The

Simuliid Bulletin

Number 56
July 2021

THE SIMULIID BULLETIN

CONTENTS

From the Editor 1
FORTHCOMMING MEETINGS
Xth International EMCA Conference Vienna, Austria 2
WORLD BLACKFLIES (DIPTERA: SIMULIIDAE): A COMPREHENSIVE REVISION OF THE TAXONOMIC AND GEOGRAPHICAL INVENTORY [2021] 5
SCIENTIFIC PAPERS
Intriguing Genes: Intriguing Genes: Expressed Sequences fromthe Simulium vittatum-tribulatum complex. III. FlightBehaviour Related Genes (GO: 7629)
Julia A. Brockhouse, Alexie Papanicolaou, Charles L. Brockhouse 6
End Pages

From the Editor

The meeting section of the current issue of the Simuliid Bulletin is short. Because of the covid-19 pandemics and travel restrictions, we had to cancel the IX International Simuliidae Symposium again. The international blackfly conference is planned for 2022, and the same situation is with the NAFBA meeting.

However, after a long time of social distancing, there is again the opportunity to meet face-to-face at the Xth International EMCA Conference in Vienna. You might be interested in the conference section dedicated to Blackflies in Europe.

Stay safe and healthy
Tatiana Kúdelová, Editor

FORTHCOMING MEETINGS

10th EMCA Conference: "New insights into mosquito and blackfly control"

The President and the EMCA Board together with the organising committee led by Hans Jerrentrup, cordially invite you to attend our 10th International EMCA Conference to be held at AGES in

Vienna, Austria, from 3rd to 7th October, 2021.

We are very pleased to invite you to the in-person International EMCA Conference in the beautiful city of Vienna. Since travel restrictions due to the Covid-19 pandemic have been eased (given that travelers are in possession of a vaccination certificate or a negative Sars-Cov-19 virus PCR test), it is a good opportunity to meet again face-to-face. The city of Vienna, situated in the middle of Europe, will offer an excellent start to resume our lively and inspiring meetings.

1. General information

The participants will arrive on Sunday, 3rd October, and enjoy an evening welcome cocktail.
The conference will start officially on Monday 4th October morning and last through Thursday afternoon 7th October, with a succession of scientific sessions (oral and posters), round tables, and social events.

2. Travel

Vienna is reached conveniently by air, train and car. Easy and rapid connections between the airport and the city of Vienna are available. Check Vienna Public Transport for details.

3. Accomodation

Hotels with different price categories are available for self-booking. We have arranged special conditions for EMCA 2021 participants. The room contingents (double room, single use) are available until
a mid-September at the following hotels:
Hotel Breitenlee (59 EUR per night)
Hotel Accor Ibis Wien Messe (82 EUR)
Hotel Arcotel Donauzentrum (99 EUR)
Hotel Novotel Suites Wien City Donau (109 EUR)
Hotel Arcotel Kaiserwasser (109 EUR)

4. Registration fees

Registration fees include access to all sessions, breaks, lunches, and social events (except IAEA visit). The invoice will be sent to you as of September.
Regular and sustaining members: 390 €
Non-members: 490 ©
Student member: 200 ©

Student non-member: 250 €

Accompanying person: 130 € (incl. are all breaks and social events)

Optional visit of the International Atomic Energy Agency facilities at Seibersdorf, with a limited number of participants on preregistration only (due to security-check requirement): $15 €$
However, it remains the personal responsibility of the participant to inform himself/herself about all rules and precautionary measures of his home country and the hosting country for traveling, and to follow them. In addition, EMCA advises to take a travel insurance. The booking of suitable accommodation is up to the participant.
5. Timetable for the planning of the conference

Beginning of registration and submission of abstracts: June 14th.
End of abstract submission ${ }^{1}$: August 15th.
Late registration without abstracts (including on place): after August 15 ${ }^{\text {th }}$

End of registration: September 15 ${ }^{\text {th }}$

[^0]
6. Scientific topics

There will be room for eight sessions. Some will be introduced by keynotes. The scientific committee has preselected the following session themes:

- Biocides regulation and advancement in insecticides development
- Biocides testing in perspective of registration
- Blackflies in Europe: where are we, where do we go?
- Citizen science and community involvement for mosquito surveillance and control
- Control of vector and harmful insects: improvement of methods and quality assessment
- Decision making processes in mosquito control
- Latest challenges and responses in mosquito control
- Mosquito control without borders in the Danube region
- Mosquito control in urban context
- Mosquito control versus nature conservation: opposition or partnership?
- New technologies and practices in surveillance and control
- Surveillance and management of invasive species
- Surveillance of vector-borne pathogens in insects

6 students awards will be given for best oral and poster presentations of total 1.200euros!

7. Excursions and conference dinner

The excursion will bring us on Wednesday afternoon to March/Morava flood plains including live demonstrations of mosquito control generously offered by the "Verein biologische Gelsenregulierung". It will be followed by a visit to Castle Schlosshof where a Heurigen dinner will be offered.
As an option, a visit is proposed on Thursday afternoon to the site of the International Atomic Energy Agency (IAEA) in Seibersdorf (SIT insect rearing facilities). The number of participants is limited to 60 persons due to security reasons (first registered, first served).

You can find more details at the confernece website:
https://akademie.ages.at/10th_emca_conference_new_in sights_into_mosquito_and_blackfly_control/

WORLD BLACKFLIES (DIPTERA: SIMULIIDAE): A COMPREHENSIVE REVISION OF THE TAXONOMIC AND GEOGRAPHICAL INVENTORY [2021]

Peter H. Adler

> Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina 29634-0310, USA padler@clemson.edu

The new blackfly inventory is available at the website:

https://biomia.sites.clemson.edu/pdfs/blackflyinventory. pdf

The present revision of the Inventory of the world's Simuliidae continues the intent to provide yearly, fully updated electronic revisions of the World Inventory, which originally was issued in paper format by Crosskey (1988). The current revision, thus, includes all information known to have been published before 1 January 2021. The purpose and format of this inventory remain the same as for previous revisions.

In this most recent revision of the Inventory, 2,401 species $(2,384$ living and 17 fossil) are listed as valid), representing a net increase of 53 living species since the previous [2020] revision.

SCIENTIFIC PAPERS

Intriguing Genes: Expressed Sequences from the Simulium vittatum-tribulatum complex. III. Flight Behaviour Related Genes (GO: 7629).

Julia A. Brockhouse ${ }^{1,3}$, Alexie Papanicolaou², and Charles L. Brockhouse*3

1: Parks College of Engineering, Aviation and Technology, St. Louis University, St. Louis, MO, USA
2: Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
3: Marine and Aquatic Genetics Laboratory, Biology Department, Creighton University, Omaha, NE, 68178, USA
*Correspondence to: charlesbrockhouse@creighton.edu

Introduction

We continue our preview of the full S. vittatum-tribulatum complex transcriptome, highlighting genes we feel are of interest to the blackfly community, with this release of expressed sequences annotated with the Gene Ontology "Flight Behaviour" (\#7629). A total of 146 sequences are annotated with the 7629 GO term in the five libraries (S. vittatum: adult males, pre-oviposition adult females, and post-oviposition adult females. S. tribulatum: mixed stage female larvae, and mixed stage male larvae). Here we present 17 representative sequences showing a variety of developmental expression patterns. To iterate, most of these sequences have multiple GO terms, and so their expression patterns may reflect other functions than flight behaviour (Figure $1 \mathrm{~A} \& B$).
One might reasonably expect that the expression of flight behaviour genes would differ among adult males, newly emerged females and post-ovipositioning females. Adult males must form mating swarms and look for sugar meals, newly emerged females will fly to search for mates, in most species search for blood meals, and oviposit, while parous females will switch (back) to prey searching.
S. vittatum and S. tribulatum are both primaparously autogenous: adult females can produce an egg batch without a blood meal, given sufficient feeding as larvae. After the first egg-batch, females will often seek blood meals for a second gonotrophic cycle. The S. vittatum colony at University of Georgia (Athens) has been maintained for many years as a completely autogenous population, with heavy selection for altered mating and oviposition behaviour (Gray and Noblet, 1999), so it is possible that the colony's expression of flight behaviour related genes is significantly different from natural populations of S. vittatum. Nevertheless, many of the sequences retrieved with this GO term show very different expression levels among males, pre-oviposition, and postoviposition females. Example profiles are given for several of the differentially expressed genes.

The bulk of the sequences fell into 3 main categories: G proteinrelated, protein kinases, and neuron growth control/development. The first two categories are involved in signal transduction (relaying information from "the outside" to the cell), while the last could also clearly be involved in setting different behaviours.

Results

Figure 1 depicts the number of sequences with additional GO annotations, in terms of Biological Process (1A) and Molecular Function (1B). Most genes are pleiotropic, involved in several processes. Often, it is easy to see how the processes are related to one another. Flight behaviour certainly involves "Synanaptic Transmission" and kinase activity, for example. Less obviously related multiple annotations might reveal unexpected relationships among processes, or could simply reflect true pleiotropy, where the gene has multiple functions.

In the following section, we present the cDNA and inferred protein sequences of 17 exemplar sequences, with expression level information for the 5 developmental stages of S. vittatum and tribulatum represented by the libraries. The expression levels are given as "Effective Counts", that is the number of times reads mapping to the gene were sequenced standardized to the relative size of each library. Higher effective counts reflect greater expression at a particular stage.

c151893_g2_i5|m. 21230

This sequence is highly expressed in adult male vittatum and adult post-oviposition female vittatum. Its protein matches largely consisted of cyclin-dependent kinases, as well as cell division regulation proteins.

Effective counts:

Adult male vittatum: 321
Adult nulliparous female vittatum: 90.45
Adult post-oviposition female vittatum: 307.01
Female tribulatum larvae: 33.46
Male tribulatum larvae: 33.54

$>c 151893 \mathrm{~g} 2 \mathrm{i} 5 \mid \mathrm{m} .21230$

AAAAGAAAAACGAAGAGAAACCACAATCAAAAGAATAGTTTTAGTTTACGAAAG AAAACGGTTCAAGATAAGTTCGAAAG GCAAATTGAAATCAATTTGGAGCTGGATGGACAAATGGTTCGGAGAAAAACGGT TGTGGTTGTTTGGTAATCATCTCCCA
TTGCTGCCACGGAGGTCCCGAGGTAGCAGCCGGATGGATCGTTACGAAAAGCT ATCGAGGCTGGGCGAAGGCTCATACGG
AATCGTGTACAAATGTCGTGACCGTGACACCGGAAATCTAGTGGCCCTCAAACG GTTCGTTGAAAGTGAAGAGGACCCAG
CTATCAGGAAAATTGCACTCAGAGAAATTCGAATGCTCAAAAATCTTAAGCATCC AAACCTGGTTTGCCTCCTCGAAGTG
TTTAGAAGGAAAAAACGCCTACACCTCGTGTTCGAGTTTTGTGAGCACACCGTC CTGCATGAATTAGAGCGGAATCCACA
AGGCTGTCCAGACAATCTAACCAAACAAATCACATACCAGACGCTCCTCGGTGT GGCCTACTGTCACAAACAAGGATGCG
TGCACCGGGACATCAAGCCTGAGAATATACTITTGACGGCACAGGGGCAGGTC AAGTTGTGCGACTTTGGATTTGCGAGG
ATGTTAAGTCCTGGTGAAAATTACACTGACTATGTAGCGACGAGGTGGTACCGT GCGCCCGAATTGCTTGTAGGTGACAC
TCAGTACAATGCTGCTGTTGACGTGTGGGCCATTGGCTGTGTCTTCGCCGAACT CATTCGGGGTGACGCTCTGTGGCCAG
GCCGTTCGGACGTTGACCAGTTGTACTTGATCAGACGTACATTGGGCGACTTGC TGCCACGGCATTTGCAAATATTTAAC
CAGAACGATTTCTTCAAGAACATCACACTGCCCGTTCCTCCCAATCTCGAGCCG CTGGAGACTAAATTGCCTTCGAGAAC
AGTGTCCAATTTCCAAATGATTGACTTTTTGAAGAAATGCTTAGACAAAGATCCA GCTCGACGATGGACTAGTGAACGGC
TGACCACCCATCCAGTTTTCTCCGACTATGTGGCCCAGGACAAGGAGCTAGAAA
TGACCGGAACTGTCTCTTCGTCCGCA
TCGGCAACTTTACAAAATACCAATAACGGCGTGAGCGCTTACCATCCGA AGCAGGCATTATTGCTGAATCGTGACAACAA

GAACAAGTTCTCAAACACGAGTTTGCCCCAGTTGCCCGGCCAGGTTGA AATTAGGATGCCCTTGCGAAATGCCTATCCCA
GATCGGATCACCACTTACCGACGATCTAAAACCGGCGTGTGGTCAGTA TITTGATATAGCTAAAGAAGCTTACACAAATT

>c151893 g2 i5Im. 21230
KEKRRETTIKRIVLVYERKRFKISSKGKLKSIWSWMDKWFGEKRLWLFG NHLPLLPRRSRGSSRMDRYEKLSRLGEGSYG
IVYKCRDRDTGNLVALKRFVESEEDPAIRKIALREIRMLKNLKHPNLVCLL EVFRRKKRLHLVFEFCEHTVLHELERNPQ GCPDNLTKQITYQTLLGVAYCHKQGCVHRDIKPENILLTAQGQVKLCDF GFARMLSPGENYTDYVATRWYRAPELLVGDT
QYNAAVDVWAIGCVFAELIRGDALWPGRSDVDQLYLIRRTLGDLLPRHL QIFNQNDFFKNITLPVPPNLEPLETKLPSRT
VSNFQMIDFLKKCLDKDPARRWTSERLTTHPVFSDYVAQDKELEMTGTV SSSASATLQNTNNGVSAYHPKQALLLNRDNK NKFSNTSLPQLPGQVEIRMPLRNAYPRSDHHLPTI*

c162198_g1_i2|m. 58923

Expression of this sequence is much higher in the adult postoviposition female group than any other; by its Uniprot matches, it appears to code for an ATPase, possibly calcium-transporting.

Effective counts:
Adult male vittatum: 469.96
Adult nulliparous female vittatum: 144.84
Adult post-oviposition female vittatum: 1112.87
Female tribulatum larvae: 266.47
Male tribulatum larvae: 196.85

[^1]AAGTACATACAACAGTTCAAAAATCCACTCATTTTACTATTATTAGGTTCCGCG CTCGTCAGTGTTGTGATGAAACAATT
TGACGATGCGATTAGCATAACTGTGGCCATTATAATCGTTGTGACGGTGGCGT TCATCCAAGAATACCGCTCTGAAAAAA
GCTTGGAGGAGCTGAAAAAACTCGTGCCGCCCGAATGTCACTGCTTACGTGAG GGCCGCCTAGAAACATTCCTCGCTCGC
AACCTGGTGCCGGGCGACATAGTTTATCTCAACATCGGCGATCGTGTGCCCGC CGACATTCGAATTTTCGACAGTGTTGA
CCTATCAATCGATGAGTCGAGCTTCACCGGCGAAACGGAGCCATCCCGCAAAA CATCGGATGTTCTGTTGAGCCATGGCA
ACAGCCAGAATCACACGAGCATGAAGAATATAGCGTTCATGGGCACATTAGTT AGGTGTGGCAGTGGCAAAGGAATTGTC GTTTGCACCGGCGAACGTAGTGAATTCGGTGAGGTGTTTAAAATGATGCAAGC CGAAGAGGCGCCCAAGACACCGCTGCA
AAAATCGATGGACATTTTGGGTGCGCAGCTCAGCTTCTACTCGTTCTGCATCAT CGGGATCATCATGTTGTTGGGGTGGT
TGCAAGGCAAACCCCTGTCGGAGATGTTCAATATCAGTGTGAGTTTGGCGGTG GCCGCCATTCCCGAGGGTTTGCCAATT
GTCGTCACTGTCACCTTAGCACTGGGTGTGATGCGAATGGCCAAACGCAGTTG CATTGTCAAGAAGCTGCCGACGGTCGA
GACGCTGGGCTGTGTCAACGTTATATGCTCCGACAAAACGGGCACGATCACCA AGAATGAAATGACGGTGACTGTGATCG
TCACCGCGGACGGTTACATGGCGCATGTTACCGGCGCCGGTTATAACGACAAC GGCGAGTTACATATTCGCGACTGCAAC
AGTTTTGACATGGCGAAGCGAAGCATCACAAATCTCCTCGAAATCGGTTGTGT GTGCAACAATGCGATTATCCAATCGGA
CCAGTTGTTGGGTCAGCCCACCGAAGGTGCTCTACTCGCCGTCGCCATGAAGC ACGGCATGTATGCTACCGCCGATCAGT
TCATCCGCATCCAGGAGTACCCATTCTCGTCCGAACAGAAAATGATGGGCGTC AAGGTGGTGGCCAAGTACAACAACAAC
AAAGAGGAAATTTTCATGGTCAAGGGTGCCATCGAGATGATCCTGCCGCAGTG TACTAAGTTCATGTTTGGCGGGCAACC
GACGCTGATGACGAAGCAAAACGAGGCGGAGTTTTTGACAGAGGCCTATGAG ATTGGGCGCAAGGGTTTGAGAGTGTTGG
CGTTGGCTCGAGGCACATCGTTCCAGGATCTGTGCTATTGTGGGCTGGTCGGC ATTACGGATCCACCGCGGCCGTTGGTG
CGCGAGTCCATAGAAATTTTGCAGGCCAGTGGAGTGCGTGTCAAGATGGTGA CCGGTGATGCTCAAGAGACGGCTGTGGC
AATCGCGTCTCTCATTGGTCTAGATGTGGTCCATCAACAAGCTCTCTCCGGCCA TGACGTCGATCAGATGACCGAAATAC
AACTGGAGAAGGTCATCCAGAATGTGAGCGTTTTCTATCGGGTCACGCCAAAG CACAAGTTGGCCATTGTCAAGGCGCTA
CAACAAACCGGCCATATTGTGGGCATGACCGGCGATGGAGTCAACGATGGGG TGGCGTTGAAACGGGCCGATATCGGTAT
TGCTATGGGCAAAAATGGCACCGACGTCTGCAAAGAAGCGGCCGATATGATTT TGGTCGACGATGATTTTCATACCATCA

TCGCCGCCATCGAAGAGGGCAAAGGAATCTTCTACAACATTCGCAACTTTGTG CGATTCCAACTGAGCACATCCATCGCC GСССТСТСССТСАТСАСССТАGССАСССТСATGGGCATCCCGAACCCCCTGAA CGCCATGCAAATCCTTTGGATCAACAT
CATCATGGACGGCCCGCCCGCGCAATCGCTAGGCGTGGAACCCGTCGACCAG GATGTGCTCAAACAAAAGCCACGCAACG
TCAAGCAACCGATGATTTCGAAGTCGTTGATTGTAAACGTGCTGCTATCGGCC GGCATCATCATTCTGGGCACACTGTGG
GTGTITCAACGCGAAATGGCCGATGGATCGGGTGGAAAAACGAAACGTGACA CAACCATGACGTTTACTTGTTTCGTGCT
GTTCGACATGTGGAATGCGTTGAGTTGTCGGTCGCAGACGAAGAGTATITIT CGATCGGCTTITTCAGCAACAAAATGT
TCCTGTTCGCGGTCGGCTTCTCGCTGATCGGCCAACTGGCCGTCATCTATTTC CCACCCCTCCAAATGGTGTTCCAAACG
GAGGCCCTTTCCGGCATGGACATTTTGTTCTTAGTAGCGCTCACCTCCACCGT GTTCTGGGTGGCCGAACTGAAGAAGGC
CTTTGAACGGGCCATGGAGAGACGGGTTTACCGGAAACAGCACGTCGACCTA GACTTTGTATGACAAACGGCAACTCACG
CTGGAAGATTGCATCAAGATTAAAGACATAATAATTTATCGCTGACCAAGAAAA AGTTGAAAAAACACATAAAAAAAGCA
AAAAAAAAAACTTAAAAAATTAGATCGACAATTTTGAGAAGGAACTTTTTACG ATCTTATTTAATTTCGCGCACTTTT
ACTTTCGTGCACCGAAATTTATATGCGCACCTTCTACACAAAATTGTTTTCTGA ACCAAAAAAATAATAGGAGAAGAAA
CAAAATAATAGAAGTTCGAATGTATTGTGAAATTAAAACATCGAAATGGAAAAA CCCAAGATGGCGGAGATGCCCTCAGA
TGATCTAAAGTAAATAATGTTCAAAAAAATTATACACAAACTGAGGAACAAAAA AAAAATTATTCGAAATTATTCATTAT
GGAGCTGAATTCAAGATGGTGGATTTTTGGTGCTGTCTTTCGTTTGACAGATC GGTGAATGATATATTAATTTATCATTT
ATTGTTCTGTCACACGAAATGAAAATGCCAAATCCGCCATCTTGGATTGAGCAA AATATTGAATATTTACAGAAAAGCAT
ATTTCTTGGATITTTTGTTATTTGGTTTATTTCAGGTTATGAAAGTTTTTTTGAA AAATGTAAACTTITGACAATTTAA
CAGGAAAAAGTTATTTTGAATCCCCATCTTGGATTTTCCCGAATGTCTCTACGG ATTTATAAGGAACGCCATTTAGTTGT
TTTAAAATCACAAACCTAGTACGTAATGACATTTGAGCTTCTACTAAAAAAGTAT AAGAAACAATTACTTTATCGTTATG
TTTTAAGTTAAAGTGAGACAGACAAAAAACTATITGTGCCA
$>\mathrm{c} 162198 \mathrm{~g} 1 \mathrm{i} 2 \mid \mathrm{m} .58923$
MSKTKQNPYNKYEKLSQNQPNEPVNGSDIDLDSEMLLTTAESSTYTAAEVAGRLR VDIRTGLRWAEANTRSKICGYNELN
VGEDEPTWKKYIQQFKNPLILLLLGSALVSVVMKQFDDAISITVAIIIVVTVAFIQE YRSEKSLEELKKLVPPECHCLRE

GRLETFLARNLVPGDIVYLNIGDRVPADIRIFDSVDLSIDESSFTGETEPSRKTSDV LLSHGNSQNHTSMKNIAFMGTLV
RCGSGKGIVVCTGERSEFGEVFKMMQAEEAPKTPLQKSMDILGAQLSFYSFCIIGI IMLLGWLQGKPLSEMFNISVSLAV
AAIPEGLPIVVTVTLALGVMRMAKRSCIVKKLPTVETLGCVNVICSDKTGTITKNE MTVTVIVTADGYMAHVTGAGYNDN
GELHIRDCNSFDMAKRSITNLLEIGCVCNNAIIQSDQLLGQPTEGALLAVAMKHG MYATADQFIRIQEYPFSSEQKMMGV
KVVAKYNNNKEEIFMVKGAIEMILPQCTKFMFGGQPTLMTKQNEAEFLTEAYEIGR KGLRVLALARGTSFQDLCYCGLVG
ITDPPRPLVRESIEILQASGVRVKMVTGDAQETAVAIASLIGLDVVHQQALSGHD VDQMTEIQLEKVIQNVSVFYRVTPK
HKLAIVKALQQTGHIVGMTGDGVNDGVALKRADIGIAMGKNGTDVCKEAADMIL VDDDFHTIIAAIEEGKGIFYNIRNFV
RFQLSTSIAALSLITLATLMGIPNPLNAMQILWINIIMDGPPAQSLGVEPVDQDVLK QKPRNVKQPMISKSLIVNVLLSA
GIIILGTLWVFQREMADGSGGKTKRDTTMTFTCFVLFDMWNALSCRSQTKSIFSI
GFFSNKMFLFAVGFSLIGQLAVIYF
PPLQMVFQTEALSGMDILFLVALTSTVFWVAELKKAFERAMERRVYRKQHVDLDF V*

c158095_g2_14|m.39273

This sequence had high expression across the board, with the highest number of counts being in adult male vittatum. Uniprot database matches indicate it codes for either an alpha-actinin or a spectrin beta chain. Gene Ontology annotations suggest its function lies in cytoskeletal bundling.

Effective counts:
Adult male vittatum: 15233.09
Adult nulliparous female vittatum: 5142.86
Adult post-oviposition female vittatum: 9494.62
Female tribulatum larvae: 14439.57
Male tribulatum larvae: 10926.99

[^2]AAATTGTGCAAAATGTGAAAATTAACGGCACCCATCAACGACAACTTTTAACGG TTTAACGACCAATCCATATAGTATAG
AACTTGCTCGAGTATGAATACGACTTTTATCACTATCGAAAGAAAATCGCAAAC GAATGAAAAACCCAACGTGAATGTGC
TAGAGCGACAACAACGACGACGATCGACCATCACACCACGATCAAACAGACAA CAGACAATTACCATACATACACGAGAT GCGGACAAGAAAAACGGCTTTGAAACAAAAACATGTGGAAAATGAATTGAAAC GAACGACTTAAGTTAAGCAAGAATTTT
TAGTITTGAGTTGGCTACCAACGCGAGCGGTCTGCGATAAACAAACAAACAGC TTGAAAAAATCGATCGAACTTGAACAA
GAGAACCGTTGAGCATGATGGAAAACGGTGGTTATCCCGGTACCGACCAGGA TTACATGGAGCAGGAGGAGGAATGGGAG
CGTGAAGGACTCCTGGATCCTGCATGGGAGAAGCAGCAAAAGAAGACATTTAC CGCTTGGTGTAACAGTCACCTTCGTAA GGCTGGCACCTCCATCGATAACATCGAAGATGATTTCCGCAATGGACTCAAAC TCATGCTTCTGCTGGAAGTCATTTCCG
GCGAGACACTACCAAAGCCCGACCGCGGCAAGATGCGTTTCCACAAGATCGC CAACGTGAACAAAGCTCTCGACTACATC
GCATCCAAAGGCGTCAAGCTAGTATCCATCGGTGCCGAGGAAATTGTGGACG GCAACCTGAAGATGACGCTGGGTATGAT
CTGGACGATCATTCTACGTTTCGCCATCCAAGACATITCCGTCGAAGAGATGA CGGCCAAGGAAGGTTTGCTGTTGTGGT GCCAACGCAAGACTGCACCATACAAGAACGTCAACGTTCAGAATTTCСАTCTC AGTTTCAAGGACGGTTTGGCCTTCTGC
GCTCTGATCCATCGTCACCGACCCGACTTGATCGACTACTCGAAACTCTCCAAA GACAATCCATTGGAGAACTTGAACAC
AGCGTTCGATGTTGCCGAGAAGTACCTCGACATCCCAAGAATGTTGGACCCCG ACGATTTGATCAACACACCAAAGCCGG
ACGAACGTGCCATCATGACCTATGTGTCGTGCTATTATCACGCCTTCCAGGGT GCCCAGCAGGTTGGATACTTGATACCC
CTTGATAAGCACTTCGCCGATAGAAATGCTGAAACTGCCGCCAACCGCATCTG CAAAGTATTGAAAGTCAACCAAGAGAA
TGAGCGACTCATGGAGGAGTATGAGCGCTTGGCCAGCGATCTTTTGGAATGG ATCCGCCGCACCATGCCCTGGTTGGCGT
CCCGCCAAAGTGACAGCACCCTGGCCGGTGTGCAGAAGAAGCTCGAAGAGTA CCGCACCTATCGTCGCAAGCACAAGCCA
CCACGTGTCGAGCAGAAGGCCAAGTTGGAGACCAACTTCAACACGCTGCAAA CCAAGTTGCGGCTGTCGAACCGTCCGGC
CTACATGCCCACCGAAGGCAAAACCGTGGCCGACATCACCAACGCCTGGAAG GGGCTGGAGGGTGCCGAAAAGTCGTTCG
AGGAGTGGCTGCTGGCCGAGACCATGCGTTTGGAGCGCATCGAGCACTTGGC CCAGAAGTTCAAGCACAAGGCCGACACG
CACGAGGACTGGACTCGGGGCAAGGAGGAGATGCTCCAGTCGCAGGACTACA AAAACTGTCGCCTGTACGAGCTGAAGGC
GCTGAAGAAGAAGCACGAGGCGTTCGAGTCGGACTTGGCCGCCCACCAGGAC CGTGTCGAGCAGATCGCCGCCATCGCCC

AGGAGCTGAACACGCTGGAGTACCACGACTGTGTGTCGGTGAACGCTCGCTG CCAGCGCATCTGCGACCAGTGGGACCGT
TTGGGCGCGCTCACCCAACGCCGTCGCCAGGCGCTCGACGACATGGAGCGCA TCTTGGAGAAGATCGACATCTTGCATCT
CGAGTTCGCCAAGCGTGCGGCTCССTTCAACAACTGGTTGGACGGCGCTCGC GAGGATCTCGTCGACATGTTCATCGTGC
ACACGATGGAGGAGATCCAGGGCCTGATGTCCGCCCACGACCAGTTCAAGGC GACCCTCGGCGAGGCCGACAAGGAGTTC
AACGTCATCGTCGGTTTGGTGCGCGAGGTCGAATCGATCACCAACCAACACCA AATCGCCGGCGGCCTGGAGAACCCCTA
CACCACCCTCACCGCCAACGATCTGACCCGCAAGTGGTCGGACGTGCGTCAG TTGGTGCCACAGCGCGACCAAACGCTGA
CCAACGAATTGCGCAAGCAACAAAACAACGAGTCGTTGCGTCGCCAGTTCGCC GAAAAGTCGAATGCGGTCGGACCGTGG
ATCGAGCGGCAAATGGATGCGGTCCGGGCCATTGGTATGGGCATGACGGGAT CGTTGGAGGATCAGTTGCACCGTTTGCG
CGAGTACGAGCAGGCGGTGTACGCGTACAAGCCGCACATTGAGGAGCTGGAG AAGATCCACCAGGCCGTGCAGGAGTCGA
TGATCTTCGAGAATCGGTACACACAGTACACGATGGAGACGTTGCGTGTGGGA TGGGAACAGTTGCTCACGTCGATCAAC
AGGAATATCAATGAGGTTGAAAACCAAATCCTGACCCGCGACTCTAAGGGCAT CACACAAGAGCAACTGACCGAATTCCG
GGCCAGTTTCAATCACTTCGACAAAAATCGCATTGGCCGTCTGACCCCCGAAG AATTCAAGTCGTGCTTGGTGTCGCTGG
GCTACTCGATCGGCAAGGACCGTCAAGGTGAAATGGACTTCCAACGCATCATC GCCGTGGTCGATCCCAACTCAACCGGT
TACGTACAGTTTGACGCCTTCTTGGACTTTATGACGCGCGAAAACACCGACAC CGACACAGCCGAACAGGTGATCGACTC
GTTCAGGATCTTGGCTTCGGATAAGCCCTACATACTGCCAGACGAACTCCGCC GCGAATTGCCACCAGACCAAGCCGAAT
ACTGTATCCAACGCATGCCACCATTCAAGGGACCCGGCGCTGCACCCGGCGC CCTCGACTATATGTCATTCAGTACCGCG
CTGTACGGCGAAAGTGATTTGTAAATTTAAATAACACAAATTGAATAGTGTCTC GAAACTAATTTACTATTTATTTAAAA
AAACAAACAAAGAAAGAATGTGTTGGAAAACCGAATTATATGGGACTCAAGAT CAAAGTTACAAAAACGTTCGAAAAGAA
ATATCATTGCTTTGTGTATAAAAACTATCTTTTGATTATGTTTATAGGTTTTTTTC CGTTTTTTGTCGATTTTTAGTTAA
TTTTCTTTTGTTTTGACATTTTAAACAAATATAAAAAATGATATCCGTCAAAATG ACAGCTTGAAAAAAGAAGAAACAAG
AAACAAGATGGCAGCATACGAGTTGGGTGGGAAACGAGAGGCACGCACGCGC ACACGCAAACAAACAAACTGAGAGGAAG
AGAAAACAAGTAACTTGCATACACTTATTATTTATTTTCTAGTTTTAATTTAATT TTTATTTTCTAATTTAACTGAAAA
$>$ c158095 g2 i4lm. 39273
MMENGGYPGTDQDYMEQEEEWEREGLLDPAWEKQQKKTFTAWCNSHLRKAGT SIDNIEDDFRNGLKLMLLLEVISGETLP
KPDRGKMRFHKIANVNKALDYIASKGVKLVSIGAEEIVDGNLKMTLGMIWTIILRF AIQDISVEEMTAKEGLLLWCQRKT
APYKNVNVQNFHLSFKDGLAFCALIHRHRPDLIDYSKLSKDNPLENLNTAFDVAE KYLDIPRMLDPDDLINTPKPDERAI
MTYVSCYYHAFQGAQQVGYLIPLDKHFADRNAETAANRICKVLKVNQENERLMEE YERLASDLLEWIRRTMPWLASRQSD
STLAGVQKKLEEYRTYRRKHKPPRVEQKAKLETNFNTLQTKLRLSNRPAYMPTEG KTVADITNAWKGLEGAEKSFEEWLL
AETMRLERIEHLAQKFKHKADTHEDWTRGKEEMLQSQDYKNCRLYELKALKKKH EAFESDLAAHQDRVEQIAAIAQELNT
LEYHDCVSVNARCQRICDQWDRLGALTQRRRQALDDMERILEKIDILHLEFAKRA APFNNWLDGAREDLVDMFIVHTMEE
IQGLMSAHDQFKATLGEADKEFNVIVGLVREVESITNQHQIAGGLENPYTTLTAN DLTRKWSDVRQLVPQRDQTLTNELR
KQQNNESLRRQFAEKSNAVGPWIERQMDAVRAIGMGMTGSLEDQLHRLREYEQ AVYAYKPHIEELEKIHQAVQESMIFEN
RYTQYTMETLRVGWEQLLTSINRNINEVENQILTRDSKGITQEQLTEFRASFNHFD KNRIGRLTPEEFKSCLVSLGYSIG
KDRQGEMDFQRIIAVVDPNSTGYVQFDAFLDFMTRENTDTDTAEQVIDSFRILAS DKPYILPDELRRELPPDQAEYCIQR
MPPFKGPGAAPGALDYMSFSTALYGESDL*

c161260_g6_i2|m. 53629

Interestingly, this sequence is not expressed at all in adult nulliparous female vittatum but is expressed quite highly in adult parous female vittatum. Its protein matches are kinases.

Effective counts:
Adult male vittatum: 5.8
Adult nulliparous female vittatum: 0
Adult post-oviposition female vittatum: 115.51
Female tribulatum larvae: 7.25
Male tribulatum larvae: 6.39
$>c 161260 \mathrm{~g} 6 \mathrm{i} 2 \mid \mathrm{m} .53629$
ATCTTAGGAAATCTTGCACTTAATCAAGACCAATTTTCTCGCTCAGATATAATG ATTCCCACCTCCCTGCTTCCAGGAAT
GCAATACTTGGAGTCTCAGCACTTTGTGCATCGCGATCTGGCCGCTCGCAACA TCCTCCTCGCCTCCCGCAACCAAGCGA

AAATCTCCGATTTCGGACTCTCACGCGCCCTCTGCGTCGGCAACAACTACTAC CAGGCGTCACAGGGCGGTAAGTGGCCC
ATCAAATGGTACGCTCCCGAATCCTTCAACTTTGGCACCTTTTCGCACGCATCG GACGTTTGGAGCTTTGGCGTCGTACT
GTGGGAGATGTTCTCGTTGGGCCTGCCACCGTTCGGCGATTTGAAAGG
>c161260 g6 i2/m. 53629
ILGNLALNQDQFSRSDIMIPTSLLPGMQYLESQHFVHRDLAARNILLASR NQAKISDFGLSRALCVGNNYYQASQGGKWP
IKWYAPESFNFGTFSHASDVWSFGVVLWEMFSLGLPPFGDLK

c157132_g1_i1|m. 35709

Protein matches indicate this sequence codes for a semaphorin, and it is most highly expressed in adult male vittatum. Gene Ontology annotations suggest a role in neuronal development.

Effective counts:
Adult male vittatum: 283.9
Adult nulliparous female vittatum: 27.37
Adult post-oviposition female vittatum: 41.5
Female tribulatum larvae: 40.24
Male tribulatum larvae: 70.96
$>c 157132 \mathrm{~g} 1 \mathrm{i} 1 \mid \mathrm{m} .35709$
CGCAGATCTGGTCAATGACTTGAATTTTCAGCATTGACGCCGTTAATTTCACCA
ACGCACGGGGTGGTGTGCTTGCGAAA
ATTAGCTATACTTGTACGCGGCGCCTCCACGTTATCCTAAATTCTACGCCAGTG GTGACAAAACCTTCATTTTTAGTCCA
TACTCGTCTGTGTTGATTCAATCAAAACCTCAAAATATAGGAAATITCTTAGTTT TTCGCCAATCAATGGACACAAATTT
ACAATTCAAAAACTCGTTAGTGGACGATCGTATAGTTCTATCGGTAGTGTTGTA GTGAAAAAGTGAACTTTCAATCATCA
TGTTGATGTAGTCTGAGTCAATATTGGCCAATCCGAGCATCAAATTATTACTAA CTGTTGAACAAGCTATCGAAAGAATT
GATTGAGCCAATAAAAAAAGAAGCAAAAAAAAATCGATTGTGAAGTTTGTGTG TTITTGGTACTCCGGCAGTGACAGAGC
TGAAAACCACGCCTGAATCAGTGAATTTTGATTGCGGATTGCAAACAACAAATA
ATAGTTGGGAGTTTTTTTCATTGCCG
ACACTATGCTGCTGTTTGTGGAAGTTTTAACAGCATTTATGCTTCTAAGTGTTA
ACATTCAATCAATAGAATGCATGACA
GAACAATTGTCGCCTGATCATGTCCGTGAATTTAGTTGCGGCAAATTCTACAAT
CGTCTGTITTATTTGGACGAGGAACG
TGACAGCCTCTATGTGGGCTCGATGGATCGTGTTTTCAAGTTGAACCTAGAGA ACATAAGCACAGCTGCATGTGATCGTG

```
ACCAAATCCTTCTGGAACCCACTGGCTCTGACGTTGTCAACTGTGTTTCCAAGG GCAAGTCTCAGCTCTTCGATTGTCGC
AACCACATCAGAGTCATACAACCAGTTAACGATGGCAATCGTCTATACATTTGT GGCACTAACGCACATAATCCCAAGGA
TTACATCATCTATTCTAATTTAACGCACATCTCACGGTCGGAGTATGTACCGGG CATTGGACTGGGTATCGGTAAATGTC CGTACGATCCACTGGACAACTCGACGGCCATTTATATTGAGCGAGGCAATCCT GGAGATTTGCCGGCACTTTACTCGGGA
ACGAATGCGGAATTCACGAAGGCGGACACGGTGATCTTTAGGACCGATTTGTA CAACATGACCTCGAAGACCAAGTCGTA
CAACTTCAAGCGCACGTTGAAGTACGACTCCAAGTGGTTGGACAAACCCAACT TTGTCGGCTCCTTCGACGGTGGCGAGT ACGTGTA
```

```
>c157132 g1 i1|m.35709
MLLFVEVLTAFMLLSVNIQSIECMTEQLSPDHVREFSCGKFYNRLFYLDEERDSLY
VGSMDRVFKLNLENISTAACDRDQ
ILLEPTGSDVVNCVSKGKSQLFDCRNHIRVIQPVNDGNRLYICGTNAHNPKDYIIY
SNLTHISRSEYVPGIGLGIGKCPY
DPLDNSTAIYIERGNPGDLPALYSGTNAEFTKADTVIFRTDLYNMTSKTKSYNFKR
TLKYDSKWLDKPNFVGSFDGGEYV
```


c153060_g1_i1|m. 2372

Effective counts for this sequence were notably high in adult male vittatum and adult post-oviposition female vittatum (Figure 2). Uniprot database matches indicate that the sequence codes for a guanine nucleotide-binding protein, or G protein, which are involved in signaling pathways. In addition to 'flight behaviour', the corresponding Gene Ontology annotations listed several functions the sequence could serve, such as 'regulation of feeding behaviour' and 'regulation of locomotion', alongside other receptor signaling pathways.

Effective counts:
Adult male vittatum: 1128.33
Adult nulliparous female vittatum: 349.4
Adult post-oviposition female vittatum: 2330.56
Female tribulatum larvae: 123.87
Male tribulatum larvae: 107.89
>c153060 g1 i1|m. 23722
GTTGTTCAGTGTGGGCTITTTATTTTAAAAAAAACGTCAGAGGGTCGCGTCCAC TATACAGCTGCACAAAATTCGCCAAA

ATGTAACTTCTTTTATCGGAGTGTTAATGATAATGAATTTTTAATCGATAAGAGT ATCTTACACCGCCGTCCAACCAACC
AAACGAGTATGAGTACCTACACTTCAAAAACCCGACTTCAACCCGAGTCGGCA GAAAAGTCTCCGATATCTTATCAATCG
TATTGAACATATTAAATAAGCTGACAATAGACACAATAGCCCATTCAGTTGGCC GCATTAATTGGCAAAGGACCAATTCA
TTAAACGCAAAAAAAAATCTGACAAATAACAACCTTATAACCGTGTGATTCACA AAGTATATAGATAACGGCCAATATAA AAGAGGTCTCACATCATATAGATCCAAAGTGATTATAGCGAGGTATAGTTGGTT TTATATCAAACTGAGCGAGAAATGAT
TAGAAATTAGTGATTATCGTGATTATAAGAACGTGAATTCTGAATAAGAATTGA ACATCAATTGAGATTAGCCGTTAAGA AATCGATCAGAAATAAAATTTCCCGGAAATCGCAAACATCCCACTCTTACATAA ATGGTTAACAATCCAATGTGGCGCTG ССТСАAAATCAACAAACCACGCTCATCGGCAACCTCGAATGCCTCCGATGCTT CCAAAAAACTGGAAAAAGAGCTGACCA
AACGGACATATAAATTTGACAATGCTGTGAAAATCCTCCTGCTCGGCACCGGC GAAAGCGGTAAAACTACGATATTGAAG
CAAATGAAGATACTGCACATGGAGAACGGATTCACGATGGAAGAACGACTCGC GAACATCACCGCAATCCAGCTCAACAT CCACGAGAGTATTTTCGAGATCTGTCGGAATGTCACGGTGATGGGCTTAGAGT TCGACTCGCACACAAATCGAGAGAACG
CCAAGTGGATATTGTCGATGGGTCGTTTTGTGTACAATTTTTTCAGCAATGAGT ATGTGGGCGCTGTAAAGGCGCTCTGG
GCGGATGCGGCCGTGCAACAATGTTTCATGAGAAAATCTGAATACCAGCTCAT CGACAGTGCCAAGTACTTTCTCGATAA
AATTGATGAGATCAGTCTACCTGGCTTTGTGCCGAGCAATGAAGACATCCTCTT GACCCGCAAAATGACGACCGGTATTC
GAGAGGTTACGTTTCAAGTGAAGATACCAAGCAGCATGGGCGGGGGTTTTCA
AGAGTTCCGTATGTTCGATGTGGGCGGA
CAACGTGATCAGCGCAACAAATGGATGCAGGCCTTTGAGGGCATTCAGGCCAT CCTGTTCTTGATATCCTGCGGTGACTT
CGATCAAACTCTGCGTGAAGACCCTCAACAGAATCGACTCGCCGAGTCGATCA AACTCTTCGACCGGGTCTGGCAGAATC
GATTTCTTTGCAGCGCAGGTGTCATCGTGTTTCTGAACAAACAGGACATCATG GAGCAGAAGATTCGTGCGGGCAAAAAT
ATCGGCACATATTTCCCCGACTACTACCAATATAGGTTGTCTGCACAAGATGGT AACGTGTTTGACGAGTTCAACAAAAC
GCGGTGTTTCATTCGCCAGCAGTTGGTTGAGGTGACTAAAGTGGTGCCACGTC GGTTGTCCAACATTGGCCGCGAAATAC
CGAGAGAGTGCTTITTTCACTTCACGGTGGCGACGGATACTCGTAATATCAAA AAAGTGTTCAACGACGTCCACAATATC
ATTCTGACGAGAAATCTGGCCGACATGGGACTACTGTGACTTTTGGTGTAACT TCTCTGTACTAAATAAGATCTAAAACT
TTGCTTAAATGAAAAACTAAC

```
>c153060 q1 i1|m. }2372
MVNNPMWRCLKINKPRSSATSNASDASKKLEKELTKRTYKFDNAVKILL
LGTGESGKTTILKQMKILHMENGFTMEERLA
NITAIQLNIHESIFEICRNVTVMGLEFDSHTNRENAKWILSMGRFVYNFF
SNEYVGAVKALWADAAVQQCFMRKSEYQLI
DSAKYFLDKIDEISLPGFVPSNEDILLTRKMTTGIREVTFQVKIPSSMGGG
FQEFRMFDVGGQRDQRNKWMQAFEGIQAI
LFLISCGDFDQTLREDPQQNRLAESIKLFDRVWQNRFLCSAGVIVFLNKQ
DIMEQKIRAGKNIGTYFPDYYQYRLSAQDG
NVFDEFNKTRCFIRQQLVEVTKVVPRRLSNIGREIPRECFFHFTVATDTRN
IKKVFNDVHNIILTRNLADMGLL*
```


Figure 2. Coverage map showing the relative expression levels of "c153060_g1_i1|m.2372". The height of the bars indicate the number of reads mapped to that location along the gene, reflecting the amount of transcription of the gene. The X -axis indicates the length of the gene. Note that the Y -axis scale differs between developmental stages. This gene is most highly expressed in post-oviposition females, followed by adult males.

c162615_g1_i1|m.61334

This sequence follows the pattern of high expression in both adult male vittatum and adult parous female vittatum, though expression in the latter is somewhat higher than the former. One of its protein matches is protein flightless-1, which in Drosophila plays a structural role in indirect flight muscle. This protein may function similarly in blackflies.

Effective counts:
Adult male vittatum: 2742.08
Adult nulliparous female vittatum: 1020.63
Adult post-oviposition female vittatum: 4667.64
Female tribulatum larvae: 580.56
Male tribulatum larvae: 513.05
>c162615 g1 i1|m. 61334
GTGAATATACCAAATCAGCTGAAACTTGAAAAAAAATAATTTTGTTTTGTTTAAA TTTCTTTCTGAAAATTTCCCCTGAT
AAAAAGAGGCGATAAAACTGATAACTTCAAGCAAGAACGTAGCAATAAATGTC ACGACTATAAAGTGATAGAAGTATTTG
CAATAATTGGCCGTTTGGGCATTACAATGAATTGTTGACCTCGAAAGTGCTTAA ATTITTTTCGTCCGTCTATTTTTGTT
TTAAAATATTACTAATTAATGCGTCTAATTCTGTCGTCACCCATATATCGTTAAT CTAAGCTTCTCGTCTAATGAATCAT
TGAAGCTGTGAGCGAAAGGTGCCAACCACAGAACAGACCTAAATGGATCCCAA ACAGATAACAAATCTGGCCAAATTGTT GAAAAACAACGGCGATAAGGTCCTCAACGCTGAGTATCAGCTCTCTTTGTCCG GTCCCTTGTTACGCGCTCTAAACGACT
CGTTCTCGTTGATCGTCGACCAGAACGAGGTGGTGTCGCCCAAAGCGTTCCAG GTGACCAAAAACTACAACGCCAAGTCT
GACGTGTTCCGCGACCTGCAGTTCATCTACGATTTTGTCCAGAAAACTATATTC CTCAGCCTGAATTTGTTCATGCACGA
TGAACCGTGCGATCTCATCGACATTTCGAAGTTTCGCAACCTACGCAAGATCG AAGTCAACCGCATCGCTATCGACAAGG
TGCACGGTCTGAAGGTGTTGCGACCACAAATGTGCGAGGTGTACTGTATACGT
AGCTTGTCCTGCATCGAAGACATTCTG
GTCGATTGTGGTGGCGACAGGAGCGAAGGGCGTTTGTGGAACGAACTGAAAG TGGCCGATTTTTCGTACAATGGGTTGAC
GAAGATCGACAATGCGTTCGAGTTCACGCCAATGTTGCAGCATCTGAATTTGA GCAATAATCGGTTGGTCAGTGTGACCG
CTGTTAAGTGGTTGCCAAATTTGAAGAGTCTGAACTTGAACTTTAATCGATTGA CGGAGGTTCCGTTGTTGCATGCGGAC
ACGTGTCGGAGGTTGCAGGTGCTGTTGATCGCCAATAACTATGTGGAAGACTT GATGGGTGTTGCGTGCATGGATGGTTT

GTGCGAGTTGGACTTGTCCATGAACTGCTTGTTGGACCACTCGACACTGTTGC CGATCAGCACGTTGGCAGCGTTGCAGT
ATCTGAACTTGAAGGGCAACCCGATGTCGTGTCATCCAAAGCATCGGCAAGTG GCGTCCGCGTATCTTCACAAGAATACG
TCCAGTGGAGTGCTTCTGCTCGACGGAACACAACTATCCAAGAGTGAAAAAGC CCTCACGGGCAACTACGCCAGCCACCG GCCTAAAGTGATGTCCCAGTACCAATCGAACCGTTCTAGCATGAGCAGCATTT GCAGCCGCGCCACCAACGACAACACAC
CGCGCAGCAGTGTGGGCTCCCACAGCAGTTTGGTCATCGAGCATCTGGCCAA TCGCAGCCACGGTGACGACATGAACACA
TCGTTGGTCCAACGTAAACGACCCTTTCGTCATATCACCCTCAAGGGTGACAC ACCCGATGAGGCGGCCGTTGAAAAGCA
AAAGACGGTCGTTCGCAATCCCAGCACAGAGCACTTGCTGACCAAGAAAACCA TTGAAGAGCAAGCGCAGAAACACGGTG
CCAACTGGTTAAAAAGCAGGAATAAGGTGGGCAGTGTGTTAGGCTTCAAGAAT TTGTCACCGGAGAAGTCGCCGTCAGTG
TTCGGCACCTCGCCCAGTGGTCTGAGCATCGTCAATCGGGCGCACGACAACTT CGATGTCAGTGTCGTCACGTCAACGCC
CAAGGATCGAGATATTACCAGTAATITTTCCCTGGAAGTTTCGTCGCCTGTTGG TGATGTGACGACGACGACGGAGTATA
AGAGTGTATTGGCCACAACGGATGGAAGTGCGACTACGGATTATTTGTCGGCG AATGAATCACCAACCACCAGGAATCGT
>c162615 g1 i1|m. 61334
MDPKQITNLAKLLKNNGDKVLNAEYQLSLSGPLLRALNDSFSLIVDQNEV VSPKAFQVTKNYNAKSDVFRDLQFIYDFVQ
KTIFLSLNLFMHDEPCDLIDISKFRNLRKIEVNRIAIDKVHGLKVLRPQMC EVYCIRSLSCIEDILVDCGGDRSEGRLWN
ELKVADFSYNGLTKIDNAFEFTPMLQHLNLSNNRLVSVTAVKWLPNLKSL NLNFNRLTEVPLLHADTCRRLQVLLIANNY
VEDLMGVACMDGLCELDLSMNCLLDHSTLLPISTLAALQYLNLKGNPMS CHPKHRQVASAYLHKNTSSGVLLLDGTQLSK
SEKALTGNYASHRPKVMSQYQSNRSSMSSICSRATNDNTPRSSVGSHS SLVIEHLANRSHGDDMNTSLVQRKRPFRHITL KGDTPDEAAVEKQKTVVRNPSTEHLLTKKTIEEQAQKHGANWLKSRNK VGSVLGFKNLSPEKSPSVFGTSPSGLSIVNRA
HDNFDVSVVTSTPKDRDITSNFSLEVSSPVGDVTTTTEYKSVLATTDGSA TTDYLSANESPTTRNRQYSIFETIKNIQEA
PEVASDPEDNEKTYIVTEIDSAGKNLNEYILVISDKSLKEKNTETGRTQTR WSLETLESCESMRSNTITLYFDTIRRDRK
ERTYRMSSPLEAKQLLNFLRNILSERDLAEMNQQVYNCAKCSVQFSREV KPNMDPSCPECKSQFVIAMPTATVTKPAAEP
VAGVSKEQRDSPKRGMAKLWKSASHASIESAGSINDSQSSCSKISQSE SSFDSNQSVAGSSDNSDRDKDIADLLRRGDGT

```
ESDDIEILSNPSQSSIEVLDTYYSNRKLSDERHILQRPSLETIDDEQQQIA
NLSTTLTNRETSTSDLNLSALNREIAEMA
KSGEKIDPVEGATKEDKKDKVHKKSGISGGLLLTESSSSGSVTDSVCTA
YEQNQMVKSDGSDAATPKKDEAKHTNGKAEN
VSVITTMLGGLFQSTNLLMAKTPKTPSKPDLLMAGQPEPYRYSFTDFTAV
DHRLKLFFFQSVFEDDGELMNWLVRGRLVD
ETQAIASNTGFDGFLLVSSTKFYVFQMVDKESDDPAQWLKKHTWGTID
RLCILKVLPWKMGLTLTIKSFGVIHLLLPDIS
RTDSLLLFLADNPLPHTCRLDYQVSDTANQKLQALTSQKQIKSLTIFNEC
RISAYEQHQINDSGCLCVTDTDLFLLQLDT
NWLNDTINAPITVTNRQEMANLIEAEVVDAVTFKLNFLNESEDRYEMWK
VTFDATETAEATIQTISNWWEKIFGVPLIGG
HHVMMETSGVAVS*
```


c41610_g1_i1|m. 1164

Effective counts for this sequence show highest expression in adult post-oviposition female vittatum. The Uniprot database matches are kinases, and the Gene Ontology annotations indicate a role in transcription regulation.

Effective counts:
Adult male vittatum: 24.26
Adult nulliparous female vittatum: 3.15
Adult post-oviposition female vittatum: 102.09
Female tribulatum larvae: 46.68
Male tribulatum larvae: 16.62

[^3]LQNDPPTLDTGADEKDQYKAYGKTFRKLVTECLQKEASKRPSANELLKH QI

c157939_g1_i1|m. 38649

Expression levels of this sequence are highest in adult postoviposition female vittatum. Activated and cyclin-dependent kinases are its most frequent protein matches.

Effective counts:
Adult male vittatum: 26.61
Adult nulliparous female vittatum: 105.5
Adult post-oviposition female vittatum: 851.34
Female tribulatum larvae: 204.78
Male tribulatum larvae: 221.15

[^4]
AAAGCGTTGGAGTAGTGATGGATAAGGTTTTTAGTTTTGCAATTTTTAAACGAA GTTITATTTACATTTATTGGTGTGA
 AAATGTTTATTTCTCTACATTCGAATAAATCTCTATATTTAATTTTAGAAAACAAC CAGAATAAGTACAAGAACTGCTAG
 GGCTACCGATACCCAAATCAAGATGCAGGTTCGTTTCTGAAAGTGAAATTAAA AAGAAATTAATAAAGTCCATAGAATGG

$>c 157939$ g1 i1|m. 38649
MTFQTPRKPLNNKNLDNILQTPLRLPKSPLLERLGCGTGVEVMRFKRSPKLENFAS PWAIKRISKRQLTNENADIYGKRL
TEEAQILKKLSHPNIVGFRNYSQMADGRLCLAMEDVHKSLGDILEERFESSLGPLP
VELTMKMVLDVARALEYLHTKALL
LHGDLKSFNVLVKREFEVCKLCDFGVSLPLDAEGFVDTDKSPDAQYVGTPLWSAP EVFEEEIELITTKCDIFSFGMVIYE
TMALIPPHTQQLHLADDATSSVISLDDTVGGKKDYDENGDSIIVLDDSVDLESSA KNITLTECYGKRPPIPDTVADMKEY
EQIIELFFICTCEESDERPSASDLVKALE*

c145375_g1_i1|m. 12724

This sequence had very high effective counts in adult postoviposition females. All of the protein matches were ubiquitinconj'ugating enzymes. Gene Ontology annotations gave a wide variety of possible functions, such as muscle degradation", "determination of adult lifespan", "mitotic spindle organization", "UV protection", and "apoptosis regulation".

Effective counts:
Adult male vittatum: 126.39
Adult nulliparous female vittatum: 201.28
Adult post-oviposition female vittatum: 1004.01
Female tribulatum larvae: 103.57
Male tribulatum larvae: 97.28

[^5]GTTTGGATGTGTTGCGGTTGCCGCCTGGCACCTACAATCCTGCTATCACACTG GAATCAATACTTATATCTGTCCAATTA
TTGCTTTCCAATCCAAACCCAGATGATCCACTGCGAGCTGAAGCTGCCGATGA ATTCCGGTACAACCCAATTTTGTTTGC
TAAGAAAGCCTCAAATTTTGTTTAAACCACCCAATAGAACTTCAATACACTGGA CTGATTATACGGTG
>c145375 g1 i1|m. 12724
MSTPDIRTKRVSIEIEKINKGTGSHGISILRNAANVFKLEALLPGPKDSLY EKGVFKMSIDICPRYPFEPPLFRFLSPVP YHPNIDESGHICLDVLRLPPGTYNPAITLESILISVQLLLSNPNPDDPLRAE AADEFRYNPILFAKKASNFV*

c156338_g1_i1|m. 32945

Although all three adult groups have high effective counts for this sequence, the adult parous female count is the greatest by far (Fig. 3). All of the Uniprot matches were G proteins, and the Gene Ontology annotations, such as 'rhabdomere', 'retina development in camera-type eye,' and 'phototransduction', suggest that the protein plays a role in visual signaling.

Effective counts:
Adult male vittatum: 2416.73
Adult nulliparous female vittatum: 2024.74
Adult post-oviposition female vittatum: 3951.08
Female tribulatum larvae: 241.11
Male tribulatum larvae: 274.28

[^6]CTACCAAAACATCGTCAAAGGTATGCAAGTTCTAGTCGACGCCCGGGAAAAAT TGAACATACCGTGGGAGCATCCCAACA
CCCAATTGGTCGCCCTCCAGGCCGAGGTGTTTCACAGCGGCAGCGGGCTGGA TGGTGAACGATTTCGTCAGTATGCCCCC
TCCATTCATGTACTGTGGCAGGACCGCGCCATCAAGAAGTCGTATGCCCGGCG AAGGGAATTCCAACTGAGCGATTCGGT
CAGTTATTTCTGGACGACCTGGATCGGATATCGCGGCTGGATTATGTGCCAT CACACAAGGATATTCTGCATTGTCGGA
AGGCAACTAAAGGTGTAAATGAATTTATGATTAAAATTAATAACATTCCATTTGT TTTTGTCGACGTTGGTGGCCAGCGA
ACGCAGCGACAGAAATGGACCAAATGTTTCGACACATCTGTGACGTCAATAAT ATTTTAGTTTCAACGTCGGAGTTTGA
TCAAGTGCTGGCCGAGGACAGAAAAACCAATCGGCTGGAAGAATCGAAAAAC ATATTCGACACAATCATCAACAACACAG
CATTTAAAGGTATTTCAATAATTTTATTTCTGAACAAAACCGATTTGTTAGCACA AAAAGTGAAAAATCCTGAGACTGAT
ATCCGTTGGTATTATCCACAATTCATTGGTAATCCACATTCAATAGATGATGTA CAAAGTTTTATGTTACAAATGTITT
AAGTGTTAGAAAAAATACGAAAACACCAATCTACCATCACTACACCAATGCCGT CGACACCGAAAACATTCAAGTGGTCT
TTCGTTCTGTGAAAGACACGATATTGCAACGCAATTTGACGTCGCTAATGTTAC AATAAGTTTTGTTTTATAATTATGGA
AAAATTAAGGAAAATAACAAGGATAATAATTGAATAAAAAGATATAGAAACAAA CAGGAATTTCGAGATATGCGAACCAA
GCGAGTGAGATAATTTAGAAGAAAATCTACAAGTTTTTCGTTCTATGTTGTTAT TGTTTAATTGAGTTGTTTTATAAAGA
TTTATATTTTTTGAATTGACACAGTTTACCAAAGGAAACAAGAACGATTTTTCT CGCTCAATTTTCACCGCCAAATCAA
TAAATCCGAAGAAGAAAAAACAACAAATTCAAACAAACTCCTCTCTCCACGGCT ACCACAGCGTTTGATGCCAACCCTAA
CCAAGTTATTGAAAAATTCATAAAAACTTAATTGCTTTTCGAGTTGCATGGCAA CAAGGGGAGCCGAAAGCCGGGGGGGC
TGTCGAAGGAGCCAGTTTGCCACTCATACATTCCCGTGTGTATTTTGGTTTITT TATGATTITTACCTGAATGTCAAAAC
ACTGCAAGAATTGGACAACAACATAAAATTAAGAAATACAAGAAAAGGCTTTA AAAATGTGCCTITTTTACCTTGAAAA
AATCGACGATGTTTTTTTCGCTAAACCAAGCG
$>\underline{c 156338 \text { g1 i1|m. } 32945}$
MAEESGKLNCNKCCGGFFTYLLRLRVSPEEIEQRYKSREIDKFLNKDKSVLRRQV KLLLLGAGESGKSTFLKQMRIIHGV
KFEPDLMREYQNVIYQNIVKGMQVLVDAREKLNIPWEHPNTQLVALQAEVFHSG SGLDGERFRQYAPSIHVLWQDRAIKK
SYARRREFQLSDSVSYFLDDLDRISRLDYVPSHKDILHCRKATKGVNEFMIKINNI PFVFVDVGGQRTQRQKWTKCFDTS

VTSIIFLVSTSEFDQVLAEDRKTNRLEESKNIFDTIINNTAFKGISIILFLNKTDLLA QKVKNPETDIRWYYPQFIGNPH
SIDDVQSFMLQMFLSVRKNTKTPIYHHYTNAVDTENIQVVFRSVKDTILQRNLTSL MLQ*

Figure 3. Coverage map showing the relative expression levels of "56338_g1_i1|m.32945". The gene is heavily transcribed in all adult stages, with lower but significant expression in larvae.

c151900_g2_i1|m. 21264

Several different proteins matched to this sequence in Uniprot, including Activin receptor, TGF-beta receptor, cell division control protein, cyclin-dependent kinase, mitogen-activated protein kinase, and bone morphogenetic protein receptor. Both these protein matches and the Gene Ontology annotations suggest that the protein functions in a regenerative pathway. This sequence was also in keeping with the pattern of high expression in adult male vittatum and adult parous female vittatum.

Effective counts:
Adult male vittatum: 386
Adult nulliparous female vittatum: 8.7
Adult post-oviposition female vittatum: 62
Female tribulatum larvae: 22.71
Male tribulatum larvae: 76.09
$>c 151900 \mathrm{~g} 2$ i1|m. 21264
GTCGAACAATGGATGGTCAAAGCGAGTTCCTCTTGATTCTGTCGCTGGAACCA GCTGGTTGCCTACAAGACTGGTTGCTT
GACAACAGCACCTCGTTCGCCATCTTTTGCAAAATGGCCATATCCATAGCTTCA GGCCTAGCCCACTTGCACACTGAGAT
CCGAAAGGGTGACCAGTTTAAGCCATGCATCGTCCACCGCGACCTGAACTCGC GGAACATTTTAGTCCGTCCGGACTTGT
CGTGCTGCATCTGCGACCTGGGCTTCTCGATGAAGGTGTACGGGCCCAAATAC
GAATACCGCGGCGAGATCAACCTGGCC
GAGACGAAGAGCATCAATGAGGTGGGTACGTTGCGTTACCATGCGCCCGAGG TCCTCGAAGGTGCCGTCAACCTTCGCGA
TTGCGAATCGAGCTTAAAACAAATCGACATATACGCCATGGGCTTGGTCCTGT GGGAGCTTTGCACACGTTGCCACGATT
TTTACTACGCGTCTGAAAAGCTGCCGCCACCCTACAAAGCCCCCTATGAGGCT GAAATCGGCTGCAATCCAACGTTCGAG
CAAATGCAAGTCCTGGTTTCTCGGCACAAGGCGCGCCCGCTGTTTCCGGCAAA TTGGGGCGGAGGTCGGGCCGCTAAGAT
CGCGAAAGAAACTTGTGAAGACTGTTGGGACCACGACGCCGAAGCACGTCTC ACGGCGCTGTGCGTCAAAGAGCGAATCC
ACGATTTGTCTTCAATGCGTCCCACGGGACACCGCGCCACCAGCCCCTTGCTG AGCACGCACAACGACCTGCCAACCAAT
CCGAACACGCTCAAAGAGATCGCCTCTGTTCTCGCCCCGCCCAATCACACGGC TCCCGACATGACGGCCAGCGAGCCACC
GCAACAGCTCAAAAACCGCGAAATGTTCTCGCACCAAATCCAGGCATTTCAGG GCCGTAATCCAACAATGGAGCGCAATC
TGGTTCAGCCTGCTGAGAAACAGCCAGCACTGGTGGCGAAGAGTAAAAAGCA CGCTGACCCTCAGAAGATGAACAACAAC
GACAACGAGCGACTGAACGAGAATTTTATCATCGACGAGCTGATGAATGCGCC GGCGACTTCGATGAGCGAGGGTTTCTC
CAAGAAAATCCAAAATGTCGAGAGCACACGGACCAAGGGATGGCAGAGTGTA CGCAACCTGTTGAACAAGAAGTTTTTCC
GAAAACCCGATGCCTATCACTITCACTGCGACGAAAAGTCCAATTTAGTAGACA ACCGTAGCAAGCTGGTGTATAACGTC
AATGTTGAAAACGGGGCCTACTCGGACGATGTGACCACGTCACCTGTCACTGA
TCATCCGACAAATGGTGTGGCGTTGCG
GCCCAAAAATCTAGACATTTCCCCAATCGTTGTCAAGAAATTCGATCAACAGCA GACGCACAATGGCGAAAGCAGCGCTT

```
ATCGAACCCCACCCGGTGAGAAAACCGTACAGAAATTCTCCGTCATCAATCCA GAGCCCAACACGCGAATAGTGGTCTCA
AAGTCAGCGAATGCTGTCAAGAACCTGCAAAACAACTCCGTTCATGAC CTTATCAACATCAACGAAGACACTTTCCTGAA
GCGACAGCGTTCGCTTGAAGTGTTCCGTGAGGTGTTTGGTCCCAAGG GCAGCGTGGAGAGATTGCGAGACCCCAGTCAAC GGGTCAAGACACCGGGCGATGTGCCGCCTTCGGTGCGAAAGGTGCGGGCGA AGAAAACGTTGTCATTGTATGACGACCGA
ATGATGGATTCGGGAACTATGGCCGCTCAGTATGGGGTATAGCAAGAGGAAG TGCTGCTACTTGAACTTTAAAAGGACAA
GGGCGGCAGCACAATAACAGTTCGCTCAATTTTCTAATTTTATGATTTCCGTTA CGATACTATAGCTTTAGAGATCGCGC
GCATTTTTAATTCATTCACCTCTATCGCCGCAGAAACACCTTTCCTTTCTCTGAT TTCTAAGCAACATACAGGAACATCT AGGCATTGGAATAAGACCAC
```

$>\mathrm{C} 151900 \mathrm{~g} 2 \mathrm{i} 1 / \mathrm{m} .21264$
RTMDGQSEFLLILSLEPAGCLQDWLLDNSTSFAIFCKMAISIASGLAHLH TEIRKGDQFKPCIVHRDLNSRNILVRPDLS
CCICDLGFSMKVYGPKYEYRGEINLAETKSINEVGTLRYHAPEVLEGAVN LRDCESSLKQIDIYAMGLVLWELCTRCHDF YYASEKLPPPYKAPYEAEIGCNPTFEQMQVLVSRHKARPLFPANWGGGR AAKIAKETCEDCWDHDAEARLTALCVKERIH
DLSSMRPTGHRATSPLLSTHNDLPTNPNTLKEIASVLAPPNHTAPDMTAS EPPQQLKNREMFSHQIQAFQGRNPTMERNL
VQPAEKQPALVAKSKKHADPQKMNNNDNERLNENFIIDELMNAPATSM SEGFSKKIQNVESTRTKGWQSVRNLLNKKFFR
KPDAYHFHCDEKSNLVDNRSKLVYNVNVENGAYSDDVTTSPVTDHPTN GVALRPKNLDISPIVVKKFDQQQTHNGESSAY
RTPPGEKTVQKFSVINPEPNTRIVVSKSANAVKNLQNNSVHDLININEDT FLKRQRSLEVFREVFGPKGSVERLRDPSQR
VKTPGDVPPSVRKVRAKKTLSLYDDRMMDSGTMAAQYGV*

c162153_g1_i1|m. 58651

For this sequence, the effective counts in adult male vittatum were notably higher than any other group (Fig. 4). The single Uniprot database match was protein Turtle, a protein known to play a role in coordinated motor control and axonal targeting of the R7 photoreceptor in Drosophila. It could be that this sequence codes for a protein of similar function in blackflies. This sequence's Gene Ontology annotations appear to support this idea, with top listed matches of 'adult locomotory behaviour', 'axon guidance', 'flight
behaviour', and 'synaptic target recognition'.

Figure 4. Coverage map showing the relative expression levels of "c162153_g1_i1 1 m .58651 ". The expression of this gene is highest in adult males.

Effective counts:
Adult male vittatum: 242.68
Adult nulliparous female vittatum: 11.77
Adult post-oviposition female vittatum: 31.95
Female tribulatum larvae: 42.17
Male tribulatum larvae: 23.58
>c162153 g1 i1|m. 58651
CGATCTCTCGGGCGGCACCGCCAACAACGAATGGCGCTACCTGCCGCCCTAC CGTCCACCGCCACCGCCGCCCACAACCT
TCCAGTACTACCAAAACCACGGCTATCACTTGCAACCCCCCACACCGCCCACT GTGGGCCACTGGTTGGACCTGATCGCC

CGCCTCAACTCCGCCACCGACAAAGGCGGCATCGTCAAGAAGGCCATCGATG TGGGCAGCGTCGATGGCGCCTACGAGTT
CGATCCGGCCACGCCCACACCGTCGGCCTCAACACCCACCGGTGTCTATCTAC GCGACGACATCGACGCCTC
$>\mathrm{c} 162153 \mathrm{~g} 1 \mathrm{i} 1 \mid \mathrm{m} .58651$
DLSGGTANNEWRYLPPYRPPPPPPTTFQYYQNHGYHLQPPTPPTVGHWLDLIARL
NSATDKGGIVKKAIDVGSVDGAYEF
DPATPTPSASTPTGVYLRDDIDA

c151982_g1_i1|m. 21390

While expression for this sequence was high across the board, it was especially so in adult male vittatum and adult parous female vittatum. Protein matches include spectrin beta chain, alphaactinin, nesprin, and a nuclear anchorage protein. Gene Ontology annotations suggest this is a cytoskeletal anchoring protein.

Effective counts:
Adult male vittatum: 1357.08
Adult nulliparous female vittatum: 517.25
Adult post-oviposition female vittatum: 1166.61
Female tribulatum larvae: 319.79
Male tribulatum larvae: 142.25

[^7]TAAGCGATCTCCTCCATTACGAATAGAAGATCTTATTAACGATTTGAAGGATGG GGTAAAACTTTTAGCTTTACTAGAGG
TGCTTTCTGGTGAAAAGTTGCCAACCGAAAGAGGAAAAGTITTAAGACGTCCT CATTTTCTTAGCAATGCAAACACTGCT
CTTCAGTTCTTGGTTAGCAAAAAAATCAAATTGGTTAATATAAATCCTGCTGATT TGGTTGATGGAAAACCATCTATTAT
TCTTGGTTTAGTTTGGACAATAATTCTTTATTTTCAAATTGAAGAAAACACGAGA GGTTTACAATATGTCACAGATTCGT
ATGGAAACTCAAATACTTCGTTGGAAAGCATTAGCTCTTCAAAACAAGAAAACT CCAAATTGGGAGCAAAAAAAGCTTTG
CTAGATTGGGTGAATGGATTATTAAGAAATTCGAATGTTCCTGTTCGAGATITT GGGCCCAGCTGGCGTGATGGCAAAGC
ATTTATGGCAACGATTGATAATTTGAAGCCACATCAAATTCAACAACAAGAACT CAATGCAATGTCAAATCGAGACCGAT
TAGATATGGCGTTCAAATTGGCTGATCATGAGCTGGGTATACCATCTTTGTTGG ATCCTATTGACGTAGACGTTGAAAAT
CCAGATGAACGTAGTATCATGACCTATGTAGGTCAATTTTTACACAAGTATCCA ATTCGAAAACACCCACCAGAAGCATC
TCATCACGATAAGTTAAAACAAATTCAGCAATGGTTGGCTCAACAAAATTCTGA ATATAAAGCGATGAATGGGCGTTTTC
CAACGATCACTCAGCTCGAATTATATACTTGTGCTGTAACAATTTATGAAGAAA AATTAGAACTITTTAAAGTTCAAAAG
GTITTACCAGAAAATAATGAACTCGTTCGAAGTATTGATCATGCATTCGGTGAC ATGGAAACGCATTTAAGAAATTGGTT
TTCTCAACTCGTGATGGTTAACTTGCCAGAAGAGTITTCTGGAATAAACAAGTG GTTATATCAAGCTGATGTTTTAGCTA GGGATCTATTCACACCGACAATCATGAATGAAGAGACTGCATCAATAATTAGC AAGAAGTTGGAAGACCATAAAAAGTTT
TTCGCCACAATTGGAAATGTCGAACAAAGTITTAGTTCGCTGCAAATGGGCCAT GATTGGAATGCATATCAACGTGCTTT
AATTGATATTTTAGCTAATCGTCTAGTCCATGTCAGCGAAAAAGCGAAGCAAAG AAGAATATATTTGAAGTTTTTGGAAC
ACAAATGTTGTTTGATAGCCTTCTTAAACTTGGTTGAGTCTAAAATCAATCAAG TAAGGTCTAAAACATATGAAGAGACT
CTCGATTCTTTCAGAAATATGGAAAACTTTGTCTCCAAGAACCGAATAGTTCAT GAGTTTGGACGTGCTCTAGACGACAT
GAAACAAGTCATTCAGGAATATAAAATTGACGGCAGCGATGGTGGTTTGGAGC AGGCAGAGGCGTCAAAGGTGGACAAAT
TTTTGTACGATACAGAATGTCGCTGGAAGAGTGTACATTCAAAACTTATTTGTT CCCAGTCAATGTTGGCTGAAGTACTT
GCATACTGGGAAAAATGGCAGGTGATTTCTGCTGAATTTCTGCATTACCTAAAT GAGGCCGATAAGCATATAAGCAATTC
CAAAAATATTTCATTTTTGGTGATATCACAAATTGGGTCAAGCGTTTTGACCA ATTAACCGAATGTTATCAATTCTTGA
CGACAATAAACGGCAGCGCGGGTTCAGATCACAGACAAGACATTGATCAGATA TACCACAATATTTCATCTAGATGGAGC

```
TCGGTCAATTCTAGTGGTCGAAAGTTGATCAGTTCACAATATGTGTCCGCTAAT CGAGACAAATACGACGCTGGTGTAAA
AAATTTGACCAAGTGGATTAAACATGCCGAACAAACATTAAATGAACAGCCTTC AAACTACAAAATTGAAGATATTCAAA
ACTACGGCTCTGCCGTAATGCAGATCCAAACAGAAATCGACGATATTGAAGAA TTATTTAAGCATATCAGTTCAACGCTC
CAAGAGCTTATTCCTGATTTAACACGGGAGAGTGTAGATCAAATGATGCGCCA ACTTAAAACTGAAAAAGAAGCTTTGGT
CAAAGTAAGAGCAATGATTCCAATTAAATTACATCTATATCACCAGCTTTTAGC ACAAAAAGAAAATCTTGAAAAAGGAT
TGGCAGAAATTGAGAAATGGCTTGATCAAGGTGAAAAGTTACTTGGTACTTAT GGGACAACCAGTGATAGAGAAACTATC
CTCCAACAGTTGGACCAGCATAAACATTTITTGGACGCATAGTTTATTACAAA TCAATGCTGGAGAGTAAGAATAAACT
GTCAGCTCACATAAATTCGGCCCTTGGAGCTAATGTTAAATCTGATGAAAATAC AACAATGCACAGAATGCAGCAAATAA
ATAGTAGATTTACCTACGTAGTCACTAATGCCATAAATTGGGAACAAAAACTAA AAGATTTGACTATTTCTTGGAAAGGA
TTTATTGATTGCGAACGAAATCTAAGCAATTGGTTCCGTCATGCTGAACATTAT TTTCAAAATATATCTTCAACATCTAC
TGCAAATGATCTGGAAATCCAGAAACAGTTITTTGATAGTTTTGACGAACGCTG GTTGCAAGAATTTGAATCTTGCACGG
CTGATTTAATAAAATTGTCATCAATATCAGTACAAATGACAAATTGTTCTGTTGG GAACAATATATTACAACGAGTCGAG
AGCATTCGAAATCTTGATTCCGCCACCAAGTTGAAAATTCCCATTCATATGCTT CGATTGGAATATACCAAAAACCAAGA
AGTG
```

$>\mathrm{c} 151982 \mathrm{~g} 1 \mathrm{i} 1 \mid \mathrm{m} .21390$
MAKRPDIADSKKHDRNFSPNYFRSPVPWNSTILSPSTSSHQPQPQPPPQFLYQQP QIESIQPEHFQQPHSVRTFMSPTVE
SVRSNSVQSPVGSGIYHQQPSGNRSPYVIYDEEEHAGPTTAEIIANQSQDYIDEK LAEFQLTILQLQDEQERVQKKTFVN
WINSYLCKRSPPLRIEDLINDLKDGVKLLALLEVLSGEKLPTERGKVLRRPHFLSNA
NTALQFLVSKKIKLVNINPADLV
DGKPSIILGLVWTIILYFQIEENTRGLQYVTDSYGNSNTSLESISSSKQENSKLGA KKALLDWVNGLLRNSNVPVRDFGP
SWRDGKAFMATIDNLKPHQIQQQELNAMSNRDRLDMAFKLADHELGIPSLLDPI DVDVENPDERSIMTYVGQFLHKYPIR
KHPPEASHHDKLKQIQQWLAQQNSEYKAMNGRFPTITQLELYTCAVTIYEEKLELF KVQKVLPENNELVRSIDHAFGDME
THLRNWFSQLVMVNLPEEFSGINKWLYQADVLARDLFTPTIMNEETASIISKKLED HKKFFATIGNVEQSFSSLQMGHDW
NAYQRALIDILANRLVHVSEKAKQRRIYLKFLEHKCCLIAFLNLVESKINQVRSKTY EETLDSFRNMENFVSKNRIVHEF

GRALDDMKQVIQEYKIDGSDGGLEQAEASKVDKFLYDTECRWKSVHSKLICSQS MLAEVLAYWEKWQVISAEFLHYLNEA
DKHISNSKNISFFGDITNWVKRFDQLTECYQFLTTINGSAGSDHRQDIDQIYHNI SSRWSSVNSSGRKLISSQYVSANRD
KYDAGVKNLTKWIKHAEQTLNEQPSNYKIEDIQNYGSAVMQIQTEIDDIEELFKHI SSTLQELIPDLTRESVDQMMRQLK
TEKEALVKVRAMIPIKLHLYHQLLAQKENLEKGLAEIEKWLDQGEKLLGTYGTTSD RETILQQLDQHKHFFGRIVYYKSM
LESKNKLSAHINSALGANVKSDENTTMHRMQQINSRFTYVVTNAINWEQKLKDL TISWKGFIDCERNLSNWFRHAEHYFQ
NISSTSTANDLEIQKQFFDSFDERWLQEFESCTADLIKLSSISVQMTNCSVGNNIL QRVESIRNLDSATKLKIPIHMLRL
EYTKNQEV

c139920_g1_i1|m. 9473

The highest expression for this sequence was in adult postoviposition female vittatum, followed by adult male vittatum. Protein matches include spectrin alpha chain, alpha-actinin, and an uncharacterized protein C50C3.2 that has been identified in C. elegans.

Effective counts:

Adult male vittatum: 3878.23
Adult nulliparous female vittatum: 1035.31
Adult post-oviposition female vittatum: 5883.53
Female tribulatum larvae: 1384.54
Male tribulatum larvae: 1358.75

[^8]GGCGCTGGAGGACACGTGGCGTAATTTGCAGAAGATCATCGAGGAGCGCGAT GGTGAGCTGGCCAAGGAGGCGCACCGTC
AGGAAGAGAACGACAAGTTGCGCAAGGAGTTCGCCAAGCACGCCAATTTGTTC CATCAGTGGTTGACCGAGACCAGAACC
TCTCTCATGGACGGTTCCGGTTCACTTGAAGAGCAATTCGAAGCCCTGTGCCA CAAGGCCAACGAGATCCGGGCCCGACG
CGGTGACCTGAAGAAAATCGAAGAGCTGGGCGCCACTCTCGAGGAACACCTC ATCCTCGACAACCGTTACACGGAACACT
CTACCGTCGGCCTGGCCCAACAATGGGACCAGCTCGACCAACTGGCCATGCG
TATGCAGCACAACCTGAAACAACAAATC
CAGGCGCGCAATCAATCCGGCGTTTCGGAGGATTCGCTCAAGGAGTTCTCGAT GATGTTCAAGCACTTCGACAAGGACAA
GAGCGGCAAGTTGAACCACCAAGAGTTCAAGTCCTGTTTGCGTGCCCTCGGCT ACGACCTGCCCATGGTGGAGGAGGGCC
AACCCGACCCAGAGTTCGAGGAGATCCTCAGCATTGTCGACCCGAATCGCGAT GGCCAGGTATCGTTGCAGGAATACATC
GCCTTCATGATATCCAAGGAGACAGAGAATGTGCAGAGTTTCGAGGAGATCGA GAATGCGTTCCGCGCGATCACCGCATC
CGAACGGCCCTACGTCACCAAGGATGAGCTGTACACGAACCTCACCAAAGACA TGGCCGACTATTGTGTGCAACGCATGA
AACCGTACAACGACCCGAAAACGGGTCATCCGGTCACCGGCGCCCTGGACTA TGTGGACC
>c139920 g1 i1|m. 9473
VVESWIADKENHVRSEEFGRDLSTVQTLLTKQETFDAGLSAFEQEGIHNISVLKD QLINASHAQSEAITKRHEDVLTRWQ
TLRGASETRKYRLLQMQDQFRQIEDLYLTFAKKASAFNSWFENAEEDLTDPVRCN SIEEIKALREAHAQFQASLSSAQAD FQALAALDQKIKSFNVGPNPYTWFTMEALEDTWRNLQKIIEERDGELAKEAHRQE ENDKLRKEFAKHANLFHQWLTETRT
SLMDGSGSLEEQFEALCHKANEIRARRGDLKKIEELGATLEEHLILDNRYTEHSTV GLAQQWDQLDQLAMRMQHNLKQQI
QARNQSGVSEDSLKEFSMMFKHFDKDKSGKLNHQEFKSCLRALGYDLPMVEEG QPDPEFEEILSIVDPNRDGQVSLQEYI
AFMISKETENVQSFEEIENAFRAITASERPYVTKDELYTNLTKDMADYCVQRMKPY NDPKTGHPVTGALDYVD

References:

Gray, E. W., and R. Noblet. 1999.Large scale laboratory rearing of black flies, pp. 85-105.In: Maramorosch and F. Mahmood (eds.), Maintenance of human, animal, and plant pathogen vectors. Oxford and IBH, New Delhi, India.

Notes for Contributors

To avoid copy-typing, the editor (address above) would prefer to receive contributions on disc or by e-mail, or typewritten. Details as follows:-

1. Via conventional mail on CDRom or IBM PC formatted 1.4 Mb 3.5 inch diskettes, as unmodified word processor files (most common DOS or Windows word processor formats are acceptable) or as RTF, PDF, ASCII or DOS text files (We usually have to change pagination and heading format, anyway). Mark the disc with the format, word processor name and file name(s). Complicated tables and figures can be accepted as separate graphics files (not OLE embedded, please!) but we may ask for a hard copy as a check that all detail has been retained. Remember that figures should have legends and small detail drawn large enough to be visible when reduced to 100 mm by 70 mm . Diskettes will be returned on request.
2. By electronic mail via the Internet. Send your file in MSWord .DOC or .DOCX or in .RTF format or as an ASCII file (also known as DOS or txt File). (if no alternative, PDF can be accepted, but can present formatting problems)., and e-mail it either as part of the message or preferably as an attachment to: simuliidbulletin@gmail.com

If none of the above methods are available, then post to me printed copy on A4 paper (210×297 mm), single spaced, ready for scanning. Heading styles as in the Bulletin. Format for References is flexible. Please refer to the Bulletin for the form appropriate to your article. Scientific Communications should quote the full title with year and journal name and page numbers, but Notes and Abstracts may optionally omit titles and show only the year and abbreviated journal name and page numbers.

The Editors expect that contributors will act responsibly and check all references for accuracy. Contributors bear full responsibility for all data and conclusions drawn from them and are careful that any data obtained from other workers has been used with permission and suitably acknowledged.

The Simuliid Bulletin / published twice a year / Publisher: Simuliid Research Group, Bradáčova 2, SK-85102 Bratislava, Slovakia, IČO 52544567 / Date of issue: 31.7.2021 (Online) 3.8.2021 (Print) / 2/2021/ Annual volume 28 / Price: free / ISSN 2397-5075 (Online) ISSN: 2397-5067 (Print)/ EV 5887/20.

The Simuliid Bulletin / vychádza dvakrát ročne / Vydavatel': Simuliid Research Group, Bradáčova 2, SK-85102 Bratislava, Slovakia, IČO: 52544567 / Dátum vydania: 31.7.2021 (online verzia), 3.8.2021 (tlačená verzia) / 2/2021 / 28. ročník / cena: bezplatne / ISSN 23975075 (online verzia), ISSN: 2397-5067 (tlačená verzia)/ EV 5887/20.

The Simuliid Bulletin

ISSN 2397-5067 (Print)
ISSN 2397-5075 (Online)

Editor: Tatiana Kúdelová (Bratislava, Slovakia)
Publisher: Simuliid Research Group
Bradáčova 2, SK-85102 Bratislava, Slovakia
E-mail: simuliidbulletin@gmail.com
Associate Editors
Charles Brockhouse (Omaha, U.S.A)
Aleksandra Ignjatović Ćupina (Novi Sad, Serbia)
John W. McCreadie (Mobile, U.S.A)
Georgia Kirby (Glasgow, U.K)

The Simuliid Bulletin is an informal publication intended to disseminate information about the Simuliidae (Diptera). It is published twice each year on the internet as a downloadable file at URL http://www.simuliid-bulletin.blogspot.com (note the hyphen) or http://www.blackfly.org.uk. A few printed copies are sent to specialist libraries.

Content covers scientific papers, short research notes, notices and accounts of meetings, and articles of anecdotal or general interest that would not normally be found in international journals. Geographical cover is world-wide. Reports of research carried out by graduates, young scientists and newcomers to the subject are particularly encouraged. It is an ideal medium for offering new ideas and stimulating discussion because of the very short interval between acceptance and publication. Contributions may be accepted up to two weeks before the publication dates at the end of January or July.

All rights reserved.
The Simuliid Bulletin conforms to the requirements of the International Code of Zoological Nomenclature.
The full text of The Simuliid Bulletin is now available on EBSCO's databases.

[^0]: ${ }^{1}$ Abstracts will only be considered for acceptance when the author's registration fee is paid.

[^1]: $>c 162198$ g1 i2|m. 58923
 CAGGGCTACCCGAAAAAGTTTATTTAGAATITITCGCATCGGTAAAAATAATT CCCAATCCATCCATTTAGTAGTGAAA
 AATGGTTTAATGAGTGTATTACCAGCAAAGTAACTTAGCCATAATCCGTCAAAA TGAGTAAAACCAAGCAAAATCCCTAT
 AACAAATATGAAAAACTTTCGCAAAATCAACCAAACGAACCAGTTAATGGTTCA
 GACATAGATTTAGATTCAGAAATGTT
 GTTGACGACAGCCGAATCGTCCACGTACACAGCGGCCGAAGTGGCCGGACGA CTACGGGTGGACATCCGGACAGGCCTGC
 GATGGGCCGAGGCTAATACACGGTCGAAAATATGCGGCTACAATGAGCTGAAT GTGGGCGAGGATGAGCCGACGTGGAAG

[^2]: >c158095 g2 i4|m. 39273
 AATCGACATCTATAAAGATTAAACTCTGGTTATCAGCATTTCAAGTGTTAGATTA ACACAAGACCAACCTCCAACCAACA
 ACGAAGCATTTAAAACAACATAATTTAGTACCGTTTTATCAATTTATTCGAAGCG AGCGITTTGTTTACACGAGATAACG
 CTTCTTTTCTATACCTTATCACATACAAAAAAATGGAAAAAAGCGAACGAAATA AACGCCAGTCCAGATATATTAATTTC
 AATAAACAAACATTTCATTTCСАТАТТСААТTTATTATTCСТСТССАATCCAGTTC AATACATTGTCTCGGTATATAGAG

[^3]: >c41610 g1 i1|m. 1164
 GTTCAGATCGCGGACTTTGGCGTGAGCGCTTGGTTGGCCACGGGGCGTGACA TGTCGCGTCAGAAGGTGCGTCACACGTT
 CGTGGGCACGCCGTGCTGGATGGCTCCGGAGGTGATGGAGCAGGACCATGG GTACGACTTCAAGGCCGACATCTGGTCGT
 TTGGCATAACGGCCATCGAGATGGCGACGGGTACGGCGCCCTACCACAAGTA CCCGCCGATGAAAGTGCTGATGCTGACG
 CTGCAGAACGACCCGCCCACCTTGGATACGGGCGCCGACGAGAAGGACCAGT
 ACAAGGCGTACGGCAAGACGTTTCGAAA
 ACTCGTCACCGAGTGCTTGCAGAAGGAGGCGTCCAAACGGCCGTCCGCCAAC GAGTTGTTGAAGCACCAGATCG
 $>\mathrm{c} 41610 \mathrm{~g} 1 \mathrm{i} 1 \mid \mathrm{m} .1164$
 VQIADFGVSAWLATGRDMSRQKVRHTFVGTPCWMAPEVMEQDHGYDF KADIWSFGITAIEMATGTAPYHKYPPMKVLMLT

[^4]: >c157939 g1 i1|m. 38649
 GTCAGCGCTGTTAGCATTTTAACTGAAATTTTAAAAATCGCAAAAGTCAAAACA AATTAAACATTTACTTAAAAACAAAC
 TAAAAATGACTTTCCAAACACCGAGAAAACCTTTGAACAACAAGAATTTGGATA ATATCCTGCAAACACCTCTACGACTT CCGAAATCACCATTGCTAGAGCGTCTAGGTTGCGGCACTGGCGTCGAAGTGAT GAGATTCAAACGGTCGCCCAAGCTCGA
 AAACTTCGCCTCGCCCTGGGCTATCAAACGCATCTCCAAGCGACAATTGACCA ATGAAAATGCCGACATCTACGGTAAAC
 GTTTGACCGAAGAGGCGCAAATCCTTAAAAAACTCTCACATCCTAACATTGTCG GATTCCGCAACTATTCCCAGATGGCG GACGGCCGTTTGTGCTTGGCCATGGAGGACGTGCACAAATCACTCGGCGACA TCCTCGAAGAACGGTTCGAGTCGTCGTT GGGCCCCTTGCCCGTCGAACTGACGATGAAAATGGTGTTGGACGTCGCCCGG GCACTGGAGTATTTGCACACCAAGGCGT
 TGTTGTTACACGGCGACCTCAAGTCTTTCAATGTGTTGGTCAAGCGCGAATTTG AGGTGTGTAAGTTGTGCGACTTTGGC
 GTCAGCCTTCCATTGGACGCCGAAGGCTTCGTCGACACCGATAAGTCACCCGA CGCTCAATATGTCGGGACACCGTTGTG gTCGGCGCCAGAGGTGTTTGAGGAGGAGATCGAGTTGATCACGACAAAATGT GACATCTTCTCCTTCGGCATGGTCATCT
 ATGAGACGATGGCGCTGATTCCGCCGCACACACAGCAACTTCACTTGGCCGAC GATGCTACTAGCAGTGTGATCAGTTTG
 GACGACACCGTGGGCGGGAAGAAGGACTATGACGAGAATGGCGACAGTATTA TTGTGCTGGACGATTCCGTGGACCTTGA
 GTCCTCGGCGAAAAATATAACACTGACCGAATGCTATGGAAAGAGGCCACCTA TTCCAGACACTGTGGCCGACATGAAAG
 AGTACGAACAGATCATTGAGTTGTTTTTCATTTGCACCTGTGAGGAGTCGGAC GAGCGGCCTTCGGCTTCGGATTTGGTA

[^5]: $>\mathrm{c} 145375 \mathrm{~g} 1 \mathrm{i} 1 / \mathrm{m} .12724$
 GGCGGGATGATGAAAATGTATGGAAAAGATATAATTATTTTGGTATATATATTT TTTGTAGTGATGGTGTTTCGCTGCTT
 GGTTTCCAATAAAAACAAAAAATTAATAAGTTAAAGAAGACCAATAATGTCCAC ACCAGATATAAGAACAAAACGAGTTT
 CAATTGAAATTGAAAAAATAAATAAGGGAACTGGCAGCCATGGAATATCGATC TTAAGAAACGCGGCCAATGTCTTCAAA
 CTCGAGGCACTCCTTCCAGGACCCAAGGATTCATTGTATGAAAAAGGTGTATT CAAGATGAGCATTGACATTTGTCCCAG
 ATACCCATTTGAGCCTCCGTTATTCCGTTTCCTTTCACCTGTGCCTTACCATCCT AACATAGACGAGTCTGGCCACATAT

[^6]: $>\mathrm{c} 156338 \mathrm{~g} 1 \mathrm{i} 1 \mid \mathrm{m} .32945$
 CAAAACCGCACAGTCGTCAGTCCGTCAAATATTITTCGAACAATTITTTTTCGTA CAAAAAACCAAAATGTTGTTCCCGA
 ATTTGTTATCGCGAAATTTGCAAATTTAGTGGATTTTCACGCCCAATCCTAGTG ATAAGAGTGATTAAAAATGTAATTGG
 CATCAGCTACCTGCCAATTCAATGCAAAAAGTGCACAATTCTCTAGTGAAAGAA GGTAGAAGAAAAGAAAAAAGAAAATT
 TTGCTGAAAAAAAGAGAGCGCAGAGAAGTTAAAAAAAATATGGCAGAAGAAAG TGGAAAATTGAATTGTAACAAGTGTTG
 TGGTGGCTTTTTCACCTATTTGCTACGCTTACGAGTGAGCCCGGAGGAGATTG AGCAACGCTACAAGAGCCGTGAGATCG
 ACAAGTTCCTGAATAAGGATAAAAGTGTGCTACGACGGCAGGTCAAGCTCCTT CTCCTCGGCGCCGGTGAATCCGGCAAG
 TCCACCTTCCTGAAACAGATGCGCATCATCCACGGCGTCAAGTTCGAGCCCGA CCTGATGCGCGAATACCAAAACGTCAT

[^7]: $>\mathrm{c} 151982 \mathrm{~g} 1 \mathrm{i} 1 \mid \mathrm{m} .21390$
 ATCAAACAGAAGAAATTTTCACTCAGTACTGCTCCGGGTTTTGGCGAAATTGAA AGTCTACATTTATTCTTTAAAAAGTC
 TAGTCCTATTTAGACAACAAAAACGAAATTGAATAAAACATTGTTGTAATTAAAC GAAAATCGAAAGAACTTCAAACATA
 TTAAGATTACGAAGTCAAAAAACGATGATAAAAAAAAACAGTTAAAACACCATT TGAAAAATGGCGAAAAGGCCGGACAT
 AGCTGATTCGAAAAAACATGACCGAAATTITTCGCCCAACTATTTTCGGTCACC AGTGCCCTGGAATTCTACGATATTAT
 CACCATCAACATCTTCTCATCAGCCACAACCGCAGCCGCCACCCCAATTTCTT ATCAGCAACCACAAATTGAGTCTATA
 CAACCTGAACACTTTCAACAACCTCATTCTGTTAGGACATTTATGAGTCCAACA GTTGAGTCGGTACGATCAAATTCCGT
 TCAAAGTCCTGTAGGTTCCGGTATCTACCATCAGCAACCATCAGGAAACCGTT CACCGTATGTTATCTACGATGAAGAGG AGCATGCAGGTCCAACAACTGCTGAAATAATTGCAAATCAATCACAGGACTATA TCGACGAAAAGTTGGCTGAATTTCAG
 CTGACTATATTACAACTACAAGATGAACAAGAAAGAGTACAAAAAAAAACTTT GTCAATTGGATTAATTCCTATTTGTG

[^8]: >c139920 g1 i1|m. 9473
 GTGGTGGAGTCGTGGATCGCCGACAAGGAGAACCATGTGCGGTCGGAGGAG TTCGGACGTGATTTGTCCACGGTGCAAAC
 ATTGTTGACCAAGCAGGAGACATTCGATGCTGGTCTCTCGGCCTTCGAACAAG AAGGTATCCACAACATTTCCGTGCTGA
 AGGACCAACTGATCAACGCAAGTCACGCCCAGTCCGAGGCCATCACGAAGCG CCATGAAGACGTCTTGACCCGCTGGCAA
 ACACTGCGCGGCGCCTCCGAGACCCGCAAATACCGTTTGCTCCAAATGCAAGA CCAATTCCGTCAAATCGAGGACTTGTA
 CTTGACGTTCGCCAAAAAGGCGTCCGCCTTCAACTCCTGGTTCGAGAACGCCG AAGAAGATCTCACCGATCCGGTCAGAT
 GTAATTCGATCGAGGAGATCAAGGCGCTGCGTGAGGCCCATGCCCAGTTCCA GGCGTCGCTGTCATCGGCCCAGGCCGAT
 TTCCAAGCGTTGGCCGCCCTGGACCAGAAGATCAAGAGCTTCAATGTGGGACC GAATCCGTACACGTGGTTCACGATGGA

