDE-bcM is better than
that of MOS-CEC2013, MOS-SOCO2011, jDElscop, GaDE, DECC-G, CCJADE,
L-SHADE and LM-CMA-ES are 14, 3, 9, 15, 15, 12, 18 and 18, respectively. This
shows that mDE-bcM and MOS-SOCO2011 have the same performance, but they
have significant advantages over other algorithms.
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MOS-CEC2013 MOS-SOCO2011 jDElscop GaDE DECC-G CCJADE L-SHADE LM-CMA-ES mDE-bcM
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.26E−06 1.80E−15 7.82E−04 2.16E−13 0.00E+00
F2 1.10E+02 5.88E−01 2.46E+01 5.46E+01 1.31E+03 1.38E+02 4.55E+01 1.49E+02 0.00E+00
F3 7.39E+00 7.09E+01 8.51E+02 9.47E+02 1.09E+00 3.74E+02 1.64E+03 6.04E+02 9.99E+02
F4 0.00E+00 0.00E+00 2.39E−01 3.79E−02 2.16E+11 8.62E−01 1.71E+03 1.62E+04 0.00E+00
F5 0.00E+00 0.00E+00 0.00E+00 5.91E−04 8.30E+06 4.85E−04 6.07E−03 1.13E−13 0.00E+00
F6 0.00E+00 0.00E+00 1.16E−12 2.55E−14 9.63E−01 3.28E−13 1.92E+00 1.99E+01 8.88E−16
F7 2.56E−12 0.00E+00 0.00E+00 0.00E+00 Inf 0.00E+00 1.34E+00 4.22E+569 0.00E+00
F8 5.98E+03 1.66E+05 3.17E+04 1.55E+04 1.11E+05 1.92E+06 5.76E+04 1.66E−06 0.00E+00
F9 2.51E+03 0.00E+00 9.21E−08 4.29E−04 1.78E+01 9.47E−01 1.84E+03 9.17E+03 0.00E+00
F10 1.58E+00 0.00E+00 0.00E+00 3.36E−01 1.94E+02 0.00E+00 3.41E+02 5.63E+02 0.00E+00
F11 2.54E+03 0.00E+00 4.98E−08 8.58E−04 1.76E+01 8.68E−01 1.89E+03 9.22E+03 0.00E+00
F12 9.99E+02 0.00E+00 0.00E+00 2.90E−12 0.00E+00 4.46E+00 1.27E+03 2.69E+03 0.00E+00
F13 1.23E+03 1.69E+02 6.67E+02 7.19E+02 3.86E+03 9.82E+01 2.40E+03 3.17E+03 9.87E+02
F14 3.37E+03 0.00E+00 4.03E−01 7.72E−03 1.59E+02 3.46E−01 2.65E+03 1.28E+04 0.00E+00
F15 1.93E−12 0.00E+00 0.00E+00 8.40E−02 1.84E+01 0.00E+00 2.11E+01 3.45E+418 0.00E+00
F16 8.02E+03 0.00E+00 0.00E+00 1.67E−12 0.00E+00 3.92E+00 2.23E+03 5.38E+03 0.00E+00
F17 3.55E+11 6.71E+01 1.71E+02 2.18E+02 1.98E+02 7.83E+00 2.80E+03 7.60E+03 1.20E+01
F18 2.03E+03 0.00E+00 3.28E−12 1.31E−07 8.43E+00 5.89E−01 9.12E+02 5.68E+03 0.00E+00
F19 2.05E+03 0.00E+00 0.00E+00 2.10E−01 1.12E+02 0.00E+00 2.57E+02 9.65E+04 0.00E+00

Table 12. Comparison of mDE-bcM and the second group of algorithms for 25 runs on
functions F1–F19, where D = 1 000

MOS-CEC2013 MOS-SOCO2011 jDElscop GaDE DECC-G CCJADE L-SHADE LM-CMA-ES mDE-bcM

Ranking 4.11 1.68 2.37 3.00 4.63 3.16 5.53 6.05 1.68
# Best 4 14 8 2 4 6 0 0 15
nWins-better 14 3 9 15 15 12 18 18 –
nWins-similar 3 13 8 2 3 4 0 0 –
nWins-worse 2 3 2 2 1 3 1 1 –
p-value 2.70E−03 1 3.48E−02 1.60E−04 3.00E−03 2.01E−02 1.31E−05 9.62E−05 –

Table 13. Average ranking, number of functions with the best results, nWins value and the
Friedman test for mDE-bcM and the second group of algorithms for 25 runs on functions
F1 − F19, where D = 1 000

The Friedman test reported a p-value = 6.51E−14 for Table 12, which is below
the significance level α = 0.05, and means that there are statistical differences
as the negation of the null hypothesis. Used mDE-bcM as the control algorithm,
further the Friedman tests show that mDE-bcM has been significant differences with
MOS-CEC2013, GaDE, CCJADE, L-SHADE and LM-CMA-ES, for jDElscop and
DECC-G, the p-values are nonetheless very close to the significance level, but for
MOS-SOCO2011, the p-value = 1 shows that there are not significant differences
between mDE-bcM and MOS-SOCO2011, MOS-SOCO2011 is indeed a competitive
algorithm.

It is worth noting that MOS-CEC2013 performs very well on the CEC 2013
benchmark suite, but generally on the SOCO 2011 benchmark suite, which proves
once again the limitation of the algorithm in solving the problem.

7 CONCLUSIONS

This research proposes a new algorithm called mDE-bcM for solving large-scale
global optimization problems. The mDE-bcM divides the population into three
subpopulations with the fitness values, the second and the third of which employs
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a modified mutation strategy called best-and-current mutation strategy, three sub-
populations evolved independently and then fused after one evolution. The mDE-
bcM was tested on a set of benchmark functions provided for the Soft Computing
special issue on scalability of evolutionary algorithms for large-scale continuous op-
timization problems. After comparing with other 16 state-of-the-art algorithms
in use, it shows a very competitive performance on the SOCO 2011 benchmark
suite.

For future work, we intend to use ensemble mutation strategies and success
rate of mutation strategies for difficult problems, and test our algorithm on extra
sets of competitive LSGO benchmarks, such as presented in the CEC ’11 [47] and
CEC ’13 [32] special sessions.
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Abstract. The paper investigates parallel data processing in a hybrid CPU +
GPU(s) system using multiple CUDA streams for overlapping communication and
computations. This is crucial for efficient processing of data, in particular incoming
data stream processing that would naturally be forwarded using multiple CUDA
streams to GPUs. Performance is evaluated for various compute time to host-
device communication time ratios, numbers of CUDA streams, for various numbers
of threads managing computations on GPUs. Tests also reveal benefits of using
CUDA MPS for overlapping communication and computations when using multiple
processes. Furthermore, using standard memory allocation on a GPU and Unified
Memory versions are compared, the latter including programmer added prefetching.
Performance of a hybrid CPU+GPU version as well as scaling across multiple GPUs
are demonstrated showing good speed-ups of the approach. Finally, the performance
per power consumption of selected configurations are presented for various numbers
of streams and various relative performances of GPUs and CPUs.

Keywords: GPGPU, overlapping computations and communication, MPS, Unified
Memory, performance, power consumption

Mathematics Subject Classification 2010: 68M20, 65Y05, 68N15



Investigation of Parallel Data Processing . . . 511

1 INTRODUCTION

In today’s high performance computing (HPC) systems, several computing devices
are typically used – multi- and many-core CPUs, GPUs, FPGAs. All have their
advantages and disadvantages depending on particular types of codes and appli-
cations [9]. Most of HPC systems nowadays feature either traditional multicore
CPU + accelerator (GPU, Intel Xeon Phi x100) or manycore CPUs (such as Intel
Xeon Phi x200 or Sunway manycore CPUs in the Sunway TaihuLight cluster). Se-
lected application examples of applications running on such systems include data
encryption and decryption algorithms [32], pattern matching for deep packet in-
spection [26], RNA secondary structure prediction [27], parallel implementation
for a DVB-RCS2 receiver [46], parallelization of large vector similarity computa-
tions [14, 11], stitching large scale optical microscopy images [4], etc. For this reason,
efficient management of computations among these processors is a key to achieving
high throughput, especially for incoming data streams that must be processed un-
der time constraints. GPGPU has become very popular for processing large data
sets in the Single Instruction Multiple Threads fashion. As long as processing in
threads does not result in too much divergence, one can achieve very high process-
ing throughput. Especially important is also fast delivering of input data from host
memory to GPU memory and results back from GPU memory to the host. This
can be achieved through overlapping communication and GPU and CPU computa-
tions by using multiple streams. This topic is investigated in this paper in detail, in
terms of performance for various numbers of streams, threads managing computa-
tions in a CPU+GPU setting, using the standard GPU memory management and
Unified Memory [34] approaches. Furthermore, as today’s HPC is not only about
performance, power consumption is also considered, in the context of performance
to power consumption ratio of various configurations.

The approach adopted in this paper includes analysis based on a custom built
benchmark, described in Section 3, that assumes input data that is composed of
multiple data chunks which are fed into CUDA streams to GPUs or processed on
multicore host CPUs. The benchmark allows for various compute time to host-
device communication time ratios, numbers of streams and threads managing com-
putations and communication and thus, depending on the values of parameters, can
be regarded as a template representative of many real world applications.

The objective of this work is to assess performance and selected performance/po-
wer characteristics of parallel processing of a data stream which is passed for compu-
tations to either GPUs using CUDA streams or to GPUs and CPU cores in a hybrid
CPU + GPU approach. The contribution includes assessment of preferred num-
bers of streams for various GPU architectures, preferred application architecture
in terms of the number of host GPU management and computing threads, assess-
ment of performance differences between standard memory management, Unified
Memory and Unified Memory with prefetching, all for various compute to commu-
nication ratios. Additionally, performance per power consumption is evaluated for
selected configurations. Furthermore, scaling from 1 to 4 NVIDIA Tesla V100 GPUs
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of DGX Station installed at the Faculty of ETI, Gdansk University of Technology,
is presented.

The outline of the paper is as follows. Section 2 presents the existing related work
and contributions of this paper in that context, Section 3 the processing model and
design of the benchmark used for experiments, Section 4 tests and results including
testbed systems, impact of multiple streams on performance using various numbers
of threads managing computations, launching computations from multiple processes
with and without MPS, performance with and without Unified Memory, scalability
of hybrid CPU + GPU code, scaling across multiple GPUs and performance-power
consumption ratios for hybrid configurations. Finally Section 5 presents conclusions
and future work.

2 RELATED WORK

2.1 Mechanisms for Data Management in Selected GPU-Aware
Parallel Programming APIs

Overlapping computation on the GPU, CPU as well as CPU-GPU and GPU-CPU
communication is a well known technique that allows to minimize execution time
of an application using GPUs [14, 31, 13, 25]. This approach can be used for both
batch processing if the data is already available when the application starts or is
incoming to a node in possibly many data streams.

In CUDA, kernel functions are executed in parallel on a GPU by a grid which
is composed of thread blocks each of which consists of a number of threads. Blocks
within a grid and threads within a block can be lined up in 1, 2 or 3 dimensions. Vari-
ous operations (out of host-to-device communication, device-to-host communication,
kernel execution) submitted to two different streams can potentially be overlapped
in H2D, compute and D2H queues. Thus, a larger number of streams can potentially
allow better overlapping (so-called n-way in the case of n streams [41]) if there is
potential for that in the application and if the GPU and the driver support that.
Potentially kernels can also be executed in parallel, depending on their requirements
and the GPU. Unified Memory allows allocation and access to data from the host
and device sides and page migration, transparent to the user. The contribution of
the paper is how a particular configuration (with a given number of streams) for
a given GPU (GPUs of various architectures were used) benefits which is otherwise
very difficult to predict given these factors.

It should be noted that OpenCL offers a similar programming model to CUDA
but targeting systems with both GPUs as well as CPUs [13, 15]. Specifically, a kernel
can be executed on a compute device by a structure called NDRange that consists
of work groups which in turn consist of work items. Both work groups within the
NDRange and work items within a work group can be lined up in 1, 2 or 3 di-
mensions. A kernel is executed by work items in parallel within a context that is
associated with one or more devices. Input and output data are managed through
memory objects. Overlapping can be achieved using command queues, similarly to
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using streams in CUDA. OpenCL version 2.0+ allows to use Shared Virtual Memory
which allows codes running on the host and a device to share data. Various modes
including coarse-grained or fine-grained with the possibility of accessing locations
concurrently if SVM atomic operations are supported. Another high level API
allowing to use GPUs in a way similar to OpenMP is OpenACC [13, 15]. OpenACC
allows to use directives for instructing parallelization of code regions, specifically
loops as well as scoping of data and synchronization. Data related directives allow
to specify allocation, releasing memory and rely on the concept of reference counters
to data.

Assessment of benefits and the performance of Unified Memory was done pre-
viously in [22], but it was only for batch type input data for applications such as
verification of Goldbach’s conjecture, 2D heat transfer analysis and adaptive numer-
ical integration. That research was then extended with evaluation of not only the
basic Unified Memory code against the standard approach but also Unified Memory
with prefetching [23]. Results were presented for four applications: Sobel and image
rotation filters as well as stream image processing and computational fluid dynamic
simulation. Tests were performed on Pascal and Volta architecture GPUs, specif-
ically NVIDIA GTX 1080 and NVIDIA V100 cards. Furthermore, evaluation of
Unified Memory oversubscription over the standard manual management approach
was provided, generally showing slight benefits of the latter, if implemented effi-
ciently. In those contexts, the contribution of this paper is assessment of impact
of the number of streams with Unified Memory, assessment of NVIDIA MPS’s per-
formance and consideration of power consumption with the number of streams in
parallel processing with CUDA.

2.2 Selected Works on Efficiency of Using Multiple Streams
Using GPUs

There are studies in the literature on efficiency of using multiple streams using
GPUs. For instance, paper [20] investigates the impact of using various numbers
of streams on the performance of such an application with a theoretical formula
for the best number of streams. It was considered in terms of the number of itera-
tions of a loop within a kernel. Tests were performed for GTX 280 and GTX 480
cards which are not widely used anymore. GPU architectures have also changed
considerably since then. In paper [12], the author analyzed and compared the per-
formance of processing on a GPU using 1, 2 and 4 streams for modern GPUs:
mobile NVIDIA GeForce 940MX, desktop GTX 1060, server Tesla K20m and Tesla
V100. Tests were performed for various compute time to host-device communication
time ratios proving large benefits of using 2 or 4 streams for overlapping commu-
nication and computations and showing relative performances of the tested GPUs.
Compared to [20] this paper contributes by analysis on newer GPUs, considera-
tion of Unified Memory approach and performance to power consumption analysis.
Compared to [12] this paper brings testing using more streams, multi-threaded and
single-threaded applications, MPS as well as performance to power consumption
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considerations. Apart from multiple streams, concurrent kernel execution is also
possible on GPUs. Paper [45] investigates approaches such as context switching,
manual context funneling and automatic CUDA context funneling but tests were
performed on older CUDA 4 and earlier versions and demonstrated that automatic
CUDA context funneling (sharing a context among process threads) is very efficient.
Work [29] proposes a detailed computation-bound single kernel performance model
for understanding the resource scheduling system with CUDA streams and focuses
on multi-kernel concurrency. Similarly, paper [8] investigates conditions needed for
concurrent execution of kernels simultaneously.

2.3 Using Multiple Streams for Various Applications

Deployment of multi-stream processing for GPU based systems for particular ap-
plications has been analyzed in the literature. In paper [43] authors focus on per-
formance improvement through more effective overlapping of communication and
computations using OpenMP as well as multiple CUDA threads. Many threads
control each GPU and the authors have launched 4 CUDA streams for each pair
of neighboring GPUs to overlap communication and computation of inner domain
points. A 3D stencil use case was used to demonstrate benefits over previous solu-
tions. Tests were performed on Kepler and Fermi cards. Compared to that work,
this paper considers a model with independent input data chunks rather than geo-
metric Single Program Multiple Data paradigm [13], considers more streams, Unified
Memory and power consumption for a more recent Pascal card. In paper [19] au-
thors focus on improvement of performance of Sparse matrix-vector multiplication
(SpMV) code using many GPUs installed within a node. Optimization is performed
using multiple OpenMP threads that control particular GPUs as well as multiple
CUDA streams for overlapping. Benefits of such improved approach using 2 GPUs
are shown against a naive 1 GPU system implementation for a variety of sparse
matrices. Compared to that approach, this paper considers hybrid CPU+GPU pro-
cessing, investigates multiple streams, Unified Memory and performance to power
consumption ratios. Paper [35] proposes a multi-stream implementation of stereo
disparity estimation and anaglyph video frame generation using GPUs. Specifi-
cally, multiple threads are started using Pthreads, each of which manages a certain
number of streams. Performance is presented for a thread count between 1 and
8 and the number of streams between 1 and 8 showing considerable speed-ups of
the solution with 100 frames per second for 1 024 × 1 024 color images. GeForce
GTX780 cards where used for experiments. Paper [38] contributes by proposal of
a parallel CPU + GPU code for image formation in scanning transmission electron
microscopy. Similarly to this work, an algorithm for parallelization using multi-
core CPUs and GPUs are provided, with assessment of benefits from using multiple
CUDA streams. In that context, this paper contributes by analysis of various num-
bers of streams, Unified Memory and performance to power consumption ratios for
similar computations. Utilization of CUDA streams for parallel implementation of
a genetic algorithm is presented in paper [39]. Data stream processing accelerated
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using GPUs in the context of DBMSes is discussed in [36] for data representation
better matching the GPU architecture. Similarly, this paper contributes by consid-
eration of various stream and thread CPU + GPU configurations, Unified Memory
and performance to power consumption ratios.

2.4 Selected Frameworks and Environments for Processing Data
Using GPUs

Paper [24] provides analysis of programming environments for processing large
amounts of data efficiently. Specifically, the work investigates programmability vs.
performance such that programs can increase their performance at the cost of de-
creasing programmability. Java and Stream API, C/C++ and OpenMP, C/C++
and CUDA (with and without CUDA streams) are compared. Power-aware com-
putations for data processing is also an important research topic considered to-
day [16]. There exist frameworks that provide higher than OpenMP, CUDA and
MPI programming abstractions to processing data streams using GPUs, good per-
formance and relatively easy-to-use programming models. Available solutions for
data streaming include, in particular, Spark [47], Storm [28, 21], Storm working
in a geographically distributed and highly variable environment [6], FastFlow [2],
extension of FastFlow for a network of multi-core workstations [1], Flink [5, 18],
PiCo [33], Thrill [3]. Paper [48] describes GStream that is a scalable framework
suited for a cluster of GPUs with GStream API over CUDA, Pthreads and MPI.
It is demonstrated for benchmarks such as FIR, MM, FFT, IS and LAMMPS that
it offers very good speed-ups, only slightly worse that raw CUDA. For this and the
following high level approaches, the contributions of this paper can be used for im-
provement of performance of lower level building blocks and mapping computations
onto GPUs and CPUs as well as optimization of CPU-GPU communication. An-
other general data processing platform utilizing GPUs is G-Storm [7] which can be
used for various applications and data types and provides a high level programming
approach. It handles data transfers and resource allocation automatically. If data is
to be further used on the same GPU in subsequent operations, it will not be copied
back and forth between the host and the GPU. G-Storm very much relies on CUDA
MPS that allows to create a single context that can be used from many processes on
the host. It should be noted that this paper evaluates gains from MPS and shows
benefits of multi-threaded and CUDA multi-stream approach for even better per-
formance and such can be used to improve existing systems. Paper [40] proposes an
efficient real-time system for processing large amounts of high frequency data such
as video and text. The approach integrates Hadoop for parallel processing, Spark
for the real-time component and GPUs for processing. Matrix type data is pro-
cessed on GPUs similarly to MapReduce. The authors conclude that the proposed
solution is faster than CPU MapReduce. Such a system could also benefit from low
level optimization between host and GPUs presented in this paper. Work [44] pro-
poses a CPU+GPU system for processing a large number of incoming data streams
with hard real-time constraints. A scheduler running on the CPU side distributes
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streams among CPUs and GPUs for high utilization of the system in order to meet
the constraints. The solution was evaluated using an AES-CBC encryption kernel
on thousands of streams proving over 80% more data processing rate than a single
GPU system. Paper [42] presents KernelHive that can be used to optimize schedul-
ing and execution of processing using a stream of multiple independent data chunks
on hybrid CPU +GPU systems. Efficient multithreaded data stream processing in
a workflow management system called BeesyCluster, either within a high perfor-
mance workstation or even spanning multiple clusters, is presented in paper [10].
In that context, the contribution of this paper is optimization of internal building
blocks for efficient GPU management and consideration of power consumption as
well.

3 PROCESSING MODEL AND DESIGN OF BENCHMARK

This section presents the custom-developed application benchmark that is represen-
tative of various applications run on GPUs or in a hybrid CPU + GPU environ-
ment. Many variables have been considered and can be changed in the proposed
processing model and as such were used for subsequent tests. Design of the bench-
mark application is shown in Figure 1. It is assumed that the application processes
a sequence of input data packets such that two data packets serve as input to
a processing function that produces output data. This general assumption corre-
sponds to many real life applications, depending on relative sizes of output and
input data, e.g. multiplication, addition or other operations on matrices that are
important computational steps in various artificial intelligence applications such as
deep neural network training. Parallelization involves the following elements and
ideas:

1. At a high level of parallelism, OpenMP threads are spawned – one thread per
each GPU and additionally one thread managing computations on a multi-core
CPU(s). These threads fetch input data from memory in a critical section and
pass for computations either to a GPU or the CPU(s). This scheme, working in
a loop, effectively supports dynamic load balancing among compute devices.

2. Nested OpenMP parallelism is used for parallelization with many threads on the
CPU(s).

3. Input data can be stored in regular RAM from which it can be sent to GPU’s
global memory explicitly or stored in previously allocated space in Unified Mem-
ory. In the latter case, prefetching can be turned on for enabling overlapping
computations with host-device communication. In the case of the Unified Mem-
ory based version, streams are still used for maximum concurrency of opera-
tions [34].

The benchmark allows to set various modes and parameters and correspondingly
allows to mimic behavior of various applications following the assumed processing
pattern:
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Figure 1. Proposed processing framework

1. memory mode – several modes are possible:

(a) allocation of host memory std using cudaHostAlloc() with flag cudaHost
AllocPortable that does allow subsequent overlapping computations and
communication in various streams,

(b) allocation of memory UM using Unified Memory (UM) by calling
cudaMallocManaged() that allows to use the same pointer from both host
threads to write input data, from a kernel to read input data and write
output results as well as from the host to read output.
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(c) allocation of memory UMprefetch using Unified Memory with data prefetch-
ing through cudaMemPrefetchAsync() for streams to be used in subsequent
steps,

2. compute time to host-device communication time ratio that corresponds to the
computational time on a given input data chunk divided by the communication
time of this data chunk (CPU-GPU-CPU),

3. output-input ratio that denotes the ratio of the size of output data to the size
of input data,

4. stream count – the number of streams per one GPU used,
5. host thread count – the number of threads among which computations are sched-

uled on CPU(s) cores,
6. GPU count 〈ids of GPUs〉 – the number and ids of GPU(s) to be used for

computations.

In each experiment, unless otherwise noted, data chunk was 256KB in size and
1.6GBs of data was processed. In the test we assumed 1 024 threads per block and
the total number of threads was 262 144. In the GPU kernel function, a thread
fetches its unique index in a grid and processes data from two input arrays into
a result stored in its own location (depending on its index) in an output array.
Specifically, it computes averages of selected vector elements of the two input ar-
rays and computes a distance between the averages which is added to the final
output. All arrays are stored in global memory and the kernel uses 3 variables as
temporary indices and one variable as a loop counter. Compute time to host-device
communication time ratio is configured with a proper number of iterations of the
aforementioned loop.

4 EXPERIMENTS AND TESTS

4.1 Testbed Systems

For experiments, we used the benchmark described in Section 3 run on three modern
multicore CPU(s) + GPUs workstations. Specifications of the systems are listed in
Table 1. Testbeds 1 and 2 feature 2 Intel Xeon CPUs+2 NVIDIA GPUs, of various
generations while testbed 3 an Intel Xeon CPU+ 4 NVIDIA Tesla V100 cards used
for testing scaling across multiple GPUs.

For each particular configuration, unless otherwise noted, 10 tests were per-
formed and the average value is presented.

4.2 Impact of Multiple Streams on Performance

The purpose of the following experiments is to determine the impact of using multiple
streams for overlapping computations and communication and finally execution time
of a GPU enabled application.
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Testbed 1 2 3
CPUs 2 × Intel Xeon

CPU E5-2620v4
@2.10GHz

2 × Intel(R)
Xeon(R) CPU E5-
2640 @2.50GHz

Intel(R) Xeon(R)
CPU E5-2698 v4
@2.20GHz

CPUs – total
number of physi-
cal/logical cores

16/32 12/24 20/40

System memory
size (RAM) [GB]

128 64 256

GPUs 2 × NVIDIA GTX
1070 (Pascal)

2 × NVIDIA Tesla
K20m (Kepler)

4 × NVIDIA Tesla
V100 (Volta)

GPUs – total
number of CUDA
cores

2× 2 048 2× 2 496 4× 5 120

GPU Compute
capability

6.1 3.5 7.0

GPU memory size
[MB]

2× 8 192 2× 5 120 4× 16 384

Operating system Ubuntu Linux
version 4.15.0-36-
generic

CentOS Linux
version 3.10.0-
862.9.1.el7.x86_64

Ubuntu Linux
version 4.4.0-83-
generic

Compiler/version CUDA compilation
tools, release 9.1,
V9.1.85, gcc 7.3.0

CUDA compilation
tools, release 9.1,
V9.1.85, gcc 4.8.5

CUDA compilation
tools, release 9.0,
V9.0.176, gcc 5.4.0

Table 1. Testbed configurations

The following tests have been performed for several values of compute time to
host-device communication time ratio, for several GPU cards and for the number of
streams between 1 and 32. Additionally, two different ways of launching computa-
tions on a GPU are presented and compared:

A: One thread per GPU managing computations through one or more streams. In
this case, the thread launches CPU-GPU communication, kernel and GPU-CPU
communication asynchronously through streams one after another.

B: As many threads as the number of streams are launched per GPU, each of
which launches CPU-GPU communication, kernel, GPU-CPU communication
in a separate stream. Threads need to synchronize while fetching new input
data packets.

Figure 2 presents the results for these versions for particular numbers of threads
and streams used for testbed 1 while Figure 3 does so for testbed 2. It can be seen
that, in general, best results were obtained using one dedicated host thread per GPU
launching communication and computations to multiple streams with 2 streams for
testbed 1. For testbed 2 the same implementation offers best results with 2+ streams
with small differences between the number of streams larger than 2–4. At the same
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time, we can see very small deviations between runs (10 measured) for testbed 2 (de-
fault affinity values are presented). For testbed 1, we can observe larger deviations
for configurations with multiple host threads launching operations on the GPU (we
present threads/close affinity values). These differences might stem from various
operating system settings and a compiler version as the CUDA versions were the
same.

4.3 Launching Computations from Multiple Processes Using MPS
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Figure 2. Comparison of implementations with various numbers of threads and streams
on a GPU, testbed 1, bars represent standard deviation
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In case there is no dedicated parallel application available for parallel processing
of incoming data streams to a computer node, it is probable that several processes
working in parallel will try to submit the work for processing on a GPU that will
be shared in such a case. This may lead to inefficiency of the processing. One
solution would involve writing a dedicated multi-stream application as analyzed in
this paper. An alternative approach has been made available by NVIDIA through
Multi Process Service (MPS) that tries to overlap CPU-GPU communication and
processing on a GPU from various contexts. It does not require code modifications
which is a considerable advantage. Details of its usage can be found in [13]. Figures 4
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and 5 present the results of using the MPS enabled configuration vs the standard
configuration for testbed 1 and testbed 2, respectively. Five tests were performed
for each configuration and the average value is presented. The results really indicate
that the solution improves execution time visibly, except for smaller compute time
to host-device communication time ratio for testbed 1. In these tests, two different
processes were launched in parallel on the number of data chunks half the sizes of the
cases shown in Figures 2 and 3. It should be noted that the best results obtained for
2 streams shown in Figure 2 still offer better execution times while the ones shown
in Figure 3 show practically the same or marginally a better performance compared
to the one with MPS.
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Figure 4. Comparison of performance with and without NVIDIA MPS, testbed 1

4.4 Performance with Unified Memory

Since the latest cards and CUDA versions offer the benefit of easier programming
with Unified Memory, this experiment is to show the performance of Unified Memory
based implementation compared to previous best cases. The test involves setting
input data on the host and launching a kernel that processes data packets on the
GPU. Subsequently, results are read from the host side in order to find the maximum
of results and display to the user.

The basic UM enabled version was further optimized using data prefetching
(we denote this version by UMprefetch). Specifically, the data packet to be pro-
cessed in a subsequent step in a given stream is prefetched using a call to function
cudaMemPrefetchAsync(...) on the two input buffers.
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Figure 5. Comparison of performance with and without NVIDIA MPS, testbed 2

Figure 6 presents comparison between std, UM and UMprefetch versions for
1 GPU on testbed 1 while Figure 7 presents comparison between std, UM and
UMprefetch versions for 2 GPUs on testbed 1, data size proportionally smaller
than in the previous tests. It can be seen that prefetching really improves the
performance but still the standard memory optimized multi-stream version offers the
best performance. This is in line with some previous works comparing performance
of Unified Memory to standard based versions showing generally similar or worse
performance in [22], [30] and [37] in return for an easier programming model. This
paper confirms it for various compute time to host-device communication time ratios,
numbers of streams and 1 and 2 GPUs.

4.5 Scalability of Hybrid CPU + GPU Code

The purpose of the following experiments (using standard memory management)
is to show scalability of the hybrid parallel code on the two testbeds with 1 GPU,
2 GPUs as well as host threads engaged for computations, for various GPU/CPU
performance ratios. The latter can vary depending on an application. In this case,
2 streams per GPU were used for testbed 1 and 4 streams per GPU for testbed 2.
The same thread affinities and binding as in Section 4.2 were used.
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Figure 6. Comparison of standard memory (std), Unified Memory (UM) and optimized
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dard deviation

The results presented in Figure 8 for testbed 1 and in Figure 9 for testbed 2
allow to assess GPU/CPU performances for which adding host threads for compu-
tations brings visible savings in execution times. It can be noticed that 2 GPUs
configurations achieve relatively better performance than proportional scaling from
1 GPU configurations, apparently due to using one of the GPUs for display as well.
Scaling from 1 to 2 GPUs is clearly visible. Increasing the number of host threads
decreases application execution time at rates very much depending on GPU to CPU
performances, with practically no gains when using 2 GPUs and GPU/CPU per-
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formance ratio around 30 for testbed 1. It should be kept in mind that in case
some CPU cores are used for computations, still as many threads as the number
of GPUs are used for management of computations on the GPUs. Furthermore,
the threads managing computations on the GPUs and the CPUs fetch next data
packets synchronizing on an OpenMP critical section which also decreases potential
speed-ups.
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4.6 Performance-Power Consumption Ratio

In today’s high performance computing systems, power consumption has become
an important topic. It is considered in designs of future clusters for which the
total power consumption is suggested not to exceed 20MW for 1 Exaflop/s [17].
In this context, we analyze the performance to power consumption for the various
configurations analyzed in this paper, specifically for:

1. various numbers of streams involved when using 1 GPU,

2. GPU + CPU configurations with various numbers of host threads involved in
computations.

GPU performance was calculated as the inverse of the sum of data chunk CPU-
GPU communication, processing and GPU-CPU result transfer times. CPU perfor-
mance was calculated as the inverse of data chunk processing time on the CPU(s).
Average power consumption of various configurations was measured using a hard-
ware meter within a 10 minute period for each configuration. A bash script was used
to run a particular configuration. Figure 10 shows normalized performance com-
puted as inverse of execution time divided by average power consumption through
application run for 1 GPU and various numbers of streams. Normalization of per-
formance was done by dividing results by quotients of compute time to host-device
communication time ratios of various configurations. It can be seen that normalized
performance per power consumption has its maxima depending on compute time to
host-device communication time ratio. It is interesting to note that for 2+ numbers
of streams the best normalized ratios are observed for compute time to host-device
communication time ratio 9.98 and lower for the other ratios.

Furthermore, the performance by power consumption is shown for 1 and 2 GPU
configurations with addition of various numbers of host threads used for computa-
tions using testbed 1. The results for the GPU/CPU performance ratio of around 30
are shown in Figure 11. It can be seen that, while execution times slightly decrease,
as shown in Figure 8 before, the performance-power consumption ratio goes down
due to too little improvement of execution times thanks to CPU compared to its
power consumption. Had the computational power been better compared to GPUs,
the ratio would have been better for higher numbers of host threads. Such a simula-
tion was performed and its results are shown in Figure 12 for a smaller GPU/CPU
relative performance ratio. It can be seen from the tests that for GPU/CPU per-
formance equal to 2 using more host threads offers benefits in terms of perfor-
mance/power consumption.

4.7 Scaling Across Multiple GPUs

The following experiments demonstrate how the code scales across GPUs in testbed 3
with 4 NVIDIA Tesla V100 Volta series GPU cards. Firstly, Figure 13 presents how
the numbers of streams affect performance for the largest configuration shown in
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Figure 2. Then, assuming 8 streams per GPU which (the configuration which already
gives small execution times on the flat parts of the chart), execution times are shown
for the standard memory management, UM and UMprefetch as in the previous
cases. It can be seen in Figure 14 that, again, the UM version offers visible overhead
over the standard memory management version. UMprefetch, thanks to manual
prefetching, offers performance half-way between these two versions for 1 GPU.
For 2 and 4 GPUs, it is worse than the standard memory management version by
about 30% of the difference between the other two versions.

5 CONCLUSIONS AND FUTURE WORK

In the paper we analyzed the performance and performance to power consump-
tion ratio of multi-stream data processing on modern multicore CPU+ GPU sys-
tems. Using a benchmark that allows to set up various compute time to host-device
communication time ratios, number of streams, number of threads managing com-
putations it was possible to assess performance of various configurations on mod-
ern testbeds with Intel Xeon CPUs and NVIDIA Tesla K20m, GTX 1070 Pascal
and Tesla V100 Volta series cards. The benefits of using a properly implemented
multi-stream code were shown compared to GPU computations managed by various
threads or processes for various numbers of streams. Furthermore, the benefits of
such code compared to standard Unified Memory and Unified Memory with prefetch-
ing were shown showing performance gains at the cost of increased programming
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effort. Additionally, the gains from using NVIDIA Multi Process Service have been
presented for multi-process configurations. The performance to power consumption
ratios have been shown for various numbers of streams and compute time to host-
device communication time ratios as well as for hybrid CPU+GPU configurations
for various numbers of computational threads on the host and relative GPU and
CPU performances. Scalability of the code was presented between 1 and 4 GPUs
using NVIDIA Tesla V100 cards.

The results can be generalized as follows. For the considered data stream pro-
cessing application and various compute to communication ratios, using multiple
streams, at least 2 offered visible benefits, with best results using one dedicated host
thread per GPU launching communication and computations to multiple streams.
Some configurations result in best execution times for 2, 4, 8 or even 16 streams
but we can note that benefits over 4 streams, if any, are very small. Secondly, we
confirmed that using NVIDIA MPS gives visible benefits especially for larger com-
pute to communication ratio. Furthermore, for various compute to communication
ratios we confirmed that Unified Memory brings visible overhead over the standard
memory management implementation while a Unified Memory version with manual
prefetching ranks between the two. For CPU + GPU codes, increasing the number
of computational host threads up to the number of available logical processors de-
creases application execution time at rates very much depending on GPU to CPU
performances with considerable gains with CPU performance in the same order as
the one of the GPU. It has been shown that the observed performance per power
consumption varies with the number of streams, GPU to CPU performance ratio
and the number of computational host threads.

These results can be used as guidelines for best performance implementations
for various applications as the tests are of generic nature and, depending on values
of particular aforementioned parameters, are representative of many applications.
Specifically, obtained results can be used for implementation of building blocks for
data stream frameworks using multi-core CPUs and GPUs, especially multi CUDA
stream communication optimization.

Future work includes extending the scope of the conducted tests performed on
systems with NVIDIA Tesla V100, specifically regarding various CPU + GPU con-
figurations, tests for various compute/communication ratios, as well as extending
tests to larger V100 based systems such as NVIDIA DGX-1 featuring 8 V100 GPUs.
More experiments with thread affinities will be conducted, with research of their
impact for particular codes. Additionally, we plan to incorporate the outcomes of
this work into higher level frameworks such as KernelHive [42] and possibly others
and investigate the impact of Unified Memory oversubscription compared to the
traditional implementation model.
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Abstract. Data exposure and privacy violations may happen when data is ex-
changed between organizations. Data anonymization gives promising results for
limiting such dangers. In order to maintain privacy, different methods of k-ano-
nymization and l-diversity have been widely used. But for larger datasets, the
results are not very promising. The main problem with existing anonymization
algorithms is high information loss and high running time. To overcome this prob-
lem, this paper proposes new models, namely Improved k-Anonymization (IKA)
and Improved l-Diversity (ILD). IKA model takes large k-value using a symmetric
as well as an asymmetric anonymizing algorithm. Then IKA is further categorized
into Improved Symmetric k-Anonymization (ISKA) and Improved Asymmetric k-
Anonymization (IAKA). After anonymizing data using IKA, ILD model is used
to increase privacy. ILD will make the data more diverse and thereby increasing
privacy. This paper presents the implementation of the proposed IKA and ILD
model using real-time big candidate election dataset, which is acquired from the
Madhya Pradesh State Election Commission, India (MPSEC) along with Apache
Storm. This paper also compares the proposed model with existing algorithms, i.e.
Fast clustering-based Anonymization for Data Streams (FADS), Fast Anonymiza-
tion for Data Stream (FAST), Map Reduce Anonymization (MRA) and Scalable
k-Anonymization (SKA). The experimental results show that the proposed models
IKA and ILD have remarkable improvement of information loss and significantly
enhanced the performance in terms of running time over the existing approaches
along with maintaining the privacy-utility trade-off.

Keywords: Big data, privacy, k-anonymization, l-diversity, multi dimensional ge-
neralization, improved symmetric and asymmetric k-anonymization, Apache Storm,
MPSEC dataset
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1 INTRODUCTION

Data analytics and data stockpiling process is mostly connected with big data.
Presently there is an exponential growth of information, which is gathered, put
away, and passed on within organizations and over the web. The sudden ascent of
information has brought interest towards big data use, analytics, and raised scholas-
tic intrigue. A brief check of google trends on the search interest has been an overall
increase in activity since January 2011, with maximum attention being reached
around October 2017, as shown in Figure 1. Big data is considered having massive
information volume and complex information structures [1]. Few illustrations of big
data are social and business site information, cell phone call records, geological data,
web search tool information, smart card information, and so forth.

Figure 1. Search popularity of big data, source: Google trends (January 31, 2019)

Big data gives us benefits in various fields, for example in medicine, biology [2],
banking [3], and social websites, and so on where a huge amount of data is col-
lected. Now challenges are rising regarding its privacy and usage. One of the
noteworthy utilization of big data use is offering data to various associations and
analysts to comprehend social changes and make forecasts [4]. Approved associa-
tions, for example government organizations, banking sectors, medicinal research,
have sensitive attributes in their dataset, where data distributing may cause data
leakage for research purposes [5]. Differential privacy [6, 7, 21] with its expansions [8]
seemed ten years back, which drives another bearing for protection saving. Subse-
quently, protection and privacy have to turn into an overall issue for present-day
scientists. The significant issue in such a distribution is the disclosure of sensi-
tive information, which is very bothersome [9]. Therefore, before the distribution
of this information, adequate caution must be taken to conceal the sensitive de-
tails. To accomplish this, there should be a balance between privacy and utility
of information. For this various algorithms has been proposed, but for a smaller
dataset, like k-anonymization [16, 19, 20, 36], l-diversity [22] and t-closeness [10].
All these algorithms are based on the basic assumption that the records are free
from each other and anonymization can be entirely autonomous. The widely used
algorithm for data anonymization is k-anonymity [11]. For example, consider the
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multidimensional patient dataset shown in Table 1 that contains personal data of
the patient. The personal data of the patient consists of four disjoint sets of data:
explicit identifier (EI), quasi-identifiers (QI), sensitive data (SD), and non-sensitive
data (NSD). In Table 1, EI attribute is name, QI attributes are age, pin code, SD
attribute is a disease and NSD attribute is job. QI are those which alone cannot
provide information about an individual, but when QI is linked with the external
information, it can recognize the individual by connecting them. Generalization and
suppression play a crucial role in anonymization. Generalization is a technique of
replacing more specific values with generic and semantically similar values. General-
ization can be applied at cell or the tuple or the attribute levels. Generalization uses
the concept of the domain generalization and value generalization. Each attribute
in the multidimensional database is a domain. In suppression, quasi-identifiers are
replaced by *, and thereby it increases the privacy of database. Thus the size of the
database and content of the database is reduced. k-anonymity checks that if one
record in the dataset has some value of QI then at least k−1 other records also have
the same QI values [12, 17, 18]. The equivalency among the data tries to maintain
anonymity by k times [10]. Table 2 represents patient dataset after anonymization.
As an instance of patient C = 〈“Carl”; 52; “flu”〉, this instance is generalized and
suppressed to gc = 〈∗; [50− 60]; “Respiratory infection”〉.

Name Age Pincode Job Disease

Anand 45 400052 Writer Flu
Bharti 47 400058 Writer Pneumonia
Carl 52 400032 Lawyer Flu
Diana 53 400045 Artist Stomach ulcers
Emily 64 100032 Lawyer Stomach infection
Fatima 67 100053 Lawyer Hepatitis
Garvin 62 200045 Writer Stomach cancer

Table 1. Patient table

Name Age Pincode Job Disease

∗ 40 > && > 50 40**** Writer Respiratory infection
∗ 40 > && > 50 40**** Writer Illness
∗ 50 > && > 60 40**** Lawyer Respiratory infection
∗ 50 > && > 60 40**** Artist Stomach disease
∗ 60 > && > 70 10**** Lawyer Stomach disease
∗ 60 > && > 70 10**** Lawyer Liver disease
∗ 60 > && > 70 20**** Writer Illness

Table 2. After anonymization of patient table

One of the essential clarifications for the big data find the difficulty in k-ano-
nymization. It works on a single-dimensional function [1]. The k-anonymity and
l-diversity follow one group for all information, which significantly diminishes the
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obtained information, and sometimes the anonymized data is not replaced by an im-
mediate parent; instead, it is replaced by a super parent. Implementing k-anonymity
generalization in big dataset gives weak anonymization.

The multi-dimensional operation is supported by top-down generalization
(TDG). The TDG strategy was proposed because of LKC privacy where L, K, C
are thresholds [28]. That is used for centralization and distributed anonymization
in multi-dimensional activity [13]. So applying multi-dimensional operation on it
becomes multi-dimensional top-down generalization (MDTDG) [14, 15]. As a major
task of anonymization, all k-anonymity methods implement the grouping process.
Information typically assembled into proportionate or comparative records, known
as compressions. The information loss rate decreases by using this technique.

Zakerzadeh et al. [30] introduced a new cluster-based algorithm for anonymizing
numerical data streams using window processing known as fast anonymizing algo-
rithm for numerical streaming data (FAANST). The main drawback of FAANST is
that some tuples may remain in the system more than allowable time constraint. In
addition, the time complexity of the algorithm is O(n2) and not efficient for data
streaming [7]. Another weakness of FAANST is that it does not support categorical
data. To remove this drawback another algorithm was introduced by Guo et al.,
FADS algorithm [31] for data stream anonymization, in which the time complexity
of the approaches is O(s), which is linear to the stream size s, also the space com-
plexity is O(c), which is constrained by a constant c. The main drawback of the
FADS is that the algorithm does not check the remaining time of tuples that hold in
the buffer in each round and that are outputted once they are probably taken into
consideration to have expired. The other critical weakness of FADS is that it is not
parallel and cannot handle a large number of data streams in tolerable time. Mo-
hammadian et al. proposed FAST [32] to overcome the drawbacks of FADS. FAST
protects the privacy of big data stream using parallel anonymization algorithm. It
speeds up anonymization of data streams. A proactive heuristic approach was pro-
posed in order to publish data before a specific expiration time passed. Proactive
time expiration heuristic is applied to publish data before they are being expired. It
works efficiently on a smaller dataset. Drawbacks of the FAST algorithm is that for
the larger dataset, it results in high information loss, and the time complexity of the
algorithm is comparatively high, i.e. O(n log n). Another drawback of this algorithm
is that for anonymization purpose it takes super parent node for replacement instead
of the current parent node to enhance running time which also causes high infor-
mation loss. Zakerzadeh et al. [35] discusses the multidimensional k-anonymization
Mondrian algorithm [34] and then proposes an anonymization technique for MapRe-
duce framework: MRA. They proposed two versions of MRA. In the first version,
a single global file is shared between all the nodes. The size of this file becomes
larger and larger after each iteration as each node uses the same global file to up-
date the equivalence class after each iteration. In the second version, there is no
shared global file, but instead, it generates chunks of files distributed among all the
nodes. Multiple iterations and file management are the major drawbacks of this
technique, and as the number of iterations increases the performance decreases. In
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addition, the time complexity of the algorithm is O(n2). To overcome this, Mehta
et al. proposed an SKA approach using MapReduce [36]. SKA divides the input
dataset into smaller equivalence classes based on all the attributes of the dataset.
Classes are merged gradually (one at a time) in order to make it large, enough to
fulfill k-anonymity condition. These steps were repeated for all classes. SKA takes
advantage of Hadoop’s data distribution (Map) phase in the class division and sort
and shuffling phase in class merging; hence, it works with lesser number of iterations,
compared with the existing approach [35]. The time complexity of the algorithm is
O(n log n). Lack of diversity and high information loss are the major drawbacks of
this work.

As per the literature review of various big data privacy mechanisms, it is ob-
served that existing privacy mechanisms are suffering the issues of high information
loss and high running time for big data. Privacy on streaming data is still a chal-
lenge and needs to be solved. Thus in this work, the focus is on the development
of privacy-preserving mechanism to reduce information loss and to reduce the time
taken for streaming/batch big data.

1.1 Contribution

1. To improve the time efficiency of privacy preservation algorithms in comparison
with the existing approaches (FADS, FAST, MRA, and SKA).

2. Proposed Improved Symmetric k-Anonymization (ISKA) and proposed Impro-
ved Asymmetric k-Anonymization (IAKA) reduce the information loss in com-
parison with existing approaches.

3. Achieving higher k-value guaranteed the strongest privacy.

4. Achieving high data utility with the same level of privacy compared with existing
approaches.

1.2 Organization of the Paper

The flow of paper after the introduction is, initially, Section 2 discusses the proposed
model. Section 3 presents an understanding of different datasets which are used in
the experiment, Section 4 covers results and discussion, and Section 5 concludes the
paper with a future scope.

2 PROPOSED MODEL

Data protection is a key factor; everyone wants data to be secured as far as privacy
would not incline towards losing the prominence of information [23, 24, 25, 27].
Privacy here implies hiding the actual data in such a way that analytics operations
can still be performed on the data but without losing the utility of data. The privacy
breach of users in any organization can be prevented using the proposed IKA and
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ILD model. This model can be used for both batch and streaming dataset. The
results obtained using this model are more optimized in terms of running time and
information loss as compared to that of the results obtained using the existing FADS,
FAST, MRA, and SKA algorithms. From protection and security point of view, it
guarantees that data subjects (i.e., people) have maintainable control over their data.
Figure 2 represents the proposed model, in the pre-processing phase of data, the data
is cleaned, and all the missing values and irrelevant values are expelled. In further
steps, the data is anonymized by using IKA, which is categorized into two parts
ISKA and IAKA. Here higher values of k represent the strongest privacy and these
algorithms also resolve the suppression issue of the information loss, i.e., the child
node is directly replaced by a super parent instead of replacing it by an immediate
parent. Then the anonymized dataset is diversified using proposed ILD model. ILD
applied to the result obtained after anonymization so that it certifies that there
are at least two or more unique sensitive values in each equivalence class with no
attribute disclosure.

Figure 2. Proposed model
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2.1 Data Pre-Processing

The data obtained contains duplicate values, additional data of the same individual
or missing values. It makes the data pre-processing a vital task. The primary goal
of data pre-processing is to create an appropriate analysis suitable for the dataset.
Data pre-processing maintains a strategic distance from the duplicate data and the
missing values as indicated by the past recorded information. Likewise, it lessens the
memory and normalizes the values that are put away in a database. For achieving
anonymity, there is a need to erase the identifiers and adjust the quasi-identifiers
and keep the sensitive attribute. The exactness of the attributes must be considered
to choose which property is a sensitive attribute, identifier, or quasi-identifiers and
care must be taken to select which feature is the sensitive attribute, which is the
identifier and which is a quasi-identifier. Likewise, immaterial characteristics and
qualities with no significance have to be erased. In the information pre-processing,
the goal is to accomplish more advancement. Few attributes should be erased as they
are neither material nor essential. The first procedure in this model is to eliminate
data uncertainty by using information pre-processing. By breaking down the data,
there is a realization that information has no noisy value.

2.2 Proposed IKA Model

The proposed model works in the direction of falsifying the generalized data, which
will make data more generalized as well as distorted. Existing work has a signif-
icant drawback of a higher degree of suppression in case of categorical attribute
where values were replaced by their super parent instead of immediate parent that
causes more information loss. Referring to Figure 3, the value “Local govt.” should
be replaced by the class of immediate parent (govt.), but instead, the superclass
(work-class) is considered for generalization in the existing algorithms. There are
following main reasons for this kind of high degree generalization that the individual
(end-user) has specified the work-class as just local (instead of Local govt.) to the
algorithm and it did not perceive it as a given workplace (because it is not match-
ing with any of the nodes in the tree, i.e., Private, Govt. (Local gov., State gov.,
Federal gov.), Self emp., Without pay) so it directly went to the superclass which is
“work-class” class. The proposed symmetric and asymmetric IKA model using the
MDTDG technique overcomes those drawbacks. MDTDG generalizes a table which
satisfies the anonymity requirement along with preserving its utility for classifica-
tion. MDTDG compresses data to the topmost level, which is generalized by QI
attributes [26, 29]. It takes various possible cases into account, for example if a user
enters only local as its work class the algorithm will consider different possible values
for same work-class (keeping account of different possible values for a single domain
such as “local”, “local government”, “local gov” for “Local Gov.” work-class do-
main). The information loss rate decreased by using this technique. The proposed
model generalizes k-anonymity into two different types of generalization for getting
accurate results.
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Figure 3. Taxonomy tree for work-class

2.2.1 Symmetric Anonymization

In any given dataset there is always one possible k value at a time symmetrically
applied to the whole dataset. Symmetric anonymization takes equal k intervals to
achieve privacy.

2.2.2 Asymmetric Anonymization

In this type of anonymization, the value of k will vary at a time. Asymmetric
anonymization takes unequal k intervals to achieve privacy. The greater value of k
is directly proportional to higher privacy. Asymmetric anonymization is able to
achieve a higher k value as compared to symmetric anonymization. So the proposed
framework endeavors to accomplish optimal k value as the higher is the k value; the
more is the privacy.

The proposed Algorithm 1 is designed for both symmetric and asymmetric
anonymization and tested for batch data and real-time stream data as well. The
following topology used in proposed work, in which one spout (data source) and
two Bolts Bolt1 and Bolt2 are used in FIS algorithm. In Figure 4 initially, input
data stream s is sent into a spout that emits the data stream tuples. These tuples
from spout are then sent to Bolt1. It then makes Set of “delta” tuples at a time
and then it inserts into Set named SOT . This set is fed as output to next bolt,
i.e. Bolt2. In Bolt2, removal of k-anonymized clusters takes place, which is present
longer than Tkc. In Bolt2 function named Publish(SOT ) is called. After several
steps, the output received from Bolt2 is the k-anonymized tuples on which further
processing will take place in Algorithms 2, 3 and 4.

In Bolt2, pick one tuple T from SOT and publish that tuple by calling
PublishTuple() with SOT and T as parameters.

Algorithm 4 describes the Procedure of PublishTuple(SOT , T ). It is attempting
to anonymize tuple T . At first, the system discovers its k− 1 closest tuples in SOT
and embeds them in the new cluster called NEW and generalizes it into gNEW .
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Algorithm 1 Proposed IKA and ILD algorithms

INPUT: Given dataset
OUTPUT: Improved k-anonymized and l-diversity data file

1. Step 1: cleaning(data, A) // Read the data from input file row-wise in a loop

2. If ((len(row) < actual row length) OR ( ‘?’ in row) OR (‘ ’ in row))

Continue

Else

Writerow(row)

3. Step 2a: Asymmetric Anonymization(data, A)

a1: Sort according to the values of attribute A

a2: FIS (S, k, δ, Tkc, Te,NumofExecutors)

Goto step 5

Or

Step 2b: Symmetric Anonymization(data, A)

b1: Sort according to the values of attribute A

b2: K = kgen(data, A)

b3: FIS (S, k, δ, Tkc, Te,NumofExecutors)

Goto step 5

4. Step 3: kgen(data, A)

D = distinct values for attribute A

For each value in D

(a) Count[value] = 0

For each row in data

(b) Count[row[A]]+ = 1

(c) Max = count[D[0]]

For each value in D

(d) Max = max(Max, count[value])

(e) Return Max

5. Step 5: ILD Model(data) For each equivalence class in data {
If every value of a sensitive attribute in an equivalence class is equal

{
Add tuple from next equivalence class to current equivalence class, change some
values for an attribute to achieve anonymity

}}
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Figure 4. Topology for FIS

Algorithm 2 FIS (S, k, δ, Tkc, Te,NumofExecutors)

While |S| 6= 0 do

1. In Bolt1 δ tuples are read from Spout and insert them into SOT ;

2. Output this SOT to Bolt2;

3. In Bolt2, all the clusters which exist longer than Tkc are removed;

4. Publish (SOT );

End while

Then a reusable cluster with minimum information loss Ckbest that covers tuple T ,
is chosen from SKC. If Ckbest exists and has smaller information loss compared
to NEW , tuple T is published with Ckbest generalization and time of Ckbest is
updated. Then other k−1 tuples that remain in SOT are checked whether they can
be processed in another round or must be suppressed and published immediately.

Algorithm 3 Publish (SOT )

1. Pick the first tuple from SOT and call it T ;

2. PublishTuple(SOT , T );

If tuple T does not match with any cluster in SKC which has less information
loss than NEW , tuple T and its neighbors are published with NEW generalization
gNEW . Then, gNEW is inserted in SKC . Alternate tuples in SOT are checked
for remaining time. If they have enough time to process, they are passed to SOT
otherwise they will be suppressed and published. Figure 5 represents the flow chart
of a streaming algorithm.

2.3 Proposed ILD model

Another motivation behind the proposed model is to accomplish variety in the sen-
sitive attribute. Here to achieve the privacy, information is classified. Initially, the
IKA model has been applied in the dataset and then the sensitive attribute is diver-
sified by the proposed ILD model. The proposed ILD model is an improvement of
l-diversity. For each equivalence class in data value of a sensitive attribute are less
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Algorithm 4 PublishTuple(SOT , T )

1. Step 1: Select k–1 unique tuple from SOT that are closest to T

(a) Insert them into cluster NEW

(b) Generalize NEW into gNEW .

2. Step 2: For each cluster Ck which covers T

(a) Calculate the ILoss,

(b) Choose a cluster with less ILoss

(c) Call the Ckbest cluster.

(d) If Ckbest exists and Ckbest produces less ILoss than gNEW then

i Publish T with Ckbest generalization;
ii Update round time estimation;
iii Synchronized(Ckbest)
{ Update Ckbestpublishtime }

iv Do in SOT for every tuple t
if (current time − arrival time + estimated round time) < Te then
Synchronized(S)
{ Insert t as the first element of S; }

else
Suppression and publication of t;

end if
end for

else

i Publication of NEW with gNEW ;
ii Update of round time estimation;

iii Synchronized(SKCt)
{ Insert gNEW into SKC and set its time of publication; }

iv Do in (SOT − Setnew) for every tuple t
if (current time − arrival time + estimated round time) < Te then
Synchronized(S)
{

Insert t as the first element of S;
}

else
Suppression and publication of t;

end if
end for

end if
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Figure 5. Flowchart for stream data (Algorithms 2, 3 and 4)
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than or equal to a threshold value of l then the proposed ILD model adds a different
sensitive attribute tuple from the nearest equivalence class to a current equivalence
class to achieve required threshold l-diversity. The proposed ILD model decreases
the probability of attribute disclosure as compared to l diversity.

Table 3 represents an example of an anonymizing dataset of healthcare, which
has a sensitive attribute is the disease. In the healthcare dataset having two equiv-
alence classes, tuple 1–5 represents one equivalence class, and tuple 6–10 represents
another equivalence class in the same dataset. Equivalence class 1 represents two-
diversity, and equivalence class 2 represents three-diversity in the sensitive attribute.
After applying the proposed ILD model in healthcare dataset in Table 4, to main-
tain the required threshold of 3-diversity in each equivalence class, the proposed
ILD model adds a different sensitive attribute from the nearest equivalence class to
a current equivalence class. Thus, the proposed ILD model increases diversity which
also increases the privacy level.

S. No.
Non-Sensitive Attributes Sensitive Attribute
Zip Code Age Nationality Disease

1 130** < 30 * Cancer
2 130** < 30 * Cancer
3 130** < 30 * Corona
4 130** < 30 * Cancer
5 130** < 30 * Cancer

6 130** 3* * Heart Disease
7 130** 3* * Heart Disease
8 130** 3* * Cancer
9 130** 3* * Cancer
10 130** 3* * Corona

Table 3. l-diversity before ILD model

S. No.
Non-Sensitive Attributes Sensitive Attribute
Zip Code Age Nationality Disease

1 130** < 30 * Cancer
2 130** < 30 * Cancer
3 130** < 30 * Corona
4 130** < 30 * Heart Disease
5 130** < 30 * Cancer

6 130** 3* * Heart Disease
7 130** 3* * Heart Disease
8 130** 3* * Cancer
9 130** 3* * Cancer
10 130** 3* * Corona

Table 4. l-diversity after ILD model
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3 DATASET USED

For the experimental purpose, this work used three datasets: the poker dataset,
adult dataset and MPSEC dataset.

3.1 Poker Dataset

The poker dataset [37], collected from UCI, has 11 numerical attributes and millions
of instances. Here the first ten predictive attributes are used as quasi-identifiers and
t class variable is used as the sensitive attribute.

3.2 Adult Dataset

The adult dataset [38], collected from UCI, has 14 numerical and categorical at-
tributes and 48 842 instances. This dataset is widely used for the privacy-preserving
purpose. Here the sensitive attribute in the dataset is age (numerical) and profession
(categorical).

3.3 MPSEC Dataset

This is for the first time when the proposed methodology has been implemented
on a newly collected dataset from Madhya Pradesh State Election Commission
(MPSEC), Bhopal, India. It is state voter and candidate dataset. It consists of
34 attributes. After pre-processing, 12 useful attributes were extracted, specifically
age, district code, candidate name, gender, category, mobile no., candidate designa-
tion, ward no., votes, marital status, auto-id, and occupation. In the proposed work,
“Occupation” is considered a sensitive attribute. The dataset has a candidate name
and mobile number as EI attributes and the rest of the attributes are QI. We find
the interesting patterns from MPSEC datasets, if combined with the demographic
data, the percentage of people who were eligible and voted in the elections can be
calculated. The correlation and dependency between the caste of the voters and the
winning candidate can also be found. The co-dependency between the female candi-
dates and their occupations might be detected. The percentage of female candidates
amongst total candidates can be calculated. If combined with Aadhar card data,
the voting pattern between the reserved category and unreserved category voters
can be found. The percentage of different age groups standing for election can be
detected, whether it has more of the young candidates or older candidates. Table 5
represents the number of tuples and the corresponding data size of MPSEC dataset
for experiment purpose.

4 RESULTS AND DISCUSSION

The platform used for the deployment is HP Z840 workstation. It consists of 64-bit
dual-core processors and 8 GB of RAM. Apache storm combination with Python is
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MPSEC Dataset

Number of Tuples Size

35 000 4 MB

100 000 10.5 MB

1 million 104.2 MB

10 million 1.01 GB

100 million 10.4 GB

Table 5. MPSEC dataset

used to implement the proposed algorithms in the multi-node environment. The
multi-node environment created by using 5 workstations. Each workstation has
40 cores. In our experiments, 40 cores are used for the name node, and 160 cores
are used for worker nodes for implementing the proposed algorithms. The param-
eters used for comparison are completeness, running time, and information loss.
Existing methods – FADS, FAST, MRA, and SKA – are implemented in the same
environment. The proposed algorithms have been applied to MPSEC dataset, adult
dataset [37], and poker dataset [38]. The proposed algorithms can also be applied
to any other datasets which require the privacy mechanism.

4.1 Completeness

Completeness describes whether the data is fully anonymized or not. In the asym-
metric algorithm, all data is generalized in an asymmetric way so that IAKA achieves
100 percentage completeness. The value of k achieved is 1 523. In ISKA, symmetric
grouping value from k is changed. If (new k < gen. k) < 100 percentage complete-
ness, data is only generalized, not anonymized, and it can be easily predictable, if
(new k >= gen. k). Here also, ISKA tries to achieve 100 percentage completeness,
the value of k achieved is 1 283. The proposed model gives a better result with
large dataset having higher k value. The higher k value guaranteed the strongest
privacy.

4.2 Running Time

The running time complexity of IAKA and ISKA is described as follows, both the
algorithms having mainly three functions. The first function is distance function,
which is used for calculating the distance between two tuples, for finding the best
nearest tuples for anonymization purpose. It is used by symmetric and asym-
metric intervals for ISKA and IAKA algorithms, respectively. Distance function
loop variable is incremented by a constant amount of time for both algorithms,
which represents the time complexity of the distance variable being O(n). The
second function is the information loss function, and it is used to find the best
optimal cluster, which is having minimum information loss. Similar to distance
function, the information loss function is incremented by a constant amount of
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time. The time complexity of the information loss function is O(n). The third
function checks the expiration time of tuple, whether the time since tuple arrived
is less than that of proactive heuristic and generalizes them within those time lim-
its. This function takes a constant amount of time. So the overall time complex-
ity of the proposed algorithms IAKA and ISKA is O(n). After IAKA and ISKA
algorithms, the proposed ILD algorithm maintains the required threshold of di-
versity in each equivalence class. In the proposed ILD model, diversity function
loop variable is incremented by a constant amount of time, which represents the
time complexity of the diversity function being O(n). So the overall time com-
plexity of the proposed ILD algorithm is O(n). The time complexity of the pro-
posed IKA and ILD algorithms found to be O(n) where n = number of tuples
of a given attribute. The proposed algorithms work on a lesser number of iter-
ations: only three iterations in the case of both the algorithms of IKA and four
iterations in the case of ILD algorithm. The comparison of time complexity of the
proposed algorithms with the existing methods is shown in Table 6. The proposed
work and the existing methods FADS, FAST, MRA and SKA have been imple-
mented in the same experimental environment. In the experiment the anonymity
degree k varied from 10 to 640 and the diversity level l is set to 6 in this proposed
work.

The IAKA and ISKA are more efficient than the existing algorithms (FADS,
FAST, MRA, SKA). The disadvantage of the FADS is that the algorithm does not
take a look at the remaining time of tuples that are kept within the buffer in each
round and are outputted once they are probably taken into consideration to have
expired. The critical weakness of FADS and FAST is that they are not able to
handle a larger dataset of 10M size. The major drawbacks of MRA are multiple
iterations and file management, and as the number of iterations increases the per-
formance decreases. In addition, the time complexity of the MRA is very high, i.e.
O(n2). The time complexity of the SKA algorithm is also high, i.e. O(n log n). Lack
of diversity is the major drawback of SKA, which causes attribute discloser. To
overcome the FADS weakness the proposed algorithms check the expiration time
of tuple, whether the time since tuple arrived is less than that of proactive heuris-
tic and generalize them within that time limits. The running time has improved
due to the proposed IKA and ILD algorithms which take only fewer iterations and
execute on the multi-node environment of big data. The proposed improved algo-
rithms are efficient to handle large database and proposed ILD model maintains
at least 6 diversity in each equivalence class what overcomes attribute discloser.
Comparing both algorithms of IKA, IAKA is more efficient as it is taking less run-
ning time as compared to ISKA. The running time declines with the increasing
number of tuples or records, mostly because fewer iterations are required to sat-
isfy privacy requirements. Tables 7, 8, 9 show the running time of MRA, SKA,
IAKA and ISKA on 1M, 10M and 100M dataset with respect to different k val-
ues, respectively. In Table 7, when the value of k is 10 on MPSEC 1M dataset
then the running time of IAKA and ISKA is 335 and 328 seconds and when the
value of k is 640 the running time of IAKA and ISKA is 305 and 302.3 seconds,
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S. No. Algorithms Time Complexity Remark

1 FADS

O(s), which is linear
to the stream size s
also the space complexity
is O(c), which is
constrained by a constant c.

FADS algorithm does
not check the remaining
time of tuples and FADS
is not parallel and cannot
handle a larger dataset
of 10M size.

2 FAST O(n log n)

Large dataset results
in high information
loss and cannot handle
a larger dataset
of 10M size.

3
MRA (Map
Reduce-based
Anonymization)

O(n2)

Multiple iterations
and file management
are the major drawbacks
of this technique and as
the number of iterations
increases the performance
degrades.

4
SKA (Scalable
k-Anonymization)

O(n log n)

Lack of diversity and
high information loss
are the major drawbacks
of this work.

5
Proposed IKA
and ILD
algorithms

O(n)
In the proposed algorithms
complexity decreases due to
lesser number of iterations.

Table 6. Comparison of time complexity of proposed algorithms with competing or exist-
ing methods

respectively. In Table 8, when the value of k is 10 on MPSEC 10M dataset then
the running time of IAKA and ISKA is 2 070.2 and 1 989.3 seconds and when the
value of k is 640 the running time of IAKA and ISKA is 1 641.5 and 1 555.8 seconds,
respectively. ISKA performs best in running time and both IAKA and ISKA algo-
rithms are outperformed as compared to the existing MRA and SKA algorithms.
When the value of k is higher, i.e. higher privacy, then running time goes down in
all the algorithms due to low computational cost required, similarly to Tables 7,
8, and 9, it is representing the running time on MPSEC 100M dataset, respec-
tively. This work also finds an interesting pattern that the running time values
of on MPSEC 10M and 100M dataset are not increasing proportionally as com-
pared to Table 7, these running time values are much smaller by using our proposed
algorithms. So our proposed algorithms take less running time as compared to
the existing algorithms for larger datasets. Table 10 shows the running time of
FADS, FAST, IAKA and ISKA on 1M dataset in which IAKA repeatedly performs
best.
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Value of Running Time in Seconds
k MRA SKA IAKA ISKA

10 1 200 675 335 328
20 1 189 541 330.2 327.5
40 1 089 500 326.3 324.3
80 1 000 472 321.2 320

160 920 421 317.3 316.2
320 880 400 310 308.2
640 812 398 305 302.3

Table 7. Running time comparison of MRA, SKA, IAKA, and ISKA on MPSEC 1M
dataset in seconds

Value of Running Time in Seconds
k MRA SKA IAKA ISKA

10 8 000 4 010 2 070.2 1 989.3
20 7 800 3 900 2 000.2 1 965.1
40 7 100 3 508 1 905.3 1 845.8
80 6 600 3 280 1 857.6 1 780.3

160 6 200 3 121 1 779.8 1 697.4
320 5 807 2 872 1 701 1 623.2
640 5 410 2 710 1 641.5 1 555.8

Table 8. Running time comparison of MRA, SKA, IAKA, and ISKA on MPSEC 10M
dataset in seconds

4.2.1 Comparison of IAKA and ISKA Algorithms with Existing Batch
Data Anonymization Algorithms MRA and SKA

The average running times on 1M, 10M, and 100M datasets are depicted in Figures 6,
7, and 8, respectively. As can be seen in the figures, both IAKA and ISKA have
smaller running time than that of MRA and SKA. And SKA has smaller running
time than that of MRA [35, 36] because SKA performs the task in less number

Value of Running Time in Seconds ∗ 10
k MRA SKA IAKA ISKA

10 7 800 3 840 1 980.2 1 909
20 7 100 3 509 1 920.5 1 875.8
40 5 200 2 690 1 797.2 1 745
80 4 100 2 150 1 791.8 1 680.6

160 4 400 2 198 1 699.2 1 588.4
320 4 120 2 098 1 600.8 1 505.6
640 3 900 1 850 1 541.8 1 432.2

Table 9. Running time comparison of MRA, SKA, IAKA, and ISKA on MPSEC 100M
dataset in seconds ∗ 10
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Value of Running Time in Seconds
k FADS FAST IAKA ISKA

10 610 422.3 335 328
20 608.5 419.5 330.2 327.5
40 609 417 326.3 324.3
80 607 415 321.2 320

160 608 411.3 317.3 316.2
320 607.5 410 310 308.2
640 607 409.3 305 302.3

Table 10. Running time comparison of FADS, FAST, IAKA, and ISKA on MPSEC 1M
dataset in seconds

of iterations than that of MRA. In the case of ISKA, there will be no overhead
for checking the distance between the tuples as it is concerned more with equal-
sized cluster, but on the nearness degree of tuples in the dataset. On the other
hand, IAKA is related more with nearness of data than with the equality of cluster
sizes. This requires to calculate the distance between the tuple of interest and the
generalized cluster to decide whether the tuple can be inserted in that cluster or
not which results in more running time of IAKA and relatively less running time of
ISKA.

Figure 6. Running time of MRA, SKA, IAKA, and ISKA on MPSEC 1M dataset

4.2.2 Comparison of IAKA and ISKA Algorithms with Existing Stream
Data Anonymization Algorithms FADS and FAST

The average running time on 1M synthetically generated MPSEC stream dataset
are depicted in Figure 9. As can be seen in this figure, both IAKA and ISKA
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Figure 7. Running time of MRA, SKA, IAKA, and ISKA on MPSEC 10M dataset

Figure 8. Running time of MRA, SKA, IAKA, and ISKA on MPSEC 100M dataset

have smaller running time than that of FADS and FAST. And FAST has smaller
running time than that of FADS [31, 32]. FAST have smaller running time than
that of FADS as its implementation uses the concept of multithreading. IAKA has
larger running time than ISKA and the reasons are the same as mentioned in the
Section 4.2.1.

4.3 Information Loss

Information loss is a term that is shown in Equation (1). In this equation, lower ij
and upper ij represent lower and upper bound of attribute j in tuple i after general-
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Figure 9. Running time of FADS, FAST, IAKA, and ISKA on MPSEC 1M dataset

ization, respectively, minj and maxj represent the minimum and maximum values,
respectively, taken by attribute j over all records.

I =
n∑

i=1

m∑
j=1

|upper ij − lower ij|
n.m|Max j −Minj|

. (1)

In the experiment, the anonymity degree k varied from 10 to 640, and the di-
versity level l is set to 6 in this proposed work. The reported values (except for
the information loss) are averaged over two runs. Tables 11, 12, 13 show the infor-
mation loss of MRA, SKA, IAKA and ISKA on 1M, 10M and 100M dataset with
respect to different k values, respectively. In Table 11, when the value of k is 10
on MPSEC 1M dataset then the information loss of IAKA and ISKA is 18 and 21
percentage, and when the value of k is 640 the information loss of IAKA and ISKA
is 27.39 and 28.97 percent, respectively. In the case of existing algorithms MRA
and SKA in the same table, when the value of k is 10 on MPSEC 1M dataset then
the information loss is 33.4 and 29.84 percent, and when the value of k is 640 the
information loss is 54.40 and 44.87 percent, respectively. The proposed algorithms
show better performance regarding the information loss as compared to the existing
methods. In Table 12, when the value of k is 10 on MPSEC 10M dataset then
the information loss of IAKA and ISKA is 15.28 and 17.89 percent, and when the
value of k is 640 the information loss of IAKA and ISKA is 24.18 and 25.07 per-
cent, respectively. In the case of existing algorithms MRA and SKA in the same
table, when the value of k is 10 on MPSEC 10M dataset then the information loss
is 31.2 and 25.9 percent, and when the value of k is 640 the information loss is
48.80 and 41.08 percent, respectively. As compared to Table 11, data size is in-
creasing 1M to 10M, information loss is decreasing and proposed algorithms IAKA
and ISKA show incredible performance, as compared to the existing algorithms.
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In Table 13, when the value of k is 10 on MPSEC 100M dataset then the infor-
mation loss of IAKA and ISKA is 12.8 and 14 percent, and when the value of k
is 640 the information loss of IAKA and ISKA is 21.91 and 24.58 percent, respec-
tively. In the case of existing algorithms MRA and SKA in the same table, when
the value of k is 10 on MPSEC 100M dataset then the information loss is 27.12
and 19.41 percent, and when the value of k is 640 the information loss is 45.01
and 41.47 percent, respectively. It is clear that as data size increases, information
loss decreases due to the large crowd effect. It is also observed that IAKA out-
performs ISKA, MRA and SKA in terms of information loss. ISKA also presents
remarkable improvements in terms of information loss as compared to existing meth-
ods.

In Table 14, there is a considerable difference in the information loss of our pro-
posed IAKA and ISKA algorithms with streaming data FADS and FAST algorithm.
This is because the FADS and FAST algorithms fail to take full advantage of the
entire data, because of their inability to merge the values across big data chunks.
Typically, a larger difference is expected if the data is split into more chunks. An-
other drawback of a FAST algorithm for anonymizing data is that it takes super
parent node for replacement instead of the current parent node for categorical at-
tribute to enhance time which results in high information loss. The drawback of
MRA and SKA also is high information loss. Among IAKA and ISKA, IAKA has
less information loss than that of ISKA because, in ISKA, the size of each cluster
has to be the same and in order to satisfy this property it sometimes has to com-
promise over the nearness of the tuples in the cluster which is otherwise done for
less information loss in the anonymized data. On the other hand, the IAKA does
not impose any condition on the size of the cluster but concentrates more on the
nearness of the data in the cluster that results in less information loss. Another ef-
ficiency of proposed IAKA and ISKA of IKA model is using the MDTDG technique
for categorical attributes, so information loss rate decreased. The proposed algo-
rithms also utilize the large crowd effects, i.e. the same amount of privacy applied
to larger dataset. It is also able to achieve low information loss and privacy-utility
trade-off.

Value of Information Loss in Percentage
k MRA SKA IAKA ISKA

10 33.4 29.84 18 21
20 38.57 32.08 20 22.4
40 41.72 36.12 21.32 23.6
80 44.08 38.27 23.87 24.74

160 47.40 39.9 25.18 25.75
320 51.81 41.87 26.43 27.88
640 54.40 44.87 27.39 28.97

Table 11. Information loss comparison of MRA, SKA, IAKA, and ISKA on MPSEC 1M
dataset
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Value of Information Loss in Percentage
k MRA SKA IAKA ISKA

10 31.2 25.9 15.28 17.89
20 36.01 29.8 17.87 19.72
40 39.92 34 19.08 21
80 42.02 36 20.87 22.57

160 44.08 37.01 21.84 23.27
320 46.09 39.84 22.70 24.89
640 48.80 41.08 24.18 25.07

Table 12. Information loss comparison of MRA, SKA, IAKA, and ISKA on MPSEC 10M
dataset

Value of Information Loss in Percentage
k MRA SKA IAKA ISKA

10 27.12 19.41 12.8 14
20 32.5 24.05 13.49 16.72
40 37.61 30.58 16.19 19.29
80 40.8 32.41 18.09 21.08

160 43.21 38.48 19.18 22.39
320 44.75 40 20.04 23.68
640 45.01 41.57 21.91 24.58

Table 13. Information loss comparison of MRA, SKA, IAKA, and ISKA on MPSEC 100M
dataset

4.3.1 Comparison of IAKA and ISKA Algorithms with Existing Batch
Data Anonymization Algorithms MRA and SKA

The average information loss on 1M, 10M and 100M MPSEC datasets are depicted
in Figures 10, 11 and 12, respectively. As can be seen in the figures, both IAKA
and ISKA outperformed SKA and MRA. SKA outperformed MRA [35, 36]. The
reason is that the former algorithm uses the proactive heuristic variable to maintain

Value of Information Loss in Percentage
k FADS FAST IAKA ISKA

10 38 31 18 21
20 42 33.4 20 22.4
40 47 35.8 21.32 23.6
80 49 39.2 23.87 24.74

160 51 43 25.18 25.75
320 57 45.5 26.43 27.88
640 65.3 51 27.39 28.97

Table 14. Information loss comparison of FADS, FAST, IAKA, and ISKA on MPSEC 1M
dataset
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the relativity of the data to the situation. As the size of dataset increases the
information loss decreases due to large crowd effect.

Figure 10. Information loss of MRA, SKA, IAKA, and ISKA on MPSEC 1M dataset

Figure 11. Information loss of MRA, SKA, IAKA, and ISKA on MPSEC 10M dataset
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Figure 12. Information loss of MRA, SKA, IAKA, and ISKA on MPSEC 100M dataset

4.3.2 Comparison of IAKA and ISKA Algorithms with Existing Stream
Data Anonymization Algorithms FADS and FAST on Synthetically
Generated Stream Data

The average information loss on 1M synthetic MPSEC stream data is depicted in
Figure 13. As can be seen in the figure, IAKA and ISKA perform better than
FADS and FAST. FAST outperformed FADS [31, 32]. Here for stream data, we are
comparing only till 1M dataset as no other previous papers have considered dataset
over that size. Here also, IAKA performs better than ISKA and the reasons are the
same as mentioned in Section 4.3.1.

4.4 Comparison of Proposed Algorithms Using Different Datasets

Proposed IKA and ILD algorithms have also been applied to adult dataset [37]
and poker dataset [38]. Tables 15 and 16 show the comparison of proposed IAKA
and ISKA algorithms used with different datasets (adult dataset, poker dataset)
of 10M size. The proposed IAKA and ISKA and the existing methods, MRA
and SKA, are implemented in the same experiment environment using different
dataset, i.e. adult dataset and poker dataset. In this experiment, anonymity de-
gree k is set to 80, i.e. most widely used value, and the diversity level l is set
to 6. Table 15 represents the running time comparison of MRA, SKA, IAKA,
and ISKA on different datasets in which the performance of ISKA is best with
all three datasets. Both the proposed algorithms of IKA have an optimum time
complexity, i.e. only O(n), and the reason is already discussed in Section 4.2. The
major drawbacks of MRA are multiple iterations and file management, and as the
number of iterations increases performance decreases. In addition, the time com-
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Figure 13. Information loss of FADS, FAST, IAKA, and ISKA on MPSEC 1M dataset

plexity of the MRA is very high, i.e. O(n2). The time complexity of the SKA
algorithm is O(n log n). Lack of diversity and high information loss are the ma-
jor drawbacks of SKA. Table 16 represents information loss comparison of MRA,
SKA, IAKA, and ISKA on different datasets, in which performance of IAKA is
the best with all three datasets because IAKA concentrates more on the nearness
of the data in the cluster and it does not impose any condition on the size of the
cluster that results in less information loss. ISKA also shows the significant re-
duction in information loss because both algorithms of IKA model use MDTDG
technique for categorical attributes and also utilize the large crowd effects. So both
algorithms of IKA are able to achieve low information loss and privacy-utility trade-
off.

Name of Running Time in Seconds
Dataset MRA SKA IAKA ISKA

Adult Dataset [38] 7 135 3 415 1 975.2 1 916.3
Poker Dataset [37] 6 830 3 329 1 956.2 1 899.1
MPSEC Dataset 6 600 3 280 1 857.6 1 780.3

Table 15. Running time comparison of MRA, SKA, IAKA, and ISKA on different 10M
size datasets in seconds where value of k = 80

5 CONCLUSION

This paper addresses the issue of high information loss and high running time of
anonymization algorithms of big data. This paper proposed the IKA and ILD model
and applied them to the MPSEC dataset and successfully achieved high k-value
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Name of Information Loss in Percentage
Dataset MRA SKA IAKA ISKA

Adult Dataset [38] 47.31 40.16 21.95 23.89
Poker Dataset [37] 45.02 38.9 21.89 23.31
MPSEC Dataset 42.02 36 20.87 22.57

Table 16. Information loss comparison of MRA, SKA, IAKA, and ISKA on different 10M
size datasets in percentage where value of k = 80

(k value 1 523 in asymmetric, k value 1 283 in symmetric) with the maintained
diversity in the sensitive attribute. As shown in the experimental result, 100 per-
centage completeness has been achieved, that is the data was fully anonymized,
and the time complexity is O(n). ISKA proves to be more efficient since the run-
ning time is less when compared to IAKA and other existing algorithms FADS,
FAST, MRA and SKA. The running time has improved because the proposed IKA
and ILD algorithms takes fewer iterations and execute on the multi-node environ-
ment of big data. ISKA and IAKA algorithms have reduced remarkable information
loss in comparison with the existing methods FADS, FAST in case of stream data.
They are better than MRA and SKA in case of batch data and IAKA performs
best regarding the information loss. The proposed IKA and ILD models maintain
the privacy-utility trade-off. The improvement in this model is that rather than
anonymizing batch data and streaming data differently with a bunch of algorithms,
it is better to achieve the combined functionalities in the single algorithm. The pro-
posed IKA and ILD algorithms can also be applied to any datasets which require
privacy mechanism. These proposed algorithms are useful for healthcare, sensor
networks, online flight reservation systems, marketing and other commercial com-
panies to grow their business. As their database contains personal information,
it is vulnerable to provide direct access to researchers and analysts. Since in this
case the privacy of individuals is leaked, it can pose a threat and it is also ille-
gal. The future work for this approach is directed towards creating a new model
which deals with privacy issues of correlative data for big data publication pur-
poses.
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ilar microcontrollers. To accomplish these tasks a new tool called PN2ARDUINO
based on Petri nets is proposed which is able to communicate with the microcon-
troller. Communication with the microcontroller is based on the modified Firmata
protocol hence the control algorithm can be implemented on all microcontrollers
that support this type of protocol. The developed software tool has been success-
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1 INTRODUCTION

Development of various systems is a complex discipline that includes many activi-
ties, e.g. system design, specification of required properties, implementation, testing
and further development of the system [1]. As these operations are challenging and
important for the final product, it is appropriate and necessary to create a model
of the system [2, 3]. Development of control methods for discrete-event and hy-
brid systems belongs to modern trends in automation and mechatronics. A hybrid
system is a combination of continuous-time and discrete-event systems. Control
of such systems brings new challenges due to the necessity to join control meth-
ods of discrete-event systems (where the Petri nets formalism can be helpful) and
classic control methods of continuous-time systems [4]. With good methodology
and software modules, these approaches can be synergistically combined yielding
an appropriate and unique control system that allows harmonizing discrete-event
and continuous-time control methods (e.g. PID algorithms). Effective cooperation
of these approaches allows to control hybrid systems. This approach is useful in sys-
tems which require using different control algorithms (for example PID controllers
with different parameters) according to the state of the system. The concept of Petri
nets is capable to manage these control rules in a very efficient, robust and well-
arranged (graphical) way. This paper presents new Petri Net tools for modelling
and control of discrete-event and hybrid systems. Case studies dealing with control
of a laboratory fire alarm system and a DC motor are included.

In papers [5] and [6] authors deal with usage of hybrid and colour Petri nets for
modelling traffic on crossroads and on highways. From these authors, there are also
interesting projects in the field of manufacturing systems [7] and [8]. Unfortunately,
it is not mentioned whether the results are only theoretical models, or they were
simulated using an SW tool or deployed in practice.

An interesting software tool named Visual Object Net++ that supports hybrid
Petri nets was developed in [9]. There are many papers mainly from an author
of [10] and [11] describing capabilities of Visual Object Net++. However, this tool
is not open-source and has not been further developed.

The SW tool Snoopy [12] offers modelling based on many Petri nets classes like
stochastic, hybrid, colour, music Petri nets, etc. Using this tool, many types of
research in biology and chemistry are being solved. Unfortunately, the source code
is not available.

Coloured Petri nets are used for modelling of automated storage and retrieval
system in [13] and [14].

One of interesting research approaches is the Modelica language and the Open-
Modelica open-source tool. There is a library that supports modelling by Petri nets
in this tool. One of the advantages of OpenModelica is that a PN model can be
connected with other Modelica components. The first Petri net toolbox was in-
troduced in [15], its extension is described in [16]; an important addition (called
PNlib) including support of extended hybrid Petri nets for modelling of processes
in biological organisms is described in [17] and [18]. However, this tool was devel-
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oped primarily for the commercial tool Dymola and not for OpenModelica, so its
extensibility and applicability in scientific research are limited. In 2015, the team
that developed PNlib published a modified version of PNlib that partially worked in
OpenModelica. Unfortunately, it was not possible to use OpenModelica for control
purposes using microcontrollers because the COM port communication support was
missing.

The above survey has shown there is a lack of tools based on Petri net formalism
that support control of real systems. As a result, it was necessary to develop an orig-
inal solution for control of discrete and hybrid systems based on microcontrollers
using Petri nets formalism.

2 DESCRIPTION OF DEVELOPED SW TOOL PN2ARDUINO

As a basis for the newly-developed SW tool, the PNEditor was chosen [19]. This
tool is open-source. The developed extension of this tool is called PN2ARDUINO
and was fully tested in [20] and [21]. The main topic of this paper includes an
introduction to this developed software that can be used for control of discrete-event
and hybrid systems, and its verification on laboratory discrete-event and hybrid
systems.

Petri Net Logic in PC Petri Net Logic in Microcontroller

limited capability of real-time control real-time control

much more computation and memory re-
sources available

limited computation and memory re-
sources

code in microcontroller does not need re-
compiling

during development repeated compiling is
needed

PC must be still online independence of control unit

Table 1. Comparison of two concepts of system control using Petri nets

There are several Petri net-based control concepts. Petri net as a control logic
has to be connected with the controlled system (e.g. using a microcontroller). One
of the main aspects of the control system design is the question whether the Petri
net’s logic should be stored in the microcontroller or in the PC able to communicate
with the microcontroller. Both approaches have both advantages and disadvantages.

If the Petri net’s logic is stored in the microcontroller, the main advantage is
the control unit independence from the software application (program on a PC).
The Petri net logic is modelled using a PC, and then the Petri net is translated into
a program code which is loaded into the microcontroller. Afterwards, the PC and
the microcontroller can be disconnected. Another advantage is the capability of real-
time control. Disadvantages include limited computational and memory resources
of the microcontroller, need for repeated program compiling and its uploading into
the microcontroller (mainly during the development phase). The proposed solution
is shown in Figure 1.
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Computer Microcontroller
Petri net logic

Controlled
system

Figure 1. Basic scheme of proposed solution – Petri net’s logic in microcontroller

When the Petri net’s control logic is stored on a PC in a specialized SW ap-
plication, it is possible to control the system directly. In the microcontroller, only
the program with communication protocol is stored. This communication protocol
(in our case Firmata [22]) is used for communication between the PC and the mi-
crocontroller. This solution eliminates the necessity of recompiling and reuploading
the program during the development. The next advantage is the elimination of re-
strictions on computing and storage resources because a PC has almost unlimited
resources compared with a microcontroller. One of the disadvantages is that the
control system cannot respond in real time. The proposed solution is shown in
Figure 2. These differences are specified in Table 1.

Computer
Petri net logic

Microcontroller
Controlled

system

Figure 2. Basic scheme of proposed solution – Petri net’s logic in PC

New software module PN2ARDUINO is based on the second approach. The
Petri net runs on a personal computer. For communication between SW application
and microcontroller, the Firmata protocol [22] has been used. Firmata is a pro-
tocol designed for communication between a microcontroller and a computer (or
a mobile device like smartphone, tablet, etc.). It is based on MIDI messages [23].
This protocol can be implemented in firmware of various microcontrollers; mostly
Arduino-family microcontrollers are used. On the PC, a client library is needed.
These libraries are available for many languages like Java, Python, .NET, PHP,
etc.

On the Arduino side, the Standard Firmata 2.3.2 version is used, the client
application on the PC is based on Firmata4j 2.3.3 library which is programmed in
Java. The advantage of using Firmata consists in the possibility of using another
microcontroller compatible with Firmata.

PN2ARDUINO extends PNEditor with many features. For Petri nets modelling,
there is a possibility of adding time delays to transitions, and capacity for places.
Also, the automatic mode of transitions firing was added for automatic control
purposes as the only manual mode is available in PNEditor.

In PN2ARDUINO, a new module is added to PNEditor to enable communi-
cation with the compatible microcontroller. This module consists of two parts.
The first part establishes connection with the microcontroller by setting the COM
port where the microcontroller is connected. The second part provides a capability
of adding Arduino components to Petri net places and transitions. The following
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User

Adding of a
transition to

the net

Adding of time

delay to the
transition

Start
automatic

mode

Adding of PWM
output

Adding of
servo

Adding of

message
sending

capability

Adding of custom
SYSEX message

sending capability

«extend»

«extend»

Figure 3. PN2ARDUINO – use-case diagram

types of Arduino components are supported: digital input and output, analog in-
put, servo control, PWM output, message sending, and custom SYSEX message [22]
sending.

The use-case diagram of the developed SW tool is depicted in Figure 3, and the
class diagram is shown in Figure 4.

As it was stated, transitions and places can be associated with Arduino compo-
nents. Digital and analog inputs serve as enabling conditions for Petri net transi-
tions. Digital and PWM outputs and messages are used as executors of the respective
actions.

The interesting functionality is the capability of sending custom SYSEX mes-
sages. The user has to enter a SYSEX command (0x00 - 0x0F) and optionally
also the content of the message. The message is sent when the token comes to the
place or when the transition is fired. SYSEX messages have been used e.g. in the
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«interface»

Subject

+ registerArduinoListeners (arduinoListener : ArduinoListener)

+ removeArduinoListener (arduinoListener : ArduinoListener)

+ notifyArduinoListeners (sourcePlaces : List<Node>, transition :

Node, destinationPlacse : List<Node>)

+ notifyArduinoListenersPhase1 (sourcePlaces : List<Node>,

transition : Node)

+ notifyArduinoListenersPhase2 (transition : Node,

destinationPlaces : List<Node>)

Marking

+ registerArduinoListeners (arduinoListener : ArduinoListener)

+ removeArduinoListener (arduinoListener : ArduinoListener)

+ notifyArduinoListeners (sourcePlaces : List<Node>, transition :

Node, destinationPlacse : List<Node>)

+ notifyArduinoListenersPhase1 (sourcePlaces : List<Node>,

transition : Node)

+ notifyArduinoListenersPhase2 (transition : Node,

destinationPlaces : List<Node>)

«interface»

ArduinoListener

+ update (sourcePlaces : List<Node>, transition : Node,

destinationPlaces : List<Node>)

+ updatePhase1 (sourcePlaces : List<Node>, transition :

Node)

+ updatePhase2 (transition : Node, destinationPlaces :

List<Node>)

ArduinoController

+ update (sourcePlaces : List<Node>, transition : Node,

destinationPlaces : List<Node>)

+ updatePhase1 (sourcePlaces : List<Node>, transition :

Node)

+ updatePhase2 (transition : Node, destinationPlaces :

List<Node>)

ArduinoComponent

# type: ArduinoComponentType

# settings: ArduinoComponentSettings

# arduinoManager: ArduinoManager

+ activate ()

+ deactivate ()

+ fire ()

+ isEnabled (): boolean

RootPflow

# arduinoListeners:

ArrayList<ArduinoListener>

+ getArduinoListeners ():

ArrayList<ArduinoListener>

«use»

«call»

Figure 4. PN2ARDUINO – class diagram

proposed hybrid control example in the last section of this article. Here, the SY-
SEX message notifies the microcontroller that a different PID control algorithm is
to be used. Then the PID algorithm is switched, and the controlled system remains
stable.

A main window of PN2ARDUINO consists of a quick menu, main menu, canvas
for Petri net modelling and log console. PN2ARDUINO supports two modes –
a design mode and a control mode, the control mode can be manual or auto-
matic.

Firstly, it is necessary to initialize communication with Arduino (Setup board

in the menu). Then it is possible to add Arduino component to the place or to the
transition (Figure 5). The example of analog input is shown in Figure 6.

Time politics are also supported – it is possible to add time delay to the transi-
tions which can be deterministic or stochastic.
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Figure 5. PN2ARDUINO – adding of Arduino component

Figure 6. PN2ARDUINO – analog input

3 CASE STUDY: CONTROL OF LABORATORY
DISCRETE-EVENT SYSTEM

For verification of the developed software tool and discrete-event systems control
method it was necessary to design a laboratory model of such a system. A fire
alarm model was built. The scheme can be seen in Figure 7.

The fire alarm model consists of an active buzzer, photo-resistor, three resistors
and an NPN transistor. The NPN transistor is mandatory for active buzzer connec-
tion. The LED of Arduino in pin 13 is also used. A photo-resistor was used instead
of a smoke sensor to simplify the experiment.

Next, the behaviour of the system has to be defined. When the photoresistor
detects an excessive lighting (experimentally determined as an input value greater
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Figure 7. The scheme of laboratory model of fire alarm

than 799 on the analog pin of Arduino Uno which resolution is from 0 to 1 023)
the intermittent tone of the buzzer is turned on. This tone alternates with LED
lighting. When the value on the analog pin drops below 800, the sound and light
effects stop. This is repeated cyclically.

p1 - alarm does not detect fire p2 - fire alarm is active

p3 - fire alarm is active

t1 - alarm is turned on

t5 - alarm is turned off

t4 - alarm is turned off

t2 - alarm makes a noise
t3 - signal light blinks

Figure 8. PN for fire alarm (initial marking)

Initial marking of modelled timed Petri Net interpreted for control (or sometimes
called as interpreted timed Petri net) in PN2ARDUINO is shown in Figure 8.
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Places of the Petri net (Figure 8 – Figure 10) correspond to the following states:

• p1 – alarm does not detect fire,

• p2 and p3 – alarm is active (fire was detected).

Transitions of Petri net (Figure 8 – Figure 10) correspond with the following
actions/events:

• t1 – alarm is turned on,

• t2 – alarm makes a noise,

• t3 – signal light blinks,

• t4 and t5 – alarm is turned off.

The token in place p1 corresponds to the state when the fire alarm is not activated
because the photo-resistor has not detected the light intensity threshold.

p1 - alarm does not detect fire p2 - fire alarm is active

p3 - fire alarm is active

t1 - alarm is turned on

t5 - alarm is turned off

t4 - alarm is turned off

t2 - alarm makes a noise
t3 - signal light blinks

Figure 9. PN for fire alarm (t1 is fired)

When a value greater than 799 is detected on the analog pin of Arduino, the
transition t1 is fired. This transition is associated with Arduino component Analog
Input where the range of input values is set. The transition is enabled depending
on this range.

p1 - alarm does not detect fire p2 - fire alarm is active

p3 - fire alarm is active

t1 - alarm is turned on

t5 - alarm is turned off

t4 - alarm is turned off

t2 - alarm makes a noise
t3 - signal light blinks

Figure 10. PN for fire alarm (t2 is fired)
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In Figure 9, the token is in the place p2. Transition t2 is associated with Arduino
component Digital Output (pin 8 in this case) where the buzzer is connected. This
transition has also associated the function of a time delay (2 seconds) which means
that the transition firing (and buzzer sound effect) lasts for 2 seconds.

In Figure 10, the token is in the place p3 (Figure 10). Transition t3 is associated
with Arduino component Digital Output (pin 13 in this case) where the build-in
LED is connected. The time delay is set to 1 second, i.e. the LED diode is turned
on for 1 second.

This process is repeated cyclically, and it stops when the value on the analog
pin drops under 800. Then the transition t4 or t5 is fired and the token moves to
the place p1 when the fire alarm does not detect the fire.

We can conclude that the ability of discrete-event control with PN2ARDUINO
was successfully verified and can be generalized for other applications.

4 CASE STUDY: CONTROL OF LABORATORY HYBRID SYSTEM

To verify the proposed software tool for hybrid systems control it was necessary to
find an appropriate laboratory model. A DC motor with encoder was chosen; its
parameters are in Table 2. An incremental encoder is used to measure speed for the
feedback. The measured speed of the DC is the process value.

Actuators Conditions

Rated voltage 6.0 V (DC)

Humidity range 0 %–90 %

Temperature range −20 ◦C ∼ +60 ◦C

No-Load Characteristics

No-load current ≤ 200 mA

No-load speed 185± 10 % rpm

Load Characteristics

Rated load 0.0883 N.m

Rated current ≤ 550 mA

Rated speed 135± 10 % rpm

Starting torque 0.4413 N.m

Locked-rotor current ≥ 2.0 A

Table 2. Specification of DC motor

The DC motor was connected to Arduino Uno using a motor shield module
based on dual full bridge driver L298. Using the motor shield, it is possible to
independently control speed and direction of rotation of the DC motor. For speed
measurement the hardware interruptions functionality of Arduino Uno has been
used.

The speed of the motor is set by a pin denoted “PWM A”. When the input
is set to “PWM = 255” the Arduino program shows 186 rpm which approximately
corresponds with parameters as stated by the manufacturer.
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The next step was measurement of the steady state I/O characteristics. The
input (armature) voltage ranges from 0 V to 5 V which corresponds to a PWM
signal from 0 to 255 (8-bit resolution), the sampling period was chosen – 0.05 s.

The resulting steady state I/O characteristics is in Figure 11.

u
PWM

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

y
 [

]
rp

m

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

Steady state I/O characteristics

Figure 11. Steady state I/O characteristics of DC motor

To be able to use linear dynamic models, the working points had to be chosen
from linear parts of the I/O characteristics. Two working points have been chosen
(uP1 ,yP1) and (uP2 ,yP2) where:

uP1 = 80→ yP1 = 140 rpm, (1)

uP2 = 170→ yP2 = 174 rpm. (2)

Since the controller has been designed for a real system (fast dynamics, large
noise, uncertainties), the controller parameters were tuned using practice-oriented
design methods. The designed PID controller was implemented using the Arduino
PID Library [24]. Creation of a PID class object has the following syntax:

• PID (&Input, &Output, &Setpoint, Kp, Ki, Kd, Direction)

– Input: controlled variable (double), rpm of the motor

– Output: control variable (double), in this case input voltage – PWM (0–255)

– Setpoint: setpoint (double), desired rpm of the motor

– Kp, Ki, Kd: tuning parameters (double >= 0)
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– Direction: Either DIRECT or REVERSE – determines which direction the
output will move when faced with a given error.

GR GP

Arduino

y ( )velu ( )Outputew ( )Setpoint

-
PID Process

Figure 12. Block diagram of PID controller in a feedback loop

The closed-loop scheme is in Figure 12. The monotype font was used for variables
names in the Arduino program. The Setpoint is the desired speed (rpm). Due to
the used data type in the Arduino program (long), multiples of ten of the setpoint
are used. Using an extra order enables to deal with an equivalent of a number with
one decimal place. Output is the control variable ranging between 0 and 255 (8 bits)
corresponding to the input voltage between 0 V and 5 V (PWM 0–255).
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Figure 13. Step response (closed loop) – 2nd working point

Experiments showed that designing an effective PID controller for higher speeds
(2nd working point: ω = 176 rpm) is not complicated. A satisfactory control perfor-
mance can be achieved by tuning individual PID controller parameters.

GR = P +
I

s
+ Ds. (3)
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However, it was not so easy to design an effective controller in the 1st working
point (ω = 140 rpm); mostly, the closed-loop system was not stable. Hence, lower
P and I values had to be used. It was expected that this controller will be effective
also in the 2nd working point however with a worse performance (too long settling
time). To switch between different control algorithms in individual working points,
the proposed software for control of hybrid systems using Petri Nets can be used.

For the 2nd working point, a PID controller with parameter values P = 0.83;
I = 5; D = 0.005 was designed. The closed loop step response is shown in Fig-
ure 13 whereby a PWM step from 176 to 186 was realized in t = 5 s. The settling
time is 1.1 s (considering a tolerance ±2 rpm). This controller was tested also in
the 1st working point (for a step from 140 rpm to 146 rpm). It is obvious from
the corresponding step response in Figure 14 that this controller does not provide
a satisfactory performance.
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Figure 14. Step response (closed loop) – 1st working point – with inappropriate controller

Hence, for the 1st working point a different PID controller was designed with
P = 0.0001; I = 1; D = 0.01. The closed loop step response in Figure 15 shows
that the controller works properly (the settling time is 1.3 s). When applied in the
2nd working point, this controller again did not work properly, as expected (larger
settling time achieved with a PID controller with smaller P and I). The achieved
performance evaluated from the step response in Figure 16 is worse compared with
the 1st controller (P = 0.83; I = 5; D = 0.005), the settling time 2.75 s is much
larger than in case of the first controller (1.1 s).

The analysis of the achieved results revealed the necessity to use different con-
trollers in individual working points, or to design the controller using some ad-
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Figure 15. Step response (closed loop) – 1st working point – under PID controller

vanced control design approach (robust, gain scheduled, switched). In case of
switching between multiple controllers according to the working point it is pos-
sible to use the developed software module PN2ARDUINO. Switching between
controllers and setpoints is based on SYSEX messages. Arduino and other mi-
crocontrollers that support Firmata protocol can be used. Development and ver-
ification of this software module are the most interesting results of the presented
research.

A demonstration example of the proposed control method is in Figure 17. Con-
sider the above-mentioned DC motor which has to operate in two modes (working
points). For effective setpoint tracking by the DC motor speed, controllers with dif-
ferent parameters have to be used (a different controller for each mode). Switching
between individual working points is carried out using a potentiometer connected to
the analog input of the Arduino Uno microcontroller. Switching between controllers
is provided by transitions switch1 and switch2 of Petri net according to the input
value from the potentiometer. Input from the analog pin in Arduino is represented
by a value ranging between 0 and 1023. The mean value (512) was used as a thresh-
old. In the moment when the token in Petri net is moved to the places setpoint1 or
setpoint2, a SYSEX message is sent. This message ensures the execution of a user-
defined program code on the Arduino side, in this case the control algorithm. The
(PID) algorithm for continuous-time control is independent of Firmata messaging,
so it provides real-time control. The provided hybrid systems control case study is
a basic example. Researchers in hybrid control design can use it for different and
even more complicated scenarios.
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Figure 16. Step response (closed loop) – 2nd working point – under inappropriate con-
troller

setpoint1 setpoint2

send SYSEX message 0x00:

setpoint = speed_1;

set_pid_mode = pid_1;

send SYSEX message 0x01:

setpoint = speed_2;

set_pid_mode = pid_2;

switch2

switch1

if analog_input<513

if analog_input>512

Figure 17. Control scheme for hybrid system using PN2ARDUINO

5 CONCLUSIONS

The paper presents a new software tool PN2ARDUINO extending the PNEditor to
communicate with microcontrollers that support the Firmata protocol. This allows
controlling discrete-event and hybrid systems using timed interpreted Petri nets with
the developed software tool. The developed SW tool supports the control paradigm
when in the microcontroller only the communication protocol is implemented. Petri
nets control logic is stored in the computer which communicates with the micro-
controller and sends control comands. The main advantage of the developed SW
tool is a possibility to control complex discrete-event and hybrid systems using the
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benefits of Petri nets formalism which can support many challenging scenarios. The
next research will focus on the concept of Petri nets based control with the control
logic directly implemented in the microcontroller.
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[10] Drighiciu, M. A.—Manolea, G.: Application des Reseaux de Petri Hybrides
a l’Etude des Systemes de Production a Haute Cadence. 2010 (in French).

[11] Drighiciu, M.—Cismaru, D.: Modeling a Water Bottling Line Using Petri Nets.
Annals of the University of Craiova, Electrical Engineering Series, 2013, No. 37,
pp. 110–115.

[12] Rohr, C.—Marwan, W.—Heiner, M.: Snoopy – A Unifying Petri Net Frame-
work to Investigate Biomolecular Networks. Bioinformatics, Vol. 26, 2010, No. 7,
pp. 974–975, doi: 10.1093/bioinformatics/btq050.
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Abstract. This paper deals with the issue of geometry representation of voxelized
three-dimensional scenes using hierarchical data structures. These include pointer-
less Sparse Voxel Octrees that have no pointers on child nodes and allow a compact
binary representation. However, if necessary, there is a possibility to reconstruct
these pointers for rapid traversing. Sparse Voxel Directed Acyclic Graphs added
32-bit pointers to child nodes and merging of common subtrees, which can be con-
sidered lossless compression. By merging common subtrees, no decompression over-
head occurs at the time of traversing. The hierarchical data structure proposed
herein – the Pointerless Sparse Voxel Directed Acyclic Graph – incorporates the
benefits of both – pointerless Sparse Voxel Octrees (by avoiding storing pointers on
child nodes) and Sparse Voxel Directed Acyclic Graphs (by allowing the merging
of common subtrees due the introduction of labels and callers). The proposed data
structure supports the quick and easy reconstruction of pointers by introducing the
Active Child Node Count. It also potentially allows Child Node Mask compression
of its nodes. This paper presents the proposed data structure and its binary-level
encoding in detail. It compares the effectiveness of the representation of voxelized
three-dimensional scenes (originally represented in OBJ format) in the proposed
data structure with the data structures mentioned above. It also summarizes sta-
tistical data providing a more detailed description of the various parameters of the
data structure for different scenes stored in multiple resolutions.

Keywords: Lossless data compression, sparse voxel octrees, SVO, sparse voxel
directed acyclic graph, SVDAG, pointerless sparse voxel directed acyclic graph,
PSVDAG, symmetry-aware sparse voxel directed acyclic graph, SSVDAG
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1 INTRODUCTION

The initial motivation for volumetric data representation was the need to process
and visualize three-dimensional scientific, medical, and industrial data. Volume
datasets are mostly spatially uniform, regular grids of scalar or vector values. They
may be obtained through the acquisition using specialized appliances that fit for this
purpose or represent the results of simulations or calculations. Computed Tomog-
raphy (CT), MicroCT, or Magnetic Resonance Imaging (MRI) are devices suitable
for data acquisition in medical applications. As far as the industries are concerned,
Industrial Computed Tomography can be a source of data for assembly inspection
and measurements, flaw detection, failure analysis, or reverse engineering. Vox-
elized polygonal three-dimensional models may act as another, often used, source of
volume data.

As the development of volumetric data visualization continued (including the
development of hardware to support it), its employment has also shifted to com-
puter graphics, visual arts, and computer-based entertainment, including computer
games, augmented or virtual reality. Volume rendering is also widely used in the
movie industry. Notable examples of volumetric graphic visualization include the
motion pictures XXX, Lord of the Rings, The Day After Tomorrow, Pirates of the
Caribbean, or The Mummy [1]. The advantages of voxelized graphics include the
possibility of implementing effects such as smoke, fog, snow, fire, and more.

Complex voxelized three-dimensional scenes, even taking only the geometry of
the scene into account, can represent a significant amount of data. An example may
be the geometry of a scene having a resolution of 64K3 (65 536 × 65 536 × 65 536)
voxels. Using a regular three-dimensional grid of 1 b per voxel for its representation,
up to 32 TB of space is required to store it in an uncompressed form. Processing
this type of data in its uncompressed form may be inefficient. If the goal is the
real-time or interactive processing, requiring the storage of the entire amount of
data in the computer’s memory or the graphics card, this task may not be fea-
sible. Especially when reasonable hardware resources and off-the-shelf hardware
solutions are required. That is why significant effort is devoted to developing more
compact representations of voxelized three-dimensional data (with lossless compres-
sion).

In this context, various data structures have emerged over the decades of devel-
opment. Hierarchical data structures based on octant trees have gained considerable
popularity. Among other advantages, they allow the efficient work with empty sub-
spaces or an implicit Level of Detail (LOD) mechanism. A more comprehensive
overview of GPU-friendly volume data representation and rendering is available
in [2].

Sparse Voxel Octrees (SVO) are used as a hierarchical data structure to represent
the geometry of voxelized three-dimensional scenes. SVO allows carving out empty
suboctants, i.e., those containing no active voxels.

In 2013, with the emergence of Sparse Voxel Directed Acyclic Graphs (SVDAG),
GPU friendly directed acyclic graphs with Common Subtree Merging (CSM) were
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introduced. In this concept, a fully developed instance of the particular subtree,
referenced (multiple times) by child node pointers, replaces two or more identical
subtrees. CSM can be considered a lossless compression of the hierarchical data
structure. In 2016, a GPU friendly Symmetry-aware Sparse Voxel Directed Acyclic
Graphs (SSVDAG) emerged. SSVDAG added the CSM option, provided that trans-
formations of these subtrees – namely reflective symmetry transformation – are used.
SSVDAG allows further modification of the data structure – clustering leaf nodes,
to form 43 grids of voxels – for further increase of the compression ratio.

On the other hand, in this context, it is necessary to observe how this data com-
paction manifests itself in the use of the data structure. The decompression overhead
must be as small as possible. The reason is the need for on-the-fly decompression
during traversing. This issue may also be considered a trade-off between the size of
the binary representation of the data and the time it takes to perform operations.
Data optimization performs data compaction while preserves the previous service
functionality [3].

Modifying the presence, structure, and length of the binary representation of
pointers to the child nodes is another factor that can reduce the size of the data
structures mentioned above. An example is the SSVDAG data structure having
0, 16, and 32-bit pointers, which is a refinement over the previous SVDAG data
structure, only having 0 and 32-bit pointers. On the other hand, pointerless SVOs
have no pointers at all.

In this work, the authors attempted to create a hierarchical data structure with-
out any pointers on child nodes. Therefore it will be significantly more compact than
SVDAG and, considering the way of encoding information about the decomposition
of individual suboctants, approaching pointerless SVO. On the other hand, like
SVDAG, it will enable compaction of the data structure via the CSM, even without
the presence of child node pointers, using labels and callers with a compact variable
length of their binary representation, introduced in this paper. Frequency-based
compaction will promote further compacting of labels and callers. Additional in-
formation facilitates the reconstruction of child node pointers into a form allowing
quick and efficient traversal.

In more modern hierarchical data structures, the number of mask bits of poten-
tial child nodes increases from 1 b to 2 b, increasing the length of the Child Node
Mask from 8 b to 16 b. Therefore a further goal was to investigate the possibility of
compacting the Child Node Mask (CHNM) of the respective nodes. Pointers opti-
mization offers the potential to rationalize the binary representation of this part of
the hierarchical data structure node.

The contribution hereof lies in the following:

• the design of a Pointerless Sparse Voxel Directed Acyclic Graph (PSVDAG)
hierarchical data structure allowing a compact pointerless representation of the
geometry of three-dimensional scenes;

• the implementation of common subtrees merge with the absence of child node
pointers at the same time. Introduction of the concept of labels and callers that
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are replacing particular pointers of the hierarchical data structure, is enabling
the CSM;

• the length optimization of the binary representation of labels and callers, using
variable-length and frequency-based compaction;

• the introduction of Active Child Node Count information to facilitate and ac-
celerate pointers reconstruction;

• the introduction of a variable-length representation of Child Node Mask, with
potential lossless compression.

The structure of the paper is as follows:

Section 2 of the paper deals with the linearization of multi-dimensional data us-
ing space-filling curves and hierarchical data structures designed for compact
representation using lossless compression. Due to the vast number of papers
published in this field, this section contains only a selection of works related to
the work presented herein.

Section 3 hereof contains an overview of the features, advantages, disadvantages,
and explanation of binary-level representations of pointerless SVO and SVDAG.
Their favorable properties also represent the benefits of the work described
herein.

Section 4 introduces the proposed Pointerless Sparse Voxel Directed Acyclic Graph
(PSVDAG) hierarchical data structure, along with a detailed description of its
properties, including the concepts of Labels/Callers, variable child node mask
length and active child node count, introduced in this work. There is also
a detailed description of its binary-level representation.

Section 5 of the paper summarizes the results of tests performed on voxelized 3D
scenes with the geometry stored as pointerless SVO, SVDAG, and PSVDAG.
Section intends to test the storage efficiency of the data structure proposed in
this paper. The examination of the influence of the use of z-order and Hilbert
space-filling curves takes part in this section of the paper. It also summarizes
sources of compression gains of PSVDAG, compared to SVO and SVDAG.

Section 6 summarizes the conclusions drawn from the evaluation of the test results,
which details the previous section of this paper.

2 RELATED WORKS

Due to the vast number of papers published in the field of space-filling curves and
hierarchical data structures designed to represent multi-dimensional data, this sec-
tion contains only a selection of publications closely related to the solution proposed
and presented herein.

Linearization of multi-dimensional grids of data. Peano and Hilbert pre-
sented Space-Filling Curves (SFC) at the end of the 19th century, later followed
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by Moore, Lebesgue, Sierpinski, and others [4, 5]. A very popular is the Hilbert
Space-Filling Curve (HSFC), introduced by David Hilbert in 1891 [6]. Computer
science often uses the Hilbert curve because of its better locality-preserving be-
havior. The Morton order introduced in 1966 [7], referenced as the Morton
sequence, the Morton code, or z-order curve, is often used for the linearized
representation of n-dimensional grids of data in computer graphics. As an ex-
ample of the usage of the z-order curve and Hilbert curve for the filling of
two-dimensional space to the different levels, see Figure 1.

a) To the first level b) To the second level c) To the first level d) To the second level

Figure 1. Linearization of two-dimensional space using space-filling z-order curve and
alternatively using Hilbert curve

Hierarchical representation of two dimensional data. The utilization of
quadtrees to represent images as trees is described in [8, 9, 10, 11]. A dis-
cussion on the possibility of using quadtrees for an efficient representation of
two-dimensional data using the technique of Common Subtree Merging (CSM)
is in [12]. In addition to the empty subsquares uniformly filled with passive
pixels, the referenced work also describes the use of subsquares homogeneously
filled with active pixels. An appropriate data structure, the Common Subtree
Merge Quadtree (CSM-Quadtree), has been created.

The two-dimensional template-based encoding (2DTE) technique, mentioned
in [13], was meant for the construction of quadtrees for the use in the car-
tography field. It represents the lossless compression based on the merging
of common subtrees with the use of template mapping and the Morton se-
quence. This approach extended to three-dimensional voxel data is mentioned
in [14].

Hierarchical representation of three-dimensional data. Octrees – a hierar-
chical data structure – serve to represent three-dimensional data for decades.
Works from the 1980s include Srihari [15], Rubin and Whitted [16], Jackins and
Tanimoto [17], Meagher [18, 19, 20]. In [21], the author focused on the use of
hierarchical data structures such as the octree to speed up the determination
of objects intersected by rays emanating from the viewpoint. An algorithm for
raytracing octrees consisting of volumetric data is in [22, 23].
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Sparse Voxel Octrees (SVO) is a hierarchical data structure designed to represent
three-dimensional scenes using octrees. SVO allows for a frugal representation
of empty subspaces – the subtrees associated with these empty subspaces are
not represented in the data structure.

The octree space decomposition is part of the compression method presented
in [24]. It is specialized for point-sampled models explicitly aimed at densely
sampled surface geometry.

In 2010, the Efficient Sparse Voxel Octrees (referenced in sources as ESVO),
a hierarchical data structure, was introduced in [25]. As an octree hierarchi-
cal data structure, it allows carving out empty spaces. It also removes entire
subtrees in case there is a possibility to use contour information. It is a rep-
resentation with a length of 32 b per node, consisting of a 24 b contour pointer
and an 8 b contour mask. This modification allows an increase of the geometric
resolution, allowing a more compact representation of smooth surfaces, while
accelerating ray casting.

In 2013, the Sparse Voxel Directed Acyclic Graph (SVDAG), a hierarchical data
structure, was introduced in [26]. SVDAG transforms sparse voxel octrees into
oriented acyclic graphs (DAG). This approach uses 8 b masks of child nodes to
represent the decomposition of octants to suboctants. The node representation
includes a variable number of 32 b pointers pointing to the locations of the
active child nodes. This data structure replaces multiple identical subtrees by
a single representation of such a subtree. It allows the application of common
subtree merging when several child pointers point to the root node of such
a subtree. The structure aligns the child node mask to 32 b with unused 24 b
(see Figure 2).

Figure 2. Original scene represented as the 2D grid of pixels (Scene) and as the Sparse
Voxel Octree (SVO), Sparse Voxel Directed Acyclic Graph (SVDAG) and Symmetry-aware
Sparse Voxel Directed Acyclic Graph (SSVDAG). Tx represents similarity transformation
along the axis x, Ty represents similarity transformation along the axis y.

In 2016, an evolution of the SVDAG hierarchical data structure, the Symmetry-
aware Sparse Voxel Directed Acyclic Graph (SSVDAG), appeared in [27]. This
data structure uses a 16 b child node mask. Each child node describes a 2 b
Header Tag (HT) and allows further data compression with a minimal impact
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on the decompression overhead. SSVDAG allows merging of common subtrees
that are identical when a similarity transformation – a reflection transforma-
tion in one or more main axes of a scene – is applied. Another benefit is the
use of frequency-based pointer compaction. It orders nodes in each layer of the
tree according to their referencing frequency – from the most to the least fre-
quently referenced nodes. The most commonly referenced nodes reside in an
area addressed by short, 16 b pointers with a 01 header tag. The less often
referenced nodes are in an area addressed by long, 32 b ones with a 10 header
tag. Extra-long 33 b pointers have an 11 header tag. A 3 b information – as
the part of the vector – is indicating the relevant similarity transformation, as
depicted in Figure 3. The last two levels of nodes are forming voxel grids of 43

voxels.

Figure 3. Symmetry-aware Sparse Voxel Directed Acyclic Graph (SSVDAG) binary rep-
resentation of inner nodes with short, long and extra-long pointers to the child nodes

In 2019, a small modification of the SSVDAG hierarchical data structure, the
SSVDAG*, was introduced in [28]. As part of this modification, pointers with
the header tag 11, which allowed 33-bit addresses and an indication of reflec-
tive transformations – were replaced with 16-bit ones with an identical header
tag without transformation indication. Compared to short 16-bit ones of the
SSVDAG, these allow an 8-fold increase in address space, provided there is no
need for reflective transformations. Thus, some long, 32-bit pointers become
16-bit, with the advantage that these point to more frequently referenced nodes.
Compared to SSVDAG, this allows further compression. On the other hand,
a reduction of the total addressable space occurs.

Out-of-core construction algorithms. Out-of-core construction of Sparse Voxel
Octrees from triangle meshes was introduced in [29] in 2013. The algorithm con-
sists of two basic steps. The first is a voxelization process. It transforms the
triangles representing the scene to the intermediate product – a high-resolution
three-dimensional voxel grid. In the second step, the transformation of this inter-
mediate product into Sparse Voxel Octree (SVO) occurs. The algorithm allows
the size of the binary representation of the input mesh of triangles, the output
SVO, and the intermediate product – a three-dimensional voxel grid generated
at a high resolution and represented by a Morton order – to exceed the avail-
able computer operating memory by far. Compared to the in-core algorithm,
it uses only a fraction of the memory while maintaining the use of comparable
time.
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3 HIERARCHICAL DATA STRUCTURES

This section presents a brief overview of pointerless Sparse Voxel Octrees (SVO)
and Sparse Voxel Directed Acyclic Graphs (SVDAG). It provides information about
their basic properties, advantages, disadvantages, and binary-level encoding.

3.1 Pointerless Sparse Voxel Octrees Overview

Sparse Voxel Octrees (SVO) are hierarchical data structures enabling the represen-
tation of a voxelized three-dimensional scene with a frugal way of encoding empty
subspaces. The SVO root node represents the entire three-dimensional scene. SVO
divides this space into eight octants and contains one bit for each of them. This
bit is set to 0 if the octant does not comprise any active voxels (i.e., the octant is
empty); thus, it will not decompose. This bit is set to 1 if the particular octant
contains at least one active voxel. If this active octant consists of more than a single
voxel, decomposition to suboctants follows recursively. The pointerless version of
SVO does not contain any pointers to child nodes.

a) A two-dimensional
pixel grid

b) An SVO in tree form

c) A binary representation of SVO
using parentheses to illustrate the
recursive decomposition of active
sub-quadrants

d) The final binary SVO rep-
resentation

Figure 4. An illustration of the SVO hierarchical data structure to simplify the example,
used to encode a two-dimensional pixel grid using a z-order curve for linearization

Figure 4 a) depicts a two-dimensional grid having 4 × 4 pixels, with the active
pixels indicated in red, and the inactive pixels in white. SVO hierarchical data struc-
ture, in the form of the tree, is shown in Figure 4 b). There are active quadrants 0
and 3, subsequently decomposed. The binary representation of the pointerless SVO
structure – with parentheses added to illustrate the decomposition points – is in
Figure 4 c). The final binary encoding of the pointerless SVO data structure for
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this pixel grid, is stated in Figure 4 d). In the hierarchical data structure, each
decomposition of the tree nodes generated four bits of information concerning the
potential child nodes. With three-dimensional voxel grids, there are 8 bits of eight
possible child nodes for each octant decomposition of the respective octant. Those
8 bits are forming the Child Node Mask (CHNM).

The advantage of the hierarchical data structure constructed as stated above is
its compact binary representation, since each node decomposition generated only
eight bits. Pointerless data structure has its advantage in the absence of pointers
to child nodes that represent vast amounts of data. In the most unfavorable case, if
there are all eight pointers to child nodes, using 32 bits per pointer, an additional
256 b would have to be allocated. The pointerless data structure constructed, as
stated above, is suitable for streaming or archiving purposes. The downside is in
its cumbersome and time-consuming traversing at the time of scene visualization.
Another disadvantage of such a data structure is that it does not allow the compact
representation using CSM.

3.2 Sparse Voxel Directed Acyclic Graph Overview

The Sparse Voxel Directed Acyclic Graph (SVDAG) is a hierarchical data structure
in the form of a directed acyclic graph. It consists of nodes containing child nodes
masks of these nodes and the corresponding pointers to child nodes. The node mask
is composed of 8 bits, assigned to the respective suboctants. A bit set to 0 represents
an empty suboctant, containing no active voxel. In this case, in the data structure,
the corresponding child node – including the child node pointer – is not present.
A bit set to 1 represents an active suboctant, containing at least one active voxel.
For such a suboctant, a child node is created in the data structure, referenced by the
corresponding node pointer. The concatenation of 24 unused bits aligns the mask
to 32 bits.

A block of pointers to the existing child nodes follows the node mask. Their
count is from the range 〈1; 8〉. Each one has 32 bits and points to a memory location
where a binary representation of the corresponding child node is stored. All node
parts and thus, each node and the whole data structure are aligned to 32 bits, as
shown in Figure 5 c). Multiple pointers of different but also the same node may
point to the same memory location. Therefore multiple identical subDAGs may be
represented by fully encoding only a single copy of subDAG, with several references
to it by child node pointers. SVDAG thus enables CSM.

The length of the SVDAG node binary-level representation l having n pointers
to child nodes can be calculated as

l = (n + 1)× 32 [b]. (1)

Compared to pointerless SVOs, the advantage of the SVDAG data structure lies
in the introduction of pointers to child nodes, which allows fast graph traversal when
processing and visualizing the scene. Another advantage is the possibility of merging
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common subtrees, through multiple references to a particular node by several child
node pointers. It allows significant compaction of the tree’s binary representation. It
is a compression method that does not reduce the speed of graph traversal, compared
to the version without common subtrees merging implementation.

a) A grid of voxels b) An SVDAG as a graph c) The final binary representation
of SVDAG

Figure 5. An example of the binary representation of three-dimensional space using
a Sparse Voxel Directed Acyclic Graph (SVDAG) and an z-order curve linearization

The disadvantage of the SVDAG data structure, in comparison to SVO, is that
it consumes large amounts of secondary storage or memory. Due to the unused
24 bits used for aligning the child node mask (CHNM) to 32 bits, compared to
the 8 bits of SVO. Another disadvantage may be the introduction of 32 b child
node pointers whose binary representation may be unnecessarily long – these are
not present in pointerless SVOs. However, this disadvantage compensates multiple
referencing to common subtrees. It can offset these disadvantages to the extent that
for a particular three-dimensional grid, the binary representation of an SVDAG may
be more compact than that of an SVO.

Figure 5 a) shows an example of a three-dimensional voxel grid, while Figure 5 b)
shows a Sparse Voxel Directed Acyclic Graph. The binary representation of SVDAG
shown in Figure 5 c), where the first node is decomposed and mask for its child nodes
is “00001001”, with two non-empty octants, represented by bits 1. For each non-
empty node, there is a 32-bit address (CHNA0 and CHNA3) pointing to the memory
location where the child node binary representation is stored. Since those nodes are
identical, both pointers are referencing the same address in memory. Another node,
referenced two times, has the mask “00001101”, i.e., it has three active octants.
That is why three addresses (CHNA0, CHNA2, and CHNA3) are present for the
child nodes (without actual addresses in this example).

4 POINTERLESS SPARSE VOXEL DIRECTED ACYCLIC GRAPH

The hierarchical data structure, the Pointerless Sparse Voxel Directed Acyclic Graph
(PSVDAG), proposed in this paper, is a directed acyclic graph. It represents a three-
dimensional grid of voxels R, organized as N×N×N voxels. R = N3, where N = 2n,
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n ∈ N. Each voxel is represented by 1 b, when active voxel is encoded by the value
‘1’ and passive voxel by the value ‘0’. For storing the grid R in uncompressed form,
there is a need for the space, which size S is:

S = 23n [b]. (2)

When represented by PSVDAG hierarchical data structure, the grid R men-
tioned above is encoded into nodes stored in n levels. Each level has a level mark
l with the value from the range of 〈0;n − 1〉. The root node is in the level, where
l = 0. Nodes stored in levels which level mark l ≤ n − 2 have the same structure,
described in the Section 4.1 – these are the Inner nodes. Leaf nodes, i.e., nodes
stored in the level l = n− 1, have a different structure, described in Section 4.2.

Formal description of the PSVDAG using Backus-Naur Form (BNF) is as follows:

PSVDAG ::= 〈NODE〉
NODE ::= 〈INODE〉 | 〈LNODE〉
INODE ::= 〈ACHNC〉〈CHNM〉
ACHNC ::= (3)〈BIT〉
CHNM ::= (1) ∗ (8)〈HT〉
HT ::= ”00” | ”01”〈LAB〉〈NODE〉 | ”10”〈CAL〉 | ”11”〈NODE〉
LAB ::= 〈SIZ〉〈VAL〉
CAL ::= 〈SIZ〉〈VAL〉
SIZ ::= (5)〈BIT〉
VAL ::= (1) ∗ (32)〈BIT〉
LNODE ::= (8)〈BIT〉
BIT ::= ”0” | ”1”

where following is applied:

• 〈SYM〉 – mandatory symbol SYM,

• ”sym” – terminal symbol sym,

• (n)〈SYM〉 – symbol SYM concatenated n times,

• (n) ∗ (m)〈SYM〉 – symbol SYM concatenated from n to m times,

• | – alternative,

• juxtaposition – the concatenation.

An example in Figure 6 is, for the sake of simplicity, based on the two-dimensio-
nal grid of 4 × 4 pixels. Related quadtree is constructed along with the PSVDAG,
using two different space-filling curves (z-order and Hilbert) for linearization.

Formal description of the PSVDAG for two-dimensional grid includes the fol-
lowing changes:

ACHNC ::= (2)〈BIT〉
CHNM ::= (1) ∗ (4)〈HT〉
LNODE ::= (4)〈BIT〉
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a) b)

c) d)

e) f)

g) h)

Figure 6. An example of a) 2D grid of pixels and z-order space-filling curve, b) related
SVDAG, c) PSVDAG, and, d) final binary representation of PSVDAG. An example of
e) 2D grid of pixels and Hilbert space-filling curve, f) related SVDAG, g) PSVDAG, and,
h) final binary representation of PSVDAG. ACHNC – Active Child Node Count, HTi –
Header Tag, LAB1 – Label, CAL1 – Caller, INODE – Inner Node, LNODE – Leaf Node.
SVDAG includes denotations LAB1 and CAL1 to describe the relationship to PSVDAG
construction better.
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4.1 Nodes

Node of the data structure represents grid R′ : R′ ⊆ R of voxels, where R′ = N ′3,
N ′ = 2m, m ∈ N ∧ m ≤ n. There is possibility to find t = N ′/2 and R′ can be
divided into 8 octants, forming the set OCT:

OCT = {oct0, oct1, oct2, . . . , oct5, oct6, oct7} (3)

where

oct0 = 〈0; t− 1〉 × 〈0; t− 1〉 × 〈0; t− 1〉,

oct1 = 〈t;N ′ − 1〉 × 〈0; t− 1〉 × 〈0; t− 1〉,

oct2 = 〈0; t− 1〉 × 〈t;N ′ − 1〉 × 〈0; t− 1〉,

oct3 = 〈t;N ′ − 1〉 × 〈t;N ′ − 1〉 × 〈0; t− 1〉,

oct4 = 〈0; t− 1〉 × 〈0; t− 1〉 × 〈t;N ′ − 1〉,

oct5 = 〈t;N ′ − 1〉 × 〈0; t− 1〉 × 〈t;N ′ − 1〉,

oct6 = 〈0; t− 1〉 × 〈t;N ′ − 1〉 × 〈t;N ′ − 1〉,

oct7 = 〈t;N ′ − 1〉 × 〈t;N ′ − 1〉 × 〈t;N ′ − 1〉.

Octants oct i ∈ OCT : i ∈ 〈0; 7〉 are ordered in the OCT set according to selected
space-filling curve.

When R′ = R; m = n, the root node of the PSVDAG is constructed.
When m > 1, the node is constructed as the Inner node INODE.
When m = 1, the node is constructed as the Leaf node LNODE.

4.2 Inner Nodes

Inner node consists of Active Child Node Count (ACHNC) followed by the Child
Node Mask (CHNM):

INODE ::= 〈ACHNC〉〈CHNM〉

4.2.1 Active Child Node Count

Inner node includes Active Child Node Count (ACHNC) information:

ACHNC ::= (3)〈BIT 〉

It is a 3-bit vector forming unsigned integer number that is referring to the
number of active child nodes of a given node. Active child nodes are those having
identification ‘01’, ‘10’ or ‘11’ in their HTs, that are part of Inner nodes Child Node
Mask (CHNM). An Inner Node cannot have 0 active child nodes, therefore count
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range is 〈1; 8〉. Decrementing the number of active child nodes by the value 1 allows
us to achieve the ACHNC range of 〈0; 7〉 to represent it on 3 bits. Thus, if the count
of active child nodes is c, the binary representation of ACHNC is set to an unsigned
integer of the value c− 1.

When sequentially browsing the HTs of the particular nodes CHNM from the
HT at position 0 (HT0) to the HT at position 7 (HT7), ACHNC allows us to identify
last active child node HTx in their sequence. All subsequent HT identifications, i.e.,
HTz : z > x must be set to ‘00’. It is possible to derive this information from
the ACHNC and the sequence of previous HTs. That is why there is no need to
represent HTz : z > x in the CHNM, and it is possible to omit them. It allows to
compress the CHNM (See Figure 7).

a) 7 HTs omitted

b) 4 HTs omitted

c) 0 HTs omitted

Figure 7. Examples of ACHNC and concatenated CHNM containing HTs (for simplicity
represented only by their identifications) indicate

There is an unfavorable side effect in the time of reconstructing the pointers or
converting PSVDAG to SVDAG. The individual HTs identifications in the CHNM
of the PSVDAG node, in general, do not form a continuous vector of bits in the
linearized binary representation. Therefore, the ACHNC has been added to the data
structure to facilitate and accelerate pointers reconstruction. When the processing
of a particular PSVDAG node begins, the ACHNC can be used to determine the
number of active child nodes of the SVDAG node. Subsequently, also to determine
the space needed to store related pointers. Another advantage is that there is
a possibility to determine when the last active child node HT has been processed
and immediately finish the node processing.

4.2.2 Child Node Mask

Child node mask consists of Header Tags (HT), HTi : i ∈ 〈0; 7〉, which are assigned
to octants octi ∈ OCT : i ∈ 〈0; 7〉 in ascending order. Encoding of the CHNM and
HT is as follows:
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CHNM ::= (1) ∗ (8)〈HT〉
HT ::= ”00” | ”01”〈LAB〉〈NODE〉 | ”10”〈CAL〉〉 | ”11”〈NODE〉

Passive child node HT. Octant oct i ∈ OCT : i ∈ 〈0; 7〉 is passive when it does
not contain any active voxels. The HT is, in that case, represented only by
identification symbol “00”. No further information follows (Passive child node
header tags can be omitted, as mentioned above in the Section 4.2.1).

Active child node HT. Octant oct i ∈ OCT : i ∈ 〈0; 7〉 is active when its grid
contains at least one active voxel.

If octant oct i ∈ OCT : i ∈ 〈0; 7〉 is not unique (in related SVDAG its node is
referenced by more than one pointer), and it will serve as the template, the HT
is represented by symbol “01”. Label LAB concatenates along with the NODE,
constructed for the grid of this octant.

If octant oct i ∈ OCT : i ∈ 〈0; 7〉 is not unique (in related SVDAG, there is
more than one pointer to this node), and it will not serve as the template, the HT
is represented by symbol “10”. Caller CAL concatenates.

If octant oct i ∈ OCT : i ∈ 〈0; 7〉 is unique (in related SVDAG, there is only one
pointer to this node), the HT is represented by symbol “11”. Binary representation
of the NODE constructed for the grid of this octant concatenates.

When octant oct i ∈ OCT : i ∈ 〈0; 7〉 is not unique (it is referenced in related
SVDAG x times), its binary representation in PSVDAG is fully developed only
once, when it is referenced by the assigned label LABd to which the octants NODE
is concatenated. The octant is further referenced x − 1 times using caller CALd.
Binary representation of LABd = CALd.

That is how the set P of x pointers to the particular common subDAG of SVDAG
is replaced by one label LABd followed by the binary representation of this subDAG
and x − 1 times by the caller CALd. The first used pointer from the set P , when
traversing SVDAG in Depth-First order, is replaced by a label followed by the binary
representation of subDAG. Caller will replace the other pointers from the set P . It
ensures that when traversing PSVDAG in the Depth-First order, the label LABd

will be used before any of occurrences of the caller CALd – see Figure 8.

4.2.3 Labels and Callers

Labels in the PSVDAG data structure identify the corresponding octants. Binary
encoding of the label is respecting the rules:

LAB ::= 〈SIZ〉〈VAL〉
SIZ ::= (5)〈BIT〉
VAL ::= (1) ∗ (32)〈BIT〉
BIT ::= ”0” | ”1”

SIZ is a 5-bit vector representing an unsigned integer from the range of 〈0 : 31〉.
Incremented by value 1, it is representing the number of bits of the concatenated
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VAL. Provided the SIZ is 0, the length of the binary representation of the VAL is
1 b.

VAL is the (SIZ + 1) – bit vector, that is representing unsigned integer value
from the range of 〈0; 2SIZ+1 − 1〉.

When set of labels is generated for the PSVDAG data structure, (for each level l
separately), the SIZ = 0 and VAL = 0, for the label LABi : i = 0. For each next
label the VAL is incremented by 1, until the value of the VAL = 2SIZ+1 − 1. For
next label VAL = 0 and SIZ is incremented by 1.

a) b)

c)

Figure 8. Example of a) two-dimensional grid of 8×8 pixels, b) SVDAG with denotations
of LABs and CALs for better description of c) PSVDAG

It is possible to have two different labels with the same SIZ and VAL values,
i.e., LABa and LABb, where SIZa = SIZb ∧ VALa = VALb, if those labels are
located in different levels l of the data structure. Provided there is l, SIZ, and
VAL concatenated, each label is unique in the data structure. There is no need to
represent level l value in the PSVDAG because it is possible to derive it from the
data structure in the traversing time.

Callers are constructed in the same way as the labels, using the rules:

CAL ::= 〈SIZ〉〈VAL〉
SIZ ::= (5)〈BIT〉
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VAL ::= (1) ∗ (32)〈BIT〉
BIT ::= ”0” | ”1”

Caller CALC with the level value lC , SIZ = sizC , VAL = valC is referencing
the same node as the LABL with the level value lL, SIZ = sizL, VAL = valL when
lC = lL ∧ sizC = sizL ∧ valC = valL.

4.2.4 Frequency-Based Compaction

Particular nodes in PSVDAG data structure at level l are referenced from the
level l − 1 different times, using labels and callers (references). Each label/caller
can have variable length of the binary representation. Different permutations of
labels/callers assignment to particular nodes generate different overall sum of la-
bels/callers lengths. Therefore frequency-based compaction is applied to find out
permutation that has the smallest overall sum of reference lengths.

It is possible to form the NOD set consisting of p nodes from level l of PSVDAG
that are each referenced more than once. Members of the set are in descending order
according to the frequency of their references.

NOD = {nod0, nod1, nod2, . . . , nodp−3, nodp−2, nodp−1}. (4)

Generated labels – unique one for each nodi ∈ NOD : i ∈ 〈0; p−1〉 – form the set
LAB that consists of p labels, that have different lengths of their encoding. The LAB
set ordering is ascending order according to the length of the binary representation
of particular labels.

LAB = {lab0, lab1, lab2, . . . , labp−3, labp−2, labp−1}. (5)

Using frequency-based compaction, the node nodi ∈ NOD : i ∈ 〈0; p − 1〉 is
assigned by the label labj ∈ LAB : j ∈ 〈0; p− 1〉, i = j.

Each node assigned by the label labi ∈ LAB : i ∈ 〈0; p − 1〉 with the length of
binary representation len is referenced by the caller (used one or more times) that
has the same length of the binary representation len.

An example of different permutations of label assignments, including one based
on frequency-based compaction, can be seen in Figure 9.

4.3 Leaf Nodes

By the Leaf node, the octant, which grid R′ = 23 (containing 8 voxels), is encoded.
Leaf node consists of 8 bit vector where only information about voxels is stored.
Passive voxels are represented using bit 0, active voxels are represented using bit 1.
Linearization of the grid R′ is performed according to chosed space-filling curve, as
it is depicted on Figure 10.



604 L. Vokorokos, B. Madoš, Z. Bilanová

Figure 9. An example of two different permutations of label assignments to the respective
nodes of a particular PSVDAG level (for clarity, Node id is added in this example). The
top part of the figure represents arbitrary node order, and the overall sum of labels/callers
length is 102 b, the bottom part represents node order achieved using frequency-based
compaction, and in this case, the overall sum of labels/callers length is 94 b.

5 RESULTS AND DISCUSSION

Various 3D scenes, originally stored in Wavefront OBJ geometry definition file for-
mat (examples of those scenes with their visualizations are in Figure 11), were used
for test purposes. Voxelization was performed to the different resolutions ranging
from 1283 to the 4 0963 (4K3). Voxelized scenes were encoded to SVO, SVDAG,
and PSVDAG hierarchical data structures. Evaluation of results obtained by tests

a) b) c)

d) e)

Figure 10. a) Leaf node consisting of 4 active voxels (red), b) z-order curve, c) voxels in
binary representation of the node arranged according to z-order curve, d) Hilbert curve,
e) voxels in binary representation of the node arranged according to Hilbert curve
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followed. Tests were performed on the computer using four core CPU Intel® Core
i5-8265U at 1.6 GHz, 8 GB operating memory, NVIDIA GeForce GTX 1050 3 GB
graphics card, and 256 GB SSD as the secondary storage.

a) Angel Lucy 5123 b) Skull 5123 c) Porsche 5123

d) Detail of the Angel Lucy 2563 e) Detail of the Angel Lucy 5123 f) Detail of the Angel Lucy 1K3

Figure 11. Visualization of examples of voxelized scenes used for testing purposes

The test results show that the representation of the scene geometry using the
PSVDAG data structure is significantly smaller than in SVDAG. It applies to all
tested three-dimensional voxelized data sets and the z-order and Hilbert curve lin-
earizations. In the most optimistic case, at a 1283 resolution, a compression ratio of
3.77 was reached. The binary representation of this scene in PSVDAG thus repre-
sents only 26.5 % of the size of its binary encoding in SVDAG. Generally speaking,
an increase in the resolution leads to a gradual decrease in the compression ratio.
It reached the value 2.80 at a resolution of 4 0963, when the binary representation
in PSVDAG occupies only 35.7 % of the corresponding encoding size in SVDAG.

The size of the binary representation in PSVDAG is, with increasing resolution,
relatively decreasing, compared to SVO. In most cases, PSVDAG outperformed
SVO for both, z-order curve as well as Hilbert curve linearizations. In these tests,
PSVDAG to the corresponding SVO size ratio, is ranging from 131.1 % to 54.5 %.
The compression ratio is also shown separately in Figures 12 and 13 for z-order
curve linearization.

A comparison in terms of absolute sizes of binary representations is available in
Table 1 for z-order curve linearization and in Table 2 for the Hilbert curve. The
PSVDAG-SVDAG and PSVDAG-SVO compression ratios are available in Tables 3
and 5. This also shows the relative space requirements of the PSVDAG-encoded
scene, compared to the SVDAG and SVO versions. The PSVDAG-SVDAG com-
pression ratio, when the z-order curve is applied, is comparable to the version using
the Hilbert curve, for all models and resolutions. There are only small fluctuations in
the range of 〈−0.687 %; 1.657 %〉. Size comparison showed a slightly higher success
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Size [KB]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

SVO 6.67 28.62 117.99 475.98 1 895.02 7 447.62

SVDAG 31.88 127.01 462.85 1 523.74 4 682.54 14 928.34

PSVDAG 8.62 35.10 132.37 462.04 1 530.86 5 208.41

Skull

SVO 23.24 95.61 387.45 1 551.55 6 129.76 23 667.56

SVDAG 100.39 356.75 1 182.45 3 728.80 12 275.23 43 086.88

PSVDAG 28.11 104.31 366.48 1 239.06 4 320.48 15 279.20

Porsche

SVO 14.59 67.52 295.10 1 241.50 5 087.54 20 262.88

SVDAG 56.78 222.41 788.76 2 629.21 8 918.93 32 127.96

PSVDAG 15.08 61.28 227.13 800.89 2 894.32 11 048.85

Table 1. Comparison of SVO, SVDAG and PSVDAG hierarchical data structures using
different scenes and resolutions in terms of data structure size (their binary representation
in KB) – linearized using z-order curve

in common subtree merges when z-order linearization is applied. Subsequently, the
memory consumption and the time for the compression of SVDAG data structure
were also smaller, as shown in Tables 7 and 8.

Adding Active Child Node Count information allows potential compression of
the Child Node Mask. Hence, the authors monitored whether the 16 b of identifi-
cations of Child Node Mask was compressed or inflated in the tested scenes. The

Size [KB]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

SVO 6.67 28.62 117.99 475.98 1 895.02 7 447.62

SVDAG 32.14 128.25 477.07 1 596.11 4 922.56 15 519.44

PSVDAG 8.74 36.00 137.74 486.17 1 613.09 5 434.41

Skull

SVO 23.24 95.61 387.45 1 551.55 6 129.76 23 667.56

SVDAG 101.55 362.38 1 197.48 3 780.68 12 447.23 43 745.21

PSVDAG 28.44 105.87 371.02 1 254.54 4 370.65 15 621.87

Porsche

SVO 14.59 67.52 295.10 1 241.50 5 087.54 20 262.88

SVDAG 59.99 234.71 836.33 2 802.36 9 480.74 34 082.36

PSVDAG 15.92 64.75 240.71 852.27 3 064.59 11 637.51

Table 2. Comparison of SVO, SVDAG and PSVDAG hierarchical data structures using
different scenes and resolutions in terms of data structure size (their binary representation
in KB) – linearized using Hilbert curve
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Parameter
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

PSVDAG in comparison to SVO

Compression 0.77 0.82 0.89 1.03 1.24 1.43

Percents 129.3 % 122.6 % 112.2 % 97.1 % 80.8 % 69.9 %

PSVDAG in comparison to SVDAG

Compression 3.70 3.62 3.50 3.30 3.06 2.87

Percents 27.0 % 27.6 % 28.6 % 30.3 % 32.7 % 34.9 %

Skull

PSVDAG in comparison to SVO

Compression 0.83 0.92 1.06 1.25 1.42 1.55

Percents 120.9 % 109.1 % 94.6 % 79.9 % 70.5 % 64.6 %

PSVDAG in comparison to SVDAG

Compression 3.57 3.42 3.23 3.01 2.84 2.82

Percents 28.0 % 29.2 % 31.0 % 33.2 % 35.2 % 35.5 %

Porsche

PSVDAG in comparison to SVO

Compression 0.97 1.10 1.30 1.55 1.76 1.83

Percents 103.4 % 90.7 % 77.0 % 64.5 % 56.9 % 54.5 %

PSVDAG in comparison to SVDAG

Compression 3.76 3.63 3.47 3.28 3.08 2.91

Percents 26.6 % 27.6 % 28.8 % 30.5 % 32.5 % 34.4 %

Table 3. Comparison of compression ratios and size percentages of binary representations
of PSVDAG to SVO and PSVDAG to SVDAG hierarchical data structures, using different
scenes and resolutions – linearized using z-order curve

tests showed that the size of the child node masks binary representation increased
in most cases – its average length is from the range of 〈15.82; 17.34〉 b. Thus, in
some models, the average size of the child node mask was reduced up to 98.88 %
in comparison to 16 b size. In some models, inflation was evident (in this case, the
most pessimistic case showed a 108.38 % compared to the 16 b size.) However, even
in the most pessimistic case, the combined size of ACHNC and CHNM was smaller
than the CHNM of the SVDAG data structure, accompanied by the reserved 24 b.
In this case, the worst compression ratio reached for this part of the node was 1.85
(54.19 % of the original size). The relevant data is available in Tables 4, 6, and
Figure 14.

The average length of the binary representation of labels/callers gradually in-
creases with an increased resolution of the voxelized 3D scene because of the rising
number of labels. For example, at the lowest resolution of 1283, the Angel Lucy
model for z-order averaged 8.75 b per label/caller, and 8.90 b in case of Hilbert
curve. It is a 3.66 (27.34 %), resp. 3.60 (27.81 %) compression ratio, compared to
the 32 b SVDAG pointers. The maximum length of the label/caller binary repre-
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Size [b]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

Child Node Mask 15.89 16.73 17.11 17.28 17.33 17.30

Labels and Callers 8.75 8.90 9.21 9.86 10.87 11.93

Skull

Child Node Mask 16.82 17.12 17.29 17.35 17.33 17.34

Labels and Callers 9.01 9.43 10.11 11.06 12.03 12.49

Porsche

Child Node Mask 16.89 17.23 17.43 17.44 17.39 17.32

Labels and Callers 8.24 8.66 9.17 9.91 10.83 11.79

Table 4. Selected parameters of PSVDAG hierarchical data structure according to the
different scenes and their resolutions – linearized using z-order curve

Figure 12. The PSVDAG-SVO compression ratio for each scene and the resolutions used
to voxelize the respective scenes, when z-order applied

sentation for this model reached a maximum at the resolution of 4 0963 when the
average label/caller size was 11.93 b resp. 11.96 b. It represents a 2.68-fold compres-
sion compared to the 32 b SVDAG pointers and reduction to 37.28 % resp. 37.38 %
in terms of size. The numerical values of this parameter for the respective models
and resolutions are in Tables 4, 6, and Figure 15.

5.1 Sources of Compression Gains in PSVDAG

The PSVDAG data structure provides several data compression sources, when com-
pared to the SVDAG:
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Parameter
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

PSVDAG in comparison to SVO

Compression 0.76 0.80 0.86 0.98 1.17 1.37

Percents 131.1 % 125.8 % 116.7 % 102.1 % 85.1 % 73.0 %

PSVDAG in comparison to SVDAG

Compression 3.68 3.56 3.46 3.28 3.05 2.86

Percents 27.2 % 28.1 % 28.9 % 30.5 % 32.8 % 35.0 %

Skull

PSVDAG in comparison to SVO

Compression 0.82 0.90 1.04 1.24 1.40 1.52

Percents 122.4 % 110.7 % 95.8 % 80.9 % 71.3 % 66.0 %

PSVDAG in comparison to SVDAG

Compression 3.57 3.42 3.23 3.01 2.85 2.80

Percents 28.0 % 29.2 % 31.0 % 33.2 % 35.1 % 35.7 %

Porsche

PSVDAG in comparison to SVO

Compression 0.92 1.04 1.23 1.46 1.66 1.74

Percents 109.1 % 95.9 % 81.6 % 68.6 % 60.2 % 57.4 %

PSVDAG in comparison to SVDAG

Compression 3.77 3.62 3.47 3.29 3.09 2.93

Percents 26.5 % 27.6 % 28.8 % 30.4 % 32.3 % 34.1 %

Table 5. Comparison of compression ratios and size percentages of binary representations
of PSVDAG to SVO and PSVDAG to SVO hierarchical data structures, using different
scenes and resolutions – linearized using Hilbert curve

• The child nodes mask of the SVDAG data structure has a constant size of 8 b
(i.e., 1 b per octant), with another 24 b unused for the sake of aligning to 32 b.
That results in a total of 32 b, i.e., 4 b per octant. PSVDAG uses a 3-bit Active
Child Node Count. The Child Node Mask identifications itself have a binary
representation with a total length ranging from 2 b to 16 b, with 2 b per potential
child node. The sum of ACHNC and CHNM ranges from 5 b to 19 b, which is
significantly less than that of SVDAG. 8 octants use space ranging from 0.625 b
per child node to 2.375 b per child node. The compression ratio (in comparison
to SVDAG) is from the range of 1.68 to 6.4. The reduction of this part of the
data structure is to a level of 15.63 % to 59.38 %.

• The absence of child node pointers in PSVDAG is a significant source of its
reduction, considering the binary representation (compared to the SVDAG data
structure). If the subgraph is unique, there is no pointer at its root node in the
data structure. Thus the 32 b pointer of SVDAG becomes 0 b in PSVDAG.

• If the particular subgraph is not unique in the data structure, the 32 b pointer
of the SVDAG, pointing at the root node of the subgraph, is replaced by a la-
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Size [b]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

Child Node Mask 15.82 16.69 17.08 17.28 17.34 17.32

Labels and Callers 8.90 9.12 9.37 9.95 10.90 11.96

Skull

Child Node Mask 16.75 17.07 17.26 17.30 17.27 17.27

Labels and Callers 9.04 9.44 10.11 11.05 12.00 12.41

Porsche

Child Node Mask 16.80 17.14 17.31 17.35 17.30 17.25

Labels and Callers 8.30 8.71 9.21 9.92 10.80 11.70

Table 6. Selected parameters of PSVDAG hierarchical data structure according to the
different scenes and their resolutions – linearized using Hilbert curve

Size [KB]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

z-order curve 39.48 156.13 544.49 1 635.08 4 225.91 10 801.93

Hilbert curve 39.74 157.82 566.83 1 752.33 4 617.10 11 745.66

Skull

z-order curve 120.63 406.15 1 224.49 3 244.12 8 718.88 33 376.02

Hilbert curve 122.30 414.52 1 245.42 3 320.14 8 967.54 34 912.34

Porsche

z-order curve 72.73 263.09 857.53 2 492.10 7 142.92 22 457.98

Hilbert curve 77.91 281.10 919.52 2 714.14 7 892.19 25 043.80

Table 7. Memory consumption for PSVDAG building and encoding

bel/caller with at least 6 b binary representation. As the number of labels/callers
in the data structure increases, this binary representation length gradually in-
creases. Thus, the shortest ones represent a 5.33-fold compression rate, or, in
other words: occupy only 18.75 % of the space.

• Minimization of the label/caller binary representation length is supported by
separating labels assignments at every level of the graph, instead of assigning
labels globally within the entire data structure. Thus, the label assignment
starts at every level of the data structure with a length of the 6 b.

• Frequency-based compaction sorts the subgraph root nodes separately at each
level l of the graph, according to their frequency of referencing from the level
l−1. The process sorts labels/callers from the most frequently referenced nodes
to the least frequently referenced ones. Individual root nodes of the template
subgraphs are then assigned by labels, in the order from those having the shortest
binary representation (6 b – attached to the most frequently referenced nodes)
to those having the most extended binary representation (assigned to the least
often referenced subgraph root nodes). It ensures the lowest possible number of
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Time [s]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

z-order curve 0.021 0.032 0.079 0.196 0.402 1.279

Hilbert curve 0.021 0.033 0.081 0.205 0.423 1.331

Skull

z-order curve 0.068 0.091 0.202 0.480 1.051 4.065

Hilbert curve 0.068 0.092 0.205 0.486 1.065 4.154

Porsche

z-order curve 0.039 0.057 0.136 0.339 0.765 2.744

Hilbert curve 0.041 0.061 0.144 0.362 0.813 2.912

Table 8. Time consumption for PSVDAG building and encoding

Figure 13. The PSVDAG-SVDAG compression ratio for each scene and the resolutions
used to voxelize the respective scenes, when z-order applied

bits for the encoding of labels/callers per level of the graph.

6 CONCLUSIONS

This paper deals with hierarchical data structures designed to represent the geom-
etry of voxelized three-dimensional scenes. It includes an overview of the related
works published in the field of linearization of multi-dimensional data and the rep-
resentation of two and three-dimensional data using dedicated data structures. The
brief presentation of pointerless Sparse Voxel Octrees (SVO) and Sparse Voxel Di-
rected Acyclic Graphs (SVDAG) summarized their advantages, disadvantages, and
binary-level encoding. While pointerless SVO is a compact, pointerless data struc-
ture that is suitable for archival or streaming purposes, it is necessary to create
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Figure 14. Average Child Node Mask size in bits for the scenes and the resolutions used
to voxelize the respective scenes, when z-order applied

child node pointers for traversal. SVDAG is a more advanced data structure that
incorporates 32 b child node pointers to allow fast traversal while reducing common
subtrees.

In the subsequent section, the authors presented the proposed Pointerless Sparse
Voxel Directed Acyclic Graph (PSVDAG) data structure, which combines the ad-
vantages of both data structures mentioned above. It allows a compact encoding

Figure 15. Average label/caller size in bits for the scenes and the resolutions used to
voxelize the respective scenes, when z-order applied
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of the data, and merging of common subtrees using the proposed concept of labels
and callers having a variable-length binary representation. Compared to SVDAG,
the disadvantage is that for fast traversal, this data structure requires the recon-
struction of pointers to child nodes. The Active Child Node Count proposed in this
paper facilitates and speeds up this process. In a favorable but less frequent case,
it enables child node mask compression.

Performed tests were using scenes initially represented in the OBJ file format,
and subsequently voxelized at various resolutions. The obtained results showed
that – compared to the SVDAG data structure – PSVDAG achieved a compression
ratio of 3.77 to 2.80 times higher. In most cases, PSVDAG outperformed the SVO,
when the size of PSVDAG ranged from 131.1 % of the size of SVO (in the most
unfavorable case) to 54.5 % of the size of SVO (in the most favorable case). Thus, in
favorable circumstances, the binary representation of PSVDAG was more compact
than that of SVO.
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